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AWS Neuron

AWS Neuron is the software development kit (SDK) used to run deep learning and generative Al workloads on AWS
Inferentia and AWS Trainium powered Amazon EC2 instances and UltraServers (Infl, Inf2, Trnl , Trn2 and Trn2
UltraServer). It includes a compiler, runtime, training and inference libraries, and profiling tools. Neuron supports
customers in their end-to-end ML development lifecycle including building and deploying deep learning and Al models.

ML Frameworks and Libraries - Neuron integrates with PyTorch and JAX, and offers NxD Training and NxD
Inference PyTorch libraries for distributed workflows. It also supports third party libraries such as Hugging Face
Optimum Neuron, PyTorch Lightning, and AXLearn library for JAX model training.

Frontier Models Support - Neuron supports frontier models such as Llama3.3-70b and Llama Llama3.1-405b.

Developer Tools - Neuron provides health monitoring, observability, and profiling tools for AWS Inferentia
and Trainium instances. It tracks hardware utilization, model execution metrics, and device information. The
Neuron Profiler identifies performance bottlenecks. Neuron also integrates with third-party monitoring tools like
Datadog and Weights and Biases.

Compute Kernels - Neuron Kernel Interface (NKI) provides direct hardware access on AWS Trainium and
Inferentia, enabling customer to write optimized kernel. NKI provides a Python-based environment with Triton-
like syntax. Neuron supports custom C++ operators, allowing developers to extend functionality and enhance
deep learning models.

Workloads Orchestrations and Managed Services - Neuron enables you to use Trainium and Inferentia-based
instances with Amazon services such as SageMaker, EKS, ECS, ParallelCluster, and Batch. and third-party
solutions like Ray (Anyscale) and Domino Data Lab.

Architecture - To understand the architecture of AWS AI Chips, Trn/Inf instances, and NeuronCores visit /11-
stance and UltraServer Architecture, Amazon EC2 Al Chips Architecture and AWS NeuronCore Architecture.

For more information about the latest AWS Neuron release, see Neuron 2.24.1 (06/30/2025) and check the Announce-
ments page.

For list of AWS Neuron model samples and tutorials on Amazon EC2 Infl, Inf2, Trnl, and Trn2 instances, see
Model samples and tutorials.

Get Started with Neuron Neuron Quick Links
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https://aws.amazon.com/ai/machine-learning/inferentia/
https://aws.amazon.com/ai/machine-learning/inferentia/
https://aws.amazon.com/ai/machine-learning/trainium/
https://aws.amazon.com/ec2/instance-types/inf1/
https://aws.amazon.com/ec2/instance-types/inf2/
https://aws.amazon.com/ec2/instance-types/trn1/
https://aws.amazon.com/ec2/instance-types/trn2/
https://aws.amazon.com/ec2/ultraservers/
https://aws.amazon.com/ec2/ultraservers/
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CHAPTER
ONE

OVERVIEW

This document is relevant for: Infl, Inf2, Trnl, Trn2

1.1 Neuron Quick Links

Overview
* Get Started with Neuron
* Ask Q Developer
* Model samples and tutorials
* Neuron performance
* What’s New
* Announcements
ML frameworks
* PyTorch Neuron
e JAX Neuron (beta)
 TensorFlow Neuron
* MXNet Neuron (maintenance)
ML libraries
* NxD Training
* NxD Inference
* NxD Core
 Transformers NeuronX (transformers-neuronx)
* AWS Neuron Reference for NeMo Megatron
User Guides
e NeuronX Runtime
* Neuron Compiler
* Neuron Kernel Interface (NKI) (beta)
* Neuron Custom C++ Operators (beta)

* Monitoring Tools
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* Profiling Tools

e Other Tools

o Setup Guide

* Neuron DLAMI User Guide

* Neuron Containers

o AWS Workload Orchestration
Learn AWS Neuron

* Neuron Architecture

* Neuron Features

e Neuron Application Notes

e Neuron FAQ

* Troubleshooting Guide
About AWS Neuron

* Release Details

* Roadmap

* Support
This document is relevant for: Infl, Inf2, Trnl, Trn2

This document is relevant for: Infl, Inf2, Trnl, Trn2

©

1.2 Ask Q Developer

Use Q Developer as your Neuron Expert for general Neuron technical guidance and to jumpstart your NKI kernel
developement.

Ask Q through Chat Ask Q in your IDE Guidelines for Quality Results

1.2.1 Guidelines for Quality Results

1. Be Specific: Clearly state the task, desired output, and any constraints.
2. Provide Context: Mention specific versions, strategies, and any relevant performance requirements.

3. Request Complete Code: Ask for full implementations including imports, decorators, and main functions. Re-
member to always review and test the generated code before using it in production.

4. Ask for Explanations: Request comments or separate explanations for complex parts of the code.

5. Tterate: If the initial response isn’t satisfactory, refine your prompt based on the output. If you encounter issues
or inaccuracies, consider rephrasing your prompt or breaking down complex tasks into smaller, more specific
questions.
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https://aws.amazon.com/q/
https://aws.amazon.com/q/
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.amazon-q-vscode
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6. Fact check: Use Q as a starting point and supplement its output with official documentation, AWS NKI Samples
repository, and your own expertise.

Example Prompts

Note: Amazon Q Developer support for Neuron is currently in Beta. Therefore, Q may not always produce optimal
or fully accurate results.

1. “Explain the key features and benefits of AWS Neuron Kernel Interface (NKI).”
2. “How do different parallelism strategies (data, pipeline, tensor) affect training performance on Neuron?”

3. “What are the best practices for optimizing matrix multiplication operations using Neuron Kernel Interface
(NKI)?”

4. “Provide complete Neuron Kernel Interface (NKI) code for a matrix multiplication kernel, including imports,
decorators, and explanations of key optimizations. Focus on efficient tiling and data movement strategies.”

This document is relevant for: Infl, Inf2, Trnl, Trn2

This document is relevant for: Infl, Inf2, Trnl, Trn2

1.3 Get Started with Neuron

This section walks you through the various options to get started with Neuron. You have to install Neuron on Trainium
and Inferentia powered instances to enable deep-learning acceleration.

Get started with PyTorch Get Started with JAX Get Started with TensorFlow Get Started
with Q Developer This document is relevant for: Infl, Inf2, Trnl, Trn2

This document is relevant for: Infl, Inf2, Trnl, Trn2

1.4 Model samples and tutorials

This document is relevant for: Trnl

1.4.1 Training Samples/Tutorials (Trn1/Trn1n)

Table of contents

e Encoders

e Decoders

* Encoder-Decoders
* Vision Transformers

* Stable Diffusion

e Multi Modal

1.3. Get Started with Neuron 5
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e Convolutional Neural Networks(CNN) I

Encoders

Model

Frame-
works/Libraries

Samples and Tutorials

bert-base-cased

torch-neuronx

Fine-tune a “bert-base-cased” PyTorch model for Text
Classification

How to fine-tune a “bert base cased”” PyTorch model with
AWS Trainium (Trnl instances) for Sentiment Analysis

bert-base-uncased

torch-neuronx

Fine-tune a “bert-base-uncased” PyTorch model
Fine tuning BERT base model from HuggingFace on
Amazon SageMaker

bert-large-cased

torch-neuronx

Fine-tune a “bert-large-cased” PyTorch model

bert-large-uncased

torch-neuronx

Hugging Face BERT Pretraining Tutorial (Data-Parallel)
Launch Bert Large Phase 1 pretraining job on Parallel
Cluster

Launch a Multi-Node PyTorch Neuron Training Job on
Trainium Using TorchX and EKS

PyTorch Neuron for Trainium Hugging Face BERT
MRPC task finetuning using Hugging Face Trainer API
Fine-tune a “bert-large-uncased” PyTorch model

roberta-base

tensorflow-
neuronx

Fine-tune a “roberta-base” PyTorch model

roberta-large

torch-neuronx

Fine-tune a “roberta-large” PyTorch model

xIm-roberta-base

torch-neuronx

Fine-tune a “xIm-roberta-base” PyTorch model

alberta-base-v2

torch-neuronx

Fine-tune a “alberta-base-v2” PyTorch model

distilbert-base-uncased

torch-neuronx

Fine-tune a “distilbert-base-uncased” PyTorch model

camembert-base

torch-neuronx

Fine-tune a “camembert-base PyTorch model

cl-tohoku/bert-base-
japanese-whole-word-
masking

torch-neuronx

Fine-tuning & Deployment Hugging Face BERT
Japanese model
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https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/BertBaseCased.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/BertBaseCased.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_sentiment_analysis/01-hf-single-neuron.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_sentiment_analysis/01-hf-single-neuron.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/BertBaseUncased.ipynb
https://github.com/aws-neuron/aws-neuron-sagemaker-samples/blob/master/training/trn1-bert-fine-tuning-on-sagemaker/bert-base-uncased-amazon-polarity.ipynb
https://github.com/aws-neuron/aws-neuron-sagemaker-samples/blob/master/training/trn1-bert-fine-tuning-on-sagemaker/bert-base-uncased-amazon-polarity.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/BertLargeCased.ipynb
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/dp-bert-launch-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/dp-bert-launch-job.md
https://github.com/aws-neuron/aws-neuron-eks-samples/tree/master/dp_bert_hf_pretrain#tutorial-launch-a-multi-node-pytorch-neuron-training-job-on-trainium-using-torchx-and-eks
https://github.com/aws-neuron/aws-neuron-eks-samples/tree/master/dp_bert_hf_pretrain#tutorial-launch-a-multi-node-pytorch-neuron-training-job-on-trainium-using-torchx-and-eks
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/BertLargeCased.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/RobertaBase.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/RobertaLarge.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/XlmRobertaBase.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/AlbertBase.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/DistilbertBaseUncased.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/CamembertBase.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_bert_jp/bert-jp-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_bert_jp/bert-jp-tutorial.ipynb
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Decoders

Model Frame- Samples and Tutorials

works/Libraries
t-2 d-traini
&P nxc-tralning * Megatron GPT Pretraining
gpt-2 torch-neuronx L " . )
* How to run training jobs for “gpt2”” PyTorch model with
AWS Trainium
* ZeRO-1 Tutorial
t-3 - -
&p Reuronx-nemo e Launch a GPT-3 23B pretraining job using neuronx-
megatron
nemo-megatron
e Launch a GPT-3 46B pretraining job using neuronx-
nemo-megatron
e Launch a GPT-3 175B pretraining job using neuronx-
nemo-megatron
GPT-NEOX-20B -
n.eur.onx * Training GPT-NeoX 20B with Tensor Parallelism and
distributed o
ZeRO-1 Optimizer
e Training GPT-NEOX 20B model using neuronx-
distributed
* Pre-train GPT Neox 20b on Wikicorpus dataset using
Neuronx Distributed library
GPT-NEOX-6.9B -
nfaur.onx * Training GPT-NeoX 6.9B with Tensor Parallelism and
distributed o
ZeRO-1 Optimizer
e Training GPT-NEOX 6.9B model using neuronx-
distributed
e Pre-train GPT Neox 6.9b on Wikicorpus dataset using
Neuronx Distributed library
ta-llama/Llama-3.1- -

%i)a amasiama gfslg?l;llie d * Training Llama-3.1-70B, Llama-3-70B or Llama-2-
13B/70B with Tensor Parallelism and Pipeline Paral-
lelism

ta-llama/Llama-3.1-8b -

feta-Tama/tiama Eieslilr:l?li(te d * Training Llama3.1-8B, Llama3-8B and Llama2-7B with
Tensor Parallelism and ZeRO-1 Optimizer

ta-llama/Llama-3-70b -

meta-tlam ama n'eurf)nx e Training Llama-3.1-70B, Llama-3-70B or Llama-2-

distributed

13B/70B with Tensor Parallelism and Pipeline Paral-
lelism

meta-llama/lLlama-3-8b

nxd-training

HuggingFace Llama3.1/Llama3-8B Pretraining
HuggingFace Llama3.1/Llama3-8B Supervised Fine-
tuning

ta-llama/Llama-3-8b -
feta-famart-lama nfaur.onx * Training Llama3 8B Model with Tensor Parallelism and
distributed o
ZeRO-1 Optimizer
* Tutorial for Fine-tuning Llama3 8B with tensor paral-
8 lelism and LoRA using Neuron Ryhgjistel-ightOus ividw
NeuronX Distributed
meta-llama/Llama-2-7b neuronx-

1* e *1e e -1

Training Llama3.1-8B, Llama3-8B and Llama2-7B with


https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_language_modeling/gpt2/gpt2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_language_modeling/gpt2/gpt2.ipynb
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-gpt-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-gpt-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-gpt-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-gpt-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-gpt-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-gpt-job.md
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_20b_hf_pretrain
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_20b_hf_pretrain
https://github.com/aws-samples/amazon-eks-machine-learning-with-terraform-and-kubeflow/blob/master/examples/neuronx-distributed/gpt_neox_20b/README.md
https://github.com/aws-samples/amazon-eks-machine-learning-with-terraform-and-kubeflow/blob/master/examples/neuronx-distributed/gpt_neox_20b/README.md
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_6.9b_hf_pretrain
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_6.9b_hf_pretrain
https://github.com/aws-samples/amazon-eks-machine-learning-with-terraform-and-kubeflow/blob/master/examples/neuronx-distributed/gpt_neox_6.9b/README.md#pre-train-gpt-neox-69b-on-wikicorpus-dataset-using-neuronx-distributed-library
https://github.com/aws-samples/amazon-eks-machine-learning-with-terraform-and-kubeflow/blob/master/examples/neuronx-distributed/gpt_neox_6.9b/README.md#pre-train-gpt-neox-69b-on-wikicorpus-dataset-using-neuronx-distributed-library
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/aws-batch/llama2/README.md
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/aws-batch/llama2/README.md
https://github.com/aws-samples/amazon-eks-machine-learning-with-terraform-and-kubeflow/blob/master/examples/neuronx-distributed/llama2_7b/README.md
https://github.com/aws-samples/amazon-eks-machine-learning-with-terraform-and-kubeflow/blob/master/examples/neuronx-distributed/llama2_7b/README.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-llamav2-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-llamav2-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-llamav2-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-llamav2-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-llamav2-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-llamav2-job.md
https://github.com/aws-neuron/neuronx-nemo-megatron/blob/main/nemo/examples/nlp/language_modeling/test_mistral.sh
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Encoder-Decoders

Model Frame- Samples and Tutorials
works/Libraries
t5-small ]
* torch- e Fine-tune TS5 model on Trnl
neuronx
* optimum-
neuron
facebook/bart-large
g * torch- * How to fine-tune a “Bart-Large” PyTorch model with
neuronx AWS Trainium (trnl instances)
Vision Transformers
Model Frame- Samples and Tutorials

works/Libraries

google/vit-base-patch16-
224-in21k

torch-neuronx

* Fine-tune a pretrained HuggingFace vision transformer
PyTorch model

openai/clip-vit-base-
patch32

torch-neuronx

* Fine-tune a pretrained HuggingFace CLIP-base PyTorch
model with AWS Trainium

openai/clip-vit-large-
patch14

torch-neuronx

* Fine-tune a pretrained HuggingFace CLIP-large PyTorch
model with AWS Trainium

Stable Diffusion

diffusion-2-1-base

Model Frame- Samples and Tutorials
works/Libraries
stabilityai/stable- torch-neuronx

e [Beta] Train stabilityai/stable-diffusion-2-1-base with
AWS Trainium (trnl instances)

runwayml/stable-
diffusion-v1-5

torch-neuronx

* [Beta] Train runwayml/stable-diffusion-v1-5 with AWS
Trainium (trnl instances)

1.4. Model samples and tutorials



https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/hf_summarization/BartLarge.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/hf_summarization/BartLarge.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_image_classification/vit.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_image_classification/vit.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_contrastive_image_text/CLIPBase.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_contrastive_image_text/CLIPBase.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_contrastive_image_text/CLIPLarge.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_contrastive_image_text/CLIPLarge.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/stable_diffusion/
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/stable_diffusion/
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/stable_diffusion/
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/stable_diffusion/
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Multi Modal
Model Frame- Samples and Tutorials
works/Libraries
language-perceiver torch-neuronx N
gragep * How to fine-tune a “language perceiver” PyTorch model
with AWS Trainium (trnl instances)
vision-perceiver-conv torch-neuronx ) . . L
P * How to fine-tune a pretrained HuggingFace Vision Per-
ceiver Conv

Convolutional Neural Networks(CNN)

Model Frame- Samples and Tutorials
works/Libraries
resnet50 torch-neuronx

* How to fine-tune a pretrained ResNet50 Pytorch model
with AWS Trainium (trnl instances) using NeuronSDK

milesial/Pytorch-UNet torch-neuron .
Y aronx * This notebook shows how to fine-tune a pretrained UNET

PyTorch model with AWS Trainium (trn1 instances) using
NeuronSDK.

This document is relevant for: Trnl

This document is relevant for: Inf2, Trnl

1.4.2 Inference Samples/Tutorials (Inf2/Trn1/Trn2)

Table of contents

* Encoders

* Decoders

* Encoder-Decoders

* Vision Transformers

e Convolutional Neural Networks(CNN)
* Stable Diffusion

* Diffusion Transformers

e Audio

e Multi Modal
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https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/LanguagePerceiver.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/LanguagePerceiver.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_image_classification/VisionPerceiverConv.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_image_classification/VisionPerceiverConv.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/resnet50
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/resnet50
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/unet_image_segmentation
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/unet_image_segmentation
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/unet_image_segmentation
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Encoders

Model

Frame-
works/Libraries

Samples and Tutorials

bert-base-cased-
finetuned-mrpc

torch-neuronx

* BERT TorchServe tutorial

* HuggingFace pretrained BERT tutorial /afm!] [notebook]

e LibTorch C++ Tutorial for HuggingFace Pretrained
BERT

e Compiling and Deploying HuggingFace Pretrained
BERT on Inf2 on Amazon SageMaker

bert-base-cased-
finetuned-mrpc

neuronx-
distributed

e tp_inference_tutorial

bert-base-uncased

torch-neuronx

* HuggingFace Pretrained BERT Inference on Trnl

distilbert-base-uncased

torch-neuronx

* HuggingFace Pretrained DistilBERT Inference on Trnl

roberta-base

tensorflow-
neuronx

» HuggingFace Roberta-Base [/itml] [notebook]

roberta-large

torch-neuronx

* HuggingFace Pretrained RoOBERTa Inference on Trnl

1.4. Model samples and tutorials
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https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/torch-neuronx/bert-base-cased-finetuned-mrpc-inference-on-trn1-tutorial.ipynb
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/frameworks/torch/torch-neuron/tutorials/tutorial-libtorch.html#pytorch-tutorials-libtorch
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/frameworks/torch/torch-neuron/tutorials/tutorial-libtorch.html#pytorch-tutorials-libtorch
https://github.com/aws-neuron/aws-neuron-sagemaker-samples/blob/master/inference/inf2-bert-on-sagemaker/inf2_bert_sagemaker.ipynb
https://github.com/aws-neuron/aws-neuron-sagemaker-samples/blob/master/inference/inf2-bert-on-sagemaker/inf2_bert_sagemaker.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_bert_inference_on_trn1.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_distilbert_Inference_on_trn1.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/tensorflow-neuronx/tfneuronx-roberta-base-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_roberta_inference_on_frn1.ipynb

AWS Neuron

Decoders
Model Frame- Samples and Tutorials
works/Libraries
t2 torch-
&P oreh-neuronx HuggingFace Pretrained GPT2 Feature Extraction on
Trnl
ta-llama/Llama-3.3- -
meta-Tamarllama n'eurf)nx Tutorial: Using Speculative Decoding to improve Llama-
70B distributed- . }
inference 3.3-70B inference performance on Trn2 instances
Tutorial: Scaling LLM Inference with Data Parallelism
on Trn2
ta-llama/Llama-3.2- -
meta amafama peuronx Tutorial for deploying Llama3.2 Multimodal Models on
11B-Vision-Instruct distributed- ’
. Trnl & Inf2 instances
inference
ta-llama/Llama-3.2- -
meta .al.n ama nfaur.onx Tutorial for deploying Llama3.2 Multimodal Models on
90B-Vision-Instruct distributed- :
. Trnl & Inf2 instances
inference
ta-llama/Llama-3.1-8b | transfi -
feta-fama/tlama nrs.llllrsoi)l;mers Run Hugging Face Llama 3.1 8B autoregressive sampling
on Inf2 & Trn1 with 32k sequence length
Run Hugging Face Llama 3.1 8B autoregressive sampling
on Inf2 & Trnl with 128k sequence length
Run meta-llama/Meta-Llama-3.1-8B autoregressive sam-
pling on Inf2 & Trnl
ta-llama/Llama-3.1- transf -
1711;)21 amaiiama nr:lrllrsoi);mers Run Hugging Face Llama 3.1 70B autoregressive sam-
pling on Trnl with 64k sequence length
Run Hugging Face meta-llama/Meta-Llama-3.1-70B au-
toregressive sampling on Inf2 & Trnl
ta-llama/Llama-3.1- transf -
meta-fama/tiama ransiormers Run Hugging Face Llama-3.1-70B-Instruct + Llama-
70b-Instruct neuronx . ] .
3.2-1B-Instruct Speculative Decoding on Trnl with
transformers-neuronx and vLLM
Run Hugging Face Llama-3.1-70B-Instruct EAGLE
Speculative Decoding on Trnl with transformers-
neuronx and vVLLM
ta-llama/Llama-3.1- -
21(1)652 ama/Llama I(;ie;g?t?lfte d- Tutorial for deploying Llama-3.1-405B on Trn2
inference Tutorial: Using Speculative Decoding and Quantization
to improve Llama-3.1-405B inference performance on
Trn2 instances
ta-llama/Llama-3.1- transf -
meta-Tama/tlama ransIormers Run Hugging Face Llama 3.1 405B autoregressive sam-
405b neuronx ] .
pling on Trn1/Trn1n with 16k sequence length
ta-llama/Llama-3-8b transf -
feta-tamarlama ;:;Irsoﬁimers Run Hugging Face meta-llama/Llama-3-8b autoregres-
sive sampling on Inf2 & Trnl
meta-llama/Llama-3-70b transformers- RUTH - S -
un Hugging Face meta-iiam a-3- AULOTCITCS-
12 neuronx . eame &ﬁapter 1."Overview
sive sampling on Inf2 & Trnl
ta-llama/Llama-2-13b | transfq -
feta-tamarlama néllrllrsozimers Run Hugging Face meta-llama/Llama-2-13b autoregres-


https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_gpt2_feature_extraction_on_trn1.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_gpt2_feature_extraction_on_trn1.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/llama-3.1-8b-32k-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/llama-3.1-8b-32k-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/llama-3.1-8b-128k-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/llama-3.1-8b-128k-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/meta-llama-3.1-8b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/meta-llama-3.1-8b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/llama-3.1-70b-64k-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/llama-3.1-70b-64k-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/meta-llama-3.1-70b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/meta-llama-3.1-70b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/llama-3.1-70b-speculative-decoding.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/llama-3.1-70b-speculative-decoding.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/llama-3.1-70b-speculative-decoding.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/llama-3.1-70b-eagle-speculative-decoding.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/llama-3.1-70b-eagle-speculative-decoding.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/llama-3.1-70b-eagle-speculative-decoding.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/llama-3.1-405b-multinode-16k-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/llama-3.1-405b-multinode-16k-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/meta-llama-3-8b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/meta-llama-3-8b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/meta-llama-3-70b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/meta-llama-3-70b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/meta-llama-2-13b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/meta-llama-2-13b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/transformers-neuronx/inference/llama-70b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/transformers-neuronx/inference/llama-70b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/speculative_sampling.ipynb
https://github.com/aws-neuron/neuronx-distributed/tree/main/examples/inference/llama
https://github.com/aws-neuron/aws-neuron-samples/torch-neuronx/transformers-neuronx/inference/codellama-13b-16k-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/mistralai-Mistral-7b-Instruct-v0.2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/mistralai-Mistral-7b-Instruct-v0.2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/mixtral-8x7b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/mixtral-8x7b-sampling.ipynb
https://github.com/aws-neuron/neuronx-distributed/tree/main/examples/inference/mixtral
https://github.com/aws-neuron/neuronx-distributed/tree/main/examples/inference/mixtral
https://github.com/aws-neuron/neuronx-distributed/tree/main/examples/inference/dbrx
https://github.com/aws-neuron/neuronx-distributed/tree/main/examples/inference/dbrx
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/codellama-13b-16k-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/codellama-13b-16k-sampling.ipynb

AWS Neuron

Encoder-Decoders

Model Frame- Samples and Tutorials
works/Libraries
t5-1
arge * torch- ¢ T5 inference tutorial /html] [notebook]
neuronx
* optimum-
neuron
t5-3b neuronx- . .
distributed ¢ T5 inference tutorial [Aitml] [notebook]
google/flan-t5-xl1 neuronx- . . .
distributed flan-t5-x1 inference tutorial [Afml] [notebook]
Vision Transformers
Model Frame- Samples and Tutorials

works/Libraries

google/vit-base-patch16-
224

torch-neuronx

* HuggingFace Pretrained ViT Inference on Trnl

clip-vit-base-patch32

torch-neuronx

* HuggingFace Pretrained CLIP Base Inference on Inf2

clip-vit-large-patch 14

torch-neuronx

* HuggingFace Pretrained CLIP Large Inference on Inf2

Convolutional Neural Networks(CNN)

Model Frame- Samples and Tutorials
works/Libraries
resnet50 torch-neuronx o )
¢ Torchvision Pretrained ResNet50 Inference on Trnl / Inf2
¢ Torchvision ResNet50 tutorial [/tml] [notebook]
t50 t flow-
resne Iirlllsr(:)rnxow « Using NEURON_RT_VISIBLE_CORES with TensorFlow
Serving
unet torch-neuronx .
¢ Pretrained UNet Inference on Trnl / Inf2
torch-
vee oreh-nedronx ¢ Torchvision Pretrained VGG Inference on Trnl / Inf2

1.4. Model samples and tutorials
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https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/torch-neuronx/t5-inference-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/neuronx_distributed/t5-inference/t5-inference-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/neuronx_distributed/t5-inference/t5-inference-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_vit_inference_on_inf2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_clip_base_inference_on_inf2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_clip_large_inference_on_inf2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/tv_pretrained_resnet50_inference_on_trn1.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/torch-neuronx/resnet50-inference-on-trn1-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/pretrained_unet_inference_on_trn1.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/tv_pretrained_vgg_inference_on_trn1.ipynb

AWS Neuron

Stable Diffusion

Model

Frame-
works/Libraries

Samples and Tutorials

stable-diffusion-v1-5

torch-neuronx

* HuggingFace Stable Diffusion 1.5 (512x512) Inference
on Trnl / Inf2

stable-diffusion-2-1-base

torch-neuronx

* HuggingFace Stable Diffusion 2.1 (512x512) Inference
on Trnl / Inf2

stable-diffusion-2-1

torch-neuronx

» HuggingFace Stable Diffusion 2.1 (768x768) Inference
on Trnl / Inf2

* Deploy & Run Stable Diffusion on SageMaker and Infer-
entia2

stable-diffusion-xI-base-
1.0

torch-neuronx

* HuggingFace Stable Diffusion XL 1.0 (1024x1024) Infer-
ence on Inf2

* HuggingFace Stable Diffusion XL 1.0 Base and Refiner
(1024x1024) Inference on Inf2

stable-diffusion-2-
inpainting

torch-neuronx

* stable-diffusion-2-inpainting model Inference on Trnl /
Inf2

Diffusion Transformers

Model

Frame-
works/Libraries

Samples and Tutorials

pixart-alpha

torch-neuronx

* HuggingFace PixArt Alpha (256x256, 512x512 square
resolution) Inference on Trnl / Inf2

pixart-sigma

torch-neuronx

* HuggingFace PixArt Sigma (256x256, 512x512 square
resolution) Inference on Trnl / Inf2

Audio

Model

Frame-
works/Libraries

Samples and Tutorials

wav2vec2-conformer

torch-neuronx

* Run HuggingFace Pretrained Wav2Vec2-Conformer with
Rotary Position Embeddings Inference on Inf2

* Run HuggingFace Pretrained Wav2Vec2-Conformer with
Relative Position Embeddings Inference on Inf2 & Trnl
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https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sd15_512_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sd15_512_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sd2_512_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sd2_512_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sd2_768_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sd2_768_inference.ipynb
https://github.com/aws-neuron/aws-neuron-sagemaker-samples/blob/master/inference/stable-diffusion/StableDiffusion2_1.ipynb
https://github.com/aws-neuron/aws-neuron-sagemaker-samples/blob/master/inference/stable-diffusion/StableDiffusion2_1.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sdxl_base_1024_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sdxl_base_1024_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sdxl_base_and_refiner_1024_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sdxl_base_and_refiner_1024_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/inference/hf_pretrained_sd2_inpainting_936_624_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/inference/hf_pretrained_sd2_inpainting_936_624_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_pixart_alpha_inference_on_inf2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_pixart_alpha_inference_on_inf2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_pixart_sigma_inference_on_inf2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_pixart_sigma_inference_on_inf2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_wav2vec2_conformer_rope_inference_on_inf2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_wav2vec2_conformer_rope_inference_on_inf2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_wav2vec2_conformer_relpos_inference_on_inf2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_wav2vec2_conformer_relpos_inference_on_inf2.ipynb

AWS Neuron

Multi Modal

Model

Frame-
works/Libraries

Samples and Tutorials

multimodal-perceiver

torch-neuronx

* HuggingFace Multimodal Perceiver Inference on Trnl /
Inf2

language-perceiver

torch-neuronx

e HF Pretrained Perceiver Language Inference on Trnl /
Inf2

vision-perceiver-conv

torch-neuronx

e HF Pretrained Perceiver Image Classification Inference
on Trnl / Inf2

This document is relevant for:

This document is relevant for:

Inf2, Trnl
Infl

1.4.3 Inference Samples/Tutorials (Inf1)

Table of contents

e Encoders

* Vision Transformers

e Convolutional Neural Networks(CNN)

e Vision

1.4. Model samples and tutorials
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https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_perceiver_multimodal_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_perceiver_multimodal_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_perceiver_language_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_perceiver_language_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_perceiver_vision_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_perceiver_vision_inference.ipynb

AWS Neuron

Encoders

Model

Frame-
works/Libraries

Samples and Tutorials

bert-base-cased-
finetuned-mrpc

torch-neuron

HuggingFace pretrained BERT tutorial //fml] [notebook]
BertBaseCased Inference on Inf1 instances

Bert TorchServe tutorial [Atml]

Bring your own HuggingFace pretrained BERT container
to Sagemaker Tutorial [html] [notebook]

bert-base-uncased

torch-neuron

NeuronCore Pipeline tutorial [Afm!] [notebook]

bert-large-uncased

torch-neuron

BertLargeUncased Inference on Inf1 instances

roberta-base

torch-neuron

Roberta-Base inference on Infl instances

distilbert-base-uncased-
finetuned-sst-2-english

tensorflow-neuron

Tensorflow 2.x - HuggingFace Pipelines distilBERT with
Tensorflow2 Neuron [Atml] [notebook]

gluon bert

mxnet-neuron

MXNet 1.8: Using data parallel mode tutorial [html]
[notebook]

Vision Transformers

Model Frame- Samples and Tutorials
works/Libraries
d torch-
5 oreh-nedron ¢ Inference of SSD model on inf1 instances
TrOCR torch-
r oreh-neuron ¢ TrOCR inference on Infl instances
vgg torch-neuron

VGG inference on Inf1 instances

google/vit-base-patch16-
224

torch-neuron

ViT model inference on Inf1
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https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/bert_tutorial/tutorial_pretrained_bert.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/bertbasecased/BertBaseCased.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/byoc_sm_bert_tutorial/sagemaker_container_neuron.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/pipeline_tutorial/neuroncore_pipeline_pytorch.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/bertlargeuncased/BertLargeUncased.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/robertabase/RobertaBase.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/huggingface_bert/huggingface_bert.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/mxnet/data_parallel/data_parallel_tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/ssd/SSD300VGG16.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/trocr/TrOCR.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/vgg/VGG.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/vit/ViT.ipynb

AWS Neuron

Convolutional Neural Networks(CNN)

Model Frame- Samples and Tutorials
works/Libraries
EfficientNet torch-
clente oreh-nedron ¢ EfficientNet model inference on Inf1 instances
GFL (MMDetecti torch-
( cetection) oreh-neuron * GFL (MMDetection) inference on Infl instances
HRNet torch-neuron ) )
e HRNET - Pose Estimation
MarianMT torch-neuron

* HuggingFace MarianMT tutorial [h7ml] [notebook]
¢ Inference of Pre-trained MarianMT model on Inf1

Detectron2 R-CNN

torch-neuron

¢ R-CNN inference on Infl

resnet torch-neuron ) ) .
¢ Inference of Pre-trained Resnet model
(18,34,50,101,152) on Inf1
¢ ResNet-50 tutorial [html] [notebook]
t t flow-
resne ensortiowsnieuron  Tensorflow 2.x - Using NEU-
RON_RT_VISIBLE_CORES with TensorFlow Serving
[html]
t t-
fesne mxnet-neuron ¢ ResNet-50 tutorial [html] [notebook]
* Getting started with Gluon tutorial [html] [notebook]
* NeuronCore Groups tutorial [html] [notebook]
R t torch-
esex oreh-nedron ¢ Inference of Resnext model on Inf1
Yolov4 torch-
ooV oreii-nedron * PyTorch YOLOV4 tutorial [html] [notebook]
Yol h-
olov torch-neuron ¢ Inference of Yolov5 on Infl
Yolov6 torch-
olov oreh-nedron ¢ Inference of Yolov6 on Infl instances
Yolov7 h-
olov torch-neuron ¢ Inference of Yolov7 model on Infl
Yolof h-
010 torch-neuron ¢ Inference of Yolof model on Infl
fai torch-
ased oreh-neuron ¢ Inference of fairseq model on Inf1
unet tensorflow-neuron

¢ Unet - Tensorflow 2.x tutorial

1.4. Model samples and tutorials
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https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/resnext/Resnext.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/yolo_v4.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/yolov5/Yolov5.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/yolov6/Yolov6.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuron/inference/yolov7
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/yolof_detectron2/YoloF.ipynb
https://github.com/aws-neuron/aws-neuron-samples-staging/tree/master/torch-neuron/inference/fairseq
https://github.com/aws-neuron/aws-neuron-samples/blob/master/tensorflow-neuron/inference/unet
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Vision
Model Frame- Samples and Tutorials
works/Libraries
ft- h h-
craft-pytore toreh-neuron e CRAFT model inference on Inf1

This document is relevant for: Infl

This section gives you the consolidated list of code samples and tutorials published by AWS Neuron across documen-
tation and various GitHub repositories.

Training on Trnl Inference on Inf2, Trnl and Trn2 Inference on Inf1 For links to individual
GitHub sample repositories, see neuron-github-samples

This document is relevant for: Infl, Inf2, Trnl, Trn2

This document is relevant for: Infl, Inf2, Trnl

1.5 Neuron performance

The Neuron performance pages provide a reference to the expected performance of various open-source models for
popular deep learning in Natural Language Processing (NLP), Computer Vision (CV) and Recommender model tasks.
We have included with each model links to allow you to setup and reconstruct the test with a few steps.

Inference performance numbers for Inf1 Inference performance numbers for Inf2 Inference performance
numbers for Trnl Training performance numbers for Trnl This document is relevant for: Infl, Inf2,
Trnl

This document is relevant for: Infl, Inf2, Trnl, Trn2

1.6 What’s New

1.6.1 Neuron 2.24.1 (06/30/2025)

Neuron version 2.24.1 resolves an installation issue that could prevent NeuronX Distributed Training from being in-
stalled successfully.

1.6.2 Neuron 2.24.0 (06/24/2025)

Neuron version 2.24 introduces new inference capabilities including prefix caching, disaggregated inference (Beta), and
context parallelization support (Beta). This release also includes NKI language enhancements and enhanced profiling
visualizations for improved debugging and performance analysis. Neuron 2.24 adds support for PyTorch 2.7 and JAX
0.6, updates existing DLAMIs and DLCs, and introduces a new VLLM inference container.

Table of contents

* Inference

* Training
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* Neuron Kernel Interface (NKI)
* Neuron Tools

* Neuron Deep Learning Containers (DLCs)

* Neuron Deep Learning AMIs (DLAMIs)

Inference

NxD Inference (NxDI) includes the following enhancements:

* Prefix caching: Improves Time To First Token (TTFT) by up to 3x when processing common shared prompts
across requests.

 Disaggregated inference (Beta): Uses 1P1D (1 Prefill, 1 Decode) architecture to reduce prefill-decode interfer-
ence and improve goodput.

* Context parallelism (Beta): Improves TTFT for longer sequence lengths by processing context encoding in
parallel across multiple NeuronCores.

* Model support: Added beta support for Qwen 2.5 text models.
* NxD Inference Library: Upgraded to support PyTorch 2.7 and Transformers 4.48.

Hugging Face Optimum Neuron 0.2.0 now supports PyTorch-based NxD Core backend for LLM inference, simplifying
the implementation of new PyTorch model architectures. Models including Llama 3.1-8B and Llama-3.3-70B have
migrated from Transformers NeuronX to the NxD backend.

Training

Library Upgrades
¢ NxD Training (NxDT) Library: Upgraded to support PyTorch 2.7 and Transformers 4.48.
* JAX Training Support: Upgraded to JAX 0.6.0.

Neuron Kernel Interface (NKI)

* New nki.language.gather_flattened: Provides efficient parallel tensor element gathering.
* Enhanced accuracy: Improved valid range of nki.language.sqrt and nki.isa.activation(nl.sqrt)

* Advanced indexing: Improved performance for nki.isa.nc_match_replaces8.

Neuron Tools

Neuron Profiler Enhancements
* Framework stack traces: Maps device instructions to model source code.

¢ Scratchpad memory usage visualization: Shows tensor-level memory usage over time with HLO name asso-
ciation.

* On-device collectives barriers: Identifies synchronization overhead.
* HBM throughput visualization: Tracks data movement involving High Bandwidth Memory (HBM) over time.
NCCOM-TEST Improvements
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* Added --report-to-json-file flag: Outputs results in JSON format.
* Added --show-input-output-size flag: Explicitly displays input and output sizes based on operations.
Neuron Deep Learning Containers (DLCs)

» Updated containers with PyTorch 2.7 support for inference and training.
* Added new inference container with NxD Inference and vLLM with FastAPI.

* JAX DLCs now support JAX 0.6.0 training.

Neuron Deep Learning AMIs (DLAMIs)

» Updated MultiFramework DLAMIs to include PyTorch 2.7 and JAX 0.6.0.
* Added new Single Framework DLAMISs for PyTorch 2.7 and JAX 0.6.0.
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1.6.3 Neuron 2.24 Feature Release Notes

What's New

Details

Instances

NxD Core (neuronx-distributed)

e NxD Core Release Notes
(neuronx-distributed)

Trnl/ Trnln, Trn2

NxD Inference (neuronx-
distributed-inference)

e NxD  Inference  Release
Notes (neuronx-distributed-

Inf2, Trnl/ Trnln, Trn2

inference)
NxD Training (neuronx-distributed- L Trnl/ Trnln, Trn2
training) * NxD Training Release

Notes  (neuronx-distributed-

training)

PyTorch NeuronX (torch-neuronx)

e PyTorch  Neuron  (torch-
neuronx) release notes

Inf2, Trnl/ Trnln, Trn2

Neuron Compiler (neuronx-cc)

* Neuron Compiler (neuronx-
cc) release notes

Inf2, Trnl/ Trnln, Trn2

Neuron Kernel Interface (NKI)

e Neuron Kernel Interface
(NKI) release notes

Inf2, Trnl/ Trnln

Neuron Tools

* Neuron System Tools

Infl, Inf2, Trnl/ Trnln

Neuron Runtime

e Neuron Runtime Release
Notes

Infl, Inf2, Trnl/ Trnln

Transformers NeuronX
(transformers-neuronx) for In-
ference

» Transformers Neuron
(transformers-neuronx)
release notes

Inf2, Trnl/ Trnln

Neuron Deep Learning AMIs
(DLAMIs)

e Neuron DLAMI User Guide

Infl, Inf2, Trnl/ Trnln

Neuron Deep Learning Containers
(DLCs)

¢ neuron-dlc-release-notes

Infl, Inf2, Trnl/ Trnln

Release Announcements

* announce-no-longer-support-
beta-pytorch-neuroncore-
placement-apis

* announce-eos-block-
dimension-nki

* announce-eos-pytorch25

¢ announce-eos-tensorflow-
tutorial

* announce-eos-tnx

* announce-eos-longer-
support-xla-bf16-vars

*_announce-eos-block-

Infl, Inf2, Trnl/ Trnln

22
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* announce-no-longer-support-
llama-32-meta-checkpoint

* announce-no-longer-support-
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For detailed release artifacts, see Release Artifacts.

1.6.4 Previous Releases

* prev-rn
* pre-release-content
e prev-nl-rn
This document is relevant for: Infl, Inf2, Trnl, Trn2

This document is relevant for: Infl, Inf2, Trnl, Trn2

1.7 Announcements

This page will be replaced by ABlog. It’s here to make sure it’s in the TOC.

This document is relevant for: Infl, Inf2, Trnl, Trn2

1.7. Announcements
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CHAPTER
TWO

ML FRAMEWORKS

This document is relevant for: Infl, Inf2, Trnl, Trn2

2.1 PyTorch Neuron

PyTorch Neuron unlocks high-performance and cost-effective deep learning acceleration on AWS Trainium-based and
AWS Inferentia-based Amazon EC2 instances.

The PyTorch Neuron plugin architecture enables native PyTorch models to be accelerated on Neuron devices, so you
can use your existing framework application and get started easily with minimal code changes.

For help selecting a framework type for inference, see torch-neuron_vs_torch-neuronx

This document is relevant for: Infl, Inf2, Trnl, Trn2

2.1.1 Pytorch Neuron Setup

PyTorch Neuron (torch-neuronx) Setup for Inf2, Trn1, and Trn2 Instances PyTorch Neuron (torch-neuron)
Setup for Infl Instances This document is relevant for: Infl, Inf2, Trnl, Trn2

This document is relevant for: Inf2, Trnl, Trn2

2.1.2 Inference with torch-neuronx (Inf2 & Trn1/Trn2)

This document is relevant for: Inf2, Trnl, Trn2

Tutorials for Inference (torch-neuronx)

Compiling and Deploying HuggingFace Pretrained BERT on Trn1 or Inf2
Introduction

In this tutorial we will compile and deploy a HuggingFace Transformers BERT model for accelerated inference on
Neuron. In this tutorial, we will be deploying directly on Trn1/Inf2 instances. If you are looking to deploy this model
through SageMaker on Inf2 instance, please visit the Sagemaker samples repository.

This tutorial will use the bert-base-cased-finetuned-mrpc model. This model has 12 layers, 768 hidden dimensions, 12
attention heads, and 110M total parameters. The final layer is a binary classification head that has been trained on the
Microsoft Research Paraphrase Corpus (mrpc). The input to the model is two sentences and the output of the model is
whether or not those sentences are a paraphrase of each other.
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This tutorial has the following main sections:
1. Install dependencies
2. Compile the BERT model
3. Run inference on Neuron and compare results to CPU
4. Benchmark the model using multicore inference
5. Finding the optimal batch size

This Jupyter notebook should be run on a Trnl instance (trnl.2xlarge or larger.) or Inf2 instance (inf2.xlarge or
larger.)

Install dependencies

The code in this tutorial is written for Jupyter Notebooks. To use Jupyter Notebook on the Neuron instance, you can
use this guide.

This tutorial requires the following pip packages:
¢ torch-neuronx
* neuronx-cc
e transformers

Most of these packages will be installed when configuring your environment using the Trnl/Inf2 setup guide. The
additional dependencies must be installed here:

%env TOKENIZERS_PARALLELISM=True #Supresses tokenizer warnings making errors easier to..
—detect
lpip install --upgrade transformers

Compile the model into an AWS Neuron optimized TorchScript

In the following section, we load the BERT model and tokenizer, get a sample input, run inference on CPU, compile
the model for Neuron using torch_neuronx. trace(), and save the optimized model as TorchScript.

torch_neuronx.trace() expects a tensor or tuple of tensor inputs to use for tracing, so we unpack the tokenizer
output using the encode function.

The result of the trace stage will be a static executable where the operations to be run upon inference are determined
during compilation. This means that when inferring, the resulting Neuron model must be executed with tensors that
are the exact same shape as those provided at compilation time. If a model is given a tensor at inference time whose
shape does not match the tensor given at compilation time, an error will occur.

For language models, the shape of the tokenizer tensors can vary based on the length of input sentence. We can satisfy
the Neuron restriction of using a fixed shape input by padding all varying input tensors to a specified length. In a
deployment scenario, the padding size should be chosen based on the maximum token length that is expected to occur
for the application.

In the following section we will assume that we will receive a maximum of 128 tokens at inference time. We will pad
our example inputs by using padding="max_length' and to avoid potential errors caused by creating a tensor that is
larger than max_length=128, we will always tokenize using truncation=True.
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import torch

import torch_neuronx

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import transformers

def encode(tokenizer, *inputs, max_length=128, batch_size=1):
tokens = tokenizer.encode_plus(
*inputs,
max_length=max_length,
padding="max_length',
truncation=True,
return_tensors="pt"

)

return (
torch.repeat_interleave(tokens['input_ids'], batch_size, 0),
torch.repeat_interleave(tokens['attention_mask'], batch_size, 0),
torch.repeat_interleave(tokens['token_type_ids'], batch_size, 0),

)

# Create the tokenizer and model

name = "bert-base-cased-finetuned-mrpc"

tokenizer = AutoTokenizer.from_pretrained(name)

model = AutoModelForSequenceClassification.from_pretrained(name, torchscript=True)

# Set up some example inputs

sequence_0 = "The company HuggingFace is based in New York City"
sequence_1 = "Apples are especially bad for your health"
sequence_2 = "HuggingFace's headquarters are situated in Manhattan"

paraphrase = encode(tokenizer, sequence_0, sequence_2)
not_paraphrase = encode(tokenizer, sequence_0, sequence_1)

# Run the original PyTorch BERT model on CPU
cpu_paraphrase_logits = model (*paraphrase) [0]
cpu_not_paraphrase_logits = model (*not_paraphrase) [0]

# Compile the model for Neuron
model_neuron = torch_neuronx.trace(model, paraphrase)

# Save the TorchScript for inference deployment
filename = 'model.pt'’
torch.jit.save(model_neuron, filename)

2.1. PyTorch Neuron
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Run inference and compare results

In this section we load the compiled model, run inference on Neuron, and compare the CPU and Neuron outputs.

NOTE: Although this tutorial section uses one NeuronCore (and the next section uses two NeuronCores), by default
each Jupyter notebook Python process will attempt to take ownership of all NeuronCores visible on the instance. For
multi-process applications where each process should only use a subset of the NeuronCores on the instance you can use
NEURON_RT_NUM_CORES=N or NEURON_RT_VISIBLE_CORES=c< list of NeuronCore IDs > when starting the
Jupyter notebook as described in NeuronCore Allocation and Model Placement for Inference.

# Load the TorchScript compiled model
model_neuron = torch.jit.load(filename)

# Verify the TorchScript works on both example inputs
neuron_paraphrase_logits = model_neuron(*paraphrase) [0]
neuron_not_paraphrase_logits = model_neuron(*not_paraphrase) [0]

# Compare the results

print('CPU paraphrase logits:

print ('Neuron paraphrase logits:
print ('CPU not-paraphrase logits:
print('Neuron not-paraphrase logits:

, cpu_paraphrase_logits.detach() .numpy())

, neuron_paraphrase_logits.detach() .numpy())

', cpu_not_paraphrase_logits.detach() .numpy())

, heuron_not_paraphrase_logits.detach() .numpy())

Benchmarking

In this section we benchmark the performance of the BERT model on Neuron. By default, models compiled with
torch_neuronx will always execute on a single NeuronCore. When loading multiple models, the default behavior of
the Neuron runtime is to evenly distribute models across all available NeuronCores. The runtime places models on the
NeuronCore that has the fewest models loaded to it first. In the following section, we will torch. jit.load multiple
instances of the model which should each be loaded onto their own NeuronCore. It is not useful to load more copies of
a model than the number of NeuronCores on the instance since an individual NeuronCore can only execute one model
at a time.

To ensure that we are maximizing hardware utilization, we must run inferences using multiple threads in parallel. It is
nearly always recommended to use some form of threading/multiprocessing and some form of model replication since
even the smallest Neuron EC2 instance has 2 NeuronCores available. Applications with no form of threading are only
capable of 1 / num_neuron_cores hardware utilization which becomes especially problematic on large instances.

One way to view the hardware utilization is by executing the neuron-top application in the terminal while the bench-
mark is executing. If the monitor shows >90% utilization on all NeuronCores, this is a good indication that the hardware
is being utilized effectively.

In this example we load two models, which utilizes all NeuronCores (2) ona trnl.2xlarge or inf2.xlarge instance.
Additional models can be loaded and run in parallel on larger Trnl or Inf2 instance sizes to increase throughput.

We define a benchmarking function that loads two optimized BERT models onto two separate NeuronCores, runs
multithreaded inference, and calculates the corresponding latency and throughput.

import time
import concurrent.futures
import numpy as np

def benchmark(filename, example, n_models=2, n_threads=2, batches_per_thread=1000):

(continues on next page)
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(continued from previous page)

non

Record performance statistics for a serialized model and its input example.

Arguments:
filename: The serialized torchscript model to load for benchmarking.
example: An example model input.
n_models: The number of models to load.
n_threads: The number of simultaneous threads to execute inferences on.
batches_per_thread: The number of example batches to run per thread.

Returns:
A dictionary of performance statistics.

non

# Load models
models = [torch.jit.load(filename) for _ in range(n_models)]

# Warmup
for _ in range(8):
for model in models:
model (*example)

latencies = []

# Thread task
def task(model):
for _ in range(batches_per_thread):
start = time.time()
model (¥*example)
finish = time.time()
latencies.append((finish - start) * 1000)

# Submit tasks
begin = time.time()
with concurrent. futures.ThreadPoolExecutor (max_workers=n_threads) as pool:
for i in range(n_threads):
pool.submit(task, models[i % len(models)])
end = time.time()

# Compute metrics
boundaries = [50, 95, 99]
percentiles = {}

for boundary in boundaries:

name = f'latency_p{boundary}'

percentiles[name] = np.percentile(latencies, boundary)
duration = end - begin
batch_size = 0
for tensor in example:

if batch_size == 0:

batch_size = tensor.shape[0]

inferences = len(latencies) * batch_size

(continues on next page)
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(continued from previous page)

throughput = inferences / duration

# Metrics

metrics = {
'filename': str(filename),
'batch_size': batch_size,
'batches': len(latencies),
'inferences': inferences,
'threads': n_threads,
'models': n_models,
'duration': duration,
'throughput': throughput,
**percentiles,

}

display(metrics)

def display(metrics):

Display the metrics produced by “benchmark™ function.

Args:

metrics: A dictionary of performance statistics.
pad = max(map(len, metrics)) + 1
for key, value in metrics.items():

parts = key.split('_")
parts = list(map(str.title, parts))
title = ' '.join(parts) + ":"

if isinstance(value, float):
value = f'{value:0.3f}"'

print(f'{title :<{pad}} {value}')

# Benchmark BERT on Neuron
benchmark (filename, paraphrase)

Finding the optimal batch size

Batch size has a direct impact on model performance. The NeuronCore architecture is optimized to maximize through-
put with relatively small batch sizes. This means that a Neuron compiled model can outperform a GPU model, even if
running single digit batch sizes.

As a general best practice, we recommend optimizing your model’s throughput by compiling the model with a small
batch size and gradually increasing it to find the peak throughput on Neuron. To minimize latency, using batch size
= 1 will nearly always be optimal. This batch size configuration is typically used for on-demand inference applications.
To maximize throughput, usually 1 < batch_size < 10 is optimal. A configuration which uses a larger batch size
is generally ideal for batched on-demand inference or offline batch processing.
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In the following section, we compile BERT for multiple batch size inputs. We then run inference on each batch size
and benchmark the performance. Notice that latency increases consistently as the batch size increases. Throughput
increases as well, up until a certain point where the input size becomes too large to be efficient.

# Compile BERT for different batch sizes

for batch_size in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:
tokenizer = AutoTokenizer.from_pretrained(name)
model = AutoModelForSequenceClassification.from_pretrained(name, torchscript=True)
example = encode(tokenizer, sequence_0, sequence_2, batch_size=batch_size)
model_neuron = torch_neuronx.trace(model, example)
filename = f'model_batch_size_{batch_size}.pt'
torch.jit.save(model_neuron, filename)

# Benchmark BERT for different batch sizes
for batch_size in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:
print('-"%50)
example = encode(tokenizer, sequence_0, sequence_2, batch_size=batch_size)
filename = f'model_batch_size_{batch_size}.pt'
benchmark (filename, example)
print()

This document is relevant for: Inf2, Trnl, Trn2

BERT TorchServe Tutorial

Table of Contents

e Overview
e Run the tutorial
e Setup TorchServe

e Run TorchServe

e Benchmark TorchServe
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Overview

This tutorial demonstrates the use of TorchServe with Neuron, the SDK for EC2 Inf2 and Trnl instances. By the end
of this tutorial, you will understand how TorchServe can be used to serve a model backed by EC2 Inf2/Trn1 instances.
We will use a pretrained BERT-Base model to determine if one sentence is a paraphrase of another.

Run the tutorial

Open a terminal, log into your remote instance, and activate a Pytorch virtual environment setup (see the:ref:Install
PyTorch Neuron <setup-torch-neuronx>). To complete this tutorial, you will also need a compiled BERT model. You
can run trace_bert_neuronx.py to obtain a traced BERT model.

You should now have a compiled bert_neuron_b6.pt file, which is required going forward.

Open a shell on the instance you prepared eatlier, create a new directory named torchserve. Copy your compiled
model from the previous tutorial into this new directory.

cd torchserve
python trace_bert_neuronx.py
1s

bert_neuron_b6.pt

Prepare a new Python virtual environment with the necessary Neuron and TorchServe components. Use a virtual
environment to keep (most of) the various tutorial components isolated from the rest of the system in a controlled way.

pip install transformers==4.20.1 torchserve==0.7.0 torch-model-archiver==0.7.0 captum==0.
‘%6-0

Install the system requirements for TorchServe.

Amazon Linux 2 DLAMI Base

sudo yum -y install jq java-1l-amazon-corretto-headless
sudo alternatives --config java
sudo alternatives --config javac

Ubuntu 20 DLAMI Base
sudo apt install openjdk-11-jdk -y
java -version

openjdk version "11.0.17" 2022-10-18
Open]DK Runtime Environment (build 11.0.17+8-post-Ubuntu-lubuntu218.04)
Open]JDK 64-Bit Server VM (build 11.0.17+8-post-Ubuntu-lubuntu218.04, mixed mode, sharing)

javac -version
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javac 11.0.17

Verify that TorchServe is now available.

torchserve --version

TorchServe Version is 0.7.0

Setup TorchServe

During this tutorial you will need to download a few files onto your instance. The simplest way to accomplish this is to
paste the download links provided above each file into a wget command. (We don’t provide the links directly because
they are subject to change.) For example, right-click and copy the download link for config. json shown below.

Listing 2.1: config.json

{
"model_name": "bert-base-cased-finetuned-mrpc",
"max_length": 128,
"batch_size": 6

}

Now execute the following in your shell:
wget <paste link here>
1s

bert_neuron_b6.pt config.json
Download the custom handler script that will eventually respond to inference requests.

Listing 2.2: handler_bert_neuronx.py

import os

import json

import sys

import logging

from abc import ABC

import torch
import torch_neuronx

from transformers import AutoTokenizer

from ts.torch_handler.base_handler import BaseHandler
# one core per worker

os.environ[ 'NEURON_RT_NUM_CORES'] = '1'

logger = logging.getLogger(__name__)

class BertEmbeddingHandler (BaseHandler, ABC):

(continues on next page)
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(continued from previous page)

e

Handler class for Bert Embedding computations.
def __init__(self):
super (BertEmbeddingHandler, self).__init__()
self.initialized = False

def initialize(self, ctx):
self.manifest = ctx.manifest
properties = ctx.system_properties
self.device = 'cpu'
model_dir = properties.get('model_dir")
serialized_file = self.manifest['model']['serializedFile']
model_pt_path = os.path.join(model_dir, serialized_file)

# point sys.path to our config file
with open('config.json') as fp:

config = json.load(fp)
self.max_length = config['max_length']
self.batch_size = config['batch_size']
self.classes = ['not paraphrase', 'paraphrase']

self.model = torch.jit.load(model_pt_path)
logger.debug(f'Model loaded from {model_dir}")
self.model.to(self.device)

self.model.eval()

self.tokenizer = AutoTokenizer.from_pretrained(config[ 'model_name'])
self.initialized = True

def preprocess(self, input_data):

i

Tokenization pre-processing

i

input_ids = []
attention_masks = []
token_type_ids = []
for row in input_data:
seq_0 = row['seq_0'].decode('utf-8")
seq_1 = row['seq_1'].decode('utf-8")
logger.debug(f'Received text: "

seq_0}", "{seq_1}"")

inputs = self.tokenizer.encode_plus(
seq_0,
seq_1,
max_length=self.max_length,
padding="max_length',
truncation=True,
return_tensors="pt'

)

(continues on next page)

34

Chapter 2. ML Frameworks



72

73

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

AWS Neuron

input_ids.append(inputs['input_ids'])
attention_masks.append(inputs['attention_mask'])
token_type_ids.append(inputs['token_type_ids'])

batch = (torch.cat(input_ids, 0),
torch.cat(attention_masks, 0),
torch.cat(token_type_ids, 0))

return batch

def inference(self, inputs):

i

(continued from previous page)

Predict the class of a text using a trained transformer model.

i

# sanity check dimensions
assert(len(inputs)
num_inferences = len(inputs[0])

assert(num_inferences <= self.batch_size)

== 3)

# insert padding if we received a partial batch
padding = self.batch_size - num_inferences

if padding > 0:

pad = torch.nn.ConstantPad1d((®, 0, 0, padding), value=0)
inputs = [pad(x) for x in inputs]

outputs = self.model (*inputs) [0]

predictions = []

for i in range(num_inferences):
self.classes[outputs[i].argmax(dim=-1).item()]
predictions.append([prediction])

prediction =

logger.debug("Model predicted:

return prediction

S

, prediction)

def postprocess(self, inference_output):
return inference_output

Next, we need to associate the handler script with the compiled model using torch-model-archiver. Run the
following commands in your terminal:

mkdir model_store

MAX_LENGTH=$(jq '.max_length' config.json)
BATCH_SIZE=$(jq '.batch_size' config.json)
MODEL_NAME=bert-max_length$MAX_ LENGTH-batch_size$BATCH_SIZE

torch-model-archiver --model-name "$MODEL_NAME" --version 1.0 --serialized-file ./bert_

—neuron_b6.pt --handler
—,export-path model_store

./handler_bert_neuronx.py" --extra-files

./config.json" --

Note: If you modify your model or a dependency, you will need to rerun the archiver command with the -f flag

appended to update the archive.

2.1. PyTorch Neuron
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The result of the above will be a mar file inside the model_store directory.

1s model_store

bert-max_lengthl28-batch_size6.mar

This file is essentially an archive associated with a fixed version of your model along with its dependencies (e.g. the
handler code).

Note: The version specified in the torch-model-archiver command can be appended to REST API requests to
access a specific version of your model. For example, if your model was hosted locally on port 8080 and named
“bert”, the latest version of your model would be available at http://localhost:8080/predictions/bert, while
version 1.0 would be accessible at http://localhost:8080/predictions/bert/1.0. We will see how to perform
inference using this API in Step 6.

Create a custom config file to set some parameters. This file will be used to configure the server at launch when we run
torchserve --start.

Listing 2.3: torchserve.config

# bind inference API to all network interfaces with SSL enabled
inference_address=http://0.0.0.0:8080
default_workers_per_model=1

Note: This will cause TorchServe to bind on all interfaces. For security in real-world applications, you’ll probably
want to use port 8443 and enable SSL.

Run TorchServe
It’s time to start the server. Typically we’d want to launch this in a separate console, but for this demo we’ll just redirect
output to a file.

torchserve --start --ncs --model-store model_store --ts-config torchserve.config 2>&1 >
—torchserve.log

Verify that the server seems to have started okay.
curl http://127.0.0.1:8080/ping

{
"status": "Healthy"

}

Note: If you get an error when trying to ping the server, you may have tried before the server was fully launched.
Check torchserve. log for details.

Use the Management API to instruct TorchServe to load our model.

First, determine the number of NeuronCores available based on your instance size.
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Inf2
Instance Size | # of NeuronCores
xlarge 2
8xlarge 2
24xlarge 12
48xlarge 24
Trn1

Instance Size | # of NeuronCores
2xlarge 2
32xlarge 32

MAX_BATCH_DELAY=5000 # ms timeout before a partial batch is processed
INITIAL_WORKERS=2 # Number from table above

curl -X POST "http://localhost:8081/models?url=$MODEL_NAME.mar&batch_size=$BATCH_SIZE&
—initial_workers=$INITIAL_WORKERS&max_batch_delay=$MAX_BATCH_DELAY"

{
"status": "Model \"bert-max_lengthl28-batch_size6\" Version: 1.0 registered with X.
—initial workers"

¥

Warning: You shouldn’t set INITTAL_WORKERS above the number of NeuronCores. If you attempt to load more
models than NeuronCores available, one of two things will occur. Either the extra models will fit in device memory
but performance will suffer, or you will encounter an error on your initial inference. However, you may want to use
fewer cores if you are using the NeuronCore Pipeline feature.

Note: Any additional attempts to configure the model after the initial curl request will cause the server to return a 409
error. You’ll need to stop/start/configure the server to realize any changes.

The MAX_BATCH_DELAY is a timeout value that determines how long to wait before processing a partial batch. This is
why the handler code needs to check the batch dimension and potentially add padding. TorchServe will instantiate the
number of model handlers indicated by INITIAL_WORKERS, so this value controls how many models we will load onto
Inferentia in parallel. If you want to control worker scaling more dynamically, see the docs.

It looks like everything is running successfully at this point, so it’s time for an inference.

Create the infer_bert.py file below on your instance.

Listing 2.4: infer_bert.py

import json
import concurrent.futures
import requests

with open('config.json') as fp:

(continues on next page)
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(continued from previous page)

config = json.load(fp)
max_length = config[ 'max_length']
batch_size = config['batch_size']
name = f'bert-max_length{max_length/-batch_size{batch_size}'

# dispatch requests in parallel
url = f'http://localhost:8080/predictions/{name}"'

paraphrase = {'seq_0': "HuggingFace's headquarters are situated in Manhattan",
'seq_1': "The company HuggingFace is based in New York City"}
not_paraphrase = {'seq_0': paraphrase['seq_0'], 'seq_1': 'This is total nonsense.'}

with concurrent. futures.ThreadPoolExecutor (max_workers=batch_size) as executor:
def worker_thread(worker_index) :
# we'll send half the requests as not_paraphrase examples for sanity
data = paraphrase if worker_index < batch_size//2 else not_paraphrase
try:
response = requests.post(url, data=data)

# Check if the response status code indicates success
if response.status_code == 200:
print (worker_index, response.json())
else:
# If the response is not successful, raise an exception with the status.
—scode and error message
error_message = response.json().get('message', 'Unknown Error')
raise Exception(f"Failed request with status code {response.status_code}:
- {error_message /")
except Exception as e:
# Catch all other exceptions that may be raised
print (£"An unexpected error occurred: {e}")
raise

for worker_index in range(batch_size):
executor.submit (worker_thread, worker_index)

This script will send a batch_size number of requests to our model. In this example, we are using a model that
estimates the probability that one sentence is a paraphrase of another. The script sends positive examples in the first
half of the batch and negative examples in the second half.

Execute the script in your terminal.

python infer_bert.py

['paraphrase']
['not paraphrase']
['not paraphrase']
['paraphrase']
['not paraphrase']
['paraphrase']

N VTS S W

We can see that the first three threads (0, 1, 2) all report paraphrase, as expected. If we instead modify the script to
send an incomplete batch and then wait for the timeout to expire, the excess padding results will be discarded.
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Benchmark TorchServe

We’ve seen how to perform a single batched inference, but how many inferences can we process per second? A separate
upcoming tutorial will document performance tuning to maximize throughput. In the meantime, we can still perform
a simple naive stress test. The code below will spawn 64 worker threads, with each thread repeatedly sending a full
batch of data to process. A separate thread will periodically print throughput and latency measurements.

Listing 2.5: benchmark_bert.py

import os

import argparse

import time

import numpy as np

import requests

import sys

from concurrent import futures

import torch

parser = argparse.ArgumentParser()

parser.add_argument('--url', help='Torchserve model URL', type=str, default=f'http://127.
—0.0.1:8080/predictions/bert-max_lengthl28-batch_size6"')

parser.add_argument ('--num_thread', type=int, default=64, help='Number of threads.
—invoking the model URL')

parser.add_argument ('--batch_size', type=int, default=6)

parser.add_argument ('--sequence_length', type=int, default=128)
parser.add_argument ('--latency_window_size', type=int, default=1000)
parser.add_argument ('--throughput_time', type=int, default=300)
parser.add_argument (' --throughput_interval', type=int, default=10)

args = parser.parse_args()

data = { 'seq_0': 'A completely made up sentence.',
'seq_1': 'Well, I suppose they are all made up.' }

live = True

num_infer = 0

latency_list = []

def one_thread(pred, feed_data):
global latency_list
global num_infer
global live
session = requests.Session()
while True:
start = time.time(Q)
result = session.post(pred, data=feed_data)
latency = time.time() - start
latency_list.append(latency)
num_infer += 1
if not live:
break

(continues on next page)
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(continued from previous page)

def current_performance():
last_num_infer = num_infer
for _ in range(args.throughput_time // args.throughput_interval):
current_num_infer = num_infer
throughput = (current_num_infer - last_num_infer) / args.throughput_interval
p50 = 0.0
p9® = 0.0
if latency_list:
p50 = np.percentile(latency_list[-args.latency_window_size:], 50)
p90® = np.percentile(latency_list[-args.latency_window_size:], 90)
print('pid : current throughput , latency p50= p90= '.format(os.
—getpid(), throughput, p50, p9d))
sys.stdout. flush()
last_num_infer = current_num_infer
time.sleep(args.throughput_interval)
global live
live = False

with futures.ThreadPoolExecutor (max_workers=args.num_thread+1) as executor:
executor.submit(current_performance)
for _ in range(args.num_thread):

executor.submit(one_thread, args.url, data)

Run the benchmarking script.

python benchmark_bert.py

pid 1214554: current throughput 0.0, latency p50=0.000 p90=0.000

pid 1214554: current throughput 713.9, latency p50=0.071 p90=0.184
pid 1214554: current throughput 737.9, latency p50=0.071 p90=0.184
pid 1214554: current throughput 731.6, latency p50=0.068 p90=0.192
pid 1214554: current throughput 732.2, latency p50=0.070 p90=0.194
pid 1214554: current throughput 733.9, latency p50=0.070 p90=0.187
pid 1214554: current throughput 739.3, latency p50=0.071 p90=0.184

w o N0 O

Note: Your throughput numbers may differ from these based on instance type and size.

Congratulations! By now you should have successfully served a batched model over TorchServe.

You can now shutdown torchserve.

torchserve --stop

This document is relevant for: Inf2, Trnl, Trn2

This document is relevant for: Infl
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LibTorch C++ Tutorial

Table of Contents

e QOverview
e Notes
* Run the tutorial

e Benchmark

* Troubleshooting

Overview

This tutorial demonstrates the use of LibTorch with Neuron, the SDK for Amazon Infl, Inf2 and Trnl instances. By
the end of this tutorial, you will understand how to write a native C++ application that performs inference on EC2 Inf1,
Inf2 and Trnl instances. We will use an infl.6xlarge and a pretrained BERT-Base model to determine if one sentence
is a paraphrase of another.

Verify that this tutorial is running in a virtual environement that was set up according to the Torch-
Neuronx  Installation  Guide  <https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/setup/torch-
neuronx.html#setup-torch-neuronx> or Torch-Neuron Installation Guide <https://awsdocs-neuron.readthedocs-
hosted.com/en/latest/general/setup/torch-neuron. html#setup-torch-neuron>

Notes

The tutorial has been tested on Inf1, Inf2 and Trn1 instances on ubuntu instances.

Run the tutorial

This tutorial is self contained. It produces similar output to [/#ml] [notebook].
Note: The tutorial will use about 8.5 GB of disk space. Please ensure you have sufficient space before beginning.

Right-click and copy this link address to the tutorial archive.

wget <paste archive URL>
tar xvf libtorch_demo.tar.gz

Your directory tree should now look like this:

libtorch_demo
—— bert_neuronx

|: compile.py
detect_instance.py
— clean.sh

— core_count

build.sh

main.cpp
— example_app

(continues on next page)
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(continued from previous page)
build.sh
core_count.hpp
example_app.cpp
README. txt
utils.cpp
utils.hpp

—— neuron.patch

— run_tests.sh

— setup.sh

— tokenizer. json

L— tokenizers_binding

— build_python.sh
—— build.sh

— remote_rust_tokenizer.h
— run_python.sh

— run.sh

— tokenizer.json

— tokenizer_test

— tokenizer_test.cpp
L— tokenizer_test.py

This tutorial uses the HuggingFace Tokenizers library implemented in Rust. Install Cargo, the package manager for the
Rust programming language.

Ubuntu Amazon Linux

sudo apt install -y cargo sudo yum install -y cargo

Run the setup script to download additional depdendencies and build the app. (This may take a few minutes to com-
plete.)

cd libtorch_demo
chmod +x setup.sh && ./setup.sh

+ PATH_NEURON_LIB=/opt/aws/neuron/lib/

+ g++ utils.cpp example_app.cpp -0 ../example-app -02 -D_GLIBCXX_USE_CXX11_ABI=0 -I../
—libtorch/include -L../tokenizers_binding/lib -L/opt/aws/neuron/lib/ -L../libtorch/lib -
—W1l,-rpath,libtorch/lib -W1l,-rpath,tokenizers_binding/lib -Wl,-rpath,/opt/aws/neuron/
—1ib/ -1tokenizers -ltorchneuron -ltorch_cpu -1c1® -lpthread -lnrt

~/1libtorch_demo

Successfully completed setup
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Benchmark

The setup script should have compiled and saved a PyTorch model compiled for neuron (bert_neuron_b6.pt). Run the
provided sanity tests to ensure everything is working properly.

./run_tests.sh bert_neuron_b6.pt

Running tokenization sanity checks.

None of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available.,
—.and only tokenizers, configuration and file/data utilities can be used.

Tokenizing: 100%|| 10000/10000 [00:00<00:00, 15021.69it/s]

Python took 0.67 seconds.

Sanity check passed.

Begin 10000 timed tests.

End timed tests.

C++ took 0.226 seconds.

Tokenization sanity checks passed.
Running end-to-end sanity check.

The company HuggingFace is based in New York City
HuggingFace's headquarters are situated in Manhattan
not paraphrase: 10%

paraphrase: 90%

The company HuggingFace is based in New York City
Apples are especially bad for your health

not paraphrase: 94%

paraphrase: 6%

Sanity check passed.

Finally, run the example app directly to benchmark the BERT model.

Note: You can safely ignore the warning about None of PyTorch, Tensorflow >= 2.0, .... This occurs be-
cause the test runs in a small virtual environment that doesn’t require the full frameworks.

./example-app bert_neuron_b6.pt

Getting ready................
Benchmarking................
Completed 32000 operations in 43 seconds => 4465.12 pairs / second

Summary information:

Batch size = 6
Num neuron cores = 16
Num runs per neuron core = 2000
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Congratulations! By now you should have successfully built and used a native C++ application with LibTorch.

Troubleshooting

¢ In the event of SIGBUS errors you may have insufficient disk space for the creation of temporary model files at
runtime. Consider clearing space or mounting additional disk storage.

* In the event of a neuron runtime failure, confirm that the Neuron kernel module is loaded using sudo modprobe
neuron.

This document is relevant for: Infl

Compiling and Deploying ResNet50 on Trn1 or Inf2
Introduction

In this tutorial we will compile and deploy a TorchVision ResNet50 model for accelerated inference on Neuron. To get
started with Jupyter Notebook on Neuron Instance you launched, please use this guide.

This tutorial will use the resnet50 model, which is primarily used for arbitrary image classification tasks.
This tutorial has the following main sections:

1. Install dependencies

2. Compile the ResNet model

3. Run inference on Neuron and compare results to CPU

4. Benchmark the model using multicore inference

5. Finding the optimal batch size

This Jupyter notebook should be run on a Trn1 instance (trnl.2xlarge or larger.) or Inf2 instance (inf2.xlarge or
larger.)

Install Dependencies

The code in this tutorial is written for Jupyter Notebooks. To use Jupyter Notebook on the Neuron instance, you can
use this guide.

This tutorial requires the following pip packages:
e torch-neuronx
* neuronx-cc
* torchvision
* Pillow

Most of these packages will be installed when configuring your environment using the Trn1 setup guide. The additional
dependencies must be installed here:

!pip install Pillow
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Compile the model into an AWS Neuron optimized TorchScript

In the following section, we load the model, get a sample input, run inference on CPU, compile the model for Neuron
using torch_neuronx.trace(), and save the optimized model as TorchScript

torch_neuronx.trace() expects a tensor or tuple of tensor inputs to use for tracing, so we convert the input image
into a tensor using the get_image function.

The result of the trace stage will be a static executable where the operations to be run upon inference are determined
during compilation. This means that when inferring, the resulting Neuron model must be executed with tensors that
are the exact same shape as those provided at compilation time. If a model is given a tensor at inference time whose
shape does not match the tensor given at compilation time, an error will occur.

In the following section, we assume that we will receive an image shape of [1, 3, 224, 224] atinference time.

import os
import urllib
from PIL import Image

import torch

import torch_neuronx

from torchvision import models

from torchvision.transforms import functional

def get_image(batch_size=1, image_shape=(224, 224)):

# Get an example input

filename = "000000039769. jpg"

if not os.path.exists(filename):
url = "http://images.cocodataset.org/val2017/000000039769. jpg"
urllib.request.urlretrieve(url, filename)

image = Image.open(filename).convert('RGB')

image = functional.resize(image, (image_shape))

image functional.to_tensor(image)

image = torch.unsqueeze(image, 0)

image = torch.repeat_interleave(image, batch_size, 0)

return (image, )

# Create the model
model = models.resnet50(pretrained=True)
model.eval()

# Get an example input
image = get_image()

# Run inference on CPU
output_cpu = model (*image)

# Compile the model
model_neuron = torch_neuronx.trace(model, image)

# Save the TorchScript for inference deployment
filename = 'model.pt'
torch. jit.save(model_neuron, filename)
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Run inference and compare results

In this section we load the compiled model, run inference on Neuron, and compare the CPU and Neuron outputs using
the ImageNet classes.

import json

# Load the TorchScript compiled model
model_neuron = torch.jit.load(filename)

# Run inference using the Neuron model
output_neuron = model_neuron(*image)

# Compare the results
print (£"CPU tensor: {output_cpul[0][0:10]}")
print (f"Neuron tensor: {output_neuron[0][0:10]}")

# Download and read the ImageNet classes
urllib.request.urlretrieve("https://s3.amazonaws.com/deep-learning-models/image-models/
—.imagenet_class_index.json","imagenet_class_index.json")
with open("imagenet_class_index.json", "r") as file:

class_id = json.load(file)

id2label = [class_id[str(i)][1] for i in range(len(class_id))]

# Lookup and print the top-5 labels

top5_cpu = output_cpul[®].sort(O[1][-5:]

top5_neuron = output_neuron[0].sort()[1][-5:]
top5_labels_cpu = [id2label[idx] for idx in top5_cpul
top5_labels_neuron = [id2label[idx] for idx in top5_neuron]
print (£"CPU top-5 labels: {top5_labels_cpu}")

print (f"Neuron top-5 labels: {top5_labels_neuron}")

Benchmarking

In this section we benchmark the performance of the ResNet model on Neuron. By default, models compiled with
torch_neuronx will always execute on a single NeuronCore. When loading multiple models, the default behavior of
the Neuron runtime is to evenly distribute models across all available NeuronCores. The runtime places models on the
NeuronCore that has the fewest models loaded to it first. In the following section, we will torch. jit.load multiple
instances of the model which should each be loaded onto their own NeuronCore. It is not useful to load more copies of
a model than the number of NeuronCores on the instance since an individual NeuronCore can only execute one model
at a time.

To ensure that we are maximizing hardware utilization, we must run inferences using multiple threads in parallel. It is
nearly always recommended to use some form of threading/multiprocessing and some form of model replication since
even the smallest Neuron EC2 instance has 2 NeuronCores available. Applications with no form of threading are only
capable of 1 / num_neuron_cores hardware utilization which becomes especially problematic on large instances.

One way to view the hardware utilization is by executing the neuron-top application in the terminal while the bench-
mark is executing. If the monitor shows >90% utilization on all NeuronCores, this is a good indication that the hardware
is being utilized effectively.

In this example we load two models, which utilizes all NeuronCores (2) ona trnl.2xlarge or inf2.xlarge instance.
Additional models can be loaded and run in parallel on larger Trnl or Inf2 instance sizes to increase throughput.
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We define a benchmarking function that loads two optimized ResNet models onto two separate NeuronCores, runs
multithreaded inference, and calculates the corresponding latency and throughput.

import time
import concurrent.futures
import numpy as np

def benchmark(filename, example, n_models=2, n_threads=2, batches_per_thread=1000):

non

Record performance statistics for a serialized model and its input example.

Arguments:
filename: The serialized torchscript model to load for benchmarking.
example: An example model input.
n_models: The number of models to load.
n_threads: The number of simultaneous threads to execute inferences on.
batches_per_thread: The number of example batches to run per thread.

Returns:
A dictionary of performance statistics.

non

# Load models
models = [torch.jit.load(filename) for _ in range(n_models)]

# Warmup
for _ in range(8):
for model in models:
model (¥*example)

latencies = []

# Thread task
def task(model):
for _ in range(batches_per_thread):
start = time.time()
model (*example)
finish = time.time()
latencies.append((finish - start) * 1000)

# Submit tasks
begin = time.time()
with concurrent. futures.ThreadPoolExecutor (max_workers=n_threads) as pool:
for i in range(n_threads):
pool.submit(task, models[i % len(models)])
end = time.time()

# Compute metrics
boundaries = [50, 95, 99]
percentiles = {}

for boundary in boundaries:

(continues on next page)
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name = f'latency_p{boundary}'

percentiles[name] = np.percentile(latencies, boundary)
duration = end - begin
batch_size = 0
for tensor in example:

if batch_size == 0:

batch_size = tensor.shape[0]

inferences = len(latencies) * batch_size
throughput = inferences / duration

# Metrics

metrics = {
'filename': str(filename),
'batch_size': batch_size,
'batches': len(latencies),
'inferences': inferences,
'threads': n_threads,
'models': n_models,
'duration': duration,
"throughput': throughput,
**percentiles,

}

display(metrics)

def display(metrics):

non

Display the metrics produced by “benchmark™ function.

Args:

metrics: A dictionary of performance statistics.
pad = max(map(len, metrics)) + 1
for key, value in metrics.items():

parts = key.split('_")
parts = list(map(str.title, parts))

title = '.join(parts) +

n.n

if isinstance(value, float):
value = f'{value:0.3f}"'

print(f'{title :<{pad}} {value}')

# Benchmark ResNet on Neuron
benchmark (filename, image)
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Finding the optimal batch size

Batch size has a direct impact on model performance. The NeuronCore architecture is optimized to maximize through-
put with relatively small batch sizes. This means that a Neuron compiled model can outperform a GPU model, even if
running single digit batch sizes.

As a general best practice, we recommend optimizing your model’s throughput by compiling the model with a small
batch size and gradually increasing it to find the peak throughput on Neuron. To minimize latency, using batch size
= 1 will nearly always be optimal. This batch size configuration is typically used for on-demand inference applications.
To maximize throughput, usually 1 < batch_size < 10 is optimal. A configuration which uses a larger batch size
is generally ideal for batched on-demand inference or offline batch processing.

In the following section, we compile ResNet for multiple batch size inputs. We then run inference on each batch size
and benchmark the performance. Notice that latency increases consistently as the batch size increases. Throughput
increases as well, up until a certain point where the input size becomes too large to be efficient.

# Compile ResNet for different batch sizes

for batch_size in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:
model = models.resnet50(pretrained=True)
model.eval()
example = get_image(batch_size=batch_size)
model_neuron = torch_neuronx.trace(model, example)
filename = f'model_batch_size_{batch_size}.pt'
torch.jit.save(model_neuron, filename)

# Benchmark ResNet for different batch sizes

for batch_size in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:
print('-"*50)
example = get_image(batch_size=batch_size)
filename = f'model_batch_size_{batch_size}.pt'
benchmark (filename, example)
print()

T5 model inference on Trn1 or Inf2
Introduction

In this tutorial we will compile and deploy a pretrained TS model for accelerated inference on Neuron.

This tutorial will use the t5-large model. The TS model can be used for machine translation, document summarization,
question answering, and classification tasks.

This tutorial has the following main sections:
1. Install dependencies
2. Compile the T5 model
3. Run inference with greedy decoding on Neuron
4. Run infernece with beam search on Neuron

This Jupyter notebook should be run on a Trnl instance (trnl.2xlarge or larger.) or Inf2 instance (inf2.xlarge or
larger.)
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Install dependencies

The code in this tutorial is written for Jupyter Notebooks. To use Jupyter Notebook on the Neuron instance, you can
use this guide.

