This document is relevant for: Inf2
, Trn1
, Trn2
nki.isa.tensor_copy_dynamic_src#
- nki.isa.tensor_copy_dynamic_src(src, *, mask=None, dtype=None, **kwargs)[source]#
Create a copy of
src
tile within NeuronCore on-chip SRAMs using Vector Engine, withsrc
located at a dynamic offset within each partition.Both source and destination tiles can be in either SBUF or PSUM. By default, this API returns a tile in SBUF, unless the returned value is assigned to a pre-declared PSUM tile.
The source and destination tiles must also have the same number of partitions and the same number of elements per partition.
The dynamic offset must be a scalar value resided in SBUF. If you have a list of dynamic offsets for gathering tiles in SBUF/PSUM, you may loop over each offset and call
tensor_copy_dynamic_src
once per offset.Estimated instruction cost:
max(MIN_II_DYNAMIC, N)
engine cycles, where:N
is the number of elements per partition in thesrc
tile,MIN_II_DYNAMIC
is the minimum instruction initiation interval for instructions with dynamic source location.MIN_II_DYNAMIC
is roughly 600 engine cycles.
- Parameters:
src – the source of copy, must be a tile in SBUF or PSUM.
mask – (optional) a compile-time constant predicate that controls whether/how this instruction is executed (see NKI API Masking for details)
dtype – (optional) data type to cast the output type to (see Supported Data Types for more information); if not specified, it will default to be the same as the data type of the input tile.
Example:
import neuronxcc.nki.typing as nt import neuronxcc.nki.isa as nisa import neuronxcc.nki.language as nl ... ######################################################################################### # TensorCopyDynamicSrc example 0: # - src_tensor in HBM of shape [128, 512] # - offsets in HBM of shape [1, 64] (with values [4, 5, 6, 7, ...]) # - Gather tiles of shape [128, 1] from src_tensor into out_tensor using offsets ######################################################################################### # Load src_tensor and offsets into SBUF src_tensor_sbuf: nt.tensor[128, 512] = nl.load(src_tensor) offsets_sbuf: nt.tensor[1, 64] = nl.load(offsets) # Copy into output tensor in SBUF out_sbuf: nt.tensor[128, 64] = nl.ndarray([128, 64], dtype=src_tensor.dtype, buffer=nl.sbuf) # Static indices to access a tile of shape [128, 1]; # Add dynamic offsets to iy for tensor_copy_dynamic_src ix, iy = nl.mgrid[0:128, 0:1] for idx in nl.affine_range(offsets_sbuf.shape[1]): out_sbuf[ix, idx] = nisa.tensor_copy_dynamic_src( src_tensor_sbuf[ix, offsets_sbuf[0, idx] + iy]) nl.store(out_tensor, value=out_sbuf) ...
import neuronxcc.nki.typing as nt import neuronxcc.nki.isa as nisa import neuronxcc.nki.language as nl ... ######################################################################################### # TensorCopyDynamicSrc example 1: # - src_tensor in HBM of shape [128, 512, 4] # - offsets in HBM of shape [1 x 8] (with values [4, 5, 6, 7, ...]) to index into # second axis of src_tensor # - Gather tiles of shape [128, 4] from src_tensor into out_tensor using offsets ######################################################################################### # Load src_tensor and offsets into SBUF src_tensor_sbuf: nt.tensor[128, 512, 4] = nl.load(src_tensor) offsets_sbuf: nt.tensor[1, 8] = nl.load(offsets) # Copy into output tensor in SBUF out_sbuf: nt.tensor[128, 8, 4] = nl.ndarray([128, 8, 4], dtype=src_tensor.dtype, buffer=nl.sbuf) # Static indices to access a tile of shape [128, 1, 4]; # Use dynamic offsets directly to index the second axis for tensor_copy_dynamic_src ix, _, iz = nl.mgrid[0:128, 0:1, 0:4] for idx in nl.affine_range(offsets.shape[1]): out_sbuf[ix, idx, iz] = nisa.tensor_copy_dynamic_src( src_tensor_sbuf[ix, offsets_sbuf[0, idx], iz]) nl.store(out_tensor, value=out_sbuf) ...
This document is relevant for: Inf2
, Trn1
, Trn2