This document is relevant for: Inf2
, Trn1
, Trn2
nki.simulate_kernel#
- nki.simulate_kernel(kernel, *args, **kwargs)[source]#
Simulate a nki kernel on CPU using a built-in simulator in Neuron Compiler. This simulation mode is especially useful for inspecting intermediate tensor values using nki.language.device_print (see code example below).
Note
All input and output tensors to the kernel must be numpy.ndarray when using this
simulate_kernel
API.To run the kernel on a NeuronCore instead, please refer to Getting Started with NKI.
- Parameters:
kernel – The kernel to be simulated
args – The args of the kernel
kwargs – The kwargs of the kernel
- Returns:
Examples:
import neuronxcc.nki as nki import neuronxcc.nki.language as nl import numpy as np @nki.jit def print_kernel(): a = nl.ndarray([4, 4], dtype=nl.float32, buffer=nl.shared_hbm) # Create (4, 4) tensor in sbuf y = nl.zeros([4, 4], dtype=np.float32) # Print tensor y nl.device_print("value of y:", y) # Directly store tensor y as a single tile nl.store(a, value=y) return a np.random.seed(0) a = nki.simulate_kernel(print_kernel) assert np.allclose(a, np.zeros([4, 4]))
This document is relevant for: Inf2
, Trn1
, Trn2