This tutorial requires the following pip packages:
¢ torch-neuronx
* neuronx-cc
e transformers
e optimum-neuron

Most of these packages will be installed when configuring your environment using the Trn1/Inf2 setup guide. The
additional dependencies must be installed here:

Ipip install --upgrade transformers==4.31.0 optimum-neuron==0.0.8 sentencepiece

Optimum Neuron is the interface between the Transformers library and AWS Accelerators including AWS Trainium
and AWS Inferentia. It provides a set of tools enabling easy model loading, training and inference on single- and multi-
Accelerator settings for different downstream tasks. In this tutorial we use HuggingFace Optimum Neuron’s generate()
method instead of transformers’s generate() to perform greedy decoding. Optimum Neuron takes care of padding the
inputs which is necessary to infer on Neuron.

Compile the model into an AWS Neuron optimized TorchScript

In the following section, we load the T5 model, compile the model’s encoder and decoder for Neuron using
torch_neuronx.trace(), and save the optimized encoder and decoder as TorchScript.

Before we trace the model, we need to make a couple of changes.

1. We need to write encoder and decoder wrappers - torch_neuronx can only trace functions with positional
arguments. But the TS encoder and decoder both use keyword arguments. So, in order to trace them, we have to
write wrappers that convert keyword arguments to positional arguments

2. We modify the t5 code to maximize the computation on the neuron device - Having sections of code running on
cpu will reduce the performance. Moreover, we do not want to move data berween the neuron device and cpu
during inference. The code we trace with torch_neuronx is the code that runs on the neuron device, so we
refactor the t5 code to run computationally heavy operations within the wrapper.

Let us start with the EncoderWrapper.

In the huggingface t5 implementation, the encoder block takes in the input ids and returns the encoder hidden states.
This hidden states are then used to initialize the KV cache in the decoder blocks during the first decoder invocation.
We could trace both the encoder and the cache initialization step separately. But there is a better way, we could just
compute the initial KV cache state within the encoder wrapper. This way, we remove the overhead of moving the hidden
states from neuron device to cpu and back. This also allows neuron’s compiler to optimize execution across both the
encoder and cache initialization.

Why don’t we just initalize the cache on the first decoder run?

This is harder to do on Neuron. Similar to torch. jit.trace(), torch_neuronx.trace() produces a function that
has a fixed control flow, i.e. there are no conditional executions. So we cannot choose to conditionally initialize the
cache in the first decoder iteration. Instead, we can compute the initial cache state outside the generation flow and pass
the cache to it.
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[ 1: import torch
from transformers.models.t5.modeling_t5 import T5Stack, T5LayerCrossAttention

class Encoderlrapper (torch.nn.Module):
We will trace an instance of the EncoderWrapper.
This wrapper just converts positional args to kwargs.

def __init__(self,
encoder,
decoder,
model_config,
batch_size,
max_length,
device,
num_beamns,
tp_degree=None) :

super().__init__Q)

self.encoder = encoder

self.decoder = decoder

self.batch_size = batch_size

self.max_length = max_length

self.model_config = model_config

self.device = device

self.num_beams = num_beams
self.num_attention_heads_per_partition = model_config.num_heads
self.tp_degree = tp_degree

def forward(self, input_ids, attention_mask):

v

This is the core functionality we want to trace.
T
encoder_output = self.encoder(input_ids=input_ids,
attention_mask=attention_mask,
output_attentions=False,
output_hidden_states=False)

last_hidden_state = encoder_output["last_hidden_state"]
encoder_hidden_states = torch.concat([tensor.unsqueeze(0).repeat(self.num_beams,..
—1, 1) for tensor in last_hidden_state])

decoder_blocks = self.decoder.block
present_key_value_states_sa [1
present_key_value_states_ca [1]

for i, block in enumerate(decoder_blocks):

# Cross attention has to be initialized with the encoder hidden state
cross_attention: T5LayerCrossAttention = block.layer[1]

attention = cross_attention.EncDecAttention
(continues on next page)
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def shape(states):
"""projection
return states.view(self.batch_size, -1, self.num_attention_heads_per_

—partition, attention.key_value_proj_dim).transpose(l, 2)

key_states = shape(attention.k(encoder_hidden_states))
value_states = shape(attention.v(encoder_hidden_states))

# cross_attn_kv_state
present_key_value_states_ca.append(key_states)
present_key_value_states_ca.append(value_states)

# Self attention kv states are initialized to zeros. This is done to keep..
—the size of the kv cache tensor constant.
# The kv cache will be an input to the decoder trace. Any traced function.
—will have a fixed control flow. What this means
# is that the trace performs the exact same computations on inputs of the.
—.same shape in each invocation. So the attention
# kv cache is padded here to keep a fixed shape.
present_key_value_states_sa.append(torch.zeros((self.batch_size, oo
. # key states
self.model_config.num_heads,
self.max_length-1,
self.model_config.d_kv),.
—.dtype=torch.float32, device=self.device))
present_key_value_states_sa.append(torch.zeros((self.batch_size, o
o # value states
self.model_config.num_heads,
self.max_length-1,
self.model_config.d_kv),..
—.dtype=torch.float32, device=self.device))

return present_key_value_states_sa + present_key_value_states_ca

In the decoder wrapper, in addition to converting keyword arguments to positional arguments we add support for
attention caching. Generating text from the encoder decoder models is an autoregressive process. For each invocation,
we have to compute the key and value states of the attention heads repeatedly. To improve the performance, we cache
the key and value states. This cache is what HuggingFace transformers code refers to as past_key_values.

In HuggingFace transformers, the past_key_values are updated outside the decoder. This works for training and
evaluation but for inference we want to perform them within a single trace. This way, we can optimize across both the
decoder execution and cache update. So, we move the cache update within the decoder wrapper.

class Decoderlirapper(torch.nn.Module):

def __init__(self,
decoder: T5Stack,
Im_head: torch.nn.Linear,
model_config,
num_beams: int,

max_length: int,
(continues on next page)
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device: str,
tp_degree=None) :
super().__init__(Q)
self.decoder = decoder
self.1lm_head = 1lm_head
self.model_dim=model_config.d_model
self.device = device
self.num_beams = num_beams
self.batch_size =1
self.config = model_config

num_heads=model_config.num_heads
num_decoder_layers=model_config.num_decoder_layers

self.num_attention_heads_per_partition = num_heads

# (num_beams, n_heads, seq_length, dim_per_head)
if device == "cpu":
self.past_key_values_sa = [torch.ones((num_beams,num_heads,max_length-1,
—model_config.d_kv), dtype=torch.float32) for _ in range(num_decoder_layers * 2)]
self.past_key _values_ca = [torch.ones((num_beams,num_heads,max_length,model_
—~config.d_kv), dtype=torch.float32) for _ in range(num_decoder_layers * 2)]
elif device == "xla":
self.past_key_values_sa = torch.nn.ParameterList([torch.nn.Parameter(torch.
—ones((num_beams,self.num_attention_heads_per_partition,max_length-1,model_config.d_kv),
-, dtype=torch.float32), requires_grad=False) for _ in range(num_decoder_layers * 2)])
self.past_key_values_ca = torch.nn.ParameterList([torch.nn.Parameter(torch.
—ones((num_beams, self.num_attention_heads_per_partition,max_length,model_config.d_kv),.
—dtype=torch.float32), requires_grad=False) for _ in range(num_decoder_layers * 2)])
def update_past(self, past_key_values):
new_past_sa = []
new_past_ca = []
for past_layer in past_key_values:
new_past_layer = list(past_layer)
for i in range(len(new_past_layer[:2])):
new_past_layer[i] = past_layer[i][:, :, 1:]
new_past_sa += [new_past_layer[:2],]
new_past_ca += [new_past_layer[2:],]
return new_past_sa, new_past_ca

def reorder_cache(self, past_key_values, beam_idx):
for i in range(len(past_key_values)):
gather_index = beam_idx.view([beam_idx.shape[0],1,1,1]).expand_as(past_key_
—values[i])
past_key_values[i] = torch.gather(past_key_values[i], dim = 0, index=gather_
—index)
return past_key_values

def forward(self,
input_ids,
decoder_attention_mask,

(continues on next page)
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encoder_hidden_states,
encoder_attention_mask,
beam_idx,

beam_scores,

**kwargs) :

if self.num_beams > 1:

# We reorder the cache based on the beams selected in each iteration..

—Required step for beam search.

past_key_values_sa = self.reorder_cache(self.past_key_values_sa, beam_idx)

past_key_values_ca = self.reorder_cache(self.past_key_values_ca, beam_idx)
else:

# We do not need to reorder for greedy sampling

past_key_values_sa = self.past_key_values_sa

past_key_values_ca = self.past_key_values_ca

# The cache is stored in a flatten form. We order the cache per layer before.,
—.passing it to the decoder.

# Each layer has 4 tensors, so we group by 4.

past_key_values = [[*past_key_values_sa[i*2:1*2+2], *past_key_values_ca[i*2:
—1*2+2]] for i in range(0®, int(len(past_key_values_ca)/2))]

decoder_output = self.decoder(
input_ids=input_ids,
attention_mask=decoder_attention_mask,
past_key_values=past_key_values,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
output_attentions=False,
output_hidden_states=False)

last_hidden_state = decoder_output['last_hidden_state']
past_key_values = decoder_output['past_key_values']

if self.config.tie_word_embeddings:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/
—.fal19d69eafc9a482aff0b59ddd96b025cOch207d/mesh_tensorflow/transformer/transformer.py

—#L586
last_hidden_state = last_hidden_state * (self.model_dim**-0.5)

Im_logits = self.lm_head(last_hidden_state)
past_key_values_sa, past_key_values_ca = self.update_past(past_key_values)

# We flatten the cache to a single array. This is required for the input output.
—aliasing to work
past_key_values_sa = [vec for kv_per_layer in past_key_values_sa for vec in kv_
—per_layer]
past_key_values_ca = [vec for kv_per_layer in past_key_values_ca for vec in kv_
—per_layer]
(continues on next page)

54 Chapter 2. ML Frameworks



AWS Neuron

(continued from previous page)

if self.device == "cpu":
self.past_key_values_sa = past_key_values_sa
self.past_key_values_ca = past_key_values_ca

# We calculate topk inside the wrapper
next_token_logits = lm_logits[:, -1, :]

if self.num_beams > 1:

# This section of beam search is run outside the decoder in the huggingface.
—t5 implementation.

# To maximize the computation within the neuron device, we move this within.,
—the wrapper

logit_max, _ = torch.max(next_token_logits, dim=-1, keepdim=True)

logsumexp = torch.log(torch.exp(next_token_logits - logit_max).sum(dim=-1,.
—keepdim=True))

next_token_scores = next_token_logits - logit_max - logsumexp

next_token_scores = next_token_scores + beam_scores[:, None].expand_as(next_
—token_scores)

# reshape for beam search

vocab_size = next_token_scores.shape[-1]

next_token_scores = next_token_scores.view(self.batch_size, self.num_beams *.
—vocab_size)

next_token_scores = next_token_scores * 1

# Sample 2 next tokens for each beam (so we have some spare tokens and match.
—output of beam search)
next_token_scores, next_tokens = torch.topk(
next_token_scores, 2 * self.num_beams, dim=1, largest=True, sorted=True

next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
next_tokens = next_tokens % vocab_size

return [next_token_scores, next_tokens, next_indices] + past_key_values_sa +.
—past_key_values_ca
else:
# Greedy
next_tokens = torch.argmax(next_token_logits, dim=-1)
return [next_tokens] + past_key_values_sa + past_key_values_ca

Now let’s create a T5 model wrapper to make it compatible with our traced encoder and decoder.
There are two reasons for having this wrapper,

1. The encoder and decoder traces can only be invoked with positional arguments. But the HuggingFace transform-
ers code is written with keyword arguments. So we override the functions that invoke encoder and decoder to
call with positional arguments.

2. The generate() function in the NeuronGenerationMixin performs cache update within the CPU. As we are han-
dling the cache within the DecoderWrapper, we disable the cache update on CPU.
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3. The topK computation to determine the next tokens for beam search was moved into the decoder wrapper. So,
we need to override the huggingface’s beam search implementation to accept the next tokens and the beam scores
from the decoder.

Let’s also override the generate () function so that it will intialize the cache using the cache initalizer before starting
the greedy decoding.

[4]: import torch
import torch_xla.core.xla_model as xm

from transformers import T5Tokenizer, T5ForConditionalGeneration

from transformers.modeling_outputs import BaseModelOutput, Seq2SegLMOutput
from transformers.models.t5.modeling_t5 import T5Stack, T5LayerCrossAttention
from transformers.generation.utils import ModelOutput

from typing import Any, Dict, List, Optional, Tuple, Union

from transformers.generation.beam_search import BeamScorer, BeamSearchScorer

from optimum.neuron.generation import NeuronGenerationMixin

from transformers.generation.logits_process import (
LogitsProcessorList,

)

from transformers.generation.stopping_criteria import (
MaxLengthCriteria,
MaxTimeCriteria,
StoppingCriterialist,
validate_stopping_criteria,

from transformers.generation.utils import (
BeamSearchOutput,
GreedySearchOutput,

class TS5Wrapper(T5ForConditionalGeneration, NeuronGenerationMixin):

def _prepare_encoder_decoder_kwargs_for_generation(
self,
inputs_tensor: torch.Tensor,
model_kwargs,
model_input_name: Optional[str] = None
) -> Dict[str, Any]:
encoder = self.get_encoder()
model_kwargs["encoder_outputs"]: ModelOutput = encoder(inputs_tensor, model_
—kwargs["attention_mask"])
return model_kwargs

# Override to cut the input_ids to just last token
def prepare_inputs_for_generation(

self,

input_ids,

past_key_values=None,

attention_mask=None,

head_mask=None,

(continues on next page)
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decoder_head_mask=None,
decoder_attention_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,

**kwargs,
):
# cut decoder_input_ids as past is cached
input_ids = input_ids[:, -1:]
return {

"decoder_input_ids": input_ids,
"past_key_values": past_key_values,
"encoder_outputs": encoder_outputs,
"attention_mask": attention_mask,

"head_mask": head_mask,

"decoder_head_mask": decoder_head_mask,
"decoder_attention_mask": decoder_attention_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache,

We update the cache in the decoder trace, so lets override the _update_model_
—kwargs_for_xla_generation in NeuronGenerationMixin
def _update_model_kwargs_for_xla_generation(
self,
model_kwargs: Dict[str, Any],
batch_size: int,
is_encoder_decoder: bool = False,
standardize_cache_format: bool = False,
max_length: Optional[int] = None,
seq_length: Optional[int] = None,
use_cache: bool = True,
) -> Dict[str, Any]:

def _update_attention(model_kwargs, is_encoder_decoder):
"""Updates the appropriate attention mask -- encoder-decoder models use,
-, decoder_attention_mask """

attention_mask_name = "decoder_attention_mask" if is_encoder_decoder else
—"attention_mask"

attention_mask = model_kwargs.pop(attention_mask_name)

attention_mask_update_slice = torch.ones(

(batch_size, 1), dtype=attention_mask.dtype, device=attention_mask.device

)

attention_mask = torch.cat([attention_mask[:, 1:], attention_mask_update_
—slice], dim=-1)

mask = {attention_mask_name: attention_mask}

return mask

(continues on next page)
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mask = _update_attention(model_kwargs, is_encoder_decoder)
# sets the updated variables (mask and past_key_values)
model_kwargs.update (mask)

# Set a mock cache tensor
model_kwargs['"past_key_values"] = torch.tensor([])

return model_kwargs

def _reorder_cache(self, past_key_values, beam_idx):
This is needed for beam search and not greedy sampling
We reorder the cache within the trace so we can skip it in modelling t5.py..
—.So we override the _reorder_cache
self.beam_idx = beam_idx
return past_key_values

def generate(self,
tokenizer: T5Tokenizer,
prompt: str,
max_length: int,
num_beams: int,
num_return_sequences: int,
device: str):

batch_encoding = tokenizer(prompt, max_length=max_length, truncation=True,..
—padding="max_length',
return_tensors="pt")

past_key_values = self.encoder(batch_encoding['input_ids'],batch_encoding[
- 'attention_mask'])

decoder_attention_mask = torch.cat([torch.zeros((1l, max_length-1), dtype=torch.
—int32),
torch.ones((1, 1), dtype=torch.int32)],.
—axis=1)

# copy the new cache state to the decoder

if device == "xla":
for state, tensor in zip(self.decoder.parameters(), past_key_values):

state.copy_(tensor)

else:
# First half of the cache is self attention and the rest is cross attention
self.decoder.past_key_values_sa = past_key_values[:len(past_key_values)//2]
self.decoder.past_key_values_ca past_key_values[len(past_key_values)//2:]

output = super().generate(**batch_encoding,
max_length=max_length,
num_beams=num_beams,
num_return_sequences=num_return_sequences,
do_sample=False,
(continues on next page)
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use_cache=True,
decoder_attention_mask=decoder_attention_mask,
encoder_outputs={"last_hidden_state": torch.ones((1,128,
—1))3}) # Pass fake encoder_outputs so the transfomers code will not invoke the encoder
return output

def forward(
self,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
beam_scores = None,
**kwargs

) -> Union[Tuple[torch.FloatTensor], Seqg2SeqLMOutput]:

hidden_states = encoder_outputs["last_hidden_state"]

if not hasattr(self, 'beam_idx'):
# Infering the number of beams from the attention mask
num_beams = attention_mask.shape[0]
self.beam_idx = torch.arange(0®, num_beams, dtype=torch.int64)

decoder_outputs = self.decoder(
decoder_input_ids,
decoder_attention_mask,
hidden_states,
attention_mask,
self.beam_idx,
beam_scores

# 1lm_logits = decoder_outputs[0]
next_token_scores = decoder_outputs[0]
next_tokens = decoder_outputs[1]
next_indices = decoder_outputs[2]

return next_token_scores, next_tokens, next_indices

def beam_search(
self,
input_ids: torch.LongTensor,
beam_scorer: BeamScorer,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriterialist] = None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[Union[int, List[int]]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_scores: Optional[bool] = None,
return_dict_in_generate: Optional[bool] = None,

(continues on next page)
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synced_gpus: Optional[bool] = False,
seq_length: Optional[int] = None,
**model_kwargs,

) -> Union[BeamSearchOutput, torch.LongTensor]:

logits_processor = logits_processor if logits_processor is not None else.
—LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else..
. StoppingCriterialist()
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_
—.config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_
—config.eos_token_id
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
output_scores = output_scores if output_scores is not None else self.generation_
—config.output_scores
output_attentions = (
output_attentions if output_attentions is not None else self.generation_
—.config.output_attentions
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.
—.generation_config.output_hidden_states

)

batch_size = len(beam_scorer._beam_hyps)
num_beams = beam_scorer.num_beams

batch_beam_size, cur_len = input_ids.shape

# Overwrite cur_len
cur_len = seqg_length

if num_beams * batch_size != batch_beam_size:
raise ValueError(
f"Batch dimension of “input_ids® should be {num_beams * batch_size}, but.
—is {batch_beam_size}."
)

# init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and output_scores) else None
beam_indices = (
tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and.
—output_scores) else None

)

# initialise score of first beam with 0 and the rest with -1e9. This makes sure.
—»that only tokens

# of the first beam are considered to avoid sampling the exact same tokens.
—across all beams.

# beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float,.

(continues on next page)

60 Chapter 2. ML Frameworks



AWS Neuron

(continued from previous page)

—device=input_ids.device)
beam_scores_device = "cpu"
beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float,..

—.device=beam_scores_device)
beam_scores[:, 1:] = -1e9
beam_scores = beam_scores.view((batch_size

*

num_beams,))

while True:
# prepare model inputs
# From max_length-sized input_ids, select first
# cur_len - 1 values.
update_indices = torch.stack(
[torch.arange(input_ids.size(0)), torch.tensor(cur_len - 1).repeat(input_
—ids.size(0®))], dim=-1
)
input_ids_ = input_ids[update_indices[:, 0], update_indices[:, 1], None]
model_inputs = self.prepare_inputs_for_generation(input_ids_, **model_kwargs)

next_token_scores, next_tokens, next_indices = self(
**model_inputs,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
beam_scores=beam_scores

# stateless

beam_outputs = beam_scorer.process(
input_ids.to("cpu")[:, :cur_len],
next_token_scores.to("cpu"),
next_tokens.to("cpu"),
next_indices.to("cpu"),
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
beam_indices=beam_indices,

beam_scores = beam_outputs["next_beam_scores"]
beam_next_tokens = beam_outputs["next_beam_tokens"]
beam_idx = beam_outputs["next_beam_indices"]

update_indices = torch.stack(
[torch.arange(batch_beam_size), torch.tensor(cur_len - 1).repeat(batch_
—beam_size)], dim=-1
)
update_indices_2 = torch.stack(
[torch.arange(batch_beam_size), torch.tensor(cur_len).repeat(batch_beam_
—size)], dim=-1
)
# First select beam_indices
device = input_ids.device
beam_idx_device = beam_idx.to(device=input_ids.device)

(continues on next page)
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input_ids[:, :] = input_ids[beam_idx_device.long(), :]

# Then append new tokens

input_ids[update_indices_2[:, 0], update_indices_2[:, 1], None] = beam_next_
—tokens.unsqueeze(-1).to(device).to(torch.long)

input_ids = input_ids * 1 # Hack to materialize tensor

# update generated ids, model inputs, and length for next step

model_kwargs = self._update_model_kwargs_for_xla_generation(
model_kwargs,
batch_size=batch_beam_size,
is_encoder_decoder=self.config.is_encoder_decoder,
max_length=stopping_criteria.max_length,
seq_length=cur_len,
use_cache=model_kwargs["use_cache"],

)

if model_kwargs["past_key_values"] is not None:
model_kwargs["past_key_values"] = self._reorder_cache(model_kwargs["past_

—key_values"], beam_idx.to(torch.int64))

if return_dict_in_generate and output_scores:
beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i.
—in range(len(beam_indices))))

# increase cur_len
cur_len = cur_len + 1

# stop when each sentence is finished, or if we exceed the maximum length
stop_criterion_1 = beam_scorer.is_done
if isinstance(stopping _criteria, list):
if len(stopping_criteria) ==
stopping_criteria = stopping_criteria[0]

# Cases that can be handled in XLA without requiring
# non-padded input_ids
if isinstance(stopping criteria, MaxLengthCriteria):
stop_criterion_2 = cur_len >= stopping_criteria.max_length
elif isinstance(stopping_criteria, MaxTimeCriteria):
stop_criterion_2 = stopping_criteria(input_ids, scores)
else:
# Other cases will be handled on CPU
batch_size, _ = input_ids.shape
input_ids_cpu = input_ids.to("cpu")
mask = torch.cat(
[torch.ones(batch_size, cur_len), torch.zeros(batch_size, input_ids.
—»shape[1l] - cur_len)], dim=1
).bool()
input_ids_cpu = torch.masked_select(input_ids_cpu, mask).reshape((batch_
—size, cur_len))
scores_cpu = scores.to("cpu") if torch.is_tensor(scores) else scores
stop_criterion_2 = stopping_criteria(input_ids_cpu, scores_cpu)

(continues on next page)
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if stop_criterion_1 or stop_criterion_2:
if not synced_gpus:
break
else:
this_peer_finished = True

sequence_outputs = beam_scorer.finalize(
input_ids.to("cpu'),
beam_scores.to("cpu"),
next_tokens.to("cpu"),
next_indices.to("cpu"),
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
max_length=stopping_criteria.max_length,
beam_indices=beam_indices,

for k, v in sequence_outputs.items():
if type(v) == torch.Tensor:
sequence_outputs[k] = sequence_outputs[k].to(input_ids.device)

return sequence_outputs['sequences"]

def greedy_search(

self,

input_ids: torch.LongTensor,

logits_processor: Optional[LogitsProcessorList] = None,

stopping_criteria: Optional[StoppingCriterialist] = None,

max_length: Optional[int] = None,

pad_token_id: Optional[int] = None,

eos_token_id: Optional[Union[int, List[int]]] = None,

output_attentions: Optional[bool] = None,

output_hidden_states: Optional[bool] = None,

output_scores: Optional[bool] = None,

return_dict_in_generate: Optional[bool] = None,

seqg_length: Optional[int] = int,

streamer: Optional["BaseStreamer"] = None,

**model_kwargs,

) -> Union[GreedySearchOutput, torch.LongTensor]:
Overriding greedy sampling to use next tokens returned from neuron device.

—.instead of logits.

# init values

logits_processor = logits_processor if logits_processor is not None else.,
—LogitsProcessorList()

use_cache = model_kwargs["use_cache"] if "use_cache" in model_kwargs else False

stopping_criteria = stopping_criteria if stopping_criteria is not None else..
—StoppingCriterialist()

pad_token_id = pad_token_id if pad_token_id is not None else self.generation_
—,config.pad_token_id

(continues on next page)
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eos_token_id = eos_token_id if eos_token_id is not None else self.generation_
—config.eos_token_id
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_
—token_id is not None else None
output_scores = output_scores if output_scores is not None else self.generation_
—config.output_scores
output_attentions = (
output_attentions if output_attentions is not None else self.generation_
—.config.output_attentions
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.
—.generation_config.output_hidden_states

)

# init attention / hidden states / scores tuples

scores = () if (return_dict_in_generate and output_scores) else None

decoder_attentions = () if (return_dict_in_generate and output_attentions) else.
—None

cross_attentions = () if (return_dict_in_generate and output_attentions) else.
—None

decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states)..
—.else None

# keep track of which sequences are already finished
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long,..
—.device=input_ids.device)

this_peer_finished = False # used by synced_gpus only
while True:

# prepare model inputs
# From max_length-sized input_ids, select first
# seq_length - 1 values.

if model_kwargs.get("past_key_values") is None:
input_ids_ = input_ids[:, :seq_length]
else:
update_indices = torch.stack(
[torch.arange(input_ids.size(®)), torch.tensor(seq_length - 1).
—repeat(input_ids.size(®))],
dim=-1,
)

input_ids_ = input_ids[update_indices[:, 0], update_indices[:, 1], None]
model_inputs = self.prepare_inputs_for_generation(input_ids_, **model_kwargs)
# forward pass to get next token

output = self(

(continues on next page)
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**model_inputs,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)

next_tokens = output[0]

# finished sentences should have their next token be a padding token
if eos_token_id is not None:
if pad_token_id is None:
raise ValueError("If "eos_token_id"  is defined, make sure that “pad_
—token_id" is defined.")
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 -.
—unfinished_sequences)

# update generated ids, model inputs, and length for next step

batch_size, _ = input_ids.shape
update_indices = torch.stack(
[torch.arange(batch_size), torch.tensor(seq_length).repeat(batch_size)],.
—dim=-1
)
input_ids[update_indices[:, 0], update_indices[:, 1]] = next_tokens[:]
model_kwargs = self._update_model_kwargs_for_xla_generation(
model_kwargs,
batch_size=batch_size,
is_encoder_decoder=self.config.is_encoder_decoder,
max_length=stopping_criteria.max_length,
seq_length=seq_length,
use_cache=use_cache,

seq_length += 1

# if eos_token was found in one sentence, set sentence to finished
if eos_token_id_tensor is not None:
unfinished_sequences = unfinished_sequences.mul(
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_
—tensor.unsqueeze (1)) .prod(dim=0)

)

# stop when each sentence is finished, or if we exceed the maximum length
stop_criterion_1 = unfinished_sequences.max() == 0

if isinstance(stopping_criteria, list):
if len(stopping_criteria) ==
stopping_criteria = stopping_criteria[0]

# Cases that can be handled in XLA without requiring

# non-padded input_ids

if isinstance(stopping_criteria, MaxLengthCriteria):
stop_criterion_2 = seq_length >= stopping_criteria.max_length

(continues on next page)
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elif isinstance(stopping_criteria, MaxTimeCriteria):
stop_criterion_2 = stopping_criteria(input_ids, scores)
else:
# Other cases will be handled on CPU
batch_size, _ = input_ids.shape
mask = torch.cat(
[torch.ones(batch_size, seq_length), torch.zeros(batch_size, input_
—,ids.shape[1l] - seq_length)],
dim=1,
).bool()
input_ids_cpu = torch.masked_select(input_ids, mask).reshape((batch_size,
-, seq_length)).to("cpu™)
scores_cpu = scores.to("cpu") if torch.is_tensor(scores) else scores
stop_criterion_2 = stopping_criteria(input_ids_cpu, scores_cpu)

if stop_criterion_1 or stop_criterion_2:
this_peer_finished = True

if this_peer_finished:
break

if streamer is not None:
streamer.end()

return input_ids

Now let’s test inference on CPU with all the wrappers before tracing.

# Let's set some run parameters

model_name = "t5-large"
num_beams = 1
num_return_sequences = 1
max_length = 128

from transformers import T5Tokenizer

prompt="translate English to German: Lets eat good food."

tokenizer = T5Tokenizer.from_pretrained(model_name, model_max_length=max_length)
model = TSWrapper.from_pretrained(model_name)

model .encoder = Encoderflirapper (model.encoder, model.decoder, model.config, num_beams,..
—max_length, "cpu", num_beams)

setattr(model.encoder, 'main_input_name', 'input_ids') # Attribute required by beam.,
—,search

model .decoder = Decoderlirapper (decoder=model.decoder,
Im_head=model .1m_head,
model_config=model.config,

(continues on next page)

66 Chapter 2. ML Frameworks



[ 1:

AWS Neuron

(continued from previous page)

num_beams=num_beams,
max_length=max_length,
device="cpu")

output = model.generate(tokenizer=tokenizer,
prompt=prompt,
max_length=max_length,
num_beams=num_beams,
num_return_sequences=num_return_sequences,
device="cpu")

results = [tokenizer.decode(t, skip_special_tokens=True) for t in output]

print('Results: ")
for i, summary in enumerate(results):
print(i + 1, summary)

Results:
1 Lassen Sie uns gutes Essen essen.

Now that the wrappers are running as expected, let’s trace the encoder, and decoder. To trace these functions, we pass
the function and a sample input to the trace function. The result of the trace stage will be a static executable where the
operations to be run upon inference are determined during compilation. This means that when inferring, the resulting
Neuron model must be executed with tensors that are the exact same shape as those provided at compilation time. If
a model is given a tensor at inference time whose shape does not match the tensor given at compilation time, an error
will occur.

The decoder wrapper returns the new state of the cache as an output which is copied back to the CPU. As the cache
is a large tensor, copying it to and from the XLA device for each decoder invocation will significantly slow down the
inference. Instead, we can use input output aliasing, a feature of torch_neuronx to keep these tensors on device
rather than copying back to the CPU. To use input output aliasing, we need to map the outputs to input parameters
while tracing.

import torch
import torch_neuronx

from transformers import T5Tokenizer, T5ForConditionalGeneration

def trace_encoder(model: T5ForConditionalGeneration,
tokenizer: T5Tokenizer,
max_length: int,
num_beams: int):

# Trace encoder
batch_encoding = tokenizer("translate English to German: Lets go home now",
max_length=max_length, truncation=True, padding='max_
—.length', return_tensors="pt")
input_ids = batch_encoding['input_ids"']
attention_mask = batch_encoding['attention_mask']

encoder = EncoderWrapper(model.encoder, model.decoder, model.config, num_beams, max_
—length, "xla", num_beams)

(continues on next page)
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traced_encoder = torch_neuronx.trace(encoder, (input_ids, attention_mask), compiler_

—workdir="/tmp/encoder/")

setattr(traced_encoder, 'main_input_name', 'input_ids') # Attribute required by.

—beam search

def

return traced_encoder

trace_decoder(model: T5ForConditionalGeneration,
num_beams: int,
max_length: int):

decoder = DecoderWrapper (decoder=model.decoder,
1m_head=model.1lm_head,
model_config=model.config,
num_beams=num_beams,
max_length=max_length,
device="x1la")

# We create mock inputs so we can trace the decoder

decoder_input_ids = torch.ones((num_beams, 1), dtype=torch.int64)
decoder_attention_mask = torch.ones((num_beams, max_length), dtype=torch.int32)
encoder_attention_mask = torch.ones((num_beams, max_length), dtype=torch.int64)
encoder_hidden_states = torch.ones((num_beams, max_length, model.config.d_model),..

—.dtype=torch. float32)

beam_idx = torch.arange(0®, num_beams, dtype=torch.int64)
beam_scores = torch.zeros((num_beams,), dtype=torch.float)

num_outputs_from_trace = 3 if num_beams > 1 else 1

aliases = {}

for i in range(len(decoder.past_key_values_sa)):
aliases[decoder.past_key_values_sa[i]] = i + num_outputs_from_trace

for i in range(len(decoder.past_key_values_ca)):
aliases[decoder.past_key_values_cal[i]] = len(decoder.past_key_values_sa) + i +.

—num_outputs_from_trace

traced_decoder = torch_neuronx.trace(decoder, (
decoder_input_ids,
decoder_attention_mask,
encoder_hidden_states,
encoder_attention_mask,
beam_idx,
beam_scores,
), input_output_aliases=aliases, compiler_workdir="/tmp/decoder/")

return traced_decoder

tokenizer = T5Tokenizer.from_pretrained(model_name, model_max_length=max_length)
model = T5ForConditionalGeneration.from_pretrained(model_name)

(continues on next page)
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# We enable this flag to ensure model uses attention key value caching
model .config.use_cache = True

traced_encoder trace_encoder (model, tokenizer, max_length, num_beams)
traced_decoder = trace_decoder(model, num_beams, max_length)

torch.jit.save(traced_encoder, "TracedEncoder.pt™)
torch.jit.save(traced_decoder, "TracedDecoder.pt")

Run inference with greedy decoding

Now that we have the traced model, let’s use it for inference.

runtime = torch.classes.neuron.Runtime()
runtime.initialize()
runtime.set_default_neuron_cores(®, 1)

tokenizer = T5Tokenizer. from_pretrained(model_name)
model = T5Wrapper.from_pretrained(model_name)

model .encoder = torch.jit.load("TracedEncoder.pt")
# Attribute required by beam search
setattr(model.encoder, 'main_input_name', 'input_ids')

model .decoder = torch.jit.load("TracedDecoder.pt")
torch_neuronx.move_trace_to_device(model.decoder, 0)

output = model.generate(tokenizer=tokenizer,
prompt="translate English to German: Lets eat good food.",
max_length=max_length,
num_beams=num_beams,
num_return_sequences=num_return_sequences,
device="x1a")

results = [tokenizer.decode(t, skip_special_tokens=True) for t in output]
print('Results: ")

for i, summary in enumerate(results):
print(i + 1, summary)

Results:
1 Lassen Sie uns gutes Essen essen.
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Run inference with beam search

# Let's set some run parameters for beam search

model_name = "t5-large"
num_beams = 4
num_return_sequences = 4
max_length = 128

tokenizer = T5Tokenizer.from_pretrained(model_name, model_max_length=max_length)
model = T5ForConditionalGeneration.from pretrained(model_name)
model.config.use_cache = True

traced_encoder trace_encoder (model, tokenizer, max_length, num_beams)
traced_decoder = trace_decoder(model, num_beams, max_length)

torch.jit.save(traced_encoder, "TracedEncoder.pt")
torch.jit.save(traced_decoder, "TracedDecoder.pt")

tokenizer = T5Tokenizer.from_pretrained(model_name)
model = TSWrapper.from_pretrained(model_name)

model .encoder = torch.jit.load("TracedEncoder.pt")

# Attribute required by beam search
setattr(model.encoder, 'main_input_name', 'input_ids')
model .decoder = torch.jit.load("TracedDecoder.pt")

torch_neuronx.move_trace_to_device(model.decoder, 0)

output = model.generate(tokenizer=tokenizer,

prompt="translate English to German: Lets eat good food.",

max_length=max_length,
num_beams=num_beams,
num_return_sequences=num_return_sequences,
device="x1a")

results = [tokenizer.decode(t, skip_special_tokens=True) for t in output]

print('Results: ")
for i, summary in enumerate(results):
print(i + 1, summary)

Results:

1 Lassen Sie uns gutes Essen essen.

2 Lassen Sie uns gutes Essen zu essen.
3 Lassen Sie uns essen gutes Essen.

4 Lassen Sie uns gutes Essen.

* HuggingFace pretrained BERT tutorial [Afml] [notebook]
e TorchServe tutorial [html]

¢ LibTorch C++ tutorial (for torch-neuron and torch-neuronx) [html]
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e Torchvision ResNet50 tutorial [Afml] [notebook]

¢ T5 inference tutorial /html] [notebook]

Note: To use Jupyter Notebook see:

* setup-jupyter-notebook-steps-troubleshooting

* running-jupyter-notebook-as-script

This document is relevant for: Inf2, Trnl, Trn2

This document is relevant for: Inf2, Trnl, Trn2

Additional Examples (torch-neuronx)

e AWS Neuron Samples GitHub Repository

 Transformers Neuron GitHub samples

This document is relevant for: Inf2, Trnl, Trn2

This document is relevant for: Inf2, Trnl, Trn2

API Reference Guide (torch-neuronx)

This document is relevant for: Inf2, Trnl, Trn2

PyTorch NeuronX Tracing API for Inference

torch_neuronx.trace (func, example_inputs, *_, input_output_aliases={}, compiler_workdir=None,

compiler_args=None, partitioner_config=None, inline_weights_to_neff=True,
cpu_backend=False)

Trace and compile operations in the func by executing it using example_inputs.

This function is similar to a torch. jit.trace() since it produces a ScriptModule that can be saved with
torch. jit.save() and reloaded with torch. jit.load(). The resulting module is an optimized fused graph
representation of the func that is only compatible with Neuron.

Tracing a module produces a more efficient inference-only version of the model. XLLA Lazy Tensor execution
should be used during training. See: Comparison of Traced Inference versus XLA Lazy Tensor Inference (torch-
neuronx)

Warning: Currently this only supports NeuronCore-v2 type instances (e.g. trnl, inf2). To compile models
compatible with NeuronCore-v1 (e.g. infl), please see torch_neuron. trace()

Parameters

» func (Module,callable) — The function/module that that will be run using the
example_inputs arguments in order to record the computation graph.

» example_inputs (Tensor, tuple[Tensor]) — A tuple of example inputs that will be
passed to the func while tracing.

Keyword Arguments

2.1.
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» input_output_aliases (dict) — Marks input tensors as state tensors which are device
tensors.

» compiler_workdir (str) — Work directory used by neuronx-cc. This can be useful for
debugging and/or inspecting intermediary neuronx-cc outputs

» compiler_args (str,list[str]) — List of strings representing neuronx-cc compiler ar-
guments. See Neuron Compiler CLI Reference Guide (neuronx-cc) for more information
about compiler options.

» partitioner_config (PartitionerConfig)— A PartitionerConfig object, which can be

optionally supplied if there are unsupported ops in the model that need to be partitioned out
to CPU.

e inline_weights_to_neff (bool) — A boolean indicating whether the weights should be
inlined to the NEFF. If set to False, weights will be separated from the NEFF. The default is
True.

» cpu_backend (bool) — A boolean indicating whether CPU should be used for tracing. If
set to True, tracing can be done completely on CPU. This keyword needs to be used with the
compiler_args option to set the --target flag. The default is False.

Returns
The traced ScriptModule with the embedded compiled Neuron graph. Operations in this mod-
ule will execute on Neuron.

Return type
ScriptModule

Warning: Behavior Change! The use of using args for kwargs is deprecated starting from release
2.15.0 (torch-neuronx==1.13.1.1.12.0). The current behavior is that a warning will be raised, but
torch_neuronx. trace() will attempt to infer the keyword arguments. This is likely to become an error in
future releases, so to avoid the warning/error, assign kwargs as kwargs and not args.

Notes

This function records operations using torch-xla to create a HloModule representation of the func. This fixed
graph representation is compiled to the Neuron Executable File Format (NEFF) using the neuronx-cc compiler.
The NEFF binary executable is embedded into an optimized ScriptModule for torchscript execution.

In contrast to a regular torch. jit.trace() that produces a graph of many separate operations, tracing with
Neuron produces a graph with a single fused operator that is executed entirely on device. In torchscript this
appears as a stateful neuron: :Model component with an associated neuron: : forward* operation.

Tracing can be performed on any EC2 machine with sufficient memory and compute resources, but inference
can only be executed on a Neuron instance.

Unlike some devices (such as torch-xla) that use to() to move Parameter and Tensor data between CPU and
device, upon loading a Neuron traced ScriptModule, the model binary executable is automatically moved to a
NeuronCore. When the underlying neuron: :Model is initialized after tracing or upon torch. jit.load(), it
is loaded to a Neuron device without specifying a device or map_location argument.

Warning: One small exception is models traced with inline_weights_to_neff=False. For these mod-
els, the NEFF is loaded onto the NeuronCore automatically, but the weights are not moved automatically. To
move the weights to the NeuronCore, call torch_neuronx.move_trace_to_device(). If this is not done,
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a perfomance penalty is incurred per inference, because on every inference call, the weights move from CPU
to Neuron.

Furthermore, the Neuron traced ScriptModule expects to consume CPU tensors and produces CPU tensors. The
underlying operation performs all data transfers to and from the Neuron device without explicit data movement.
This is a significant difference from the training XLA device mechanics since XL A operations are no longer
required to be recorded after a trace. See: Developer Guide for Training with PyTorch NeuronX

By default, when multiple NeuronCores are available, every Neuron traced model ScriptModule within in
a process is loaded to each available NeuronCore in round-robin order. This is useful at deployment to fully
utilize the Neuron hardware since it means that multiple calls to torch. jit.load() will attempt to load to
each available NeuronCore in linear order. The default start device is chosen according to the NeuronX Runtime
Configuration.

A traced Neuron module has limitations that are not present in regular torch modules:

¢ Fixed Control Flow: Similar to torch. jit.trace(), tracing a model with Neuron statically preserves
control flow (i.e. if/for/while statements) and will not re-evaluate the branch conditions upon inference.
If amodel result is based on data-dependent control flow, the traced function may produce inaccurate results.

 Fixed Input Shapes: After a function has been traced, the resulting ScriptModule will always expect to
consume tensors of the same shape. If the tensor shapes used at inference differs from the tensor shapes
used in the example_inputs, this will result in an error. See: Running inference on variable input shapes
with bucketing.

* Fixed Tensor Shapes: The intermediate tensors within the func must always stay the same shape for the
same shaped inputs. This means that certain operations which produce data-dependent sized tensors are
not supported. For example, nonzero () produces a different tensor shape depending on the input data.

 Fixed Data Types: After a model has been traced, the input, output, and intermediate data types cannot be
changed without recompiling.

¢ Device Compatibility: Due to Neuron using a specialized compiled format (NEFF), a model traced with
Neuron can no longer be executed in any non-Neuron environment.

* Operator Support: If an operator is unsupported by torch-xla, then this will throw an exception.

Examples

Function Compilation

import torch
import torch_neuronx
def func(x, y):
return 2 * x +y
example_inputs = torch.rand(3), torch.rand(3)
# Runs “func® with the provided inputs and records the tensor operations
trace = torch_neuronx.trace(func, example_inputs)
# “trace’ can now be run with the TorchScript interpreter or saved
# and loaded in a Python-free environment
torch.jit.save(trace, 'func.pt')
# Executes on a NeuronCore
loaded = torch.jit.load('func.pt")
loaded(torch.rand(3), torch.rand(3))

Module Compilation
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import torch
import torch_neuronx
import torch.nn as nn
class Model (nn.Module):
def __init__(self):
super().__init__ Q)
self.conv = nn.Conv2d(1l, 1, 3)
def forward(self, x):
return self.conv(x) + 1
model = Model()
model.eval()
example_inputs = torch.rand(1, 1, 3, 3)
# Traces the forward method and constructs a ‘ScriptModule®
trace = torch_neuronx.trace(model, example_inputs)
torch.jit.save(trace, 'model.pt')
# Executes on a NeuronCore
loaded = torch.jit.load('model.pt')
loaded(torch.rand(1, 1, 3, 3))

Weight Separated Module

import torch
import torch_neuronx
import torch.nn as nn

class Model (nn.Module):

def __init__(self):
super().__init__(Q)
self.conv = nn.Conv2d(1l, 1, 3)

def forward(self, x):
return self.conv(x) + 1

model = Model()
model.eval()

example_inputs = torch.rand(l, 1, 3, 3)

# Traces the forward method and constructs a ‘ScriptModule®
trace = torch_neuronx.trace(model, example_inputs,inline_weights_to_neff=False)

# Model can be saved like a normally traced model
torch.jit.save(trace, 'model.pt')

# Executes on a NeuronCore like a normally traced model

loaded = torch.jit.load('model.pt')
torch_neuronx.move_trace_to_device(loaded,0) # necessary for performance
loaded(torch.rand(1, 1, 3, 3))

CPU Compilation
On CPU:
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import torch
import torch_neuronx
import torch.nn as nn
class Model (nn.Module):
def __init__(self):
super().__init__ Q)
self.conv = nn.Conv2d(1l, 1, 3)
def forward(self, x):
return self.conv(x) + 1
model = Model()
model.eval()
example_inputs = torch.rand(l, 1, 3, 3)
# Traces the forward method on CPU, compiling for Trnl
trace = torch_neuronx.trace(model, example_inputs, compiler_args="--target trnl",.
—.cpu_backend=True)
torch.jit.save(trace, 'model.pt')
# Move model.pt to a Neuron instance

On Neuron:

import torch
import torch_neuronx
import torch.nn as nn

loaded = torch.jit.load('model.pt')
loaded(torch.rand(1, 1, 3, 3))

Note: Weight Separated models can have its weights replaced via the forch_neuronx.replace_weights APIL.

Moving a Traced Module to a Neuron Core

Warning: This function will be deprecated in a future release, and instead, torch_neuronx.experimental.
set_neuron_cores () will move out of experimental, and become a stable API.

torch_neuronx.move_trace_to_device (trace, device_id)

This function moves a model traced with torch_neuronx. trace(), to a Neuron Core. Here are some reasons
to use this function|colon|

1. Explicit control of device placement for models

By default, the Neuron Runtime assigns neffs to devices in a Round Robin manner, meaning it will
allocate a neff onto Neuron Core 0, then 1, 2, and then loop around.

2. Allocating Weights onto the Neuron Core for Weight Separated models.

This is necessary for performance reasons. If this is not done, the weights would remain on CPU and
would need to move to device on every inference call, which is an expensive operation.

Parameters
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* trace (ScriptModule) — This is the torchscript model returned from torch_neuronx.
trace()

e device_id (int) — The Neuron Core to move the traced model to. This number will need
to be between 0 to the max number of NCs on the instance - 1. For example, a trn1.32xlarge
has 32 Neuron Cores, so the acceptable values are from 0-31.

Returns
Nothing, the movement of the model happens in-place.

Return type
None

Autobucketing

Note: See neuronx_distributed.parallel_model_trace() for the API to use the autobucketing feature along
with tensor parallelism.

class torch_neuronx.BucketModelConfig(bucket_kernel, *_, shared_state_buffer=None,
shared_state_buffer_preprocessor=None, func_kwargs=None)

This object contains configuration data for how buckets are selected based on input via the bucket_kernel.

This also supports the concept of a shared buffer between bucket models. You can use this to define how the shared
buffer can be manipulated to be fed as input to a bucket model via the shared_state_buffer_preprocessor.
Details on how these are defined are found below.

Parameters
bucket_kernel (callable) — A function that returns a new TorchScript function. The Torch-
Script function has been adapted to the TorchScript representation using torch. jit.script().
This new function takes in a list of input tensors and outputs a list of tensors and an index tensor.

Keyword Arguments

e shared_state_buffer (Optional [List[torch.Tensor]]) — A list of tensors that is
used as the initial values for a shared state for bucket models via aliasing.

e shared_state_buffer_preprocessor (Optional[Callable]) - Similar to
bucket_kernel, this is a function that returns a new TorchScript function that has been
adapted to the TorchScript representation using torch. jit.script(). This new Torch-
Script function takes in 3 arguments: an n-dimensional integer list representing a list of
tensor shapes, the state_buffer list of tensors, and a tensor representing the bucket index.
This function outputs a reshaped state_buffer to be supplied to the bucket model. If
shared_state_buffer_preprocessor is not supplied when shared_state_buffer is
supplied, the preprocessor returns the full shared_state_buffer.

» func_kwargs (Optional [Union[Dict[str, Any], List[Any]]])- A single dictio-
nary or a list of dictionaries that can be used to supply custom arguments to the function
supplied to the func argument in torch_neuronx.bucket_model_trace(). If you are
using a list of dictionaries, verify that func_kwargs equals the bucket degree, or number of
buckets. By default func_kwargs is None, which means no arguments.

Returns
The torch_neuronx.BucketModelConfig with the configuration defining bucket selection for
inputs and shared buffers.

Return type
BucketModelConfig
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torch_neuronx.bucket_model_trace (func, example_inputs, bucket_config, compiler_workdir=None,

compiler_args=None)

This function traces a single model with multiple example_inputs and a bucket_config object to pro-
duce a single compiled model that can take in multiple input shapes. This trace function is very similar to
torch_neuronx. trace(), but it has a few key differences:

1. In this case, func does not take in a Model. Instead, it takes in a function that returns a tuple containing a
Model and input_output_aliases. Thisislike neuronx_distributed.parallel_model_trace(),
and is done for the same reason, which is that bucket models are traced in parallel.

2. Instead of taking in one input, the function takes in multiple inputs in the form of a list. For example,
[torch.rand(128,128),torch.rand(256,256)].

3. The bucket_config argument is of type torch_neuronx.BucketModelConfig(), which defines how
an input is mapped to a bucket. For more details, see the torch_neuronx.BucketModelConfig() API
Reference. You can use this for a variety of bucketing applications, such as sequence length bucketing for
language models or image resolution bucketing for computer vision models.

Apart from the aforementioned differences, the rest of the function behaves similarly to torch_neuronx.
trace (). You can save the model with torch. jit.save() and load it with torch.jit.load().

Parameters

e func (Module,callable) — This is a function that returns a Model object and
a dictionary of states, or input_output_aliases. Similar to neuronx_distributed.
parallel_model_trace(), this API calls this function inside each worker and runs
trace against them. Note: This differs from the torch_neuronx.trace where the
torch_neuronx.trace requires a model object to be passed.

» example_inputs (List[Union[Tensor, tuple[Tensor]]]) — A list of possible inputs
to the bucket model.

* bucket_config (BucketlModelConfig) — The config object that defines bucket selection
behavior.

Keyword Arguments

e compiler_workdir (str) — Work directory used by neuronx-cc. This can be useful for
debugging and inspecting intermediary neuronx-cc outputs.

e compiler_args (str,list[str]) — List of strings representing neuronx-cc compiler ar-
guments. See Neuron Compiler CLI Reference Guide (neuronx-cc) for more information
about compiler options.

Returns
The traced ScriptModule with the embedded compiled Neuron graphs for each bucket model.
Operations in this module will execute on Neuron.

Return type
ScriptModule

Warning: If you receive the Too Many Open Files error message, increase the ulimit via ulimit -n 65535.
There is a limitation in torch_xla’s xmp . spawn function when dealing with large amounts of data.

The developer guide for Autobucketing is located here, which contains an example usage of autobucketing with BERT.
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Dynamic Batching

torch_neuronx.dynamic_batch(neuron_script)

Enables a compiled Neuron model to be called with variable sized batches.

When tracing with Neuron, usually a model can only consume tensors that are the same size as the exam-
ple tensor used in the torch_neuronx.trace() call. Enabling dynamic batching allows a model to con-
sume inputs that may be either smaller or larger than the original trace-time tensor size. Internally, dynamic
batching splits & pads an input batch into chunks of size equal to the original trace-time tensor size. These
chunks are passed to the underlying model(s). Compared to serial inference, the expected runtime scales by
ceil(inference_batch_size / trace_batch_size) / neuron_cores.

This function modifies the neuron_script network in-place. The returned result is a reference to the modified
input.

Dynamic batching is only supported by chunking inputs along the Oth dimension. A network that uses a non-0
batch dimension is incompatible with dynamic batching. Upon inference, inputs whose shapes differ from the
compile-time shape in a non-0 dimension will raise a ValueError. For example, take a model was traced with a
single example input of size [2, 3, 5]. Atinference time, when dynamic batching is enabled, a batch of size
[3, 3, 5] isvalid while a batch of size [2, 7, 5] isinvalid due to changing a non-0 dimension.

Dynamic batching is only supported when the Oth dimension is the same size for all inputs. For example, this
means that dynamic batching would not be applicable to a network which consumed two inputs with shapes [1,
2] and [3, 2] since the Oth dimension is different. Similarly, at inference time, the Oth dimension batch size
for all inputs must be identical otherwise a ValueError will be raised.

Required Arguments

Parameters
neuron_script (ScriptModule) — The neuron traced ScriptModule with the embedded
compiled neuron graph. This is the output of torch_neuronx. trace().

Returns
The traced ScriptModule with the embedded compiled neuron graph. The same type as the
input, but with dynamic_batch enabled in the neuron graph.

Return type
ScriptModule

import torch
import torch_neuronx
import torch.nn as nn

class Net(nn.Module):

def __init__(self):
super(Net, self).__init__QO
self.conv = nn.Conv2d(l, 1, 3)

def forward(self, x):
return self.conv(x) + 1

n = Net(Q
n.eval(Q

inputs = torch.rand(l, 1, 3, 3)
inputs_batch_8 = torch.rand(8, 1, 3, 3)

(continues on next page)
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(continued from previous page)

# Trace a neural network with input batch size of 1
neuron_net = torch_neuronx.trace(n, inputs)

# Enable the dynamic batch size feature so the traced network
# can consume variable sized batch inputs
neuron_net_dynamic_batch = torch_neuronx.dynamic_batch(neuron_net)

# Run inference on inputs with batch size of 8
# different than the batch size used in compilation (tracing)
ouput_batch_8 = neuron_net_dynamic_batch(inputs_batch_8)

Graph Partitioner

torch_neuronx.PartitionerConfig(*, rrace_kwargs=None, model_support_percentage_threshold=0.5,
min_subgraph_size=-1, max_subgraph_count=-1, ops_to_partition=None,
analyze_parameters=None)

Allows for Neuron to trace a model with unsupported operators and partition these operators to CPU.

This model will contain subgraphs of Neuron and CPU submodules, but it is executed like one model, and can
be saved and loaded like one model as well.

The graph partitioner is customized using this class, and is only enabled (disabled by default) from the
torch_neuronx.trace API by setting partitioner_config keyword argument to this class. Below are the
various configuration options.

Parameters

* trace_kwargs (Dict) — Used if you need to pass trace kwargs to the Neuron subgraphs,
such as the compiler_workdir and/or compiler_args. The default is None correspond-
ing to the default trace args.

» model_support_percentage_threshold (f1oat)— A number between O to 1 represent-
ing the maximum allowed percentage of operators that must be supported. If the max is
breached, the function will throw a ValueError. Default is 0.5 (i.e 50% of operators must be
supported by Neuron)

* min_subgraph_size (int)— The minimum number of operators in a subgraph. Can be >=
1or == -1. If -1, minimum subgraph size is not checked (i.e no minimum). If >= 1, each
subgraph must contain at least that many operators. If not, the graph partitioner will throw a
ValueError.

* max_subgraph_count (int) — The maximum number of subgraphs in the partitioned
model. Can be >= 1 or == -1. If -1, max subgraph count is not checked (i.e no maxi-
mum). If >= 1, the partitioned model must contain at most that many subgraphs. If not, the
graph partitioner will throw a ValueError.

e ops_to_partition (Set[str]) — This is a set of strings of this structure
“aten::<operator>". These are operators that will be partitioned to CPU regardless of
Neuron support. The default is None (i.e no additional operators will be partitioned).

* analyze_parameters (Dict) — This is a dictionary of kwargs used in torch_neuronx.
analyze(). NOTE: Not all kwargs in torch_neuronx.analyze() are supported in the
graph partitioner. The following kwargs in analyze are supported for use in the graph parti-
tioenr.

a) compiler_workdir
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b) additional_ignored_ops
¢) max_workers
The default is None, corresponding to the default analyze arguments.

Returns
The PartitionerConfig with the configuration for the graph partitioner.

Return type
PartitionerConfig

Examples

This example demonstrates using the graph partitioner.

The below model is a simple MLP model with sorted log softmax output. The sort operator, torch.sort() or aten:
1sort, is not supported by neuronx-cc at this time, so the graph partitioner will partition out the sort operator to
CPU.

import torch
import torch_neuronx
import torch.nn as nn

import logging

# adjust logger level to see what the partitioner is doing
logger = logging.getLogger("Neuron')

class MLP(nn.Module):
def __init__(
self, input_size=28 * 28, output_size=10, layers=[4096, 2048]

super (MLP, self).__init__QO

self.fcl = nn.Linear(input_size, layers[0])
self.fc2 = nn.Linear(layers[0], layers[1])
self.fc3 = nn.Linear(layers[1], output_size)
self.relu = nn.ReLUQ)

def forward(self, x):
fl = self.fcl(x)
rl = self.relu(fl)
f2 = self.fc2(rl)
r2 = self.relu(f2)
£3 = self.fc3(r2)
out = torch.log_softmax(f3, dim=1)
sort_out,_ = torch.sort(out)
return sort_out

n = MLPQ
n.eval ()

inputs = torch.rand(32,784)

# Configure the graph partitioner with the default values

(continues on next page)
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partitioner_config = torch_neuronx.PartitionerConfig()

# Trace a neural network with graph partitioner enabled
neuron_net = torch_neuronx.trace(n, inputs, partitioner_config=partitioner_config)

# Run inference on the partitioned model
output = neuron_net(inputs)

Note: Dynamic batching has a case-by-case support with partitioned models, because it is highly dependent on how
the final partition scheme looks like.

This document is relevant for: Inf2, Trnl, Trn2

This document is relevant for: Inf2, Trnl, Trn2

PyTorch Neuron (torch-neuronx) Weight Replacement API for Inference

torch_neuronx.replace_weights (neuron_model, weights)

Replaces the weights in a Neuron Model with split weights. This function will emit a warning of the supplied
Neuron model does not contain any separated weights.

Warning: The below API is only applicable for models traced with the parameter
inline_weights_to_neff=False, which is True by default. See torch_neuronx.trace() for
details.

Parameters

* neuron_model (RecursiveScriptModule) — A Neuron model compiled with split
weights

* weights (Module,Dict[str, Tensor]) — Either the original model with the new
weights, or the state_dict of a model.

Returns
None, this function performs the weight replacement inline.

Return type
None

Examples

Using a model

import torch
import torch_neuronx

class Network(torch.nn.Module):
def __init__(self, hidden_size=4, layers=3) -> None:
super().__init__(Q)

(continues on next page)
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(continued from previous page)

self.layers = torch.nn.Sequential(
*(torch.nn.Linear(hidden_size, hidden_size) for _ in range(layers)))

def forward(self, tensor):
return self.layers(tensor)

# initialize two networks
network = Network()
network2 = Network()
network.eval ()
network2.eval()

inp = torch.rand(2,4)

# trace weight separated model with first network
weight_separated_trace = torch_neuronx.trace(network,inp,inline_weights_to_
—neff=False)

# replace with weights from second network
torch_neuronx.replace_weights(weight_separated_trace,network2.state_dict())

# get outputs from neuron and cpu networks
out_network2 = network2(inp)
out_neuron = weight_separated_trace(inp)

# check that they are equal
print (out_network2,out_neuron)

Using safetensors

The safetensors library is useful for storing/loading model tensors safely and quickly.

import torch
import torch_neuronx

from safetensors import safe_open
from safetensors.torch import save_model

class Network(torch.nn.Module):
def __init__(self, hidden_size=4, layers=3) -> None:
super().__init__(Q)
self.layers = torch.nn.Sequential(
*(torch.nn.Linear(hidden_size, hidden_size) for _ in range(layers)))

def forward(self, tensor):
return self.layers(tensor)

# initialize two networks
network = Network()

network2 = Network()
(continues on next page)
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(continued from previous page)

network.eval ()
network2.eval ()

inp = torch.rand(2,4)

# trace weight separated model with first network
weight_separated_trace = torch_neuronx.trace(network,inp,inline_weights_to_
—neff=False)

# save network2 weights to safetensors
safetensor_path = f"{directory//network2.safetensors"
save_model (network2,safetensor_path)

#load safetensors from network2 into traced_weight separated model
tensors = {}
with safe_open(safetensor_path, framework="pt") as f:
for k in f.keys(Q):
tensors[k] = f.get_tensor(k)

# replace with weights from second network
torch_neuronx.replace_weights(weight_separated_trace, tensors)

# get outputs from neuron and cpu networks
out_network2 = network2(inp)
out_neuron = weight_separated_trace(inp)

# check that they are equal
print (out_network2,out_neuron)

Note: For non-safetensors models, use torch.load to load the model, and pass the model’s state_dict
inside like the first example.

This document is relevant for: Inf2, Trnl, Trn2

This document is relevant for: Inf2, Trnl, Trn2

PyTorch NeuronX NeuronCore Placement APls [Beta]

Warning: The following functionality is beta and will not be supported in future releases of the NeuronSDK. This
module serves only as a preview for future functionality. In future releases, equivalent functionality may be moved
directly to the torch_neuronx module and will no longer be available in the torch_neuronx.experimental
module.

Functions which enable placement of torch. jit.ScriptModule to specific NeuronCores. Two sets of functions are
provided which can be used interchangeably but have different performance characteristics and advantages:

e The multicore_context() & neuron_cores_context () functions are context managers that allow a model
to be placed on a given NeuronCore only at torch. jit.load() time. These functions are the most efficient
way of loading a model since the model is loaded directly to a NeuronCore. The alternative functions described
below require that a model is unloaded from one core and then reloaded to another.
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e The set_multicore() & set_neuron_cores() functions allow a model that has already been loaded to a
NeuronCore to be moved to a different NeuronCore. This functionality is less efficient than directly loading a
model to a NeuronCore within a context manager but allows device placement to be fully dynamic at runtime.
This is analogous to the torch.nn.Module. to() function for device placement.

Important: A prerequisite to enable placement functionality is that the loaded torch. jit.ScriptModule has
already been compiled with the torch_neuronx. trace() APIL Attempting to place a regular torch.nn.Module
onto a NeuronCore prior to compilation will do nothing.

torch_neuronx.experimental .set_neuron_cores (trace: torch.jit.ScriptModule, start_nc: int = -1, nc_count:
int=-1)

Set the NeuronCore start/count for all Neuron subgraphs in a torch Module.
This will unload the model from an existing NeuronCore if it is already loaded.
Requires Torch 1.8+

Parameters
trace (ScriptModule) — A torch module which contains one or more Neuron subgraphs.

Keyword Arguments

* start_nc (int) — The starting NeuronCore index where the Module is placed. The value
-1 automatically loads to the optimal NeuronCore (least used). Note that this index is always
relative to NeuronCores visible to this process.

e nc_count (int) — The number of NeuronCores to use. The value -1 will load a model to
exactly one NeuronCore. If nc_count is greater than than one, the model will be replicated
across multiple NeuronCores.

Raises
¢ [RuntimeError] — If the Neuron runtime cannot be initialized.

e [ValueError] — If the nc_count is an invalid number of NeuronCores.

Examples

Single Load: Move a model to the first visible NeuronCore after loading.

model = torch.jit.load('example_neuron_model.pt"')
torch_neuronx.experimental.set_neuron_cores(model, start_nc=0, nc_count=1)

model (example) # Executes on NeuronCore 0
model (example) # Executes on NeuronCore 0
model (example) # Executes on NeuronCore 0

Multiple Core Replication: Replicate a model to 2 NeuronCores after loading. This allows a single torch. jit.
ScriptModule to use multiple NeuronCores by running round-robin executions.

model = torch.jit.load('example_neuron_model.pt"')
torch_neuronx.experimental.set_neuron_cores(model, start_nc=2, nc_count=2)

model (example) # Executes on NeuronCore 2
model (example) # Executes on NeuronCore 3
model (example) # Executes on NeuronCore 2
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Multiple Model Load: Move and pin 2 models to separate NeuronCores. This causes each torch.jit.
ScriptModule to always execute on a specific NeuronCore.

modell = torch.jit.load('example_neuron_model.pt")
torch_neuronx.experimental .set_neuron_cores(modell, start_nc=2)

model2 = torch.jit.load('example_neuron_model.pt")
torch_neuronx.experimental.set_neuron_cores(model2, start_nc=0)

modell(example) # Executes on NeuronCore
modell(example) # Executes on NeuronCore
model2(example) # Executes on NeuronCore
model2(example) # Executes on NeuronCore

S SN N

torch_neuronx.experimental.set_multicore(trace: torch.jit.ScriptModule)

Loads all Neuron subgraphs in a torch Module to all visible NeuronCores.

This loads each Neuron subgraph within a torch. jit.ScriptModule to multiple NeuronCores without re-
quiring multiple calls to torch. jit.load(). This allows a single torch. jit.ScriptModule to use multiple
NeuronCores for concurrent threadsafe inferences. Executions use a round-robin strategy to distribute across
NeuronCores.

This will unload the model from an existing NeuronCore if it is already loaded.
Requires Torch 1.8+

Parameters
trace (ScriptModule) — A torch module which contains one or more Neuron subgraphs.

Raises
[RuntimeError] — If the Neuron runtime cannot be initialized.

Examples

Multiple Core Replication: Move a model across all visible NeuronCores after loading. This allows a single
torch. jit.ScriptModule to use all NeuronCores by running round-robin executions.

model = torch.jit.load('example_neuron_model.pt')
torch_neuronx.experimental.set_multicore(model)

model (example) # Executes on NeuronCore 0
model (example) # Executes on NeuronCore 1
model (example) # Executes on NeuronCore 2

torch_neuronx.experimental .neuron_cores_context (start_nc: int = -1, nc_count: int = -1)

A context which sets the NeuronCore start/count for Neuron models loaded with torch.jit.load().

This context manager may only be used when loading a model with torch. jit.load(). A model which has
already been loaded into memory will not be affected by this context manager. Furthermore, after loading the
model, inferences do not need to occur in this context in order to use the correct NeuronCores.

Note that this context is not threadsafe. Using multiple core placement contexts from multiple threads may not
correctly place models.

Keyword Arguments
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» start_nc (int) — The starting NeuronCore index where the Module is placed. The value
-1 automatically loads to the optimal NeuronCore (least used). Note that this index is always
relative to NeuronCores visible to this process.

e nc_count (int) — The number of NeuronCores to use. The value -1 will load a model to
exactly one NeuronCore. If nc_count is greater than than one, the model will be replicated
across multiple NeuronCores.

Raises
¢ [RuntimeError] — If the Neuron runtime cannot be initialized.

e [ValueError] — If the nc_count is an invalid number of NeuronCores.

Examples

Single Load: Directly load a model from disk to the first visible NeuronCore.

with torch_neuronx.experimental.neuron_cores_context(start_nc=0, nc_count=1):
model = torch.jit.load('example_neuron_model.pt') # Load must occur within the.
—context

model (example) # Executes on NeuronCore 0
model (example) # Executes on NeuronCore 0
model (example) # Executes on NeuronCore 0

Multiple Core Replication: Directly load a model from disk to 2 NeuronCores. This allows a single torch.
jit.ScriptModule to use multiple NeuronCores by running round-robin executions.

with torch_neuronx.experimental.neuron_cores_context(start_nc=2, nc_count=2):
model = torch.jit.load('example_neuron_model.pt') # Load must occur within the.
—context

model (example) # Executes on NeuronCore 2
model (example) # Executes on NeuronCore 3
model (example) # Executes on NeuronCore 2

Multiple Model Load: Directly load 2 models from disk and pin them to separate NeuronCores. This causes
each torch. jit.ScriptModule to always execute on a specific NeuronCore.

with torch_neuronx.experimental.neuron_cores_context(start_nc=2):
modell = torch.jit.load('example_neuron_model.pt') # Load must occur within.,
< the context

with torch_neuronx.experimental.neuron_cores_context(start_nc=0):
model2 = torch.jit.load('example_neuron_model.pt') # Load must occur within.,
—the context

modell(example) # Executes on NeuronCore
modell(example) # Executes on NeuronCore
model2(example) # Executes on NeuronCore
model2 (example) # Executes on NeuronCore

S SN N

torch_neuronx.experimental .multicore_context()

A context manager which loads models to all visible NeuronCores for Neuron models loaded with torch. jit.
loadQ).
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This loads each Neuron subgraph within a torch. jit.ScriptModule to multiple NeuronCores without re-
quiring multiple calls to torch. jit.load (). This allows a single torch. jit.ScriptModule to use multiple
NeuronCores for concurrent threadsafe inferences. Executions use a round-robin strategy to distribute across
NeuronCores.

This context manager may only be used when loading a model with torch.jit.load(). A model which has
already been loaded into memory will not be affected by this context manager. Furthermore, after loading the
model, inferences do not need to occur in this context in order to use the correct NeuronCores.

Note that this context is not threadsafe. Using multiple core placement contexts from multiple threads may not
correctly place models.

Raises
[RuntimeError] — If the Neuron runtime cannot be initialized.

Examples

Multiple Core Replication: Directly load a model to all visible NeuronCores. This allows a single torch. jit.
ScriptModule to use all NeuronCores by running round-robin executions.

with torch_neuronx.experimental.multicore_context():
model = torch.jit.load('example_neuron_model.pt') # Load must occur within the.
—context

model (example) # Executes on NeuronCore 0
model (example) # Executes on NeuronCore 1
model (example) # Executes on NeuronCore 2

This document is relevant for: Inf2, Trnl, Trn2

This document is relevant for: Inf2, Trnl, Trn2

PyTorch NeuronX Analyze API for Inference

torch_neuronx.analyze (func, example_inputs, compiler_workdir=None)

Checks the support of the operations in the func by checking each operator against neuronx-cc.
Parameters

» func (Module,callable) — The function/module that that will be run using the
example_inputs arguments in order to record the computation graph.

» example_inputs (Tensor, tuple[Tensor]) — A tuple of example inputs that will be
passed to the func while tracing.

Keyword Arguments

e compiler_workdir (str) — Work directory used by neuronx-cc. This can be useful for
debugging and/or inspecting intermediary neuronx-cc outputs

additional_ignored_ops (set) — A set of aten operators to not analyze. Default is an
empty set.

max_workers (int) — The max number of workers threads to spawn. The default is 4.

» is_hf_ transformers (bool) — If the model is a huggingface transformers model, it is
recommended to enable this option to prevent deadlocks. Default is False.
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» cleanup (bool) — Specifies whether to delete the compiler artifact directories generated
after running analyze. Default is False.

Returns
A JSON like Dict with the supported operators and their count, and unsupported operators with
the failure mode and location of the operator in the python code.

Return type
Dict

Examples

Fully supported model

import json

import torch
import torch.nn as nn
import torch_neuronx

class MLP(nn.Module):
def __init__(self, input_size=28%28, output_size=10, layers=[120,84]):
super (MLP, self).__init__Q
self.fcl = nn.Linear(input_size, layers[0])
self.relu = nn.ReLUQ)
self.fc2 = nn.Linear(layers[0], layers[1])
def forward(self, x):
fl = self.fcl(x)
rl = self.relu(fl)
£2 self.fc2(rl)
r2 self.relu(£f2)
£3 = self.fc3(r2)
return torch.log_softmax(£f3, dim=1)

model = MLP(Q)
ex_input = torch.rand([32,784])

model_support = torch_neuronx.analyze(model,ex_input)
print(json.dumps(model_support,indent=4))

"torch_neuronx_version": "1.13.0.1.5.0",
"neuronx_cc_version": "2.0.0.11796a0+24a26e112",
"support_percentage": "100.00%",
"supported_operators": {

"aten::linear": 3,
"aten::relu": 2,
"aten::log_softmax": 1
},

"unsupported_operators": []

Unsupported Model/Operator
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import json
import torch
import torch_neuronx

def fft(x):
return torch.fft.fft(x)

model = fft
ex_input = torch.arange(4)

model_support = torch_neuronx.analyze(model,ex_input)
print(json.dumps(model_support,indent=4))

"torch_neuronx_version": "1.13.0.1.5.0",
"neuronx_cc_version": "2.0.0.11796a0+24a26e112",
"support_percentage": "0.00%",
"supported_operators": {},
"unsupported_operators": [

{

"kind": "aten::fft_fft",

"failureAt": "neuronx-cc",

"call": "test.py(6): fft\n/home/ubuntu/testdir/venv/lib/python3.8/site-
—packages/torch_neuronx/xla_impl/analyze.py(35): forward\n/home/ubuntu/testdir/
—venv/lib/python3.8/site-packages/torch/nn/modules/module.py(1182): _slow_forward\
—n/home/ubuntu/testdir/venv/lib/python3.8/site-packages/torch/nn/modules/module.
<py(1194): _call_impl\n/home/ubuntu/testdir/venv/1lib/python3.8/site-packages/torch/
—jit/_trace.py(976): trace_module\n/home/ubuntu/testdir/venv/lib/python3.8/site-
—packages/torch/jit/_trace.py(759): trace\n/home/ubuntu/testdir/venv/lib/python3.8/
—site-packages/torch_neuronx/xla_impl/analyze.py(302): analyze\ntest.py(11):

—<module>\n",

"opGraph": "graph(%x : Long(4, strides=[1], requires_grad=0, device=cpu),\
—n %neuron_4 : NoneType,\n %neuron_5 : int,\n %neuron_6 : NoneType):

~\n %neuron_7 : ComplexFloat(4, strides=[1], requires_grad=0, device=cpu) = aten::
~fft_fft(%x, %neuron_4, %neuron_5, %neuron_6)\n return (%neuron_7)\n"

}
]

Note: the failureAt field can either be “neuronx-cc” or “Lowering to HLO”. If the field is “neuronx-cc”, then
it indicates that the provided operator configuration failed to be compiled with neuronx-cc. This could either
indicate that the operator configuration is unsupported, or there is a bug with that operator configuration.

This document is relevant for: Inf2, Trnl, Trn2

This document is relevant for: Inf2, Trnl, Trn2
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PyTorch NeuronX DataParallel API

The torch_neuronx.DataParallel () Python API implements data parallelism on ScriptModule models created
by PyTorch NeuronX Tracing API for Inference. This function is analogous to DataParallel in PyTorch. The Dara
Parallel Inference on torch_neuronx application note provides an overview of how torch_neuronx.DataParallel ()
can be used to improve the performance of inference workloads on Inferentia.
torch_neuronx.DataParallel (model, device_ids=None, dim=0, set_dynamic_batching=True)
Applies data parallelism by replicating the model on available NeuronCores and distributing data across the
different NeuronCores for parallelized inference.

By default, DataParallel will use all available NeuronCores allocated for the current process for parallelism.
DataParallel will apply parallelism on dim=0 if dim is not specified.

DataParallel automatically enables dynamic batching on eligible models if dim=0. Dynamic batching
can be disabled using torch_neuronx.DataParallel.disable_dynamic_batching(), or by setting
set_dynamic_batching=False when initializing the DataParallel object. If dynamic batching is not enabled,
the batch size at compilation-time must be equal to the batch size at inference-time divided by the number of
NeuronCores being used. Specifically, the following must be true when dynamic batching is disabled: input.
shape[dim] / len(device_ids) == compilation_input.shape[dim].

torch.neuron.DataParallel () requires PyTorch >= 1.8.
Required Arguments

Parameters
model (ScriptModule) — Model created by the PyTorch NeuronX Tracing API for Inference to
be parallelized.

Optional Arguments
Parameters

» device_ids (1ist)—Listof int or 'nc:#' that specify the NeuronCores to use for paral-
lelization (default: all NeuronCores). Refer to the device_ids note for a description of how
device_ids indexing works.

* dim(int)-Dimension along which the input tensor is scattered across NeuronCores (default
dim=0).

* set_dynamic_batching (bool) — Whether to enable dynamic batching.
Attributes
Parameters

e num_workers (int) — Number of worker threads used for multithreaded inference (default:
2 * number of NeuronCores).

» split_size (int) — Size of the input chunks (default: max(1, input.shape[dim] //
number of NeuronCores)).
torch.neuron.DataParallel.disable_dynamic_batching()

Disables automatic dynamic batching on the DataParallel module. See Dynamic batching disabled for example
of how DataParallel can be used with dynamic batching disabled. Use as follows:

>>> model_parallel = torch_neuronx.DataParallel (model_neuron)
>>> model_parallel.disable_dynamic_batching()
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Note: device_ids uses per-process NeuronCore granularity and zero-based indexing. Per-process granularity means
that each Python process “sees” its own view of the world. Specifically, this means that device_ids only “sees” the
NeuronCores that are allocated for the current process. Zero-based indexing means that each Python process will index
its allocated NeuronCores starting at 0, regardless of the “global” index of the NeuronCores. Zero-based indexing
makes it possible to redeploy the exact same code unchanged in different process. This behavior is analogous to the
device_ids argument in the PyTorch DataParallel function.

As an example, assume DataParallel is run on an inf2.48xlarge, which contains 12 Inferentia chips each of which
contains two NeuronCores:

e If NEURON_RT_VISIBLE_CORES is not set, a single process can access all 24 NeuronCores. Thus specify-
ing device_ids=["nc:0"] will correspond to chipO:core0 and device_ids=["nc:13"] will correspond to
chip6:corel.

* However, if two processes are launched where: process 1 has NEURON_RT_VISIBLE_CORES=0-11 and process
2 has NEURON_RT_VISIBLE_CORES=12-23, device_ids=["nc:13"] cannot be specified in either process.
Instead, chip6:corel can only be accessed in process 2. Additionally, chip6:corel is specified in process 2 with
device_ids=["nc:1"]. Furthermore, in process 1, device_ids=["nc:0"] would correspond to chip0:core0;
in process 2 device_ids=["nc:0"] would correspond to chip6:core0.

Examples

The following sections provide example usages of the torch_neuronx.DataParallel () module.

Default usage

The default DataParallel use mode will replicate the model on all available NeuronCores in the current process. The
inputs will be split on dim=0.

import torch
import torch_neuronx
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval ()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch_neuronx.trace(model, image)

# Create the DataParallel module
model_parallel = torch_neuronx.DataParallel (model_neuron)

# Create a batched input
batch_size = 5
image_batched = torch.rand([batch_size, 3, 224, 224])

# Run inference with a batched input
output = model_parallel(image_batched)
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Specifying NeuronCores

The following example uses the device_ids argument to use the first three NeuronCores for DataParallel inference.

import torch
import torch_neuronx
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch_neuronx.trace(model, image)

# Create the DataParallel module, run on the first two NeuronCores
# Equivalent to model_parallel = torch.neuron.DataParallel (model_neuron, device_ids=[0,.
~11)

model_parallel = torch_neuronx.DataParallel(model_neuron, device_ids=['nc:0', 'nc:1'])

# Create a batched input
batch_size = 5
image_batched = torch.rand([batch_size, 3, 224, 224])

# Run inference with a batched input
output = model_parallel(image_batched)

DataParallel with dim !=0

In this example we run DataParallel inference using two NeuronCores and dim = 2. Because dim != 0, dynamic
batching is not enabled. Consequently, the DataParallel inference-time batch size must be two times the compile-time
batch size.

import torch
import torch_neuronx

# Create an example model
class Model (torch.nn.Module):
def __init__(self):
super() .__init__Q
self.conv = torch.nn.Conv2d(3, 3, 3)

def forward(self, x):
return self.conv(x) + 1

model = Model()
model .eval )

# Compile with an example input
image = torch.rand([1, 3, 8, 81)
model_neuron = torch_neuronx.trace(model, image)

(continues on next page)

92 Chapter 2. ML Frameworks



AWS Neuron

(continued from previous page)

# Create the DataParallel module using 2 NeuronCores and dim = 2
model_parallel = torch_neuronx.DataParallel (model_neuron, device_ids=[0, 1], dim=2)

# Create a batched input

# Note that image_batched.shape[dim] / len(device_ids) == image.shape[dim]
batch_size = 2 * 8

image_batched = torch.rand([1, 3, batch_size, 8])

# Run inference with a batched input
output = model_parallel(image_batched)

Dynamic batching

In the following example, we use the torch_neuronx.DataParallel () module to run inference using several dif-
ferent batch sizes without recompiling the Neuron model.

import torch
import torch_neuronx
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch_neuronx.trace(model, image)

# Create the DataParallel module
model_parallel = torch_neuronx.DataParallel (model_neuron)

# Create batched inputs and run inference on the same model
batch_sizes = [2, 3, 4, 5, 6]
for batch_size in batch_sizes:

image_batched = torch.rand([batch_size, 3, 224, 224])

# Run inference with a batched input
output = model_parallel(image_batched)

Dynamic batching disabled

In the following example, we use torch_neuronx.DataParallel.disable_dynamic_batching() to disable dy-
namic batching. We provide an example of a batch size that will not work when dynamic batching is disabled as well
as an example of a batch size that does work when dynamic batching is disabled.

import torch
import torch_neuronx
from torchvision import models

(continues on next page)
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# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch_neuronx.trace(model, image)

# Create the DataParallel module and use 2 NeuronCores
model_parallel = torch_neuronx.DataParallel (model_neuron, device_ids=[0, 1], dim=0)

# Disable dynamic batching
model_parallel.disable_dynamic_batching()

# Create a batched input (this won't work)
batch_size = 4
image_batched = torch.rand([batch_size, 3, 224, 224])

# This will fail because dynamic batching is disabled and
# image_batched.shape[dim] / len(device_ids) != image.shape[dim]
# output = model_parallel(image_batched)

# Create a batched input (this will work)
batch_size = 2
image_batched = torch.rand([batch_size, 3, 224, 224])

# This will work because
# image_batched. shape[dim] / len(device_ids) == image.shape[dim]
output = model_parallel (image_batched)

This document is relevant for: Inf2, Trnl, Trn2

API Reference Guide (torch-neuronx)

PyTorch NeuronX Tracing API for Inference

PyTorch Neuron (torch-neuronx) Weight Replacement API for Inference
PyTorch NeuronX NeuronCore Placement APIs [Beta]

PyTorch NeuronX Analyze API for Inference

PyTorch NeuronX DataParallel API

torch_neuronx_lazy_async_load_api

This document is relevant for: Inf2, Trnl, Trn2

This document is relevant for: Inf2, Trnl, Trn2

(continued from previous page)
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Developer Guide (torch-neuronx)
This document is relevant for: Inf2, Trnl, Trn2
NeuronCore Allocation and Model Placement for Inference (torch-neuronx)

This programming guide describes the how to allocate NeuronCores to processes and place models onto specific Neu-
ronCores. The models in this guide are expected to have been traced with with torch_neuronx. trace().

