This document is relevant for: Inf2
, Trn1
, Trn1n
nki.language.load#
- nki.language.load(src, mask=None, dtype=None, **kwargs)[source]#
Load a tensor from device memory (HBM) into on-chip memory (SBUF).
See Memory hierarchy for detailed information.
- Parameters:
src – HBM tensor to load the data from.
mask – (optional) a compile-time constant predicate that controls whether/how this instruction is executed (see NKI API Masking for details)
dtype – (optional) data type to cast the output type to (see Supported Data Types for more information); if not specified, it will default to be the same as the data type of the input tile.
- Returns:
a new tile on SBUF with values from
src
.
import neuronxcc.nki.language as nl @nki_jit def example_kernel(in_tensor, out_tensor): # load from in_tensor[P, F] that is on HBM # copy into data_tile[P, F] that is on SBUF data_tile = nl.load(in_tensor) ...
Note
Partition dimension size can’t exceed the hardware limitation of
nki.language.tile_size.pmax
, see Tile size considerations.Partition dimension has to be the first dimension in the index tuple of a tile. Therefore, data may need to be split into multiple batches to load/store, for example:
import neuronxcc.nki.language as nl @nki_jit def example_load_store_b(in_tensor, out_tensor): for i_b in nl.affine_range(4): data_tile = nl.zeros((128, 512), dtype=in_tensor.dtype) # load from in_tensor[4, 128, 512] one batch at a time # copy into data_tile[128, 512] i_p, i_f = nl.mgrid[0:128, 0:512] data_tile[i_p, i_f] = nl.load(in_tensor[i_b, i_p, i_f]) ...
Also supports indirect DMA access with dynamic index values:
import neuronxcc.nki.language as nl ... ############################################################################################ # Indirect DMA read example 1: # - data_tensor on HBM has shape [128 x 512]. # - idx_tensor on HBM has shape [64] (with values [0, 2, 4, 6, ...]). # - idx_tensor values read from HBM and stored in SBUF idx_tile of shape [64 x 1] # - data_tensor values read from HBM indexed by values in idx_tile # and store into SBUF data_tile of shape [64 x 512]. ############################################################################################ i_p = nl.arange(64)[:, None] i_f = nl.arange(512)[None, :] idx_tile = nl.load(idx_tensor[i_p]) # indices have to be in SBUF data_tile = nl.load(data_tensor[idx_tile[i_p, 0], i_f]) ...
import neuronxcc.nki.isa as nisa import neuronxcc.nki.language as nl ... ############################################################################################ # Indirect DMA read example 2: # - data_tensor on HBM has shape [128 x 512]. # - idx_tile on SBUF has shape [64 x 1] (with values [[0], [2], [4], ...] generated by iota) # - data_tensor values read from HBM indexed by values in idx_tile # and store into SBUF data_tile of shape [64 x 512]. ############################################################################################ i_f = nl.arange(512)[None, :] idx_expr = 2*nl.arange(64)[:, None] idx_tile = nisa.iota(idx_expr, dtype=np.int32) data_tile = nl.load(data_tensor[idx_tile, i_f]) ...
This document is relevant for: Inf2
, Trn1
, Trn1n