Warning: This guide is not applicable to NeuronCore placement using XLLA LazyTensor device execution. See:
Comparison of Traced Inference versus XLA Lazy Tensor Inference (torch-neuronx)

In order of precedence, the recommendation is to use the following placement techniques:

1. For nearly all regular models, default core placement should be used to take control of all cores for a single
process.

2. For applications using multiple processes, default core placement should be used in conjunction with
NEURON_RT_NUM_CORES (Default Core Allocation & Placement)

3. For more granular control, then the beta explicit placement APIs may be used (Explicit Core Placement [Beta]).

Table of Contents

* NeuronCore Allocation and Model Placement for Inference (torch-neuronx)
— Default Core Allocation & Placement
* Example: Default
% Example: NEURON_RT_NUM_CORES
% Example: NEURON_RT_VISIBLE_CORES
* Example: Multiple Processes
— Explicit Core Placement [Beta]

% Example: Manual Core Selection

s Example: Automatic Multicore

The following guide will assume a machine with 8 NeuronCores:
¢ NeuronCores will use the notation nc®, nc1, etc.
* Models will use the notation m@, m1 etc.
NeuronCores and model allocations will be displayed in the following format:
The actual cores that are visible to the process can be adjusted according to the NeuronX Runtime Configuration.

Unlike forch-neuron (with neuron-cc) instances, forch-neuronx (with neuronx-cc) does not support NeuronCore
Pipeline. This simplifies model core allocations since it means that model pipelines will likely not span across multiple
NeuronCores.
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Default Core Allocation & Placement

The most basic requirement of an inference application is to be able to place a single model on a single NeuronCore.
More complex applications may use multiple NeuronCores or even multiple processes each executing different models.
The important thing to note about designing an inference application is that a single NeuronCore will always be allocated
to a single process. Processes do not share NeuronCores. Different configurations can be used to ensure that an
application process has enough NeuronCores allocated to execute its model(s):

* Default: A process will attempt to take ownership of all NeuronCores visible on the instance. This should be
used when an instance is only running a single inference process since no other process will be allowed to take
ownership of any NeuronCores.

e NEURON_RT_NUM_CORES: Specify the number of NeuronCores to allocate to the process. This places no re-
strictions on which NeuronCores will be used, however, the resulting NeuronCores will always be contiguous.
This should be used in multi-process applications where each process should only use a subset of NeuronCores.

e NEURON_RT_VISIBLE_CORES: Specifies exactly which NeuronCores are allocated to the process by index. Sim-
ilar to NEURON_RT_NUM_CORES, this can be used in multi-process applications where each process should only
use a subset of NeuronCores. This provides more fined-grained controls over the exact NeuronCores that are
allocated to a given process.

See the NeuronX Runtime Configuration for more environment variable details.

Example: Default

Python Script:

import torch
import torch_neuronx

m® = torch.jit.load('model.pt') # Loads to ncO
ml torch.jit.load('model.pt') # Loads to ncl

With no environment configuration, the process will take ownership of all NeuronCores. In this example, only two of
the NeuronCores are used by the process and the remaining are allocated but left idle.

Example: NEURON_RT_NUM_CORES

Environment Setup:

export NEURON_RT_NUM_CORES = '2'

Python Script:

import torch
import torch_neuronx

mo
ml

torch.jit.load('model.pt') # Loads to nc@®
torch.jit.load('model.pt') # Loads to ncl

Since there is no other process on the instance, only the first 2 NeuronCores will be acquired by the process. Models
load in a simple linear order to the least used NeuronCores.
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Example: NEURON_RT_VISIBLE_CORES

Environment Setup:

export NEURON_RT_VISIBLE_CORES = '4-5'

Python Script:

import torch
import torch_neuronx

mo
ml

torch.jit.load('model.pt') # Loads to nc4
torch.jit.load('model.pt') # Loads to nch

Unlike NEURON_RT_NUM_CORES, setting the visible NeuronCores allows the process to take control of a specific con-
tiguous set. This allows an application to have a more fine-grained control of where models will be placed.

Example: Multiple Processes

Environment Setup:

export NEURON_RT_NUM_CORES = '2'

Python Script:

import torch
import torch_neuronx

m® = torch.jit.load('model.pt') # Loads to nc@®
ml torch.jit.load('model.pt') # Loads to ncl

In this example, if the script is run twice, the following allocations will be made:

Note that each process will take ownership of as many NeuronCores as is specified by the NEURON_RT_NUM_CORES
configuration.

Explicit Core Placement [Beta]

The torch_neuronx framework allows can be found in the PyTorch NeuronX NeuronCore Placement APIs [Beta]
documentation.

Example: Manual Core Selection

The most direct usage of the placement APIs is to manually select the start NeuronCore that each model is loaded to.

Environment Setup:

export NEURON_RT_NUM_CORES = '4'

Python Script:
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import torch
import torch_neuronx

# NOTE: Order of loads does NOT matter
with torch_neuronx.experimental.neuron_cores_context(start_nc=3):
m® = torch.jit.load('model.pt') # Loads to nc3

with torch_neuronx.experimental.neuron_cores_context(start_nc=0, nc_count=2):
ml = torch.jit.load('model.pt') # Loads replicas to nc® and ncl

example = torch.rand(l, 3, 224, 224)

ml(example) # Executes on nc3
ml(example) # Executes on nc3

m0 (example) # Executes on nc0
m0® (example) # Executes on ncl
m0® (example) # Executes on nc0

Example: Automatic Multicore

Using explicit core placement it is possible to replicate a model to multiple NeuronCores simultaneously. This means
that a single model object within python can utilize all available NeuronCores (or NeuronCores allocated to the process).

Environment Setup:

export NEURON_RT_NUM_CORES = '8'

Python Script:

import torch
import torch_neuronx

with torch_neuronx.experimental.multicore_context():
m® = torch.jit.load('model.pt') # Loads replications to nc@®-nc7

example = torch.rand(1l, 3, 224, 224)

m0 (example) # Executes on nc0
m0 (example) # Executes on ncl

To make full use of a model that has been loaded to multiple NeuronCores, multiple threads should be used to run
inferences in parallel.
This document is relevant for: Inf2, Trnl, Trn2

This document is relevant for: Inf2, Trnl, Trn2
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Comparison of Traced Inference versus XLA Lazy Tensor Inference (torch-neuronx)

Table of contents

e Introduction

XLA Lazy Tensor Inference Mechanics
* Traced Inference Mechanics

* Traced Inference Advantages

* Summary

Introduction

Using torch-neuronx, there are two ways that a model can be executed for inference:

* XLA LazyTensor Inference: A model is executed on Neuron by calling to() to move Parameter and Tensor
data using the xm.x1la_device (). Executing operations uses torch Lazy Tensor to record, compile, and execute
the graph. These are the same mechanisms used for training.

* (Recommended) Traced Inference: A model is traced prior to inference using the trace () API This trace is
similar to torch. jit.trace() butinstead creates a Neuron-specific TorchScript artifact. This artifact provides
improved performance and portability compared to XLA Lazy Tensor inference.

XLA Lazy Tensor Inference Mechanics

XLA Lazy Tensor inference uses Just-In-Time (JIT) compilation for Neuron execution.

XLA Device execution uses the built-in torch-xla functionality with torch Lazy Tensor to record torch operations us-
ing the xm.x1la_device (). The graph of operations is sent to the neuronx-cc compiler upon calling xm.mark_step().
Finally the compiled graph is transferred to a NeuronCore and executed in the Neuron backend.

The initial model inference will be very slow since the model binary file in the Neuron Executable File Format (NEFF)
will need to be generated by the compiler. Upon each subsequent call to a model, the application will re-execute the
python, rebuild the graph, and check a cache to see if an existing NEFF file is available for the given graph before
attempting to recompile.

The process of recording graph operations in python can become a bottleneck for otherwise fast models. This overhead
will always have an effect on performance regardless of model size but may be less noticeable on larger models. Note
that this XLA Lazy Tensor execution performance may improve significantly with new torch features in the future.

Example
Fixed Shape Example

import torch
import torch_neuronx
import torch_xla.core.xla_model as xm

# Create XLA device

(continues on next page)
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device = xm.xla_device()

# Load example model and inputs to Neuron device

model = torch.nn.Sequential(
torch.nn.Linear (784, 120),
torch.nn.RelLUQ),
torch.nn.Linear(120, 10),
torch.nn.Softmax(dim=-1),

)

model.eval()

model . to(device)

example = torch.rand((1, 784), device=device)

# Inference

with torch.no_grad(Q):
result = model(example)
xm.mark_step() # Compilation occurs here
print(result.cpu(Q))

Dynamic Shape Example

(continued from previous page)

The following is an example of a model that dynamically changes the sequence length and batch size of the input token
ID tensor to trigger recompilations. This kind of workflow would require padding when using traced inference.

import torch
import torch_neuronx
import torch_xla.core.xla_model as xm

# Create XLA device
device = xm.xla_device()

# Load example model and inputs to Neuron device
model = torch.nn.Sequential(

torch.nn.Embedding (num_embeddings=30522, embedding_dim=512),

torch.nn.Linear(512, 128),
torch.nn.RelLUQ),
torch.nn.Linear(128, 2),
torch.nn.Softmax(dim=-1),

)

model .eval ()

model . to(device)

token_ids_1 = torch.tensor([
[1, 28, 748, 0],
1) # shape: [1, 4]
token_ids_2 = torch.tensor([
[1, 13087, 10439, 1990, 18912, 0],
[1, 12009, 7849, 2509, 3500, 0],
1) # shape: [2, 6]

# Inference

(continues on next page)
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with torch.no_grad(Q):

# First compilation/inference

result = model (token_ids_1)
xm.mark_step()

print(result.cpu()) # shape: [1, 4, 2]

(continued from previous page)

# Recompilation occurs here since token_ids_2 is a different shape. This infer

# would have failed if the model had been traced with shape [1, 4]

result = model (token_ids_2)
xm.mark_step()
print(result.cpu()) # shape: [2, 6, 2]

Traced Inference Mechanics

Traced inference uses Ahead-Of-Time (AOT) compilation for Neuron execution.

Similar to XLA Lazy Tensor inference, trace () uses the operation recording mechanisms provided by torch-xla to
build the graph structure. This graph structure is also sent to the neuronx-cc compiler to produce a binary (NEFF) that

is executable on Neuron.

The main difference is that the call to trace () returns a new fully compiled graph as a TorchScript Module. Upon call-
ing this new Module, rather than re-executing the python, rebuilding the graph, and checking the cache for a matching
model, the new Module simply executes the precompiled graph that was preloaded during tracing. This is a significantly

more optimized runtime since it avoids the python operator tracing, graph building, etc.

One disadvantage of this interface is that a model will never dynamically recompile after a trace. This means that
dynamic control flow is not supported within a function/module. Tensor input/output shapes are fixed to the shapes
passed to the trace () APIL Dynamic batching and bucketing can be used to avoid the pitfalls of static shapes.

Example

import torch
import torch_neuronx

# Create example model and inputs

model = torch.nn.Sequential(
torch.nn.Linear(784, 120),
torch.nn.RelLUQ),
torch.nn.Linear (120, 10),
torch.nn.Softmax(dim=-1),

)

model .eval ()

example = torch.rand((1, 784))

# Create fixed model trace
trace = torch_neuronx.trace(model, example)

# Inference

result = trace(example) # No recompilation. Input shapes must not change

print(result)
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Traced Inference Advantages

Traced inference should be used for nearly all deployment purposes since it provides some key advantages over XLA
Lazy Tensor execution:

* Reduced Overhead: There is no overhead associated with graph recording, compilation, and model loading
since these steps are performed only once within the call to trace (). In contrast, when using XLA Lazy Tensor
inference, all of these steps are performed just-in-time (with caching to improve performance).

¢ Serializable: The TorchScript Module that is produced from the trace () API is serializable using the normal
torch. jit.save() function. It is able to be reloaded in an inference environment with torch. jit.load().
In contrast, XLLA device inference does not provide a predetermined serialization format that includes the pre-
compiled NEFF artifacts. These must be manually copied to an inference environment to be used.

* Reduced Dependencies: When using the traced TorchScript Module in an inference environment, it is no longer
required to install the neuronx-cc compiler. In contrast, when using the XLA Lazy Tensor execution, an execution
may require a recompile to successfully infer.

« Static & Predictable: The resulting module produced by trace () will contain a static model that will consume
a predictable amount of Neuron device memory and will never require recompilation based on input changes.
In contrast, since XLLA device inference performs just-in-time compilation, it can be more difficult to predict
memory utilization and the compilations that may be required at inference time.

e C++ Usability: If the end application is an inference platform using libtorch, it is easy to integrate with
libtorchneuron to load traced modules. It is not currently possible to set up an environment to use torch in
C++ in conjunction with Neuron XLA Lazy Tensor execution.

Summary

XLA Device Inference | Traced Inference
Compilation | JIT AOT
Serialization | N/A TorchScript
Performance | Slower Faster
Dynamic Yes No
C++ Usage No Yes

This document is relevant for: Inf2, Trnl, Trn2

This document is relevant for: Inf2, Trnl, Trn2

Data Parallel Inference on torch_neuronx

Table of Contents

e Introduction
* Data parallel inference
e torch_neuronx.DataParallel

— NeuronCore selection

— Batch dim
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— Dynamic batching
— Performance optimizations

e Examples

Default usage

Specifying NeuronCores

DataParallel with dim != 0

Dynamic batching

Dynamic batching disabled

Introduction

This guide introduces torch_neuronx.DataParallel(), a Python API that implements data parallelism on
ScriptModule models created by the PyTorch NeuronX Tracing API for Inference. The following sections explain how
data parallelism can improve the performance of inference workloads on Inferentia, including how torch_neuronx.
DataParallel() uses dynamic batching to run inference on variable input sizes. It covers an overview of the
torch_neuronx.DataParallel () module and provides a few example data parallel applications.

Data parallel inference

Data Parallelism is a form of parallelization across multiple devices or cores, referred to as nodes. Each node contains
the same model and parameters, but data is distributed across the different nodes. By distributing the data across
multiple nodes, data parallelism reduces the total execution time of large batch size inputs compared to sequential
execution. Data parallelism works best for smaller models in latency sensitive applications that have large batch size
requirements.

torch_neuronx.DataParallel

To fully leverage the Inferentia hardware, we want to use all available NeuronCores. An inf2.xlarge and inf2.8xlarge
have two NeuronCores, an inf2.24xlarge has 12 NeuronCores, and an inf2.48xlarge has 24 NeuronCores. For max-
imum performance on Inferentia hardware, we can use torch_neuronx.DataParallel() to utilize all available
NeuronCores.

torch_neuronx.DataParallel () implements data parallelism at the module level by replicating the Neuron model
on all available NeuronCores and distributing data across the different cores for parallelized inference. This function
is analogous to DataParallel in PyTorch. torch_neuronx.DataParallel () requires PyTorch >=1.8.

The following sections provide an overview of some of the features of torch_neuronx.DataParallel() thatenable
maximum performance on Inferentia.
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NeuronCore selection

By default, DataParallel will try to use all NeuronCores allocated to the current process to fully saturate the Inferentia
hardware for maximum performance. It is more efficient to make the batch dimension divisible by the number of
NeuronCores. This will ensure that NeuronCores are not left idle during parallel inference and the Inferentia hardware
is fully utilized.

In some applications, it is advantageous to use a subset of the available NeuronCores for DataParallel inference. Dat-
aParallel has a device_ids argument that accepts a list of int or "nc:#' that specify the NeuronCores to use for
parallelization. See Specifying NeuronCores for an example of how to use device_ids argument.

Batch dim

DataParallel accepts a dim argument that denotes the batch dimension used to split the input data for distributed infer-
ence. By default, DataParalell splits the inputs on dim = 0 if the dim argument is not specified. For applications with
a non-zero batch dim, the dim argument can be used to specify the inference-time input batch dimension. DataParallel
with dim ! = 0 provides an example of data parallel inference on inputs with batch dim = 2.

Dynamic batching

Batch size has a direct impact on model performance. The Inferentia chip is optimized to run with small batch sizes.
This means that a Neuron compiled model can outperform a GPU model, even if running single digit batch sizes.

As a general best practice, we recommend optimizing your model’s throughput by compiling the model with a small
batch size and gradually increasing it to find the peak throughput on Inferentia.

Dynamic batching is a feature that allows you to use tensor batch sizes that the Neuron model was not originally
compiled against. This is necessary because the underlying Inferentia hardware will always execute inferences with
the batch size used during compilation. Fixed batch size execution allows tuning the input batch size for optimal
performance. For example, batch size 1 may be best suited for an ultra-low latency on-demand inference application,
while batch size > 1 can be used to maximize throughput for offline inferencing. Dynamic batching is implemented by
slicing large input tensors into chunks that match the batch size used during the torch_neuronx. trace () compilation
call.

The torch_neuronx.DataParallel () class automatically enables dynamic batching on eligible models. This allows
us to run inference in applications that have inputs with a variable batch size without needing to recompile the model.
See Dynamic batching for an example of how DataParallel can be used to run inference on inputs with a dynamic batch
size without needing to recompile the model.

Dynamic batching using small batch sizes can result in sub-optimal throughput because it involves slicing tensors into
chunks and iteratively sending data to the hardware. Using a larger batch size at compilation time can use the Inferentia
hardware more efficiently in order to maximize throughput. You can test the tradeoff between individual request latency
and total throughput by fine-tuning the input batch size.

Automatic batching in the DataParallel module can be disabled using the disable_dynamic_batching() function
as follows:

>>> model_parallel = torch_neuronx.DataParallel (model_neuron)
>>> model_parallel.disable_dynamic_batching()

If dynamic batching is disabled, the compile-time batch size must be equal to the inference-time batch size divided by
the number of NeuronCores. DataParallel with dim != 0 and Dynamic batching disabled provide examples of running
DataParallel inference with dynamic batching disabled.
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Performance optimizations

The DataParallel module has a num_workers attribute that can be used to specify the number of worker threads used
for multithreaded inference. By default, num_workers = 2 * number of NeuronCores. This value can be fine
tuned to optimize DataParallel performance.

DataParallel has a split_size attribute that dictates the size of the input chunks that are distributed to each Neuron-
Core. By default, split_size = max(1l, input.shape[dim] // number of NeuronCores). This value can
be modified to optimally match the inference input chunk size with the compile-time batch size.

Examples

The following sections provide example usages of the torch_neuronx.DataParallel () module.

Default usage

The default DataParallel use mode will replicate the model on all available NeuronCores in the current process. The
inputs will be split on dim=0.

import torch
import torch_neuronx
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch_neuronx.trace(model, image)

# Create the DataParallel module
model_parallel = torch_neuronx.DataParallel (model_neuron)

# Create a batched input
batch_size = 5
image_batched = torch.rand([batch_size, 3, 224, 224])

# Run inference with a batched input
output = model_parallel (image_batched)

Specifying NeuronCores

The following example uses the device_ids argument to use the first three NeuronCores for DataParallel inference.

import torch
import torch_neuronx
from torchvision import models

# Load the model and set it to evaluation mode

(continues on next page)
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(continued from previous page)

model = models.resnet50(pretrained=True)
model.eval )

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch_neuronx.trace(model, image)

# Create the DataParallel module, run on the first two NeuronCores
# Equivalent to model_parallel = torch.neuron.DataParallel (model_neuron, device_ids=[0,.
—1])

model_parallel = torch_neuronx.DataParallel(model_neuron, device_ids=['nc:0', 'nc:1'])

# Create a batched input
batch_size = 5
image_batched = torch.rand([batch_size, 3, 224, 224])

# Run inference with a batched input
output = model_parallel (image_batched)

DataParallel with dim !=0

In this example we run DataParallel inference using two NeuronCores and dim = 2. Because dim != 0, dynamic
batching is not enabled. Consequently, the DataParallel inference-time batch size must be two times the compile-time
batch size.

import torch
import torch_neuronx

# Create an example model
class Model (torch.nn.Module):
def __init__(self):
super().__init__Q)
self.conv = torch.nn.Conv2d(3, 3, 3)

def forward(self, x):
return self.conv(x) + 1

model = Model()
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 8, 8])
model_neuron = torch_neuronx.trace(model, image)

# Create the DataParallel module using 2 NeuronCores and dim = 2
model_parallel = torch_neuronx.DataParallel (model_neuron, device_ids=[0, 1], dim=2)

# Create a batched input
# Note that image_batched.shape[dim] / len(device_ids) == image.shape[dim]
batch_size = 2 * 8
image_batched = torch.rand([1, 3, batch_size, 8])
(continues on next page)
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# Run inference with a batched input
output = model_parallel(image_batched)

Dynamic batching

In the following example, we use the torch_neuronx.DataParallel () module to run inference using several dif-
ferent batch sizes without recompiling the Neuron model.

import torch
import torch_neuronx
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch_neuronx.trace(model, image)

# Create the DataParallel module
model_parallel = torch_neuronx.DataParallel (model_neuron)

# Create batched inputs and run inference on the same model
batch_sizes = [2, 3, 4, 5, 6]
for batch_size in batch_sizes:

image_batched = torch.rand([batch_size, 3, 224, 224])

# Run inference with a batched input
output = model_parallel (image_batched)

Dynamic batching disabled

In the following example, we use torch_neuronx.DataParallel.disable_dynamic_batching() to disable dy-
namic batching. We provide an example of a batch size that will not work when dynamic batching is disabled as well
as an example of a batch size that does work when dynamic batching is disabled.

import torch
import torch_neuronx
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval )

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch_neuronx.trace(model, image)

(continues on next page)
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# Create the DataParallel module and use 2 NeuronCores
model_parallel = torch_neuronx.DataParallel (model_neuron, device_ids=[0, 1], dim=0)

# Disable dynamic batching
model_parallel.disable_dynamic_batching()

# Create a batched input (this won't work)
batch_size = 4
image_batched = torch.rand([batch_size, 3, 224, 224])

# This will fail because dynamic batching is disabled and
# image_batched.shape[dim] / len(device_ids) != image.shape[dim]
# output = model_parallel(image_batched)

# Create a batched input (this will work)
batch_size = 2
image_batched = torch.rand([batch_size, 3, 224, 224])

# This will work because
# image_batched.shape[dim] / len(device_ids) == image.shape[dim]
output = model_parallel(image_batched)

This document is relevant for: Inf2, Trnl, Trn2

Developer Guide for Inference (torch-neuronx)

* NeuronCore Allocation and Model Placement for Inference (torch-neuronx)
e Comparison of Traced Inference versus XLA Lazy Tensor Inference (torch-neuronx)
* Data Parallel Inference on torch_neuronx
* torch-neuronx-autobucketing-devguide
This document is relevant for: Inf2, Trnl, Trn2

This document is relevant for: Inf2, Trnl, Trn2

Misc (torch-neuronx)

This document is relevant for: Inf2, Trnl, Trn2

PyTorch Neuron (torch-neuronx) release notes

Table of Contents

* Release [2.7.0.2.8.% 2.6.0.2.8.*% 2.5.1.2.8.%]
e Release [2.6.0.2.7.% 2.5.1.2.7.%]
e Release [2.5.1.2.6.0]
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e Release [2.5.1.2.4.0]

e Release [2.1.2.2.4.0]

* Release [1.13.1.1.16.0]
e Release [2.1.2.2.3.2]

e Release [2.1.2.2.3.1]

e Release [2.1.2.2.3.0]

* Release [1.13.1.1.16.0]
e Release [2.1.2.2.2.0]

e Release [1.13.1.1.15.0]
e Release [2.1.2.2.1.0]

* Release [1.13.1.1.14.0]
e Release [2.1.1.2.0.0b0] (Beta)
e Release [1.13.1.1.13.0]
e Release [2.0.0.2.0.0b0] (Beta)
e Release [1.13.1.1.12.0]
e Release [1.13.1.1.11.0]
e Release [1.13.1.1.10.1]
e Release [1.13.1.1.10.0]
e Release [1.13.1.1.9.0]
e Release [1.13.1.1.8.0]
e Release [1.13.1.1.7.0]
e Release [1.13.0.1.6.1]
e Release [1.13.0.1.6.1]
e Release [1.13.0.1.6.0]
e Release [1.13.0.1.5.0]
e Release [1.13.0.1.4.0]
e Release [1.12.0.1.4.0]
e Release [1.11.0.1.2.0]
e Release [1.11.0.1.1.1]

PyTorch Neuron for Trn1/Inf2 is a software package that enables PyTorch users to train, evaluate, and perform inference
on second-generation Neuron hardware (See: NeuronCore-v2).
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Release [2.7.0.2.8.*, 2.6.0.2.8.%, 2.5.1.2.8.%]

Date: 6/24/2025

Summary

* Introducing PyTorch 2.7 Support

Known limitations

* PyTorch NeuronX currently does not support GSPMD
* PyTorch NeuronX currently does not support torch.compile

* PyTorch NeuronX currently does not support DDP/FSDP

Resolved issues

[v2.7] Resolved the lower BERT pretraining performance with torch-neuronx 2.6 compared to torch-
neuronx 2.5

With torch-neuronx v2.6, BERT pretraining performance is ~10% lower compared to torch-neuronx 2.5. This issue is
fixed with torch-neuronx v2.7. See https://github.com/pytorch/xla/issues/9037 for more details.

Known issues

Please see the Introducing PyTorch 2.6 Support for a full list of known issues with v2.6. Please see the Introducing
PyTorch 2.5 Support for a full list of known issues with v2.5.

Updating Ubuntu OS kernel version from 5.15 to 6.8 may result in lower performance

Currently, when switching Ubuntu OS kernel version from 5.15 to 6.8, you may see performance differences due
to the new kernel scheduler (CFS vs EEVDF). For example, BERT pretraining performance could be lower by up
to 10%. You may try using an older OS kernel (i.e. Amazon Linux 2023) or experiment with the kernel real-time
scheduler by running sudo chrt --fifo 99 before your command (i.e. sudo chrt --fifo 99 <script>) to
improve the performance. Note that adjusting the real-time scheduler can also result in lower performance. See https:
/Iwww.kernel.org/doc/html/latest/scheduler/sched-eevdf.html for more information.

Tensor split on second dimension of 2D array not working

Currently, when using tensor split operation on a 2D array in the second dimension, the resulting ten-
sors don’t have the expected data (https://github.com/pytorch/xla/issues/8640). The work-around is to set
XLA_DISABLE_FUNCTIONALIZATION=0. Another work-around is to use torch.tensor_split.
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[v2.5] Import torch_xla crashed with TypeError: must be called with a dataclass type or
instance with torch-xla 2.5 and torch 2.5.1+cpu (CPU flavor)

When using torch 2.5.1+cpu (CPU flavor) on python 3.10, importing torch_xla crashed with TypeError: must be
called with a dataclass type or instance due to installed triton version 3.2.0 (https://github.com/pytorch/
xla/issues/8560). To work-around, please remove the installed triton package or downgrade to triton==3.1.0 or use the
regular torch 2.5.1 (GPU flavor).

[v2.5] Certain sequence of operations with xm.save() could corrupt tensors

When using the xm. save function to save tensors, please use xm.mark_step() before xm. save to avoid the error
described in https://github.com/pytorch/xla/issues/8422 where parameter aliasing could corrupt other tensor values.
This issue will be fixed in a future release.

(Here xm is torch_xla.core.xla_model following PyTorch/XLA convention)

[v2.6] Lower BERT pretraining performance with torch-neuronx 2.6 compared to torch-neuronx 2.5

Currently, BERT pretraining performance is ~10% lower with torch-neuronx 2.6 compared to torch-neuronx 2.5. This
is due to a known regression in torch-xla https://github.com/pytorch/xla/issues/9037 and can affect other models with
high graph tracing overhead. To work-around this issue, please build the r2.6_aws_neuron branch of torch-xla as
follows (see:ref:pytorch-neuronx-install-cxx11 for C++11 ABI version):

# Setup build env (make sure you are in a python virtual env). Replace "apt" with "yum"_
—on AL2023.

sudo apt install cmake

pip install yapf==0.30.0

wget https://github.com/bazelbuild/bazelisk/releases/download/v1.20.0/bazelisk-linux-
—amd64

sudo cp bazelisk-linux-amd64 /usr/local/bin/bazel

# Clone repos

git clone --recursive https://github.com/pytorch/pytorch --branch v2.6.0

cd pytorch/

git clone --recursive https://github.com/pytorch/xla.git --branch r2.6_aws_neuron
_GLIBCXX USE_CXX11_ABI=0 python setup.py bdist_wheel

# pip wheel will be present in ./dist

cd xla/

CXX_ABI=0 python setup.py bdist_wheel

# pip wheel will be present in ./dist and can be installed instead of the torch-xla.,
—released in pypi.org

Lower BERT pretraining performance when switch to using model.to(torch.bfloat16)

Currently, BERT pretraining performance is ~11% lower when switching to using model.to(torch.bfloat16) as
part of migration away from the deprecated environment variable XLA_DOWNCAST_BF16 due to https://github.com/
pytorch/xla/issues/8545. As a work-around to recover the performance, you can set XLA_DOWNCAST_BF16=1 which
would still work in torch-neuronx 2.5 and 2.6 although there will be deprecation warnings (as noted below).
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Warning “XLA_DOWNCAST_BF16 will be deprecated after the 2.5 release, please downcast your
model directly”

Environment variables XLA_DOWNCAST_BF16 and XLA_USE_BF16 are deprecated (warning when used). Please switch
to automatic mixed-precision or use model.to(torch.bfloat16) command to cast model to BF16. (see migra-
tion_from_xla_downcast_bf16)

[v2.6] AttributeError: <module ‘torch_xla.core.xla_model’ ... does not have the attribute
‘xrt_world_size’

This is an error that torch_xla.core.xla_model.xrt_world_size() is removed in torch-xla version 2.7. Please
switch to using torch_xla.runtime.world_size() instead.

[v2.6] AttributeError: <module ‘torch_xla.core.xla_model’ ... does not have the attribute
‘get_ordinal’

This is an error that torch_xla.core.xla_model.xla_model.get_ordinal () is removed in torch-xla version 2.7.
Please switch to using torch_xla.runtime.global_ordinal () instead.

[v2.5] WARNING:root:torch_xla.core.xla_model.xrt_world_size() will be removed in release 2.7. is
deprecated. Use torch_xla.runtime.world_size instead.

This is a warning that torch_xla.core.xla_model.xrt_world_size() will be removed in a future release. Please
switch to using torch_xla.runtime.world_size() instead.

[v2.5] WARNING:torch_xla.core.xla_model.xla_model.get_ordinal() will be removed in release 2.7. is
deprecated. Use torch_xla.runtime.global_ordinal instead.

This is a warning that torch_xla.core.xla_model.xla_model.get_ordinal () will be removed in a future re-
lease. Please switch to using torch_xla.runtime.global_ordinal () instead.

AttributeError: module ‘torch_xla.runtime’ has no attribute ‘using_pjrt’

In Torch-XILA 2.5, torch_xla.runtime.using_pjrt is removed because PJRT is the sole Torch-XLA runtime. See
commit PR.

Release [2.6.0.2.7.%, 2.5.1.2.7.%]

Date: 5/15/2025
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Summary

* Introducing PyTorch 2.6 Support

* Added support for libneuronxla 2.2.*

» Improved rendezvous performance when a payload is specified (see Resolved Issues below)
* Return non-zero exit code when neuron_parallel_compile encounters compilation failure(s)

e Added torch_neuronx.testing.assert_close, which provides Neuron allclose in an interface similar to
torch.testing.assert_close. Neuron allclose is a modified allclose algorithm that multiples rtol by the
absolute max, rather than by the absolute value. This means Neuron allclose is less strict to account for our hard-
ware. You should use torch_neuronx.testing.assert_closeinstead of torch.testing.assert_close
to compare tensors that ran on Neuron.

Known limitations

* PyTorch NeuronX currently does not support GSPMD
e PyTorch NeuronX currently does not support torch.compile

* PyTorch NeuronX currently does not support DDP/FSDP

Resolved issues
neuron_parallel_compile returns success after compilation failure(s)

Previously, when running neuron_parallel_compile —command compile with a Neuron Cache that contains known-bad
HLO file, neuron_parallel_compile fails to compile the graph and still returns with exit code 0 / success. This issue is
now fixed in this release.

Neuronx-Distributed Training Llama 3.1 70B 8-node tutorial failed with OSError when the Neuron
Cache is placed on FSx mount

Previously, the Neuronx-Distributed Training Llama 3.1 70B 8-node tutorial failed with OSError (Errno 61) when the
Neuron Cache is placed on FSx mount. This issue is fixed in this release.

Check failed: tensor_data error during when using torch.utils.data.Dataloader with
shuffle=True

Previously, using torch.utils.data.Dataloader with shuffle=True would cause the Check failed:
tensor_data error in synchronize_rng_states (i.e. ZeROI tutorial). This issue is fixed in release 2.23 with
the updated rendezvous handling when a payload is specified.
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"EOFError: Ran out of input" or "_pickle.UnpicklingError: invalid load key, '!'" errors dur-
ing Neuron Parallel Compile

Previously, HF Trainer API’s use of XLA function .mesh_reduce causes "EOFError: Ran out of input" or
"_pickle.UnpicklingError: invalid load key, '!'" errors during Neuron Parallel Compile. These errors
are resolved release 2.23 with the updated rendezvous handling when a payload is specified.

Known issues

Please see the Introducing PyTorch 2.6 Support for a full list of known issues with v2.6. Please see the Introducing
PyTorch 2.5 Support for a full list of known issues with v2.5.

Updating Ubuntu OS kernel version from 5.15 to 6.8 may result in lower performance

Currently, when switching Ubuntu OS kernel version from 5.15 to 6.8, you may see performance differences due to the
new kernel scheduler (CFS vs EEVDF). For example, BERT pretraining performance could be lower by up to 10%. You
may try using an older OS kernel or experiment with the kernel real-time scheduler by running sudo chrt --fifo
99 before your command (i.e. sudo chrt --fifo 99 <script>) to improve the performance. Note that adjusting
the real-time scheduler can also result in lower performance.

Tensor split on second dimension of 2D array not working

Currently, when using tensor split operation on a 2D array in the second dimension, the resulting ten-
sors don’t have the expected data (https://github.com/pytorch/xla/issues/8640).  The work-around is to set
XLA_DISABLE_FUNCTIONALIZATION=0. Another work-around is to use torch.tensor_split.

[v2.5] Import torch_xla crashed with TypeError: must be called with a dataclass type or
instance with torch-xla 2.5 and torch 2.5.1+cpu (CPU flavor)

When using torch 2.5.1+cpu (CPU flavor) on python 3.10, importing torch_xla crashed with TypeError: must be
called with a dataclass type or instance due to installed triton version 3.2.0 (https://github.com/pytorch/
xla/issues/8560). To work-around, please remove the installed triton package or downgrade to triton==3.1.0 or use the
regular torch 2.5.1 (GPU flavor).

[v2.5] Certain sequence of operations with xm.save() could corrupt tensors

When using the xm. save function to save tensors, please use xm.mark_step() before xm.save to avoid the error
described in https://github.com/pytorch/xla/issues/8422 where parameter aliasing could corrupt other tensor values.
This issue will be fixed in a future release.

(Here xm is torch_xla.core.xla_model following PyTorch/XL A convention)
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[v2.6] Lower BERT pretraining performance with torch-neuronx 2.6 compared to torch-neuronx 2.5

Currently, BERT pretraining performance is ~10% lower with torch-neuronx 2.6 compared to torch-neuronx 2.5. This
is due to a known regression in torch-xla https://github.com/pytorch/xla/issues/9037 and can affect other models with
high graph tracing overhead. To work-around this issue, please build the r2.6_aws_neuron branch of torch-xla as
follows (see:ref:pytorch-neuronx-install-cxx11 for C++11 ABI version):

# Setup build env (make sure you are in a python virtual env). Replace "apt" with "yum'".
—on AL2023.

sudo apt install cmake

pip install yapf==0.30.0

wget https://github.com/bazelbuild/bazelisk/releases/download/v1.20.0/bazelisk-1linux-
—amd64

sudo cp bazelisk-linux-amd64 /usr/local/bin/bazel

# Clone repos

git clone --recursive https://github.com/pytorch/pytorch --branch v2.6.0

cd pytorch/

git clone --recursive https://github.com/pytorch/xla.git --branch r2.6_aws_neuron
_GLIBCXX_USE_CXX11_ABI=0 python setup.py bdist_wheel

# pip wheel will be present in ./dist

cd xla/

CXX_ABI=0 python setup.py bdist_wheel

# pip wheel will be present in ./dist and can be installed instead of the torch-xla.,
—released in pypi.org

Lower BERT pretraining performance when switch to using model.to(torch.bfloat16)

Currently, BERT pretraining performance is ~11% lower when switching to using model.to(torch.bfloat16) as
part of migration away from the deprecated environment variable XLA_DOWNCAST_BF16 due to https://github.com/
pytorch/xla/issues/8545. As a work-around to recover the performance, you can set XLA_DOWNCAST_BF16=1 which
would still work in torch-neuronx 2.5 and 2.6 although there will be deprecation warnings (as noted below).

Warning “XLA_DOWNCAST_BF16 will be deprecated after the 2.5 release, please downcast your
model directly”

Environment variables XLA_ DOWNCAST_BF 16 and XLA_USE_BF 16 are deprecated (warning when used). Please switch
to automatic mixed-precision or use model.to(torch.bfloat16) command to cast model to BF16. (see migra-
tion_from_xla_downcast_bf16)

[v2.6] AttributeError: <module ‘torch_xla.core.xla_model’ ... does not have the attribute
‘xrt_world_size’

This is an error that torch_xla.core.xla_model.xrt_world_size() is removed in torch-xla version 2.7. Please
switch to using torch_xla.runtime.world_size() instead.
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[v2.6] AttributeError: <module ‘torch_xla.core.xla_model’ ... does not have the attribute
‘get_ordinal’

This is an error that torch_xla.core.xla_model.xla_model.get_ordinal () is removed in torch-xla version 2.7.
Please switch to using torch_xla.runtime.global_ordinal () instead.

[v2.5] WARNING:root:torch_xla.core.xla_model.xrt_world_size() will be removed in release 2.7. is
deprecated. Use torch_xla.runtime.world_size instead.

This is a warning that torch_xla.core.xla_model.xrt_world_size() will be removed in a future release. Please
switch to using torch_xla.runtime.world_size() instead.

[v2.5] WARNING:torch_xla.core.xla_model.xla_model.get_ordinal() will be removed in release 2.7. is
deprecated. Use torch_xla.runtime.global_ordinal instead.

This is a warning that torch_xla.core.xla_model.xla_model.get_ordinal () will be removed in a future re-
lease. Please switch to using torch_xla.runtime.global_ordinal () instead.

AttributeError: module ‘torch_xla.runtime’ has no attribute ‘using_pjrt’

In Torch-XLLA 2.5, torch_xla.runtime.using_pjrt is removed because PJRT is the sole Torch-XLA runtime. See
commit PR.

Release [2.5.1.2.6.0]

Date: 4/3/2025

Summary

Minor bug fixes and enhancements.

Known limitations

» PyTorch NeuronX currently does not support GSPMD
* PyTorch NeuronX currently does not support torch.compile

* PyTorch NeuronX currently does not support DDP/FSDP
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Known issues

Please see the Introducing PyTorch 2.5 Support for a full list of known issues.

Neuronx-Distributed Training Llama 3.1 70B 8-node tutorial failed with OSError when the Neuron
Cache is placed on FSx mount

Currently, the Neuronx-Distributed Training Llama 3.1 70B 8-node tutorial failed with OSError (Errno 61) when the
Neuron Cache is placed on FSx mount:

[rank197]: RuntimeError: Bad StatusOr access: INVALID_ARGUMENT: RunNeuronCCImpl: error.
—condition !(error != 400): <class 'OSError'>: [Errno 61] No data available: '/fsxl/
—neuron_cache/neuronxcc-2.16.372.0+4a9b2326/MODULE_3540044791706521849+4eb52b03/model .
wneff' -> '/tmp/tmpx7bvipmm/model .neff’

We found that the error is due to FSx failing during file copy when there are multiple readers (13 workers fail to copy
out of 256). This issue doesn’t affect simpler models like BERT.

To work-around the issue, please use the shared NFS mount (/home directory on a Parallel Cluster) instead of FSx to
store Neuron Cache. This will be fixed in an upcoming release.

Running in-place update operations (e.g. all_reduce) on 0-dimensional tensors result in buffer alias-
ing errors in torch 2.5 and earlier

Torch’s lazy tensor core has a feature where 0-dimensional tensors are stored in a device cache, so scalar constant values
can be transferred once and then reused. The values in the device cache are supposed to be marked read-only and never
participate in parameter aliasing. However, due to a bug in torch-xla 2.5 (#8499), sometimes the read-only flag can be
dropped, allowing these tensors to be donated, resulting in aliasing errors later when the cached value is used again.

A work-around is to avoid using O-dimensional tensors by changing them to be 1d tensor of length 1 (exam-
ple). If modifying library code is not possible, disable XLLA parameter aliasing by setting environment variable
XLA_ENABLE_PARAM_ALIASING=0

Tensor split on second dimension of 2D array not working

Currently, when using tensor split operation on a 2D array in the second dimension, the resulting ten-
sors don’t have the expected data (https://github.com/pytorch/xla/issues/8640). The work-around is to set
XLA_DISABLE_FUNCTIONALIZATION=0.

Import torch_xla crashed with TypeError: must be called with a dataclass type or instance
with torch-xla 2.5 and torch 2.5.1+cpu (CPU flavor)

When using torch 2.5.1+cpu (CPU flavor) on python 3.10, importing torch_xla crashed with TypeError: must be
called with a dataclass type or instance due to installed triton version 3.2.0 (https://github.com/pytorch/
xla/issues/8560). To work-around, please remove the installed triton package or downgrade to triton==3.1.0 or use the
regular torch 2.5.1 (GPU flavor).
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Certain sequence of operations with xm.save() could corrupt tensors

When using the xm. save function to save tensors, please use xm.mark_step() before xm.save to avoid the error
described in https://github.com/pytorch/xla/issues/8422 where parameter aliasing could corrupt other tensor values.
This issue will be fixed in a future release.

(Here xm is torch_xla.core.xla_model following PyTorch/XLA convention)

Lower BERT pretraining performance with torch-neuronx 2.5 compared to torch-neuronx 2.1

Currently, BERT pretraining performance is ~11% lower with torch-neuronx 2.5 compared to torch-neuronx 2.1. This
is due to the switch to usingmodel . to(torch.bfloat16) as part of migration away from the deprecated environment
variable XLA_DOWNCAST_BF16. As a work-around to recover the performance, you can set XLA_DOWNCAST_BF16=1
which would still work in torch-neuronx 2.5 although there will be deprecation warnings (as noted below).

Warning “XLA_DOWNCAST_BF16 will be deprecated after the 2.5 release, please downcast your
model directly”

Environment variables XLA_DOWNCAST_BF16 and XLA_USE_BF16 are deprecated (warning when used). Please switch
to automatic mixed-precision or use model.to(torch.bfloat16) command to cast model to BF16. (see migra-
tion_from_xla_downcast_bf16)

WARNING:root:torch_xla.core.xla_model.xrt_world_size() will be removed in release 2.7. is depre-
cated. Use torch_xla.runtime.world_size instead.

This is a warning that torch_xla.core.xla_model.xrt_world_size() will be removed in a future release. Please
switch to using torch_xla.runtime.world_size() instead.

WARNING:torch_xla.core.xla_model.xla_model.get_ordinal() will be removed in release 2.7. is dep-
recated. Use torch_xla.runtime.global_ordinal instead.

This is a warning that torch_xla.core.xla_model.xla_model.get_ordinal () will be removed in a future re-
lease. Please switch to using torch_xla.runtime.global_ordinal instead.

AttributeError: module ‘torch_xla.runtime’ has no attribute ‘using_pjrt’

In Torch-XLA 2.5, torch_xla.runtime.using_pjrt is removed because PJRT is the sole Torch-XLA runtime. See
commit PR.
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"EOFError: Ran out of input" or "_pickle.UnpicklingError: invalid load key, '!'" errors dur-
ing Neuron Parallel Compile

With PyTorch 2.5 (torch-neuronx), HF Trainer API's use of XLA function .mesh_reduce causes "EOFError:
Ran out of input" or "_pickle.UnpicklingError: invalid load key, '!'" errors during Neuron Paral-
lel Compile. To work-around this issue, you can add the following code snippet (after python imports) to replace
xm.mesh_reduce with a form that uses xm.all_gather instead of xm.rendezvous() with payload. This will add
additional small on-device graphs (as opposed to the original xm.mesh_reduce which runs on CPU).

import copy

import torch_xla.core.xla_model as xm

def mesh_reduce(tag, data, reduce_fn):
xm.rendezvous(tag)
xdatain = copy.deepcopy(data)
xdatain = xdatain.to("xla")
xdata = xm.all_gather(xdatain, pin_layout=False)
cpu_xdata = xdata.detach().to("cpu™)
cpu_xdata_split = torch.split(cpu_xdata, xdatain.shape[0])
xldata = [x for x in cpu_xdata_split]
return reduce_fn(xldata)

xm.mesh_reduce = mesh_reduce

Check failed: tensor_data error during when using torch.utils.data.Dataloader with
shuffle=True

With PyTorch 2.5 (torch-neuronx), using torch.utils.data.DatalLoader with shuffle=True would cause the
following error in synchronize_rng_states (i.e. ZeROI tutorial):

RuntimeError: torch_xla/csrc/xla_graph_executor.cpp:562 : Check failed: tensor_data

This is due to synchronize_rng_states using xm.mesh_reduce to synchronize RNG states. xm.mesh_reduce in
turn uses xm.rendezvous () with payload, which as noted in 2.x migration guide, would result in extra graphs that
could lead to lower performance due to change in xm.rendezvous () in torch-xla 2.x. In the case of ZeRO! tutorial,
using xm.rendezvous () with payload also lead to the error above. This limitation will be fixed in an upcoming re-
lease. For now, to work around the issue, please disable shuffle in Datal.oader when NEURON_EXTRACT_GRAPHS_ONLY
environment is set automatically by Neuron Parallel Compile:

train_dataloader = Dataloader(
train_dataset, shuffle=(os.environ.get("NEURON_EXTRACT_GRAPHS_ONLY", None) == None),.
—,collate_fn=default_data_collator, batch_size=args.per_device_train_batch_size

)

Additionally, as in the previous section, you can add the following code snippet (after python imports) to replace
xm.mesh_reduce with a form that uses xm.all_gather instead of xm.rendezvous() with payload. This will add
additional small on-device graphs (as opposed to the original xm.mesh_reduce which runs on CPU).

import copy

import torch_xla.core.xla_model as xm

def mesh_reduce(tag, data, reduce_fn):
xm.rendezvous(tag)
xdatain = copy.deepcopy(data)
xdatain = xdatain.to("xla")

(continues on next page)
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Xm.

(continued from previous page)
xdata = xm.all_gather(xdatain, pin_layout=False)
cpu_xdata = xdata.detach().to("cpu")
cpu_xdata_split = torch.split(cpu_xdata, xdatain.shape[0])
xldata = [x for x in cpu_xdata_split]
return reduce_fn(xldata)
mesh_reduce = mesh_reduce

Compiler assertion error when running Stable Diffusion training

Currently, with PyTorch 2.5 (torch-neuronx), we are seeing the following compiler assertion error with Stable Diffusion
training when gradient accumulation is enabled. This will be fixed in an upcoming release. For now, if you would like
to run Stable Diffusion training with Neuron SDK release 2.21, please disable gradient accumulation in torch-neuronx

2.5.

ERR

P
too

OR 222163 [NeuronAssert]: Assertion failure in usr/lib/python3.8/concurrent/futures/
rocess.py at line 239 with exception:
many partition dims! {{0,+,960}[10],+,10560}[10]

Release [2.5.1.2.4.0]

Date: 12/20/2024

Summary

e Introducing PyTorch 2.5 Support

¢ Added support for Trainium?2

* Added support for C++11 ABI

* Added support for Neuron Profiler 2.0

* Added support for libneuronxla 2.1.*

* Supported Python versions: 3.9, 3.10, 3.11

Known limitations

* PyTorch NeuronX currently does not support GSPMD
* PyTorch NeuronX currently does not support torch.compile

* PyTorch NeuronX currently does not support DDP/FSDP
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Known issues

Please see the Introducing PyTorch 2.5 Support for a full list of known issues.

Tensor split on second dimension of 2D array not working

Currently, when using tensor split operation on a 2D array in the second dimension, the resulting ten-
sors don’t have the expected data (https:/github.com/pytorch/xla/issues/8640). The work-around is to set
XLA_DISABLE_FUNCTIONALIZATION=O.

Import torch_xla crashed with TypeError: must be called with a dataclass type or instance
with torch-xla 2.5 and torch 2.5.1+cpu (CPU flavor)

When using torch 2.5.1+cpu (CPU flavor) on python 3.10, importing torch_xla crashed with TypeError: must be
called with a dataclass type or instance due to installed triton version 3.2.0 (https://github.com/pytorch/
xla/issues/8560). To work-around, please remove the installed triton package or downgrade to triton==3.1.0 or use the
regular torch 2.5.1 (GPU flavor).

Certain sequence of operations with xm.save() could corrupt tensors

When using the xm. save function to save tensors, please use xm.mark_step() before xm.save to avoid the error
described in https://github.com/pytorch/xla/issues/8422 where parameter aliasing could corrupt other tensor values.
This issue will be fixed in a future release.

(Here xm is torch_xla.core.xla_model following PyTorch/XLA convention)

Lower BERT pretraining performance with torch-neuronx 2.5 compared to torch-neuronx 2.1

Currently, BERT pretraining performance is ~11% lower with torch-neuronx 2.5 compared to torch-neuronx 2.1. This
is due to the switch to using model. to(torch.bfloat16) as part of migration away from the deprecated environment
variable XLA_DOWNCAST_BF16. As a work-around to recover the performance, you can set XLA_DOWNCAST_BF16=1
which would still work in torch-neuronx 2.5 although there will be deprecation warnings (as noted below).

Warning “XLA_DOWNCAST_BF16 will be deprecated after the 2.5 release, please downcast your
model directly”

Environment variables XLA_DOWNCAST_BF16 and XLA_USE_BF16 are deprecated (warning when used). Please switch
to automatic mixed-precision or use model.to(torch.bfloat16) command to cast model to BF16. (see migra-
tion_from_xla_downcast_bf16)

2.1. PyTorch Neuron 121


https://github.com/pytorch/xla/issues/8640
https://github.com/pytorch/xla/issues/8560
https://github.com/pytorch/xla/issues/8560
https://github.com/pytorch/xla/issues/8422

AWS Neuron

WARNING:root:torch_xla.core.xla_model.xrt_world_size() will be removed in release 2.7. is depre-
cated. Use torch_xla.runtime.world_size instead.

This is a warning that torch_xla.core.xla_model.xrt_world_size() will be removed in a future release. Please
switch to using torch_xla.runtime.world_size instead.

WARNING:torch_xla.core.xla_model.xla_model.get_ordinal() will be removed in release 2.7. is dep-
recated. Use torch_xla.runtime.global_ordinal instead.

This is a warning that torch_xla.core.xla_model.xla_model.get_ordinal () will be removed in a future re-
lease. Please switch to using torch_xla.runtime.global_ordinal () instead.

AttributeError: module ‘torch_xla.runtime’ has no attribute ‘using_pjrt’

In Torch-XLLA 2.5, torch_xla.runtime.using_pjrt is removed because PJRT is the sole Torch-XLA runtime. See
commit PR.

"EOFError: Ran out of input" or "_pickle.UnpicklingError: invalid load key, '!'" errors dur-
ing Neuron Parallel Compile

With PyTorch 2.5 (torch-neuronx), HF Trainer API's use of XLA function .mesh_reduce causes "EOFError:
Ran out of input" or "_pickle.UnpicklingError: invalid load key, '!'" errors during Neuron Paral-
lel Compile. To work-around this issue, you can add the following code snippet (after python imports) to replace
xm.mesh_reduce with a form that uses xm.all_gather instead of xm.rendezvous() with payload. This will add
additional small on-device graphs (as opposed to the original xm.mesh_reduce which runs on CPU).

import copy

import torch_xla.core.xla_model as xm

def mesh_reduce(tag, data, reduce_fn):
xm.rendezvous (tag)
xdatain = copy.deepcopy(data)
xdatain = xdatain.to("xla")
xdata = xm.all_gather(xdatain, pin_layout=False)
cpu_xdata = xdata.detach().to("cpu")
cpu_xdata_split = torch.split(cpu_xdata, xdatain.shape[0])
xldata = [x for x in cpu_xdata_split]
return reduce_fn(xldata)

xm.mesh_reduce = mesh_reduce

Check failed: tensor_data error during when using torch.utils.data.Dataloader with
shuffle=True

With PyTorch 2.5 (torch-neuronx), using torch.utils.data.Dataloader with shuffle=True would cause the
following error in synchronize_rng_states (i.e. ZeRO] tutorial):

RuntimeError: torch_xla/csrc/xla_graph_executor.cpp:562 : Check failed: tensor_data

This is due to synchronize_rng_states using xm.mesh_reduce to synchronize RNG states. xm.mesh_reduce in
turn uses xm.rendezvous () with payload, which as noted in 2.x migration guide, would result in extra graphs that
could lead to lower performance due to change in xm.rendezvous () in torch-xla 2.x. In the case of ZeRO1 tutorial,
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using xm.rendezvous () with payload also lead to the error above. This limitation will be fixed in an upcoming re-
lease. For now, to work around the issue, please disable shuffle in Datal.oader when NEURON_EXTRACT_GRAPHS_ONLY
environment is set automatically by Neuron Parallel Compile:

train_dataloader = Dataloader(
train_dataset, shuffle=(os.environ.get("NEURON_EXTRACT_GRAPHS_ONLY", None) == None),.
—collate_fn=default_data_collator, batch_size=args.per_device_train_batch_size

)

Additionally, as in the previous section, you can add the following code snippet (after python imports) to replace
xm.mesh_reduce with a form that uses xm.all_gather instead of xm.rendezvous() with payload. This will add
additional small on-device graphs (as opposed to the original xm.mesh_reduce which runs on CPU).

import copy

import torch_xla.core.xla_model as xm

def mesh_reduce(tag, data, reduce_fn):
xm.rendezvous (tag)
xdatain = copy.deepcopy(data)
xdatain = xdatain.to("xla")
xdata = xm.all_gather(xdatain, pin_layout=False)
cpu_xdata = xdata.detach().to("cpu")
cpu_xdata_split = torch.split(cpu_xdata, xdatain.shape[0])
xldata = [x for x in cpu_xdata_split]
return reduce_fn(xldata)

xm.mesh_reduce = mesh_reduce

Compiler assertion error when running Stable Diffusion training

Currently, with PyTorch 2.5 (torch-neuronx), we are seeing the following compiler assertion error with Stable Diffusion
training when gradient accumulation is enabled. This will be fixed in an upcoming release. For now, if you would like
to run Stable Diffusion training with Neuron SDK release 2.21/2.22, please disable gradient accumulation in torch-
neuronx 2.5.

ERROR 222163 [NeuronAssert]: Assertion failure in usr/lib/python3.8/concurrent/futures/
—process.py at line 239 with exception:
too many partition dims! {{0,+,960}[10],+,105603}[10]

Release [2.1.2.2.4.0]

Date: 12/xx/2024

Summary

* Added support for Trainium?2

* Added support for C++11 ABI

* Added support for Neuron Profiler 2.0
¢ Added support for libneuronxla 2.1.*
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Note: The CVEs CVE-2024-31583 and CVE-2024-31580 affect PyTorch versions 2.1 and earlier. Based on Amazon’s
analysis, executing models on Trainium and Inferentia is not exposed to either of these vulnerabilities. We recommend
upgrading to the new version of Torch-NeuronX by following the Neuron setup instruction.

Release [1.13.1.1.16.0]

Date: 12/xx/2024

Summary

Minor updates

Note: Torch NeuronX 1.13 currently does not support Trainium?2.

Note: The CVEs CVE-2024-31583 and CVE-2024-31580 affect PyTorch versions 2.1 and earlier. Based on Amazon’s
analysis, executing models on Trainium and Inferentia is not exposed to either of these vulnerabilities. We recommend
upgrading to the new version of Torch-NeuronX by following the Neuron setup instruction.

Release [2.1.2.2.3.2]

Date: 11/20/2024

Summary

This patch narrows the range of dependent libneuronxla versions to support minor version bumps and fixes the “list
index out of range” error when using the Zero Redundancy Optimizer (ZeRO1) checkpoint loading.

Release [2.1.2.2.3.1]

Date: 10/25/2024

Summary

This patch release removes the excessive lock wait time during neuron_parallel_compile graph extraction for large
cluster training.
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Release [2.1.2.2.3.0]

Date: 09/16/2024

Summary

This release adds support for Neuron Kernel Interface (NKI), Python 3.11, and protobuf versions 3.20+, as well as
improved BERT performance.

What’s new in this release

* Added support for Neuron Kernel Interface (NKI). Please see NKI documentation for more information.
* Added support for Python 3.11.
* Added support for protobuf versions 3.20+.

* (Training) Increased performance for BERT-Large pretraining by changing
NEURON_TRANSFER_WITH_STATIC_RING_OPS default.

¢ (Training) Improved Neuron Cache locking mechanism for better Neuron Cache performance during multi-node
training

¢ (Inference) Added support for weight separated models for DataParallel class.

Known limitations

The following features are not yet supported in this version of Torch-Neuronx 2.1: * (Training) GSPMD * (Train-
ing/Inference) TorchDynamo (torch.compile) * (Training) DDP/FSDP

Resolved Issues
Better performance for BERT-Large pretraining

Currently we see about 20% better trnl.32xlarge performance for BERT-Large BF16 pre-training with PyTorch 2.1
(torch-neuronx) when NEURON_TRANSFER_WITH_STATIC_RING_OPS="Embedding" (the new default) instead of the
previous default "Embedding,LayerNorm,Linear,Conv2d,BatchNorm2d". No action is needed from users when
using release 2.20’s torch-neuronx which includes the new default. See list of environment variables regarding infor-
mation about NEURON_TRANSFER_WITH_STATIC_RING_OPS.

Known issues

Please see the Introducing PyTorch 2.1 Support for a full list of known issues.
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Error cannot import name 'builder' from 'google.protobuf.internal' after installing compiler
from earlier releases (2.19 or earlier)

When using torch-neuronx from Neuron SDK release 2.20 and installing the compiler from an earlier release (Neuron
SDK release 2.19 or earlier), you may encounter the error ImportError: cannot import name 'builder' from
'google.protobuf.internal. This issue is caused by the compiler’s dependency on protobuf version 3.19 in the
Neuron SDK release 2.19 or earlier.

To work-around this issue, please install protobuf 3.20.3:

pip install protobuf==3.20.3

Ignore the pip dependency check error that may occur due to the earlier compiler’s dependency on protobuf version
3.19.

Lower accuracy when fine-tuning Roberta

In the current Neuron SDK release 2.20, we have observed lower accuracy (68% vs expected 89%) when fine-tuning
the RoBERTa-large model on the MRPC dataset. This issue will be addressed in a future release.

To work around this problem, you can use the compiler from Neuron SDK release 2.19, while also installing the correct
version of the protobuf library. Run the following command:

python3 -m pip install neuronx-cc==2.14.227.0+2d4£f85be protobuf==3.20.3

Please note the protobuf version requirement mentioned in the previous section, as it is necessary to address the com-
patibility issue between the Neuron SDK 2.19 compiler and the protobuf library.

Slower loss convergence for NxD LLaMA-3 70B pretraining using ZeRO1 tutorial

Currently, with PyTorch 2.1 (torch-neuronx), we see slower loss convergence in the LLaMA-3 70B tutorial for neuronx-
distributed when using the recommended flags (NEURON_CC_FLAGS="--distribution-strategy llm-training
--model-type transformer"). To work-around this issue, please only use --model-type transformer flag
(NEURON_CC_FLAGS="--model-type transformer").

GlibC error on Amazon Linux 2

If using PyTorch 2.1 (torch-neuronx) on Amazon Linux 2, you will see a GlibC error below. Please switch to a newer
supported OS such as Ubuntu 20, Ubuntu 22, or Amazon Linux 2023.

ImportError: /1ib64/libc.so.6: version "GLIBC_2.27' not found (required by /tmp/debug/_
- XLAC. cpython-38-x86_64-1inux-gnu.so)
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"EOFError: Ran out of input" or "_pickle.UnpicklingError: invalid load key, '!'" errors dur-
ing Neuron Parallel Compile

With PyTorch 2.1 (torch-neuronx), HF Trainer API's use of XLA function .mesh_reduce causes "EOFError:
Ran out of input" or "_pickle.UnpicklingError: invalid load key, '!'" errors during Neuron Paral-
lel Compile. To work-around this issue, you can add the following code snippet (after python imports) to replace
xm.mesh_reduce with a form that uses xm.all_gather instead of xm.rendezvous() with payload. This will add
additional small on-device graphs (as opposed to the original xm.mesh_reduce which runs on CPU).

import copy

import torch_xla.core.xla_model as xm

def mesh_reduce(tag, data, reduce_fn):
xm.rendezvous(tag)
xdatain = copy.deepcopy(data)
xdatain = xdatain.to("xla")
xdata = xm.all_gather(xdatain, pin_layout=False)
cpu_xdata = xdata.detach().to("cpu™)
cpu_xdata_split = torch.split(cpu_xdata, xdatain.shape[0])
xldata = [x for x in cpu_xdata_split]
return reduce_fn(xldata)

xm.mesh_reduce = mesh_reduce

Check failed: tensor_data error during when using torch.utils.data.Dataloader with
shuffle=True

With PyTorch 2.1 (torch-neuronx), using torch.utils.data.Dataloader with shuffle=True would cause the
following error in synchronize_rng_states (i.e. ZeROI tutorial):

RuntimeError: torch_xla/csrc/xla_graph_executor.cpp:562 : Check failed: tensor_data

This is due to synchronize_rng_states using xm.mesh_reduce to synchronize RNG states. xm.mesh_reduce in
turn uses xm.rendezvous () with payload, which as noted in 2.x migration guide, would result in extra graphs that
could lead to lower performance due to change in xm.rendezvous () in torch-xla 2.x. In the case of ZeRO! tutorial,
using xm.rendezvous () with payload also lead to the error above. This limitation will be fixed in an upcoming re-
lease. For now, to work around the issue, please disable shuffle in Datal.oader when NEURON_EXTRACT_GRAPHS_ONLY
environment is set automatically by Neuron Parallel Compile:

train_dataloader = Dataloader(
train_dataset, shuffle=(os.environ.get("NEURON_EXTRACT_GRAPHS_ONLY", None) == None),.
—,collate_fn=default_data_collator, batch_size=args.per_device_train_batch_size

)

Additionally, as in the previous section, you can add the following code snippet (after python imports) to replace
xm.mesh_reduce with a form that uses xm.all_gather instead of xm.rendezvous() with payload. This will add
additional small on-device graphs (as opposed to the original xm.mesh_reduce which runs on CPU).

import copy

import torch_xla.core.xla_model as xm

def mesh_reduce(tag, data, reduce_fn):
xm.rendezvous(tag)
xdatain = copy.deepcopy(data)
xdatain = xdatain.to("xla")

(continues on next page)
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(continued from previous page)

xdata = xm.all_gather(xdatain, pin_layout=False)
cpu_xdata = xdata.detach().to("cpu")
cpu_xdata_split = torch.split(cpu_xdata, xdatain.shape[0])
xldata = [x for x in cpu_xdata_split]
return reduce_fn(xldata)
xm.mesh_reduce = mesh_reduce

Compiler error when torch_neuronx.xla_impl.ops.set_unload_prior_neuron_models_mode(True)

Currently with PyTorch 2.1 (torch-neuronx), using the torch_neuronx.xla_impl.ops.
set_unload_prior_neuron_models_mode(True) (as previously done in the ZeRO! tutorial) to unload graphs
during execution would cause a compilation error Expecting value: line 1 column 1 (char 0). You can
remove this line as it is not recommended for use. Please see the updated ZeRO! tutorial in release 2.18.

Compiler assertion error when running Stable Diffusion training

Currently, with PyTorch 2.1 (torch-neuronx), we are seeing the following compiler assertion error with Stable Diffusion
training when gradient accumulation is enabled. This will be fixed in an upcoming release. For now, if you would like to
run Stable Diffusion training with Neuron SDK release 2.18, please use torch-neuronx==1.13.* or disable gradient
accumulation in torch-neuronx 2.1.

ERROR 222163 [NeuronAssert]: Assertion failure in usr/lib/python3.8/concurrent/futures/
—process.py at line 239 with exception:
too many partition dims! {{0,+,960}[10],+,10560}[10]

Release [1.13.1.1.16.0]

Date: 09/16/2024

Summary

This release adds support for Neuron Kernel Interface (NKI), Python 3.11, and protobuf versions 3.20+.

What’s new in this release

* Added support for Neuron Kernel Interface (NKI). Please see NKI documentation for more information.
» Added support for Python 3.11.
* Added support for protobuf versions 3.20+.

* (Inference) Added support for weight separated models for DataParallel class.
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Known Issues and Limitations

Error cannot import name 'builder' from 'google.protobuf.internal' after installing compiler
from earlier releases (2.19 or earlier)

When using torch-neuronx from Neuron SDK release 2.20 and installing the compiler from an earlier release (Neuron
SDK release 2.19 or earlier), you may encounter the error ImportError: cannot import name 'builder' from
'google.protobuf.internal. This issue is caused by the compiler’s dependency on protobuf version 3.19 in the
Neuron SDK release 2.19 or earlier.

To work-around this issue, please install protobuf 3.20.3:

pip install protobuf==3.20.3

Ignore the pip dependency check error that may occur due to the earlier compiler’s dependency on protobuf version
3.19.

Hang while training Stable Diffusion v1.5 with PyTorch 1.13 (torch-neuronx)

In this release, training Stable Diffusion v1.5 at 512x512 resolution using PyTorch 1.13 (torch-neuronx) currently
results in a hang. The fix will be available in an upcoming release. To work-around, you can install compiler from
release 2.19 (noting the protobuf issue mentioned above).

python3 -m pip install neuronx-cc==2.14.227.0+2d4f85be protobuf==3.20.3

Stable Diffusion v2.1 training is unaffected.

Memory leaking in glibc

glibc malloc memory leaks affect Neuron and may be temporarily limited by setting MALLOC_ARENA_MAX or using
jemalloc library (see https://github.com/aws-neuron/aws-neuron-sdk/issues/728).

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data

Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in the
runtime, and you may see errors that look like this:

bootstrap.cc:86 CCOM WARN Call to accept failed : Too many open files

Hence, it is recommended to use fewer workers per node with DDP.
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Known Issues and Limitations (Inference)
Torchscript serialization error with compiled artifacts larger than 4GB

When using torch_neuronx.trace(), compiled artifacts which exceed 4GB cannot be serialized. Serializing the
torchscript artifact will trigger a segfault. This issue is resolved in torch but is not yet released: https://github.com/
pytorch/pytorch/pull/99104

Release [2.1.2.2.2.0]

Date: 07/03/2024

Summary
What’s new in this release

¢ Improvements in ZeRO1 to have FP32 master weights support and BF16 all-gather
* Added custom SILU enabled via NEURON_CUSTOM_SILU environment variable

* Neuron Parallel Compile now handle non utf-8 characters in trial-run log and reports compilation time results
when enabled with NEURON_PARALLEL_COMPILE_DUMP_RESULTS

e Support for using DummyStore during PJRT process group initialization by setting
TORCH_DIST_INIT_BARRIER=0 and XLA_USE_DUMMY_STORE=1

Known limitations

The following features are not yet supported in this version of Torch-Neuronx 2.1: * (Training) GSPMD * (Train-
ing/Inference) TorchDynamo (torch.compile) * (Training) DDP/FSDP

Resolved Issues
Resolved an issue with slower loss convergence for GPT-2 pretraining using ZeRO1 tutorial

Previously with PyTorch 2.1 (torch-neuronx), we see slower loss convergence in the ZeROI tutorial. This is-
sue is now resolved. Customer can now run the tutorial with the recommended flags (NEURON_CC_FLAGS=
"--distribution-strategy llm-training --model-type transformer").

Resolved an issue with slower loss convergence for NxD LLaMA-2 70B pretraining using ZeRO1
tutorial

Previously with PyTorch 2.1 (torch-neuronx), we see slower loss convergence in the LLaMA-2 70B tutorial for
neuronx-distributed. This issue is now resolved. Customer can now run the tutorial with the recommended flags
(NEURON_CC_FLAGS="--distribution-strategy llm-training --model-type transformer") and turning
on functionalization (XLA_DISABLE_FUNCTIONALIZATION=0). Turning on functionalization results in slightly higher
device memory usage and ~11% lower in performance due to a known issue with torch-xla 2.1 (https://github.
com/pytorch/xla/issues/7174). The higher device memory usage also limits LLaMA-2 70B tutorial to run on 16
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trnl.32xlarge nodes at the minimum, and running on 8 nodes would result in out-of-memory error. See the list of
environment variables for more information about XLA_DISABLE_FUNCTIONALIZATION

Resolved an issue where upon a compiler error during XLA JIT execution, the framework process
exits with a stack dump followed by a core dump

Previously, when there’s a compiler error during XLA JIT execution, the framework process exits with a stack dump
following by a core dump:

2024-06-10 04:31:49.733004: F ./torch_xla/csrc/runtime/debug_macros.h:20] Non-OK-status:.
—status.status() status: INTERNAL: RunNeuronCCImpl: error condition error != 0: <class
< "subprocess.CalledProcessError'>: Command '' died with <Signals.SIGHUP: 1>.
#*** Begin stack trace ***

tsl::CurrentStackTrace()

std: :unique_ptr<xla::PjRtLoadedExecutable, std::default_delete<xla::
—PjRtLoadedExecutable> > ConsumeValue<std::unique_ptr<xla::PjRtLoadedExecutable, std::
—.default_delete<xla: :PjRtLoadedExecutable> > >(absl::1ts_20230125::StatusOr<std: :unique_
—ptr<xla::PjRtLoadedExecutable, std::default_delete<xla::PjRtLoadedExecutable> > >&&)

torch_xla::runtime: :PjRtComputationClient: :Compile(std: :vector<torch_xla::
—runtime: :ComputationClient::CompileInstance, std::allocator<torch_xla::runtime::
—,ComputationClient: :CompileInstance> >)

Py_RunMain
Py_BytesMain
_start
End stack trace ***
Aborted (core dumped)

ek

This is now fixed so that the above error is more succinct:

RuntimeError: Bad StatusOr access: INTERNAL: RunNeuronCCImpl: error condition error != 0:
— <class 'subprocess.CalledProcessError'>: Command '' died with <Signals.SIGHUP: 1>.

Resolved an issue where S3 caching during distributed training can lead to S3 throttling error

When using S3 location as Neuron Cache path (specified via NEURON_COMPILE_CACHE_URL or —cache_dir
option in NEURON_CC_FLAGS), you may get the error An error occurred (SlowDown) when calling the
PutObject operation as in:

2024-04-18 01:51:38.231524: F ./torch_xla/csrc/runtime/debug_macros.h:20] Non-OK-status:.
—,status.status() status: INVALID_ARGUMENT: RunNeuronCCImpl: error condition ! (error !=_
—400): <class 'boto3.exceptions.S3UploadFailedError'>: Failed to upload /tmp/
—tmp4d8d4r2d/model . .hlo to bucket/llama-compile-cache/neuronxcc-2.13.68.0+6dfecc895/
—-MODULE_9048582265414220701+5d2d81ce/model .hlo_module.pb: An error occurred (SlowDown).

—when calling the PutObject operation (reached max retries: 4): Please reduce your.
-, request rate.

This issue is now resolved in release 2.19.
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Resolved error “ImportError: cannot import name ‘packaging’ from ‘pkg_resources
latest setuptools version 70

when using

As reported in https://github.com/aws-neuron/aws-neuron-sdk/issues/893, When running examples in environment
where the latest setuptools version 70 is installed, you may get the following error:

ImportError: cannot import name 'packaging' from 'pkg_resources' (/home/ubuntu/aws_
—neuron_venv_pytorch/lib/python3.8/site-packages/pkg_resources/__init__.py)

In release 2.19 torch-neuronx now depends on setuptools version <= 69.5.1.

Resolved compiler assertion error when training using Hugging Face deepmind/language-perceiver
model

The follow assertion error when training with Hugging Face deepmind/language-perceiver model is now resolved
in release 2.19 compiler:

ERROR 176659 [NeuronAssert]: Assertion failure in usr/lib/python3.8/multiprocessing/
—.process.py at line 108 with exception:

Unsupported batch-norm-training op: tensor_op_name: _batch-norm-training.852 | hlo_id:..
—.852| file_name: | Line: ® | Column: 0O |

Resolved lower accuracy for BERT-base finetuning using HF Trainer API

With release 2.19 compiler, the MRPC dataset accuracy for BERT-base finetuning after 5 epochs is now 87% as ex-
pected.

Resolved the issue with increased in Neuron Parallel Compile time

PyTorch 2.1 (torch-neuronx), the time to run Neuron Parallel Compile for some model configuration has decreased.

Known issues

Please see the Introducing PyTorch 2.1 Support for a full list of known issues.

Slower loss convergence for NxD LLaMA-3 70B pretraining using ZeRO1 tutorial

Currently, with PyTorch 2.1 (torch-neuronx), we see slower loss convergence in the LLaMA-3 70B tutorial for neuronx-
distributed when using the recommended flags (NEURON_CC_FLAGS="--distribution-strategy llm-training
--model-type transformer"). To work-around this issue, please only use --model-type transformer flag
(NEURON_CC_FLAGS="--model-type transformer").
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Gradient accumulation is not yet supported for Stable Diffusion due to a compiler error

Currently, with PyTorch 2.1 (torch-neuronx), we are seeing a compiler assertion error with Stable Diffusion training
when gradient accumulation is enabled. To train Stable Diffusion with gradient accumulation, please use PyTorch 1.13
(torch-neuronx) instead of PyTorch 2.1 (torch-neuronx).

Enabling functionalization (XLA_DISABLE_FUNCTIONALIZATION=0) results in 15% lower performance
and non-convergence for the BERT pretraining tutorial

Currently, with PyTorch 2.1 (torch-neuronx), enabling functionalization (XLA_DISABLE_FUNCTIONALIZATION=0)
would result in 15% lower performance and non-convergence for the BERT pretraining tutorial. The lower perfor-
mance is due to missing aliasing for gradient accumulation and is a known issue with torch-xla 2.1 (https://github.
com/pytorch/xla/issues/7174). The non-convergence is due to an issue in marking weights as static (buffer address
not changing), which can be worked around by setting NEURON_TRANSFER_WITH_STATIC_RING_OPS to empty string
(NEURON_TRANSFER_WITH_STATIC_RING_OPS="". See the list of environment variables for more information about
XLA_DISABLE_FUNCTIONALIZATION. and NEURON_TRANSFER_WITH_STATIC_RING_OPS.

export NEURON_TRANSFER_WITH_STATIC_RING_OPS=""

GlibC error on Amazon Linux 2

If using PyTorch 2.1 (torch-neuronx) on Amazon Linux 2, you will see a GlibC error below. Please switch to a newer
supported OS such as Ubuntu 20, Ubuntu 22, or Amazon Linux 2023.

ImportError: /1ib64/libc.so.6: version "GLIBC_2.27' not found (required by /tmp/debug/_
—XLAC. cpython-38-x86_64-1inux-gnu.so)

"EOFError: Ran out of input" or "_pickle.UnpicklingError: invalid load key, '!'" errors dur-
ing Neuron Parallel Compile

With PyTorch 2.1 (torch-neuronx), HF Trainer API’s use of XLA function .mesh_reduce causes "EOFError:
Ran out of input" or "_pickle.UnpicklingError: invalid load key, '!'" errors during Neuron Paral-
lel Compile. To work-around this issue, you can add the following code snippet (after python imports) to replace
xm.mesh_reduce with a form that uses xm.all_gather instead of xm.rendezvous() with payload. This will add
additional small on-device graphs (as opposed to the original xm.mesh_reduce which runs on CPU).

import copy

import torch_xla.core.xla_model as xm

def mesh_reduce(tag, data, reduce_fn):
xm.rendezvous (tag)
xdatain = copy.deepcopy(data)
xdatain = xdatain.to("xla")
xdata = xm.all_gather(xdatain, pin_layout=False)
cpu_xdata = xdata.detach().to("cpu™)
cpu_xdata_split = torch.split(cpu_xdata, xdatain.shape[0])
xldata = [x for x in cpu_xdata_split]
return reduce_fn(xldata)

xm.mesh_reduce = mesh_reduce
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Check failed: tensor_data error during when using torch.utils.data.Dataloader with
shuffle=True

With PyTorch 2.1 (torch-neuronx), using torch.utils.data.DatalLoader with shuffle=True would cause the
following error in synchronize_rng_states (i.e. ZeRO] tutorial):

RuntimeError: torch_xla/csrc/xla_graph_executor.cpp:562 : Check failed: tensor_data

This is due to synchronize_rng_states using xm.mesh_reduce to synchronize RNG states. xm.mesh_reduce
in turn uses xm.rendezvous() with payload, which results in extra graphs that could lead to lower performance
due to change in xm.rendezvous() in torch-xla 2.x. In the case of ZeRO! tutorial, using xm.rendezvous() with
payload also lead to the error above. This limitation will be fixed in an upcoming release. For now, to work around the
issue, please disable shuffle in Datal.oader when NEURON_EXTRACT_GRAPHS_ONLY environment is set automatically
by Neuron Parallel Compile:

train_dataloader = Dataloader(
train_dataset, shuffle=(os.environ.get("NEURON_EXTRACT_GRAPHS_ONLY", None) == None),.
—~collate_fn=default_data_collator, batch_size=args.per_device_train_batch_size

)

Additionally, as in the previous section, you can add the following code snippet (after python imports) to replace
xm.mesh_reduce with a form that uses xm.all_gather instead of xm.rendezvous() with payload. This will add
additional small on-device graphs (as opposed to the original xm.mesh_reduce which runs on CPU).

import copy

import torch_xla.core.xla_model as xm

def mesh_reduce(tag, data, reduce_fn):
xm.rendezvous(tag)
xdatain = copy.deepcopy(data)
xdatain = xdatain.to("xla")
xdata = xm.all_gather(xdatain, pin_layout=False)
cpu_xdata = xdata.detach().to("cpu™)
cpu_xdata_split = torch.split(cpu_xdata, xdatain.shape[0])
xldata = [x for x in cpu_xdata_split]
return reduce_fn(xldata)

xm.mesh_reduce = mesh_reduce

Compiler error when torch_neuronx.xla_impl.ops.set_unload_prior_neuron_models_mode(True)

Currently with PyTorch 2.1 (torch-neuronx), using the torch_neuronx.xla_impl.ops.
set_unload_prior_neuron_models_mode (True) (as previously done in the ZeROI tutorial) to unload graphs
during execution would cause a compilation error Expecting value: line 1 column 1 (char 0). You can
remove this line as it is not recommended for use. Please see the updated ZeRO! tutorial in release 2.18.
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Compiler assertion error when running Stable Diffusion training

Currently, with PyTorch 2.1 (torch-neuronx), we are seeing the following compiler assertion error with Stable Diffusion
training when gradient accumulation is enabled. This will be fixed in an upcoming release. For now, if you would like to
run Stable Diffusion training with Neuron SDK release 2.18, please use torch-neuronx==1.13. * or disable gradient
accumulation in torch-neuronx 2.1.

ERROR 222163 [NeuronAssert]: Assertion failure in usr/lib/python3.8/concurrent/futures/
—process.py at line 239 with exception:
too many partition dims! {{0,+,960}[10],+,105603}[10]

Lower performance for BERT-Large

Currently we see 8% less performance when running the BERT-Large pre-training tutorial with PyTorch 2.1 (torch-
neuronx) as compared to PyTorch 1.13 (torch-neuronx).

Release [1.13.1.1.15.0]

Date: 07/03/2024

Summary
What’s new in this release

Improvements in ZeRO1 to have FP32 master weights support and BF16 all-gather Added custom SILU enabled via
NEURON_CUSTOM_SILU environment variable Neuron Parallel Compile now handle non utf-8 characters in trial-run log
and reports compilation time results when enabled with NEURON_PARALLEL_COMPILE_DUMP_RESULTS

Resolved Issues
Known Issues and Limitations
Memory leaking in glibc

glibc malloc memory leaks affect Neuron and may be temporarily limited by setting MALLOC_ARENA_MAX or using
jemalloc library (see https://github.com/aws-neuron/aws-neuron-sdk/issues/728).

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist- with-real-data
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Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in the
runtime, and you may see errors that look like this:

bootstrap.cc:86 CCOM WARN Call to accept failed : Too many open files °

Hence, it is recommended to use fewer workers per node with DDP.

Known Issues and Limitations (Inference)
Torchscript serialization error with compiled artifacts larger than 4GB

When using torch_neuronx. trace(), compiled artifacts which exceed 4GB cannot be serialized. Serializing the
torchscript artifact will trigger a segfault. This issue is resolved in torch but is not yet released: https://github.com/
pytorch/pytorch/pull/99104

Release [2.1.2.2.1.0]

Date: 04/01/2024

Summary

This release of 2.1 includes support for Neuron Profiler, multi-instance distributed training, Nemo Megatron, and
HuggingFace Trainer API.

What’s new in this release

In addition to previously supported features (Transformers-NeuronX, Torch-NeuronX Trace API, Torch-NeuronX train-
ing, NeuronX Distributed training), PyTorch 2.1 (torch-neuronx) now includes support for:

¢ (Inference) NeuronX Distributed inference

¢ (Training/Inference) Neuron Profiler

* (Training) Multi-instance distributed training

* (Training) Nemo Megatron

¢ (Training) analyze feature in neuron_parallel_compile
* (Training) HuggingFace Trainer API

Additionally, auto-bucketing is a new feature for torch-neuronx and Neuronx-Distributed allowing users to define bucket
models that can be serialized into a single model for multi-shape inference.
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Known limitations

The following features are not yet supported in this version of PyTorch 2.1 (torch-neuronx):
¢ (Training) GSPMD
¢ (Training) TorchDynamo (torch.compile)
* (Training) DDP/FSDP

¢ (Training) S3 caching during distributed training can lead to throttling issues

Resolved issues
“Attempted to access the data pointer on an invalid python storage”

When using Hugging Face Trainer API with transformers version >= 4.35 and < 4.37.3, user would see the error
"Attempted to access the data pointer on an invalid python storage" during model checkpoint sav-
ing. This issue is fixed in transformers version >= 4.37.3. See https://github.com/huggingface/transformers/issues/
27578 for more information.

Too many graph compilations when using HF Trainer API

When using Hugging Face transformers version >= 4.35 and < 4.37.3, user would see many graph compilations (see
https://github.com/aws-neuron/aws-neuron-sdk/issues/8 13 for more information). To work around this issue, in trans-
formers version >= 4.37.3, user can add the option --save_safetensors False to Trainer API function call and
modify the installed trainer.py as follows (don’t move model to CPU before saving checkpoint):

# Workaround https://github.com/aws-neuron/aws-neuron-sdk/issues/813
sed -i "s/model\.to(\"cpu\")//" “python -c "import site; print(site.getsitepackages()[0])
""" /trainer.py

Divergence (non-convergence) of loss for BERT/LLaMA when using release 2.16 compiler

With release 2.18, the divergence (non-convergence) of BERT/LLaMA loss is resolved. No compiler flag change is
required.

Known Issues

Please see the Introducing PyTorch 2.1 Support for a full list of known issues.
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GlibC error on Amazon Linux 2

If using PyTorch 2.1 (torch-neuronx) on Amazon Linux 2, you will see a GlibC error below. Please switch to a newer
supported OS such as Ubuntu 20, Ubuntu 22, or Amazon Linux 2023.

ImportError: /lib64/libc.so.6: version "GLIBC_2.27' not found (required by /tmp/debug/_
—XLAC. cpython-38-x86_64-1inux-gnu.so)

"EOFError: Ran out of input" or "_pickle.UnpicklingError: invalid load key, '!'" errors dur-
ing Neuron Parallel Compile

With PyTorch 2.1 (torch-neuronx), HF Trainer API’s use of XLA function .mesh_reduce causes "EOFError:
Ran out of input"” or "_pickle.UnpicklingError: invalid load key, '!'" errors during Neuron Paral-
lel Compile. This is an issue with the trial execution of empty NEFFs and should not affect the normal execution of
the training script.

Check failed: tensor_data error during when using torch.utils.data.Dataloader with
shuffle=True

With PyTorch 2.1 (torch-neuronx), using torch.utils.data.DatalLoader with shuffle=True would cause the
following error in synchronize_rng_states (i.e. ZeRO] tutorial):

RuntimeError: torch_xla/csrc/xla_graph_executor.cpp:562 : Check failed: tensor_data

This is due to synchronize_rng_states using xm.mesh_reduce to synchronize RNG states. xm.mesh_reduce in
turn uses xm.rendezvous () with payload, which as noted in 2.x migration guide, would result in extra graphs that
could lead to lower performance due to change in xm.rendezvous () in torch-xla 2.x. In the case of ZeRO1 tutorial,
using xm.rendezvous () with payload also lead to the error above. This limitation will be fixed in an upcoming re-
lease. For now, to work around the issue, please disable shuffle in Datal.oader when NEURON_EXTRACT_GRAPHS_ONLY
environment is set automatically by Neuron Parallel Compile:

train_dataloader = Dataloader(
train_dataset, shuffle=(os.environ.get("NEURON_EXTRACT_GRAPHS_ONLY", None) == None),.
—~collate_fn=default_data_collator, batch_size=args.per_device_train_batch_size

)

Additionally, you can add the following code snippet (after python imports) to replace xm.mesh_reduce with a form
thatuses xm.all_gather instead of xm.rendezvous () with payload. This will add additional small on-device graphs
(as opposed to the original xm.mesh_reduce which runs on CPU).

import copy

import torch_xla.core.xla_model as xm

def mesh_reduce(tag, data, reduce_fn):
xm.rendezvous(tag)
xdatain = copy.deepcopy(data)
xdatain = xdatain.to("xla")
xdata = xm.all_gather(xdatain, pin_layout=False)
cpu_xdata = xdata.detach().to("cpu™)
cpu_xdata_split = torch.split(cpu_xdata, xdatain.shape[0])
xldata = [x for x in cpu_xdata_split]
return reduce_fn(xldata)

xm.mesh_reduce = mesh_reduce
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Compiler error when torch_neuronx.xla_impl.ops.set_unload_prior_neuron_models_mode(True)

Currently with PyTorch 2.1 (torch-neuronx), using the torch_neuronx.xla_impl.ops.
set_unload_prior_neuron_models_mode(True) (as previously done in the ZeRO! tutorial) to unload graphs
during execution would cause a compilation error Expecting value: line 1 column 1 (char 0). You can
remove this line as it is not recommended for use. Please see the updated ZeRO1 tutorial in release 2.18.

Compiler assertion error when running Stable Diffusion training

Currently, with PyTorch 2.1 (torch-neuronx), we are seeing the following compiler assertion error with Stable Diffusion
training. This will be fixed in an upcoming release. For now, if you would like to run Stable Diffusion training with
Neuron SDK release 2.18, please use torch-neuronx==1.13.%.

ERROR 222163 [NeuronAssert]: Assertion failure in usr/lib/python3.8/concurrent/futures/
—.process.py at line 239 with exception:
too many partition dims! {{0,+,960}[10],+,10560}[10]

Compiler assertion error when training using Hugging Face deepmind/language-perceiver model

Currently, with PyTorch 2.1 (torch-neuronx), we are seeing the following compiler assertion error when training with
Hugging Face deepmind/language-perceiver model. This will be fixed in an upcoming release. For now, if you
would like to train Hugging Face deepmind/language-perceiver model with Neuron SDK release 2.18, please use
torch-neuronx==1.13.%.

ERROR 176659 [NeuronAssert]: Assertion failure in usr/lib/python3.8/multiprocessing/
—.process.py at line 108 with exception:

Unsupported batch-norm-training op: tensor_op_name: _batch-norm-training.852 | hlo_id:..
,852| file_name: | Line: ® | Column: 0O |

Lower performance for BERT-Large

Currently we see 8% less performance when running the BERT-Large pre-training tutorial with PyTorch 2.1 (torch-
neuronx) as compared to PyTorch 1.13 (torch-neuronx).

Slower loss convergence for GPT-2 pretraining using ZeRO1 tutorial when using recommended com-
piler flags

Currently with PyTorch 2.1 (torch-neuronx), we see slower loss convergence in the ZeRO1 tutorial when using recom-
mended compiler flags. To work-around this issue and restore faster convergence, please replace the NEURON_CC_FLAGS
as below:

# export NEURON_CC_FLAGS="--retry_failed compilation --distribution-strategy 1lm-
—training --model-type transformer"
export NEURON_CC_FLAGS="--retry_failed_compilation -01"
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Slower loss convergence for NxD LLaMA 70B pretraining using ZeRO1 tutorial when using recom-
mended compiler flags

Currently with PyTorch 2.1 (torch-neuronx), we see slower loss convergence in the LLaMA-2 70B tutorial for neuronx-
distributed when using recommended compiler flags. To work-around this issue and restore faster convergence, please
replace the NEURON_CC_FLAGS as below:

# export NEURON_CC_FLAGS="--retry_failed _compilation --distribution-strategy 1lm-
—training --model-type transformer"
export NEURON_CC_FLAGS="--retry_failed_compilation"

Lower accuracy for BERT-base finetuning using HF Trainer API

Currently, with PyTorch 2.1 (torch-neuronx), MRPC dataset accuracy for BERT-base finetuning after 5 epochs is 83%
instead of 87%. A work-around is to remove the option --model-type=transformer from NEURON_CC_FLAGS. This
will be fixed in an upcoming release.

Increased in Neuron Parallel Compile time

Currently, with PyTorch 2.1 (torch-neuronx), the time to run Neuron Parallel Compile for some model configuration
is increased. In one example, the Neuron Parallel Compile time for NeuronX Nemo-Megatron LLaMA 13B is 2x
compared to when using PyTorch 1.13 (torch-neuronx). This will be fixed in an upcoming release.

Release [1.13.1.1.14.0]

Date: 04/01/2024

Summary

Auto-bucketing is a new feature for torch-neuronx and Neuronx-Distributed allowing users to define bucket models
that can be serialized into a single model for multi-shape inference.

Resolved issues

¢ (Inference) Fixed an issue where transformers-neuronx inference errors could crash the application and cause it
to hang. Inference errors should now correctly throw a runtime exception.

¢ (Inference/Training) Fixed an issue where torch.argmin() produced incorrect results.

¢ (Training) neuron_parallel_compile tool now use traceback.print_exc instead of format to support
Python 3.10.

¢ (Training) Fixed an issue in ZeRO1 when sharded params are initialized with torch.double.
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Known issues and limitations
Memory leaking in glibc

glibc malloc memory leaks affect Neuron and may be temporarily limited by setting MALLOC_ARENA_MAX or using
jemalloc library (see https://github.com/aws-neuron/aws-neuron-sdk/issues/728).

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data

Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in the
runtime, and you may see errors that look like this:

bootstrap.cc:86 CCOM WARN Call to accept failed : Too many open files
Hence, it is recommended to use fewer workers per node with DDP.

Known issues and limitations (Inference)

Torchscript serialization error with compiled artifacts larger than 4GB

When using torch_neuronx.trace(), compiled artifacts that exceed 4GB cannot be serialized. Serializing the
TorchScript artifact triggers a segmentation fault. This issue is resolved in PyTorch but is not yet released: https:
/I github.com/pytorch/pytorch/pull/99104

Release [2.1.1.2.0.0b0] (Beta)

Date: 12/21/2023

Summary

Introducing the beta release of Torch-NeuronX with PyTorch 2.1 support.
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What’s new in this release

This version of PyTorch 2.1 (torch-neuronx) supports:
¢ (Inference) Transformers-NeuronX
¢ (Inference) Torch-NeuronX Trace API
* (Training) NeuronX Distributed training
¢ (Training) Torch-NeuronX training

* (Training) New snapshotting capability enabled via the XLA_FLAGS environment variable (see debug guide)

Known limitations

The following features are not yet supported in this version of PyTorch 2.1 (torch-neuronx):
* (Training/Inference) Neuron Profiler
¢ (Inference) NeuronX Distributed inference
* (Training) Nemo Megatron
¢ (Training) GSPMD
¢ (Training) TorchDynamo (torch.compile)
¢ (Training) analyze feature in neuron_parallel_compile
* (Training) HuggingFace Trainer API (see Known Issues below)

Additional limitations are noted in the Known Issues section below.

Known Issues

Please see the Introducing PyTorch 2.1 Support (Beta) for a full list of known issues.

Lower performance for BERT-Large

Currently we see 8% less performance when running the BERT-Large pre-training tutorial with PyTorch 2.1 (torch-
neuronx) as compared to PyTorch 1.13 (torch-neuronx).

Divergence (non-convergence) of loss for BERT/LLaMA when using release 2.16 compiler

Currently, when using release 2.16 compiler version 2.12.54.0+f631c2365, you may see divergence (non-convergence)
of loss curve. To workaround this issue, please use release 2.15 compiler version 2.11.0.35+4f5279863.
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Error “Attempted to access the data pointer on an invalid python storage” when using HF Trainer
API

Currently, if using HuggingFace Transformers Trainer API to train (i.e. HuggingFace Trainer API fine-tuning tutorial),
you may see the error “Attempted to access the data pointer on an invalid python storage”. This is a known issue
https://github.com/huggingface/transformers/issues/27578 and will be fixed in a future release.

Release [1.13.1.1.13.0]

Date: 12/21/2023

Summary
What’s new in this release

* Added Weight Replacement API For Inference)

Resolved issues

* Add bucketting logic to control the size of tensors for all-gather and reduce-scatter

* Fixed ZeRO-1 bug for inferring local ranks in 2-D configuration (https://github.com/pytorch/xla/pull/5936)

Known issues and limitations
Memory leaking in glibc

glibc malloc memory leaks affect Neuron and may be temporarily limited by setting MALLOC_ARENA_MAX or using
jemalloc library (see https://github.com/aws-neuron/aws-neuron-sdk/issues/728).

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data

Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in the
runtime, and you may see errors that look like this:

bootstrap.cc:86 CCOM WARN Call to accept failed : Too many open files

Hence, it is recommended to use fewer workers per node with DDP.
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Known issues and limitations (Inference)
torch.argmin() produces incorrect results

torch.argmin() produces incorrect results.

Torchscript serialization error with compiled artifacts larger than 4GB

When using torch_neuronx. trace(), compiled artifacts that exceed 4GB cannot be serialized. Serializing the
TorchScript artifact triggers a segmentation fault. This issue is resolved in PyTorch but is not yet released: https:
//github.com/pytorch/pytorch/pull/99104

Release [2.0.0.2.0.0b0] (Beta)

Date: 10/26/2023

Summary

Introducing the beta release of Torch-NeuronX with PyTorch 2.0 and PIRT support.

What’s new in this release

» Updating from XRT to PJRT runtime. For more info see: <link to intro pjrt doc>

¢ (Inference) Added the ability to partition unsupported ops to CPU during traced inference (See torch_neuronx.
trace API guide)

Known issues and limitations

 Snapshotting is not supported

* NEURON_FRAMEWORK_DEBUG=1 is not supported

* Analyze in neuron_parallel_compile is not supported

* Neuron Profiler is not supported

* VGG11 with input sizes 300x300 may show accuracy issues

* Possible issues with NeMo Megatron checkpointing

* S3 caching with neuron_parallel_compile may show compilation errors

* Compiling without neuron_parallel_compile on multiple nodes may show compilation errors

* GPT2 inference may show errors with torch_neuronx.trace
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Release [1.13.1.1.12.0]

Date: 10/26/2023

Summary
What’s new in this release

* (Training) Added coalescing of all-gather and reduce-scatter inside ZeRO1, which should help in improving
performance at high cluster sizes.

* (Inference) Added the ability to partition unsupported ops to CPU during traced inference. (See
torch_neuronx.trace API guide)

* (Inference) Previously undocumented arguments trace API args state and options are now unsupported (have
no effect) and will result in a deprecation warning if used.

Resolved issues

* Fixed an issue where torch.topk would fail on specific dimensions
¢ (Inference) Fixed an issue where NaNs could be produced when using torch_neuronx.dynamic_batch

¢ (Inference) Updated torch_neuronx.dynamic_batch to better support Modules (traced, scripted, and normal mod-
ules) with multiple Neuron subgraphs

¢ (Inference) Isolate frontend calls to the Neuron compiler to working directories, so concurrent compilations do
not conflict by being run from the same directory.

Known issues and limitations (Training)
Memory leaking in glibc

glibc malloc memory leaks affect Neuron and may be temporarily limited by setting MALLOC_ARENA_MAX.

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data

Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in the
runtime, and you may see errors that look like this:

bootstrap.cc:86 CCOM WARN Call to accept failed : Too many open files

Hence, it is recommended to use fewer workers per node with DDP.
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Known issues and limitations (Inference)
torch.argmin() produces incorrect results

torch.argmin() produces incorrect results.

Torchscript serialization error with compiled artifacts larger than 4GB

When using torch_neuronx. trace(), compiled artifacts that exceed 4GB cannot be serialized. Serializing the
TorchScript artifact triggers a segmentation fault. This issue is resolved in PyTorch but is not yet released: https:
//github.com/pytorch/pytorch/pull/99104

Release [1.13.1.1.11.0]

Date: 9/15/2023

Summary
Resolved issues

* Fixed an issue in torch_neuronx.analyze () which could cause failures with scalar inputs.

* Improved performance of torch_neuronx.analyze().

Release [1.13.1.1.10.1]

Date: 9/01/2023

Summary

Minor bug fixes and enhancements.

Release [1.13.1.1.10.0]

Date: 8/28/2023

Summary
What’s new in this release

* Removed support for Python 3.7

* (Training) Added a neuron_parallel_compile command to clear file locks left behind when a neu-
ron_parallel_compile execution was interrupted (neuron_parallel_compile —command clear-locks)

* (Training) Seedable dropout now enabled by default
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Resolved issues

* (Training) Convolution is now supported
* Fixed segmentation fault when using torch-neuronx to compile models on U22

 Fixed XLA tensor stride information in torch-xla package, which blocked lowering of log_softmax and similar
functions and showed errors like:

File "/home/ubuntu/waldronn/asr/test_env/lib/python3.7/site-packages/torch/nn/functional.
~py", line 1930, in log_softmax
ret = input.log_softmax(dim)
RuntimeError: dimensionality of sizes (3) must match dimensionality of strides (1)

Known issues and limitations (Training)
Memory leaking in glibc

glibc malloc memory leaks affect Neuron and may be temporarily limited by setting MALLOC_ARENA_MAX.

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data

Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in the
runtime, and you may see errors that look like this:

bootstrap.cc:86 CCOM WARN Call to accept failed : Too many open files °
Hence, it is recommended to use fewer workers per node with DDP.

Known issues and limitations (Inference)

torch.argmin() produces incorrect results

torch.argmin() produces incorrect results.
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No automatic partitioning

Currently, when Neuron encounters an operation that it does not support during torch_neuronx. trace(), it may
exit with the following compiler error: “Import of the HLO graph into the Neuron Compiler has failed. This may be
caused by unsupported operators or an internal compiler error.” The intended behavior when tracing is to automatically
partition the model into separate subgraphs that run on NeuronCores and subgraphs that run on CPU. This will be
supported in a future release. See Pylorch Neuron (torch-neuronx) - Supported Operators for a list of supported
operators.

Torchscript serialization error with compiled artifacts larger than 4GB

When using torch_neuronx.trace(), compiled artifacts that exceed 4GB cannot be serialized. Serializing the
TorchScript artifact triggers a segmentation fault. This issue is resolved in PyTorch but is not yet released: https:
/I github.com/pytorch/pytorch/pull/99104

Release [1.13.1.1.9.0]

Date: 7/19/2023

Summary
What’s new in this release

Training support:
* Uses jemalloc as the primary malloc lib to avoid memory leak at checkpointing
* Added support for ZeRO-1 along with tutorial

Inference support:
* Add async load and lazy model load options to accelerate model loading

» Optimize DataParallel API to load onto multiple cores simultaneously when device IDs specified in device_ids
are consecutive

Resolved issues (Training)

* Remove extra graph creation in torch_neuronx.optim.adamw when the beta/lr parameters values become O or 1.

* Stability improvements and faster failure on hitting a fault in XRT server used by XLA.
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Known issues and limitations (Training)
Memory leaking in glibc

glibc malloc memory leaks affect Neuron and may be temporarily limited by setting MALLOC_ARENA_MAX.

Convolution is not supported

Convolution is not supported during training.

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data

Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in the
runtime, and you may see errors that look like this:

bootstrap.cc:86 CCOM WARN Call to accept failed : Too many open files

Hence, it is recommended to use fewer workers per node with DDP.

Known issues and limitations (Inference)

torch.argmin() produces incorrect results

torch.argmin() produces incorrect results.

No automatic partitioning

Currently, when Neuron encounters an operation that it does not support during torch_neuronx. trace(), it may
exit with the following compiler error: “Import of the HLO graph into the Neuron Compiler has failed. This may be
caused by unsupported operators or an internal compiler error.” The intended behavior when tracing is to automatically
partition the model into separate subgraphs that run on NeuronCores and subgraphs that run on CPU. This will be
supported in a future release. See PyTorch Neuron (torch-neuronx) - Supported Operators for a list of supported
operators.
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Torchscript serialization error with compiled artifacts larger than 4GB

When using torch_neuronx.trace(), compiled artifacts that exceed 4GB cannot be serialized. Serializing the
TorchScript artifact triggers a segmentation fault. This issue is resolved in PyTorch but is not yet released: https:
/I github.com/pytorch/pytorch/pull/99104

Release [1.13.1.1.8.0]

Date: 6/14/2023

Summary

* Added s3 caching to NeuronCache.

* Added extract/compile/analyze phases to neuron_parallel_compile.

What’s new in this release
Training support:

* Added S3 caching support to NeuronCache. Removed NeuronCache options —cache_size/cache_ttl (please delete
cache directories as needed).

* Added separate extract and compile phases Neuron Parallel Compile.

* Added model analyze API to Neuron Parallel Compile.

Known issues and limitations (Training)
Memory leaking in glibc

glibc malloc memory leaks affect Neuron and may be temporarily limited by setting MALLOC_ARENA_MAX.

Convolution is not supported

Convolution is not supported during training.

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data
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Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in the
runtime, and you may see errors that look like this:

bootstrap.cc:86 CCOM WARN Call to accept failed : Too many open files

Hence, it is recommended to use fewer workers per node with DDP.

Known issues and limitations (Inference)
torch.argmin() produces incorrect results

torch.argmin() produces incorrect results.

No automatic partitioning

Currently, when Neuron encounters an operation that it does not support during torch_neuronx. trace (), this will
cause an error. The intended behavior when tracing is to automatically partition the model into separate subgraphs that
run on NeuronCores and subgraphs that run on CPU. See PyTorch Neuron (torch-neuronx) - Supported Operators for
a list of supported operators.

Torchscript serialization error with compiled artifacts larger than 4GB

When using torch_neuronx. trace(), compiled artifacts that exceed 4GB cannot be serialized. Serializing the
TorchScript artifact triggers a segmentation fault. This issue is resolved in PyTorch but is not yet released: https:
/I github.com/pytorch/pytorch/pull/99104

Release [1.13.1.1.7.0]

Date: 05/01/2023

Summary
What’s new in this release

Training support:
* Added an improved Neuron-optimized AdamW optimizer implementation.
¢ Added an improved Neuron-optimized torch.nn.Dropout implementation.

* Added an assertion when the torch.nn.Dropout argument inplace=True during training. This is currently
not supported on Neuron.

¢ Added XLA lowering for aten: : count_nonzero
Inference support:
* Added profiling support for models compiled with torch_neuronx. trace()

* Added torch_neuronx.DataParallel for models compiled with torch_neuronx. trace()
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Resolved issues (Training)
Unexpected behavior with torch.autocast

Fixed an issue where torch.autocast did not correctly autocast when using torch.bfloat16

Resolved slower BERT bf16 Phase 1 Single Node Performance

As of the Neuron 2.9.0 release, BERT phase 1 pretraining performance has regressed by approximately 8-9% when
executed on a single node only (i.e. just one trnl.32xlarge instance). This is resolved in 2.10 release.

Resolved lower throughput for BERT-large training on AL2 instances

Starting in release 2.7, we see a performance drop of roughly 5-10% for BERT model training on AL2 instances. This
is resolved in release 2.10.

Resolved issues (Inference)
Error when using the original model after torch_neuronx.trace

Fixed an issue where model parameters would be moved to the Neuron 'x1a’' device during torch_neuronx. trace ()
and would no longer be available to execute on the original device. This made it more difficult to compare Neuron
models against CPU since previously this would require manually moving parameters back to CPU.

Error when using the xm.x1la_device() object followed by using torch_neuronx.trace

Fixed an issue where XLLA device execution and torch_neuronx. trace () could not be performed in the same python
process.

Error when executing torch_neuronx.trace with torch.bfloat16 input/output tensors

Fixed an issue where torch_neuronx.trace() could not compile models which consumed or produced torch.
bfloat16 values.

Known issues and limitations (Training)

Memory leaking in glibc

glibc malloc memory leaks affect Neuron and may be temporarily limited by setting MALLOC_ARENA_MAX.
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Convolution is not supported

Convolution is not supported during training.

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data

Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in the
runtime, and you may see errors that look like this:

bootstrap.cc:86 CCOM WARN Call to accept failed : Too many open files
Hence, it is recommended to use fewer workers per node with DDP.

Known issues and limitations (Inference)

torch.argmin() produces incorrect results

torch.argmin() produces incorrect results.

No automatic partitioning

Currently, when Neuron encounters an operation that it does not support during torch_neuronx. trace (), this will
cause an error. The intended behavior when tracing is to automatically partition the model into separate subgraphs that
run on NeuronCores and subgraphs that run on CPU. See PyTorch Neuron (torch-neuronx) - Supported Operators for
a list of supported operators.

Torchscript serialization error with compiled artifacts larger than 4GB

When using torch_neuronx. trace(), compiled artifacts that exceed 4GB cannot be serialized. Serializing the
TorchScript artifact triggers a segmentation fault. This issue is resolved in PyTorch but is not yet released: https:
//github.com/pytorch/pytorch/pull/99104

Release [1.13.0.1.6.1]

Date: 04/19/2023
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Summary
What’s new in this release

Training support:
* No changes
Inference support:

* Enable deserialized TorchScript modules to be compiled with torch_neuronx. trace()

Release [1.13.0.1.6.1]

Date: 04/19/2023

Summary
What’s new in this release

Training support:
* No changes
Inference support:

* Enable deserialized TorchScript modules to be compiled with torch_neuronx. trace()

Release [1.13.0.1.6.0]

Date: 03/28/2023

Summary
What’s new in this release

Training support:
* Added pipeline parallelism support in AWS Samples for Megatron-LM
Inference support:
* Added model analysis API: torch_neuronx.analyze
* Added HLO opcode support for:
- kAtan2
— kAfterAll
- kMap
* Added XLA lowering support for:
— aten::glu

— aten::scatter_reduce
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 Updated torch.nn.MSELoss to promote input data types to a compatible type

Resolved issues (Training)
GRPC timeout errors when running Megatron-LM GPT 6.7B tutorial on multiple instances

When running AWS Samples for Megatron-LM GPT 6.7B tutorial over multiple instances, you may encounter GRPC
timeout errors like below:

E0302 01:10:20.511231294 138645 chttp2_transport.cc:1098] Received a GOAWAY with.
—.error code ENHANCE_YOUR_CALM and debug data equal to "too_many_pings"

2023-03-02 01:10:20.511500: W tensorflow/core/distributed_runtime/rpc/grpc_remote_master.
—,cc:157] RPC failed with status = "UNAVAILABLE: Too many pings" and grpc_error_string =
—"{"created":"@1677719420.511317309", "description":"Error received from peer ipv4:10.1.
<»35.105:54729" ,"file": "external/com_github_grpc_grpc/src/core/lib/surface/call.cc",
—"file_line":1056, "grpc_message":"Too many pings",'"grpc_status':14}", maybe retrying.
—the RPC

or:

2023-03-08 21:18:27.040863: F tensorflow/compiler/xla/xla_client/xrt_computation_client.
-.cc:476] Non-OK-status: session->session()->Run(session_work->feed_inputs, session_work-
—>outputs_handles, &outputs) status: UNKNOWN: Stream removed

This is due to excessive DNS lookups during execution, and is fixed in this release.

NaNs seen with transformers version >=4.21.0 when running HF GPT fine-tuning or pretraining with
XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1

Using Hugging Face transformers version >= 4.21.0 can produce NaN outputs for GPT models when using full BF16
(XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1) plus stochastic rounding. This issue occurs due to large neg-
ative constants used to implement attention masking (https://github.com/huggingface/transformers/pull/17306). To
workaround this issue, please use transformers version <= 4.20.0.

Resolved issues (Inference)
torch.argmax() now supports single argument call variant

Previously only the 3 argument variant of torch.argmax() was supported. Now the single argument call variant is
supported.
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Known issues and limitations (Training)
Slower BERT bf16 Phase 1 Single Node Performance

In the Neuron 2.9.0 release, BERT phase 1 pretraining performance has regressed by approximately 8-9% when exe-
cuted on a single node only (i.e. just one trnl.32xlarge instance).

Convolution is not supported

In this release, convolution is not supported.

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data

Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in
the runtime, and you may see errors that look like this: bootstrap.cc:86 CCOM WARN Call to accept failed
: Too many open files.

Hence, it is recommended to use fewer workers per node with DDP.

Lower throughput for BERT-large training on AL2 instances

We see a performance drop of roughly 5-10% for BERT model training on AL2 instances. This is because of the
increase in time required for tracing the model.

Known issues and limitations (Inference)
torch.argmin() produces incorrect results

torch.argmin() now supports both the single argument call variant and the 3 argument variant. However, torch.
argmin() currently produces incorrect results.

Error when using the xm.xla_device() object followed by using torch_neuronx.trace

Executing a model using the xm.x1a_device () object followed by using torch_neuronx . trace in the same process
can produce errors in specific situations due to torch-xla caching behavior. It is recommended that only one type of
execution is used per process.
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Error when executing torch_neuronx.trace with torch.bfloat16 input/output tensors

Executing torch_neuronx.trace with torch.bfloatl16 input/output tensors can cause an error. It is currently
recommended to use an alternative torch data type in combination with compiler casting flags instead.

No automatic partitioning

Currently, there’s no automatic partitioning of a model into subgraphs that run on NeuronCores and subgraphs that
run on CPU Operations in the model that are not supported by Neuron would result in compilation error. Please see
PyTorch Neuron (torch-neuronx) - Supported Operators for a list of supported operators.

Release [1.13.0.1.5.0]

Date: 02/24/2023

Summary
What’s new in this release

Training support:

* Added SPMD flag for XL A backend to generate global collective-compute replica groups
Inference support:

» Expanded inference support to inf2

* Added Dynamic Batching

Resolved issues
Known issues and limitations (Training)
Convolution is not supported

In this release, convolution is not supported.

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data
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Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in
the runtime, and you may see errors that look like this: bootstrap.cc:86 CCOM WARN Call to accept failed
: Too many open files.

Hence, it is recommended to use fewer workers per node with DDP.

Lower throughput for BERT-large training on AL2 instances

We see a performance drop of roughly 5-10% for BERT model training on AL2 instances. This is because of the
increase in time required for tracing the model.

Known issues and limitations (Inference)
torch.argmax() and torch.argmin() do not support the single argument call variant

torch.argmax() and torch.argmin() do not support the single argument call variant. Only the 3 argument variant
of these functions is supported. The dim argument must be specified or this function will fail at the call-site. Secondly,
torch.argmin() may produce incorrect results.

No automatic partitioning

Currently, there’s no automatic partitioning of a model into subgraphs that run on NeuronCores and subgraphs that
run on CPU Operations in the model that are not supported by Neuron would result in compilation error. Please see
PyTorch Neuron (torch-neuronx) - Supported Operators for a list of supported operators.

Release [1.13.0.1.4.0]

Date: 02/08/2023

Summary
What’s new in this release

Training support:
* Added support for PyTorch 1.13
* Added support for Python version 3.9
¢ Added support for torch.nn.parallel.DistributedDataParallel (DDP) along with a tutorial
* Added optimized lowering for Softmax activation
* Added support for LAMB optimizer in BF16 mode
Added initial support for inference on Trn1, including the following features:
¢ Trace API (torch_neuronx.trace)

* Core placement API (Beta)
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 Python 3.7, 3.8 and 3.9 support
* Support for tracing models larger than 2 GB
The following inference features are not included in this release:
* Automatic partitioning of a model into subgraphs that run on NeuronCores and subgraphs that run on CPU

e cxx11 ABI wheels

Resolved issues
Known issues and limitations
Convolution is not supported

In this release, convolution is not supported.

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data

Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in
the runtime, and you may see errors that look like this: bootstrap.cc:86 CCOM WARN Call to accept failed
: Too many open files.

Hence, it is recommended to use fewer workers per node with DDP.

Lower throughput for BERT-large training on AL2 instances

We see a performance drop of roughly 5-10% for BERT model training on AL2 instances. This is because of the
increase in time required for tracing the model.

Release [1.12.0.1.4.0]

Date: 12/12/2022
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Summary
What’s new in this release

* Added support for PyTorch 1.12.

e Setting XLA_DOWNCAST_BF16=1 now also enables stochastic rounding by default (as done with
XLA_USE_BFl16=1).

* Added support for capturing snapshots of inputs, outputs and graph HLO for debug.

* Fixed issue with parallel compile error when both train and evaluation are enabled in HuggingFace fine-tuning
tutorial.

* Added support for LAMB optimizer in FP32 mode.

Resolved issues

NaNs seen with transformers version >= 4.21.0 when running HF BERT fine-tuning or pretraining
with XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1

When running HuggingFace BERT (any size) fine-tuning tutorial or pretraining tutorial with transformers version
>= 4.21.0 and using XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1, you will see NaNs in the loss immedi-
ately at the first step. More details on the issue can be found at pytorch/xla#4152. The workaround is to use 4.20.0
or earlier (the tutorials currently recommend version 4.15.0) or add the line transformers.modeling_utils.
get_parameter_dtype = lambda x: torch.bfloatl6 to your Python training script (as now done in latest tuto-
rials). A permanent fix will become part of an upcoming HuggingFace transformers release.

Known issues and limitations
Convolution is not supported

In this release, convolution is not supported.

Number of data parallel training workers on one Trn1 instance

The number of workers used in single-instance data parallel training can be one of the following values: 1 or 2 for
trnl.2xlarge and 1, 2, 8 or 32 for trn1.32xlarge.

Release [1.11.0.1.2.0]

Date: 10/27/2022
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Summary
What’s new in this release

* Added support for argmax.
¢ Clarified error messages for runtime errors NRT_UNINITIALIZED and NRT_CLOSED.

e When multi-worker training is launched using torchrun on one instance, framework now handles runtime state
cleanup at end of training.

Resolved issues
Drop-out rate ignored in dropout operation

A known issue in the compiler’s implementation of dropout caused drop-rate to be ignored in the last release. It is fixed
in the current release.

Runtime error “invalid offset in Coalesced_memloc_...” followed by “Failed to process dma block:
1703”

Previously, when running MRPC fine-tuning tutorial with bert-base-* model, you would encounter runtime error
“invalid offset in Coalesced_memloc_..." followed by “Failed to process dma block: 1703”. This is fixed in the current
release.

Compilation error: “TongaSBTensor[0x7fb2a46e0830]:TongaSB partitions[0] uint8 %138392[128,
512]”

Previously, when compiling MRPC fine-tuning tutorial with bert-large-* and FP32 (no XLA_USE_BF16=1)
for two workers or more, you would encounter compiler error that looks like Error message:
TongaSBTensor[0x7fb2a46e0830] : TongaSB partitions[0] uint8 %138392[128, 512] followed by
Error class: KeyError. Single worker fine-tuning is not affected. This is fixed in the current release.

Known issues and limitations
Convolution is not supported

In this release, convolution is not supported.

Number of data parallel training workers on one Trn1 instance

The number of workers used in single-instance data parallel training can be one of the following values: 1 or 2 for
trnl.2xlarge and 1, 2, 8 or 32 for trn1.32xlarge.
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Release [1.11.0.1.1.1]

Date: 10/10/2022

Summary

This is the initial release of PyTorch Neuron that supports Trainium for users to train their models on the new EC2 Trnl
instances.

What’s new in this release

Announcing the first PyTorch Neuron release for training.

XLA device support for Trainium
PyTorch 1.11 with XL A backend support in torch.distributed
torch-xla distributed support

Single-instance and multi-instance distributed training using torchrun

Support for ParallelCluster and SLURM with node-level scheduling granularity

Persistent cache for compiled graph

neuron_parallel _compile utility to help speed up compilation
Optimizer support: SGD, AdamW

Loss functions supported: NLLLoss

Python versions supported: 3.7, 3.8

Multi-instance training support with EFA

Support PyTorch’s BF16 automatic mixed precision

Known issues and limitations

Convolution is not supported

In this release, convolution is not supported.

Number of data parallel training workers on one Trn1 instance

The number of workers used in single-instance data parallel training can be one of the following values: 1 or 2 for
trnl.2xlarge and 1, 2, 8 or 32 for trnl.32xlarge.

162

Chapter 2. ML Frameworks



AWS Neuron

Drop-out rate ignored in dropout operation

A known issue in the compiler’s implementation of dropout caused drop-rate to be ignored. Will be fixed in a follow-on
release.

Runtime error “invalid offset in Coalesced_memloc_...” followed by “Failed to process dma block:
1703”

Currently, when running MRPC fine-tuning tutorial with bert-base-* model, you will encounter runtime error “in-
valid offset in Coalesced_memloc_...” followed by “Failed to process dma block: 1703”. This issue will be fixed in
an upcoming release.

Compilation error: “TongaSBTensor[0x7fb2a46e0830]:TongaSB partitions[0] uint8 %138392[128,
512]”

When compiling MRPC fine-tuning tutorial with bert-large-* and FP32 (no XLA_USE_BF16=1) for two workers
or more, you will encounter compiler error that looks like Error message: TongaSBTensor[0x7fb2a46e0830] :
TongaSB partitions[0] uint8 %138392[128, 512] followed by Error class: KeyError. Single worker
fine-tuning is not affected. This issue will be fixed in an upcoming release.

This document is relevant for: Inf2, Trnl, Trn2
* PyTorch Neuron (torch-neuronx) release notes
This document is relevant for: Inf2, Trnl, Trn2

Setup (torch-neuronx)

Tutorials (torch-neuronx)

» HuggingFace pretrained BERT tutorial [html] [notebook]

e TorchServe tutorial [html]

e LibTorch C++ tutorial (for torch-neuron and torch-neuronx) [html]
e Torchvision ResNet50 tutorial [Afml] [notebook]

¢ T5 inference tutorial /html] [notebook]

Note: To use Jupyter Notebook see:
* setup-jupyter-notebook-steps-troubleshooting

* running-jupyter-notebook-as-script
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Additional Examples (torch-neuronx)

* AWS Neuron Samples GitHub Repository

* Transformers Neuron GitHub samples

API Reference Guide (torch-neuronx)

* PyTorch NeuronX Tracing API for Inference

* PyTorch Neuron (torch-neuronx) Weight Replacement API for Inference
* PyTorch NeuronX NeuronCore Placement APIs [Beta]

* PyTorch NeuronX Analyze API for Inference

e PyTorch NeuronX DataParallel API

e torch_neuronx_lazy_async_load_api

Developer Guide (torch-neuronx)

* NeuronCore Allocation and Model Placement for Inference (torch-neuronx)

e Comparison of Traced Inference versus XLA Lazy Tensor Inference (torch-neuronx)

Data Parallel Inference on torch_neuronx
¢ torch-neuronx-autobucketing-devguide
Misc (torch-neuronx)

* PyTorch Neuron (torch-neuronx) release notes
This document is relevant for: Inf2, Trnl, Trn2

This document is relevant for: Infl

2.1.3 Inference with torch-neuron (Inf1)

This document is relevant for: Infl

Tutorials for Inference with torch-neuron (Inf1)

This document is relevant for: Infl
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Computer Vision Tutorials (torch-neuron)

¢ ResNet-50 tutorial [html] [notebook]
* PyTorch YOLOvV4 tutorial [html] [notebook]
This document is relevant for: Infl

This document is relevant for: Infl

Natural Language Processing (NLP) Tutorials (torch-neuron)

* HuggingFace pretrained BERT tutorial [Afm!] [notebook]

* HuggingFace pretrained BERT tutorial with shared weights /html] [notebook]

* Bring your own HuggingFace pretrained BERT container to Sagemaker Tutorial //html] [notebook]
e LibTorch C++ tutorial [html]

¢ TorchServe tutorial [html]

* HuggingFace MarianMT tutorial /html] [notebook]

Compiling and Deploying HuggingFace Pretrained BERT
Introduction

In this tutorial we will compile and deploy BERT-base version of HuggingFace Transformers BERT for Inferentia. The
full list of HuggingFace’s pretrained BERT models can be found in the BERT section on this page https://huggingface.
co/transformers/pretrained_models.html.

This Jupyter notebook should be run on an instance which is infl.6xlarge or larger. The compile part of this tutorial
requires inf1.6xlarge and not the inference itself. For simplicity we will run this tutorial on inf1.6xlarge but in real life
scenario the compilation should be done on a compute instance and the deployment on infl instance to save costs.

Verify that this Jupyter notebook is running the Python kernel environment that was set up according to the PyTorch
Installation Guide. You can select the kernel from the “Kernel -> Change Kernel” option on the top of this Jupyter
notebook page.

Install Dependencies:

This tutorial requires the following pip packages:
* torch-neuron
¢ neuron-cc[tensorflow]
e transformers

Most of these packages will be installed when configuring your environment using the Neuron PyTorch setup guide.
The additional dependencies must be installed here.

%env TOKENIZERS_PARALLELISM=True #Supresses tokenizer warnings making errors easier to..
—detect
lpip install --upgrade "transformers==4.6.0"
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Compile the model into an AWS Neuron optimized TorchScript

import tensorflow # to workaround a protobuf version conflict issue

import torch

import torch.neuron

from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
import transformers

import os

import warnings

# Setting up NeuronCore groups for infl.6xlarge with 16 cores
num_cores = 16 # This value should be 4 on infl.xlarge and infl.2xlarge
os.environ[ 'NEURON_RT_NUM_CORES'] = str(num_cores)

# Build tokenizer and model

tokenizer = AutoTokenizer.from_pretrained("bert-base-cased-finetuned-mrpc")

model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased-finetuned-
—mrpc", return_dict=False)

# Setup some example inputs

sequence_0 = "The company HuggingFace is based in New York City"
sequence_1 = "Apples are especially bad for your health"
sequence_2 = "HuggingFace's headquarters are situated in Manhattan"

max_length=128

paraphrase = tokenizer.encode_plus(sequence_0, sequence_2, max_length=max_length,..
—.padding="max_length', truncation=True, return_tensors="pt")

not_paraphrase = tokenizer.encode_plus(sequence_0, sequence_1l, max_length=max_length,..
—padding="max_length', truncation=True, return_tensors="pt")

# Run the original PyTorch model on compilation exaple
paraphrase_classification_logits = model (**paraphrase) [0]

# Convert example inputs to a format that is compatible with TorchScript tracing
example_inputs_paraphrase = paraphrase['input_ids'], paraphrase['attention_mask'],.
—.paraphrase['token_type_ids']

example_inputs_not_paraphrase = not_paraphrase['input_ids'], not_paraphrase['attention_
—mask'], not_paraphrase['token_type_ids']

# Run torch.neuron.trace to generate a TorchScript that is optimized by AWS Neuron
model_neuron = torch.neuron.trace(model, example_inputs_paraphrase)

# Verify the TorchScript works on both example inputs
paraphrase_classification_logits_neuron = model_neuron(*example_inputs_paraphrase)
not_paraphrase_classification_logits_neuron = model_neuron(*example_inputs_not_
—.paraphrase)

# Save the TorchScript for later use
model_neuron.save('bert_neuron.pt')

You may inspect model_neuron.graph to see which part is running on CPU versus running on the accelerator. All
native aten operators in the graph will be running on CPU.
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print (model_neuron.graph)

Deploy the AWS Neuron optimized TorchScript

To deploy the AWS Neuron optimized TorchScript, you may choose to load the saved TorchScript from disk and skip
the slow compilation.

# Load TorchScript back

model_neuron = torch.jit.load('bert_neuron.pt')

# Verify the TorchScript works on both example inputs
paraphrase_classification_logits_neuron = model_neuron(*example_inputs_paraphrase)
not_paraphrase_classification_logits_neuron = model neuron(*example_inputs_not_
—paraphrase)

classes = ['not paraphrase', 'paraphrase']

paraphrase_prediction = paraphrase_classification_logits_neuron[0][0].argmax().item()
not_paraphrase_prediction = not_paraphrase_classification_logits_neuron[0][0].argmax().
—item()

print ('BERT says that "{}" and "{}" are {}'.format(sequence_0®, sequence_2,..
—classes[paraphrase_prediction]))

print ('BERT says that "{}" and "{}" are {}'.format(sequence_0, sequence_1, classes[not_
—,paraphrase_prediction]))

Now let’s run the model in parallel on four cores

def get_input_with_padding(batch, batch_size, max_length):

## Reformulate the batch into three batch tensors - default batch size batches the.
—outer dimension

encoded = batch['encoded']

inputs = torch.squeeze(encoded['input_ids'], 1)

attention = torch.squeeze(encoded['attention_mask'], 1)

token_type = torch.squeeze(encoded['token_type_ids'], 1)

quality = list(map(int, batch['quality']))

if inputs.size()[0] !'= batch_size:
print("Input size = {} - padding".format(inputs.size()))
remainder = batch_size - inputs.size()[0]
zeros = torch.zeros( [remainder, max_length], dtype=torch.long )
inputs = torch.cat( [inputs, zeros] )
attention = torch.cat( [attention, zeros] )
token_type = torch.cat( [token_type, zeros] )

assert(inputs.size()[0] == batch_size and inputs.size()[1] == max_length)
assert(attention.size() [0] == batch_size and attention.size()[1] == max_length)
assert(token_type.size()[0] == batch_size and token_type.size()[1] == max_length)

return (inputs, attention, token_type), quality

def count(output, quality):
assert output.size(0) >= len(quality)
correct_count = 0
count = len(quality)

(continues on next page)
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batch_predictions = [ row.argmax().item() for row in output ]

for a, b in zip(batch_predictions, quality):
if int(a)==int(b):
correct_count += 1

return correct_count, count

Data parallel inference

In the below cell, we use the data parallel approach for inference. In this approach, we load multiple models, all of
them running in parallel. Each model is loaded onto a single NeuronCore. In the below implementation, we launch 16
models, thereby utilizing all the 16 cores on an inf1.6xlarge.

Note: Now if you try to decrease the num_cores in the above cells, please restart the notebook and run
!sudo rmmod neuron; sudo modprobe neuron step in cell 2 to clear the Neuron cores.

Since, we can run more than 1 model concurrently, the throughput for the system goes up. To achieve maximum gain
in throughput, we need to efficiently feed the models so as to keep them busy at all times. In the below setup, this is
done by using a producer-consumer model. We maintain a common python queue shared across all the models. The
common queue enables feeding data continuously to the models.

from parallel import NeuronSimpleDataParallel

from bert_benchmark_utils import BertTestDataset, BertResults
import time

import functools

max_length = 128
num_cores = 16
batch_size =1

tsv_file="glue_mrpc_dev.tsv"

data_set = BertTestDataset( tsv_file=tsv_file, tokenizer=tokenizer, max_length=max_
—length )
data_loader = torch.utils.data.Dataloader(data_set, batch_size=batch_size, shuffle=True)

#Result aggregation class (code in bert_benchmark_utils.py)

results = BertResults(batch_size, num_cores)

def result_handler(output, result_id, start, end, input_dict):
correct_count, inference_count = count(output[0], input_dict.pop(result_id))
elapsed = end - start
results.add_result(correct_count, inference_count, [elapsed], [end], [start])

parallel neuron_model = NeuronSimpleDataParallel('bert_neuron.pt', num_cores)

#Starting the inference threads
parallel_neuron_model.start_continuous_inference()

# Warm up the cores
z = torch.zeros( [batch_size, max_length], dtype=torch.long )
batch = (z, z, z)
(continues on next page)
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for _ in range(num_cores*4):
parallel_neuron_model.infer(batch, -1, None)

input_dict = {}
input_id = 0
for _ in range(30):
for batch in data_loader:
batch, quality = get_input_with_padding(batch, batch_size, max_length)
input_dict[input_id] = quality
callback_fn = functools.partial(result_handler, input_dict=input_dict)
parallel_neuron_model.infer(batch, input_id, callback_£fn)
input_id+=1

# Stop inference
parallel_neuron_model.stop()

with open("benchmark.txt", "w") as f:
results.report(f, window_size=1)

with open("benchmark.txt", "r") as f:
for line in f:
print(line)

Now recompile with a larger batch size of six sentence pairs

batch_size = 6

example_inputs_paraphrase = (
torch.cat([paraphrase['input_ids']] * batch_size,0),
torch.cat([paraphrase['attention_mask']] * batch_size,®),
torch.cat([paraphrase['token_type_ids']] * batch_size,®)
)

# Run torch.neuron.trace to generate a TorchScript that is optimized by AWS Neuron
model_neuron_batch = torch.neuron.trace(model, example_inputs_paraphrase)

## Save the batched model
model_neuron_batch.save('bert_neuron_b{}.pt'.format(batch_size))

Rerun inference with batch 6

from parallel import NeuronSimpleDataParallel

from bert_benchmark_utils import BertTestDataset, BertResults
import time

import functools

max_length = 128
num_cores = 16
batch_size = 6

data_set = BertTestDataset( tsv_file=tsv_file, tokenizer=tokenizer, max_length=max_

(continues on next page)
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—length )
data_loader = torch.utils.data.Dataloader(data_set, batch_size=batch_size, shuffle=True)

#Result aggregation class (code in bert_benchmark_utils.py)

results = BertResults(batch_size, num_cores)

def result_handler(output, result_id, start, end, input_dict):
correct_count, inference_count = count(output[0], input_dict.pop(result_id))
elapsed = end - start
results.add_result(correct_count, inference_count, [elapsed], [end], [start])

parallel_neuron_model = NeuronSimpleDataParallel('bert_neuron_b{}.pt'.format(batch_size),
< num_cores)

#Starting the inference threads
parallel neuron_model.start_continuous_inference()

# Adding to the input queue to warm all cores

z = torch.zeros( [batch_size, max_length], dtype=torch.long )

batch = (z, z, z)

for _ in range(num_cores*4):
parallel_neuron_model.infer(batch, -1, None)

input_dict = {}
input_id = 0
for _ in range(30):
for batch in data_loader:
batch, quality = get_input_with_padding(batch, batch_size, max_length)
input_dict[input_id] = quality
callback_fn = functools.partial(result_handler, input_dict=input_dict)
parallel_neuron_model.infer(batch, input_id, callback_fn)
input_id+=1

# Stop inference
parallel_neuron_model.stop()

with open("benchmark_b{}.txt".format(batch_size), "w") as f£:
results.report(f, window_size=1)

with open("benchmark_b{}.txt".format(batch_size), "r") as f£:
for line in f:
print(line)
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Data Parallel HuggingFace Pretrained BERT with Weight Sharing (Deduplication)
Introduction

In this tutorial we will compile and deploy BERT-base version of HuggingFace Transformers BERT for Inferentia,
with additional demonstration of using Weight Sharing (Deduplication) feature.

To use the Weight Sharing (Deduplication) feature, you must set the Neuron Runtime environmental vari-
able NEURON_RT_MULTI_INSTANCE_SHARED_WEIGHTS to “TRUE” together with the core placement API
(torch_neuron.experimental .neuron_cores_context()).

This Jupyter notebook should be run on an instance which is infl.6xlarge or larger. The compile part of this tutorial
requires infl.6xlarge and not the inference itself. For simplicity we will run this tutorial on infl.6xlarge but in real life
scenario the compilation should be done on a compute instance and the deployment on infl instance to save costs.

Verify that this Jupyter notebook is running the Python kernel environment that was set up according to the PyTorch
Installation Guide. You can select the kernel from the “Kernel -> Change Kernel” option on the top of this Jupyter
notebook page.

Install Dependencies:

This tutorial requires the following pip packages:
e torch-neuron
e neuron-cc[tensorflow]
e transformers

Most of these packages will be installed when configuring your environment using the Neuron PyTorch setup guide.
The additional dependencies must be installed here.

%env TOKENIZERS_PARALLELISM=True #Supresses tokenizer warnings making errors easier to..
—detect
Ipip install --upgrade "transformers==4.6.0"

Compile the model into an AWS Neuron optimized TorchScript

This step compiles the model into an AWS Neuron optimized TorchScript, and saves it in the filed bert_neuron.pt.
This step is the same as the pretrained BERT tutorial without Shared Weights feature. We use batch 1 for simplicity.

import tensorflow # to workaround a protobuf version conflict issue

import torch

import torch.neuron

from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
import transformers

import os

import warnings

# Build tokenizer and model

tokenizer = AutoTokenizer.from_pretrained("bert-base-cased-finetuned-mrpc")

model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased-finetuned-
—mrpc", return_dict=False)

(continues on next page)
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# Setup some example inputs

sequence_0 = "The company HuggingFace is based in New York City"
sequence_1 = "Apples are especially bad for your health"
sequence_2 = "HuggingFace's headquarters are situated in Manhattan"

max_length=128

paraphrase = tokenizer.encode_plus(sequence_0, sequence_2, max_length=max_length,..
—padding="max_length', truncation=True, return_tensors="pt")

not_paraphrase = tokenizer.encode_plus(sequence_0, sequence_l, max_length=max_length,..
—padding="max_length', truncation=True, return_tensors="pt")

# Run the original PyTorch model on compilation exaple
paraphrase_classification_logits = model (**paraphrase) [0]

# Convert example inputs to a format that is compatible with TorchScript tracing
example_inputs_paraphrase = paraphrase['input_ids'], paraphrase['attention_mask'],.
—,paraphrase['token_type_ids']

example_inputs_not_paraphrase = not_paraphrase['input_ids'], not_paraphrase['attention_
—mask'], not_paraphrase['token_type_ids']

# Run torch.neuron.trace to generate a TorchScript that is optimized by AWS Neuron
model_neuron = torch.neuron.trace(model, example_inputs_paraphrase)

# Verify the TorchScript works on both example inputs
paraphrase_classification_logits_neuron = model_neuron(*example_inputs_paraphrase)
not_paraphrase_classification_logits_neuron = model_neuron(*example_inputs_not_
—,paraphrase)

# Save the TorchScript for later use
model_neuron.save('bert_neuron.pt')

Deploy the AWS Neuron optimized TorchScript

To deploy the AWS Neuron optimized TorchScript, you may choose to load the saved TorchScript from disk and skip
the slow compilation. This step is the same as the pretrained BERT tutorial without Shared Weights feature

# Load TorchScript back

model_neuron = torch.jit.load('bert_neuron.pt')

# Verify the TorchScript works on both example inputs
paraphrase_classification_logits_neuron = model_neuron(*example_inputs_paraphrase)
not_paraphrase_classification_logits_neuron = model_neuron(*example_inputs_not_
—.paraphrase)

classes = ['not paraphrase', 'paraphrase']

paraphrase_prediction = paraphrase_classification_logits_neuron[0][0].argmax().item()
not_paraphrase_prediction = not_paraphrase_classification_logits_neuron[0][0].argmax().
~item(Q)

print ('BERT says that "{}" and "{}" are {}'.format(sequence_0, sequence_2,..
—.classes[paraphrase_prediction]))

print ('BERT says that "{}" and "{}" are {}'.format(sequence_0, sequence_1l, classes[not_
—»paraphrase_prediction]))
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We define two helper functions to pad input and to count correct results.

[3]: def get_input_with_padding(batch, batch_size, max_length):
## Reformulate the batch into three batch tensors - default batch size batches the.
—outer dimension
encoded = batch['encoded']
inputs = torch.squeeze(encoded['input_ids'], 1)
attention = torch.squeeze(encoded['attention_mask'], 1)
token_type = torch.squeeze(encoded['token_type_ids'], 1)
quality = list(map(int, batch['quality']))

if inputs.size()[0] !'= batch_size:
print("Input size = {} - padding".format(inputs.size()))
remainder = batch_size - inputs.size()[0]
zeros = torch.zeros( [remainder, max_length], dtype=torch.long )
inputs = torch.cat( [inputs, zeros] )
attention = torch.cat( [attention, zeros] )
token_type = torch.cat( [token_type, zeros] )

assert(inputs.size()[0] == batch_size and inputs.size()[1] == max_length)
assert(attention.size() [0] == batch_size and attention.size()[1] == max_length)
assert(token_type.size()[0] == batch_size and token_type.size()[1] == max_length)

return (inputs, attention, token_type), quality

def count(output, quality):
assert output.size(0) >= len(quality)
correct_count = 0
count = len(quality)

batch_predictions = [ row.argmax().item() for row in output ]

for a, b in zip(batch_predictions, quality):
if int(a)==int(b):
correct_count += 1

return correct_count, count

Data parallel inference

In the below cell, we use the data parallel approach for inference. In this approach, we load multiple models,
all of them running in parallel. Each model is loaded onto a single NeuronCore via the core placement API
(torch_neuron.experimental .neuron_cores_context()). We also set Neuron Runtime environment variable
NEURON_RT_MULTI_INSTANCE_SHARED_WEIGHTS to “TRUE” as required to use the Weight Sharing feature.

In the below implementation, we launch 16 models, thereby utilizing all the 16 cores on an inf1.6xlarge.

Note: Now if you try to decrease the num_cores in the below cells, please restart the notebook and run
Isudo rmmod neuron; sudo modprobe neuron step in cell 2 to clear the Neuron cores.

Since, we can run more than 1 model concurrently, the throughput for the system goes up. To achieve maximum gain
in throughput, we need to efficiently feed the models so as to keep them busy at all times. In the below setup, we use
parallel threads to feed data continuously to the models.

When running the cell below, you can monitor the Inferentia device activities by running neuron-top in another
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terminal. You will see that “Device Used Memory” is 1.6GB total, and the model instance loaded onto NeuronDevice
0 NeuronCore 0 uses the most device memory (272MB) while the other model instances loaded onto other NeuronCores
use less device memory (92MB). This shows the effect of using Shared Weights as the device memory usage is lower. If
you change NEURON_RT_MULTI_INSTANCE_SHARED_WEIGHTS to “FALSE” you will see that “Device Used Memory”
is 3.2GB, and the model instances loaded onto NeuronDevice 0 NeuronCore 0 and 1 use the most device memory
(360MB) while the other model instances now use 180MB each.

from bert_benchmark_utils import BertTestDataset, BertResults
import time

import functools

import os

import torch.neuron as torch_neuron

from concurrent import futures

# Setting up NeuronCore groups for infl.6xlarge with 16 cores

num_cores = 16 # This value should be 4 on infl.xlarge and infl.2xlarge
os.environ[ 'NEURON_RT_NUM_CORES'] = str(num_cores)
os.environ['NEURON_RT_MULTI_INSTANCE_SHARED_WEIGHTS'] = 'TRUE'
#os.environ[ 'NEURON_RT_MULTI_INSTANCE_SHARED_WEIGHTS'] = 'FALSE'

max_length = 128
num_cores = 16
batch_size =1

tsv_file="glue_mrpc_dev.tsv"

data_set = BertTestDataset( tsv_file=tsv_file, tokenizer=tokenizer, max_length=max_
—length )
data_loader = torch.utils.data.Dataloader(data_set, batch_size=batch_size, shuffle=True)

#Result aggregation class (code in bert_benchmark_utils.py)

results = BertResults(batch_size, num_cores)

def result_handler(output, result_id, start, end, input_dict):
correct_count, inference_count = count(output[0], input_dict.pop(result_id))
elapsed = end - start
results.add_result(correct_count, inference_count, [elapsed], [end], [start])

with torch_neuron.experimental.neuron_cores_context(start_nc=0, nc_count=num_cores):
model = torch.jit.load('bert_neuron.pt')

# Warm up the cores
z = torch.zeros( [batch_size, max_length], dtype=torch.long )
batch = (z, z, z)
for _ in range(num_cores*4):
model (*batch)

# Prepare the input data

batch_list = []

for batch in data_loader:
batch, quality = get_input_with_padding(batch, batch_size, max_length)
batch_list.append((batch, quality))

# One thread running a model on one core

(continues on next page)
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def one_thread(feed_data, quality):
start = time.time()
result = model (*feed_data)
end = time.time()
return result[0], quality, start, end

# Launch more threads than models/cores to keep them busy
processes = []
with futures.ThreadPoolExecutor (max_workers=num_cores*2) as executor:
# extra loops to help you see activities in neuron-top
for _ in range(10):
for input_id, (batch, quality) in enumerate(batch_list):
processes.append(executor.submit(one_thread, batch, quality))

results = BertResults(batch_size, num_cores)

for _ in futures.as_completed(processes):
(output, quality, start, end) = _.result()
correct_count, inference_count = count(output, quality)
results.add_result(correct_count, inference_count, [start - end], [start], [end])

with open("benchmark.txt", "w") as f:
results.report(f, window_size=1)

with open("benchmark.txt", "r") as f:
for line in f:
print(line)

Deploy a pretrained PyTorch BERT model from HuggingFace on Amazon SageMaker with Neuron
container

Overview

In this tutotial we will deploy on SageMaker a pretraine BERT Base model from HuggingFace Transformers, using the
AWS Deep Learning Containers. We will use the same model as shown in the Neuron Tutorial “PyTorch - HuggingFace
Pretrained BERT Tutorial”. We will compile the model and build a custom AWS Deep Learning Container, to include
the HuggingFace Transformers Library.

This Jupyter Notebook should run on a ml.c5.4xlarge SageMaker Notebook instance. You can set up your SageMaker
Notebook instance by following the Get Started with Amazon SageMaker Notebook Instances documentation.

We recommend increasing the size of the base root volume of you SM notebook instance, to accomodate
the models and containers built locally. A root volume of 10Gb should suffice.
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Install Dependencies:

This tutorial requires the following pip packages:
* torch-neuron
¢ neuron-cc[tensorflow]

¢ transformers

%env TOKENIZERS_PARALLELISM=True #Supresses tokenizer warnings making errors easier to.
—detect

Ipip install --upgrade --no-cache-dir torch-neuron neuron-cc[tensorflow] torchvision.
—torch --extra-index-url=https://pip.repos.neuron.amazonaws.com

Ipip install --upgrade --no-cache-dir 'transformers==4.6.0'

Compile the model into an AWS Neuron optimized TorchScript

import torch
import torch_neuron

from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig

# Build tokenizer and model

tokenizer = AutoTokenizer.from_pretrained("bert-base-cased-finetuned-mrpc")

model = AutolModelForSequenceClassification.from pretrained("bert-base-cased-finetuned-
—mrpc", return_dict=False)

# Setup some example inputs

sequence_0 = "The company HuggingFace is based in New York City"
sequence_1 = "Apples are especially bad for your health"
sequence_2 = "HuggingFace's headquarters are situated in Manhattan"

max_length=128

paraphrase = tokenizer.encode_plus(sequence_0, sequence_2, max_length=max_length,..
—padding="max_length', truncation=True, return_tensors="pt")

not_paraphrase = tokenizer.encode_plus(sequence_0, sequence_l, max_length=max_length,..
—padding="max_length', truncation=True, return_tensors="pt")

# Run the original PyTorch model on compilation exaple
paraphrase_classification_logits = model (**paraphrase) [0]

# Convert example inputs to a format that is compatible with TorchScript tracing
example_inputs_paraphrase = paraphrase['input_ids'], paraphrase['attention_mask'],.
—.paraphrase['token_type_ids']

example_inputs_not_paraphrase = not_paraphrase['input_ids'], not_paraphrase['attention_
—mask'], not_paraphrase['token_type_ids']

%%time

# Run torch.neuron.trace to generate a TorchScript that is optimized by AWS Neuron
# This step may need 3-5 min

model_neuron = torch.neuron.trace(model, example_inputs_paraphrase, verbose=1, compiler_
—workdir="./compilation_artifacts"')
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You may inspect model_neuron.graph to see which part is running on CPU versus running on the accelerator. All
native aten operators in the graph will be running on CPU.

# See which part is running on CPU versus running on the accelerator.
print (model_neuron.graph)

Save the compiled model, so it can be packaged and sent to S3.

# Save the TorchScript for later use
model_neuron.save('neuron_compiled_model.pt')

Package the pre-trained model and upload it to S3

To make the model available for the SageMaker deployment, you will TAR the serialized graph and upload it to the
default Amazon S3 bucket for your SageMaker session.

# Now you'll create a model.tar.gz file to be used by SageMaker endpoint
Itar -czvf model.tar.gz neuron_compiled_model.pt

import boto3

import time

from sagemaker.utils import name_from_base
import sagemaker

# upload model to S3

role = sagemaker.get_execution_role()
sess=sagemaker.Session()
region=sess.boto_region_name
bucket=sess.default_bucket()
sm_client=boto3.client('sagemaker"')

model_key = '{}/model/model.tar.gz'.format('infl_compiled_model')
model_path = 's3://{}/{}'.format(bucket, model_key)

boto3.resource('s3") .Bucket(bucket) .upload_file('model.tar.gz', model_key)
print("Uploaded model to S3:')

print (model_path)

Build and Push the container

The following shell code shows how to build the container image using docker build and push the container image to
ECR using docker push. The Dockerfile in this example is available in the container folder. Here’s an example of the
Dockerfile:

FROM 763104351884.dkr.ecr.us-east-1.amazonaws.com/pytorch-inference-neuron:1.7.1-neuron-
—Ppy36-ubuntul8. 04

# Install packages
RUN pip install "transformers==4.7.0"
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lcat container/Dockerfile

Before running the next cell, make sure your SageMaker IAM role has access to ECR. If not, you can attache the
role AmazonEC2ContainerRegistryPowerUser to your IJAM role ARN, which allows you to upload image layers to
ECR.

It takes 5 minutes to build docker images and upload image to ECR

1 %%sh

# The name of our algorithm
algorithm_name=neuron-py36-inference

cd container
account=$(aws sts get-caller-identity --query Account --output text)

# Get the region defined in the current configuration (default to us-west-2 if none.
—defined)

region=$(aws configure get region)

region=${region:-us-west-2}

fullname="9${account}.dkr.ecr. ${region}.amazonaws.com/${algorithm_name}:latest"
# If the repository doesn't exist in ECR, create it.
aws ecr describe-repositories --repository-names "${algorithm name}" > /dev/null 2>&1

if [ $7 -ne 0 ]
then

aws ecr create-repository --repository-name "${algorithm name}" > /dev/null
fi

# Get the login command from ECR in order to pull down the SageMaker PyTorch image

aws ecr get-login-password --region us-east-1 | docker login --username AWS --password-
—stdin 763104351884.dkr.ecr.us-east-1.amazonaws.com

# Build the docker image locally with the image name and then push it to ECR

# with the full name.

docker build -t ${algorithm name} . --build-arg REGION=${region}

docker tag ${algorithm_name} ${fullname}

# Get the login command from ECR and execute it directly

aws ecr get-login-password --region ${region} | docker login --username AWS --password-
—stdin ${account}.dkr.ecr. ${region}.amazonaws.com

docker push ${fullname}/
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Deploy Container and run inference based on the pretrained model

To deploy a pretrained PyTorch model, you’ll need to use the PyTorch estimator object to create a PyTorchModel object
and set a different entry_point.

You’ll use the PyTorchModel object to deploy a PyTorchPredictor. This creates a SageMaker Endpoint — a hosted
prediction service that we can use to perform inference.

import sys

| {sys.executable} -m pip install Transformers

import os
import boto3
import sagemaker

role = sagemaker.get_execution_role()
sess = sagemaker.Session()

bucket = sess.default_bucket()
prefix = "infl_compiled_model/model™

# Get container name in ECR
client=boto3.client('sts"')
account=client.get_caller_identity () ['Account']

my_session=boto3.session.Session()
region=my_session.region_name

algorithm_name="neuron-py36-inference"
ecr_image="'{}.dkr.ecr.{}.amazonaws.com/{}:latest'.format(account, region, algorithm_name)
print(ecr_image)

An implementation of model_fn is required for inference script. We are going to implement our own model_fn and
predict_fn for Hugging Face Bert, and use default implementations of input_fn and output_fn defined in sagemaker-
pytorch-containers.

In this example, the inference script is put in code folder. Run the next cell to see it:

Ipygmentize code/inference.py

Path of compiled pretrained model in S3:

key = os.path.join(prefix, "model.tar.gz")
pretrained_model_data = "s3://{}/{}".format(bucket, key)
print (pretrained_model_data)

The model object is defined by using the SageMaker Python SDK’s PyTorchModel and pass in the model from the
estimator and the entry_point. The endpoint’s entry point for inference is defined by model_fn as seen in the previous
code block that prints out inference.py. The model_fn function will load the model and required tokenizer.

Note, image_uri must be user’s own ECR images.

from sagemaker.pytorch.model import PyTorchModel

(continues on next page)
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pytorch_model = PyTorchModel/(

model_data=pretrained_model_data,

role=role,

source_dir="code",

framework_version="1.7.1",

entry_point="inference.py",

image_uri=ecr_image

# Let SageMaker know that we've already compiled the model via neuron-cc
pytorch_model._is_compiled_model = True

The arguments to the deploy function allow us to set the number and type of instances that will be used for the Endpoint.
Here you will deploy the model to a single ml.infl.2xlarge instance. It may take 6-10 min to deploy.

%%time

predictor = pytorch_model.deploy(initial_instance_count=1, instance_type="ml.infl.2xlarge
. " )

print (predictor.endpoint_name)

Since in the input_fn we declared that the incoming requests are json-encoded, we need to use a json serializer, to
encode the incoming data into a json string. Also, we declared the return content type to be json string, we Need to use
a json deserializer to parse the response.

predictor.serializer = sagemaker.serializers.JSONSerializer()
predictor.deserializer = sagemaker.deserializers.JSONDeserializer()

Using a list of sentences, now SageMaker endpoint is invoked to get predictions.

%%time
result = predictor.predict(
[
"Never allow the same bug to bite you twice.",
"The best part of Amazon SageMaker is that it makes machine learning easy.",
]
)
print(result)
%%time
result = predictor.predict(
[
"The company HuggingFace is based in New York City",
"HuggingFace's headquarters are situated in Manhattan",
]
)
print(result)
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Benchmarking your endpoint

The following cells create a load test for your endpoint. You first define some helper functions: inference_latency
runs the endpoint request, collects cliend side latency and any errors, random_sentence builds random to be sent to
the endpoint.

import numpy as np

import datetime

import math

import time

import boto3

import matplotlib.pyplot as plt

from joblib import Parallel, delayed
import numpy as np

from tqdm import tqdm

import random

def inference_latency(model, *inputs):

non

infetence_time is a simple method to return the latency of a model inference.

Parameters:
model: torch model onbject loaded using torch.jit.load
inputs: model() args

Returns:
latency in seconds

non

error = False
start = time.time()
try:

results = model (*inputs)
except:
error = True
results = []
return {'latency':time.time() - start, 'error': error, 'result': results}

def random_sentence():

s_nouns = ["A dude", "My mom", "The king", "Some guy", "A cat with rabies", "A sloth

~", "Your homie", "This cool guy my gardener met yesterday", "Superman"]

p_nouns = ["These dudes", "Both of my moms", "All the kings of the world", "Some guys
", "All of a cattery's cats", "The multitude of sloths living under your bed", "Your.
—homies"™, "Like, these, like, all these people", "Supermen"]

s_verbs = ["eats", "kicks", "gives", "treats", "meets with", "creates", "hacks",
—"configures", "spies on", "retards", "meows on", "flees from", "tries to automate",
—"explodes"]

p_verbs = ["eat", "kick", "give", "treat", "meet with", "create", "hack", "configure
<", "spy on", "retard", "meow on", "flee from", "try to automate", "explode"]

infinitives = ["to make a pie.", "for no apparent reason.", "because the sky is..
—.green.", "for a disease.", "to be able to make toast explode.", "to know more about..

—.archeology."]
(continues on next page)
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+ random.choice(s_verbs) + + random.
' ' + random.

return (random.choice(s_nouns) +
—choice(s_nouns).lower() or random.choice(p_nouns).lower() +
—choice(infinitives))

print ([random_sentence(), random_sentence()])

The following cell creates number_of_clients concurrent threads to run number_of_runs requests. Once com-
pleted, a boto3 CloudWatch client will query for the server side latency metrics for comparison.

# Defining Auxiliary variables

number_of_clients = 2

number_of_runs = 1000

t = tqdm(range (number_of_runs),position=0, leave=True)

# Starting parallel clients
cw_start = datetime.datetime.utcnow()

results = Parallel (n_jobs=number_of_clients,prefer="threads") (delayed(inference_
—.latency) (predictor.predict, [random_sentence(), random_sentence()]) for mod in t)
avg_throughput = t.total/t.format_dict['elapsed']

cw_end = datetime.datetime.utcnow()

# Computing metrics and print

latencies = [res['latency'] for res in results]
errors = [res['error'] for res in results]
error_p = sum(errors)/len(errors) *100

p50 = np.quantile(latencies[-1000:],0.50) * 1000
p90 = np.quantile(latencies[-1000:]1,0.95) * 1000
p95 = np.quantile(latencies[-1000:]1,0.99) * 1000

print(£'Avg Throughput: :{avg_throughput:.1f}\n"')
print(£'50th Percentile Latency:{p50:.1f} ms')
print(£'90th Percentile Latency:{p90:.1f} ms')
print (£'95th Percentile Latency:{p95:.1f} ms\n')
print (f'Errors percentage: {error_p:.1f} %\n')

# Querying CloudWatch

print('Getting Cloudwatch: ')

cloudwatch = boto3.client('cloudwatch')
statistics=['SampleCount', 'Average', 'Minimum', 'Maximum']
extended=["'p50', 'p9®', 'p95', 'plO0']

# Give 5 minute buffer to end
cw_end += datetime.timedelta(minutes=5)

# Period must be 1, 5, 10, 30, or multiple of 60

# Calculate closest multiple of 60 to the total elapsed time

factor = math.ceil((cw_end - cw_start).total_seconds() / 60)

period = factor * 60

print('Time elapsed: {} seconds'.format((cw_end - cw_start).total_seconds()))

(continues on next page)
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print('Using period of {} seconds\n'.format(period))

cloudwatch_ready = False
# Keep polling CloudWatch metrics until datapoints are available
while not cloudwatch_ready:
time.sleep(30)
print('Waiting 30 seconds ...'")
# Must use default units of microseconds
model_latency_metrics = cloudwatch.get_metric_statistics(MetricName='ModelLatency',
Dimensions=[{'Name': 'EndpointName',
'Value': predictor.endpoint_
—name},
{'Name': 'VariantName',
'Value': "AllTraffic"}],
Namespace="AWS/SageMaker",
StartTime=cw_start,
EndTime=cw_end,
Period=period,
Statistics=statistics,
ExtendedStatistics=extended
)
# Should be 1000
if len(model_latency_metrics['Datapoints']) > 0:
print('{} latency datapoints ready'.format(model_latency_metrics['Datapoints'][0][
— "SampleCount']))
side_avg = model_latency_metrics['Datapoints'][0]['Average'] / number_of_runs
side_p50 = model_latency_metrics['Datapoints'][0]['ExtendedStatistics']['p50'] /.
—number_of_runs
side_p90 = model_latency_metrics['Datapoints'][0]['ExtendedStatistics']['p90'] /.
—number_of_runs
side_p95 = model_latency_metrics['Datapoints'][0]['ExtendedStatistics']['p95'] /.
—number_of_runs
side_pl100 = model_latency_metrics['Datapoints'][0]['ExtendedStatistics']['p100'] /.
—number_of_runs

print(£'50th Percentile Latency:{side_p50:.1f} ms')
print (£'90th Percentile Latency:{side_p90:.1f} ms')
print(£'95th Percentile Latency:{side_p95:.1f} ms\n')

cloudwatch_ready = True
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Cleanup

Endpoints should be deleted when no longer in use, to avoid costs.

predictor.delete_endpoint (predictor.endpoint)

This document is relevant for: Infl

BERT TorchServe Tutorial

Table of Contents

e Overview
e Run the tutorial
o Setup TorchServe

e Run TorchServe

e Benchmark TorchServe

Overview

This tutorial demonstrates the use of TorchServe with Neuron, the SDK for Amazon Inf1 instances. By the end of this
tutorial, you will understand how TorchServe can be used to serve a model backed by EC2 Inf1 instances. We will use
a pretrained BERT-Base model to determine if one sentence is a paraphrase of another.

Verify that this tutorial is running in a virtual environement that was set up according to the Torch-
Neuronx  Installation — Guide  <https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/setup/torch-
neuronx.html#setup-torch-neuronx> or Torch-Neuron Installation Guide <https://awsdocs-neuron.readthedocs-
hosted.com/en/latest/general/setup/torch-neuron. html#setup-torch-neuron>

Run the tutorial

Open a terminal, log into your remote instance, and activate a Pytorch virtual environment setup (see the Pytorch
Installation Guide). To complete this tutorial, you will need a compiled BERT model. If you have already completed
the HuggingFace Pretrained BERT tutorial [/tml] [notebook] then you already have the necessary file. Otherwise, you
can setup your environment as shown below and then run trace_bert_neuron.py to obtain a traced BERT model.

You should now have a compiled bert_neuron_b6.pt file, which is required going forward.

Open a shell on the instance you prepared earlier, create a new directory named torchserve. Copy your compiled
model from the previous tutorial into this new directory.

cd torchserve
python trace_bert_neuronx.py
1s
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bert_neuron_b6.pt

Prepare a new Python virtual environment with the necessary Neuron and TorchServe components. Use a virtual
environment to keep (most of) the various tutorial components isolated from the rest of the system in a controlled way.

pip install transformers==4.20.1 torchserve==0.7.0 torch-model-archiver==0.7.0 captum==0.
‘*}6-0

Install the system requirements for TorchServe.

Amazon Linux 2 DLAMI Base

sudo yum install jq java-1l-amazon-corretto-headless
sudo alternatives --config java
sudo alternatives --config javac

Ubuntu 20 DLAMI Base
sudo apt install openjdk-11-jdk -y
java -version

openjdk version "11.0.17" 2022-10-18

Open]DK Runtime Environment (build 11.0.17+8-post-Ubuntu-lubuntu218.04)

Open]DK 64-Bit Server VM (build 11.0.17+8-post-Ubuntu-lubuntu218.04, mixed mode, sharing)
javac -version

javac 11.0.17

Verify that TorchServe is now available.

torchserve --version

TorchServe Version is 0.7.0

Setup TorchServe

During this tutorial you will need to download a few files onto your instance. The simplest way to accomplish this is to
paste the download links provided above each file into a wget command. (We don’t provide the links directly because
they are subject to change.) For example, right-click and copy the download link for config. json shown below.

Listing 2.6: config. json

{
"model_name": "bert-base-cased-finetuned-mrpc",
"max_length": 128,
"batch_size": 6

}
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Now execute the following in your shell:

wget <paste link here>

1s

bert_neuron_b6.pt config.json

Download the custom handler script that will eventually respond to inference requests.

Listing 2.7: handler_bert.py

import os

import json

import sys

import logging

from abc import ABC

import torch
import torch_neuron

from transformers import AutoTokenizer
from ts.torch_handler.base_handler import BaseHandler

# one core per worker
os.environ[ 'NEURON_RT_NUM_CORES'] = '1°'

logger =

logging.getLogger(__name__)

class BertEmbeddingHandler(BaseHandler, ABC):

e

Handler class for Bert Embedding computations.

e

def

def

__init__(self):
super (BertEmbeddingHandler, self).__init__()
self.initialized = False

initialize(self, ctx):
self.manifest = ctx.manifest
properties = ctx.system_properties

self.device = 'cpu
model_dir = properties.get('model_dir")

serialized_file = self.manifest['model']['serializedFile']

model_pt_path = os.path.join(model_dir, serialized_file)

# point sys.path to our config file
with open('config.json') as fp:

config = json.load(fp)
self.max_length = config['max_length']
self.batch_size = config['batch_size']
self.classes = ['not paraphrase', 'paraphrase']

self.model = torch.jit.load(model_pt_path)

(continues on next page)
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def

def

(continued from previous page)

logger.debug(f'Model loaded from {model_dir}'")
self.model.to(self.device)
self.model.eval()

self.tokenizer = AutoTokenizer.from_pretrained(config[ 'model_name'])
self.initialized = True

preprocess(self, input_data):

i

Tokenization pre-processing

o

input_ids = []

attention_masks = []

token_type_ids = []

for row in input_data:
seq_0 = row['seq_0'].decode('utf-8")
seq_1 = row['seq_1'].decode('utf-8")
logger.debug(f'Received text: "{seq_0}/",

Seq_l lll)

inputs = self.tokenizer.encode_plus(
seqg_0,
seq_1,
max_length=self.max_length,
padding="max_length',
truncation=True,
return_tensors="pt'

)

input_ids.append(inputs['input_ids'])
attention_masks.append(inputs['attention_mask'])
token_type_ids.append(inputs['token_type_ids'])

batch = (torch.cat(input_ids, 0),
torch.cat(attention_masks, 0),
torch.cat(token_type_ids, 0))

return batch

inference(self, inputs):

i

Predict the class of a text using a trained transformer model.

i

# sanity check dimensions
assert(len(inputs) == 3)

num_inferences = len(inputs[0])
assert(num_inferences <= self.batch_size)

# insert padding if we received a partial batch
padding = self.batch_size - num_inferences
if padding > 0:

(continues on next page)
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(continued from previous page)

pad = torch.nn.ConstantPadld((®, 0, 0, padding), value=0)
inputs = [pad(x) for x in inputs]

outputs = self.model (*inputs) [0]

predictions = []

for i in range(num_inferences):
prediction = self.classes[outputs[i].argmax().item()]
predictions.append([prediction])
logger.debug("Model predicted: '%s'"

return predictions

, prediction)

def postprocess(self, inference_output):
return inference_output

Next, we need to associate the handler script with the compiled model using torch-model-archiver. Run the
following commands in your terminal:

mkdir model_store

MAX_LENGTH=$(jq '.max_length' config.json)

BATCH_SIZE=$(jq '.batch_size' config.json)

MODEL_NAME=bert-max_length$MAX_ LENGTH-batch_size$BATCH_SIZE

torch-model-archiver --model-name "$MODEL_NAME" --version 1.0 --serialized-file ./bert_
—neuron_b6.pt --handler "./handler_bert_neuronx.py" --extra-files "./config.json" --
—,export-path model_store

Note: If you modify your model or a dependency, you will need to rerun the archiver command with the -f flag
appended to update the archive.

The result of the above will be a mar file inside the model_store directory.
1s model_store
bert-max_lengthl28-batch_size6.mar

This file is essentially an archive associated with a fixed version of your model along with its dependencies (e.g. the
handler code).

Note: The version specified in the torch-model-archiver command can be appended to REST API requests to
access a specific version of your model. For example, if your model was hosted locally on port 8080 and named
“bert”, the latest version of your model would be available at http://localhost:8080/predictions/bert, while
version 1.0 would be accessible at http://localhost:8080/predictions/bert/1.0. We will see how to perform
inference using this API in Step 6.

Create a custom config file to set some parameters. This file will be used to configure the server at launch when we run
torchserve --start.

Listing 2.8: torchserve.config

# bind inference API to all network interfaces with SSL enabled
inference_address=http://0.0.0.0:8080

(continues on next page)
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default_workers_per_model=1

Note: This will cause TorchServe to bind on all interfaces. For security in real-world applications, you’ll probably
want to use port 8443 and enable SSL.

Run TorchServe
It’s time to start the server. Typically we’d want to launch this in a separate console, but for this demo we’ll just redirect
output to a file.

torchserve --start --ncs --model-store model_store --ts-config torchserve.config 2>&1 >
—torchserve.log

Verify that the server seems to have started okay.
curl http://127.0.0.1:8080/ping

{
"status": "Healthy"

}

Note: If you get an error when trying to ping the server, you may have tried before the server was fully launched.
Check torchserve.log for details.

Use the Management API to instruct TorchServe to load our model.

MAX_BATCH_DELAY=5000 # ms timeout before a partial batch is processed
INITTAL_WORKERS=2 # Number from table above

curl -X POST "http://localhost:8081/models?url=$MODEL_NAME.mar&batch_size=$BATCH_SIZE&
—initial_workers=$INITIAL_WORKERS&max_batch_delay=$MAX_BATCH_DELAY"

{
"status": "Model \"bert-max_lengthl28-batch_size6\" Version: 1.0 registered with 4.
—initial workers"

}

Note: Any additional attempts to configure the model after the initial curl request will cause the server to return a 409
error. You’ll need to stop/start/configure the server to realize any changes.

The MAX_BATCH_DELAY is a timeout value that determines how long to wait before processing a partial batch. This is
why the handler code needs to check the batch dimension and potentially add padding. TorchServe will instantiate the
number of model handlers indicated by INITIAL_WORKERS, so this value controls how many models we will load onto
Inferentia in parallel. This tutorial was performed on an infl.xlarge instance (one Inferentia chip), so there are four
NeuronCores available. If you want to control worker scaling more dynamically, see the docs.
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Warning: If you attempt to load more models than NeuronCores available, one of two things will occur. Either
the extra models will fit in device memory but performance will suffer, or you will encounter an error on your initial
inference. You shouldn’t set INITTAL_WORKERS above the number of NeuronCores. However, you may want to
use fewer cores if you are using the NeuronCore Pipeline feature.

It looks like everything is running successfully at this point, so it’s time for an inference.

Create the infer_bert.py file below on your instance.

Listing 2.9: infer_bert.py

import json
import concurrent.futures
import requests

with open('config.json') as fp:
config = json.load(fp)
max_length = config[ 'max_length']
batch_size = config['batch_size']
name = f'bert-max_length{max_length/-batch_size{batch_size}'

# dispatch requests in parallel
url = f'http://localhost:8080/predictions/{name}"'

paraphrase = {'seq_0': "HuggingFace's headquarters are situated in Manhattan",
'seq_1': "The company HuggingFace is based in New York City"}
not_paraphrase = {'seq_0': paraphrase['seq_0'], 'seq_1': 'This is total nonsense.'}

with concurrent.futures.ThreadPoolExecutor (max_workers=batch_size) as executor:
def worker_thread(worker_index):
# we'll send half the requests as not_paraphrase examples for sanity
data = paraphrase if worker_index < batch_size//2 else not_paraphrase
try:
response = requests.post(url, data=data)

# Check if the response status code indicates success
if response.status_code == 200:
print (worker_index, response.json())
else:
# If the response is not successful, raise an exception with the status.,
—code and error message
error_message = response.json().get('message', 'Unknown Error')
raise Exception(f"Failed request with status code {response.status_code}:
<, {error_message /")
except Exception as e:
# Catch all other exceptions that may be raised
print (£"An unexpected error occurred: {e}")
raise

for worker_index in range(batch_size):
executor.submit(worker_thread, worker_index)

This script will send a batch_size number of requests to our model. In this example, we are using a model that
estimates the probability that one sentence is a paraphrase of another. The script sends positive examples in the first
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half of the batch and negative examples in the second half.

Execute the script in your terminal.

python infer_bert.py

['paraphrase']
['not paraphrase']
['not paraphrase']
['paraphrase']
['not paraphrase']
['paraphrase']

N VTS S W

We can see that the first three threads (0, 1, 2) all report paraphrase, as expected. If we instead modify the script to
send an incomplete batch and then wait for the timeout to expire, the excess padding results will be discarded.

Benchmark TorchServe

We’ve seen how to perform a single batched inference, but how many inferences can we process per second? A separate
upcoming tutorial will document performance tuning to maximize throughput. In the meantime, we can still perform
a simple naive stress test. The code below will spawn 64 worker threads, with each thread repeatedly sending a full
batch of data to process. A separate thread will periodically print throughput and latency measurements.

Listing 2.10: benchmark_bert.py

import os

import argparse

import time

import numpy as np

import requests

import sys

from concurrent import futures

import torch

parser = argparse.ArgumentParser()

parser.add_argument('--url', help='Torchserve model URL', type=str, default=f'http://127.
—0.0.1:8080/predictions/bert-max_lengthl28-batch_size6')

parser.add_argument ('--num_thread', type=int, default=64, help='Number of threads.
—invoking the model URL')

parser.add_argument ('--batch_size', type=int, default=6)

parser.add_argument ('--sequence_length', type=int, default=128)
parser.add_argument('--latency_window_size', type=int, default=1000)
parser.add_argument (' --throughput_time', type=int, default=300)
parser.add_argument (' --throughput_interval', type=int, default=10)

args = parser.parse_args()

data = { 'seq_0': 'A completely made up sentence.',
'seq_1': 'Well, I suppose they are all made up.' }
live = True
num_infer = 0
latency_list = []
(continues on next page)
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def one_thread(pred, feed_data):
global latency_list
global num_infer
global live
session = requests.Session()
while True:
start = time.time(Q)

result = session.post(pred, data=feed_data)
latency = time.time() - start
latency_list.append(latency)

num_infer += 1
if not live:

break

def current_performance():

last_num_infer = num_infer
in range(args.throughput_time // args.throughput_interval):
current_num_infer = num_infer

for

(continued from previous page)

throughput = (current_num_infer - last_num_infer) / args.throughput_interval
p50 = 0.0
p9® = 0.0
if latency_list:
p50 = np.percentile(latency_list[-args.latency_window_size:], 50)

p90 =

print('pid

sys.stdout. flush()

last_num_infer = current_num_infer

time.sleep(args.throughput_interval)
global live

live =

False

, latency p50=

np.percentile(latency_list[-args.latency_window_size:], 90)
: current throughput
—getpid(), throughput, p50, p9d))

p9o0= '.format(os.

with futures.ThreadPoolExecutor (max_workers=args.num_thread+1) as executor:
executor.submit(current_performance)

for

Run the benchmarking script.

python benchmark_bert.py

in range(args.num_thread):
executor.submit(one_thread, args.url, data)

pid 28523: current throughput 0.0, latency p50=0.000 p90=0.000
pid 28523: current throughput 617.7, latency p50=0.092 p90=0.156
pid 28523: current throughput 697.3, latency p50=0.082 p90=0.154
pid 28523: current throughput 702.8, latency p50=0.081 p90=0.149
pid 28523: current throughput 699.1, latency p50=0.085 p90=0.147
pid 28523: current throughput 703.8, latency p50=0.083 p90=0.148
pid 28523: current throughput 699.3, latency p50=0.083 p90=0.148
(continues on next page)
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Congratulations! By now you should have successfully served a batched model over TorchServe.

You can now shutdown torchserve.

torchserve --stop

This document is relevant for: Infl

Transformers MarianMT Tutorial

In this tutorial, you will deploy the HuggingFace MarianMT model for text translation.

This Jupyter notebook should be run on an inf1l.6xlarge instance since you will be loading and compiling several large
models.

Verify that this Jupyter notebook is running the Python kernel environment that was set up according to the PyTorch
Installation Guide. You can select the kernel from the “Kernel -> Change Kernel” option on the top of this Jupyter
notebook page.

To generate text, you will be using the beam search algorithm to incrementally generate token candidates until the
full output text has been created. Unlike simple single-pass models, this algorithm divides the work into two distinct
phases:

* Encoder: Convert the input text into an encoded representation. (Executed once)

* Decoder: Use the encoded representation of the input text and the current output tokens to incrementally generate
the set of next best candidate tokens. (Executed many times)

In this tutorial you will perform the following steps:
* Compile: Compile both the Encoder and Decoder for Neuron using simplified interfaces for inference.
¢ Infer: Run on CPU and Neuron and compare results.

Finally, a completely unrolled decoder will be built which simplifies the implementation at the cost of performing
fixed-length inferences.

Install Dependencies:

This tutorial has the following dependencies:
e transformers==4.25.1
* torch-neuron
e sentencepiece
* neuron-cc[tensorflow]

The following will install the required transformers version. Note that encoder/decoder API changes across different
minor versions requires that you are specific about the version used. Also note that the torch-neuron version is pinned
due to transformer compatibility issues.

Ipip install sentencepiece transformers==4.26.1
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Parameters

The parameters of a generative model can be tuned for different use-cases. In this example, you’ll tailor the parameters
to a single inference beam search for an on-demand inference use-case. See the MarianConfig for parameter details.

Rather than varying the encoder/decoder token sizes at runtime, you must define these parameters prior to compilation.
The encoder/decoder token sizes are important tunable parameters as a large token sequence will offer greater sentence
length flexibility but perform worse than a small token sequence.

To maximize performance on Neuron, the num_beams, max_encode_length and max_decoder_length should be
made as small as possible for the use-case.

For this tutorial you will use a model that translates sentences of up to 32 token from English to German.

%env TOKENIZERS_PARALLELISM=True #Supresses tokenizer warnings making errors easier to.
—detect

model_name = "Helsinki-NLP/opus-mt-en-de" # English -> German model
num_texts = 1 # Number of input texts to decode
num_beams = 4 # Number of beams per input text
max_encoder_length = 32 # Maximum input token length
max_decoder_length = 32 # Maximum output token length

CPU Model Inference

Start by executing the model on CPU to test its execution.

The following defines the inference function which will be used to compare the Neuron and CPU output. In this example
you will display all beam search sequences that were generated. For a real on-demand use case, set the num_beams to
1 to return only the top result.

def infer(model, tokenizer, text):

# Truncate and pad the max length to ensure that the token size is compatible with.
—.fixed-sized encoder (Not necessary for pure CPU execution)

batch = tokenizer(text, max_length=max_decoder_length, truncation=True, padding='max_
—length', return_tensors="pt")

output = model.generate(**batch, max_length-max_decoder_length, num_beams=num_beams, ..
—num_return_sequences=num_beams)

results = [tokenizer.decode(t, skip_special_tokens=True) for t in output]

print('Texts: ")
for i, summary in enumerate(results):
print(i + 1, summary)

Note that after loading the model, we also set the maximum length. This will later be used to limit the size of the
compiled model.

from transformers import MarianMTModel, MarianTokenizer

model_cpu = MarianMTModel. from_pretrained(model_name)
model_cpu.config.max_length = max_decoder_length
model_cpu.eval()

tokenizer = MarianTokenizer.from_pretrained(model_name)

(continues on next page)
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sample_text = "I am a small frog."

infer(model_cpu, tokenizer, sample_text)

Padded Model

In order to perform inference on Neuron, the model must be changed in a way that it supports tracing and fixed-
sized inputs. One way in which this is possible is to use a pad the model inputs to the maximum possible tensor
sizes. The benefit of using a padded model is that it supports variable length text generation up to a specified length

max_

decoder_length. A consequence of padding is that it can negatively impact performance due to large data

transfers.

PaddedEncoder & PaddedDecoder Modules

Here you will define wrappers around the encoder and decoder portions of the generation model that are compatible
with torch. jit.trace as well as fixed-sized inputs.

The following are important features which are distinct from the default configuration:

1.

Disabled return_dict. When this is enabled, the network uses dataclass type outputs which are not com-
patible with torch. jit.trace.

Disabled use_cache. When this option is enabled, the network expects a collection of cache tensors which grow
upon each iteration. Since Neuron requires fixed sized inputs, this must be disabled.

. The GenerationMixin:beam_search implementation uses only the logits for the current iteration index from

the original decoder layer output. Since inputs must be padded, performance can be improved by selecting
only a subset of the hidden state prior to the final linear layer. For efficiency on Neuron, this reduction uses an
elementwise-multiply to mask out the unused hidden values and then sums along an axis.

Since a reduction step is insterted between the decoder output and the final logit calculation, the original model
attribute is not used. Instead the PaddedDecoder class combines the decoder, reducer, and linear layers into a
combined forward pass. In the original model there is a clear distinction between the decoder layer and the final
linear layer. These layers are fused together to get one large fully optimized graph.

import torch
from torch.nn import functional as F

class PaddedEncoder(torch.nn.Module):

def __init__(self, model):
super().__init__Q
self.encoder = model.model.encoder
self.main_input_name = 'input_ids'

def forward(self, input_ids, attention_mask):
return self.encoder(input_ids, attention_mask=attention_mask, return_dict=False)

class PaddedDecoder(torch.nn.Module):

(continues on next page)
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def __init__(self, model):
super().__init__(Q)
self.weight = model.model.shared.weight.clone().detach()
self.bias = model.final_logits_bias.clone().detach()
self.decoder = model.model.decoder

def forward(self, input_ids, attention_mask, encoder_outputs, index):

# Invoke the decoder

hidden, = self.decoder(
input_ids=input_ids,
encoder_hidden_states=encoder_outputs,
encoder_attention_mask=attention_mask,
return_dict=False,
use_cache=False,

)
_, n_length, _ = hidden.shape

# Create selection mask
mask = torch.arange(n_length, dtype=torch.float32) == index
mask = mask.view(l, -1, 1)

# Broadcast mask
masked = torch.multiplyChidden, mask)

# Reduce along 1st dimension
hidden = torch.sum(masked, 1, keepdims=True)

# Compute final linear layer for token probabilities
logits = F.linear(

hidden,

self.weight,

bias=self.bias
)

return logits

PaddedGenerator - GenerationMixin Class

On text generation tasks, HuggingFace Transformers defines a GenerationMixin base class which provides standard
methods and algorithms to generate text. For this tutorial, you will be using the beam search algorithm on en-
coder/decoder architectures.

To be able to use these methods, you will be defining your own class derived from the GenerationMixin class to
run a beam search. This will invoke the encoder and decoder layers in a way that is compatible with fixed sized
inputs and traced modules. This means you must import the base class and the output objects (Seq2SeqL.MOutput,
BaseModelOutput) used by the beam_search algorithm.

The GenerationlMixin:generate method will use GenerationMixin:beam_search which requires that you to
define your own class implementation that invokes the PaddedEncoder and PaddedDecoder modules using padded
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inputs. The standard generator model implementation will not work by default because it is intended to infer with
variable-sized (growing) input tensors.

The from_model method is defined to create the PaddedGenerator from an existing pretrained generator class.

To invoke the Encoder and Decoder traced modules in a way that is compatible with the GenerationMixin:
beam_search implementation, the get_encoder, __call__, and prepare_inputs_for_generation methods are
overriden.

y —— —

Lastly, the class defines methods for serialization so that the model can be easily saved and loaded.

import os

from transformers import GenerationMixin, AutoConfig
from transformers.modeling_outputs import Seq2SeqLMOutput, BaseModelOutput
from transformers.modeling_utils import PreTrainedModel

class PaddedGenerator (PreTrainedModel, GenerationMixin):

@classmethod

def from_model(cls, model):
generator = cls(model.config)
generator.encoder = PaddedEncoder (model)
generator.decoder = PaddedDecoder (model)
return generator

def prepare_inputs_for_generation(
self,
input_ids,
encoder_outputs=None,
attention_mask=None,
**kwargs,

# Pad the inputs for Neuron

current_length = input_ids.shape[1]

pad_size = self.config.max_length - current_length

return dict(
input_ids=F.pad(input_ids, (0, pad_size)),
attention_mask=attention_mask,
encoder_outputs=encoder_outputs.last_hidden_state,
current_length=torch. tensor(current_length - 1),

)

def get_encoder(self):
def encode(input_ids, attention_mask, **kwargs):
output, = self.encoder(input_ids, attention_mask)
return BaselModelOutput(
last_hidden_state=output,
)

return encode

def forward(self, input_ids, attention_mask, encoder_outputs, current_length,..
—**kwargs) :
logits = self.decoder(input_ids, attention_mask, encoder_outputs, current_length)

(continues on next page)
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return Seq2SeqLMOutput(logits=logits)

@property
def device(self): # Attribute required by beam search
return torch.device('cpu')

def save_pretrained(self, directory):
if os.path.isfile(directory):
print(f"Provided path ({directory}) should be a directory, not a file")
return
os.makedirs(directory, exist_ok=True)
torch.jit.save(self.encoder, os.path.join(directory, 'encoder.pt'))
torch.jit.save(self.decoder, os.path.join(directory, 'decoder.pt'))
self.config.save_pretrained(directory)

@classmethod

def from_pretrained(cls, directory):
config = AutoConfig.from_pretrained(directory)
obj = cls(config)
obj.encoder = torch.jit.load(os.path.join(directory, 'encoder.pt'))
obj.decoder = torch.jit.load(os.path.join(directory, 'decoder.pt'))
setattr(obj.encoder, 'main_input_name', 'input_ids') # Attribute required by.

—beam search

return obj

Padded CPU Inference

To start, it is important to ensure that the transformations we have made to the model were successful. Using the classes
defined above we can test that the padded model execution on CPU is identical to the original output also running on
CPU.

padded_model_cpu = PaddedGenerator.from_model (model_cpu)
infer(padded_model_cpu, tokenizer, sample_text)

Padded Neuron Tracing & Inference

Now that the padded version of model is confirmed to produce the same outputs as the non-padded version, the model
can be compiled for Neuron.

import torch
import torch_neuron

def trace(model, num_texts, num_beams, max_decoder_length, max_encoder_length):

Traces the encoder and decoder modules for use on Neuron.

This function fixes the network to the given sizes. Once the model has been

(continues on next page)
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compiled to a given size, the inputs to these networks must always be of
fixed size.

Args:
model (PaddedGenerator): The padded generator to compile for Neuron
num_texts (int): The number of input texts to translate at once
num_beams (int): The number of beams to compute per text
max_decoder_length (int): The maximum number of tokens to be generated
max_encoder_length (int): The maximum number of input tokens that will be encoded

non

# Trace the encoder

inputs = (
torch.ones((num_texts, max_encoder_length), dtype=torch.long),
torch.ones((num_texts, max_encoder_length), dtype=torch.long),

)

encoder = torch_neuron.trace(model.encoder, inputs)

# Trace the decoder (with expanded inputs)

batch_size = num_texts * num_beams

inputs = (
torch.ones((batch_size, max_decoder_length), dtype=torch.long),
torch.ones((batch_size, max_encoder_length), dtype=torch.long),
torch.ones((batch_size, max_encoder_length, model.config.d_model), dtype=torch.

—float),

torch. tensor(0),

)

decoder = torch_neuron.trace(model.decoder, inputs)

traced = PaddedGenerator (model.config)

traced.encoder = encoder

traced.decoder = decoder

setattr(encoder, 'main_input_name', 'input_ids') # Attribute required by beam search
return traced

padded_model_neuron = trace(padded_model_cpu, num_texts, num_beams, max_decoder_length,..
—max_encoder_length)

Comparing the Neuron execution to the original CPU implementation, you will see the exact same generated text.

# CPU execution for comparison
infer(padded_model_neuron, tokenizer, sample_text)
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Padded Neuron Serialization

Finally, we can test that we can serialize and reload the model so that it can be used later in its precompiled format.

padded_model_neuron.save_pretrained('NeuronPaddedMarianMT"')
padded_model_loaded = PaddedGenerator.from_pretrained('NeuronPaddedMarianMT"')
infer(padded_model_loaded, tokenizer, sample_text)

Greedy Unrolled Model

An unrolled version of the model can achieve better performance in some cases since all operations will be executed
on the Neuron hardware without returning to CPU. The consequence of this type of model is that since the generation
loop execution never returns to CPU, the entire sequence up to max_decoder_length is performed in a single forward
pass.

The following module performs greedy text generation. Unlike the original beam search text generation, this imple-
mentation always selects the most probable token and does not generate multiple result texts.

GreedyUnrolledGenerator Module

class GreedyUnrolledGenerator(torch.nn.Module):

def __init__(self, model):
super() .__init__Q)
self.config = model.config
self.model = model

def forward(self, input_ids, attention_mask):

# Generate the encoder state for the input tokens. This is only done once and.
—the state is reused.

encoder_outputs, = self.model.model.encoder(input_ids, attention_mask=attention_
—mask, return_dict=False)

# Set the intial state for the decode loop. This will grow per decoder iteration
tokens = torch.full((input_ids.size(®), 2), self.config.decoder_start_token_id)

# Iteratively invoke the decoder on incrementally generated " tokens® to generate.
—a next_token .

# Note that unlike the GeneratorMixin.generate function, there is no early-exit.
—1if the stop token

# has been reached. This will always run a fixed number of iterations.

for i in range(self.config.max_length):

hidden, = self.model.model.decoder(
input_ids=tokens,
encoder_hidden_states=encoder_outputs,
encoder_attention_mask=attention_mask,
return_dict=False,
use_cache=False,

) # size: [batch, current_length, vocab_size]

(continues on next page)
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(continued from previous page)

logits = F.linear(
hidden[:, -1, :],
self.model.model.shared.weight,
bias=self.model.final_logits_bias
)
next_tokens = torch.argmax(logits, dim=1, keepdims=True)
tokens = torch.cat([tokens, next_tokens], dim=1)

return tokens

Greedy CPU Inference

The inference code must be updated since the generate method is no longer used. This is because the entire generative
inference loop occurs within the GreedyUnrolledGenerator. forward method.

def infer_greedy(model, tokenizer, text):
batch = tokenizer(text, max_length=max_decoder_length, truncation=True, padding='max_
—length', return_tensors="pt")
inputs = batch['input_ids'], batch['attention_mask']
tokens = greedy_cpu(*inputs)
print('Texts: ")
for i, t in enumerate(tokens):
result = tokenizer.decode(t, skip_special_tokens=True)
print(i + 1, result)

Like in previous section of this tutorial, first the greedy model is executed on CPU to validate that the correct results
were produced. In this example, the generated text matches the first result of the original beam search.

model_cpu.config.max_length = 8 # This controls the number of decoder loops. Reduced to.
—.improve compilation speed.

greedy_cpu = GreedyUnrolledGenerator (model_cpu)

infer_greedy(greedy_cpu, tokenizer, sample_text)

Greedy Neuron Tracing & Inference

Similarly the tracing is simplified since the now the GreedyUnrolledGenerator.forward can be compiled as a
single unit.

For compilation efficiency, two changes will be made compared to normal compilaition:

e torch. jit.freeze is used because it can sometimes speed up compilation by in the case where a module is
re-used multiple times. In this case, it is more efficient because the self.model .model.decoder is used in a
loop.

* The torch_neuron.trace option fallback is set to False. This forces all operations to execute on Neuron.
Most of the time this is not recommended or efficient. In this case, it is more efficient because it means a single
subgraph is produced rather than many. Usually one subgraph would be produced per decoder iteration since
aten: :embedding is executed in a loop. The aten: :embedding operation is otherwise exected on CPU by
default since this is usually more efficient than executing on Neuron.
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You may notice that compilation will take significantly longer with the unrolled model since the model inserts new
operations into the compute graph for every single decoder iteration. This creates a much larger model graph even
though the weights are re-used.

example = (
torch.ones((num_texts, max_encoder_length), dtype=torch.long),
torch.ones((num_texts, max_encoder_length), dtype=torch.long),

)

greedy_cpu.eval ()

greedy_trace = torch.jit.trace(greedy_cpu, example)

greedy_frozen = torch.jit.freeze(greedy_trace)

greedy_neuron = torch_neuron.trace(greedy_frozen, example, fallback=False)

infer_greedy(greedy_neuron, tokenizer, sample_text)

Greedy Neuron Serialization

Unlike the previous version of the model that used the GenerationMixin base class. This greedy version of the
model can be serialized using the regular torch. jit.save and torch. jit.load utilities since it is a pure torchscript
module.

torch.jit.save(greedy_neuron, 'greedy_neuron.pt')
loaded_greedy_neuron = torch.jit.load('greedy_neuron.pt')
infer_greedy(loaded_greedy_neuron, tokenizer, sample_text)

Appendix
BART (Mask Filling Task)

These PaddedGenerator class can be applied to the BART model for the task of filling in mask tokens.

from transformers import BartForConditionalGeneration, BartTokenizer
bart_name = "facebook/bart-large"

bart_model = BartForConditionalGeneration.from_pretrained(bart_name)
bart_model.config.max_length = max_decoder_length

bart_tokenizer = BartTokenizer.from_pretrained(bart_name)

bart_text = "UN Chief Says There Is No <mask> in Syria"

# CPU Execution
infer(bart_model, bart_tokenizer, bart_text)

# Neuron Execution

paddded_bart = PaddedGenerator.from_model (bart_model)

bart_neuron = trace(paddded_bart, num_texts, num_beams, max_decoder_length, max_encoder_
—length)

infer(bart_neuron, bart_tokenizer, bart_text)
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Pegasus (Summarization Task)

These PaddedGenerator class can be applied to the Pegasus model for summarization.

from transformers import PegasusForConditionalGeneration, PegasusTokenizer

pegasus_name = 'google/pegasus-xsum'

pegasus_model = PegasusForConditionalGeneration.from_pretrained(pegasus_name)
pegasus_model.config.max_length = max_decoder_length

pegasus_tokenizer = PegasusTokenizer.from_pretrained(pegasus_name)

pegasus_text = "PG&E stated it scheduled the blackouts in response to forecasts for high..
—winds amid dry conditions. The aim is to reduce the risk of wildfires."

# CPU Execution
infer(pegasus_model, pegasus_tokenizer, pegasus_text)

# Neuron Execution

paddded_pegasus = PaddedGenerator.from_model (pegasus_model)

pegasus_neuron = trace(paddded_pegasus, num_texts, num_beams, max_decoder_length, max_
—.encoder_length)

infer(pegasus_neuron, pegasus_tokenizer, pegasus_text)

This document is relevant for: Infl

This document is relevant for: Infl

Utilizing Neuron Capabilities Tutorials

¢ BERT TorchServe tutorial [html]

» NeuronCore Pipeline tutorial [html] [notebook]

Using NeuronCore Pipeline with PyTorch

In this tutorial you compile a pretrained BERT base model from HuggingFace Transformers, using the NeuronCore
Pipeline feature of the AWS Neuron SDK. You benchmark model latency of the pipeline parallel mode and compare
with the usual data parallel (multi-worker) deployment.

This tutorial is intended to run in an infl.6xlarge, running the latest AWS Deep Learning AMI (DLAMI). The
infl.6xlarge instance size has AWS Inferentia chips for a total of 16 NeuronCores.

Verify that this Jupyter notebook is running the Python or Conda kernel environment that was set up according to the
PyTorch Installation Guide. You can select the kernel from the “Kernel -> Change Kernel” option on the top of this
Jupyter notebook page.

Note: Do not execute this tutorial using “Run -> Run all cells” option.
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Install Dependencies:

This tutorial requires the following pip packages:
e torch-neuron
* neuron-cc[tensorflow]
e transformers

Most of these packages will be installed when configuring your environment using the Neuron PyTorch setup guide.
The additional HuggingFace Transformers dependency must be installed here.

%env TOKENIZERS_PARALLELISM=True #Supresses tokenizer warnings making errors easier to.
—detect
Ipip install --upgrade "transformers==4.6.0"

Compiling a BERT base model for a single NeuronCore

To run a HuggingFace BERTModel on Inferentia, you only need to add a single extra line of code to the usual Trans-
formers PyTorch implementation, after importing the torch_neuron framework.

Add the argument return_dict=False to the BERT transformers model so it can be traced with TorchScript. Torch-
Script is a way to create serializable and optimizable models from PyTorch code.

Enable padding to a maximum sequence length of 128, to test the model’s performance with a realistic payload size.
You can adapt this sequence length to your application’s requirement.

You can adapt the original example on the BertModel forward pass docstring according to the following cell

import torch
import torch_neuron
from transformers import BertTokenizer, BertModel

from joblib import Parallel, delayed
import numpy as np
from tqdm import tqdm

import os
import time

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased',return_dict=False)

inputs = tokenizer("Hello, my dog is cute",return_tensors="pt",max_length=128,padding=
— 'max_length', truncation=True)

The one extra line required is the call to torch.neuron.trace() method. This call compiles the model and returns the
forwad method of the torch nn.Model method, which you can use to run inference.

The compiled graph can be saved using the torch. jit.save function and restored using torch. jit.load function
for inference on Infl instances. During inference, the previously compiled artifacts will be loaded into the Neuron
Runtime for inference execution.
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neuron_model = torch.neuron.trace(model,

example_inputs = (inputs['input_ids'],inputs[
—'attention_mask']),

verbose=1)

Running the BERT base model on a single NeuronCore

With the model already available in memory, you can time one execution and check for the latency on the single
inference call. You will load the model into Inferentia with a single inference call. A large “wall time” is expected
when you first run the next cell, running the cell twice will show the actual inference latency:

%%time
# The following line tests inference and should be executed on Infl instance family.
outputs = neuron_model (*(inputs['input_ids'],inputs['attention_mask']))

You can also check for the throughput of the single model running on a single NeuronCore.

The sequential inference test (for loop) does not measure all the performance one can achieve in an instance with
multiple NeuronCores. To improve hardwar utilization you can run parallel inference requests over multiple model
workers, which you’ll test in the Data Parallel Bonus Section below.

%%time
for _ in tqdm(range(100)):
outputs = neuron_model (*(inputs['input_ids'],inputs['attention_mask']))

Save the compiled model for later use:

neuron_model .save('bert-base-uncased-neuron.pt"')

Compiling a BERT base model for 16 NeuronCores

Our next step is to compile the same model for all 16 NeuronCores available in the inf1.6xlarge and check the perfor-
mance difference when running pipeline parallel inferences..

import torch
import torch_neuron
from transformers import BertTokenizer, BertModel

from joblib import Parallel, delayed
import numpy as np
from tqdm import tqdm

import os
import time
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

model = BertModel.from_pretrained('bert-base-uncased',return_dict=False)

inputs = tokenizer("Hello, my dog is cute",return_tensors="pt",max_length=128,padding=

(continues on next page)
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(continued from previous page)

— 'max_length', truncation=True)

To enable pipeline mode during compilation, you need only to add the compiler flag --neuroncore-pipeline-cores
and set the number of desired cores. The cell below sets up a neuroncore_pipeline_cores string, which you can
set for the available number of NeuronCores on the instance: infl.6xlarge has 16 NeuronCores in 4 Inferentia chips.

# Number of Cores in the Pipeline Mode
neuroncore_pipeline_cores = 16 # This string should be '4' on an infl.xlarge

# Compiling for neuroncore-pipeline-cores='16"
neuron_pipeline_model = torch.neuron.trace(model,

example_inputs = (inputs['input_ids'],inputs[
—'attention_mask']),

verbose=1,

compiler_args = ['--neuroncore-pipeline-cores
<", str(neuroncore_pipeline_cores)]

Running the BERT base model on 16 NeuronCores

Next, time one execution and check for the latency on the single inference call over 16 cores. You will load the model
into Inferentia with a single inference call. A large “wall time” is expected when you first run the next cell, running the
cell twice will show the actual inference latency:

%%time
# The following line tests inference and should be executed on Infl instance family.
outputs = neuron_pipeline_model (*(inputs['input_ids'],inputs['attention_mask']))

Check also for the throughput of the single model running over a 16 NeuronCores.

The sequential inference test (for loop) does not measure all the performance one can achieve with Pipeline mode. As
the inference runs in streaming fashion, at least 15 cores are waiting for a new call until the last one processes the first
call. This results in low NeuronCore utilization. To improve hardware utilization you will require parallel inference
requests, which you’ll test in the next section.

for _ in tqdm(range(100)):
outputs = neuron_pipeline_model (*(inputs['input_ids'],inputs['attention_mask']))

Load Testing the Pipeline Parallel Mode

To put the 16 NeuronCores group to test, a client has to run concurrent requests to the model. In this Notebook setup
you achieve it by creating a thread pool with Joblib.Parallel, with all workers on the pool runing one inference
call.

You can define a new method called inference_latency() so that you measure the amount of time each inference
calls take.

def inference_latency(model, *inputs):

non

infetence_time is a simple method to return the latency of a model inference.

(continues on next page)
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Parameters:
model: torch model onbject loaded using torch.jit.load
inputs: model() args

Returns:
latency in seconds
start = time.time()
_ = model (*inputs)
return time.time() - start

Use tqdm to measure total throughput of your experiment, with a nice side-effect of “cool progress bar!”. The total
throughput is expected to be high, so set your experiment range to a large number, here 30k inferences.

To calculate the latency statistics over the returned 30k list of latencies use numpy . qunatile () method.

t = tqdm(range(30000), position=0, leave=True)
latency = Parallel(n_jobs=12,prefer="threads") (delayed(inference_latency) (neuron_
—pipeline_model,*(inputs['input_ids'],inputs['attention_mask'])) for i in t)

p50 = np.quantile(latency[-10000:]1,0.50) * 1000
p95 = np.quantile(latency[-10000:]1,0.95) * 1000
p99 = np.quantile(latency[-10000:]1,0.99) * 1000
avg_throughput = t.total/t.format_dict['elapsed']
print (£'Avg Throughput: :{avg_throughput:.1£f}")
print (£'50th Percentile Latency:{p50:.1f} ms')
print(£'95th Percentile Latency:{p95:.1f} ms')
print(£'99th Percentile Latency:{p99:.1f} ms')

Save compile model for later use:

# Save the TorchScript graph
neuron_pipeline_model.save('bert-base-uncased-neuron-pipeline.pt')

Bonus Section - Load Testing Data Parallel Mode

import torch
import torch_neuron
from transformers import BertTokenizer

from joblib import Parallel, delayed
import numpy as np
from tqdm import tqgdm

import os
import time

def inference_latency(model, *inputs):

infetence_time is a simple method to return the latency of a model inference.

(continues on next page)
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Parameters:
model: torch model onbject loaded using torch.jit.load
inputs: model() args

Returns:
latency in seconds
start = time.time()
_ = model (*inputs)
return time.time() - start

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

inputs = tokenizer("Hello, my dog is cute",return_tensors="pt",max_length=128,padding=
< 'max_length',truncation=True)

You use the 'NEURON_RT_NUM_CORES' environment variable to define how many Neuron cores to be used. Set the
environment variable to the number of individual workers you want to test in parallel.

torch_neuron will load one model per NeuronCore group until it runs out of cores. At that point, if the Python
process continues to spawn more model objest using torch. jit.load, torch_neuron will start stacking more than
one model per core, until the Inferentia chip memory is full.

Inferentia is able to run inference over all the loaded models, but only one at a time. The Neuron Runtime takes care
of dynamically switching the model context as requests come in, no extra worker process management required. Use
1 model per NeuronCore to achieve maximum performance.

The following cell creates a list with as many models as NeuronCore Groups and execute one single dummy inference
to load the models into Inferentia.

import warnings
# Number of data parallel workers
number_of_workers=16 # This number should be 4 on an infl.xlarge

# Setting up a data parallel group
os.environ[ 'NEURON_RT_NUM_CORES'] = str(number_of_workers)

# Loading 'number_of_workers' amount of models in Python memory
model_list = [torch.jit.load('bert-base-uncased-neuron.pt') for _ in range(number_of_
—workers)]

# Dummy inference to load models to Inferentia
_ = [mod(*(inputs['input_ids'],inputs['attention_mask'])) for mod in model_list]

Adapt the call to joblib.Parallel() iterating over a concatenated version of the model_1list, to run ‘round-robin’
calls to each of the model workers.

t = tqdm(model_list*1500,position=0, leave=True)
latency = Parallel (n_jobs=number_of_workers,prefer="threads") (delayed(inference_
—latency) (mod, *(inputs['input_ids'],inputs['attention_mask'])) for mod in t)

(continues on next page)
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p50 np.quantile(latency[-10000:],0.50) * 1000
p95 = np.quantile(latency[-10000:]1,0.95) * 1000
p99 = np.quantile(latency[-10000:]1,0.99) * 1000
avg_throughput = t.total/t.format_dict['elapsed']
print (£'Avg Throughput: :{avg_throughput:.1£f}")
print(£'50th Percentile Latency:{p50:.1f} ms')
print(£'95th Percentile Latency:{p95:.1f} ms')
print(£'99th Percentile Latency:{p99:.1f} ms')

For this model, despite the larger number of workers, the per-worker latency increases when running a single model
per core, which in turn reduces the total throughput.

This behavior may not repeat if the model memory footprint or the input payload size changes, i.e batch size > 1. We
encourage you to experiment with the data parallel and pipeline parallel modes to optimize your application perfor-
mance.

This document is relevant for: Infl

Computer Vision Tutorials

¢ ResNet-50 tutorial [html] [notebook]
* PyTorch YOLOV4 tutorial [html] [notebook]

Natural Language Processing (NLP) Tutorials

* HuggingFace pretrained BERT tutorial [Afml] [notebook]

* HuggingFace pretrained BERT tutorial with shared weights [hfm!] [notebook]

* Bring your own HuggingFace pretrained BERT container to Sagemaker Tutorial [html] [notebook]
e LibTorch C++ tutorial [html]

¢ TorchServe tutorial [html]

* HuggingFace MarianMT tutorial [/7m!] [notebook]

Utilizing Neuron Capabilities Tutorials

e BERT TorchServe tutorial [/html]

* NeuronCore Pipeline tutorial [html] [notebook]

Note: To use Jupyter Notebook see:
* setup-jupyter-notebook-steps-troubleshooting

* running-jupyter-notebook-as-script

This document is relevant for: Infl

This document is relevant for: Infl
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Additional Examples (torch-neuron)

e AWS Neuron Samples GitHub Repository

This document is relevant for: Infl
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API Reference Guide (torch-neuron)

This document is relevant for: Infl

PyTorch-Neuron trace python API

The PyTorch-Neuron trace Python API provides a method to generate PyTorch models for execution on Inferentia,
which can be serialized as TorchScript. It is analogous to torch. jit.trace() function in PyTorch.

torch_neuron. trace(model, example_inputs, **kwargs)

The torch_neuron. trace () method sends operations to the Neuron-Compiler (neuron-cc) for compilation
and embeds compiled artifacts in a TorchScript graph.

Compilation can be done on any EC2 machine with sufficient memory and compute resources. c5.4xlarge or
larger is recommended.

Options can be passed to Neuron compiler via the compile function. See Neuron compiler CLI Reference Guide
(neuron-cc) for more information about compiler options.

This function partitions nodes into operations that are supported by Neuron and operations which are not.
Operations which are not supported by Neuron are run on CPU. Graph partitioning can be controlled by the
subgraph_builder_function, minimum_segment_size, and fallback parameters (See below). By de-
fault all supported operations are compiled and run on Neuron.

The compiled graph can be saved using the torch. jit.save() function and restored using torch.jit.
load() function for inference on Infl instances. During inference, the previously compiled artifacts will be
loaded into the Neuron Runtime for inference execution.

Required Arguments
Parameters

* model (Module,callable) — The functions that that will be run with example_inputs
arguments. The arguments and return types must compatible with torch. jit.trace().
When a Module is passed to torch_neuron. trace(), only the forward () method is run
and traced.

* example_inputs (tuple) — A tuple of example inputs that will be passed to the model
while tracing. The resulting trace can be run with inputs of different types and shapes as-
suming the traced operations support those types and shapes. This parameter may also be a
single torch.Tensor in which case it is automatically wrapped in a tuple.

Optional Keyword Arguments
Keyword Arguments

e compiler_args (list[str]) — List of strings representing neuron-cc compiler argu-
ments. Note that these arguments apply to all subgraphs generated by allowlist partition-
ing. For example, use compiler_args=['--neuroncore-pipeline-cores', '4'] to
set number of NeuronCores per subgraph to 4. See Neuron compiler CLI Reference Guide
(neuron-cc) for more information about compiler options.
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» compiler_timeout (int) — Timeout in seconds for waiting neuron-cc to complete. Ex-
ceeding this timeout will cause a subprocess.TimeoutExpired exception.

» compiler_workdir (str) — Work directory used by neuron-cc. Useful for debugging
and/or inspecting neuron-cc logs/IRs.

e subgraph_builder_function (callable)— A function which is evaluated on each node
during graph partitioning. This takes in a torch graph operator node and returns a bool value
of whether it should be included in the fused Neuron graph or not. By default the partitioner
selects all operators which are supported by Neuron.

* minimum_segment_size (int) — A parameter used during partitioning. This specifies the
minimum number of graph nodes which should be compiled into a Neuron graph (default=
2). If the number of nodes is smaller than this size, the operations will run on CPU.

» single_fusion_ratio_threshold (fIoat)— A parameter used during partitioning. Dur-
ing partitioning, if a single partition contains a fraction of operations greater than this thresh-
old, only one graph partition will be compiled (default= 0. 6). This is used to avoid compiling
many small Neuron graphs. To force compilation of all graphs to Neuron (even when they
are very small), a value of 1.0 can be used.

» fallback (bool) — A function parameter to turn off graph partitioning. Indicates whether
to attempt to fall back to CPU operations if an operation is not supported by Neuron. By
default this is True. If this is set to False and an operation is not supported by Neuron, this
will fail compilation and raise an AttributeError.

* dynamic_batch_size (bool) — A flag to allow Neuron graphs to consume variable sized
batches of data. Dynamic sizing is restricted to the Oth dimension of a tensor.

» optimizations (1ist)— A list of Optimization passes to apply to the model.

» separate_weights (bool) — A flag to enable compilation of models with over 1.9GB of
constant parameters. By default this flag is False. If this is set to True and the compiler
version is not new enough to support the flag, this will raise an NotImplementedError.

o **kwargs — All other keyword arguments will be forwarded directly to torch.jit.
trace(). This supports flags like strict=False in order to allow dictionary outputs.

Returns

The traced ScriptModule with embedded compiled neuron sub-graphs. Operations in this mod-
ule will run on Neuron unless they are not supported by Neuron or manually partitioned to run
on CPU.

Note that in torch<1.8 This would return a ScriptFunction if the input was function type.

Return type
ScriptModule, ScriptFunction

class torch_neuron.Optimization

A set of optimization passes that can be applied to the model.

FLOAT32_TO_FLOAT16

A post-processing pass that converts all torch. float32 tensors to torch. float16 tensors. The advan-
tage to this optimization pass is that input/output tensors will be type cast. This reduces the amount of data
that will be copied to and from Inferentia hardware. The resulting traced model will accept both torch.
float32 and torch. float16 inputs where the model used torch. float32 inputs during tracing. It is
only beneficial to enable this optimization if the throughput of a model is highly dependent upon data trans-
fer speed. This optimization is not recommended if the final application will use torch. float32 inputs
since the torch. float16 type cast will occur on CPU during inference.
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Example Usage

Function Compilation

import torch
import torch_neuron

def foo(x, y):
return 2 * x +y

# Run “foo" with the provided inputs and record the tensor operations
traced_foo = torch.neuron.trace(foo, (torch.rand(3), torch.rand(3)))

# “traced_foo" can now be run with the TorchScript interpreter or saved
# and loaded in a Python-free environment

torch.jit.save(traced_foo, 'foo.pt')

traced_foo = torch.jit.load('foo.pt")

Module Compilation

import torch
import torch_neuron
import torch.nn as nn

class Net(nn.Module):
def __init__(self):
super(Net, self).__init__Q
self.conv = nn.Conv2d(l, 1, 3)

def forward(self, x):
return self.conv(x) + 1

n = Net()
n.eval(Q

inputs = torch.rand(l, 1, 3, 3)

# Trace a specific method and construct ‘ScriptModule® with
# a single ‘forward method
neuron_forward = torch.neuron.trace(n.forward, inputs)

# Trace a module (implicitly traces “forward ) and constructs a
# “ScriptModule® with a single “forward method
neuron_net = torch.neuron.trace(n, inputs)
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Pre-Trained Model Compilation

The following is an example usage of the compilation Python API, with default compilation arguments, using a pre-
trained torch.nn.Module:

import torch
import torch_neuron
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image)

Compiling models with torch.jit.trace kwargs

This example uses the strict=False flag to compile a model with dictionary outputs. Similarly, any other keyword
argument of torch.jit.trace() can be passed directly to torch_neuron. trace() so that it is passed to the un-
derlying trace call.

import torch
import torch_neuron
import torch.nn as nn

class Model (nn.Module):

def __init__(self):
super(Model, self).__init__(Q)
self.conv = nn.Conv2d(1l, 1, 3)

def forward(self, x):
return {'conv': self.conv(x) + 1}

model = Model()
model.eval()

inputs = torch.rand(l, 1, 3, 3)
# use the strict=False kwarg to compile a model with dictionary outputs

# the model output format does not change
model_neuron = torch.neuron.trace(model, inputs, strict=False)
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Dynamic Batching

This example uses the optional dynamic_batch_size option in order to support variable sized batches at inference
time.

import torch
import torch_neuron
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval )

# Compile with an example input of batch size 1
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image, dynamic_batch_size=True)

# Execute with a batch of 7 images
batch = torch.rand([7, 3, 224, 224])
results = model_neuron(batch)

Manual Partitioning

The following example uses the optional subgraph_builder_function parameter to ensure that only a specific
convolution layer is compiled to Neuron. The remaining operations are executed on CPU.

import torch
import torch_neuron
import torch.nn as nn

class ExampleConvolutionLayer(nn.Module):
def __init__(self):
super().__init__Q
self.conv = nn.Conv2d(l, 1, 3)

def forward(self, x):
return self.conv(x) + 1

class Model (nn.Module):
def __init__(self):
super() .__init__Q
self.layer = ExampleConvolutionLayer ()

def forward(self, x):
return self.layer(x) * 100

def subgraph_builder_function(node) -> bool:
"""Select if the node will be included in the Neuron graph"""

# Node names are tuples of Module names.
if 'ExampleConvolutionLayer' in node.name:
return True

(continues on next page)
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(continued from previous page)

# Ignore all operations not in the example convolution layer
return False

model = Model()
model.eval()

inputs = torch.rand(l, 1, 3, 3)

# Log output shows that ‘aten::_convolution and ‘aten::add" are compiled
# but ‘aten::mul” is not. This will seamlessly switch between Neuron/CPU
# execution in a single graph.

neuron_model = torch_neuron.trace(

model,
inputs,
subgraph_builder_function=subgraph_builder_function
D)
Separate Weights

This example uses the optional separate_weights option in order to support compilation of models greater than
1.9GB.

import torch
import torch_neuron
from torchvision import models

# Load the model
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input

image = torch.rand([1, 3, 224, 224])

#the models' output format does not change

model_neuron = torch.neuron.trace(model, image, separate_weights=True)

This document is relevant for: Infl

This document is relevant for: Infl

torch.neuron.DataParallel API

The torch.neuron.DataParallel() Python API implements data parallelism on ScriptModule models created
by the PyTorch-Neuron trace python API. This function is analogous to DataParallel in PyTorch. The Data Parallel
Inference on Torch Neuron application note provides an overview of how torch.neuron.DataParallel() can be
used to improve the performance of inference workloads on Inferentia.

torch.neuron.DataParallel (model, device_ids=None, dim=0)

Applies data parallelism by replicating the model on available NeuronCores and distributing data across the
different NeuronCores for parallelized inference.
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By default, DataParallel will use all available NeuronCores allocated for the current process for parallelism.
DataParallel will apply parallelism on dim=0 if dim is not specified.

DataParallel automatically enables dynamic batching on eligible models if dim=0. Dynamic batching can be
dsiabled using torch.neuron.DataParallel.disable_dynamic_batching(). If dynamic batching is not
enabled, the batch size at compilation-time must be equal to the batch size at inference-time divided by the
number of NeuronCores being used. Specifically, the following must be true when dynamic batching is disabled:
input.shape[dim] / len(device_ids) == compilation_input.shape[dim]. DataParallel will throw
a warning if dynamic batching cannot be enabled.

DataParallel will try load all of a model’s NEFFs onto a single NeuronCore, only if all of the NEFFs can fit on a
single NeuronCore. DataParallel does not currently support models that have been compiled with NeuronCore
Pipeline.

torch.neuron.DataParallel () requires PyTorch >=1.8.
Required Arguments

Parameters
model (ScriptModule) — Model created by the PyTorch-Neuron trace python API to be paral-
lelized.

Optional Arguments
Parameters

e device_ids (I1ist)—Listof int or 'nc:#' that specify the NeuronCores to use for paral-
lelization (default: all NeuronCores). Refer to the device_ids note for a description of how
device_ids indexing works.

* dim (int)- Dimension along which the input tensor is scattered across NeuronCores (default
dim=0).

Attributes
Parameters

e num_workers (int)— Number of worker threads used for multithreaded inference (default:
2 * number of NeuronCores).

e split_size (int) — Size of the input chunks (default: max(1, input.shape[dim] //
number of NeuronCores)).
torch.neuron.DataParallel.disable_dynamic_batching()

Disables automatic dynamic batching on the DataParallel module. See Dynamic batching disabled for example
of how DataParallel can be used with dynamic batching disabled. Use as follows:

>>> model_parallel = torch.neuron.DataParallel (model_neuron)
>>> model_parallel.disable_dynamic_batching()

Note: device_ids uses per-process NeuronCore granularity and zero-based indexing. Per-process granularity means
that each Python process “sees” its own view of the world. Specifically, this means that device_ids only “sees” the
NeuronCores that are allocated for the current process. Zero-based indexing means that each Python process will index
its allocated NeuronCores starting at 0, regardless of the “global” index of the NeuronCores. Zero-based indexing
makes it possible to redeploy the exact same code unchanged in different process. This behavior is analogous to the
device_ids argument in the PyTorch DataParallel function.

As an example, assume DataParallel is run on an infl.6xlarge, which contains four Inferentia chips each of which
contains four NeuronCores:
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o If NEURON_RT_VISIBLE_CORES is not set, a single process can access all 16 NeuronCores. Thus specify-
ing device_ids=["nc:0"] will correspond to chipO:core0 and device_ids=["nc:14"] will correspond to
chip3:core2.

» However, if two processes are launched where: process 1 has NEURON_RT_VISIBLE_CORES=0-6 and process
2 has NEURON_RT_VISIBLE_CORES=7-15, device_ids=["nc:14"] cannot be specified in either process. In-
stead, chip3:core2 can only be accessed in process 2. Additionally, chip3:core2 is specified in process 2 with
device_ids=["nc:7"]. Furthermore, in process 1, device_ids=["nc:0"] would correspond to chip0:core0;
in process 2 device_ids=["nc:0"] would correspond to chipl:core3.

Examples

The following sections provide example usages of the torch.neuron.DataParallel () module.

Default usage

The default DataParallel use mode will replicate the model on all available NeuronCores in the current process. The
inputs will be split on dim=0.

import torch
import torch_neuron
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image)

# Create the DataParallel module
model_parallel = torch.neuron.DataParallel (model_neuron)

# Create a batched input
batch_size = 5
image_batched = torch.rand([batch_size, 3, 224, 224])

# Run inference with a batched input
output = model_parallel (image_batched)

2.1. PyTorch Neuron 217



AWS Neuron

Specifying NeuronCores

The following example uses the device_ids argument to use the first three NeuronCores for DataParallel inference.

import torch
import torch_neuron
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image)

# Create the DataParallel module, run on the first three NeuronCores

# Equivalent to model_parallel = torch.neuron.DataParallel (model_neuron, device_ids=[0,.
-1, 2])

model_parallel = torch.neuron.DataParallel (model_neuron, device_ids=['nc:0', 'nc:1', 'nc:
-2'D

# Create a batched input

batch_size = 5

image_batched = torch.rand([batch_size, 3, 224, 224])

# Run inference with a batched input
output = model_parallel(image_batched)

DataParallel with dim !=0

In this example we run DataParallel inference using four NeuronCores and dim = 2. Because dim != 0, dynamic
batching is not enabled. Consequently, the DataParallel inference-time batch size must be four times the compile-time
batch size. DataParallel will generate a warning that dynamic batching is disabled because dim != 0.

import torch
import torch_neuron

# Create an example model
class Model (torch.nn.Module):
def __init__(self):
super().__init__Q
self.conv = torch.nn.Conv2d(3, 3, 3)

def forward(self, x):
return self.conv(x) + 1

model = Model()
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 8, 8])

(continues on next page)
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(continued from previous page)

model_neuron = torch.neuron.trace(model, image)

# Create the DataParallel module using 4 NeuronCores and dim = 2
model_parallel = torch.neuron.DataParallel (model_neuron, device_ids=[0, 1, 2, 3], dim=2)

# Create a batched input

# Note that image_batched.shape[dim] / len(device_ids) == image.shape[dim]
batch_size = 4 * 8

image_batched = torch.rand([1, 3, batch_size, 8])

# Run inference with a batched input
output = model_parallel (image_batched)

Dynamic batching

In the following example, we use the torch.neuron.DataParallel () module to run inference using several different
batch sizes without recompiling the Neuron model.

import torch
import torch_neuron
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval ()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image)

# Create the DataParallel module
model_parallel = torch.neuron.DataParallel (model_neuron)

# Create batched inputs and run inference on the same model
batch_sizes = [2, 3, 4, 5, 6]
for batch_size in batch_sizes:

image_batched = torch.rand([batch_size, 3, 224, 224])

# Run inference with a batched input
output = model_parallel(image_batched)
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Dynamic batching disabled

In the following example, we use torch.neuron.DataParallel.disable_dynamic_batching() to disable dy-
namic batching. We provide an example of a batch size that will not work when dynamic batching is disabled as well
as an example of a batch size that does work when dynamic batching is disabled.

import torch
import torch_neuron
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image)

# Create the DataParallel module and use 4 NeuronCores
model_parallel = torch.neuron.DataParallel (model_neuron, device_ids=[0, 1, 2, 3], dim=0)

# Disable dynamic batching
model_parallel.disable_dynamic_batching()

# Create a batched input (this won't work)
batch_size = 8
image_batched = torch.rand([batch_size, 3, 224, 224])

# This will fail because dynamic batching is disabled and
# image_batched.shape[dim] / len(device_ids) != image.shape[dim]
# output = model_parallel(image_batched)

# Create a batched input (this will work)
batch_size = 4
image_batched = torch.rand([batch_size, 3, 224, 224])

# This will work because
# image_batched.shape[dim] / len(device_ids) == image.shape[dim]
output = model_parallel(image_batched)

Full tutorial with torch.neuron.DataParallel

For an end-to-end tutorial that uses DataParallel, see the PyTorch Resnet Tutorial.
This document is relevant for: Infl

This document is relevant for: Infl
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PyTorch Neuron (torch-neuron) Core Placement API [Beta]

Warning: The following functionality is beta and will not be supported in future releases of the Neuron SDK.
This module serves only as a preview for future functionality. In future releases, equivalent functionality may be
moved directly to the torch_neuron module and will no longer be available in the torch_neuron.experimental
module.

Functions which enable placement of torch. jit.ScriptModule to specific NeuronCores. Two sets of functions are
provided which can be used interchangeably but have different performance characteristics and advantages:

e The multicore_context() & neuron_cores_context () functions are context managers that allow a model
to be placed on a given NeuronCore at torch. jit.load() time. These functions are the most efficient way of
loading a model since the model is loaded directly to a NeuronCore. The alternative functions described below
require that a model is unloaded from one core and then reloaded to another.

e The set_multicore() & set_neuron_cores() functions allow a model that has already been loaded to a
NeuronCore to be moved to a different NeuronCore. This functionality is less efficient than directly loading a
model to a NeuronCore within a context manager but allows device placement to be fully dynamic at runtime.
This is analogous to the torch.nn.Module.to() function for device placement.

Important: A prerequisite to enable placement functionality is that the loaded torch. jit.ScriptModule has
already been compiled with the torch_neuron.trace() APl Attempting to place a regular torch.nn.Module
onto a NeuronCore prior to compilation will do nothing.

torch_neuron.experimental .multicore_context()

A context which loads all Neuron subgraphs to all visible NeuronCores.

This loads each Neuron subgraph within a torch. jit.ScriptModule to multiple NeuronCores without re-
quiring multiple calls to torch. jit.load(). This allows a single torch. jit.ScriptModule to use multiple
NeuronCores for concurrent threadsafe inferences. Executions use a round-robin strategy to distribute across
NeuronCores.

Any calls to torch. jit.load() will cause any underlying Neuron subgraphs to load to the specified Neuron-
Cores within this context. This context manager only needs to be used during the model load. After loading,
inferences do not need to occur in this context in order to use the correct NeuronCores.

Note that this context is not threadsafe. Using multiple core placement contexts from multiple threads may not
correctly place models.

Raises
RuntimeError — If the Neuron runtime cannot be initialized.

Examples

Multiple Core Replication: Directly load a model to all visible NeuronCores. This allows a single torch. jit.
ScriptModule to use all NeuronCores by running round-robin executions.

>>> with torch_neuron.experimental .multicore_context():
>>> model = torch.jit.load('example_neuron_model.pt")
>>> model (example) # Executes on NeuronCore 0

>>> model (example) # Executes on NeuronCore 1

>>> model (example) # Executes on NeuronCore 2
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torch_neuron.experimental .neuron_cores_context (start_nc: int = -1, nc_count: int =-1)

A context which sets the NeuronCore start/count for all Neuron subgraphs.

Any calls to torch. jit.load() will cause any underlying Neuron subgraphs to load to the specified Neuron-
Cores within this context. This context manager only needs to be used during the model load. After loading,
inferences do not need to occur in this context in order to use the correct NeuronCores.

Note that this context is not threadsafe. Using multiple core placement contexts from multiple threads may not
correctly place models.

Parameters

* start_nc — The starting NeuronCore index where the Module is placed. The value -1
automatically loads to the optimal NeuronCore (least used). Note that this index is always
relative to NeuronCores visible to this process.

* nc_count — The number of NeuronCores to use. The value -1 will load a model to ex-
actly the number of cores required by that model (1 for most models, >1 when using Neu-
ronCore Pipeline). If nc_count is greater than the number of NeuronCores required by
the model, the model will be replicated across multiple NeuronCores. (replications =
floor(nc_count / cores_per_model))

Raises
e RuntimeError — If the Neuron runtime cannot be initialized.

¢ ValueError — If the nc_count is an invalid number of NeuronCores.

Examples

Single Load: Directly load a model from disk to the first visible NeuronCore.

>>> with torch_neuron.experimental.neuron_cores_context(start_nc=0, nc_count=1):
>>> model = torch.jit.load('example_neuron_model.pt")

>>> model (example) # Executes on NeuronCore 0

>>> model (example) # Executes on NeuronCore 0

>>> model (example) # Executes on NeuronCore 0

Multiple Core Replication: Directly load a model from disk to 2 NeuronCores. This allows a single torch.
jit.ScriptModule to use multiple NeuronCores by running round-robin executions.

>>> with torch_neuron.experimental.neuron_cores_context(start_nc=2, nc_count=2):
>>> model = torch.jit.load('example_neuron_model.pt")

>>> model (example) # Executes on NeuronCore 2

>>> model (example) # Executes on NeuronCore 3

>>> model (example) # Executes on NeuronCore 2

Multiple Model Load: Directly load 2 models from disk and pin them to separate NeuronCores. This causes
each torch. jit.ScriptModule to always execute on a specific NeuronCore.

>>> with torch_neuron.experimental.neuron_cores_context(start_nc=2):

>>> modell = torch.jit.load('example_neuron_model.pt')
>>> with torch_neuron.experimental .neuron_cores_context(start_nc=0):
>>> model2 = torch.jit.load('example_neuron_model.pt")

>>> modell(example) # Executes on NeuronCore 2
>>> modell(example) # Executes on NeuronCore 2

(continues on next page)
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(continued from previous page)

>>> model2(example) # Executes on NeuronCore 0
>>> model2 (example) # Executes on NeuronCore 0

torch_neuron.experimental.set_multicore(trace: torch.jit.ScriptModule)

Loads all Neuron subgraphs in a torch Module to all visible NeuronCores.

This loads each Neuron subgraph within a torch. jit.ScriptModule to multiple NeuronCores without re-
quiring multiple calls to torch. jit.load(). This allows a single torch. jit.ScriptModule to use multiple
NeuronCores for concurrent threadsafe inferences. Executions use a round-robin strategy to distribute across
NeuronCores.

This will unload the model from an existing NeuronCore if it is already loaded.
Requires Torch 1.8+

Parameters
trace — A torch module which contains one or more Neuron subgraphs.

Raises
RuntimeError — If the Neuron runtime cannot be initialized.

Examples

Multiple Core Replication: Move a model across all visible NeuronCores after loading. This allows a single
torch. jit.ScriptModule to use all NeuronCores by running round-robin executions.

>>> model = torch.jit.load('example_neuron_model.pt')
>>> torch_neuron.experimental.set_multicore(model)
>>> model (example) # Executes on NeuronCore 0

>>> model (example) # Executes on NeuronCore 1

>>> model (example) # Executes on NeuronCore 2

torch_neuron.experimental .set_neuron_cores (trace: torch.jit.ScriptModule, start_nc: int = -1, nc_count:

nt=-1)
Set the NeuronCore start/count for all Neuron subgraphs in a torch Module.
This will unload the model from an existing NeuronCore if it is already loaded.
Requires Torch 1.8+
Parameters
* trace — A torch module which contains one or more Neuron subgraphs.

» start_nc — The starting NeuronCore index where the Module is placed. The value -1
automatically loads to the optimal NeuronCore (least used). Note that this index is always
relative to NeuronCores visible to this process.

e nc_count — The number of NeuronCores to use. The value -1 will load a model to ex-
actly the number of cores required by that model (1 for most models, >1 when using Neu-
ronCore Pipeline). If nc_count is greater than the number of NeuronCores required by
the model, the model will be replicated across multiple NeuronCores. (replications =
floor(nc_count / cores_per_model))

Raises
e RuntimeError — If the Neuron runtime cannot be initialized.

e ValueError — If the nc_count is an invalid number of NeuronCores.
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Examples

Single Load: Move a model to the first visible NeuronCore after loading.

>>> model = torch.jit.load('example_neuron_model.pt')

>>> torch_neuron.experimental.set_neuron_cores(model, start_nc=0, nc_count=1)
>>> model (example) # Executes on NeuronCore 0

>>> model (example) # Executes on NeuronCore 0

>>> model (example) # Executes on NeuronCore 0

Multiple Core Replication: Replicate a model to 2 NeuronCores after loading. This allows a single torch. jit.
ScriptModule to use multiple NeuronCores by running round-robin executions.

>>> model = torch.jit.load('example_neuron_model.pt"')

>>> torch_neuron.experimental .set_neuron_cores(model, start_nc=2, nc_count=2)
>>> model (example) # Executes on NeuronCore 2

>>> model (example) # Executes on NeuronCore 3

>>> model (example) # Executes on NeuronCore 2

Multiple Model Load: Move and pin 2 models to separate NeuronCores. This causes each torch.jit.
ScriptModule to always execute on a specific NeuronCore.

>>> modell = torch.jit.load('example_neuron_model.pt')
>>> torch_neuron.experimental .set_neuron_cores(modell, start_nc=2)
>>> model2 = torch.jit.load('example_neuron_model.pt')
>>> torch_neuron.experimental.set_neuron_cores(model2, start_nc=0)
>>> modell(example) # Executes on NeuronCore 2
>>> modell(example) # Executes on NeuronCore 2
>>> model2(example) # Executes on NeuronCore 0
>>> model2(example) # Executes on NeuronCore 0
This document is relevant for: Infl

e PyTorch Neuron trace Python API

e torch.neuron.DataParallel API

* PyTorch Neuron (torch-neuron) Core Placement API [Beta]

This document is relevant for: Infl

This document is relevant for: Infl

Developer Guide (torch-neuron)

This document is relevant for: Infl
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Running inference on variable input shapes with bucketing

Table of contents

e Introduction
* Applications that benefit from bucketing
* Implementing bucketing

— Creating bucketed models

— Running inference with bucketing
* Examples

— Computer vision bucketing

End-to-end computer vision bucketing example

Natural language processing bucketing

End-to-end natural language processing bucketing example

Introduction

With Inferentia, the shape of every input must be fixed at compile time. For applications that require multiple input
sizes, we recommend using padding or bucketing techniques. Padding requires you to compile your model with the
largest expected input size and pad every input to this maximum size. If the performance of your model using padding
is not within your targets, you can consider implementing bucketing.

This guide introduces bucketing, a technique to run inference on inputs with variable shapes on Inferentia. The fol-
lowing sections explain how bucketing can improve the performance of inference workloads on Inferentia. It covers an
overview of how bucketing works and provides examples of using bucketing in computer vision and natural language
processing applications.

Applications that benefit from bucketing

Bucketing refers to compiling your model multiple times with different target input shapes to create “bucketed models.”
Creating bucketed models provides an overview on selecting the input shapes that you use to create bucketed models.
At inference time, each input is padded until its shape matches the next largest bucket shape. The padded input is then
passed into the corresponding bucketed model for inference. By compiling the same model with multiple different
input shapes, the amount of input padding is reduced compared to padding every input to the maximum size in your
dataset. This technique minimizes the compute overhead and improves inference performance compared to padding
every image to the maximum shape in your dataset.

Bucketing works best when multiple different bucketed models are created to efficiently cover the full range of input
shapes. You can fine-tune the model performance by experimenting with different bucket sizes that correspond to the
distribution of input shapes in your dataset.

Bucketing can only be used if there is an upper bound on the shape of the inputs. If necessary, an upper bound on the
input shape can be enforced using resizing and other forms of preprocessing.

The upper bound on the number of bucketed models that you use is dictated by the total size of the compiled bucketed
models. Each Inferentia chip has 8GB of DRAM, or 2GB of DRAM per NeuronCore. An infl.xlarge and infl.2xlarge
have 1 Inferentia chip, an infl.6xlarge has 4 Inferentia chips, and an infl.24xlarge has 16 Inferentia chips. Thus,
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you should limit the total size of all bucketed models to around 8GB per Inferentia chip or 2GB per NeuronCore.
The following formula provides an approximation for the number of compiled bucketed models you can fit on each
NeuronCore:

number-of-buckets = round(1049 / number-of-weights-in-model)

We recommend using neuron-top to monitor the memory usage on your infl instance as you load multiple bucketed
models.

Implementing bucketing

Implementing bucketing consists of two main parts: creating multiple bucketed models at compile-time and running
inference using the bucketed models on (padded) inputs. The following sections describe how to implement bucketing
to run inference in applications that have variable input shapes.

Creating bucketed models

Before running inference, models should be compiled for different input shapes that are representative of the input
dataset. The input shapes that are used to compile the models determine the bucket shapes that are used during inference.
The bucket shapes should be chosen to minimize the amount of padding on each new input. Additionally, there should
always be a bucket that’s large enough to handle the maximum input shape in the dataset. The limit on the number of
compiled bucketed models that can be used is described in this section.

Running inference with bucketing

At inference time, each input should be padded to match the size of the next largest bucket, such that the height and
width (or sequence length) of the padded input equals the size of the bucket. Then, the padded input should be passed
into the corresponding bucket for inference. If necessary, it’s important to remove and/or crop any aberrant predictions
that occur in the padded region. For example, in object detection applications, bounding box predictions that occur in
the padded regions should be removed to avoid erroneous predictions.

Examples

The following sections provide examples of applying the bucketing technique to run inference in applications that have
variable input shapes.

Computer vision bucketing

As an example of implementing bucketing for computer vision models, consider an application where the height and
width of images in dataset are uniformly distributed between [400, 400] and [800, 800]. Given that every input shape
between [400, 400] and [800, 800] is equally likely, it could make sense to create bucketed models that divide up the
range of input shapes into equally sized chunks. For example, we could create bucketed models for the input shapes
[500, 500], [600, 600], [700, 700], and [800, 800].

As an example of running inference with bucketing, let’s assume that we created bucketed models for the input shapes
[500, 500], [600, 600], [700, 700], and [800, 800]. If we receive an input with shape [640, 640], we would pad the
input to the next largest bucket, [700, 700], and use this bucket for inference. If we receive an input with shape [440,
540], we would need to pad the input to the bucket size, [600, 600], and use this bucket for inference.
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As another example of creating bucketed models, consider a computer vision application where the dataset is not
uniformly distributed. As before, let’s assume the input shapes range between [400, 400] to [800, 800]. Now, let’s
assume the data shape distribution is bimodal, such that [540, 540] and [720, 720] are the two most common input
shapes. In this example, it might make sense to create bucketed models for input shapes [540, 540], [720, 720], and
[800, 800] to target the most common shapes while still including the entire range of input shapes.

End-to-end computer vision bucketing example

In this example, we run inference in a computer vision application that has variable shaped images that range in shape
from [400, 400] to [800, 800]. We create bucketed models for the input shapes [500, 500], [600, 600], [700, 700],
and /800, 800] to handle the variable input shapes.

import numpy as np

import torch

from torchvision import models
import torch_neuron

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval )

# Define the bucket sizes that will be used for compilation and inference
bucket_sizes = [(500, 500), (600, 600), (700, 700), (800, 800)]

# Create the bucketed models by compiling a model for each bucket size
buckets = {}
for bucket_size in bucket_sizes:

# Create an example input that is the desired bucket size

h, w = bucket_size

image = torch.rand([1, 3, h, w])

# Compile with the example input to create the bucketed model
model_neuron = torch.neuron.trace(model, image)

# Run a warm up inference to load the model into Inferentia memory
model_neuron(image)

# Add the bucketed model based on its bucket size
buckets[bucket_size] = model_neuron

def get_bucket_and_pad_image(image):
# Determine which bucket size to use
oh, ow = image.shape[-2:]
target_bucket = None
for bucket_size in bucket_sizes:
# Choose a bucket that's larger in both the height and width dimensions
if oh <= bucket_size[0] and ow <= bucket_size[1]:
target_bucket = bucket_size
break

# Pad the image to match the size of the bucket

(continues on next page)
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h_delta
w_delta

target_bucket[0] - oh
target_bucket[1] - ow

b_pad = h_delta # Bottom padding

1l pad = 0 # Left padding
t_pad = 0 # Top padding
r_pad = w_delta # Right padding

# Pad the height and width of the image
padding_amounts = (l_pad, r_pad, t_pad, b_pad)
image_padded = torch.nn.functional.pad(image, padding_amounts, value=0)

return image_padded, target_bucket

# Run inference on inputs with different shapes

for in range(10):

Create an image with a random height and width in range [400, 400] to [800, 800]
= int(np.random.uniform(low=400, high=800))

= int(np.random.uniform(low=400, high=800))

image = torch.rand(l, 3, h, w)

= 5 %

# Determine bucket and pad the image
image_padded, target_bucket = get_bucket_and_pad_image(image)

# Use the corresponding bucket to run inference
output = buckets[target_bucket] (image_padded)

Natural language processing bucketing

As an example of implementing bucketing for natural language processing models, consider an application where the
lengths of tokenized sequences in a dataset are uniformly distributed between 0 and 128 tokens. Given that every
tokenized sequence length between 0 and 128 is equally likely, it might make sense to create bucketed models that
divide up the range of tokenized sequence lengths into equally sized chunks. For example, we could create bucketed
models for tokenized sequence lengths 64 and 128.

As an example of running inference with bucketing, let’s assume that we created bucketed models for the input tokenized
sequence lengths 64 and 128. If we receive a tokenized sequence with length 55, we would need to pad it to the bucket
size 64 and use this bucket for inference. If we receive a tokenized sequence with length 112, we would need to pad it
to the bucket size 128 and use this bucket for inference.

End-to-end natural language processing bucketing example

In this example, we run inference in a natural language processing application that has variable length tokenized se-
quences that range from O to 128. We create bucketed models for lengths 64 and 128 to handle the variable input
lengths.

import numpy as np
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification

(continues on next page)
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import torch_neuron

# Build tokenizer and model

tokenizer = AutoTokenizer.from_pretrained('bert-base-cased-finetuned-mrpc")

model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased-finetuned-
—mrpc", return_dict=False)

model.eval )

# Define the bucket sizes that will be used for compilation and inference
bucket_sizes = [64, 128]

# Create the bucketed models by compiling a model for each bucket size
buckets = {}
for bucket_size in bucket_sizes:
# Setup some example inputs
sequence_0 = "The company HuggingFace is based in New York City"
sequence_1 = "HuggingFace's headquarters are situated in Manhattan"

# Create an example input that is the desired bucket size

paraphrase = tokenizer.encode_plus(sequence_0,
sequence_1,
max_length=bucket_size,
padding="max_length',
truncation=True,
return_tensors="pt")

# Convert example inputs to a format that is compatible with TorchScript tracing
example_inputs_paraphrase = paraphrase['input_ids'], paraphrase['attention_mask'],.
—paraphrase['token_type_ids']

# Compile with the example input to create the bucketed model
model_neuron = torch.neuron.trace(model, example_inputs_paraphrase)

# Run a warm up inference to load the model into Inferentia memory
model_neuron(*example_inputs_paraphrase)

# Add the bucketed model based on its bucket size
buckets[bucket_size] = model_neuron

def get_bucket_and_pad_paraphrase(paraphrase):
# Determine which bucket size to use
inputs = paraphrase['input_ids']
attention = paraphrase['attention_mask']
token_type = paraphrase['token_type_ids']
paraphrase_len = inputs.shape[1]
target_bucket = None
for bucket_size in bucket_sizes:
if paraphrase_len <= bucket_size:
target_bucket = bucket_size
break

(continues on next page)
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# Pad the paraphrase to match the size of the bucket
delta = target_bucket - paraphrase_len

zeros = torch.zeros([1l, delta], dtype=torch.long)
inputs = torch.cat([inputs, zeros], dim=1)

attention = torch.cat([attention, zeros], dim=1)
token_type = torch.cat([token_type, zeros], dim=1)

paraphrase_padded = inputs, attention, token_type
return paraphrase_padded, target_bucket

# Create two sample sequences

sequence_0 = ("The only other bear similar in size to the polar bear is the
"Kodiak bear, which is a subspecies of the brown bear. Adult male
"polar bears weigh 350-700 kg and measure 2.4-3 meters in total "
"length. All bears are short-tailed, the polar bear's tail is "
"relatively the shortest amongst living bears.")

sequence_1 = ("Around the Beaufort Sea, however, mature males reportedly
"average 450 kg. Adult females are roughly half the size of males
"and normally weigh 150-250 kg, measuring 1.8-2.4 meters in length.
"The legs are stocky and the ears and tail are small.")

# Run inference on inputs with different shapes
# We create the variable shapes by randomly cropping the sequences
for _ in range(10):

# Get random sequence lengths between 0 and 128
paraphrase_len = int(np.random.uniform(128))

# Crop the paraphrase

paraphrase_cropped = tokenizer.encode_plus(sequence_0,
sequence_1,
max_length=paraphrase_len,
padding="max_length',
truncation=True,
return_tensors="pt")

# Determine bucket and pad the paraphrase

paraphrase_padded, target_bucket = get_bucket_and_pad_paraphrase(paraphrase_cropped)

# Use the corresponding bucket to run inference
output = buckets[target_bucket] (*paraphrase_padded)

This document is relevant for: Infl

This document is relevant for: Infl
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Data Parallel Inference on Torch Neuron

Table of Contents

e Introduction
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Batch dim

Dynamic batching
— Performance optimizations
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— Default usage

Specifying NeuronCores

DataParallel with dim != 0

Dynamic batching

Dynamic batching disabled

Full tutorial with torch.neuron.DataParallel

Introduction

This guide introduces torch.neuron.DataParallel(), a Python API that implements data parallelism on
ScriptModule models created by the /neuron-guide/neuron-frameworks/pytorch-neuron/api-compilation-python-
api.rst. The following sections explain how data parallelism can improve the performance of inference workloads
on Inferentia, including how torch.neuron.DataParallel() uses dynamic batching to run inference on variable
input sizes. It covers an overview of the torch.neuron.DataParallel () module and provides a few example data
parallel applications.

Data parallel inference

Data Parallelism is a form of parallelization across multiple devices or cores, referred to as nodes. Each node contains
the same model and parameters, but data is distributed across the different nodes. By distributing the data across
multiple nodes, data parallelism reduces the total execution time of large batch size inputs compared to sequential
execution. Data parallelism works best for smaller models in latency sensitive applications that have large batch size
requirements.

2.1. PyTorch Neuron 231



AWS Neuron

torch.neuron.DataParallel

To fully leverage the Inferentia hardware, we want to use all available NeuronCores. An infl.xlarge and infl.2xlarge
have four NeuronCores, an infl.6xlarge has 16 NeuronCores, and an inf1.24xlarge has 64 NeuronCores. For maximum
performance on Inferentia hardware, we can use torch.neuron.DataParallel() to utilize all available Neuron-
Cores.

torch.neuron.DataParallel () implements data parallelism at the module level by replicating the Neuron model
on all available NeuronCores and distributing data across the different cores for parallelized inference. This function
is analogous to DataParallel in PyTorch. torch.neuron.DataParallel () requires PyTorch >=1.8.

The following sections provide an overview of some of the features of torch.neuron.DataParallel () that enable
maximum performance on Inferentia.

NeuronCore selection

By default, DataParallel will try to use all NeuronCores allocated to the current process to fully saturate the Inferentia
hardware for maximum performance. It is more efficient to make the batch dimension divisible by the number of
NeuronCores. This will ensure that NeuronCores are not left idle during parallel inference and the Inferentia hardware
is fully utilized.

In some applications, it is advantageous to use a subset of the available NeuronCores for DataParallel inference. Dat-
aParallel has a device_ids argument that accepts a list of int or 'nc:#' that specify the NeuronCores to use for
parallelization. See Specifying NeuronCores for an example of how to use device_ids argument.

Batch dim

DataParallel accepts a dim argument that denotes the batch dimension used to split the input data for distributed infer-
ence. By default, DataParalell splits the inputs on dim = 0 if the dim argument is not specified. For applications with
anon-zero batch dim, the dim argument can be used to specify the inference-time input batch dimension. DaraParallel
with dim | = 0 provides an example of data parallel inference on inputs with batch dim = 2.

Dynamic batching

Batch size has a direct impact on model performance. The Inferentia chip is optimized to run with small batch sizes.
This means that a Neuron compiled model can outperform a GPU model, even if running single digit batch sizes.

As a general best practice, we recommend optimizing your model’s throughput by compiling the model with a small
batch size and gradually increasing it to find the peak throughput on Inferentia.

Dynamic batching is a feature that allows you to use tensor batch sizes that the Neuron model was not originally
compiled against. This is necessary because the underlying Inferentia hardware will always execute inferences with
the batch size used during compilation. Fixed batch size execution allows tuning the input batch size for optimal
performance. For example, batch size 1 may be best suited for an ultra-low latency on-demand inference application,
while batch size > 1 can be used to maximize throughput for offline inferencing. Dynamic batching is implemented by
slicing large input tensors into chunks that match the batch size used during the torch_neuron. trace () compilation
call.

The torch.neuron.DataParallel () class automatically enables dynamic batching on eligible models. This allows
us to run inference in applications that have inputs with a variable batch size without needing to recompile the model.
See Dynamic batching for an example of how DataParallel can be used to run inference on inputs with a dynamic batch
size without needing to recompile the model.
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Dynamic batching using small batch sizes can result in sub-optimal throughput because it involves slicing tensors into
chunks and iteratively sending data to the hardware. Using a larger batch size at compilation time can use the Inferentia
hardware more efficiently in order to maximize throughput. You can test the tradeoff between individual request latency
and total throughput by fine-tuning the input batch size.

Automatic batching in the DataParallel module can be disabled using the disable_dynamic_batching() function
as follows:

>>> model_parallel = torch.neuron.DataParallel (model_neuron)
>>> model_parallel.disable_dynamic_batching()

If dynamic batching is disabled, the compile-time batch size must be equal to the inference-time batch size divided by
the number of NeuronCores. DataParallel with dim != 0 and Dynamic batching disabled provide examples of running
DataParallel inference with dynamic batching disabled.

Performance optimizations

The DataParallel module has a num_workers attribute that can be used to specify the number of worker threads used
for multithreaded inference. By default, num_workers = 2 * number of NeuronCores. This value can be fine
tuned to optimize DataParallel performance.

DataParallel has a split_size attribute that dictates the size of the input chunks that are distributed to each Neuron-
Core. By default, split_size = max(1l, input.shape[dim] // number of NeuronCores). This value can
be modified to optimally match the inference input chunk size with the compile-time batch size.

Examples

The following sections provide example usages of the torch.neuron.DataParallel () module.

Default usage

The default DataParallel use mode will replicate the model on all available NeuronCores in the current process. The
inputs will be split on dim=0.

import torch
import torch_neuron
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image)

# Create the DataParallel module
model_parallel = torch.neuron.DataParallel (model_neuron)

# Create a batched input
batch_size = 5
image_batched = torch.rand([batch_size, 3, 224, 224])

(continues on next page)

2.1. PyTorch Neuron 233



AWS Neuron

(continued from previous page)

# Run inference with a batched input
output = model_parallel(image_batched)

Specifying NeuronCores

The following example uses the device_ids argument to use the first three NeuronCores for DataParallel inference.

import torch
import torch_neuron
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval )

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image)

# Create the DataParallel module, run on the first three NeuronCores

# Equivalent to model_parallel = torch.neuron.DataParallel (model_neuron, device_ids=[0,.
1, 2])

model_parallel = torch.neuron.DataParallel (model_neuron, device_ids=['nc:0', 'nc:1', 'nc:
=2'D

# Create a batched input

batch_size = 5

image_batched = torch.rand([batch_size, 3, 224, 224])

# Run inference with a batched input
output = model_parallel (image_batched)

DataParallel with dim !=0

In this example we run DataParallel inference using four NeuronCores and dim = 2. Because dim != 0, dynamic
batching is not enabled. Consequently, the DataParallel inference-time batch size must be four times the compile-time
batch size. DataParallel will generate a warning that dynamic batching is disabled because dim != 0.

import torch
import torch_neuron

# Create an example model
class Model (torch.nn.Module):
def __init__(self):
super() .__init__Q
self.conv = torch.nn.Conv2d(3, 3, 3)

def forward(self, x):

(continues on next page)
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return self.conv(x) + 1

model = Model()
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 8, 8])
model_neuron = torch.neuron.trace(model, image)

# Create the DataParallel module using 4 NeuronCores and dim = 2
model_parallel = torch.neuron.DataParallel (model_neuron, device_ids=[0, 1, 2, 3], dim=2)

# Create a batched input

# Note that image_batched.shape[dim] / len(device_ids) == image.shape[dim]
batch_size = 4 * 8

image_batched = torch.rand([1, 3, batch_size, 8])

# Run inference with a batched input
output = model_parallel (image_batched)

Dynamic batching

In the following example, we use the torch.neuron.DataParallel () module to run inference using several different
batch sizes without recompiling the Neuron model.

import torch
import torch_neuron
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model .eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image)

# Create the DataParallel module
model_parallel = torch.neuron.DataParallel (model_neuron)

# Create batched inputs and run inference on the same model
batch_sizes = [2, 3, 4, 5, 6]
for batch_size in batch_sizes:

image_batched = torch.rand([batch_size, 3, 224, 224])

# Run inference with a batched input
output = model_parallel (image_batched)
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Dynamic batching disabled

In the following example, we use torch.neuron.DataParallel.disable_dynamic_batching() to disable dy-
namic batching. We provide an example of a batch size that will not work when dynamic batching is disabled as well
as an example of a batch size that does work when dynamic batching is disabled.

import torch
import torch_neuron
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image)

# Create the DataParallel module and use 4 NeuronCores
model_parallel = torch.neuron.DataParallel (model_neuron, device_ids=[0, 1, 2, 3], dim=0)

# Disable dynamic batching
model_parallel.disable_dynamic_batching()

# Create a batched input (this won't work)
batch_size = 8
image_batched = torch.rand([batch_size, 3, 224, 224])

# This will fail because dynamic batching is disabled and
# image_batched.shape[dim] / len(device_ids) != image.shape[dim]
# output = model_parallel(image_batched)

# Create a batched input (this will work)
batch_size = 4
image_batched = torch.rand([batch_size, 3, 224, 224])

# This will work because
# image_batched.shape[dim] / len(device_ids) == image.shape[dim]
output = model_parallel(image_batched)

Full tutorial with torch.neuron.DataParallel

For an end-to-end tutorial that uses DataParallel, see the PyTorch Resnet Tutorial.
This document is relevant for: Infl

This document is relevant for: Infl
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Developer Guide - PyTorch Neuron (torch-neuron) LSTM Support

The torch-neuron package can support LSTM operations and yield high performance on both fixed-length and
variable-length sequences. Most network configurations can be supported, with the exception of those that require
PackedSequence usage outside of LSTM or pad_packed_sequence () operations. Neuron must guarantee that the
shapes can remain fixed throughout the network.

The following sections describe which scenarios can and cannot be supported.

Supported Usage
Fixed-Length Sequences

In normal usage of an LSTM, the inputs and outputs are expected to be a fixed size sequence length. This is the most
basic usage of an LSTM but may not be applicable to applications where the input sequence length may vary.

import torch
import torch_neuron

class Network(torch.nn.Module):

def __init__(self):
super().__init__Q)
self.lstm = torch.nn.LSTM(input_size=3, hidden_size=7)

def forward(self, inputs):
output, (ht, ct) = self.lstm(inputs)
return output, (ht, ct)

# Example Inputs
seq_len, batch_size, input_size = 5, 2, 3
inputs = torch.rand(seq_len, batch_size, input_size)

# Trace
torch_neuron.trace(Network(), (inputs,))

Packed Input, Padded Output, Pre-Sorted Inputs

A common usage of an LSTM is when the input sequence sizes vary according to an input sequence lengths (such as
tokens).

For example, the following sentences could result in two different sequence lengths after tokenization:

# Input

text = [
'Hello, sailor',
'Example’,

# ... Tokenization ...

(continues on next page)
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# Result
tokens = [
[101, 7592, 1010, 11803, 102],
[101, 2742, 102, 0, 0],
]
lengths = [5, 3]

Because the lengths are different, the final LSTM state will be dependent upon the lengths of each sequence in the batch.
Torch provides a way to deal with these types of sequences by densely packing batches into a PackedSequence. The
most common way this is constructed is by using the pack_padded_sequence() utility function prior to feeding
inputs into the LSTM.

Packing the above sequences would result in the following data and batch size tensors.

data = [101, 101, 7592, 2742, 1010, 102, 11803, 102]
batch_sizes = [2, 2, 2, 1, 1]

In addition to correctly computing final LSTM state, using a packed sequence instead of a padded sequence also improves
model performance on CPU. On Neuron, where computation is fixed to the maximum length ahead of time, this is does
not improve performance.

When an LSTM is processing a PackedSequence, it must do so in a descending sorted length order. To ensure that
sequences are sorted, pack_padded_sequence() provides an enforce_sorted flag. When enforce_sorted is
True, the input is already expected to contain sequences sorted by length in a decreasing order along the batch dimen-
sion. Note that this must be enforced in the application-level code but is only relevant when batch size > 1.

The following network can compile successfully because the input and output to the network are guaranteed to be a
fixed shape. The input shape is expected to be a padded tensor and the output tensor is expected to be padded to the
maximum sequence length using the pad_packed_sequence () function call:

import torch
import torch_neuron

class Network(torch.nn.Module):

def __init__(self):
super().__init__ Q)
self.lstm = torch.nn.LSTM(input_size=3, hidden_size=7)

def forward(self, inputs, lengths):
packed_input = torch.nn.utils.rnn.pack_padded_sequence(
inputs,
lengths=1lengths,
enforce_sorted=True,

)
packed_result, (ht, ct) = self.lstm(packed_input)
padded_result, _ = torch.nn.utils.rnn.pad_packed_sequence(packed_result)

return padded_result, ht, ct

# Example Inputs

seq_len, batch_size, input_size =5, 2, 3

inputs = torch.rand(seq_len, batch_size, input_size)
lengths = torch.tensor([seq_len] * batch_size)

(continues on next page)
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# Trace
torch_neuron.trace(Network(), (inputs, lengths))

Packed Input, Padded Output, Unsorted Inputs

When enforce_sorted is False, the input will be sorted unconditionally. This causes some CPU overhead on
Neuron because unsupported operators will be inserted into the graph such as aten::sort and aten: :scatter_.
The aten: :1stm operation can still be supported, but it will be less efficient than when enforce_sorted is True.

The following code is able to be traced, but results in the sorting operations running on CPU. This is not problematic
in this case because the aten: :sort and aten: :scatter_ are executed on CPU at the very beginning of the graph
just prior to Neuron execution.

Like the previous example, the call to pad_packed_sequence () ensures that the output is a fixed-shape based on the
maximum sequence length.

import torch
import torch_neuron

class Network(torch.nn.Module):

def __init__(self):
super().__init__Q
self.lstm = torch.nn.LSTM(input_size=3, hidden_size=7)

def forward(self, inputs, lengths):
packed_input = torch.nn.utils.rnn.pack_padded_sequence(
inputs,
lengths=lengths,
enforce_sorted=False,
)
packed_result, (ht, ct) = self.lstm(packed_input)
padded_result, _ = torch.nn.utils.rnn.pad_packed_sequence(packed_result)
return padded_result, ht, ct

# Example Inputs

seq_len, batch_size, input_size = 5, 2, 3

inputs = torch.rand(seq_len, batch_size, input_size)
lengths = torch.tensor([seq_len] * batch_size)

# Trace
trace = torch_neuron.trace(Network(), (inputs, lengths))
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Packed Inputs, Final Hidden & Cell State Only

When only the final LSTM hidden & cell state is used, it does not matter if the inputs are packed or unpacked since these

state tensors will not vary in size.

import torch
import torch_neuron

class Network(torch.nn.Module):

def __init__(self):
super().__init__Q
self.lstm = torch.nn.LSTM(input_size=3, hidden_size=7)

def forward(self, inputs, lengths):

packed_input = torch.nn.utils.rnn.pack_padded_sequence(
inputs,
lengths=lengths,
enforce_sorted=True,

)

packed_output, (ht, ct) = self.lstm(packed_input)

return ht, ct

# Example Inputs

seq_len, batch_size, input_size = 5, 2, 3

inputs = torch.rand(seq_len, batch_size, input_size)
lengths = torch.tensor([seq_len] * batch_size)

# Trace
trace = torch_neuron.trace(Network(), (inputs, lengths))

Note that when the packed_output is unused, it does not need to be passed to the pad_packed_sequence() to

enable the LSTM to be compiled.

Unsupported Usage

Neuron does not support the use of a PackedSequence outside of the LSTM operation and the
pad_packed_sequence() operation. This is because the shape of a PackedSequence can vary depending on
the input data. This is incompatible with the Neuron restriction that all tensor sizes must be known at compilation time.
When a PackedSequence is used only by an LSTM or pad_packed_sequence () operation, Neuron can guarantee

the size of the intermediary tensors by padding on behalf of the application.

This means that If the PackedSequence is either used by a different operation or returned from the network this would
result in all of the LSTM operations to be executed on CPU or the network compilation will fail.
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PackedSequence Returned

The following is unsupported because the PackedSequence result of the LSTM is returned by the network:

class Network(torch.nn.Module):

def __init__(self):
super().__init__Q
self.lstm = torch.nn.LSTM(input_size=3, hidden_size=7)

def forward(self, inputs, lengths):

packed_input = torch.nn.utils.rnn.pack_padded_sequence(
inputs,
lengths=1lengths,
enforce_sorted=False,

)

packed_result, (ht, ct) = self.lstm(packed_input)

return packed_result.data, ht, ct

Behavior: In this case, compilation fails and the following warning is generated:

Operator "aten::lstm" consuming a PackedSequence input can only be supported when its..
—.corresponding PackedSequence output is unused or unpacked using "aten::_pad_packed_
—input". Found usage by "prim::Return"

Resolution: To avoid this error, the packed_result should be padded prior to being returned from the network by
using pad_packed_sequence()

Invalid PackedSequence Usage

The following is unsupported because the PackedSequence result of the LSTM is used by a non-LSTM operator:

class Network(torch.nn.Module):

def __init__(self):
super().__init__Q
self.lstm = torch.nn.LSTM(input_size=3, hidden_size=7)

def forward(self, inputs, lengths):

packed_input = torch.nn.utils.rnn.pack_padded_sequence(
inputs,
lengths=lengths,
enforce_sorted=False,

)

packed_result, (ht, ct) = self.lstm(packed_input)

return torch.max(packed_result.data)

Behavior: In this case, compilation fails and the following warning is generated:

Operator "aten::lstm" consuming a PackedSequence input can only be supported when its.
—,corresponding PackedSequence output is unused or unpacked using "aten::_pad_packed_
—input". Found usage by "aten::max"

2.1. PyTorch Neuron 241



AWS Neuron

Resolution: To avoid this error, the packed_result should be padded prior to being used in the max() from the
network by using pad_packed_sequence().

This document is relevant for: Infl

This document is relevant for: Infl

PyTorch Neuron (torch-neuron) Core Placement

This programming guide describes the available techniques and APIs to be able to allocate NeuronCores to a process and
place models onto specific NeuronCores. In order of precedence, the current recommendation is to use the following
placement techniques:

1. For most regular models, default core placement should be used in conjunction with NEURON_RT_NUM_CORES
(Default Core Allocation & Placement)

2. For more specific core placement for NeuronCore Pipelined models, then NEURONCORE_GROUP_SIZES should
be used (NEURONCORE_GROUP_SIZES).

3. Finally, for even more granular control, then the beta explicit placement APIs may be used (Explicit Core Place-
ment [Beta]).

Table of Contents

» PyTorch Neuron (torch-neuron) Core Placement
— NeuronCore Pipeline
— Default Core Allocation & Placement
* Example: Default
% Example: NEURON_RT_NUM_CORES
% Example: NEURON_RT_VISIBLE_CORES
* Example: Overlapping Models
* Example: Multiple Processes
— NEURONCORE_GROUP_SIZES
% Example: Single NeuronCore Group
* Example: Multiple NeuronCore Groups
* Issue: Overlapping Models with Differing Model Sizes
% Issue: Incompatible Model Sizes
% Issue: Multiple Model Copies
* Issue Summary
— Explicit Core Placement [Beta]
s Example: Manual Core Selection

* Example: Automatic Multicore

* Example: Explicit Replication

The following guide will assume a machine with 8 NeuronCores:
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¢ NeuronCores will use the notation nc®, nc1, etc.
* NeuronCore Groups will use the notation ncg®, ncgl etc.
¢ Models will use the notation m0, m1 etc.
NeuronCores, NeuronCore Groups, and model allocations will be displayed in the following format:

Note that the actual cores that are visible to the process can be adjusted according to the NeuronX Runtime Configura-
tion.

NeuronCore Pipeline

A key concept to understand the intent behind certain core placement strategies is NeuronCore Pipelining (See Neuron-
Core Pipeline). NeuronCore Pipelining allows a model to be automatically split into pieces and executed on different
NeuronCores.

For most models only 1 NeuronCore will be required for execution. A model will only require more than one Neuron-
Core when using NeuronCore Pipeline. When model pipelining is enabled, the model is split between multiple Neu-
ronCores and data is transferred between them. For example, if the compiler flag --neuroncore-pipeline-cores
4 is used, this splits the model into 4 pieces to be executed on 4 separate NeuronCores.

Default Core Allocation & Placement

The most basic requirement of an inference application is to be able to place a single model on a single NeuronCore.
More complex applications may use multiple NeuronCores or even multiple processes each executing different models.
The important thing to note about designing an inference application is that a single NeuronCore will always be allocated
to a single process. Processes do not share NeuronCores. Different configurations can be used to ensure that an
application process has enough NeuronCores allocated to execute its model(s):

 Default: A process will attempt to take ownership of all NeuronCores visible on the instance. This should be
used when an instance is only running a single inference process since no other process will be allowed to take
ownership of any NeuronCores.

* NEURON_RT_NUM_CORES: Specify the number of NeuronCores to allocate to the process. This places no re-
strictions on which NeuronCores will be used, however, the resulting NeuronCores will always be contiguous.
This should be used in multi-process applications where each process should only use a subset of NeuronCores.

* NEURON_RT_VISIBLE_CORES: Specifies exactly which NeuronCores are allocated to the process by index. Sim-
ilar to NEURON_RT_NUM_CORES, this can be used in multi-process applications where each process should only
use a subset of NeuronCores. This provides more fined-grained controls over the exact NeuronCores that are
allocated to a given process.

* NEURONCORE_GROUP_SIZES: Specifies a number of NeuronCore Groups which are allocated to the process.
This is described in more detail in the NEURONCORE_GROUP_SIZES section.

See the NeuronX Runtime Configuration for more environment variable details.
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Example: Default

Python Script:

import torch
import torch_neuron

mo
ml

torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc0
torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to ncl

With no environment configuration, the process will take ownership of all NeuronCores. In this example, only two of
the NeuronCores are used by the process and the remaining are allocated but left idle.

Example: NEURON_RT_NUM_CORES

Environment Setup:

export NEURON_RT_NUM_CORES = '2'

Python Script:

import torch
import torch_neuron

mo
ml

torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc0
torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to ncl

Since there is no other process on the instance, only the first 2 NeuronCores will be acquired by the process. Models
load in a simple linear order to the least used NeuronCores.

Example: NEURON_RT_VISIBLE_CORES

Environment Setup:

export NEURON_RT_VISIBLE_CORES = '4-5'

Python Script:

import torch
import torch_neuron

m® = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc4
ml = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc5

Unlike NEURON_RT_NUM_CORES, setting the visible NeuronCores allows the process to take control of a specific con-
tiguous set. This allows an application to have a more fine-grained control of where models will be placed.
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Example: Overlapping Models

Environment Setup:

export NEURON_RT_VISIBLE_CORES = '0-1'

Python Script:

import torch
import torch_neuron

m® = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc0
ml = torch.jit.load('model-with-2-neuron-pipeline-cores.pt') # Loads to nc0-ncl
m2 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to ncl

This shows how models may share NeuronCores but the default model placement will attempt to evenly distribute
NeuronCore usage rather than overlapping all models on a single NeuronCore.

Example: Multiple Processes

Environment Setup:

export NEURON_RT_NUM_CORES = '2'

Python Script:

import torch
import torch_neuron

mo
ml

torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc0
torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to ncl

In this example, if the script is run twice, the following allocations will be made:

Note that each process will take ownership of as many NeuronCores as is specified by the NEURON_RT_NUM_CORES
configuration.

NEURONCORE_GROUP_SIZES

Important: The use of explicit core placement should only be used when a specific performance goal is required. By
default torch-neuron places models on the least used NeuronCores. This should be optimal for most applications.

Secondly, NEURONCORE_GROUP_SIZES is being deprecated in a future release and should be avoided in favor of newer
placement methods. Use NEURON_RT_NUM_CORES or NEURON_RT_VISIBLE_CORES with default placement if possible
(See Default Core Allocation & Placement)

In the current release of NeuronSDK, the most well-supported method of placing models onto specific NeuronCores is
to use the NEURONCORE_GROUP_SIZES environment variable. This will define a set of “NeuronCore Groups” for the
application process.

NeuronCore Groups are contiguous sets of NeuronCores that are allocated to a given process. Creating groups allows
an application to ensure that a model has a defined set of NeuronCores that will always be allocated to it.
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Note that NeuronCore Groups can be used to allocate non-pipelined models (those requiring exactly 1 NeuronCore) to
specific NeuronCores but this is not the primary intended use. The intended use of NeuronCore Groups is to ensure
pipelined models (those requiring >1 NeuronCore) have exclusive access to a specific set of contiguous NeuronCores.

In the cases where models are being used without NeuronCore Pipeline, the general recommendation is to use default
placement (See Default Core Allocation & Placement).

The following section demonstrates how NEURONCORE_GROUP_SIZES can be used and the issues that may arise.

Example: Single NeuronCore Group

In the example where one model requires 4 NeuronCores, the correct environment configuration would be:

Environment Setup:

export NEURONCORE_GROUP_SIZES = '4'

Python Script:

import torch
import torch_neuron

m® = torch.jit.load('model-with-4-neuron-pipeline-cores.pt') # Loads to nc@®-nc3

This is the most basic usage of a NeuronCore Group. The environment setup causes the process to take control of 4
NeuronCores and then the script loads a model compiled with a NeuronCore Pipeline size of 4 to the first group.

Example: Multiple NeuronCore Groups

With more complicated configurations, the intended use of NEURONCORE_GROUP_SIZES is to create 1 Group per model
with the correct size to ensure that the models are placed on the intended NeuronCores. Similarly, the environment
would need to be configured to create a NeuronCore Group for each model:

Environment Setup:

export NEURONCORE_GROUP_SIZES = '3,4,1'

Python Script:

import torch
import torch_neuron

m® = torch.jit.load('model-with-3-neuron-pipeline-cores.pt') # Loads to nc@®-nc2
ml = torch.jit.load('model-with-4-neuron-pipeline-cores.pt') # Loads to nc3-nc6
m2 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc7
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Issue: Overlapping Models with Differing Model Sizes

When multiple models are loaded to a single NeuronCore Group, this can cause unintended inefficiencies. A single
model is only intended to span a single NeuronCore Group. Applications with many models of varying sizes can be
restricted by NeuronCore Group configurations since the most optimal model layout may require more fine-grained
controls.

Environment Setup:

export NEURONCORE_GROUP_SIZES = '2,2'

Python Script:

import torch
import torch_neuron

m® = torch.jit.load('model-with-2-neuron-pipeline-cores.pt') # Loads to nc0-ncl
ml = torch.jit.load('model-with-2-neuron-pipeline-cores.pt') # Loads to nc2-nc3
m2 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc0
m3 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc2
m4 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc®

Here the NEURONCORE_GROUP_SIZES does not generate an optimal layout because placement strictly follows the layout
of NeuronCore Groups. A potentially more optimal layout would be to place m4 onto ncl. In this case, since a
pipelined model will not be able to have exclusive access to a set of NeuronCores, the default NeuronCore placement
(no NeuronCore Groups specified) would more evenly distribute the models.

Also note here that this is an example of where the order of model loads affects which model is assigned to which
NeuronCore Group. If the order of the load statements is changed, models may be assigned to different NeuronCore
Groups.

Issue: Incompatible Model Sizes

Another problem occurs when attempting to place a model which does not evenly fit into a single group:

Environment Setup:

export NEURONCORE_GROUP_SIZES = '2,2'

Python Script:

import torch
import torch_neuron

m® = torch.jit.load('model-with-2-neuron-pipeline-cores.pt') # Loads to nc@®-ncl
ml = torch.jit.load('model-with-2-neuron-pipeline-cores.pt') # Loads to nc2-nc3
m2 = torch.jit.load('model-with-3-neuron-pipeline-cores.pt') # Loads to nc0®-nc2

The model will be placed across NeuronCore Groups since there is no obvious group to assign the model to accord-
ing to the environment variable configuration. Depending on the individual model and application requirements, the
placement here may not be optimal.
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Issue: Multiple Model Copies

It is common in inference serving applications to use multiple replicas of a single model across different NeuronCores.
This allows the hardware to be fully utilized to maximize throughput. In this scenario, when using NeuronCore Groups,
the only way to replicate a model on multiple NeuronCores is to create a new model object. In the example below, 4
models loads are performed to place a model in each NeuronCore Group.

Environment Setup:

export NEURONCORE_GROUP_SIZES = '2,2,2,2'

Python Script:

import torch
import torch_neuron

models = 1list()

for _ in range(4):
model = torch.jit.load('model-with-2-neuron-pipeline-cores.pt')
models.append(model)

The largest consequence of this type of model allocation is that the application code is responsible for routing inference
requests to models. There are a variety of ways to implement the inference switching but in all cases routing logic
needs to be implemented in the application code.

Issue Summary

The use of NEURONCORE_GROUP_SIZES has the following problems:

* Variable Sized Models: Models which require crossing NeuronCore Group boundaries may be placed poorly.
This means group configuration limits the size of which models can be loaded.

* Model Load Order: Models are loaded to NeuronCore Groups greedily. This means that the order of model
loads can potentially negatively affect application performance by causing unintentional overlap.

* Implicit Placement: NeuronCore Groups cannot be explicitly chosen in the application code.

* Manual Replication: When loading multiple copies of a model to different NeuronCore Groups, this requires
that multiple model handles are used.

Explicit Core Placement [Beta]

To address the limitations of NEURONCORE_GROUP_SIZES, a new set of APIs has been added which allows specific
NeuronCores to be chosen by the application code. These can be found in the torch_neuron_core_placement_api
documentation.
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Example: Manual Core Selection

The most direct usage of the placement APIs is to manually select the start NeuronCore that each model is loaded to.
This will automatically use as many NeuronCores as is necessary for that model (1 for most models, >1 for NeuronCore
Pipelines models).

Environment Setup:

export NEURON_RT_NUM_CORES = '4'

Python Script:

import torch
import torch_neuron

# NOTE: Order of loads does NOT matter

with torch_neuron.experimental.neuron_cores_context(2):
ml = torch.jit.load('model-with-2-neuron-pipeline-cores.pt') # Loads to nc2-nc3

with torch_neuron.experimental.neuron_cores_context(0):
m2 = torch.jit.load('model-with-3-neuron-pipeline-cores.pt') # Loads to nc0-nc2

with torch_neuron.experimental.neuron_cores_context(0):
m® = torch.jit.load('model-with-2-neuron-pipeline-cores.pt') # Loads to nc@®-ncl

with torch_neuron.experimental.neuron_cores_context(3):
m3 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc3
Note that this directly solves the NEURONCORE_GROUP_SIZES issues of:

* Variable Sized Models: Now since models are directly placed on the NeuronCores requested by the application,
there is no disconnect between the model sizes and NeuronCore Group sizes.

* Model Load Order: Since the NeuronCores are explicitly selected, there is no need to be careful about the order
in which models are loaded since they can be placed deterministically regardless of the load order.

* Implicit Placement: Similarly, explicit placement means there is no chance that a model will end up being
allocated to an incorrect NeuronCore Group.

Example: Automatic Multicore

Using explicit core placement it is possible to replicate a model to multiple NeuronCores simultaneously. This means
that a single model object within python can utilize all available NeuronCores (or NeuronCores allocated to the process).

Environment Setup:

export NEURON_RT_NUM_CORES = '8'

Python Script:

import torch
import torch_neuron

with torch_neuron.experimental .multicore_context():

(continues on next page)
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(continued from previous page)

m® = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads replications.,
—to ncl®-nc7
This addresses the last NEURONCORE_GROUP_SIZES issue of:

¢ Manual Replication: Since models can be automatically replicated to multiple NeuronCores, this means that
applications no longer need to implement routing logic and perform multiple loads.

This API has a secondary benefit that the exact same loading logic can be used on an infl.xlarge or an infl.
6xlarge. In either case, it will use all of the NeuronCores that are visible to the process. This means that no special
logic needs to be coded for different instance types.

Example: Explicit Replication

Replication is also possible with the neuron_cores_context() API. The number of replications is chosen by
replications = floor(nc_count / cores_per_model).

Environment Setup:

export NEURON_RT_NUM_CORES = '8'

Python Script:

import torch
import torch_neuron

with torch_neuron.experimental.neuron_cores_context(start_nc=2, nc_count=4):
m® = torch.jit.load('model-with-2-neuron-pipeline-cores.pt') # Loads replications.
—to nc2-nc5
This document is relevant for: Infl
* Running Inference on Variable Input Shapes with Bucketing
* Data Farallel Inference on PyTorch Neuron
* Developer Guide - PyTorch Neuron (torch-neuron) LSTM Support
* PyTorch Neuron (torch-neuron) Core Placement
This document is relevant for: Infl

This document is relevant for: Infl

Misc (torch-neuron)

This document is relevant for: Infl
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PyTorch Neuron (torch-neuron) Supported operators

Current operator lists may be generated with these commands inside python:

import torch.neuron
print (*torch.neuron.get_supported_operations(), sep='\n')

PyTorch Neuron release [package version 1.*.*.2.9.1.0, SDK 2.13.0]

Date: 08/28/2023
Added support for new operators:
e aten::clamp_min

e aten::clamp_max

PyTorch Neuron release [2.9.0.0]

Date: 03/28/2023
Added support for new operators:
* aten::tensordot
e aten::adaptive_avg_poolld
e aten::prelu
e aten::reflection_pad2d
e aten: :baddbmm

e aten::repeat

PyTorch Neuron release [2.5.0.0]

Date: 11/23/2022
Added support for new operators:
* aten::threshold
e aten::roll
* aten::instance_norm
* aten::amin
* aten::amax
e aten::new_empty
* aten::new_ones
e aten::tril
e aten::triu

* aten::zero_
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Added limited support for new operators:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

:all
:broadcast_tensors
:broadcast_to
:logical_and
:logical_not
:logical_or
:logical_xor

:_convolution_mode

* LSTM Operations. See: Developer Guide - PyTorch Neuron (torch-neuron) LSTM Support

e aten: :norm: Supported when p argument is one of (1, 2, inf, -inf, 'fro")

PyTorch Neuron release [2.2.0.0]

— aten::lstm

— aten::_pack_padded_sequence

— aten::_pad_packed_sequence

Date: 03/25/2022

Added support for new operators:

e aten::max_pool2d_with_indices: Fully supported (Was previously supported only when indices were un-

PyTorch Neuron release [2.1.7.0]

used).

Date: 01/20/2022

Added support for new operators:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

:bucketize

rany

:remainder

:clip
:repeat_interleave
:tensor_split
:split_with_sizes
:isnan
:embedding_renorm_
:dot

mv

:hardsigmoid
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aten

aten

aten

aten

aten

:thardswish
:rtrunc

: :one_hot: Supported when num_classes is known at trace time.
The dynamic version of this operation when num_classes = -1 is not supported.

:radaptive_max_poolld

:radaptive_max_pool2d

PyTorch Neuron Release [2.0.536.0]

* The following are operators with limited support on Neuron. Unlike fully supported operators, these operators
are not returned when using torch_neuron.get_supported_operations(). See each operator description
for conditional support:

aten: :max_pool2d_with_indices - Supported when indices outputs are not used by a downstream
operation. This allows the operation to be compiled to Neuron when it is equivalent to an aten::
max_pool2d.

aten::max_pool3d_with_indices - Supported when indices outputs are not used by a downstream
operation. This allows the operation to be compiled to Neuron when it is equivalent to an aten::
max_pool3d.

aten: :where - Supported when used as a conditional selection (3-argument variant). Unsupported when
used to generate a dynamic list of indices (1-argument variant). See torch.where().

PyTorch Neuron Release [2.0.318.0]

Added support for new operators:

e aten::empty_like

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten

:log
:type_as
:movedim
reinsum
rargmax
rmin
rargmin
:abs

:cos

:sin
:linear
:pixel_shuffle
:group_norm

::_weight_norm
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PyTorch Neuron Release [1.5.21.0]

No change

PyTorch Neuron Release [1.5.7.0]

Added support for new operators:
* aten::erf

e prim::DictConstruct

PyTorch Neuron Release [1.4.1.0]

No change

PyTorch Neuron Release [1.3.5.0]

Added support for new operators:
* aten: :numel
* aten::ones_like
e aten::reciprocal

e aten::topk

PyTorch Neuron Release [1.2.16.0]

No change

PyTorch Neuron Release [1.2.15.0]

No change

PyTorch Neuron Release [1.2.3.0]

Added support for new operators:
* aten::silu

e aten::zeros_like
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PyTorch Neuron Release [1.1.7.0]

Added support for new operators:
* aten::_shape_as_tensor
* aten::chunk
e aten::empty

e aten::masked_fill

PyTorch Neuron Release [1.0.24045.0]

Added support for new operators:

e aten::__and

e aten: :bmm

* aten::clone

* aten::expand_as
e aten::fill_

e aten::floor_divide
e aten::full

e aten::hardtanh

e aten::hardtanh_
* aten::le

e aten::leaky_relu
e aten::1t

e aten: :mean

e aten::ne

e aten::softplus

e aten::unbind

e aten::upsample_bilinear2d

PyTorch Neuron Release [1.0.1720.00]

Added support for new operators:
* aten::constant_pad_nd

e aten::meshgrid
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PyTorch Neuron Release [1.0.1532.0]

Added support for new operators:

e aten: :ones

PyTorch Neuron Release [1.0.1522.0]

No change

PyTorch Neuron Release [1.0.1386.0]

Added support for new operators:

aten:
aten:
aten:
aten:
aten:
aten:
aten:
aten:
aten:
aten:
aten:
aten:
aten:
aten:
aten:
aten:
aten:
aten:
aten:
aten:
aten:
aten:
aten:
prim:
prim:

prim:

tceil

:clamp

leq

1exp

:expand_as
:flip
:full_like

ige

1gt

:log2
:log_softmax
‘max

‘neg

:relu

rsqrt
:scalarImplicit
isqrt

:squeeze

:stack

:sub

Isum
rtrue_divide
:upsample_nearest2d
:Constant
:GetAttr

:ImplicitTensorToNum
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e prim::ListConstruct
e prim::ListUnpack

e prim: :NumToTensor

e prim::TupleConstruct
e prim: :TupleUnpack

Please note, primitives are included in this list from this release.

PyTorch Neuron Release [1.0.1168.0]

Added support for new operators:

e aten::ScalarImplicit

PyTorch Neuron Release [1.0.1001.0]

Added support for new operators:
e aten::detach
* aten::floor
e aten::gelu
* aten::pow
* aten::sigmoid
e aten::split
Remove support for operators:
e aten::embedding: Does not meet performance criteria
e aten::erf: Error function does not meet accuracy criteria

e aten::tf_dtype_from_torch: Internal support function, not an operator

PyTorch Neuron Release [1.0.825.0]

No change

PyTorch Neuron Release [1.0.763.0]

Added support for new operators:
* aten::Int
* aten::arange
e aten::contiguous
e aten::div
e aten::embedding

e aten::erf
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aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

:expand

leye
:index_select
:layer_norm
:matmul

rmm

:permute
:reshape
:rsub

:select

:size

:slice
:softmax
:tf_dtype_from_torch
1to
:transpose
junsqueeze
rview

1 Zeros

Remove support for operators:

These operators were already supported previously:

* aten::tf_broadcastable_slice: Internal support function, not an operator

e aten::tf_padding: Internal support function, not an operator

aten

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

aten:

:_convolution
:adaptive_avg_pool2d
radd

radd_

:addmm
ravg_pool2d
:batch_norm

:cat
:dimension_value
:dropout
:flatten
:max_pool2d

:mul
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* aten::relu_

e aten::t

e aten::tanh

* aten::values

e prim::Constant

e prim::GetAttr

e prim::ListConstruct
e prim::ListUnpack

e prim::TupleConstruct

e prim: :TupleUnpack

PyTorch Neuron Release [1.0.672.0]

No change

PyTorch Neuron Release [1.0.552.0]

Added support for new operators:
* aten::_convolution
* aten::adaptive_avg_pool2d
e aten::add
e aten::add_
* aten::addmm
e aten::avg_pool2d
e aten::batch_norm
e aten::cat
* aten::dimension_value
e aten: :dropout
e aten::flatten
e aten::max_pool2d
e aten: :mul
e aten::relu_
e aten::t
* aten::tanh
e aten::tf_broadcastable_slice
e aten::tf padding

e aten::values
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e prim::Constant
e prim::GetAttr
e prim::ListConstruct
e prim::ListUnpack
e prim::TupleConstruct
e prim: :TupleUnpack
This document is relevant for: Inf1l

This document is relevant for: Infl

Troubleshooting Guide for PyTorch Neuron (torch-neuron)
General Torch-Neuron issues

If you see an error about “Unknown builtin op: neuron::forward_1" like below, please ensure that import line “import
torch_neuron” (to register the Neuron custom operation) is in the inference script before using torch.jit.load.

Unknown builtin op: neuron::forward_1.
Could not find any similar ops to neuron::forward_1. This op may not exist or may not be.
—currently supported in TorchScript.

TorchVision related issues

If you encounter an error like below, it is because latest torchvision version >= 0.7 is not compatible with Torch-Neuron
1.5.1. Please downgrade torchvision to version 0.6.1:

E AttributeError: module 'torch.jit' has no attribute '_script_if tracing'

2GB protobuf limit related issues

If you encounter an error like below, it is because the model size is larger than 2GB. To compile such large models,
use the separate_weights=True flag. Note, ensure that you have the latest version of compiler installed to support
this flag. You can upgrade neuron-cc using python3 -m pip install neuron-cc[tensorflow] -U --force
--extra-index-url=https://pip.repos.neuron.amazonaws.com

E google.protobuf.message.DecodeError: Error parsing message with type 'tensorflow.
—»GraphDef'
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torch.jit.trace issues

The /neuron-guide/neuron-frameworks/pytorch-neuron/api-compilation-python-api.rst uses the PyTorch torch. jit.
trace() function to generate ScriptModule models for execution on Inferentia. Due to that, to execute your PyTorch
model on Inferentia it must be torch-jit-traceable, otherwise you need to make sure your model is torch-jit-traceable.
You can try modifying your underlying PyTorch model code to make it traceable. If it’s not possible to change your
model code, you can write a wrapper around your model that makes it torch-jit-traceable to compile it for Inferentia.

Please visit torch. jit.trace() to review the properties that a model must have to be torch-jit-traceable. The
PyTorch-Neuron trace API torch_neuron. trace() accepts **kwargs for torch. jit.trace(). For example, you
can use the strict=False flag to compile models with dictionary outputs.

Compiling models with outputs that are not torch-jit-traceable

To enable compilation of models with non torch-jit-traceable outputs, you can use a technique that involves writing
a wrapper that converts the model’s output into a form that is torch-jit-traceable. You can then compile the wrapped
model for Inferentia using torch_neuron. trace().

The following example uses a wrapper to compile a model with non torch-jit-traceable outputs. This model cannot be
compiled for Inferentia in its current form because it outputs a list of tuples and tensors, which is not torch-jit-traceable.

import torch
import torch_neuron
import torch.nn as nn

class Model (nn.Module):
def __init__(self):
super (Model, self).__init__()
self.conv = nn.Conv2d(1l, 1, 3)

def forward(self, x):
a self.conv(x) + 1
b self.conv(x) + 2
c = self.conv(x) + 3
# An output that is a list of tuples and tensors is not torch-traceable
return [(a, b), c]

model = Model()
model.eval()

inputs = torch.rand(l, 1, 3, 3)

# Try to compile the model
model_neuron = torch.neuron.trace(model, inputs) # ERROR: This cannot be traced, we must.
—change the output format

To compile this model for Inferentia, we can write a wrapper around the model to convert its outputs into a tuple of
tensors, which is torch-jit-traceable.

class NeuronCompatibilityWrapper (nn.Module):
def __init__(self):
super (NeuronCompatibilityWrapper, self).__init__()
self.model = Model()

(continues on next page)

2.1. PyTorch Neuron 261



AWS Neuron

(continued from previous page)

def forward(self, x):
out = self.model (x)
# An output that is a tuple of tuples and tensors is torch-jit-traceable
return tuple(out)

Now, we can successfully compile the model for Inferentia using the NeuronCompatibilityWrapper wrapper as
follows:

model = NeuronCompatibilityWrapper()
model.eval ()

# Compile the traceable wrapped model
model_neuron = torch.neuron.trace(model, inputs)

If the model’s outputs must be in the original form, a second wrapper can be used to transform the outputs after
compilation for Inferentia. The following example uses the OutputFormatWrapper wrapper to convert the compiled
model’s output back into the original form of a list of tuples and tensors.

class OutputFormatWrapper (nn.Module):
def __init__(self):
super (OutputFormatWrapper, self).__init__()
self.traceable_model = NeuronCompatibilityWrapper()

def forward(self, x):
out = self.traceable_model (x)
# Return the output in the original format of Model()
return list(out)

model = OutputFormatWrapper ()
model.eval()

# Compile the traceable wrapped model
model . traceable_model = torch.neuron.trace(model.traceable_model, inputs)

Compiling a submodule in a model that is not torch-jit-traceable

The following example shows how to compile a submodule that is part of a non torch-jit-traceable model. In this
example, the top-level model Outer uses a dynamic flag, which is not torch-jit-traceable. However, the submodule
Inner is torch-jit-traceable and can be compiled for Inferentia.

import torch
import torch_neuron
import torch.nn as nn

class Inner(nn.Module)
def __init__(self):
super().__init__Q)
self.conv = nn.Conv2d(1l, 1, 3)

def forward(self, x):

(continues on next page)
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(continued from previous page)

return self.conv(x) + 1

class Outer(nn.Module):
def __init__(self):
super().__init__Q
self.inner = Inner()

def forward(self, x, add_offset: bool = False):
base = self.inner(x)
if add_offset:
return base + 1
return base

model = Outer()
inputs = torch.rand(l, 1, 3, 3)

# Compile the traceable wrapped submodule
model .inner = torch.neuron.trace(model.inner, inputs)

# TorchScript the model for serialization
script = torch.jit.script(model)
torch.jit.save(script, 'model.pt')

loaded = torch.jit.load('model.pt")

Alternatively, for usage scenarios in which the model configuration is static during inference, the dynamic flags can be
hardcoded in a wrapper to make the model torch-jit-traceable and enable compiling the entire model for Inferentia. In
this example, we assume the add_offset flag is always True during inference, so we can hardcode this conditional
path in the Static wrapper to remove the dynmaic behavior and compile the entire model for Inferentia.

class Static(nn.Module):
def __init__(self):
super() .__init__Q
self.outer = Quter()

def forward(self, x):
# hardcode “add_offset=True’
output = self.outer(x, add_offset=True)
return output

model = Static(Q)
# We can now compile the entire model because ‘add_offset=True' is hardcoded in the.

—Static wrapper
model_neuron = torch.neuron.trace(model, inputs)

This document is relevant for: Infl

This document is relevant for: Infl
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PyTorch Neuron (torch-neuron) release notes

Table of contents

Known Issues and Limitations - Updated 03/21/2023

PyTorch Neuron release [package ver. 1.%.%.2.11.6.0, SDK ver. 2.20.0]
PyTorch Neuron release [package ver. 1.%.%.2.10.12.0, SDK ver. 2.19.0]
PyTorch Neuron release [package ver. 1.%.%.2.9.74.0, SDK ver. 2.18.0]
PyTorch Neuron release [package ver. 1.%.%.2.9.17.0, SDK ver. 2.16.0]
PyTorch Neuron release [package ver. 1.%.%.2.9.6.0, SDK ver. 2.15.0]
PyTorch Neuron release [package ver. 1.%.%.2.9.1.0, SDK ver. 2.13.0]
PyTorch Neuron release [package ver. 1.%.%.2.8.9.0, SDK ver. 2.12.0]
PyTorch Neuron release [2.7.10.0]

PyTorch Neuron release [2.7.1.0]

PyTorch Neuron release [2.6.5.0]

PyTorch Neuron release [2.5.0.0]
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PyTorch Neuron release [2.2.0.0]

PyTorch Neuron release [2.1.7.0]
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[1.8.1.1.5.21.0]

[1.8.1.1.5.7.0]
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[1.7.1.1.3.5.0]
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[1.0.1386.0]
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* [1.0.1168.0]
* [1.0.1001.0]
* [1.0.825.0]
* [1.0.763.0]
* [1.0.672.0]

* [1.0.627.0]

This document lists the release notes for the Pytorch-Neuron package.

Known Issues and Limitations - Updated 03/21/2023
Min & Max Accuracy

The index outputs of the aten: :argmin, aten: :argmax, aten: :min, and aten: :max operator implementations
are sensitive to precision. For models that contain these operators and have float32 inputs, we recommend using the
--fp32-cast=matmult --fast-math no-fast-relayout compiler option to avoid numerical imprecision issues.
Additionally, the aten: :min and aten: :max operator implementations do not currently support int64 inputs when
dim=0. For more information on precision and performance-accuracy tuning, see Mixed precision and performance-
accuracy tuning (neuron-cc).

Python 3.5

If you attempt to import torch.neuron from Python 3.5 you will see this error in 1.1.7.0 - please use Python 3.6 or
greater:

File "/tmp/install_test_env/lib/python3.5/site-packages/torch_neuron/__init__.py", line,
29

f'Invalid dependency version torch=={torch.__version__}.
A

SyntaxError: invalid syntax

* Torchvision has dropped support for Python 3.5
* HuggingFace transformers has dropped support for Python 3.5

Torchvision

When versions of torchvision and torch are mismatched, this can result in exceptions when compiling
torchvision based models. Specific versions of torchvision are built against each release of torch. For example:

e torch==1.5.1 matches torchvision==0.6.1
e torch==1.7.1 matches torchvision==0.8.2
e etc.

Simultaneously installing both torch-neuron and torchvision is the recommended method of correctly resolving
versions.
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Dynamic Batching

Dynamic batching does not work properly for some models that use the aten: : size operator. When this issue occurs,
the input batch sizes are not properly recorded at inference time, resulting in an error such as:

RuntimeError: The size of tensor a (X) must match the size of tensor b (Y) at non-

—»singleton dimension 0.

This error typically occurs when aten: : size operators are partitioned to CPU. We are investigating a fix for this issue.

PyTorch Neuron release [package ver. 1.*.*.2.11.6.0, SDK ver. 2.20.0]

Date: 09/16/2024

* Minor updates.

PyTorch Neuron release [package ver. 1.*.*.2.10.12.0, SDK ver. 2.19.0]

Date: 07/03/2024

* Minor updates.

PyTorch Neuron release [package ver. 1.*.*.2.9.74.0, SDK ver. 2.18.0]

Date: 04/01/2024

* Minor updates.

PyTorch Neuron release [package ver. 1.*.*.2.9.17.0, SDK ver. 2.16.0]

Date: 12/21/2023

* Minor updates.

PyTorch Neuron release [package ver. 1.*.*.2.9.6.0, SDK ver. 2.15.0]

Date: 10/26/2023

* Minor updates.

PyTorch Neuron release [package ver. 1.*.*.2.9.1.0, SDK ver. 2.13.0]

Date: 08/28/2023
* Added support for clamp_min/clamp_max ATEN operators.
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PyTorch Neuron release [package ver. 1.*.*.2.8.9.0, SDK ver. 2.12.0]

Date: 07/19/2023

* Minor updates.

PyTorch Neuron release [2.7.10.0]

Date: 06/14/2023

New in this release

* Added support for Python 3.10

Bug fixes

* torch.pow Operation now correctly handles mismatch between base and exponent data types

PyTorch Neuron release [2.7.1.0]

Date: 05/1/2023

* Minor updates.

PyTorch Neuron release [2.6.5.0]

Date: 03/28/2023

New in this release

* Added support for torch==1.13.1

* New releases of torch-neuron no longer include versions for torch==1.7 and torch==1.8

* Added support for Neuron runtime 2.12

* Added support for new operators:

aten

aten:

aten:

aten:

aten:

aten

: itensordot
:adaptive_avg_poolld
:prelu
:reflection_pad2d
:baddbmm

::irepeat

* Added a separate_weights flag to torch_neuron. trace() to support models that are larger than 2GB
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Bug fixes

* Fixed aten::_convolution with grouping for:
— torch.nn.Convld
— torch.nn.Conv3d
— torch.nn.ConvTranspose2d

* Fixed aten: :1linear to support 1d input tensors

* Fixed an issue where an input could not be directly returned from the network

PyTorch Neuron release [2.5.0.0]

Date: 11/23/2022

New in this release

* Added PyTorch 1.12 support

* Added Python 3.8 support

¢ Added new operators support. See PyTorch Neuron (torch-neuron) Supported operators

* Added support for aten: :1stm. See: Developer Guide - PyTorch Neuron (torch-neuron) LSTM Support
* Improved logging:

— Improved error messages for specific compilation failure modes, including out-of-memory errors

Added a warning to show the code location of prim: :PythonOp operations

Removed overly-verbose tracing messages

Added improved error messages for neuron-cc and tensorflow dependency issues
— Added more debug information when an invalid dynamic batching configuration is used
* Added new beta explicit NeuronCore placement API. See: torch_neuron_core_placement_api
* Added new guide for NeuronCore placement. See: PyTorch Neuron (torch-neuron) Core Placement
* Improved torch_neuron. trace () performance when using large graphs
* Reduced host memory usage of loaded models in 1ibtorchneuron.so

* Added single_fusion_ratio_threshold argument to torch_neuron. trace() to give more fine-grained
control of partitioned graphs
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Bug fixes

* Improved handling of tensor mutations which previously caused accuracy issues on certain models (i.e. yolor,
yolov5)

* Fixed an issue where inf and -inf values would cause unexpected NaN values. This could occur with newer
versions of transformers

¢ Fixed an issue where torch.neuron.DataParallel() would not fully utilize all NeuronCores for specific
batch sizes

¢ Fixed and improved operators:

— aten::upsample_bilinear2d: Improved error messages in cases where the operation cannot be sup-
ported

— aten::_convolution: Added support for output_padding argument

— aten: :div: Added support for rounding_mode argument

— aten: :sum: Fixed to handle non-numeric data types

— aten::expand: Fixed to handle scalar tensors

— aten::permute: Fixed to handle negative indices

— aten: :min: Fixed to support more input types

— aten: :max: Fixed to support more input types

— aten: :max_pool2d: Fixed to support both 3-dimensional and 4-dimensional input tensors
— aten: :Int: Fixed an issue where long values would incorrectly lose precision
— aten::constant_pad_nd: Fixed to correctly use non-0 padding values

— aten: :pow: Fixed to support more input types & values

— aten::avg_pool2d: Added support for count_include_pad argument. Added support for ceil_mode
argument if padding isn’t specified

— aten: :zero: Fixed to handle scalars correctly
— prim::Constant: Fixed an issue where -inf was incorrectly handled

— Improved handling of scalars in arithmetic operators

PyTorch Neuron release [2.3.0.0]

Date: 04/29/2022

New in this release

* Added support PyTorch 1.11.
e Updated PyTorch 1.10 to version 1.10.2.
* End of support for torch-neuron 1.5, see eol-pt-15.
* Added support for new operators:
— aten::masked_fill_

— aten::new_zeros

2.1. PyTorch Neuron 269



AWS Neuron

— aten::frobenius_norm

Bug fixes

* Improved aten: :gelu accuracy

e Updated aten::meshgrid to support optional indexing argument introduced in torch 1.10 , see PyTorch
issue 50276

PyTorch Neuron release [2.2.0.0]

Date: 03/25/2022

New in this release

* Added full support for aten: :max_pool2d_with_indices - (Was previously supported only when indices
were unused).

e Added new torch-neuron packages compiled with -D_GLIBCXX_USE_CXX11_ABI=1, the new packages sup-
port PyTorch 1.8, PyTorch 1.9, and PyTorch 1.10. To install the additional packages compiled with
-D_GLIBCXX_USE_CXX11_ABI=1 please change the package repo index to https://pip.repos.neuron.
amazonaws.com (https://pip.repos.neuron.amazonaws.com/)/cxx11/

PyTorch Neuron release [2.1.7.0]

Date: 01/20/2022

New in this release

* Added PyTorch 1.10 support
* Added new operators support, see PyTorch Neuron (torch-neuron) Supported operators
» Updated aten: :_convolution to support 2d group convolution

» Updated neuron: : forward operators to allocate less dynamic memory. This can increase performance on
models with many input & output tensors.

¢ Updated neuron: : forward to better handle batch sizes when dynamic_batch_size=True. This can increase
performance at inference time when the input batch size is exactly equal to the traced model batch size.

Bug fixes

* Added the ability to torch.jit.trace a torch.nn.Module where a submodule has already been traced with
torch_neuron. trace () ona CPU-type instance. Previously, if this had been executed on a CPU-type instance,
an initialization exception would have been thrown.

* Fixed aten: :matmul behavior on 1-dimensional by n-dimensional multiplies. Previously, this would cause a
validation error.

* Fixed binary operator type promotion. Previously, in unusual situations, operators like aten: :mul could produce
incorrect results due to invalid casting.
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* Fixed aten::select when index was -1. Previously, this would cause a validation error.

* Fixed aten: :adaptive_avg_pool2d padding and striding behavior. Previously, this could generate incorrect
results with specific configurations.

* Fixed an issue where dictionary inputs could be incorrectly traced when the tensor values had gradients.

PyTorch Neuron release [2.0.536.0]

Date: 01/05/2022

New in this release
¢ Added new operator support for specific variants of operations (See PyTorch Neuron (torch-neuron) Supported
operators)

* Added optional optimizations keyword to torch_neuron. trace () which accepts a list of Optimization
passes.

PyTorch Neuron release [2.0.468.0]

Date: 12/15/2021

New in this release

* Added support for aten: : cumsum operation.

* Fixed aten: :expand to correctly handle adding new dimensions.

PyTorch Neuron release [2.0.392.0]

Date: 11/05/2021

» Updated Neuron Runtime (which is integrated within this package) to libnrt 2.2.18.0 to fix a container issue
that was preventing the use of containers when /dev/neuron0 was not present. See details here neuron-runtime-
release-notes.

PyTorch Neuron release [2.0.318.0]

Date: 10/27/2021
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New in this release

* PyTorch Neuron 1.x now support Neuron Runtime 2.x (1ibnrt. so shared library) only.

Important:

— You must update to the latest Neuron Driver (aws-neuron-dkms version 2.1 or newer) for proper func-
tionality of the new runtime library.

— Read Introducing Neuron Runtime 2.x (libnrt.so) application note that describes why are we making this
change and how this change will affect the Neuron SDK in detail.

— Read Migrate your application to Neuron Runtime 2.x (libnrt.so) for detailed information of how to migrate
your application.

¢ Introducing PyTorch 1.9.1 support (support for torch==1.9.1)

e Added torch_neuron.DataParallel, see ResNet-50 tutorial [html] and Data Parallel Inference on Torch
Neuron application note.

* Added support for tracing on GPUs
* Added support for ConvTransposeld
* Added support for new operators:

— aten::empty_like

— aten::log

— aten::type_as

— aten::movedim

— aten::einsum

— aten::argmax

— aten::min

— aten::argmin

— aten::abs
— aten::cos
— aten::sin

— aten::linear

— aten::pixel_shuffle
— aten: :group_norm

— aten::_weight_norm

¢ Added torch_neuron.is_available()
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Resolved Issues

e Fixed a performance issue when using both the dynamic_batch_size=True trace option and
--neuron-core-pipeline compiler option. Dynamic batching now uses OpenMP to execute pipeline
batches concurrently.

* Fixed torch_neuron. trace issues:
— Fixed a failure when the same submodule was traced with multiple inputs
— Fixed a failure where some operations would fail to be called with the correct arguments
— Fixed a failure where custom operators (torch plugins) would cause a trace failure

¢ Fixed variants of aten: :upsample_bilinear2d when scale_factor=1

* Fixed variants of aten: :expand using dim=-1

¢ Fixed variants of aten: : stack using multiple different input data types

* Fixed variants of aten: :max using indices outputs

[1.8.1.1.5.21.0]

Date: 08/12/2021

Summary

* Minor updates.

[1.8.1.1.5.7.0]

Date: 07/02/2021

Summary

» Added support for dictionary outputs using strict=False flag. See /neuron-guide/neuron-frameworks/pytorch-
neuron/troubleshooting-guide.rst.

e Updated aten: :batch_norm to correctly implement the affine flag.

* Added support for aten: :erf and prim: :DictConstruct. See PyTorch Neuron (torch-neuron) Supported
()[761‘61[0]’5‘.

* Added dynamic batch support. See /neuron-guide/neuron-frameworks/pytorch-neuron/api-compilation-python-
api.rst.
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[1.8.1.1.4.1.0]

Date: 5/28/2021

Summary

¢ Added support for PyTorch 1.8.1

Models compatibility

% Models compiled with previous versions of PyTorch Neuron (<1.8.1) are compatible with PyTorch
Neuron 1.8.1.

* Models compiled with PyTorch Neuron 1.8.1 are not backward compatible with previous versions of
PyTorch Neuron (<1.8.1) .

Updated tutorials to use Hugging Face Transformers 4.6.0.
Added a new set of forward operators (forward_v2)
Host memory allocation when loading the same model on multiple NeuronCores is significantly reduced

Fixed an issue where models would not deallocate all memory within a python session after being garbage
collected.

Fixed a TorchScript/C++ issue where loading the same model multiple times would not use multiple Neu-
ronCores by default.

* Fixed logging to no longer configure the root logger.

* Removed informative messages that were produced during compilations as warnings. The number of warnings
reduced significantly.

» Convolution operator support has been extended to include ConvTranspose2d variants.

* Reduce the amount of host memory usage during inference.

[1.7.1.1.3.5.0]

Date: 4/30/2021

Summary

* ResNext models now functional with new operator support

* Yolov5 support refer to https://github.com/aws/aws-neuron-sdk/issues/253 note https://github.com/ultralytics/
yolov5/pull/2953 which optimized YoloV5 for AWS Neuron

 Convolution operator support has been extended to include most Convld and Conv3d variants

* New operator support. Please see PyTorch Neuron (torch-neuron) Supported operators for the complete list of
operators.
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[1.7.1.1.2.16.0]

Date: 3/4/2021

Summary

¢ Minor enhancements.

[1.7.1.1.2.15.0]

Date: 2/24/2021

Summary

* Fix for CVE-2021-3177.

[1.7.1.1.2.3.0]

Date: 1/30/2021

Summary

¢ Made changes to allow models with -inf scalar constants to correctly compile

* Added new operator support. Please see PyTorch Neuron (torch-neuron) Supported operators for the complete
list of operators.

[1.1.7.0]

Date: 12/23/2020

Summary

e We are dropping support for Python 3.5 in this release

* torch.neuron.trace behavior will now throw a RuntimeError in the case that no operators are compiled for neuron
hardware

e torch.neuron.trace will now display compilation progress indicators (dots) as default behavior (neuron-cc must
updated to the December release to greater to see this feature)

* Added new operator support. Please see PyTorch Neuron (torch-neuron) Supported operators for the complete
list of operators.

» Extended the BERT pretrained tutorial to demonstrate execution on multiple cores and batch modification, up-
dated the tutorial to accomodate changes in the Hugging Face Transformers code for version 4.0

¢ Added a tutorial for torch-serve which extends the BERT tutorial
* Added support for PyTorch 1.7
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[1.0.1978.0]

Date: 11/17/2020

Summary

* Fixed bugs in comparison operators, and added remaining variantes (eq, ne, gt, ge, It, le)

* Added support for prim::PythonOp - note that this must be run on CPU and not Neuron. We recommend you
replace this code with PyTorch operators if possible

* Support for a series of new operators. Please see PyTorch Neuron (torch-neuron) Supported operators for the
complete list of operators.

* Performance improvements to the runtime library

* Correction of a runtime library bug which caused models with large tensors to generate incorrect results in some
cases

[1.0.1721.0]

Date: 09/22/2020

Summary

* Various minor improvements to the Pytorch autopartitioner feature
 Support for the operators aten::constant_pad_nd, aten::meshgrid

* Improved performance on various torchvision models. Of note are resnet50 and vggl6

[1.0.1532.0]

Date: 08/08/2020

Summary

* Various minor improvements to the Pytorch autopartitioner feature

 Support for the aten:ones operator

[1.0.1522.0]

Date: 08/05/2020
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Summary

Various minor improvements.

[1.0.1386.0]

Date: 07/16/2020

Summary

This release adds auto-partitioning, model analysis and PyTorch 1.5.1 support, along with a number of new operators

Major New Features

* Support for Pytorch 1.5.1

¢ Introduce an automated operator device placement mechanism in torch.neuron.trace to run sub-graphs that con-
tain operators that are not supported by the neuron compiler in native PyTorch. This new mechanism is on by
default and can be turned off by adding argument fallback=False to the compiler arguments.

¢ Model analysis to find supported and unsupported operators in a model

Resolved Issues
[1.0.1168.0]

Date 6/11/2020

Summary

Major New Features

Resolved Issues

Known Issues and Limitations
[1.0.1001.0]

Date: 5/11/2020
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Summary

Additional PyTorch operator support and improved support for model saving and reloading.

Major New Features

¢ Added Neuron Compiler support for a number of previously unsupported PyTorch operators. Please see
:ref:"neuron-cc-ops-pytorch for the complete list of operators.

* Add support for torch.neuron.trace on models which have previously been saved using torch.jit.save and then
reloaded.

Resolved Issues
Known Issues and Limitations
[1.0.825.0]

Date: 3/26/2020

Summary

Major New Features
Resolved Issues

Known Issues and limitations
[1.0.763.0]

Date: 2/27/2020

Summary

Added Neuron Compiler support for a number of previously unsupported PyTorch operators. Please see PyTorch
Neuron (torch-neuron) Supported operators for the complete list of operators.

Major new features

¢ None
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Resolved issues

¢ None

[1.0.672.0]

Date: 1/27/2020

Summary
Major new features
Resolved issues

e Python 3.5 and Python 3.7 are now supported.

Known issues and limitations
Other Notes
[1.0.627.0]

Date: 12/20/2019

Summary

This is the initial release of torch-neuron. It is not distributed on the DLAMI yet and needs to be installed from the
neuron pip repository.

Note that we are currently using a TensorFlow as an intermediate format to pass to our compiler. This does not affect
any runtime execution from PyTorch to Neuron Runtime and Inferentia. This is why the neuron-cc installation must
include [tensorflow] for PyTorch.

Major new features

Resolved issues

Known issues and limitations
Models TESTED

The following models have successfully run on neuron-inferentia systems
1. SqueezeNet
2. ResNet50
3. Wide ResNet50
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Pytorch Serving

In this initial version there is no specific serving support. Inference works correctly through Python on Infl instances
using the neuron runtime. Future releases will include support for production deployment and serving of models

Profiler support

Profiler support is not provided in this initial release and will be available in future releases

Automated partitioning

Automatic partitioning of graphs into supported and non-supported operations is not currently supported. A tutorial is
available to provide guidance on how to manually parition a model graph. Please see pytorch-manual-partitioning-jn-
tutorial

PyTorch dependency

Currently PyTorch support depends on a Neuron specific version of PyTorch v1.3.1. Future revisions will add support
for 1.4 and future releases.

Trace behavior

In order to trace a model it must be in evaluation mode. For examples please see /src/examples/pytorch/resnet50.ipynb

Six pip package is required

The Six package is required for the torch-neuron runtime, but it is not modeled in the package dependencies. This will
be fixed in a future release.

Multiple NeuronCore support

If the num-neuroncores options is used the number of cores must be manually set in the calling shell environment
variable for compilation and inference.

For example: Using the keyword argument compiler_args=["’—num-neuroncores’, ‘4’] in the trace call, requires NEU-
RONCORE_GROUP_SIZES=4 to be set in the environment at compile time and runtime

CPU execution

At compilation time a constant output is generated for the purposes of tracing. Running inference on a non neuron
instance will generate incorrect results. This must not be used. The following error message is generated to stderr:

Warning: Tensor output are ** NOT CALCULATED ** during CPU execution and only
indicate tensor shape

280 Chapter 2. ML Frameworks



AWS Neuron

Other notes

 Python version(s) supported:
- 36
* Linux distribution supported:
— DLAMI Ubuntu 18 and Amazon Linux 2 (using Python 3.6 Conda environments)
— Other AMIs based on Ubuntu 18
— For Amazon Linux 2 please install Conda and use Python 3.6 Conda environment
This document is relevant for: Infl
* PyTorch Neuron (torch-neuron) Supported operators
» Troubleshooting Guide for PyTorch Neuron (torch-neuron)
* PyTorch Neuron (torch-neuron) release notes
This document is relevant for: Infl

Setup (torch-neuron)

Tutorials (torch-neuron)
Computer Vision Tutorials

¢ ResNet-50 tutorial [html] [notebook]
* PyTorch YOLOV4 tutorial [html] [notebook]

Natural Language Processing (NLP) Tutorials

» HuggingFace pretrained BERT tutorial [html] [notebook]

* HuggingFace pretrained BERT tutorial with shared weights [hfml] [notebook]

* Bring your own HuggingFace pretrained BERT container to Sagemaker Tutorial /html] [notebook]
e LibTorch C++ tutorial [html]

e TorchServe tutorial [html]

* HuggingFace MarianMT tutorial [html] [notebook]

Utilizing Neuron Capabilities Tutorials

e BERT TorchServe tutorial [html]

* NeuronCore Pipeline tutorial [hfml] [notebook]

Note: To use Jupyter Notebook see:
* setup-jupyter-notebook-steps-troubleshooting

* running-jupyter-notebook-as-script
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Additional Examples (torch-neuron)

* AWS Neuron Samples GitHub Repository

API Reference Guide (torch-neuron)

» PyTorch Neuron trace Python API
e torch.neuron.DataParallel API

» PyTorch Neuron (torch-neuron) Core Placement API [Beta]

Developer Guide (torch-neuron)

* Running Inference on Variable Input Shapes with Bucketing
* Data Parallel Inference on PyTorch Neuron
* Developer Guide - PyTorch Neuron (torch-neuron) LSTM Support

» PyTorch Neuron (torch-neuron) Core Placement

Misc (torch-neuron)

e PyTorch Neuron (torch-neuron) Supported operators
» Troubleshooting Guide for PyTorch Neuron (torch-neuron)
e PyTorch Neuron (torch-neuron) release notes

This document is relevant for: Infl

This document is relevant for: Trnl, Trn2

2.1.4 Training (torch-neuronx)

This document is relevant for: Trnl, Trn2

Tutorials for Training(torch-neuronx)

This document is relevant for: Trnl, Trn2

Hugging Face BERT Pretraining Tutorial (Data-Parallel)

This tutorial explains how to run Hugging Face BERT-Large model pretraining on Trainium using PyTorch Neuron
and data-parallel mode.

The Hugging Face BERT pretraining example demonstrates the steps required to perform single-node, multi-accelerator
PyTorch model training using the new AWS EC2 Trnl (Trainium) instances and the AWS Neuron SDK. This tutorial
is an adaptation of an existing BERT example with the following important characteristics:

* Framework: PyTorch/XLA
* Model: Hugging Face BertForPreTraining
e Optimizer: AdamW, LAMB (Layerwise Adaptive Moments optimizer)
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* Scheduler: Hugging Face’s get_linear_schedule_with_warmup

 Allreduce occurs before optimizer step, after gradient accumulations (following DeepSpeed’s Smart Gradient
Accumulation)

* Training data types: Float32, full BFloatl6 and Stochastic Rounding (SR), full BFloat16 with fp32 copy of
weights, PyTorch Autocast (Automatic Mixed Precision or AMP)

As done in the original BERT paper, BERT pretraining happens in two phases. In the first phase (phase 1) BERT
maximum sequence length is fixed at 128 tokens, while in phase 2 it is fixed at 512 tokens.

Neuron provides access to Trainium devices through an extension of PyTorch/XLA - a library that includes the familiar
PyTorch interface along with XLA-specific additions. For additional details relating to PyTorch/XLA, please refer to
the official PyTorch/XLA documentation.

Table of Contents

* Phase I BFloatl6 BERT-Large pretraining with AdamW and stochastic rounding

Setting up the training environment on trnl.32xlarge

Downloading tokenized and sharded dataset files

Number of workers

BFloatl6 and stochastic rounding in phase 1

Pre-compilation

Initiating a Training Job

Monitoring Progress of the Training Job

Monitoring Training Job Progress using neuron-top
— Monitoring Training Job Progress using TensorBoard
— Finishing the tutorial
* Phase I BERT-Large pretraining with Layerwise Adaptive Moments based optimizer (LAMB)
* Phase I BFloatl6 BERT-Large pretraining with AdamW and FP32 copy of weights
* Phase 1 BERT-Large pretraining with AdamW and PyTorch Autocast (Automatic Mixed Precision or AMP)
* Phase I BERT-Large pretraining on two instances
* Phase 2 BERT-Large pretraining
— Training Environment
— Initiating a Training Job
* Tools
— neuron-Is
— neuron-top
— Generating tokenized and sharded dataset files
* Known issues and limitations

— BERT-large compilation limitations

— BERT-large pretraining with pretokenized dataset hangs when using xm.save
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— BERT-large two worker pretraining hangs or run out of host memory during checkpointing on
trnl.2xlarge

— BERT precompilation using neuron_parallel_compile hangs when using torchrun

* Troubleshooting

— ModuleNotFoundError: No module named ‘torch’, ‘torch_xla’, ‘transformers’, etc

Note: Logs used in tutorials do not present latest performance numbers

For latest performance numbers visit Neuron performance

Phase 1 BFloat16 BERT-Large pretraining with AdamW and stochastic rounding
Setting up the training environment on trn1.32xlarge

The BERT training script dp_bert_large_hf_pretrain_hdf5.py (source) can run on a Trainium instance
(trn1.32xlarge) that contains the appropriate Neuron runtime and Python dependencies.

First, on a trn1.32xlarge instance, follow the installation instructions at:
Install PyTorch Neuron on Trnl
Please set the storage of instance to 5/2GB or more if you intent to run multiple experiments and save many checkpoints.

For all the commands below, make sure you are in the virtual environment that you have created above before you run
the commands:

source ~/aws_neuron_venv_pytorch/bin/activate

Next, clone the AWS Neuron Samples repository and install requirements in the BERT tutorial directory
aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain (directory link):

cd ~/
git clone https://github.com/aws-neuron/aws-neuron-samples.git

python3 -m pip install -r ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_
—pretrain/requirements.txt

Downloading tokenized and sharded dataset files

To download the tokenized and sharded dataset files needed for this tutorial, please run the following commands:

mkdir -p ~/examples_datasets/

pushd ~/examples_datasets/

aws s3 cp --no-progress s3://neuron-s3/training_datasets/bert_pretrain_wikicorpus_
—.tokenized_hdf5/bert_pretrain_wikicorpus_tokenized_hdf5_seqlenl28.tar . --no-sign-
—request

tar -xf bert_pretrain_wikicorpus_tokenized_hdf5_seqlenl28.tar

rm bert_pretrain_wikicorpus_tokenized_hdf5_seqlenl28.tar

aws s3 cp --no-progress s3://neuron-s3/training_datasets/bert_pretrain_wikicorpus_

(continues on next page)
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—tokenized_hdf5/bert_pretrain_wikicorpus_tokenized_hdf5_seqlen512.tar . --no-sign-
—request

tar -xf bert_pretrain_wikicorpus_tokenized_hdf5_seqglen512.tar

rm bert_pretrain_wikicorpus_tokenized_hdf5_seqlen512.tar

popd

~/examples_datasets/bert_pretrain_wikicorpus_tokenized_hdf5_seqlenl28 will now
have the tokenized and sharded dataset files for phase 1 pretraining and ~/examples_datasets/
bert_pretrain_wikicorpus_tokenized_hdf5_seqlen512 for phase 2 pretraining.

Number of workers

You will be using torchrun (PyTorch’s Elastic Launch) to run some of the commands in this tutorial. When run-
ning the training script, you can configure the number of NeuronCores to use for training by using torchrun’s
--nproc_per_node option. In this tutorial, we use 32 NeuronCores on trnl.32xlarge.

Note: Currently Neuron Runtime only support 1 and 2 worker configurations on trnl.2xlarge and 1, 2, 8, and 32-worker
configurations on trnl.32xlarge.

BFloat16 and stochastic rounding in phase 1

Phase 1 pretraining performance can be increased by using BFloat16 casting and stochastic rounding. BFloat16 cast-
ing and stochastic rounding can be enabled by moving the model to BFloat16 using model.to(torch.bfloatl16)
expression in the training code and setting the environment variable NEURON_RT_STOCHASTIC_ROUNDING_EN=1,
both are done in BERT pretraining example dp_bert_large_hf_pretrain_hdf5.py by default. Also in the
BERT pretraining example, the loss is kept in FP32 to ensure smooth loss curve when loss averaging is used.
We also preserve the optimizer states in FP32 using a modified HuggingFace AdamW implementation in or-
der to match FP32 loss with BFloatl6. To achieve maximum performance while maintaining loss convergence
characteristics, we are using batch size of 16 and gradient accumulation microsteps of 32 to maintain global
batch size of 16384 for phase 1. The batch size and gradient accumulation microstep changes can be set by
launching the BERT pretraining script dp_bert_large_hf pretrain_hdf5.py with command-line arguments
--batch_size=16 --grad_accum_usteps=32, as seen in the following steps.

Another option with BFloat16 using PyTorch AutoCast (Automatic Mixed Precision or AMP) is covered in Phase I
BERT-Large pretraining with AdamW and PyTorch Autocast (Automatic Mixed Precision or AMP).

Note: XLA_DOWNCAST_BF16 and XLA_USE_BF16 are deprecated starting in torch-xla 2.1, and their usage would result
in warnings. They will become no-operations in torch-xla 2.6. Please switch to using model.to(torch.bfloat16()
or AMP.

2.1. PyTorch Neuron 285


https://pytorch.org/docs/stable/elastic/run.html

AWS Neuron

Pre-compilation

PyTorch Neuron evaluates operations lazily during execution of the training loops, which means it builds a sym-
bolic graph in the background and the graph is executed in hardware only when the tensor is printed, transfered
to CPU, or xm.mark_step() is encountered (xm.mark_step() is implicitly called by pl.MpDeviceLoader/pl.
ParallellLoader). During execution of the training loops, PyTorch Neuron can build multiple graphs depending on
the number of conditional paths taken. For BERT-Large pretraining, PyTorch Neuron builds multiple unique graphs
that should be compiled before running on the NeuronCores. PyTorch Neuron will compile those graphs only if they
are not in the XLA in-memory cache or the persistent cache. To reduce the compilation time of these graphs, you can
pre-compile those graphs using the utility neuron_parallel_compile (provided by the 1ibneuronxla package, a
transitive dependency of torch-neuronx) as shown:

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_ pretrain
neuron_parallel_compile torchrun --nproc_per_node=32 \
dp_bert_large_hf_ pretrain_hdf5.py \

--steps_this_run 10 \

--batch_size 16 \

--grad_accum_usteps 32 | tee compile_log.txt

This command performs a fast trial run of the training script to build graphs and then do parallel compilations on those
graphs using multiple processes of Neuron Compiler before populating the on-disk persistent cache with compiled
graphs. This helps make the actual training run faster because the compiled graphs will loaded from the persistent
cache. Currently it takes ~13 minutes to compile the BERT-Large model training step using the pre-compilation script
(compare to ~40 minute if not using the pre-compilation script). Note that the command above specifies 32 Neuron-
Cores for trnl.32xlarge via —nproc_per_node option.

The script run_dp_bert_large_hf pretrain_bf16_s128.sh is provided in the same BERT tuto-
rial directory for convenience and you can simply run the script using neuron_parallel_compile ./
run_dp_bert_large_hf_ pretrain_b£f16_s128. sh to start the precompilation.

The pretokenized dataset is expected to be at ~/examples_datasets/bert_pretrain_wikicorpus_tokenized_hdf5_seqlenl28/
by default (see above for downloading instructions) and can be changed via the --data_dir option.

Note: The trial run during pre-compilation currently outputs invalid loss numbers. Please disregard them.

Note: The command after neuron_parallel_compile should match the actual run command, except for the option
--steps_this_run which shortens the trial run just enough to allow the tool to build all the graphs needed for the
actual run.

If you interrupt the run and restart the execution without changing model configurations or training hyperparameters,
the new run will detect the cached graphs in the persistent cache (on-disk) and reload the compiled graphs for execution,
avoiding any recompilation time.

Changes made to the BERT model configuration (layers, hidden size, attention heads in the get_model function), batch
size (using --batch_size option), optimizer or number of workers may trigger graph recompilation. It is best to rerun
the pre-compilation step above if these changes are made.

You can adjust the following hyperparameters without changing the model and causing recompilation:
* Number of global steps to run (--steps_this_run option)
e Learning rate (--1r option)

» Gradient accumulation steps > 1 (--grad_accum_usteps option). If 1 then there’s no gradient accumulation
and the graphs change causing recompilation.
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Initiating a Training Job

After running the pre-compilation step, continue with the actual phase 1 pretraining by running the following set of
commands to launch 32 data parallel distributed training workers on trn1.32xlarge:

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_ pretrain
torchrun --nproc_per_node=32 \

dp_bert_large_hf_ pretrain_hdf5.py \

--batch_size 16 \

--grad_accum_usteps 32 | tee run_pretrain_log.txt

The script run_dp_bert_large_hf_pretrain_bf16_s128.sh is provided in the same BERT tutorial directory for
convenience and you can simply run the script to start the training.

The following messages indicate that the Neuron Runtime is initializing:

Using Neuron Runtime
Using Neuron Runtime
Using Neuron Runtime
Using Neuron Runtime
Using Neuron Runtime

A few moments later, you will see the Training Configuration and Model Configuration in the output:

Namespace(batch_size=16, data_dir='~/examples_datasets/
bert_pretrain_wikicorpus_tokenized_hdf5_seqlenl128/', debug=False,
enable_pt_autocast=False, grad_accum_usteps=32, local_rank=0, 1r=0.0004,
max_pred_len=20, max_steps=28125, metrics_file='/tmp/test_dict.json',
minimal_ckpt=False, num_ckpts_to_keep=1, output_dir="'./output',
phasel_end_step=28125, phase2=False, resume_ckpt=False, resume_step=-1,

seed=12349, seq_len=128, shards_per_ckpt=1, steps_this_run=28125, warmup_steps=2000)

BertConfig {

"_name_or_path": "bert-large-uncased",
"architectures": [

"BertForMaskedLM"

] ’

"attention_probs_dropout_prob": 0.1,
"classifier_dropout": null,
"gradient_checkpointing"”: false,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 1024,
"initializer_range": 0.02,
"intermediate_size": 4096,
"layer_norm_eps": le-12,
"max_position_embeddings": 512,
"model_type": "bert",
"num_attention_heads": 16,
"num_hidden_layers": 24,
"pad_token_id": 0,

(continues on next page)
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"position_embedding_type": "absolute",
"transformers_version": "4.15.0",
"type_vocab_size": 2,

"use_cache": true,

"vocab_size": 30522

}

As the worker processes begin training on the BERT dataset, you will begin to see training metrics and the learning rate
logged to the console approximately every training step. The metrics include average_loss, step_loss, and throughput:

LOG Thu Sep 29 22:30:10 2022
—throughput : 2873.14

LOG Thu Sep 29 22:30:16 2022 - (0, 79) step_loss : 8.9375 learning_rate : 1.58e-05 .
—throughput : 2878.09

LOG Thu Sep 29 22:30:22 2022 - (0, 80) step_loss : 9.0000 learning rate : 1.60e-05 .
—throughput : 2875.31

LOG Thu Sep 29 22:30:27 2022 - (0, 81) step_loss : 9.0000 learning_rate : 1.62e-05 .
—throughput : 2877.35

LOG Thu Sep 29 22:30:33 2022 - (0, 82) step_loss : 8.8750 learning_rate : 1.64e-05 .
—throughput : 2872.55

LOG Thu Sep 29 22:30:39 2022 - (0, 83) step_loss : 9.0000 learning rate : 1.66e-05 .
—throughput : 2876.17

LOG Thu Sep 29 22:30:44 2022 - (0, 84) step_loss : 9.1250 learning_rate : 1.68e-05 .
—throughput : 2872.48

LOG Thu Sep 29 22:30:50 2022 - (0, 85) step_loss : 9.0000 Ilearning rate : 1.70e-05 .
—throughput : 2873.39

(0, 78) step_loss : 9.1875 learning rate : 1.56e-05 .

By default, the training script will store all output files under ~/aws-neuron-samples/torch-neuronx/training/
dp_bert_hf_pretrain/output. The output files consist of the following:

* PyTorch model checkpoint files, with names containing the global step of the checkpoint (ckpt_2000.pt,
ckpt_4000.pt, etc.). Currently, the training script saves a checkpoint after every dataset shard. The fre-
quency of saving checkpoint can be reduced by increasing the number of dataset shards per checkpoint, us-
ing option --shards_per_ckpt. Furthermore, the number of checkpoints kept at a given time is limited by
--num_ckpts_to_keep option (currently default to 1).

» TensorBoard log files (each training run will store its logs in a subdirectory with prefix neuron_tblogs_).

Monitoring Progress of the Training Job

Using a single Trn1 instance with 32 NeuronCores, the current BERT phase 1 pretraining will finish in about 45 hours.
During this time, you will see the average loss metric begin at about 11.2 and ultimately converge to about 1.4.
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Monitoring Training Job Progress using neuron-top

With the training job still running, launch a second SSH connection into the trnl instance, and use the neuron-top
command to examine the aggregate NeuronCore utilization. If you have not modified the --nproc_per_node option
in the run command, you should observe that all 32 NeuronCores are participating in the training job, with utilization
fluctuating around 80%.

Monitoring Training Job Progress using TensorBoard

The demo includes TensorBoard-compatible logging, which allows the learning rate and training met-
rics to be monitored in real-time. By default, the training script logs metrics to the following Ten-
sorBoard log directory ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain/output/
neuron_tblogs_<date/time>_<training configs>.

In order to view your training metrics in TensorBoard, first run the following commands in your SSH session:

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain
tensorboard --logdir ./output

Once running, open a new SSH connection to the instance and port-forward TCP port 6006 (ex: ssh -L 6006:127.
0.0.1:6006 user_name@remote_ip). Once the tunnel is established, TensorBoard can then be accessed via web
browser at the following URL: http://localhost:6006. Please note that you will not be able to access TensorBoard if you
disconnect your port-forwarding SSH session to the Trainium instance.
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Finishing the tutorial

Once you are ready, there are a couple of options for finishing the BERT pretraining demo:

1. Allow the training script to run to completion. If you would like to observe the training script run to com-
pletion, it is recommended to launch the training script from a terminal multiplexer such as tmux or screen,
and then detach the session so that the training script can run in the background. With this approach, you can
safely let the training script run unattended, without risk of an SSH disconnection causing the training job to stop
running.

2. Stop the training job early. To stop the training job early, press CTRL-C in the terminal window in which you
launched the training script. In some cases, if you manually cancel a job using CTRL-C and then later want to
run the job again, you might first need to execute sudo rmmod neuron; sudo modprobe neuron in order to
reload/reset the Neuron driver.

Phase 1 BERT-Large pretraining with Layerwise Adaptive Moments based optimizer (LAMB)

Sometimes, to reduce the training wall time, you can use higher learning rate and larger global batch size. The approach
is discussed in LARGE BATCH OPTIMIZATION FOR DEEP LEARNING: TRAINING BERT IN 76 MINUTES.
Tranium supports LAMB, and in this tutorial, we use publicly available XLA-friendly LAMB implemenation from
https://github.com/rwightman/pytorch-image-models/blob/master/timm/optim/lamb.py.

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_ pretrain
torchrun --nproc_per_node=32 \

dp_bert_large_hf pretrain_hdf5.py \

--max_steps 7032 \

--batch_size 8 \

--optimizer LAMB \

--1r 6e-3 \

--grad_accum_usteps 256 | tee run_pretrain_log.txt

The command-line argument --optimizer LAMB is needed, otherwise, the default optimizer AdamW will be used.
Besides, you need to use a set of hyper-parameters supporting the larger global batch size (GBS). In this case, we have
64k as GBS for LAMB and use a set of hyper-params similar to https://github.com/NVIDIA/DeepLearningExamples/
blob/master/PyTorch/LanguageModeling/BERT/README.md. Given higher GBS from LAMB than AdamW, it takes
fewer steps (roughly 7k) to achieve similar level of accuracy as AdamW, which takes more than 28k steps. In addi-
tion, you can also use different data types on top of LAMB. Below is an example using the BFloat16 and Stochastic
Roundings.

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain
torchrun --nproc_per_node=32 \

dp_bert_large_hf pretrain_hdf5.py \

--max_steps 7032 \

--batch_size 16 \

--optimizer LAMB \

--1r 6e-3 \

--grad_accum_usteps 128 | tee run_pretrain_log.txt

The script run_dp_bert_large_hf_pretrain_bf16_s128_lamb. sh is provided in the same BERT tutorial direc-
tory for convenience and you can simply run the script to start the training.
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Phase 1 BFloat16 BERT-Large pretraining with AdamW and FP32 copy of weights

BFloat16 training can be achieved without stochastic rounding when a copy of weights is kept in FP32. To train BERT-
Large with AdamW and FP32 copy of weights, specify --optimizer=AdamW_FP32ParamsCopy option when calling
the BERT pretraining script (stochastic rounding is off):

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain
torchrun --nproc_per_node=32 dp_bert_large_hf_pretrain_hdf5.py \
--batch_size 16 \

--optimizer=AdamW_FP32ParamsCopy \

--grad_accum_usteps 32 |& tee run_pretrain_log.txt

The script run_dp_bert_large_hf pretrain bf16_s128.sh is provided in the same BERT tuto-
rial directory for convenience and you can simply run the script with fp32paramscopy option like ./
run_dp_bert_large_hf_pretrain_bf16_s128.sh fp32paramscopy to start the training with FP32 copy
of weights.

Phase 1 BERT-Large pretraining with AdamW and PyTorch Autocast (Automatic Mixed Precision or
AMP)

Besides the BFloatl16 and stochastic rounding in phase 1 , you can also use [PyTorch Autocast for XLA (Automatic
Mixed Precision or AMP)](https://github.com/pytorch/xla/blob/master/docs/source/perf/amp.md), which automati-
cally converts operations to either a lower precision (like Bfloat16) or Float32. This generally provides better per-
formance over full Float32 due to higher compute density and lower memory footprint (trnl_training_perf). With the
BERT-Large pretraining scripts you can use AMP by specifying the --enable_pt_autocast option without enabling
stochatic rounding (NEURON_RT_STOCHASTIC_ROUNDING_EN is not set).

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_ pretrain

torchrun --nproc_per_node=32 dp_bert_large_hf pretrain_hdf5.py \
--batch_size 16 \

--enable_pt_autocast \

--grad_accum_usteps 32 | tee run_pretrain_log.txt

The script run_dp_bert_large_hf pretrain bf16_s128.sh is provided in the same BERT tu-
torial directory for convenience and you can simply run the script with amp option like ./
run_dp_bert_large_hf_pretrain_bf16_s128.sh amp to start the training with AMP.

Under the hood, --enable_pt_autocast would wrap only the forward pass and loss in the PyTorch autocasting
context. The backward pass is NOT in the PyTorch autocasting context. This converts compute operations such as
matrix multiply, convolution, activation, and pooling to lower precision such as BFloat16 while keeping numerically
sensitive operations such as softmax and cross-entropy in Float32. For information about operations that are autocasted,
please see [PyTorch Autocast for XLA AMP guide](https://github.com/pytorch/xla/blob/master/docs/source/perf/amp.
md#supported-operators).

with torch.autocast(enabled=flags.enable_pt_autocast, dtype=torch.bfloatl6, device_type=
—'xla"):
outputs = model (input_ids=input_ids,
attention_mask=input_mask,
token_type_ids=segment_ids,
labels=masked_lm_labels,
next_sentence_label=next_sentence_labels)
loss = outputs.loss / flags.grad_accum_usteps
(continues on next page)
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(continued from previous page)

loss.backward()
running_loss += loss.detach()

Phase 1 BERT-Large pretraining on two instances

If you have two trnl.32xlarge instances with EFA-enabled interfaces, using EFA-enabled security group, and setup
using Install PyTorch Neuron on Trnl, you can run multi-instance BERT-Large pretraining. The following example
demonstrate running BERT phase 1 pretraining on two instances. To ensure that the global batch size remains at 16384
for phase 1, the gradient accumulation microstep count is reduced by half when the number of instances is 2. NOTE: To
run on multiple instances, you will need to use trn1.32xlarge instances and using all 32 NeuronCores on each instance.

On the rank-0 Trnl host (root), run with --node_rank=0 using torchrun utility, and --master_addr set to rank-0
host’s IP address:

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain

export FI_EFA_USE_DEVICE_RDMA=1

export FI_PROVIDER=efa

export BUCKET_CAP_MB=512

export XLA_TRANSFER_SEED_ASYNC=1

torchrun --nproc_per_node=32 --nnodes=2 --node_rank=0 --master_addr=<root IP> --master_
—port=2020 \

dp_bert_large_hf pretrain_hdf5.py \

--batch_size 16 \

--grad_accum_usteps 16 |& tee run_pretrain_log.txt

On another Trn1 host, run with --node_rank=1, and --master_addr also set to rank-0 host’s IP address:

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf pretrain

export FI_EFA_USE_DEVICE_RDMA=1

export FI_PROVIDER=efa

export BUCKET_CAP_MB=512

export XLA_TRANSFER_SEED_ASYNC=1

torchrun --nproc_per_node=32 --nnodes=2 --node_rank=1 --master_addr=<root IP> --master_
—port=2020 \

dp_bert_large_hf_pretrain_hdf5.py \

--batch_size 16 \

--grad_accum_usteps 16 |& tee run_pretrain_log.txt

It is important to launch rank-0 worker with --node_rank=0 to avoid hang.

To train on multiple instances, it is recommended to use a ParallelCluster. For a ParallelCluster example, please see
Train a model on AWS Trnl ParallelCluster.
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Phase 2 BERT-Large pretraining

As mentioned above, BERT pretraining happens in two phases. In phase 1, the sequence length is 128. In phase 2, the
sequence length increases to 512. This additional training phase will further reduce the pretraining loss and improve
the metrics for the fine-tune tasks that usually follow. The setup is very similar to the phase 1, with some differences
in training environment and command line arguments highlighted below.

Training Environment

The following dataset and checkpoint are required:

* ~/examples_datasets/bert_pretrain_wikicorpus_tokenized_hdf5_seqlen512is WikiCorpus train-
ing dataset that is preprocessed (tokenized and pre-masked) for phase 2.

e ~/examples/dp_bert_hf pretrain/output/ckpt_<phasel_end_step>.pt is the final checkpoint
from phase 1. It’s generated automatically at the end of phase 1 pretraining. For convenience, one
can also download the example available at s3://neuron-s3/training_checkpoints/pytorch/
dp_bert_large_hf pretrain/ckpt_28125.pt, which is collected after 28125 training steps in phase 1.
Phase 2 will continue training by loading this checkpoint. During its progression, phase 2 continues to generate
its own checkpoints in output directory, following the naming convention ckpt_<global_steps>.pt

Initiating a Training Job

To launch the phase 2 pretraining job with AdamW optimizer, run the same python script
dp_bert_large_hf_pretrain_hdf5.py as before except with different options for phase 2. For phase
2, we are using global batch size of 32768, with worker device batch size of 2 and gradient accu-
mulation microsteps of 512. The pretokenized dataset is expected to be at ~/examples_datasets/
bert_pretrain_wikicorpus_tokenized_hdf5_seqlen512/ following the setup steps above and is set via
--data_dir option.

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf pretrain
torchrun --nproc_per_node=32 dp_bert_large_hf pretrain_hdf5.py \

--data_dir ~/examples_datasets/bert_pretrain_wikicorpus_tokenized_hdf5_seqlen512/ \

--1r 2.8e-4 \

--phase2 \

--resume_ckpt \

--phasel_end_step 28125 \

--batch_size 2 \

--grad_accum_usteps 512 \

--seq_len 512 \

--max_pred_len 80 \

--warmup_steps 781 \

--max_steps 1563 \

| tee run_pretrain_log_phase2.txt

The script run_dp_bert_large_hf pretrain_bfl6_s512_phase2. sh is provided in the same BERT tutorial di-
rectory for convenience and you can simply run the script to start the training with AdamW optimizer. Similarly, you
can use LAMB optimizer using the script run_dp_bert_large_hf_pretrain_bf16_s512_lamb_phase2.sh.

The output below is expected as the job is initiated. Step 28125 is the phasel_end_step in this run, which could be
different if phasel training stops at a different global step.
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Worker 21
Worker 23
Worker 27
Worker 26
Worker 20
Worker 22

resuming from
resuming from
resuming from
resuming from
resuming from
resuming from

checkpoint
checkpoint
checkpoint
checkpoint
checkpoint
checkpoint

./output/ckpt_28125
./output/ckpt_28125
./output/ckpt_28125
./output/ckpt_28125
./output/ckpt_28125
./output/ckpt_28125

.pt
.pt
.pt
.pt
.pt
.pt

at step 28125
at step 28125
at step 28125
at step 28125
at step 28125
at step 28125

Namespace(batch_size=2, data_dir='/home/ec2-user/examples_datasets/
bert_pretrain_wikicorpus_tokenized_hdf5_seqlen512/', debug=False,
enable_pt_autocast=False, grad_accum_usteps=512, local_rank=0, 1r=0.0002,
max_pred_len=80, max_steps=28125, metrics_file="'/tmp/test_dict.json',
minimal_ckpt=False, num_ckpts_to_keep=1, output_dir="'./output',
phasel_end_step=28125, phase2=True, resume_ckpt=True, resume_step=-1,
seed=12349, seq_len=512, shards_per_ckpt=1, steps_this_run=32, warmup_steps=781)

BertConfig {

" _name_or_path": "bert-large-uncased",
"architectures": [
"BertForMaskedLM"

1,

"attention_probs_dropout_prob": 0.1,
"classifier_dropout":
"gradient_checkpointing": false,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 1024,
"initializer_range":
"intermediate_size": 4096,
"layer_norm_eps": le-12,
"max_position_embeddings": 512,
"model_type": "bert",
"num_attention_heads": 16,
"num_hidden_layers": 24,
"pad_token_id": 0,
"position_embedding_type": "absolute",
"transformers_version": "4.15.0",
"type_vocab_size": 2,
"use_cache": true,
"vocab_size": 30522

null,

0.02,

As the phase 2 training proceeds, similar metrics to phase 1 will appear on the console, showing the loss, learning rate,
and throughput:

LOG Tue Sep 27 20:56:35
—throughput : 494.55
LOG Tue Sep 27 20:57:40
—throughput : 495.67
LOG Tue Sep 27 20:58:46
—throughput : 496.18
LOG Tue Sep 27 20:59:53

2022 - (O,
2022 - (O,
2022 - (O,
2022 - (O,

26) step_loss : 4.3438
27) step_loss : 4.0938
28) step_loss : 4.1875

29) step_loss : 4.0000

learning_rate : 6.66e-06 ..
learning_rate : 6.91e-06 .
learning_rate : 7.17e-06 .

learning_rate : 7.43e-06 .
(continues on next page)
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(continued from previous page)

—throughput : 495.31
LOG Tue Sep 27 21:00:58 2022 - (0, 30) step_loss : 4.2500 learning_rate : 7.68e-06 .
—throughput : 495.60
LOG Tue Sep 27 21:02:05 2022 - (0, 31) step_loss : 4.3125 learning_rate : 7.94e-06 .
—throughput : 495.50
LOG Tue Sep 27 21:03:10 2022 - (0, 32) step_loss : 4.4688 learning rate : 8.19e-06 .
—throughput : 496.02

Tools

While running the tutorial, try experimenting with the following Neuron tools, which help monitor and evaluate com-
pute utilization in real-time:

neuron-ls

The neuron-1s command describes the number of Neuron devices present in the system, along with the associated
NeuronCore count, memory, and PCI device information:
[ec2-user@ip-10-0-1-68 ~]$% neuron-ls

Neuron Tools have changed with Neuron v1.16.@. Go here to learn more:
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-tools/

If you're still running Neuron Runtime 1.@, run this program as sudo to display neuron-rtd
runtime information

[ec2-user@ip-10-0-1-68

You will find that the Trn1 instance has 16 Neuron devices, each with 2 NeuronCores. This configuration allows you
to train the model using a total of 32 workers, one per NeuronCore, within a single instance.

Additional information regarding neuron-Is can be found in the neuron-Is user guide.

2.1. PyTorch Neuron 295


https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-tools/neuron-ls.html

AWS Neuron

neuron-top

The neuron-top command presents a high-level view of the Neuron environment, including the utilization of each of
the NeuronCores, any models that are currently loaded onto one or more NeuronCores, process IDs for any processes
that are leveraging the Neuron runtime, and basic system statistics relating to vCPU and memory usage.

Please note that neuron-top can either display aggregate NeuronCore utilization for ‘all’ processes (the default), or
alternatively display the NeuronCore utilization for a particular process. You can toggle through the aggregate and
per-process views using the a and d keys. The screenshot below illustrates the default aggregate view:

neuron-top

ND@
ND1
ND2
ND3
ND4
NDS
ND6
ND7
ND8
ND9
ND10@
ND11
ND12
ND13
ND14
ND15

System vCPU Usage [21.12%, 3.22%] Runtime vCPU Usage [18.72%, 3.79%]

Runtime Memory Host [ 3.8MB/ 496.0GB] Runtime Memory Device 142.3GB

Model ID Host Memory

243 . 8KB
243.8KB
243.8KB
243.8KB
243 .8KB
243.8KB
243.8KB
. 8KB
. 8KB
. 8KB
. 8KB
. 8KB
. 8KB
. 8KB
. 8KB

CeNOUAWNER

[2]:115197 [3]:115198 [4]:115199 [5]:115200
a/d: previous/next tab 1-9: select tab

Please refer to the neuron-top user guide for additional details.

Generating tokenized and sharded dataset files

This section is for generating tokenized and sharded dataset files from WikiCorpus dataset. If you just want the pre-
genenerated dataset files, please see Downloading tokenized and sharded dataset files section above.

On a c5n.18xlarge instance launched with Deep Learning Conda AMI and 512GB disk space, you can generate the
preprocessed datasets from WikiCorpus dataset using NVidia’s DeepLearningExamples for BERT pretraining. The
preprocessing converts the WikiCorpus dataset to tokenized data and shard the data into multiple shards for parallel
loading. The full flow takes about 8.7 hours:

source activate pytorch_latest_p37
cd ~/
git clone https://github.com/NVIDIA/DeepLearningExamples.git
cd DeeplLearningExamples
git checkout 81b9010096b6£9812e3977b607669f6ec8b16561
sudo mkdir -m a=rwx /workspace
cp -rf PyTorch/LanguageModeling/BERT /workspace/bert
cd /workspace
(continues on next page)
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git clone https://github.com/attardi/wikiextractor.git
cd wikiextractor
git checkout 6408a430fc504a38b04d37ce5e7£fc740191deelb
cd /workspace/bert
# increase num processes and shards
ex -s "+%s/\(bertPrep\.py\)\( --action create_hdf5_files\)/\1 --n_processes 32 --n_test_
—shards 1024 --n_training_shards 1024\2" "+wq" data/create_datasets_from_start.sh
export BERT_PREP_WORKING_DIR=/workspace/data/
time ./data/create_datasets_from_start.sh wiki_only |& tee log

After execution is finished, phase 1 pre-tokenized and sharded dataset is located at:

/workspace/data/hdf5_lower_case_1_seq_len_128_max_pred_20_masked_lm_prob_@0.
15_random_seed_12345_dupe_factor_5/wikicorpus_en/

Copy this entire directory to ~/examples_datasets/bert_pretrain_wikicorpus_tokenized_hdf5_seqlenl28
of the trn1.32xlarge machine.

Phase 2 pre-tokenized dataset is located at:

/workspace/data/hdf5_lower_case_1_seq_len_512_max_pred_80_masked_lm_prob_@0.
15_random_seed_12345_dupe_factor_5/wikicorpus_en/

Copy this entire directory to ~/examples_datasets/bert_pretrain_wikicorpus_tokenized_hdf5_seqlen512
of the trn1.32xlarge machine.

Known issues and limitations
BERT-large compilation limitations

Optimal BERT-large phase 1 (sequence length 128) batch size is currently 8 for FP32 and 16 for full BF16 with stochas-
tic rounding. Optimal BERT-large phase 2 (sequence length 512) batch size is currently 1 for FP32 and 2 for full BF16
with stochastic rounding.

BERT-large pretraining with pretokenized dataset hangs when using xm.save

Currently, BERT-large pretraining with pretokenized dataset hangs when xm. save is used outside of the main training
loop.

Loop through HDF5 sharded dataset files:
Train on one HDF5 sharded dataset file
Loop through batched samples:
Training iteration
Save checkpoint using xm.save

The reason is that xm.save has a synchronization point. However, the HDF5 shared data files do not have the same
number of training samples so the workers cannot all reach xm.save in the same iteration.

The workaround is to use xm._maybe_convert_to_cpu to ensure tensors are moved to CPU followed by torch.save
as done in the BERT-large pretraining tutorial:

cpu_data = xm._maybe_convert_to_cpu(data)
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BERT-large two worker pretraining hangs or run out of host memory during checkpointing on
trn1.2xlarge

On trnl.2xlarge, where there’s limited host memory and CPU resources, the BERT-large two worker pretraining may
hang or run out of host memory during checkpointing. This problem can be worked around by not saving optimizer
and LR scheduler states in the checkpoint. This is enabled by --minimal_ckpt option of the pretraining script.

BERT precompilation using neuron_parallel_compile hangs when using torchrun

We use neuron_parallel_compile in front of the short run command to do precompilation. However, the following
command hangs when running BERT parallel compilation with torchrun:

neuron_parallel_compile XLA DOWNCAST BF16=1 torchrun --nproc_per_node=32 --nnodes=1 dp_
—bert_large_hf pretrain_hdf5.py --steps_this_run 5

Updating train metrics in provide results.json file

Current data: {'num_workers': 32, 'epoch': O, 'steps': 5, 'microsteps': 320, 'loss': -
22172234.0, 'train_time_minutes': 0.7424166639645894, 'throughput_average': 1839.
0391805624324, 'throughput_peak': 1840.0107059878164, 'batch_size': 8, 'max_length':.
1283}

Updating with data: {'num_workers': 32, 'epoch': 0, 'steps': 5, 'microsteps': 320, 'loss
—': -22172234.0, 'train_time_minutes': 0.7826640844345093, 'throughput_average': 1744.
4691285659471, 'throughput_peak': 1745.4964663587539, 'batch_size': 8, 'max_length':.
128}

Checkpointing...

Checkpointing done...

(hangs)

The fix is to add xm.rendezvous at the end of training to ensure all workers sync up before exiting the script
dp_bert_large_pretrain_hdf5.py.

def _mp_fn(index, flags):
torch.set_default_tensor_type('torch.FloatTensor')
train_bert_hdf5(flags)
xm.rendezvous("'_mp_fn finished")
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Troubleshooting

The following are troubleshooting tips related to this tutorial. See PyTorch Neuron on Trainium Troubleshooting Guide
for additional troubleshooting tips.

ModuleNotFoundError: No module named ‘torch’, ‘torch_xla’, ‘transformers’, etc

If you encounter ‘ModuleNotFoundError’ messages while attempting to run the demo scripts, please ensure that you
have activated the appropriate Python virfualenv which contains all of the demo dependencies:

cd ~
source <python virtual environment path>/bin/activate
This document is relevant for: Trnl, Trn2

This document is relevant for: Trnl, Trn2

Multi-Layer Perceptron Training Tutorial

MNIST is a standard dataset for handwritten digit recognition. A multi-layer perceptron (MLP) model can be trained
with MNIST dataset to recognize hand-written digits. This tutorial starts with a 3-layer MLP training example in
PyTorch on CPU, then show how to modify it to run on Trainium using PyTorch Neuron. It also shows how to do
multiple worker data parallel MLP training.

Table of Contents

* Setup environment and download examples

* Multi-layer perceptron MNIST model

o Single-worker MLP training script in PyTorch on CPU

» Single-worker MLP training on Trainium

* Multi-worker data-parallel MLP training using torchrun

e Single-worker MLP evaluation on Trainium

e Known issues and limitations

Note: Logs used in tutorials do not present latest performance numbers

For latest performance numbers visit Neuron performance
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Setup environment and download examples

Before running the tutorial please follow the installation instructions at:
Install PyTorch Neuron on Trnl

Please set the storage of instance to 5/2GB or more if you also want to run through the BERT pretraining and GPT
pretraining tutorials.

For all the commands below, make sure you are in the virtual environment that you have created above before you run
the commands:

source ~/aws_neuron_venv_pytorch/bin/activate

Install needed dependencies in your environment by running:

pip install pillow

Torchvision package is needed for MNIST dataset and has already been installed as part of Install PyTorch Neuron
on Trnl. Installing Torchvision together with torch-neuronx ensures that the compatible version of Torchvision is
selected. For example, torchvision==0.12 is compatible with torch==1.11 and torchvision==0.13 is compatible with
torch==1.12.

To download the MNIST MLP examples, do:

git clone https://github.com/aws-neuron/aws-neuron-samples.git
cd aws-neuron-samples/torch-neuronx/training/mnist_mlp

Multi-layer perceptron MNIST model

In model.py, we define the multi-layer perceptron (MLP) MNIST model with 3 linear layers and ReLU activations,
followed by a log-softmax layer. This model will be used in multiple example scripts.

Single-worker MLP training script in PyTorch on CPU

We will show how to modify a training script that runs on other platform to run on Trainium.

We begin with a single-worker MLP training script for running on the host CPUs of the Trainium instance. The training
script imports the MLP model from model . py.

In this training script, we load the MNIST train dataset and, within the main() method, set the data loader to read
batches of 32 training examples and corresponding labels.

Next we instantiate the MLP model and move it to the device. We use device = 'cpu' to illustrate the use of device
in PyTorch. On GPU you would use device = 'cuda' instead.

We also instantiate the other two components of a neural network trainer: stochastic-gradient-descent (SGD) optimizer
and negative-log-likelihood (NLL) loss function (also known as cross-entropy loss).

After the optimizer and loss function, we create a training loop to iterate over the training samples and labels, performing
the following steps for each batch in each iteration:

* Zero gradients using:

optimizer.zero_grad()

* Move training samples and labels to device using the ‘tensor.to’ method.
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* Perform forward/prediction pass using

output = model(train_x)

* The prediction results are compared against the corresponding labels using the loss function to compute the loss

loss_fn(output, train_label)

* The loss is propagated back through the model using chain-rule to compute the weight gradients

loss.backward()

* The weights are updated with a change that is proportional to the computed weights gradients

optimizer.step()

At the end of training we compute the throughput, display the final loss and save the checkpoint.
Expected CPU output:

—————————— Training ---------------

Train throughput (iter/sec): 286.96994718801335
Final loss is 0.1040

—————————— End Training ------------—-—-—-

Run the command below to execute this script:

python train_cpu.py

For a full tutorial on training in PyTorch, please see https://pytorch.org/tutorials/beginner/introyt/trainingyt.html.

Thus far we have used PyTorch without Trainium. Next, we will show how to change this script to run on Trainium.

Single-worker MLP training on Trainium

To run on Trainium, first we modify the CPU training script train_cpu.py to run with PyTorch Neuron torch_xla as
described in PyTorch Neuron for Trainium Getting Started Guide by changing the device:

import torch_xla.core.xla_model as xm
device = xm.xla_device()

# or

device = 'xla

When the model is moved to the XL A device using model . to(device) method, subsequent operations on the model
are recorded for later execution. This is XLA’s lazy execution which is different from PyTorch’s eager execution. Within
the training loop, we must mark the graph to be optimized and run on XL A device (NeuronCore) using xm.mark_step()
(unless MpDeviceLoader is used as you will see in the next section). Without this mark, XLLA cannot determine where
the graph ends. The collected computational graph also gets compiled and executed when you request the value of a
tensor such as by calling loss.item() or print(loss).

To save a checkpoint, it is recommended to use the xm. save () function instead of torch.save() to ensure states are
moved to CPU. xm. save () also prevents the “XRT memory handle not found” warning at the end of evaluation script
(if the checkpoint saved using torch.save() is used for evaluation).

The resulting script train.py can be executed as python3 train.py. Again, note that we import the MLP model
from model.py. When you examine the script, the comments that begin with ‘XLA’ indicate the changes required to
make the script compatible with torch_xla.
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Run the command below to execute this script:

python train.py

Expected output on trnl.32xlarge (start from a fresh compilation cache, located at /var/tmp/neuron-compile-cache by
default):

2022-04-12 16:15:00.000947: INFO | |NCC_WRAPPER||: No candidate found under /var/tmp/
—.neuron-compile-cache/USER_neuroncc-1.0.47218.0+162039557/MODULE_18200615679846498221.
2022-04-12 16:15:00.000949: INFO | |NCC_WRAPPER||: Cache dir for the neff: /var/tmp/
—neuron-compile-cache/USER_neuroncc-1.0.47218.0+162039557/MODULE_18200615679846498221/
-.MODULE_O0_SyncTensorsGraph.318_18200615679846498221_ip-172-31-69-14.ec2.internal-
—.8355221-28940-5dc775cd78aa2/83a0fd4a-b07e-4404-aa55-701ab3b2700c

Compiler status PASS

2022-04-12 16:18:05.000843: INFO | |NCC_WRAPPER||: Exiting with a successfully compiled.
—graph

2022-04-12 16:18:05.000957: INFO | |NCC_WRAPPER||: No candidate found under /var/tmp/
—neuron-compile-cache/USER_neuroncc-1.0.47218.0+162039557/MODULE_5000680699473283909.
2022-04-12 16:18:05.000960: INFO | |NCC_WRAPPER||: Cache dir for the neff: /var/tmp/
—neuron-compile-cache/USER_neuroncc-1.0.47218.0+162039557/MODULE_5000680699473283909/
--MODULE_1_SyncTensorsGraph.390_5000680699473283909_ip-172-31-69-14.ec2.internal-8355221-
—,28940-5dc7767e5£c69/7d0a2955-11b4-42e6-b536-6f0f02cc68df

Compiler status PASS

2022-04-12 16:18:12.000912: INFO | |NCC_WRAPPER||: Exiting with a successfully compiled.
—graph

—————————— Training ----------—-—-———-

Train throughput (iter/sec): 95.06756661972014

Final loss is 0.1979

—————————— End Training --------——————-

If you re-run the training script a second time, you will see messages indicating that the compiled graphs are cached in
the persistent cache from the previous run and that the startup time is quicker:

(aws_neuron_venv_pytorch_p36) [ec2-user@ip-172-31-69-14 mnist_mlp]$ python train.py |&.
—tee log_trainium

2022-04-12 16:21:58.000241: INFO | |NCC_WRAPPER||: Using a cached neff at /var/tmp/neuron-
—,compile-cache/USER_neuroncc-1.0.47218.0+162039557/MODULE_18200615679846498221/MODULE_0_
—SyncTensorsGraph.318_18200615679846498221_ip-172-31-69-14.ec2.internal-8355221-28940-
—5dc775cd78aa2/83a0fd4a-b07e-4404-aa55-701ab3b2700c/MODULE_O_SyncTensorsGraph.318_

-, 18200615679846498221_1ip-172-31-69-14.ec2.internal-8355221-28940-5dc775cd78aa2.neff. .
—Exiting with a successfully compiled graph

2022-04-12 16:21:58.000342: INFO | |NCC_WRAPPER||: Using a cached neff at /var/tmp/neuron-
—,compile-cache/USER_neuroncc-1.0.47218.0+162039557/MODULE_5000680699473283909/MODULE_1_
—SyncTensorsGraph.390_5000680699473283909_ip-172-31-69-14.ec2.internal-8355221-28940-
—5dc7767e5£c69/7d0a2955-11b4-42e6-b536-6£f0£f02cc68df/MODULE_1_SyncTensorsGraph.390_
—5000680699473283909_ip-172-31-69-14.ec2.internal-8355221-28940-5dc7767e5fc69.neff. .
—Exiting with a successfully compiled graph

—————————— Training --------——————-

Train throughput (iter/sec): 93.16748895384832

Final loss is 0.1979

—————————— End Training ---------—-—--—---

Multiple graphs can be created during execution since there are differences between some iterations (first, steady state,
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last). After the first iteration, the graph for each iteration should remain the same from iteration to iteration. This allows
XLA runtime to execute a previous compiled graph that has been cached in XL A runtime cache.

If the inner training loop has some control-flows, for example for gradient accumulation, the number of compiled
graphs may increase due to the generation and consumption of intermediates as well as additional operations when the
conditional path is taken.

Multi-worker data-parallel MLP training using torchrun

Data parallel training allows you to replicate your script across multiple workers, each worker processing a proportional
portion of the dataset, in order to train faster.

The PyTorch distributed utility torchrun can be used to launch multiple processes in a server node for multi-worker
data parallel training.

To run multiple workers in data parallel configuration using torchrun, modify the single-worker training script
train.py as follows (below we use xm as alias for torch_xla.core.xla_model and xmp as alias for torch_xla.
distributed.xla_multiprocessing):

1. Import XLA backend for torch.distributed using import torch_xla.distributed.xla_backend.

2. Use torch.distributed.init_process_group('xla') to initialize PyTorch XLA runtime and Neuron
runtime.

3. Use XLA multiprocessing device loader (MpDeviceLoader) from torch_xla.distributed to wrap PyTorch
data loader.

4. Use xm.optimizer_step(optimizer) to perform allreduce and take optimizer step.

XLA MpDeviceLoader is optimized for XLA and is recommended for best performance. It also takes care of mark-
ing the step for execution (compile and execute the lazily collected operations for an iteration) so no separate xm.
mark_step() is needed.

The following are general best-practice changes needed to scale up the training:
1. Set the random seed to be the same across workers.

2. Scale up the learning rate by the number of workers. Use xm.xrt_world_size() to get the global number of
workers.

3. Add distributed sampler to allow different worker to sample different portions of dataset.
Also, the xm. save () function used to save checkpoint automatically saves only for the rank-0 worker’s parameters.
The resulting script is train_torchrun.py (note again that we import the MLP model from model . py):

Next we use the torchrun utility that is included with torch installation to run multiple processes, each using one
Logical NeuronCore. Use the option nproc_per_node to indicate the number of processes to launch. For example,
to run on two Logical NeuronCores on one Trn1/Trn2 instance only, do:

Run the command below to execute this script:

torchrun --nproc_per_node=2 train_torchrun.py

Note: Currently we only support: - 1 and 2 worker configurations on trnl.2xlarge (default Logic NeuronCores size
of 1) - 1, 2, 8, and 32-worker configurations on trnl.32xlarge (default Logic NeuronCores size of 1) - 1, 4, 16 and
64-worker configurations on trn2.48xlarge (default Logic NeuronCores size of 2)

Expected output on trnl.32xlarge (second run to avoid compilations):
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—————————— Training ----------—-————-
—————————— Training ----------—-—-———-

(Info messages truncated)
Train throughput (iter/sec): 163.25353269069706
Train throughput (iter/sec): 163.23261047441036
Final loss is 0.3469
Final loss is 0.1129
—————————— End Training ---------—-———-—-—-
—————————— End Training -----------—-——-—-

In another example, we run on two trn1.32xlarge instances launched with EFA-enabled interfaces, using EFA-enabled
security group, and setup using Install PyTorch Neuron on Trnl. NOTE: To run on multiple instances, you will need
to use trnl.32xlarge instances and using all 32 NeuronCores on each instance.

On the rank-0 Trnl host (root), run with --node_rank=0 using torchrun utility, and --master_addr set to rank-0
host’s IP address:

export FI_EFA_USE_DEVICE_RDMA=1

export FI_PROVIDER=efa

torchrun --nproc_per_node=32 --nnodes=2 --node_rank=0 --master_addr=<root IP> --master_
—port=2020 train_torchrun.py

On another Trn1 host, run with --node_rank=1, and --master_addr also set to rank-0 host’s IP address:

export FI_EFA_USE_DEVICE_RDMA=1

export FI_PROVIDER=efa

torchrun --nproc_per_node=32 --nnodes=2 --node_rank=1 --master_addr=<root IP> --master_
—port=2020 train_torchrun.py

It is important to launch rank-0 worker with --node_rank=0 to avoid hang.

For trn2.48xlarge, use --nproc_per_node=64 for 64 Logical NeuronCores default (each Logical NeuronCores using
two physical NeuronCores).

To train on multiple instances, it is recommended to use a ParallelCluster. For a ParallelCluster example, please see
Train a model on AWS Trnl ParallelCluster.

Single-worker MLP evaluation on Trainium

After training, the final checkpoint is saved in checkpoints directory. You can run the evaluation step by running the
eval.py script in the same directory as the training script:

Run the command below to execute this script:

cd ~/aws-neuron-samples/torch-neuronx/training/mnist_mlp
python eval.py

This evaluation phase can be merged with the training script to check accuracy, for example at the end of every epoch.
It is kept separate for illustration purpose.
The evaluation script follow similar flow as the training script with the following differences:

» The input data used is the validation subset of the MNIST dataset.

* Only need to loop through the dataset once (no epochs).

* There’s only forward pass through the model, and no backward pass or optimizer update.
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» Compute the accuracy across validation set instead of loss per batch.

Expected results (after a second execution to eliminate warmup compilation time during first execution):

Test throughput (iter/sec): 47.897945949832845
Accuracy: 0.9273833632469177

If you get a lower accuracy than above, please check that the training is done with at least 4 epochs.

You can also use PyTorch NeuronX Tracing API for Inference in the evaluation loop. This can be achieved by the
following changes to the eval.py:

e Use device = 'cpu' instead of XLA device.
e Don’t use mark_step().

* Trace the model at the first iteration to freeze it and precompile for inference:

if idx ==
import torch_neuronx
model = torch_neuronx.trace(model, test_x)

However, note that the inference trace API fixed the input tensor shape, so that every input tensor will need to match
the size used during the tracing step. To ensure every batch from DatalLoader has the same tensor shape, pass
drop_last=True option when instantiating DataLoader.

test_loader = DatalLoader(test_dataset, batch_size=32, drop_last=True)
The script eval_using_trace.py can be compared against eval.py to show the above modifications. It can be
executed using:

Run the command below to execute this script:

python eval_using_trace.py

Expected results (note the large increase in performance when using trace API for inference):

—————————— Evaluating---------------
Test throughput (iter/sec): 409.0836291417652
Accuracy: 0.9288585186004639

Known issues and limitations

MLP model is not optimized for performance. For the single-worker training, the performance can be improved by
using MpDeviceLoader which exists in the multiprocessing example. For example, by setting --nproc_per_node=1
in the torchrun example, you will see higher MLP performance.

(aws_neuron_venv_pytorch_p36) [ec2-user@ip-172-31-69-14 mnist_mlp]$ torchrun --nproc_per_
—node=1 train_torchrun.py

—————————— Training ---------------
(Info messages truncated)
Train throughput (iter/sec): 192.43508922834008

(continues on next page)
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(continued from previous page)

Final loss is 0.2720
—————————— End Training ---------------

This document is relevant for: Trnl, Trn2

This document is relevant for: Trnl, Trn2

PyTorch Neuron for Trainium Hugging Face BERT MRPC task finetuning using Hugging Face Trainer
API

Note: Please use Hugging Face Optimum-Neuron<https://huggingface.co/docs/optimum-neuron/index> for best cov-
erage and support of Hugging Face models running on Trainium and Inferentia devices.

In this tutorial, we show how to run a Hugging Face script that uses Hugging Face Trainer API to do fine-tuning
on Trainium. The example follows the text-classification example which fine-tunes BERT-base model for sequence
classification on the GLUE benchmark.

Table of Contents

 Setup and compilation

*» Single-worker training

* Multi-worker data-parallel training

* Converting BERT pretrained checkpoint to Hugging Face pretrained model format

* Older versions of transformers <4.27.0 or PyTorch Neuron <1.13.0

e Known issues and limitations

Note: Logs used in tutorials do not present latest performance numbers

For latest performance numbers visit Neuron performance

Setup and compilation

Before running the tutorial please follow the installation instructions at:
Install PyTorch Neuron on Trnl

Please set the storage of instance to 5/2GB or more if you also want to run through the BERT pretraining and GPT
pretraining tutorials.

For all the commands below, make sure you are in the virtual environment that you have created above before you run
the commands:

source ~/aws_neuron_venv_pytorch/bin/activate

First we install a recent version of HF transformers, scikit-learn and evaluate packages in our environment as well as
download the source matching the installed version. In this example, we use the text classification example from HF
transformers source:
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export HF_VER=4.52.0

export ACC_VER=1.7.0

pip install -U transformers==$HF_VER accelerate==$ACC_VER datasets evaluate scikit-learn
cd ~/

git clone https://github.com/huggingface/transformers --branch v$HF_VER

Single-worker training

We will run MRPC task fine-tuning following the example in README.md located in the path ~/transformers/
examples/pytorch/text-classification. In this part of the tutorial we will use the Hugging Face model hub’s
pretrained bert-large-uncased model.

Note: If you are using older versions of transformers <4.27.0 or PyTorch Neuron <1.13.0, please see section Older
versions of transformers <4.27.0 or PyTorch Neuron <1.13.0 for necessary workarounds.

We use BFI6 mixed-precision casting wusing trainer API --bfl6 option and compiler flag
--model-type=transformer to enable best performance. We also launch the run_glue.py script with torchrun
using --nproc_per_node=N option to specify the number of workers. Here we start of with 1 worker.

Note: With transformers version 4.44 and up, please use torchrun even for one worker (--nproc_per_node=1) to
avoid execution hang.

First, paste the following script into your terminal to create a “run.sh” file and change it to executable:

tee run.sh > /dev/null <<EOF

#!/usr/bin/env bash

set -eExuo

export TASK_NAME=mrpc

export NEURON_CC_FLAGS="--model-type=transformer"
NEURON_RT_STOCHASTIC_ROUNDING_EN=1 torchrun --nproc_per_node=1 ./run_glue.py \\
--model_name_or_path bert-large-uncased \\

--task_name \$TASK_NAME \\

--do_train \\
--do_eval \\
--b£f16 \\

--use_cpu True \\

--max_seq_length 128 \\
--per_device_train_batch_size 8 \\
--learning_rate 2e-5 \\

--num_train_epochs 5 \\

--save_total_limit 1 \\
--overwrite_output_dir \\

--output_dir /tmp/\$TASK_NAME/ |& tee log_run
EOF

chmod +x run.sh

‘We optionally precompile the model and training script using neuron_parallel_compile to warm up the persistent graph
cache (Neuron Cache) such that the actual run has fewer compilations (faster run time):
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neuron_parallel compile ./run.sh

Please ignore the results from this precompile run as it is only for extracting and compiling the XL A graphs.

Note: With both train and evaluation options (--do_train and --do_eval), you will encounter harmless error
ValueError: Target is multiclass but average='binary' when using neuron_parallel_compile.

Precompilation is optional and only needed to be done once unless hyperparameters such as batch size are modified.
After the optional precompilation, the actual run will be faster with minimal additional compilations.

./run.sh

If precompilation was not done, the first execution of ./run.sh will be slower due to serial compilations. Rerunning the
same script a second time would show quicker execution as the compiled graphs will be already cached in persistent
cache.

Multi-worker data-parallel training

The above script would run one worker on one Logical NeuronCore. To run on multiple Logical NeuronCores in data-
parallel configuration, launch the run_glue. py script with torchrun using --nproc_per_node=N option to specify
the number of workers (N=2 for trnl.2xlarge, and N=2, 8, or 32 for trn1.32xlarge).

Note: If you are using older versions of transformers <4.27.0 or PyTorch Neuron <1.13.0, please see section Older
versions of transformers <4.27.0 or PyTorch Neuron <1.13.0 for necessary workarounds.

The following example runs 2 workers. Paste the following script into your terminal to create a “run_2w.sh” file and
change it to executable:

tee run_2w.sh > /dev/null <<EOF

#!/usr/bin/env bash

set -eExuo

export TASK_NAME=mrpc

export NEURON_CC_FLAGS="--model-type=transformer"
NEURON_RT_STOCHASTIC_ROUNDING_EN=1 torchrun --nproc_per_node=2 ./run_glue.py \\
--model_name_or_path bert-large-uncased \\

--task_name \$TASK_NAME \\

--do_train \\
--do_eval \\
--b£f16 \\

--use_cpu True \\

--max_seq_length 128 \\
--per_device_train_batch_size 8 \\
--learning_rate 2e-5 \\

--num_train_epochs 5 \\

--save_total_limit 1 \\

--overwrite_output_dir \\

--output_dir /tmp/\$TASK_NAME/ |& tee log_run_2w
EOF

chmod +x run_2w.sh
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Again, we optionally precompile the model and training script using neuron_parallel_compile to warm up the persistent
graph cache (Neuron Cache), ignoring the results from this precompile run as it is only for extracting and compiling
the XLA graphs:

neuron_parallel_compile ./run_2w.sh

Precompilation is optional and only needed to be done once unless hyperparameters such as batch size are modified.
After the optional precompilation, the actual run will be faster with minimal additional compilations.

./run_2w.sh

During run, you will now notice that the “Total train batch size” is now 16 and the “Total optimization steps” is now
half the number for one worker training.

Converting BERT pretrained checkpoint to Hugging Face pretrained model format

If you have a pretrained checkpoint (i.e., from the BERT phase 2 pretraining tutorial), you can run the script be-
low (saved as “convert.py”) to convert BERT pretrained saved checkpoint to Hugging Face pretrained model format.
An example phase 2 pretrained checkpoint can be downloaded from s3://neuron-s3/training_checkpoints/
pytorch/dp_bert_large_hf pretrain/ckpt_29688.pt. Note that here we also use the bert-large-uncased
model configuration to match the BERT-Large model trained following BERT phase 2 pretraining tutorial.

tee convert.py > /dev/null <<EOF
import os
import sys
import argparse
import torch
import transformers
from transformers import (
BertForPreTraining,
)
import torch_xla.core.xla_model as xm
from transformers.utils import check_min_version
from transformers.utils.versions import require_version

if __name__ == '__main__':
parser = argparse.ArgumentParser ()
parser.add_argument ('--model_name', type=str, default='bert-large-uncased', help=

—"Path to model identifier from huggingface.co/models")

parser.add_argument ('--output_saved_model_path', type=str, default='./hf_saved_model
— "', help="Directory to save the HF pretrained model format.")

parser.add_argument ('--checkpoint_path', type=str, required=True, help="Path to.
—pretrained checkpoint which needs to be converted to a HF pretrained model format")

args = parser.parse_args(sys.argv[1l:])

model = BertForPreTraining.from_pretrained(args.model_name)

check_point = torch.load(args.checkpoint_path, map_location="'cpu')

model .load_state_dict(check_point['model'], strict=False)

model . save_pretrained(args.output_saved_model_path, save_config=True, save_
—function=xm.save)

print("Done converting checkpoint to HuggingFace saved model in directory
—format (args.checkpoint_path, args.output_saved_model_path))
EOF
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Run the conversion script as:

python convert.py --checkpoint_path ckpt_29688.pt

After conversion, the new Hugging Face pretrained model is stored in the output directory specified by the
--output_saved_model_path option which is hf_saved_model by default. You will use this directory in the next
step.

Paste the following script into your terminal to create a “run_converted.sh” file and change it to executable: (note that
it uses the converted Hugging Face pretrained model in hf_saved_model directory):

tee run_converted.sh > /dev/null <<EOF
#!/usr/bin/env bash

set -eExuo

export TASK_NAME=mrpc

export NEURON_CC_FLAGS="--model-type=transformer"
NEURON_RT_STOCHASTIC_ROUNDING_EN=1 torchrun --nproc_per_node=2 ./run_glue.py \\
--model_name_or_path hf_saved_model \\
--tokenizer_name bert-large-uncased \\
--task_name \$TASK_NAME \\

--do_train \\

--do_eval \\

--b£f16 \\

--use_cpu True \\

--max_seq_length 128 \\
--per_device_train_batch_size 8 \\
--learning_rate 2e-5 \\

--num_train_epochs 5 \\

--save_total_limit 1 \\

--overwrite_output_dir \\

--output_dir /tmp/\$TASK_NAME/ |& tee log_run_converted
EOF

chmod +x run_converted.sh

If it is the first time running with bert-large-uncased model or if hyperparameters have changed, then the optional
one-time precompilation step can save compilation time:

neuron_parallel _compile ./run_converted.sh

If you have run the single worker training in a previous section, then you can skip the precompilation step and just do:

./run_converted. sh

Older versions of transformers <4.27.0 or PyTorch Neuron <1.13.0

If using older versions of transformers package before 4.27.0 or PyTorch Neuron before 1.13.0, please edit the python
script run_glue.py and add the following lines after the Python imports. They set the compiler flag for transformer
model type and enable data parallel training using torchrun:

# Enable torchrun
import os
import torch

(continues on next page)
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(continued from previous page)

import torch_xla.distributed.xla_backend

from packaging import version

from transformers import __version__, Trainer

if version.parse(__version__) < version.parse("4.26.0") and os.environ.get("WORLD_SIZE"):
torch.distributed.init_process_group('xla')

# Disable DDP for torchrun
import contextlib
if version.parse(__version__) < version.parse("4.20.0"):
def _wrap_model(self, model, training=True):
model .no_sync = lambda: contextlib.nullcontext()
return model
else:
def _wrap_model(self, model, training=True, dataloader=None):
model .no_sync = lambda: contextlib.nullcontext()
return model
Trainer._wrap_model = _wrap_model

# Workaround for NaNs seen with transformers version >= 4.21.0

# https://github.com/aws-neuron/aws-neuron-sdk/issues/593

import transformers

if os.environ.get("XLA_USE_BF16") or os.environ.get("XLA_DOWNCAST_BF16"):
transformers.modeling_utils.get_parameter_dtype = lambda x: torch.bfloatl6

Known issues and limitations

The following are currently known issues:

* During model evaluation, there can be small compilations for every evaluation step due to a known transformers
issue. The work-around is to set training arguments eval_do_concat_batches=False and apply the changes
in the PR which will be in a future release of transformers package (version 4.52 or later).

With transformers==4.44.0, running one worker fine-tuning without torchrun would result in a hang. To
workaround and run one worker fine-tuning, use torchrun --nproc_per_node=1 <script>.

With torch-neuronx 2.1, HF Trainer API’s use of XLLA function xm.mesh_reduce causes "EOFError: Ran
out of input" or "_pickle.UnpicklingError: invalid load key, '!'" errorsduring Neuron Paral-
lel Compile. This is an issue with the trial execution of empty NEFFs and should not affect the normal execution
of the training script.

Multi-worker training using Trainer API resulted in too many graph compilations for HF transform-
ers>=4.35: This is resolved with HF transformers>=4.37 with the additional workarounds as shown in “the
ticket<https://github.com/aws-neuron/aws-neuron-sdk/issues/813>" _.

Long compilation times: this can be alleviated with neuron_parallel_compile tool to extract graphs from a
short trial run and compile them in parallel ahead of the actual run, as shown above.

* When precompiling using batch size of 16 on trnl.2xlarge, you will see ERROR | |PARALLEL_COMPILE]| | :
parallel compilation with neuronx-cc exited with error.Received error code: -9. To
workaround this error, please set NEURON_PARALLEL_COMPILE_MAX_RETRIES=1 in the environment.

* With release 2.6 and transformers==4.25.1, using neuron_parallel_compile tool to run run_glue.py
script with both train and evaluation options (--do_train and --do_eval), you will encounter harmless error
ValueError: Target is multiclass but average='binary'
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* Reduced accuracy for RoBerta-Large is seen with Neuron PyTorch 1.12 (release 2.6) in FP32 mode with

compiler BF16 autocast. The workaround is to set NEURON_CC_FLAGS="—auto-cast none” or set NEU-
RON_RT_STOCHASTIC_ROUNDING_EN=1.

When using DDP in PT 1.13, compilation of one graph will fail with “Killed” error message for
bert-large-uncased. For bert-base-cased, the final MRPC evaluation accuracy is 31% which is lower
than expected. These issues are being investigated and will be fixed in an upcoming release. For now, DDP is
disabled with the workaround shown above in Multi-worker Training.

When using DDP in PT 1.13 with neuron_parallel_compile precompilation, you will hit an error Rank 1 has
393 params, while rank 0O has inconsistent 0 params.. To workaround this error, add the follow
code snippet at the top of run_glue.py to skip the problematic shape verification code during precompilation:

import os
if os.environ.get ("NEURON_EXTRACT_GRAPHS_ONLY", None):

import torch.distributed as dist
_verify_param_shape_across_processes = lambda process_group, tensors, logger=None:.

—True

Variable input sizes: When fine-tune models such as dslim/bert-base-NER using the token-classification exam-
ple, you may encounter timeouts (lots of “socket.h:524 CCOM WARN Timeout waiting for RX”” messages) and
execution hang. This occurs because NER dataset has different sample sizes, which causes many recompilations
and compiled graph (NEFF) reloads. Furthermore, different data parallel workers can execute different compiled
graph. This multiple-program multiple-data behavior is currently unsupported. To workaround this issue, please
pad to maximum length using the Trainer API option --pad_to_max_length.

When running HuggingFace GPT fine-tuning with transformers version >=4.21.0 and using XLA_USE_BF16=1
or XLA_DOWNCAST_BF16=1, you might see NaNs in the loss immediately at the first step. This issue
occurs due to large negative constants used to implement attention masking (https://github.com/huggingface/
transformers/pull/17306). To workaround this issue, please use transformers version <= 4.20.0.

When using Trainer API option -bfl6, you will see “RuntimeError: No CUDA GPUs are available”. To
workaround this error, please add “import torch; torch.cuda.is_bf16_supported = lambda: True” to the Python
script (i.e. run_glue.py). (Trainer API option —fp16 is not yet supported).

When using latest HuggingFace transformers version, you may see “ValueError: Your setup doesn’t support
bf16/gpu.” To fix this, please use --use_cpu True in your scripts.

The following are resolved issues:

* Using neuron_parallel_compile tool to run run_glue.py script with both train and evaluation options

(--do_train and --do_eval), you will encounter INVALID_ARGUMENT error. To avoid this, only en-
able train for parallel compile (--do_train). This will cause compilations during evaluation step. The IN-
VALID_ARGUMENT error is fixed in release 2.6 together with latest transformers package version 4.25.1.

¢ When running HuggingFace BERT (any size) fine-tuning tutorial or pretraining tutorial with transformers ver-

sion >=4.21.0 and < 4.25.1 and using XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1, you will see NaNs
in the loss immediately at the first step. More details on the issue can be found at pytorch/xla#4152. The
workaround is to use transformers version < 4.21.0 or >= 4.25.1, or add transformers.modeling_utils.
get_parameter_dtype = lambda x: torch.bfloatl16 to your Python script (i.e. run_glue.py).

Some recompilation is seen at the epoch boundary even after neuron_parallel_compile is used. This can be
fixed by using the same number of epochs both during precompilation and the actual run.

e When running multi-worker training, you may see the process getting killed at the time of model saving on

trnl.2xlarge. This happens because the transformers trainer.save_model api uses xm. save for saving mod-
els. This api is known to cause high host memory usage in multi-worker setting see Saving and Loading XLA
Tensors in . Coupled with a compilation at the same time results in a host OOM. To avoid this issue, we can: Pre-
compile all the graphs in multi-worker training. This can be done by running the multi-worker training first with
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neuron_parallel_compile <script> followed by the actual training. This would avoid the compilation at
model save during actual training.

This document is relevant for: Trnl, Trn2

This document is relevant for: Trnl, Trn2

Fine-tune T5 model on Trn1

Note: Update 01/03/24: This tutorial is currently broken and the AWS Neuron team is working on the fix.

In this tutorial, we show how to fine-tune a Hugging Face (HF) TS5 model using HF trainer API. This example fine-tunes
a TS5 model for a text-summarization task on CNN/DailyMail dataset.

Table of Contents

* Setup and compilation
» Single-worker training

* Multi-worker Training

e Known issues and limitations

Note: Logs used in tutorials do not present latest performance numbers

For latest performance numbers visit Neuron performance

Setup and compilation

Before running the tutorial please follow the installation instructions at:
Install PyTorch Neuron on Trnl

Please set the storage of instance to 5/2GB or more if you also want to run through the BERT pretraining and GPT
pretraining tutorials.

For all the commands below, make sure you are in the virtual environment that you have created above before you run
the commands:

source ~/aws_neuron_venv_pytorch/bin/activate

First we install a recent version of HF transformers, scikit-learn and evaluate packages in our environment as well as
download the source matching the installed version. In this example, we chose version 4.26.0 and the text summarization
example from HF transformers source:

export HF_VER=4.26.0

pip install -U transformers==$HF_VER datasets evaluate scikit-learn rouge_score.
—pandas==1.4.0

cd ~/

git clone https://github.com/huggingface/transformers --branch v$HF_VER

cd ~/transformers/examples/pytorch/summarization
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Single-worker training

We will run text-summarization fine-tuning task following the example in README.md located in the path ~/trans-
formers/examples/pytorch/summarization.

We use full BF16 casting using XLA_USE_BF16=1 to enable best performance. First, paste the following script into
your terminal to create a “run.sh” file and change it to executable:

tee run.sh > /dev/null <<EOF
#!/bin/bash
set -eExuo
if [ \$NEURON_PARALLEL_COMPILE == "1" ]
then
XLA_USE_BF16=1 python3 ./run_summarization.py \
--model_name_or_path t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--do_train \
--do_eval \
--source_prefix "summarize: " \
--max_source_length 512 \
--per_device_train_batch_size 32 \
--per_device_eval_batch_size 4 \
--overwrite_output_dir \
--pad_to_max_length \
--max_steps 100 \
--max_eval_samples 100 \
--gradient_accumulation_steps=32 \
--output_dir /tmp/tst-summarization |& tee log_run
else
XLA_USE_BF16=1 python3 ./run_summarization.py \
--model_name_or_path t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--do_train \
--do_eval \
--source_prefix "summarize: " \
--max_source_length 512 \
--per_device_train_batch_size 32 \
--per_device_eval_batch_size 4 \
--overwrite_output_dir \
--pad_to_max_length \
--gradient_accumulation_steps=32 \
--output_dir /tmp/tst-summarization |[& tee log_run
fi
EOF

chmod +x run.sh

We optionally precompile the model and training script using neuron_parallel_compile to warm up the persistent graph
cache (Neuron Cache) such that the actual run has fewer compilations (faster run time):

neuron_parallel_compile ./run.sh

Note: For these auto-regressive models, do not run the predict_with_generate method when doing the precompile
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step. This is because the neuron_parallel_compile utility will run the training script in graph extraction mode and
no actual execution of the graph will be done. Hence, the outputs at each step are invalid. Since the auto-regressive
generation at each step is dependent on output of previous step, the generate step would fail since the outputs from
previous steps are invalid.

Precompilation is optional and only needs to be done once unless hyperparameters such as batch size are modified.
After the optional precompilation, the actual run will be faster with minimal additional compilations.

./run.sh

If precompilation was not done, the first execution of ./run.sh will be slower due to serial compilations. Rerunning the
same script a second time would show quicker execution as the compiled graphs will be already cached in persistent
cache.

Running the above script will run the T5-small fine-tuning on a single process.

Note: As you may have noticed, we are not running the predict_with_generate as part of training. This is because,
predict_with_generate requires auto-regressive sampling where the inputs to the decoder are created by appending
outputs of previous steps. This causes the inputs to the decoder to change shape and thereby resulting in a new graph.
In other words, the current generate api provided by HF transformers leads to repeated compilations. We are working
on building a Neuron friendly version of generate api and it will be made available as part of future release. This
will enable us to run predict_with_generate as part of training script.

As a workaround, we can run the predict_with_generate on CPU after the model is trained. Once training is
completed, a trained checkpoint would be saved. We can load the trained model and run the predict_with_generate
to compute the final accuracy.

To do so, in run_summarization.py, add the following before transformers get imported. This can be done by adding
the below lines before all the imports:

import libneuronxla
# Disable configuring xla env
def _configure_env():
pass
libneuronxla.configure_environment = _configure_env

You can now run the following and it should run the predict method on CPU device.

NEURON_NUM_DEVICES=0 python3 ./run_summarization.py \
--model_name_or_path <CHECKPOINT_DIR> \
--dataset_name cnn_dailymail \

--dataset_config "3.0.0" \

--do_predict \

--predict_with_generate \

--source_prefix "summarize: " \
--per_device_eval_batch_size 4 \
--max_source_length 512 \

--pad_to_max_length \

--no_cuda \

--output_dir /tmp/tst-summarization |& tee log_run

Note: To run on CPU, we need to make sure that NEURON_NUM_DEVICES is set to 0. This will make sure no
xla_devices are created and the trainer would use the default device (CPU).
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Multi-worker Training

The above script will run one worker on one NeuronCore. To run on multiple cores, first add these lines to top of
run_summarization.py to disable Distributed Data Parallel (DDP) when using torchrun (see Known issues and limita-
tions section below):

# Disable DDP for torchrun
from transformers import __version__, Trainer

Trainer._wrap_model = lambda self, model, training=True, dataloader=None: model

Then launch the run_summarization.py script with torchrun using —nproc_per_node=N option to specify the number
of workers (N=2 for trnl.2xlarge, and N=2, 8, or 32 for trn1.32xlarge). The following example runs 2 workers. Paste
the following script into your terminal to create a “run_2w.sh” file and change it to executable:

tee run_2w.sh > /dev/null <<EOF
#!/bin/bash
set -eExuo
if [ \$NEURON_PARALLEL_COMPILE == "1" ]
then
XLA_USE_BF16=1 torchrun --nproc_per_node=2 ./run_summarization.py \
--model_name_or_path t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--do_train \
--do_eval \
--source_prefix "summarize: " \
--max_source_length 512 \
--per_device_train_batch_size 32 \
--per_device_eval_batch_size 4 \
--overwrite_output_dir \
--pad_to_max_length \
--max_steps 100 \
--max_eval_samples 100 \
--gradient_accumulation_steps=32 \
--output_dir /tmp/tst-summarization |[& tee log_run
else
XLA_USE_BF16=1 torchrun --nproc_per_node=2 ./run_summarization.py \
--model_name_or_path t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--do_train \
--do_eval \
--source_prefix "summarize: " \
--max_source_length 512 \
--per_device_train_batch_size 32 \
--per_device_eval_batch_size 4 \
--overwrite_output_dir \
--pad_to_max_length \
--gradient_accumulation_steps=32 \
--output_dir /tmp/tst-summarization |& tee log_run
fi
EOF

chmod +x run_2w.sh
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Again, we optionally precompile the model and training script using neuron_parallel_compile to warm up the persistent
graph cache (Neuron Cache), ignoring the results from this precompile run as it is only for extracting and compiling
the XLA graphs:

neuron_parallel_compile ./run_2w.sh

Precompilation is optional and only needs to be done once unless hyperparameters such as batch size are modified.
After the optional precompilation, the actual run will be faster with minimal additional compilations.

./run_2w.sh

During run, you will notice that the “Total train batch size” is now 8 and the “Total optimization steps” is now half the
number for one worker training. Also, if you open neuron-top in a separate terminal, you should see 2 cores been
utilized.

To train T5-large model, you can set the model_name_or_path argument to t5-1arge. Please note, currently running
t5-1large on trn1-2x1 machine can result in HOST OOM during compilation. Hence, it is recommended that you run a
t5-1large model training on a trn1-32x1 machine.

On a trn1-32x1 machine, you can create a run_32w.sh on the terminal using the following commands:

tee run_32w.sh > /dev/null <<EOF
#!/bin/bash
set -eExuo
if [ \$NEURON_PARALLEL_COMPILE == "1" ]
then
XLA_USE_BF16=1 torchrun --nproc_per_node=32 ./run_summarization.py \
--model_name_or_path t5-large \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--do_train \
--do_eval \
--source_prefix "summarize: " \
--max_source_length 512 \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 4 \
--overwrite_output_dir \
--pad_to_max_length \
--max_steps 100 \
--max_eval_samples 100 \
--gradient_accumulation_steps=11 \
--output_dir /tmp/tst-summarization |[& tee log_run
else
XLA_USE_BF16=1 torchrun --nproc_per_node=32 ./run_summarization.py \
--model_name_or_path t5-large \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--do_train \
--do_eval \
--source_prefix "summarize: " \
--max_source_length 512 \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 4 \
--overwrite_output_dir \
--pad_to_max_length \

(continues on next page)
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(continued from previous page)

--gradient_accumulation_steps=11 \

--output_dir /tmp/tst-summarization |& tee log_run
fi
EOF

chmod +x run_32w.sh

You can now follow the same steps as listed above. This script would run a t5-large model by launching a training script
using 32 data-parallel workers.

Known issues and limitations

The following are currently known issues:

* Long compilation times: this can be alleviated with neuron_parallel_compile tool to extract graphs from a
short trial run and compile them in parallel ahead of the actual run, as shown above.

» T5-Large compilation causing processes to get killed on trn1-2x1: It is recommended to t5-1arge model training
on a trn1-32x1 machine, as it avoids CPU OOM and also provides faster training by making use of 32 data-parallel
workers.

This document is relevant for: Trnl, Trn2

This document is relevant for: Trnl, Trn2

ZeRO-1 Tutorial

What is ZeRO-1?

ZeRO-1 (Zero Redundancy Optimizer Stage 1, https://arxiv.org/abs/1910.02054) is an optimization technique for large-
scale deep learning models. It is a memory efficient variation of data parallelism. ZeRO leverages the aggregate com-
putation and memory resources of data parallelism to reduce the memory and compute requirements of each accelerator
used for model training. ZeRO reduces the memory consumption of each accelerator by partitioning the various model
training states (weights, gradients, and optimizer states) across the available devices in the distributed training hard-
ware. ZeRO is being implemented as incremental stages of optimizations. In stage 1, the optimizer states (e.g., for
Adam optimizer, 32-bit weights, and the first, and second moment estimates) are partitioned across the processes, so
that each process updates only its partition.
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Neurong Neuron; Neurony

w/o ZeRo-1

w ZeRo-1

Parameters Gradients Optimizer States

Assume we use mixed precision training with Adam optimizer. Comparing the total memory usage
with and with out ZeRO-1. 1 denotes model size (number of parameters), and N; denotes DP
degree. Then, without ZeRO-1 memory consumption is (2 + 2 + 3 * 4) * 1 = 16y, with ZeRO-1 is

20 + 29 + 12¢/N,.

We implemented an XL A-friendly version of ZeRO-1 and it has been merged in open-source PyTorch/XLA project.
Users can use it to enable ZeRO-1 algorithm by simply wrapping the origin optimizer as shown below.

# Before:
optimizer = torch.optim.Adam(model.parameters(), 1lr=0.0001)

# After
optimizer = ZeroRedundancyOptimizer (model.parameters(), torch.optim.Adam, lr=0.0001)
Then just call optimizer. step () directly, the wrapped optimizer will handle the distributed operations automatically.

The above code snippet illustrates the basic usage. Generally, users can use ZeRO-1 optimizer like a normal optimizer.
In addition, ZeroRedundancyOptimizer also provides other features: enable gradient clipping or use other data type
for wrapped optimizer. Note that though the most of optimizers can be used with ZeRO-1, optimizers that compute
norm for parameters (e.g. LAMB) might lead to accuracy disparities compared to using original local optimizer when
using ZeRO-1, because these optimizers cannot get full parameters but shards.

Usage

To enable ZeRO-1 optimizer, just import it and replace origin optimizer with ZeRO-1 wrapped version

from torch_xla.distributed.zero_redundancy_optimizer import ZeroRedundancyOptimizer

device = xm.xla_device()
model = model.to(device)

optimizer = ZeroRedundancyOptimizer (model.parameters(), AdamW, 1lr=0.001)

Then in training loop, just call optimizer.step() , note that we should not use xm.reduce_gradients() or xm.
optimizer_step() as gradient reduction will be handle by ZeRO-1.
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loss.backward()
xm.mark_step()
optimizer.step()
xm.mark_step()

ZeRO-1 optimizer also provides some additional features, user can pass these arguments to the wrapper constructor:

* Change optimizer_dtype to choose data dtype used by optimizer, default is torch. float32. For example,
when parameter data type is bfloat16, set optimizer_dtype to be float32 to enable ‘master weight’.

¢ Change grad_clipping to enable grad clipping, default is True.
* Change max_norm to determine the maximum norm value used by grad clipping, default is 1. 0.

* Change use_grad_acc_hook to enable using buffers to store gradients, it will use the same data type as
optimizer_dtype to accumulate gradients. (Added in neuron 2.19.0 release).

e Change higher_cc_precision to force reduce-scatter operator to use the same data type as
optimizer_dtype, default is False. When use_grad_acc_hook is True, it has no effects. (Added in
neuron 2.19.0 release).

Note: ZeRO-1 optimizer now forces to use the same data type as parameters for all-gather operator. (Changed in neuron
2.19.0 release)

GPT2-XL Pretraining Tutorial

Table of contents

» Setup
e Dataset

* Training

e Known Issues, Work-arounds and Limitations

Setup

We use single Trn1.32xlarge instance. Follow Install PyTorch Neuron on Trnl to setup the environment first. For all
the commands below, make sure you are in the virtual environment that you have created above before you run the
commands:

requirements.txt: We pin the following Hugging Face Library versions necessary for the tutorial

transformers==4.27.3
accelerate==0.17
tensorboard==2.12.2

source ~/aws_neuron_venv_pytorch/bin/activate

git clone https://github.com/aws-neuron/aws-neuron-samples.git
cd aws-neuron-samples/torch-neuronx/training/zerol_gpt2
python3 -m pip install -r requirements.txt
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The specific files you need for this tutorial:
* config_1pSB_gpt2.json: The model configuration used in the tutorial for GPT 2.7B Neo
 neuron_utils.py: includes utility functions and the logging tools
* run_clm_no_trainer.py: the main training script that runs the actual training

 run_clm.sh: the shell script to launch the training job

Dataset

For the dataset, we use the wikitext dataset, specifically wikitext-103-raw-v1, provided by the HuggingFace https:
//huggingface.co/datasets/wikitext. The data will be preprocessed the first time running through the training script and
then preprocessed data will be cached in the HuggingFace cache directory for any future training runs.

If the main process downloads the dataset, tokenizes the data and groups them together successfully, the expected
output would be as below at the beginning of the training.

* Running training *****
Num examples = 114248
Num Epochs = 29
Instantaneous batch size per device = 1
Total train batch size (w. parallel, distributed & accumulation) = 32
Gradient Accumulation steps = 1
Total optimization steps = 100000

Training

The GPT2 python fine-tuning script is adapted from the example run_clm_no_trainer.py in https://github.com/
huggingface/transformers/tree/main/examples/pytorch/language-modeling. It incorporates the Accelerate https://
github.com/huggingface/accelerate. Given its beta stage, some modifications are needed, along with the bridge code
to XLA. Particularly, some workarounds to support Accelerate for the training script are listed in “Known Issues
Workarounds and Limitations” below.

In this example, we use GPT2-xl1 as example, and show the training steps with mixed precision (bfloat16 and float32)
* single node training:

# Run precompile and training
neuron_parallel compile bash run_clm.sh MIXED wikitext-103-raw-vl
bash run_clm.sh MIXED wikitext-103-raw-vl

e multi-node training, run:

sbatch run_clm_compile.slurm

then

sbatch run_clm.slurm
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Known Issues, Work-arounds and Limitations

1. Error message: ValueError: invalid literal for int() with base 10: ''. Simply re-run the script
can solve this issue. This issue is already solved in the newer versions of transformers, see https://github.com/
huggingface/transformers/pull/22427.

2. Accelerator API workarounds:

* Error message: “Gradient accumulation is not supported on TPU. Please set gradient_accumulation_steps
to 1 and don’t pass in a GradientAccumulationPlugin object.” More context here: https://github.com/
huggingface/accelerate/pull/479. The training still works by commenting out the assertion and avoid using
the accumulation wrapper with accelerator.accumulate(model)

* Accelerator.prepare call: We have noticed that using the optimizer returned by this API are not directly
reusable. It is due to gaps in configuring accelerate API for XLLA devices.

This document is relevant for: Trnl, Trn2

This document is relevant for: Trnl, Trn2

Analyze for Training Tutorial

This tutorial explains how to analyze a model for training support using via torch-neuronx.

Note: For analyzing models for inference support via torch-neuronx, please refer to rorch_neuronx.analyze()

Setup

For this tutorial we’ll be using two scripts: supported.py and unsupported.py. Create these files by copy pasting
the below code to their respective files.

supported.py

import torch
import torch_xla.core.xla_model as xm

class NN(torch.nn.Module):
def __init__(self):
super().__init__Q

self.layerl = torch.nn.Linear(4,4)
self.nll = torch.nn.ReLUQ)
self.layer2 = torch.nn.Linear(4,2)
self.nl2 = torch.nn.Tanh()

def forward(self, x):
x = self.nll(self.layerl(x))
return self.nl2(self.layer2(x))

def main(Q:
device = xm.xla_device()

(continues on next page)
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model = NN(Q).to(device)

optimizer = torch.optim.SGD(model.parameters(), 1lr=0.01)

loss_fn = torch.nn.MSELoss()

inp = torch.rand(4)
target = torch.tensor([1,0])

model.train()

for epoch in range(2):
optimizer.zero_grad()
inp = inp.to(device)
target = target.to(device)
output = model(inp)
loss = loss_fn(output,target)
loss.backward()
optimizer.step()
xm.mark_step()

if __name__ == '__main__"':

main()

unsupported.py

import torch
import torch_xla.core.xla_model as xm

class UnsupportedModel (torch.nn.Module):
def __init__(self):
super().__init__Q

def forward(self, x):
y = torch.fft.fft(x)

X=X+ 10
return x * y

def main(Q):
device = xm.xla_device()
model = UnsupportedModel () .to(device)
inp = torch.rand(4)
model . train()
for epoch in range(1):
inp = inp.to(device)
output = model(inp)

xm.mark_step()

if __name__ == '__main__"':

(continued from previous page)

(continues on next page)
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(continued from previous page)

main()

Running analyze via neuron_parallel_compile

To analyze a model, we supply the training script to the analyze command, which is shipped with
neuron_parallel_compile. The command is:

neuron_parallel _compile --command analyze python supported.py

This will generate a lot of output showing a lot of compilation statuses. Here’s a snippet of the output when running
the above command

.2023-05-25 00:43:43.000394: 776642 INFO ||ANALYZE||: Compiling /tmp/model_analyis_
—.graphs/compare_7841189860629745939_23.hlo.pb using following command: neuronx-cc.
—.compile --target=trnl --framework XLA /tmp/model_analyis_graphs/compare_
<,7841189860629745939_23.hlo.pb --verbose=35 --query-compute-placement

2023-05-25 00:43:43.000418: 776642 INFO ||ANALYZE||: Compiling /tmp/model_analyis_
—.graphs/multiply_15640857564712679356_53.hlo.pb using following command: neuronx-cc..
—.compile --target=trnl --framework XLA /tmp/model_analyis_graphs/multiply_
<,15640857564712679356_53.hlo.pb --verbose=35 --query-compute-placement

Compiler status PASS

2023-05-25 00:43:43.000549: 776642 INFO ||ANALYZE||: Compiling /tmp/model_analyis_
—graphs/subtract_1927104012014828209_49.hlo.pb using following command: neuronx-cc.
—.compile --target=trnl --framework XLA /tmp/model_analyis_graphs/subtract_
,1927104012014828209_49.hlo.pb --verbose=35 --query-compute-placement

Compiler status PASS

The analysis report will be generated as a JSON file. The location of the report is shown as the last log entry:

2023-05-25 00:43:49.000252: 776642 INFO ||ANALYZE||: Removing existing report /home/
—ubuntu/analyze_for_training/model_analysis_result/result.json

2023-05-25 00:43:49.000252: 776642 INFO ||ANALYZE||: Model analysis completed. Report -
<, /home/ubuntu/analyze_for_training/model_analysis_result/result.json

Note: Note that if a report is already present in the specified path, analyze will remove/overwrite it.

The report generated running the above command looks like:

{
"torch_neuronx_version": "1.13.0.1.6.1",
"neuronx_cc_version": "2.5.0.28+1be23f232",
"support_percentage": "100.00%",
"supported_operators": {
"aten": {
"aten: :permute": 8,
"aten::add": 8,
"aten::mul": 8,
"aten::expand": 18,

(continues on next page)
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"aten::mm": 10,

"aten: :mse_loss_backward": 12,

"aten::relu": 3,

"aten: :threshold_backward": 4,

"aten: :squeeze":
"aten::view": 4,
"aten::pow": 2,

"aten::mse_loss":

"aten::tanh": 2
}
Yo
"unsupported_operators":
"aten": []
}

4,

2,

{

(continued from previous page)

Note: Note that the torch_neuronx and neuronx_cc versions may be different from this example

Understanding analyze report for Unsupported Models

Default Verbosity

Let’s run analyze for unsupported.py

neuron_parallel compile --command analyze python unsupported.py

Here is the report generated by the above command:

{
"torch_neuronx_version": "1.13.0.1.6.1",
"neuronx_cc_version": "2.5.0.28+1be23f232",
"support_percentage": "60.00%",
"supported_operators": {
"aten": {
"aten::add": 2,
"aten::mul": 1
}
1,
"unsupported_operators": {
"aten": [
{
"kind": "aten::mul",
"failureAt": "neuronx-cc",
"call": "test2_unsup.py 24"
}
]
1
}
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In the list of unsupported operators we are provided the specific aten op that failed, and where that operator is in the

training script.

One thing to notice is that the support_percentage doesn’t exactly add up. This is because the
support_percentage is calculated based on the supported number of XLA/HLO instructions (explained more in
the next section). To see the specific XLA/HLO op lowerings, use the flag --analyze-verbosity 1, as the default

is 2.

The last thing is that a specific aten operator can be supported and unsupported simultaneously. In our example, this
can be seen with aten: :mul. This is due to the configuration of the aten op. The below section will describe what

went wrong with the aten: :mul op.

Lower Level Verbosity

Let’s run again with lower verbosity level:

neuron_parallel_compile --command analyze --analyze-verbosity 1 python unsupported.py

The report looks like:

{
"torch_neuronx_version": "1.13.0.1.6.1",
"neuronx_cc_version": "2.5.0.28+1be23f232",

"support_percentage": "60.00%",
"supported_operators": {
"aten": {
"aten::mul": 1,
"aten::add": 2

Fo
"xla": [
"£32[] multiply(£32[]1, £32[])",
"£32[4]{0} broadcast(£32[]), dimensions={}",
"£32[4]1{0} add(£32[4]1{0}, £32[4]1{0})"
]
o
"unsupported_operators": {
"aten": [
{
"kind": "aten::mul",
"failureAt": "neuronx-cc",
"call": "test2_unsup.py 24"
}
g
"xla": [
{
"hlo_instruction": "c64[4]{0} convert(£f32[4]{0})",
"aten_op": "aten::mul"
e
{
"hlo_instruction": "c64[4]{0} multiply(c64[4]{0}, c64[4]1{0})",
"aten_op": "aten::mul"
}
]

(continues on next page)
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(continued from previous page)

This report provides both the aten operator and the failed XLLA/HLO instructions. There will be more HLO instructions
than aten ops since an aten op generally lowers to multiple HLO instructions. As a result, the support_percentage
field doesn’t exactly line up with the aten operator count, but does line up the XLA/HLO instruction count. This level of
verbosity is intended for use when you have the ability to modify the model’s HLO lowering, or generally have insight
into the HLO lowering.

As mentioned before, the aten: :mul op appears to be both supported and unsupported. This is because the compiler
does not support a specific configuration of aten: :mul, which can be seen more clearly with the HLO lowering. In
the above example, the aten: :mul operator is unsupported since at least one parameter provided was a complex type
(C64), which is unsupported by neuronx-cc.

This concludes the tutorial. The API for analyze can be found within neuron_parallel_compile
This document is relevant for: Trnl, Trn2

This document is relevant for: Inf2, Trnl, Trn2

Neuron Custom C++ Operators in MLP Training

In this tutorial we’ll demonstrate how to prepare a PyTorch model that contains a custom operator (ie. CppExtension)
for Neuron compilation to run on Trainium EC2 instances. To learn more about Neuron CustomOps see Neuron Custom
C++ Operators [Beta]. For a deeper dive on MNIST or Multi-Layer Perceptron models, see the Multi-Layer Perceptron
Training Tutorial. This tutorial assumes the reader is familiar with PyTorch Custom Extensions.

Table of Contents

o Setup Environment and Download Examples
* Basic PyTorch Custom Relu Operator

* Multi-layer perceptron MNIST model

* Training the MLP model on CPU

* Neuron Relu CustomOp

* Training the MLP model on Trainium

Setup Environment and Download Examples

Before running the tutorial please follow the installation instructions at:

* pytorch-neuronx-install on Trnl

Note: The name of aws-neuronx-gpsimd-customop has been changed to aws-neuronx-gpsimd-customop-1ib
as of the neuron 2.10 release.

Note: Custom C++ Operators are supported as of Neuron SDK Version 2.7 as a beta feature. As such this feature is
not installed by default, additional tooling and library packages (RPM and DEB) are required.
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For AL2023 only, the following packages need be installed as dependencies:

sudo yum install libnsl
sudo yum install libxcrypt-compat

On AL2 and AL2023, they can be installed with the following commands:

sudo yum remove python3-devel -y
sudo yum remove aws-neuronx-gpsimd-tools-0.* -y
sudo yum remove aws-neuronx-gpsimd-customop-lib-0.* -y

sudo yum install python3-devel -y
sudo yum install aws-neuronx-gpsimd-tools-0.%* -y
sudo yum install aws-neuronx-gpsimd-customop-lib-0.* -y

On Ubuntu, they can be installed with the following commands:

sudo apt-get remove python3-dev -y
sudo apt-get remove aws-neuronx-gpsimd-tools=0.* -y
sudo apt-get remove aws-neuronx-gpsimd-customop-1lib=0.* -y

sudo apt-get install python3-dev -y
sudo apt-get install aws-neuronx-gpsimd-tools=0.* -y
sudo apt-get install aws-neuronx-gpsimd-customop-lib=0.* -y

For all the commands below, make sure you are in the virtual environment that you have created above before you run
the commands:

source ~/aws_neuron_venv_pytorch/bin/activate

Install dependencies for PyTorch Custom Extensions in your environment by running:

pip install regex
pip install ninja

The ninja package is only needed for the reference CPU example. It is not needed by Neuron to run on Trainium
instances.

To download the source code for this tutorial, do:

git clone https://github.com/aws-neuron/aws-neuron-samples.git
cd aws-neuron-samples/torch-neuronx/training/customop_mlp

In the customop_mlp directory there are two subdirectories. The pytorch directory contains an example model and
training script using a custom operator that runs using the cpu device with standard PyTorch APIs and libraries (ie.
not specific to AWS/Neuron). The neuron directory contains a version of the same model and training script with the
custom operator ported to Neuron to run on trnl using the XLA device.
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Basic PyTorch Custom Relu Operator

For the next few sections we’ll review the example model in the pytorch directory. This is a condensed and simplified
explanation of PyTorch C++ Extensions, for more details see the PyTorch documentation. In my_ops . py we implement
a custom relu activation op as a torch autograd function so that we can use it in a training loop:

import torch
torch.ops.load_library('librelu.so")

class Relu(torch.autograd.Function):
@staticmethod
def forward(ctx, input):
ctx.save_for_backward(input)
return torch.ops.my_ops.relu_forward(input)

@staticmethod
def backward(ctx, grad):
input, = ctx.saved_tensors

return torch.ops.my_ops.relu_backward(grad, input), None

Notice that here we first load librelu.so using the load_library API. And then call the relu_forward and
relu_backward functions from our library within the relevant static methods.

We implemented these two library functions in the relu. cpp file:

torch: :Tensor relu_forward(const torch::Tensor& t_in) {
’.c;c;ut_acc[i] [j] = t_in_acc[il[j] > 0.0 ? t_in_acc[i][j] : 0.0;

}

torch: :Tensor relu_backward(const torch::Tensor& t_grad, const torch::Tensor& t_in) {
‘.c;;)ut_acc[i] [j] = t_in_acc[i][j] > 0.0 ? t_grad_acc[i][j] : 0.0;

}

TORCH_LIBRARY (my_ops, m) {
m.def("relu_forward", &relu_forward);
m.def("relu_backward", &relu_backward);

And then built them into a library using the PyTorch Cpp Extension APIs in the build.py script:

torch.utils.cpp_extension.load(
name="librelu',
sources=['relu.cpp'],
is_python_module=False,
build_directory=os.getcwd()

Run python build.py to produce the 1librelu. so library.
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Multi-layer perceptron MNIST model

In model.py, we define the multi-layer perceptron (MLP) MNIST model with 3 linear layers and a custom ReLU
activation, followed by a log-softmax layer. Highlighted below are the relevant custom changes in the model . py file:

import torch

import torch.nn as nn

from torch.nn import functional as F
import my_ops

# Declare 3-layer MLP for MNIST dataset
class MLP(nn.Module):
def __init__(self, input_size = 28 * 28, output_size = 10, layers = [120, 84]):
super(MLP, self).__init__QO
self.fcl = nn.Linear(input_size, layers[0])
self. fc2 nn.Linear(layers[0], layers[1])
self.fc3 nn.Linear(layers[1], output_size)

def forward(self, x):
fl = self.fcl(x)
rl = my_ops.Relu.apply(f1l)
f2 = self.fc2(rl)
r2 = my_ops.Relu.apply(£2)
£3 = self.fc3(r2)
return torch.log_softmax(£f3, dim=1)

Training the MLP model on CPU

In the train_cpu.py script we load the MNIST train dataset, instantiate the MLP model, and use device="cpu' to
execute on the host CPU. Expected CPU output:

—————————— Training ----------—-————-

Train throughput *(*iter/sec*)*: *286%.96994718801335
Final loss is *0%.1040

—————————— End Training -----------————-

Neuron Relu CustomOp

Now switch over into the neuron directory. To migrate our PyTorch customOp to Neuron, we have to make a few
small changes. First, we create a new shape.cpp file to implement our shape function as required by XLA (see
Neuron Custom C++ Operators Developer Guide [Beta] for details). We also replace the TORCH_LIBRARY API with
NEURON_LIBRARY.

torch: :Tensor relu_fwd_shape(torch::Tensor t_in) {
torch: :Tensor t_out = torch::zeros(t_in.sizes(), torch::kFloat);
return t_out;

}

torch: :Tensor relu_bwd_shape(torch::Tensor t_grad, torch::Tensor t_in) {
torch: :Tensor t_out = torch::zeros(t_in.sizes(), torch::kFloat);

(continues on next page)
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(continued from previous page)
return t_out;

}

NEURON_LIBRARY(my_ops, m) {
m.def("relu_forward", &relu_fwd_shape, "relu_forward");
m.def("relu_backward", &relu_bwd_shape, "relu_backward");

And then we build it using the torch_neuronx package in build.py:

from torch_neuronx.xla_impl import custom_op

custom_op.load(
name="'relu',
compute_srcs=["'relu.cpp'],
shape_srcs=["shape.cpp'],
build_directory=os.getcwd()

Notice that here we specify both the relu. cpp and shape.cpp files separately. This is because the shape functions
will be compiled with an x86 compiler and run on the host during the XLLA compilation, and the compute functions
will be compiled for the NeuronCore accelerator and executed during the training loop. Running build.py produces
the same librelu. so as in the CPU example, but compiles the source code to execute on the NeuronCore.

In our my_ops . py file we just use the torch_neuronx API to load our new library and execute our customOp exactly
the same way we did before:

import torch
import torch_neuronx
from torch_neuronx.xla_impl import custom_op

custom_op.load_library('librelu.so")

class Relu(torch.autograd.Function):
@staticmethod
def forward(ctx, input):
ctx.save_for_backward(input)
return torch.ops.my_ops.relu_forward(input)

@staticmethod
def backward(ctx, grad):
input, = ctx.saved_tensors

return torch.ops.my_ops.relu_backward(grad, input), None
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Training the MLP model on Trainium

In the train.py script we modify the CPU training script train_cpu.py to run with PyTorch Neuron torch_xla.
Expected output on a trnl instance:

—————————— Training --------——————-

2023-02-02 22 (tel:2023020222):46:58.000299: INFO | |NCC_WRAPPER||: Using a cached neff.
—at /var/tmp/neuron-compile-cache/USER_neuroncc-2.0.0.8683a0+c94c3936¢c/MODULE_
-,4447837791278761679/MODULE_O0_SyncTensorsGraph.329_4447837791278761679_ip-172-31-38-167.
—us-west-2.compute.internal-49ad7ade-14011-5£f3b£523d8788/1650bad41-bcfd-4d15-9038-
—16d391c4a57c/MODULE_O_SyncTensorsGraph.329_4447837791278761679_ip-172-31-38-167.us-
—.west-2.compute.internal-49ad7ade-14011-5£f3b£523d8788.neff. Exiting with a successfully.
—compiled graph

2023-02-02 22 (tel:2023020222):46:58.000433: INFO | |NCC_WRAPPER||: Using a cached neff.
—.at /var/tmp/neuron-compile-cache/USER_neuroncc-2.0.0.8683a0+c94c3936c/MODULE_
—16964505026440903899/MODULE_1_SyncTensorsGraph.401_16964505026440903899_ip-172-31-38-
167 .us-west-2.compute.internal-4d®cabba-14011-5£3b£529794a3/23d74230-59dd-4347-b247-
-.fa98aed416bd/MODULE_1_SyncTensorsGraph.401_16964505026440903899_ip-172-31-38-167.us-
—.west-2.compute.internal-4d0@cabba-14011-5f3b£f529794a3.neff. Exiting with a successfully.
—.compiled graph

Train throughput (iter/sec): 117.47151142662648

Final loss is 0.1970

—————————— End Training ---------——-—————-

This document is relevant for: Inf2, Trnl, Trn2

This document is relevant for: Inf2, Trnl, Trn2

Neuron Custom C++ Operators Performance Optimization

In this tutorial, we will build on the small MLP model shown in Neuron Custom C++ Operators in MLP Training and
demonstrate methods to optimize the performance of a custom C++ operator. We will be taking advantage of the TCM
accessor as well as the usage of multiple GPSIMD cores to enhance performance.

This tutorial assumes the reader has read and set up an environment described in Neuron Custom C++ Operators in
MLP Training.

Table of Contents

* Download Examples
* Model Configuration Adjustment
* Performance with Element-wise Accessor

* Performance with TCM Accessor

* Extending the example to utilize multiple GPSIMD cores
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Download Examples

To download the source code for this tutorial, do:

git clone https://github.com/aws-neuron/aws-neuron-samples.git
cd aws-neuron-samples/torch-neuronx/inference/customop_mlp

Note: We will be using an inference example in this tutorial in order to adhere to certain Custom C++ operator
restrictions when using multiple GPSIMD cores (see Custom Operators API Reference Guide [Beta] for details on
current restrictions).

Note: Custom C++ Operators are supported as of Neuron SDK Version 2.7 as a beta feature. As such this feature is
not installed by default, additional tooling and library packages (RPM and DEB) are required.

For AL2023 only, the following packages need be installed as dependencies:

sudo yum install libnsl
sudo yum install libxcrypt-compat

On AL2 and AL2023, they can be installed with the following commands:

sudo yum remove python3-devel -y
sudo yum remove aws-neuronx-gpsimd-tools-0.% -y
sudo yum remove aws-neuronx-gpsimd-customop-lib-0.* -y

sudo yum install python3-devel -y
sudo yum install aws-neuronx-gpsimd-tools-0.% -y
sudo yum install aws-neuronx-gpsimd-customop-lib-0.* -y

On Ubuntu, they can be installed with the following commands:

sudo apt-get remove python3-dev -y
sudo apt-get remove aws-neuronx-gpsimd-tools=0.* -y
sudo apt-get remove aws-neuronx-gpsimd-customop-lib=0.* -y

sudo apt-get install python3-dev -y
sudo apt-get install aws-neuronx-gpsimd-tools=0.* -y
sudo apt-get install aws-neuronx-gpsimd-customop-lib=0.%* -y

Activate the virtual environment created in Neuron Custom C++ Operators in MLP Training,

source ~/aws_neuron_venv_pytorch/bin/activate

As a reminder, ninja should be already installed in the virtual environment. If not, install it for PyTorch Custom
Extensions in your environment by running:

pip install regex
pip install ninja
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Model Configuration Adjustment

For this tutorial, we will enlarge the size of the hidden layer from [120, 84] to [4096, 2048] in model.py.

import torch

import torch.nn as nn

from torch.nn import functional as F
import my_ops

# Declare 3-layer MLP for MNIST dataset
class MLP(nn.Module):
def __init__(self, input_size = 28 * 28, output_size = 10, layers = [4096, 2048]):
super (MLP, self).__init__QO
self.fcl = nn.Linear(input_size, layers[0])
self.fc2 = nn.Linear(layers[0], layers[1])
self.fc3 nn.Linear(layers[1], output_size)

def forward(self, x):
fl = self.fcl(x)
rl = my_ops.Relu.apply(£f1)
f2 = self.fc2(rl)
r2 = my_ops.Relu.apply(£2)
f3 = self.fc3(r2)
return torch.log_softmax(£f3, dim=1)

Performance with Element-wise Accessor

The neuron directory contains the same code shown in Neuron Custom C++ Operators in MLP Training, where the
relu_forward is implemented with element-wise accessor. Go to neuron directory, run build.py then inference.
py, the expected output on a trnl instance is,

Inf throughput (iter/sec): 8.098649744235592
—————————— End Inference ---------------

Performance with TCM Accessor

Now we switch to neuron-tcm folder. As mentioned in Custom Operators API Reference Guide [Beta], TCM accessors
provide faster read and write performance. We implement the relu_forward using TCM accessor in relu. cpp:

torch: :Tensor relu_forward(const torch::Tensor& t_in) {
size_t num_elem = t_in.numel();
torch: :Tensor t_out = torch::zeros(t_in.sizes(), torch::kFloat);

static constexpr size_t buffer_size = 1024;
float *tcm_buffer = (float*)torch: :neuron::tcm_malloc(sizeof(float) * buffer_size);

if (tem_buffer !'= nullptr) {
auto t_in_tcm_acc = t_in.tcm_accessor();

auto t_out_tcm_acc = t_out.tcm_accessor();

(continues on next page)
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(continued from previous page)
for (size_t i = 0; i < num_elem; i += buffer_size) {
size_t remaining_elem = num_elem - ij;
size_t copy_size = (remaining_elem > buffer_size) ? buffer_size : remaining_elem;

t_in_tcm_acc.tensor_to_tcm<float>(tcm_buffer, i, copy_size);
for (size_t j = 0; j < copy_size; j++) {
tcm_buffer[j] = tcm_buffer[j] > 0.0 ? tcm_buffer[j] : 0.0;

}
t_out_tcm_acc.tcm_to_tensor<float>(tcm_buffer, i, copy_size);
}

}

torch: :neuron: :tcm_free(tcm_buffer);

return t_out;

Run build.py then inference.py, the expected output on a trnl instance is:

Inf throughput (iter/sec): 220.73800131604054
—————————— End Inference -----———-——---—--—-

Extending the example to utilize multiple GPSIMD cores

Now we switch to the neuron-multicore folder. We first enable the usage of multiple GPSIMD cores by
multicore=True in the build.py.

custom_op.load(
name="'relu',
compute_srcs=["relu.cpp'],
shape_srcs=["'shape.cpp'],
build_directory=os.getcwd(),
multicore=True,
verbose=True

After passing the flag, the kernel function relu_forward defined in relu.cpp will execute on all GPSIMD cores.
Thus we need to use cpu_id to partition the workload among all cores.

torch: :Tensor relu_forward(const torch::Tensor& t_in) {
size_t num_elem = t_in.numel();
torch: :Tensor t_out = get_dst_tensor();

uint32_t cpu_id = get_cpu_idQ);
uint32_t cpu_count = get_cpu_count();
uint32_t partition = num_elem / cpu_count;
if (cpu_id == cpu_count - 1) {
partition = num_elem - partition * (cpu_count - 1);

}

static constexpr size_t buffer_size = 1024;
float *tcm_buffer = (float*)torch::neuron::tcm_malloc(sizeof(float) * buffer_size);

(continues on next page)
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(continued from previous page)
if (tcm_buffer !'= nullptr) {
auto t_in_tcm_acc = t_in.tcm_accessor();
auto t_out_tcm_acc = t_out.tcm_accessor();

for (size_t i = 0; i < partition; i += buffer_size) {
size_t remaining_elem = partition - i;
size_t copy_size = (remaining_elem > buffer_size) ? buffer_size : remaining_elem;

t_in_tcm_acc.tensor_to_tcm<float>(tcm_buffer, partition *cpu_id + i, copy_size);
for (size_t j = 0; j < copy_size; j++) {
tem_buffer[j] = tcm_buffer[j] > 0.0 ? tcm_buffer[j] : 0.0;
}
t_out_tcm_acc.tcm_to_tensor<float>(tcm_buffer, partition *cpu_id + i, copy_size);
}
}

torch: :neuron: : tcm_free(tcm_buffer);
return t_out;

There are two things noteworthy in the code:

1.

We use cpu_id and cpu_count to distribute the workload among all cores. Particularly, each cores performs
relu on a partition of the tensor, the offset is computed based on cpu_id.

The output of the operator is directly written to the tensor from get_dst_tensor(). The return t_out;
statement is ignored during execution.

Run build.py then inference.py, the expected output on a trnl instance is:

Inf throughput (iter/sec): 269.936119707143

—————— End Inference ---------------

Details of the API used in the sample here can be found in Custom Operators API Reference Guide [Beta].

This document is relevant for: Inf2, Trnl, Trn2

Hugging Face BERT Pretraining Tutorial (Data-Parallel)

Multi-Layer Perceptron Training Tutorial

PyTorch Neuron for Trainium Hugging Face BERT MRPC task finetuning using Hugging Face Trainer API
Fine-tune T5 model on Trnl

ZeRO-1 Tutorial

Analyze for Training Tutorial

Neuron Custom C++ Operators in MLP Training

Neuron Custom C++ Operators Performance Optimization

: To use Jupyter Notebook see:

setup-jupyter-notebook-steps-troubleshooting

running-jupyter-notebook-as-script

This document is relevant for: Trnl, Trn2
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This document is relevant for: Inf2, Trnl, Trn2

Additional Examples (torch-neuronx)

* AWS Neuron Reference for Nemo Megatron GitHub Repository
* AWS Neuron Samples for EKS
* AWS Neuron Samples for AWS ParallelCluster
e AWS Neuron Samples GitHub Repository
This document is relevant for: Inf2, Trnl, Trn2

This document is relevant for: Trnl, Trn2

API Reference Guide for Training (torch-neuronx)

This document is relevant for: Trnl, Trn2

PyTorch NeuronX neuron_parallel_compile CLI

PyTorch NeuronX performs just-in-time compilation of graphs during execution. At every step, a graph is traced.
If the traced graph varies from the previous executions, it is compiled by the neuron compiler. For large models, the
compilation time for each graph can be high. Moreover, because of JIT, we would compile all these graphs sequentially,
hence incurring huge compilation penalty.

To reduce this compilation time during execution, the neuron_parallel_compile utility is provided as part of Py-
Torch Neuron installation. The neuron_parallel_compile will extract graphs from a trial run of your script, perform
parallel pre-compilation of the graphs, and populate the Neuron Persistent Cache on disk or in AWS S3 bucket with
compiled graphs. Your trial run should be limited to a few steps (eg.10-15), enough for the utility to extract the different
graphs needed for full execution. To run the utility:

neuron_parallel compile <run commands>

Where <run commands> are the commands to run a short run (i.e. 10 steps) to trace training loops for pre-compilation.
The example for the run command is torchrun --nproc_per_node=2 <train script>, where train script accepts
--steps_this_run option to limit number of run steps:

neuron_parallel_compile torchrun --nproc_per_node=2 <train script> --steps_this_run=10

You may notice that the output from the model is invalid when you use neuron_parallel_compile. This is because
when you initiate your training run command with neuron_parallel_compile, the utility will run your command
with environment variables that puts your training script into graph extraction mode. In this mode, no real execution is
performed and the outputs are invalid. You will also see outputs similar to the following about the compile cache path
and the extracted graphs:

INFO | |[NEURON_CACHE| |: Compile cache path: /var/tmp/neuron-compile-cache

INFO | |NEURON_CC_WRAPPER| |: Extracting graphs (/var/tmp/neuron-compile-cache/neuronxcc-2.
-0.0.22266a0+a69f71e55/MODULE_9219523464496887986+abb26765/model .hlo.pb) for ahead-of-
—.time parallel compilation. No compilation was done.

After the trial execution ends and the graphs are extracted, neuron_parallel_compile would launch multiple com-
pilation processes in parallel to compile all these graphs. Compiled graphs (NEFFs) are inserted into the Neuron
Persistent Cache. You will also see outputs similar to the following about the compile cache path, the list of graphs
(HLOs) to be compiled, and the running statistics of compiled graphs (count of remaining graphs, locked graphs, failed
graphs, done compiled graphs).
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INFO | |[NEURON_CACHE| |: Compile cache path: /var/tmp/neuron-compile-cache

INFO | |NEURON_CACHE| |: Current remaining items are 5, locked are 0, failed are 0, done.
—are 0, total is 5

INFO | |NEURON_PARALLEL_COMPILE| |: master grab hlos to compile: ['/var/tmp/neuron-compile-
—cache/neuronxcc-2.0.0.22266a0+a69f71e55/MODULE_8068656800389078395+abb26765/model .hlo.
—pb', '/var/tmp/neuron-compile-cache/neuronxcc-2.0.0.22266a0+a69f71e55/MODULE_
<+17109392703413819652+abb26765/model .hlo.pb', '/var/tmp/neuron-compile-cache/neuronxcc-
—2.0.0.22266a0+a69f71e55/MODULE_9219523464496887986+abb26765/model .hlo.pb', '/var/tmp/
—neuron-compile-cache/neuronxcc-2.0.0.22266a0+a69f71e55/MODULE_
+16969875447143373016+abb26765/model .hlo.pb', '/var/tmp/neuron-compile-cache/neuronxcc-
2.0.0.22266a0+a69f71e55/MODULE_3000743782456078279+abb26765/model .hlo.pb']

INFO | |NEURON_CACHE| |: Current remaining items are 0, locked are 0, failed are 0, done.
—,are 5, total is 5

After all compilations are completed, a compilation summary is shown:

INFO: 2023-08-24 20:21:11.000895: 161136 INFO ||NEURON_PARALLEL_COMPILE||: {

INFO: "compilation_summary": {

INFO: "true": 2

INFO: },

INFO: "compilation_report": {

INFO: "/var/tmp/neuron-compile-cache/neuronxcc-2.0.0.22266a0+a69f71e55/MODULE_
1970132581169579119+abb26765/model .hlo.pb": {

INFO: "status": true,

INFO: "retry": 0

INFO: },

INFO: "/var/tmp/neuron-compile-cache/neuronxcc-2.0.0.22266a0+a69f71e55/MODULE_
—16141953836240613513+abb26765/model .hlo.pb": {

INFO: "status": true,

INFO: "retry": O

INFO: }

INFO: b

INFO: }

INFO: 2023-08-24 20:21:11.000895: 161136 INFO | |NEURON_PARALLEL_COMPILE| |: Total.
—.graphs: 2

INFO: 2023-08-24 20:21:11.000895: 161136 INFO ||NEURON_PARALLEL_COMPILE||: Total.
—.successful compilations: 2

INFO: 2023-08-24 20:21:11.000895: 161136 INFO ||NEURON_PARALLEL_COMPILE||: Total.
—failed compilations: 0

Now if you run your script (without neuron_parallel_compile), it will be faster since the compiled graphs are
already cached.
torchrun --nproc_per_node=2 <train script>

Note: Except for the option to limit number of run steps (such as --steps_this_run), the other options of <run
commands> must match between the pre-compilation and actual run. If this is not the case, you may see additional
compilations during training run because of new graphs getting generated, resulting in cache miss.

There may be additional compilations due to unreached execution paths (in case the execution path is not reached in
the first few steps of graph extraction), or changes in parameters such as number of data parallel workers.

Each precompilation command or actual script execution command above can be prefixed with
NEURON_COMPILE_CACHE_URL=<cache URL> or NEURON_CC_FLAGS="--cache_dir=<cache URL>" to specify a
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different cache location than the default (with --cache_dir taking precedence over NEURON_COMPILE_CACHE_URL
if both are specified). Alternatively, the cache URL can also be specify in Python code using:

os.environ[ 'NEURON_CC_FLAGS'] = os.environ.get('NEURON_CC_FLAGS', '') + "--cache_dir=
—<cache URL>"

You need to specify the same cache URL for both the precompilation command (using neuron_parallel_compile)
and the actual script execution command if you want the previously compiled and cached graphs to be used for actual
script execution.

The environment variables below are available to help modify neuron_parallel_compile behavior:
NEURON_PARALLEL_COMPILE_MAX_RETRIES:

* Set the maximum number of retries when using Neuron Persistent Cache or neuron_parallel_compile. 1f set
to N, the tool will try compilation N more time(s) if the first graph compilation failed. Example: Set NEU-
RON_PARALLEL_COMPILE_MAX_RETRIES=1 when precompiling on trnl.2xlarge where there’s limited
host memory and CPU resources. Default is 0.

NEURON_IGNORE_TRAINING_SCRIPT_ERROR_AND_COMPILE :

* When using Neuron Persistent Cache or neuron_parallel_compile , if you want to ignore the error in train-
ing script and compile the accumulated HLO graphs, you can do so by setting this environment vari-
able. Example: If NEURON_IGNORE_TRAINING_SCRIPT_ERROR_AND_COMPILE=1 is set when using
neuron_parallel_compile, a crash in the training script would be ignored and the graphs collected up to the
crash would be compiled.

NEURON_COMPILE_CACHE_URL:

¢ Set the Neuron Persistent Cache URL or neuron_parallel_compile. If starts with s3://, it will use AWS S3 as
cache backend. Otherwise it will use local disk cache. Default is /var/tmp/neuron-compile-cache. If this
is specified together with cache_dir=<cache_url> option via NEURON_CC_FLAGS, the --cache_dir option
takes precedence.

Debugging with Neuron Persistent Cache
A graph compilation can fail because of a compilation error or an environment issue (for example, compilation is
interrupted by ctrl-C). The graph would be marked as failed and subsequent rerun would encounter message like below:

INFO | |[NCC_WRAPPER||: Got a cached failed neff at /var/tmp/neuron-compile-cache/
—.neuronxcc-2.8.0.25+a3ad0f342/MODULE_12486829708343293975+d41d8cd9/model .neff. Will,,
—.skip compilation, please set --retry_failed_compilation for recompilation.

To retry compilation, add --retry_failed_compilation in NEURON_CC_FLAGS environment variable. This will
retry the compilation even if the graph was previously marked as failed compilation.

os.environ['NEURON_CC_FLAGS'] = os.environ.get('NEURON_CC_FLAGS', '') + ' --retry_failed_
—~compilation'

See Neuron Persistent Cache for more information.
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Separate collection and compilation commands

For cases like finetuning, there could be multiple independent training tasks running on different nodes and sharing
many compilation graphs in common. neuron_parallel_compile provides commands to separate the graph col-
lection and compilation phases, so users can collect all graphs across different training sessions in advance to avoid
duplicate compilations.

To only collect the graphs from trial executions of training scripts into Neuron Persistent Cache:

neuron_parallel_compile --command collect <run_script>

To compile the graph previously collected using collect command and store compiled result (NEFFs) back into
Neuron Persistent Cache (make sure to use the same neuronx-cc compiler version as during the graph collection step):

" ‘neuron_parallel_compile --command compile <run_script> "

Note: if --command is not specified, neuron_parallel_compile will do both collection and compilation phases by
default.

Cache maintenance commands

The following commands are available to help maintain the cache.

Warning: Make sure no running process is using the cache when you use clean or clear-locks command
because it can cause cache errors.

To clean cached files:

# WARNING: Make sure no running process is using the cache
neuron_parallel_compile --command clean

To clear file locks left behind when a neuron_parallel_compile execution was interrupted:

# WARNING: Make sure no running process is using the cache
neuron_parallel_compile --command clear-locks

Each command above can be prefixed with NEURON_COMPILE_CACHE_URL=<cache URL> or NEURON_CC_FLAGS=
"--cache_dir=<cache URL>" to specify a different cache location than the default.

Note: Currently there’s no automatic maintenance of cache size either on disk or in S3. Please delete files (i.e. older
compiler versions) as necessary to keep cache size within your limit.
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Analyze operations support

The analyze command checks the support of operations within the training script by checking each operator against
neuronx-cc. It is only supported for PyTorch models. The output of the tool will be available as result.json within the
output location.

neuron_parallel compile --command analyze python3 training_script.py

Optional Arguments:

--analyze-output ANALYZE_OUTPUT_LOCATION Only supported for -command analyze. Path to lo-
cation where output will be persisted. Default: cwd/model_analysis_result

--analyze-verbosity {1,2} Only supported for -command analyze. Level of information to be in-
cluded within the output. 1: add XLA operator information into the results. 2: add aten metadata into
results. Default: 2

The tutorial for analyze can be found /ere
This document is relevant for: Trnl, Trn2

This document is relevant for: Trnl, Trn2

PyTorch NeuronX Environment Variables

Environment variables allow modifications to PyTorch NeuronX behavior without requiring code change to
user script. It is recommended to set them in code or just before invoking the python process, such as
NEURON_FRAMEWORK_DEBUG=1 python3 <script> to avoid inadvertently changing behavior for other scripts. En-
vironment variables specific to PyTorch Neuron are (beta ones are noted):

NEURON_CC_FLAGS

» Compiler options. Full compiler options are described in the mixed-precision-casting-options. Additional op-
tions for the Neuron Persistent Cache can be found in the Neuron Persistent Cache guide.

NEURON_FRAMEWORK_DEBUG
* Enable dumping of XLA graphs in both HLO format (intermediate representation) and text form for debugging.
NEURON_EXTRACT_GRAPHS_ONLY

e Dump the XLA graphs in HLO format (intermediate representation) and execute empty stubs with zero outputs
in order to allow multiple XL A graphs to be traced through a trial execution. Used automatically for ahead-of-
time graph extraction for parallel compilation in neuron_parallel_compile tool. This environment variable can
be checked in the training script to prevent checking of bad outputs during trial run.

NEURON_NUM_RECENT_MODELS_TO_KEEP

» Keep only N number of graphs loaded in Neuron runtime for each process, where N is the value this environment
variable is set to. Default is to keep all graphs loaded by a process.

NEURON_COMPILE_CACHE_URL

* Set the Neuron Persistent Cache URL or neuron_parallel_compile. If starts with s3://, it will use AWS S3 as
cache backend. Otherwise it will use local disk cache. Default is /var/tmp/neuron-compile-cache. If this
is specified together with cache_dir=<cache_url> option via NEURON_CC_FLAGS, the --cache_dir option
takes precedence.

NEURON_PARALLEL_COMPILE_MAX_RETRIES
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* Set the maximum number of retries when using Neuron Persistent Cache or neuron_parallel_compile. If set
to N, the tool will try compilation N more time(s) if the first graph compilation failed. Example: Set NEU-
RON_PARALLEL_COMPILE_MAX_RETRIES=1 when precompiling on trnl.2xlarge where there’s limited
host memory and CPU resources. Default is 0.

NEURON_IGNORE_TRAINING_SCRIPT_ERROR_AND_COMPILE

e When using Neuron Persistent Cache or neuron_parallel_compile , if you want to ignore the error in train-
ing script and compile the accumulated HLO graphs, you can do so by setting this environment vari-
able. Example: If NEURON_IGNORE_TRAINING_SCRIPT_ERROR_AND_COMPILE=1 is set when using
neuron_parallel_compile, a crash in the training script would be ignored and the graphs collected up to the
crash would be compiled.

NEURON_PARALLEL_COMPILE_DUMP_RESULTS

* When set to 1, neuron_parallel_compile would report compilation time results in the final JSON output.
NEURON_FUSE_SOFTMAX

 Enable custom lowering for Softmax operation to enable compiler optimizations.
NEURON_CUSTOM_SILU

* Enable custom lowering for SILU operation to enable compiler optimizations.
NEURON_TRANSFER_WITH_STATIC_RING_OPS

 The list of torch.nn.Modules that will have all parameter input buffers marked as static to enable runtime opti-
mizations. The default is “Embedding,LayerNorm,Linear,Conv2d,BatchNorm2d” for torch-neuronx 1.13/2.1,
and “Embedding” for torch-neuronx 2.1 in SDK release 2.20, and empty for torch-neuronx 2.1+ in SDK
release 2.21.

NEURONCORE_NUM_DEVICES [Use only with xmp.spawn]

e Number of NeuronCores for setting wup distributed data parallel training when using
torch_xla.distributed.xla_multiprocessing.spawn (xmp.spawn) utility only. = See MNIST MLP training
with xmp.spawn for example. NOTE: Do not use this environment variable when using torchrun, which has
--nproc_per_node option instead for this purpose. torchrun is recommended for consistent experience on
one instance as well as across multiple instances.

NEURON_DUMP_HLO_SNAPSHOT [Beta] [Torch-NeuronX 1.13 only]

* Dump the inputs, outputs, and graph in HLO format of a graph execution in a snapshot file. This variable can be
set to 1, ON_NRT_ERROR, ON_NRT_ERROR_CPU, ON_NRT_ERROR_HYBRID to dump snapshots at every iteration
using CPU memory, or dump only on errors automatically using device, host, and both device and host memory
respectively.

NEURON_NCO_ONLY_SNAPSHOT [Beta] [Torch-NeuronX 1.13 only]

e Dump only the snapshot associated with Neuron Core 0 when NEURON_NCO_ONLY_SNAPSHOT=1 and the
NEURON_DUMP_HLO_SNAPSHOT flag is set.

NEURON_TRANSFER_ALL_PARAMETERS_WITH_STATIC_RING [Beta]

* When set to 1, mark all parameter transfers as static to enable runtime optimizations for torch.nn modules that
are wrapped as done in Megatron-LM. This setting is not needed if torch.nn modules are not wrapped.

BUCKET_CAP_MB [PyTorch XLA <=2.1]

e If there are many small gradient tensors, such as in BERT training, small allreduce sizes can limit performance.
To improve performance, you can try increasing the bucket size using BUCKET_CAP_MB environment variable,
which is set to SOMB by default. For example, BERT pretraining on multiple instances can see improved perfor-
mance with BUCKET_CAP_MB=512. NOTE: While this is supported in PyTorch Neuron 2.5, it is recommended
for users to switch to ALLREDUCE_GRADIENTS_BUCKET_SIZE_MB.
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ALLREDUCE_GRADIENTS_BUCKET_SIZE_MB [PyTorch XLA 2.5+]

o If there are many small gradient tensors, such as in BERT training, small allreduce sizes can
limit performance. To improve performance, you can try increasing the bucket size using
ALLREDUCE_GRADIENTS_BUCKET_SIZE_MB environment variable, which is set to 50MB by de-
fault.  For example, BERT pretraining on multiple instances can see improved performance with
ALLREDUCE_GRADIENTS_BUCKET_SIZE_ MB=512.

XLA_FLAGS [PyTorch XLLA] [Torch-NeuronX 2.1+]

e When set to "--xla_dump_hlo_snapshots --xla_dump_to=<dir>", this environmental variable enables
dumping snapshots in <dir> directory. See Snapshotting With Torch-Neuronx 2.1 section for more information.

XLA_USE_DUMMY_STORE [PyTorch XLA]

* When set to 1 along with TORCH_DIST_INIT_BARRIER=0, PJRT process group initialization will use Dummy-
Store instead of TCPStore. This reduces the number of open file descriptors and enables scaling training up to a
large number of nodes.

XLA_USE_BF16 [PyTorch XLA <=2.1]

* When XLA_USE_BF16=1, PyTorch Neuron will automatically map both torch.float and torch.double tensors to
bfloat16 tensors and turn on Stochastic Rounding mode. This can both reduce memory footprint and improve
performance. Example: to enable bfloatl6 autocasting and stochastic rounding, set XLA_USE_BF16=1 only,
as stochastic rounding mode is on by default when XLA_USE_BF16=1. If you would like to preserve some
tensors in float32, see XLA_DOWNCAST_BF16 below. NOTE: This is deprecated in PyTorch Neuron 2.5. See
migration_from_xla_downcast_bf16.

XLA_DOWNCAST_BF16 [PyTorch XLA <=2.1]

e When XLA_DOWNCAST_BF16=1, PyTorch Neuron will automatically map torch.float tensors to bfloat16 tensors,
torch.double tensors to float32 tensors and turn on Stochastic Rounding mode. This can both reduce memory foot-
print and improve performance, while preserving some tensors in float32. Example: to enable float to bfloat16
and double to float autocasting and stochastic rounding, set XLA_DOWNCAST_BF16=1 only, as stochastic
rounding mode is on by default when XLA_DOWNCAST_BF16=1. If you want to cast both torch.float and
torch.double to bfloat16, please see XLA_USE_BF16 above. NOTE: This is deprecated in PyTorch Neuron 2.5.
See migration_from_xla_downcast_bf16.

XLA_DISABLE_FUNCTIONALIZATION [PyTorch XLA 2.1+]

e When XLA_DISABLE_FUNCTIONALIZATION=0, PyTorch XLA will enable the functionalization feature which
makes graphs more compilable by removing mutations from functions. In PyTorch XLA 2.1 functional-
ization causes 15% performance degradations for BERT due to missing aliasing for gradient accumulation
https://github.com/pytorch/xla/issues/7174 so it is off by default (XLA_DISABLE_FUNCTIONALIZATION=1). En-
abling functionalization can improve convergence for LLaMA 70B with ZeRO1 (when used with release 2.19
compiler).

XLA_ENABLE_PARAM_ALTASING [PyTorch XLA]

e When XLA_ENABLE_PARAM_ALTASING=0, PyTorch Neuron will disable parameter aliasing in HLO graphs. This
can be useful for debug. However, it would lead to increased device memory usage due to extra allocation of
buffers (so higher chance of out-of-device memory errors) and decreased performance. When not set, parameter
aliasing is enabled by default.

NEURON_RT_STOCHASTIC_ROUNDING_EN [Neuron Runtime]

e When NEURON_RT_STOCHASTIC_ROUNDING_EN=1, PyTorch Neuron will use stochastic rounding instead of
round-nearest-even for all internal rounding operations when casting from FP32 to a reduced precision data
type (FP16, BF16, FP8, TF32). This feature has been shown to improve training convergence for reduced preci-
sion training jobs, such as when bfloat16 autocasting is enabled. This is set to 1 by default by PyTorch Neuron
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when XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1. To switch to round-nearest-even mode, please set
NEURON_RT_STOCHASTIC_ROUNDING_EN=0.

NEURON_RT_STOCHASTIC_ROUNDING_SEED [Neuron Runtime]

¢ Sets the seed for the random number generator used in stochastic rounding (see previous section). If this environ-
ment variable is not set, the seed is set to 0 by default. Please set NEURON_RT_STOCHASTIC_ROUNDING_SEED
to a fixed value to ensure reproducibility between runs.

NEURON_RT_VISIBLE_CORES [Neuron Runtime]

Integer range of specific NeuronCores needed by the process (for example, 0-3 specifies NeuronCores 0,
1, 2, and 3). You this environment variable when using torchrun to limit the launched processs to specific
consecutive NeuronCores. To ensure best performance, the multi-core jobs requiring N NeuronCores for
collective communication must be placed at the NeuronCore ID that starts at a multiple of N, where N is
the world size limited to 1, 2, 8, 32. For example, a process using 2 NeuronCores can be mapped to 2 free
NeuronCores starting at NeuronCore id 0, 2, 4, 6, etc, and a process using 8 NeuronCores can be mapped
to 8 free NeuronCores starting at NeuronCore id 0, 8, 16, 24.

Additional Neuron runtime environment variables are described in runtime configuration documentation.
Additional XL A runtime environment variables are described in PyTorch-XLA troubleshooting guide.
This document is relevant for: Trnl, Trn2

This document is relevant for: Inf2, Trnl, Trn2

Neuron Persistent Cache

PyTorch Neuron (torch-neuronx) uses torch-xla, and torch-xla operates in lazy mode. In other words, every
operation in training script is recorded in a graph. The graph is executed only when the results are requested by the
user when they use print or xm.mark_step. Requesting results tells torch-x1a that the recorded graph needs to be
executed.

Before executing the graph on a Neuron device, torch-xla would call Neuron Compiler (neuronx-cc) to compile
the graph into Neuron specific graph. Then the graph is executed on the NeuronCore/s. Compiling the graph involves
running optimizations that can make use of the NeuronCore/s efficiently. Running these optimizations can be expensive
and can result in long compile times. To save the users from compiling these graphs at every iteration, torch-xla
maintains an in-memory cache called Just in Time (JIT) cache. When the user re-runs the same graph (eg. 2nd iteration
of the training run), torch-xla would check in this JIT cache and re-use the cached compilation result, thereby avoiding
the wait times.

Since the JIT cache is an in-memory cache, it needs to be constructed every time the training script is run. Hence, if
the user re-runs the training script, a new JIT cache is created. This causes a compilation for the first training graph.
To avoid such compilations across training runs, PyTorch Neuron (torch-neuronx) has built an on-disk Neuron
Persistent Cache. Since this cache is on-disk, its persistent across training runs. So now, when a graph is compiled
for the fist time, the compilation result is saved in Neuron Persistent Cache. When the user re-runs the training
script, since the JIT cache is not ready, it would send the graph for compilation. PyTorch Neuron (torch-neuronx)
would then check if the compiled result is present in the Neuron Persistent Cache, if yes, it would return with the
compiled result. This on-disk cache thereby avoids compilations across training runs. This cache is enabled by default
for Neuron’s PyTorch/XLA flow (training) as well as transformers-neuronx LLM inference package. The default cache
path is the directory /var/tmp/neuron-compile-cache.

Look at the diagram below on the end to end flow:
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As seen from the diagram, the operations are recorded in a graph in lazy mode and only when a mark_step is hit, the
graph is executed. Before execution, the graph passes through two caches to check if we have compiled the graph
sometime in the past. If yes, we reuse the compilation result and execute with it. This avoid duplicate compilations.
One thing to note, both JIT cache and Neuron Cache are complementary to each other. JIT cache prevents duplicate
compilation within a run and Neuron Cache prevents duplicate compilations across training runs. For example, within
a training script, we have a training loop that iterates through the dataset. The first iteration would trace a unique
graph and the following iteration would trace a graph that is similar to the first one. In this case, the subsequent
iterations would hit the JIT cache and reuse the result. However, to save users from compiling for the first iteration
graph, Neuron Persistent Cache would be used. In this case, the very first time when the script is run, the Neuron
Persistent Cache would be updated. Going forward when we re-run the training script, compilation results from
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Neuron Persistent Cache would be used.

To better understand how Neuron Persistent Cache works, consider the example below:

import torch

import torch_xla

import torch_xla.core.xla_model as xm
device = xm.xla_device()

tl = torch.randn(3, 3).to(device)

t2 = tl / 0.5

x = t2.cpuQ)

Running the above example produces the following logs:

2023-08-25 21:51:36.000433: INFO | |NCC_WRAPPER||: Compile cache path: /var/tmp/neuron-
—,compile-cache

Compiler status PASS

Re-running the above script would fetch the graph from the neuron cache and you would see logs as follows:

2023-08-25 21:52:23.000451: INFO | |NCC_WRAPPER| |: Compile cache path: /var/tmp/neuron-
—,compile-cache

2023-08-25 21:52:23.000453: INFO | |NCC_WRAPPER||: Using a cached neff at /var/tmp/neuron-
-~compile-cache/neuronxcc-2.8.0.25+a3ad®f342/MODULE_198775565831884870+d41d8cd9/model.
—neff. Exiting with a successfully compiled graph.

As you can see, the next run picks the compiled graph from cache, thereby saving the compilation time. The cache uses
hash of the Neuron compiler flags and XL A graph as the key. If the Neuron compiler version or XLA graph changes,
you will see recompilation. Examples of changes that would cause XL A graph change include:

* Model type and size

* Batch size

* Optimizer and optimizer hyperparameters
* Location of xm.mark_step()

To keep cache size small and to enable weights/parameters updates without recompilation, only the compute graphs
are cached when using transformers-neuronx (weights/parameters are inputs to the compute graphs) and training flow
using torch-neuronx’s XLA (weights/parameters are inputs and outputs of the compute graphs). Note that this caching
mechanism doesn’t apply to the torch-neuronx trace API where the weights/parameters are frozen and converted to
constants, then compiled together with the compute operations (traced graphs with frozen weights/parameters are not
cached).

All compilation results are saved in the cache. To disable the cache, you can pass --no_cache option via NEU-
RON_CC_FLAGS:

os.environ[ 'NEURON_CC_FLAGS'] = os.environ.get('NEURON_CC_FLAGS', '') + ' --no_cache'

The default cache path is the directory /var/tmp/neuron-compile-cache. To change the cache’s location, pass
cache_dir=<cache_url> option via NEURON_CC_FLAGS or NEURON_COMPILE_CACHE_URL=<cache_url> environ-
ment variables:

os.environ[ 'NEURON_CC_FLAGS'] = os.environ.get('NEURON_CC_FLAGS', '') + ' --cache_dir=
—.<cache URL>'
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os.environ[ 'NEURON_COMPILE_CACHE_URL'] = '<cache_URL>'

The cache URL specified using --cache_dir is prioritized over that specified using NEURON_COMPILE_CACHE_URL
if both are set. If <cache_url> starts with s3://, it will use the AWS S3 URL as the cache location, provided that
the corresponding S3 bucket exists and is both readable and writeable.

You can change the verbose level of the compiler by adding 1log_level to either WARNING, INFO or ERROR. This can
be done as follows:

os.environ['NEURON_CC_FLAGS'] = os.environ.get('NEURON_CC_FLAGS', '') + ' --log_
—1evel=INFO'

A graph compilation can fail because of a compilation error or an environment issue (for example, compilation is
interrupted by ctrl-C). The graph would be marked as failed and subsequent rerun would encounter message like below:

INFO | |[NCC_WRAPPER||: Got a cached failed neff at /var/tmp/neuron-compile-cache/
—neuronxcc-2.8.0.25+a3ad0f342/MODULE_12486829708343293975+d41d8cd9/model .neff. Will.,
—.skip compilation, please set --retry_failed_compilation for recompilation.

To retry compilation, add --retry_failed_compilation in NEURON_CC_FLAGS environment variable. When the
script is reran, all the previously failed compilations are recompiled and fresh results are saved in the cache.

os.environ[ 'NEURON_CC_FLAGS'] = os.environ.get('NEURON_CC_FLAGS', '') + ' --retry_failed_
—,compilation'

Note that all flags demonstrated above will be parsed by a tool called neuron_cc_wrapper, which is a wrapper over
Neuron Compiler CLI to provide caching mechanism. All these flags will not be passed into Neuron Compiler CLI.
This document is relevant for: Inf2, Trnl, Trn2

This document is relevant for: Inf2, Trnl, Trn2

PyTorch NeuronX Profiling API

The profiler provides a method to generate a context manager to capture trace events at the operator or runtime level.

torch_neuronx.experimental.profiler.profile(port=9012, ms_duration=60000,
neuron_tensorboard_plugin_dir="logs/plugins/neuron’,
profile_type='operator', auto_start=True,
delete_working=True)

The torch_neuronx.experimental .profiler.profile () method returns a profile context manager ob-
ject. This object doesn’t need to be used directly, as default options are set to auto capture events based on the
profile_type.

The context manager will wrap around the entire model and training/inference loop. The context-manager is
backwards-compatible with the torch_xla.debug.profiler™

Required Arguments

None

Optional Keyword Arguments
Keyword Arguments

* port (int) — Port to run the profiling GRPC server on. Default is 9012.
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* ms_duration (int)— This defines how long the profiler will capture the HLO artifacts from
the model to view in the profiler. The unit is in milliseconds. The default value is 60000 ms,
or 1 minute.

* neuron_tensorboard_plugin_dir (str) — The directory the neuron tensorboard plugin
will file write to. This will be logs/plugins/neuron by default/

CLINNT

» profile_type (str)— There is “trace” and “operator”. “trace” is the Torch Runtime Trace
Level, while “operator” is the Model Operator Trace Level. Default is “operator”

* auto_start (bool) — If set to true, the profiler will start profiling immediately. If set to
false, the profiler can be set to start at a later condition. Refer to profile.start() for
more details. Default is True.

» delete_working (bool) — If set to False turns off the deletion of temporary files. Default
True.

* traced_only (str) — This should be set to True if profiling a model that has been traced
with torch_neuronx.trace(). Default is False.

Returns
The traced profile

Return type
~profile

torch_neuronx.experimental.profiler.profile.start()

The torch_neuronx.experimental.profiler.profile.start () method starts the profiler if not started
(i.e when auto_start=False). This function does not take in any parameters, nor return anything.

Required Arguments
None

Optional Keyword Arguments
None

Returns
None

This document is relevant for: Inf2, Trnl, Trn2

API Reference Guide for Training (torch-neuronx)

e PyTorch NeuronX neuron_parallel_compile CLI
* Neuron Persistent Cache
e PyTorch NeuronX Environment Variables
e PyTorch NeuronX Profiling API
This document is relevant for: Trnl, Trn2

This document is relevant for: Trnl, Trn2
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Developer Guide (torch-neuronx)

This document is relevant for: Trnl, Trn2

Developer Guide for Training with PyTorch NeuronX

Table of Contents

* PyTorch NeuronX
— Neuron XLA device
* PyTorch NeuronX single-worker training/evaluation quick-start
* PyTorch NeuronX multi-worker data parallel training using torchrun
* Conversion from Distributed Data Parallel (DDP) application
» PyTorch NeuronX environment variables
* Neuron Persistent Cache for compiled graphs
* Number of graphs
* Full BF16 with stochastic rounding enabled
* BF16 in GPU-compatible mode without stochastic rounding enabled
* BF16 automatic mixed precision using PyTorch Autocast
* Tips and Best Practices
— Understand the lazy mode in PyTorch NeuronX
— Minimize the number of compilation-and-executions
— Aggregate the data transfers between host CPUs and devices
— Ensure common initial weights across workers
— Use PyTorch/XLA’s model save function
* FAQ

* Debugging and troubleshooting

Trainium is designed to speed up model training and reduce training cost. It is available on the Trn1 and Trn2 instances.
On Trnl, each Trainium accelerator has two NeuronCores (default two Logical NeuronCores), which are the main neural
network compute units. On Trn2, each Trainium accelerator has 8 NeuronCores (default 4 Logical NeuronCores). The
examples in this guide applies to Trnl and can be extened to run Trn2.

PyTorch NeuronX enables PyTorch users to train their models on Trainium’s NeuronCores with little code change to
their training code. It is based on the PyTorch/XLA software package.

This guide helps you get started with single-worker training and distributed training using PyTorch Neuron.
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PyTorch NeuronX
Neuron XLA device

With PyTorch NeuronX the default XLLA device is mapped to a Logical NeuronCore. By default, one Logical Neuron-
Core is configured by a process. To use the Neuron XL A device, specify the device as xm.xla_device() or 'xla':

import torch_xla.core.xla_model as xm
device = xm.xla_device()

or

device = 'xla

PyTorch models and tensors can be mapped to the device as usual:

model . to(device)
tensor.to(device)

To move tensor back to CPU, do :

tensor.cpu()

or

tensor.to('cpu')

PyTorch NeuronX single-worker training/evaluation quick-start

PyTorch NeuronX uses XLA to enable conversion of PyTorch operations to Trainium instructions. To get started on
PyTorch NeuronX, first modify your training script to use XLA in the same manner as described in PyTorch/XLA
documentation and use XLA device:

import torch_xla.core.xla_model as xm

device = xm.xla_device()
# or

device = 'xla’

The Logical NeuronCore is mapped to an XLA device. On Trainium instance, the XLLA device is automatically mapped
to the first available Logical NeuronCore. You can use NEURON_RT _VISIBLE _CORES to select specific Logical
NeuronCore to use.

By default the above steps will enable the training or evaluation script to run on one Logical NeuronCore. NOTE: Each
process is mapped to one NeuronCore.

Finally, add mark_step at the end of the training or evaluation step to compile and execute the training or evaluation
step:

xm.mark_step()
These changes can be placed in control-flows in order to keep the script the same between PyTorch Neuron and

CPU/GPU. For example, you can use an environment variable to disable XLA which would cause the script to run
in PyTorch native mode (using CPU on Trainium instances and GPU on GPU instances):
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device = 'cpu
if not os.environ.get("DISABLE_XLA", None):
device = 'xla'

# end of training step
if not os.environ.get("DISABLE_XLA", None):
xm.mark_step()

More on the need for mark_step is at Understand the lazy mode in PyTorch Neuron.

For a full runnable example, please see the Single-worker MLP training on Trainium tutorial.

PyTorch NeuronX multi-worker data parallel training using torchrun

Data parallel training allows you to replicate your script across multiple workers, each worker processing a proportional
portion of the dataset, in order to train faster.

To run multiple workers in data parallel configuration, with each worker using one NeuronCore, first add additional
imports for parallel dataloader and multi-processing utilities:

import torch_xla.distributed.parallel_loader as pl

Next we initialize the Neuron distributed context using the XLLA backend for torch.distributed:

import torch_xla.distributed.xla_backend
torch.distributed.init_process_group('xla')

Next, replace optimizer.step() function call with xm.optimizer_step(optimizer) which adds gradient syn-
chronization across workers before taking the optimizer step:

xm.optimizer_step(optimizer)

If you’re using a distributed dataloader, wrap your dataloader in the PyTorch/XLA’s MpDeviceLoader class which
provides buffering to hide CPU to device data load latency:

parallel_loader = pl.MpDeviceloader(dataloader, device)
Within the training code, use xm.xrt_world_size() to get the world size, and xm.get_ordinal to get the global rank of
the current process.

Then run use PyTorch torchrun utility to run the script. For example, to run 32 worker data parallel training on
trnl.32xlarge:

torchrun --nproc_per_node=32 <script and options>

To run on multiple instances, make sure to use trnl.32xlarge instances and use all 32 NeuronCores on each instance.
For example, with two instances, on the rank-0 Trn1 host, run with —node_rank=0 using torchrun utility:

torchrun --nproc_per_node=32 --nnodes=2 --node_rank=0 --master_addr=<root IP> --master_
—port=<root port> <script and options>

On another Trn1 host, run with —-node_rank=1 :
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torchrun --nproc_per_node=32 --nnodes=2 --node_rank=1 --master_addr=<root IP> --master_
<, port=<root port> <script and options>
It is important to launch rank-0 worker with —node_rank=0 to avoid hang.

For trn2.48xlarge, use --nproc_per_node=64 for 64 Logical NeuronCores default (each Logical NeuronCores using
two physical NeuronCores).

To train on multiple instances, it is recommended to use a ParallelCluster. For a ParallelCluster example, please see
Train a model on AWS Trnl ParallelCluster.

More information about torchrun can be found PyTorch documentation at https://pytorch.org/docs/stable/elastic/run.
html#launcher-api .

See the Multi-worker data-parallel MLP training using torchrun tutorial for a full example.

Conversion from Distributed Data Parallel (DDP) application

Distributed Data Parallel (DDP) in torch.distributed module is a wrapper to help convert a single-worker training to
distributed training. To convert from torch.distributed Distributed Data Parallel (DDP) application to PyTorch Neuron,
first convert the application back to single-worker training, which simply involves removing the DDP wrapper, for
example model = DDP(model, device_ids=[rank]). After this, follow the previous section to change to multi-
worker training.

PyTorch NeuronX environment variables

Environment variables allow modifications to PyTorch Neuron behavior without requiring code change to user script.
See PyTorch Neuron environment variables for more details.

Neuron Persistent Cache for compiled graphs

See Neuron Persistent Cache for compiled graphs

Number of graphs

PyTorch/XLA converts PyTorch’s eager mode execution to lazy-mode graph-based execution. During this process,
there can be multiple graphs compiled and executed if there are extra mark-steps or functions with implicit mark-steps.
Additionally, more graphs can be generated if there are different execution paths taken due to control-flows.

Full BF16 with stochastic rounding enabled

Previously, on torch-neuronx 2.1 and earlier, the environmental variables XLA_USE_BF 16 or XLA_DOWNCAST_BF 16 pro-
vided full casting to BF16 with stochastic rounding enabled by default. These environmental variables are deprecated in
torch-neuronx 2.5, although still functional with warnings. To replace XLA_USE_BF16 or XLA_DOWNCAST_BF16 with
stochastic rounding on Neuron, set NEURON_RT_STOCHASTIC_ROUNDING_EN=1 and use the torch.nn.Module.to
method to cast model floating-point parameters and buffers to data-type BF16 as follows:
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os.environ["NEURON_RT_STOCHASTIC_ROUNDING_EN"] = "1"

# model is created
model . to(torch.bfloat16)
Stochastic rounding is needed to enable faster convergence for full BF16 model.

If the loss is to be kept in FP32, initialize it with dtype=torch. float as follows:

running_loss = torch.zeros(l, dtype=torch.float).to(device)

Similarly, if the optimizer states are to be kept in FP32, convert the gradients to FP32 before optimizer computations:

grad = p.grad.data.float()

For a full example, please see the PyTorch Neuron BERT Pretraining Tutorial (Data-Parallel), which has been updated
to use torch.nn.Module. to instead of XLA_DOWNCAST_BF16.

BF16 in GPU-compatible mode without stochastic rounding enabled

Full BF16 training in GPU-compatible mode would enable faster convergence without the need for stochas-
tic rounding, but would require a FP32 copy of weights/parameters to be saved and used in the optimizer.
To enable BF16 in GPU-compatible mode without stochastic rounding enabled, use the torch.nn.Module.
to method to cast model floating-point parameters and buffers to data-type bfloatl6 as follows without setting
NEURON_RT_STOCHASTIC_ROUNDING_EN=1:

# model is created
model . to(torch.bfloat16)

In the initializer of the optimizer, for example AdamW, you can add code like the following code snippet to make a
FP32 copy of weights:

# keep a copy of weights in highprec

self.param_groups_highprec = []

for group in self.param_groups:
params = group[ 'params']
param_groups_highprec = [p.data.float() for p in params]
self.param_groups_highprec.append({'params': param_groups_highprec})

In the PyTorch Neuron BERT Pretraining Tutorial (Data-Parallel), this mode can be enabled by pas-
ing --optimizer=AdamW_FP32ParamsCopy option to dp_bert_large_hf pretrain_hdf5.py and setting
NEURON_RT_STOCHASTIC_ROUNDING_EN=0 (or leave it unset).

BF16 automatic mixed precision using PyTorch Autocast

By default, the compiler automatically casts internal FP32 operations to BF16. You can disable this and allow PyTorch’s
BF16 automatic mixed precision function (torch. autocast) to do the casting of certain operations to operate in BF16.

To enable PyTorch’s BF16 mixed-precision, first turn off the Neuron compiler auto-cast:

os.environ["NEURON_CC_FLAGS"] = "--auto-cast=none"

Next, per recommendation from official PyTorch torch.autocast documentation, place only the forward-pass of the
training step in the torch.autocast scope with x1a device type:
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with torch.autocast(dtype=torch.bfloatl6, device_type='xla'):
# forward pass

The device type is XLA because we are using PyTorch-XLA’s autocast backend. The PyTorch-XLA autocast mode
source code lists which operations are casted to lower precision BF16 (“lower precision fp cast policy” section), which
are maintained in FP32 (“fp32 cast policy”), and which are promoted to the widest input types (“promote” section).

Example showing the original training code snippet:

def train_loop_fn(train_loader):
for i, data in enumerate(train_loader):
inputs = data[0]
labels = data[3]
outputs = model(inputs, labels=labels)
loss = outputs.loss/ flags.grad_acc_steps
loss.backward()
optimizer.step()
xm.mark_step()

The following shows the training loop modified to use BF16 autocast:

os.environ["NEURON_CC_FLAGS"] = "--auto-cast=none"

def train_loop_fn(train_loader):
for i, data in enumerate(train_loader):
torch.cuda.is_bf16_supported = lambda: True
with torch.autocast(dtype=torch.bfloatl6, device_type='xla'):
inputs = data[0]
labels = data[3]
outputs = model(inputs, labels=labels)
loss = outputs.loss/ flags.grad_acc_steps
loss.backward()
optimizer.step()
xm.mark_step()

For a full example of BF16 mixed-precision, see PyTorch Neuron BERT Pretraining Tutorial (Data-Parallel).

See official PyTorch documentation for more details about torch.autocast .

Tips and Best Practices
Understand the lazy mode in PyTorch NeuronX

One significant difference between PyTorch NeuronX and native PyTorch is that the PyTorch NeuronX system runs in
lazy mode while the native PyTorch runs in eager mode. Tensors in lazy mode are placeholders for building the com-
putational graph until they are materialized after the compilation and evaluation are complete. The PyTorch NeuronX
system builds the computational graph on the fly when you call PyTorch APIs to build the computation using tensors
and operators. The computational graph gets compiled and executed when xm.mark_step() is called explicitly or
implicitly by pl.MpDeviceLoader/pl.ParallelLoader, or when you explicitly request the value of a tensor such
as by calling 1loss.item() or print(loss).
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Minimize the number of compilation-and-executions

For best performance, you should keep in mind the possible ways to initiate compilation-and-executions as described
in Understand the lazy mode in PyTorch/XLA and should try to minimize the number of compilation-and-executions.
Ideally, only one compilation-and-execution is necessary per training iteration and is initiated automatically by pl.
MpDevicelLoader/pl.ParallellLoader. The MpDeviceLoader is optimized for XLA and should always be used
if possible for best performance. During training, you might want to examine some intermediate results such as loss
values. In such case, the printing of lazy tensors should be wrapped using xm.add_step_closure() to avoid unnec-
essary compilation-and-executions.

Aggregate the data transfers between host CPUs and devices

For best performance, you may try to aggregate the data transfers between host CPUs and devices. For example,
increasing the value for batches_per_execution argument when instantiating MpDeviceLoader can help increase per-
formance for certain where there’s frequent host-device traffic like ViT as described in a blog. NOTE: Increasing
batches_per_execution value would delay the mark-step for multiple batches specified by this value, increasing graph
size and could lead to out-of-memory (device OOM) error.

Ensure common initial weights across workers

To achieve best accuracy during data parallel training, all workers need to have the same initial parameter states. This
can be achieved by using the same seed across the workers. In the case of HuggingFace library, the set_seed function
can be used. (https://github.com/pytorch/xla/issues/3216).

Use PyTorch/XLA’s model save function

To avoid problems with saving and loading checkpoints, make sure you use PyTorch/XLA’s model save function to
properly checkpoint your model. For more information about the function, see torch_xla.core.xla_model.save in the
PyTorch on XLA Devices documentation.

When training using multiple devices, x1a_model.save can result in high host memory usage. If you see such
high usage causing the host to run out of memory, please use torch_xla.utils.serialization.save . This would save the
model in a serialized manner. When saved using the serialization.save api, the model should be loaded using
serialization.load api. More information on this here: Saving and Loading Tensors

FAQ
Debugging and troubleshooting

To debug on PyTorch Neuron, please follow the debug guide.
This document is relevant for: Trnl, Trn2

This document is relevant for: Trnl, Trn2
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How to debug models in PyTorch NeuronX
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* Printing metrics

* Printing tensors

* Use mark_step

* Using Eager Debug Mode

* Profiling model run

* Snapshotting With Torch-Neuronx 2.1

* Snapshotting with Torch-Neuronx 1.13
— Snapshot FAQs:

Torch-XLA evaluates operations lazily, which means it builds a symbolic graph in the background and the graph is
executed in hardware only when the users request (print) for the output or a mark_step is encountered. To effectively
debug training scripts with torch-xla, please use one of the approaches mentioned below:

Printing metrics

Torch-xla provides a utility that records metrics of different sections of the code. These metrics can help figure out
things like: How much time is spent in compilation? How much time is spent in execution? To check the metrics:

1. Import metrics: import torch_xla.debug.metrics as met
2. Print metrics at the end of the step: print (met.metrics_report())

Printing metrics should produce an output that looks like this:

Metric: CompileTime

TotalSamples: 1

Accumulator: 09s969ms486.408us

Percentiles: 1%=09s969ms486.408us; 5%=09s969ms486.408us; 10%=09s969ms486.408us; 20
—%=09s969ms486.408us; 50%=09s969ms486.408us; 80%=09s969ms486.408us; 90%=09s969ms486.
—408us; 95%=09s969ms486.408us; 99%=09s969ms486.408us
Metric: ExecuteTime

TotalSamples: 1

Accumulator: 186ms062.970us

Percentiles: 1%=186ms062.970us; 5%=186ms062.970us; 10%=186ms062.970us; 20%=186ms062.
—970us; 50%=186ms062.970us; 80%=186ms062.970us; 90%=186ms062.970us; 95%=186ms062.970us;..,
—99%=186ms062.970us

Metric: TensorsGraphSize

TotalSamples: 1

Accumulator: 9.00

Percentiles: 1%=9.00; 5%=9.00; 10%=9.00; 20%=9.00; 50%=9.00; 80%=9.00; 90%=9.00; 95%=9.
—00; 99%=9.00
Metric: TransferFromServerTime

TotalSamples: 2

(continues on next page)
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Accumulator: 010ms130.597us

ValueRate: 549ms937.108us / second

Rate: 108.372 / second

Percentiles: 1%=004ms948.602us; 5%=004ms948.602us; 10%=004ms948.602us; 20%=004ms948.
—602us; 50%=006ms181.995us; 80%=006ms181.995us; 90%=006ms181.995us; 95%=006ms181.995us;..
-,99%=006ms181.995us
Metric: TransferToServerTime

TotalSamples: 6

Accumulator: 061ms698.791us

ValueRate: 007ms731.182us / second

Rate: 0.665369 / second

Percentiles: 1%-006ms848.579%us; 5%=006ms848.579us; 10%-006ms848.579%us; 20%=007ms129.
—666us; 50%=008ms940.718us; 80%=008ms496.166us; 90%=024ms636.413us; 95%=024ms636.413us;..
99%=024ms636.413us
Metric: TransferToServerTransformTime

TotalSamples: 6

Accumulator: 011ms835.717us

ValueRate: 001ms200.844us / second

Rate: 0.664936 / second

Percentiles: 1%=108.403us; 5%=108.403us; 10%=108.403us; 20%=115.676us; 50%=167.399us;.,
—80%=516.659us; 90%=010ms790.400us; 95%=010ms790.400us; 99%=010ms790.400us
Counter: xla::_copy_from

Value: 7
Counter: xla::addmm

Value: 2
Counter: xla::empty

Value: 5
Counter: xla::t

Value: 2

Metric: XrtCompile

TotalSamples: 1

Accumulator: 09s946ms607.609us

Mean: 09s946ms607.609us

StdDev: 000.000us

Percentiles: 25%=09s946ms607.609us; 50%=09s946ms607.609us; 80%=09s946ms607.609us; 90
—%=09s946ms607.609%us; 95%=09s946ms607.609us; 99%=09s946ms607.609%us
Metric: XrtExecute

TotalSamples: 1

Accumulator: 176ms932.067us

Mean: 176ms932.067us

StdDev: 000.000us

Percentiles: 25%=176ms932.067us; 50%=176ms932.067us; 80%=176ms932.067us; 90%=176ms932.
—~067us; 95%=176ms932.067us; 99%=176ms932.067us
Metric: XrtReadLiteral

TotalSamples: 2

Accumulator: 608.578us

Mean: 304.289us

StdDev: 067.464us

Rate: 106.899 / second

Percentiles: 25%=236.825us; 50%=371.753us; 80%=371.753us; 90%=371.753us; 95%=371.753us;

(continues on next page)
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— 99%=371.753us

As seen, you can get useful information about graph compile times/execution times. You can also know which operators
are present in the graph, which operators are run on the CPU and which operators are run on an XLA device. For
example, operators that have a prefix aten: : would run on the CPU, since they do not have xla lowering. All operators
with prefix xla:: would run on an XLA device. Note: aten operators that do not have xla lowering would result in
a graph fragmentation and might end up slowing down the entire execution. If you encounter such operators, create a
request for operator support.

Printing tensors

Users can print tensors in their script as below:

import os

import torch

import torch_xla

import torch_xla.core.xla_model as xm

device = xm.xla_device()

inputl = torch.randn(2,10).to(device)

# Defining 2 linear layers

linearl = torch.nn.Linear(10,30).to(device)
linear2 = torch.nn.Linear(30,20).to(device)

# Running forward

outputl = linearl(inputl)
output2 = linear2(outputl)
print (output2)

Since torch-xla evaluates operations lazily, when you try to print output2 , the graph associated with the tensor would
be evaluated. When a graph is evaluated, it is first compiled for the device and executed on the selected device. Note:
Each tensor would have a graph associated with it and can result in graph compilations and executions. For example,
in the above script, if you try to print outputl , a new graph is cut and you would see another evaluation. To avoid
multiple evaluations, you can make use of mark_step (next section).

Use mark_step

Torch-XLA provides an api called mark_step which evaluates a graph collected up to that point. While this is similar
to printing of an output tensor wherein a graph is also evaluated, there is a difference. When an output tensor is printed,
only the graph associated with that specific tensor is evaluated, whereas mark_step enables all the output tensors up to
mark_step call to be evaluated in a single graph. Hence, any tensor print after mark_step would be effectively free
of cost as the tensor values are already evaluated. Consider the example below:

import os

import torch

import torch_xla

import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met

device = xm.xla_device()

(continues on next page)
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inputl = torch.randn(2,10).to(device)

# Defining 2 linear layers

linearl = torch.nn.Linear(10,30).to(device)
linear2 = torch.nn.Linear(30,20).to(device)

# Running forward

outputl = linearl(inputl)

output2 = linear2(outputl)

xm.mark_step()

print (output2)

print(outputl)

# Printing the metrics to check if compilation and execution occurred
print(met.metrics_report())

In the printed metrics, the number of compiles and executions is only 1, even though 2 tensors are printed. Hence, to
avoid multiple graph evaluations, it is recommended that you visualize tensors after a mark_step . You can also make
use of the add_step_closure api for this purpose. With this api, you pass in the tensors that needs to be visualized/printed.
The added tensors would then be preserved in the graph and can be printed as part of the callback function passed to
the api. Here is a sample usage: https://github.com/pytorch/xla/blob/master/test/test_train_mp_mnist.py#L133

Note: Graph compilations can take time as the compiler optimizes the graph to run on device.

Using Eager Debug Mode

Eager debug mode provides a convenient utility to step through the code and evaluate operators one by one for correct-
ness. Eager debug mode is useful to inspect your models the way you would do in eager-mode frameworks like PyTorch
and Tensorflow. With Eager Debug Mode operations are executed eagerly. As soon as an operation is registered with
torch-xla, it would be sent for compilation and execution. Since compiling a single operation, the time spent would be
minimal. Moreover, the chances of hitting the framework compilation cache increases as models would have repeated
operations throughout. Consider example 1 below:

# Example 1

import os

# You need to set this env variable before importing torch-xla
# to run in eager debug mode.
os.environ["NEURON_USE_EAGER_DEBUG_MODE"] = "1"

import torch

import torch_xla

import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met

device = xm.xla_device()

inputl = torch.randn(2,10).to(device)

# Defining 2 linear layers

linearl = torch.nn.Linear(10,30).to(device)
linear2 = torch.nn.Linear(30,20).to(device)

# Running forward
outputl = linearl(inputl)
output2 = linear2(outputl)
(continues on next page)
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# Printing the metrics to check if compilation and execution occurred

# Here, in the metrics you should notice that the XRTCompile and XRTExecute
# value is non-zero, even though no tensor is printed. This is because, each
# operation is executed eagerly.

print (met.metrics_report())

print (output2)

print(outputl)

# Printing the metrics to check if compilation and execution occurred.
# Here the XRTCompile count should be same as the previous count.

# In other words, printing tensors did not incur any extra compile

# and execution of the graph

print (met.metrics_report())

As seen from the above scripts, each operator is evaluated eagerly and there is no extra compilation when output
tensors are printed. Moreover, together with the on-disk Neuron persistent cache, eager debug mode only incurs one
time compilation cost when the ops is first run. When the script is run again, the compiled ops will be pulled from
the persistent cache. Any changes you make to the training script would result in the re-compilation of only the newly
inserted operations. This is because each operation is compiled independently. Consider example 2 below:

# Example 2

import os

# You need to set this env variable before importing torch-xla
# to run in eager debug mode.
os.environ["NEURON_USE_EAGER_DEBUG_MODE"] = "1"

import torch

import torch_xla

import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met

os.environ['NEURON_CC_FLAGS'] = "--log_level=INFO"

device = xm.xla_device()

inputl = torch.randn(2,10).to(device)

# Defining 2 linear layers

linearl = torch.nn.Linear(10,30).to(device)
linear2 = torch.nn.Linear(30,20).to(device)
linear3 = torch.nn.Linear(20,30).to(device)
linear4 = torch.nn.Linear(30,20).to(device)

# Running forward

outputl = linearl(inputl)
output2 = linear2(outputl)
output3 = linear3(output2)

# Note the number of compiles at this point and compare
# with the compiles in the next metrics print

print (met.metrics_report())

(continues on next page)
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output4 = linear4(output3)
print(met.metrics_report())

Running the above example 2 script after running example 1 script, you may notice that from the start until the state-
ment output2 = linear2(outputl) , all the graphs would hit the persistent cache. Executing the line output3
= linear3(output2) would result in a new compilation for 1inear3 layer only because the layer configuration is
new. Now, when we run output4 = linear4(output3) , you would observe no new compilation happens. This is
because the graph for 1inear4 is same as the graph for linear2 and hence the compiled graph for 1inear2 is reused
for 1inear4 by the framework’s internal cache.

Eager debug mode avoids the wait times involved with tensor printing because of larger graph compilation. Itis designed
only for debugging purposes, so when the training script is ready, please remove the NEURON_USE_EAGER_DEBUG_MODE
environment variable from the script in order to obtain optimal performance.

By default, in eager debug mode the logging level in the Neuron compiler is set to error mode. Hence, no logs would
be generated unless there is an error. Before your first print, if there are many operations that needs to be compiled,
there might be a small delay. In case you want to check the logs, switch on the INFO logs for compiler using:

os.environ["NEURON_CC_FLAGS"] = "--log_level=INFO"

Profiling model run

Profiling model run can help to identify different bottlenecks and resolve issues faster. You can profile different sections
of the code to see which block is the slowest. To profile model run, you can follow the steps below:

1. Add: import torch_xla.debug.profiler as xp

2. Start server. This can be done by adding the following line after creating xla device: server = xp.
start_server(9012)

3. In a separate terminal, start tensorboard. The logdir should be in the same directory from which you run the
script.

TensorBoard HPARAMS
MESH
TIME SERIES
No dashboards are active for the current data set. PROJECTOR
Probable causes: WHAT-IF TOOL

* You haven't written any data to your event files.
» TensorBoard can't find your event files. PROFILE

If you're new to using TensorBoard, and want to find out how to add data
and set up your event files, check out the README and perhaps the
TensorBoard tutorial

If you think TensorBoard is configured properly, please see the section of
the README devoted to missing data problems and consider filing an issue
on GitHub.

Last reload: Feb 2, 2022, 11:33:50 AM

Log directory: ./

Open the tensorboard on a browser. Go to profile section in the top right. Note: you may have to install the
profile plugin using: pip install tensorboard-plugin-profile

4. When you click on the profile, it should give an option to capture profile. Clicking on capture profile produces
the following pop-up.
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Profile Service URL(s) or TPU name *

Address Type:

Profiling Duration (milliseconds)

1000

(® IP Address () TPU Name

Host Trace (TraceMe) Lavel
info

Device Trace Level
enable

Python Trace Level
disable

Advanced options

CAPTURE

CLOSE

In the URL enter: 1localhost:9012 . Port in this URL should be same as the one you gave when starting the

server in the script.

5. Once done, click capture and it should automatically load the following page:

TensorBoard

WARNINGS

PROFILE -

« No step marker observed and hence the step time is unknown. This may happen if (1) training steps are not instrumented (e.g., if you are not using Keras) or (2) the profiling duration is shorter thai
For (1), you need to add step instrumentation; for (2), you may try to profile longer.

Runs (4)
‘ 32 workers = ‘ Performance Summary
Average Step Time
Tools (8) }ZZSE.'S ‘;17”
N + Idle: ms
‘oveNlew /_page - ‘ « Input: ms
+ Compute: ms
Hosts « All Others Time
(0=0.0ms)
‘ localhost_9013 - ‘

« Compilation Time
(0=0.0ms)

« Output Time
(@=0.0ms)

* Input Time
(@=0.0ms)

* Kernel Launch Time
(@=00ms)

« Host Compute Time
lm—00 mel

0.0 ms

0.0 ms

0.0 ms

0.0 ms

0.0 ms

0.0 ms

0.0 ms

Step-time Graph

Step Time (in milliseconds)

1 = Allothers

= Compilation

== Output

= Input

~— Kemel launch

—— Host compute
Device collectives

Device to device

~— Device compute
05

Step Number

Recommendation for Next Step
* No step time measured. Therefore we cannot tell where the performance bottleneck is.

Tool troubleshooting / FAQ
* Refer to the TF2 Profiler FAQ

6. To check the profile for different blocks of code, head to trace_viewer under Tools (on the left column).
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Runs (4)

32 _workers -

Tools (8)

memory_profile

pod_viewer

tensorflow_stats

tf_data_bottleneck_analysis

trace viewer

7. It should show a profile that looks like this:

Trace View Flow events | Processes | 1 || view Options || [-1-=]
Joms [s00ms 1000 ms 1200 2060 me
~ MostGPU (pid 501) ]
~ python3d Exeaut..
python3
] python3
phons
~ tf_Compute/479904558 +
~ python3 Transt... Tran... Transt... Transt.. St Transt.. st Transt Transt... Transt... 3
Transt.. Transt... Trans... Transt... s Tanst. s.  Tanst Transt.. Transt..
] S [N [
5. S
G

python3
~ 1f_Compute/625008255

} v tf_Compute/779031416
~ tf_Compute/784241242

pythond
~ tf_Compute/1090885553

python3
python3
- tf_Compute/1147028040

Note: By default, torch-xla would time different blocks of code inside the library. However, you can also profile block
of code in your scripts. This can be done by adding the code within a xp . Trace context as follows:

for epoch in range(total_epochs):
inputs = torch.randn(l,10).to(device)
labels = torch.tensor([1]).to(device)
with xp.Trace("model_build"):

loss = model(inputs, labels)
(continues on next page)
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with xp.Trace("loss_backward"):
loss.backward()

It should produce a profile that has the model_build and loss_backward section timed. This way you can time any
block of script for debugging.

Note: If you are running your training script in a docker container, to view the tensorboard, you should launch the
docker container using flag: --network host eg. docker run --network host my_image:my_tag

Snapshotting With Torch-Neuronx 2.1

Snapshotting models can be used to dump debug information that can then be sent to the Neuron team. Neuron execution
relies on a series of compiled graphs. Internally, graph HLOs are used as an intermediate representation which is then
compiled. Then, during execution, the graph inputs are passed to the Neuron runtime, which produces outputs using
the compiled graph. Snapshotting saves the inputs to a graph execution, executes the graphs, saves the outputs of the
execution, and then bundles and dumps the inputs, outputs and graph HLO in one file. This is illustrated here:
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/ Runtime \\
—‘ Inputs |

l Compiler

Compiled Graph
Execution

i

—{ Qutputs |

Graph HLO

_"| Snapshotter }——:ﬁ| Disk Snapshot
o ”

This feature can be enabled using the following environment variables, which can be set at the beginning of your script
as follows (. /dump is the snapshot dump directory that will be created):

os.environ["XLA_FLAGS"] = "--xla_dump_hlo_snapshots --xla_dump_to=./dump"

This environment variable will produce snapshots in the ./dump folder with the extension
decomposed_hlo_snapshot at every iteration for every process. For example, files that look like the following
would be produced.

SyncTensorsGraph.27737-process000000-executable®00003-device®00000-execution®00496.
<, inputs.decomposed_hlo_snapshot

Note that NEURON_FRAMEWORK_DEBUG does not need to be set, as in torch-neuronx 1.13. Also note that
NEURON_DUMP_HLO_SNAPSHOT and NEURON_NCO_ONLY_SNAPSHOT environment variables used in torch-neuronx 1.13
are now no longer used to control snapshot dumping.

Snapshots can take up a large amount of disk space. To avoid running out of disk space, you can limit the snapshoting
for a certain rank, such as rank 0. The following example code would work with torchrun utility which sets the RANK
environment variable for each process:

if os.environ.get("RANK", "0") == "0":
os.environ["XLA_FLAGS"]="--xla_dump_hlo_snapshots --xla_dump_to=./dump"

or if not using torchrun:

import torch_xla.core.xla_model as xm

if xm.is_master_ordinal():
os.environ["XLA_FLAGS"]="--xla_dump_hlo_snapshots --xla_dump_to=./dump"
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Torch-NeuronX 2.1+ provides a register_hlo_snapshot_callback API to allow more control over when to dump
the snapshot. By default, Torch-NeuronX 2.1+ includes the following callback function:

def _dump_hlo_snapshot_callback(name: str, addressable_device_index: int, execution_
—count: int) -> str:
return 'inputs'

As the return value is always ‘inputs’, the backend will always dump snapshot files containing HLO and input data
only. Recognized return value keywords are ‘inputs’ and ‘outputs’. If the return value is an empty string “°, then the
backend will skip this dump. If the return value is ‘inputs outputs’, then the backend will dump two snapshot files for
each execution, one holding inputs, and another one holding outputs.

To implement selective dumping, we can make use of the callback function’s parameters name, address-
able_device_index, execution_count , where:

* name is a string that stands for the HLO graph’s name.

* addressable_device_index is an integer that refers to the index of the addressable Neuron device as one
NEFF can load onto multiple addressable Neuron devices (NeuronCores) for SPMD executions. Note that this
is not the same as the worker process rank in multi-process execution, in which RANK/xm.get_ordinal () or
LOCAL_RANK/xm.get_local_ordinal () should be used. See examples above.

* execution_count is an integer that indicates the value of an internal execution counter that increments by one
for each execution of a compiled graph when HloSnapshot dumping is requested. Note that each compiled graph
maintains multiple execution counters, one for each addressable device that it loads onto.

For example, the following will dump snapshot files containing outputs at execution #2 (Note that this is graph execution
number, not the iteration or step; for iteration or step, see the next example):

def callback(name, addressable_device_index, execution_count):

if execution_count == 2:
return 'outputs'
else:
return '’

import libneuronxla
old_callback = libneuronxla.register_hlo_snapshot_callback(callback)

Callback functions can be use to dump at a certain condition, such as when the global step count equal a value:

step = 0
def callback(name, addressable_device_index, execution_count):
if step == 5:
return 'inputs'
else:
return ''

import libneuronxla
old_callback = libneuronxla.register_hlo_snapshot_callback(callback)

for epoch in range(EPOCHS):
for idx, (train_x, train_label) in enumerate(train_loader):
step += 1
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Note: Snapshot dumping triggered by a runtime error such as NaN is not yet available. It will be available in a feature
release.

Snapshotting with Torch-Neuronx 1.13

Note: If you are using Torch-NeuronX 2.1, please see Snapshotting With Torch-Neuronx 2.1

With Torch-Neuronx 1.13, the snapshotting feature can be enabled using the following environment variables, which
can be set at the beginning of your script as follows.

os.environ["XLA_FLAGS"] = " --xla_dump_to=dump"
os.environ["NEURON_FRAMEWORK_DEBUG"] = "1"
os.environ["NEURON_DUMP_HLO_SNAPSHOT"] = "1"

This set of environment variables will produce snapshots under the dump folder with the extensions .hlo.snapshot.
pb or .decomposed_hlo_snapshot at every iteration. For example a file that looks like the following would be
produced.

dump/module_SyncTensorsGraph.387.pid_12643.execution_7496.hlo_snapshot.pb

The dumping environment variable can be set and unset at specific iterations as shown in the following example.

for step in range(STEPS):
if step == 20:
os.environ["NEURON_DUMP_HLO_SNAPSHOT"] = "1"
else:
os.environ.pop('NEURON_DUMP_HLO_SNAPSHOT', None)
train_x = torch.randn(BATCH_SIZE, 28, 28)
train_x = train_x.to(device)
loss = model(train_x)
loss.backward()
optimizer.step()
xm.mark_step()

Additionally, we provide capabilities to snapshot graphs automatically. The environment variables above can be set as
follows:

os.environ["XLA_FLAGS"] = " --xla_dump_to=dump"
os.environ["NEURON_FRAMEWORK_DEBUG"] = "1"
os.environ["NEURON_DUMP_HLO_SNAPSHOT"] = "ON_NRT_ERROR"

When unexpected errors such as a graph execution producing NaNs occurs, snapshots will be automatically pro-
duced and execution will be terminated. Occasionally, for larger models, automatic snapshotting may not capture
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snapshots due to the device memory being exhausted. In this case, the above flag can be set to os.environ[
"NEURON_DUMP_HLO_SNAPSHOT"] = "ON_NRT_ERROR_HYBRID", this will allocate memory for inputs on both the
device and host memory. In some additional cases, this may still go out of memory and may need to be set to os.
environ["NEURON_DUMP_HLO_SNAPSHOT"] = "ON_NRT_ERROR_CPU" to avoid allocating any memory on the de-
vice at all for automatic snapshotting.

Snapshot FAQs:

When should I use this features?

This feature should be used when debugging errors that requires interfacing with and providing debug data to the
Neuron team. Snapshotting may be redundant and unnecessary in some situations. For example, when only the model
weights are necessary for debugging, methods such as checkpointing may be more convenient to use.

What sort of data is captured with these snapshots?

The type of data captured by these snapshots may include model graphs in HLO form, weights/parameters, optimizer
states, intermediate tensors and gradients. This data may be considered sensitive and this should be taken into account
before sending the data to the Neuron team.

What is the size of these snapshots?

The size of snapshots can be significant for larger models such as GPT or BERT with several GBs worth of data for
larger graphs, so it is recommended to check that sufficient disk space exists before using snapshotting. In addition,
limiting the amount of snapshots taken in a run will help to preserve disk space.

Will snapshotting add overhead to my execution?

Snapshotting does add a small overhead to the execution in most cases. This overhead can be significant if snapshots
are dumped at every iteration. In order to alleviate some of this overhead, in the case that snapshotting is not necessary
on all cores the following environment variable can be set to collect snapshots only on the first core in torch-neuronx
1.13:

os.environ["NEURON_NCO_ONLY_SNAPSHOT"] = "1"

In torch-neuronx 2.1, use RANK environmental variable when using torchrun or xm.is_master_ordinal () to limit
dumping to the first process (see above):

if os.environ.get("RANK", "0") == "0":
os.environ["XLA_FLAGS"]="--xla_dump_hlo_snapshots --xla_dump_to=./dump"

or (not using torchrun):

import torch_xla.core.xla_model as xm

if xm.is_master_ordinal():
os.environ["XLA_FLAGS"]="--xla_dump_hlo_snapshots --xla_dump_to=./dump"

In addition, checkpointing in tandem with snapshotting can be useful to reduce overhead. A checkpoint close to the
problem iteration can be captured, then execution resumed with snapshots enabled.

How can I share snapshots with the Neuron team?
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These snapshots can be shared with the Neuron team via S3 bucket.
This document is relevant for: Trnl, Trn2

This document is relevant for: Inf2, Trnl, Trn2

Developer Guide for Profiling with PyTorch NeuronX

Table of Contents

* Introduction

» Example used in this guide
— Prerequisites
— Environment
— Setup

 Viewing the Trace on TensorBoard

» Using Named Blocks for the Trace

Introduction

The Neuron PyTorch profiler is a context manager wrapping around the entire model and training loop. Specifically this
is the context manager: torch_neuronx.experimental.profiler.profile. This is a wrapper of the XLA Debug
Profiler which we imported earlier as import torch_xla.debug.profiler as xp, and is backwards-compatible.
Here are the parameters of the profiler context manager:

1. port: Port to run the profiling GRPC server on. Default is 9012.

CLINNT3

2. profile_type: There is “trace” and “operator”. “trace” is the Torch Runtime Trace Level, while “operator” is
the Model Operator Trace Level.

3. ms_duration: This defines how long the profiler will capture the HLO artifacts from the model to view in the
profiler. The unit is in milliseconds.

4. neuron_tensorboard_plugin_dir: The directory the neuron tensorboard plugin will file write to (NB: As-
sumes that the tensorboard logdir="log/”)

5. delete_working: If set to False turns off the deletion of temporary files (default True)

We move the model to the xla device inside the context manager. This is important, as this allows the profiler to collect
the operations and processes from the neuronx-cc compiler artifacts. If the model is moved to the xla device outside
of the context manager, the profiling won’t work.

Note: The warnings about the XLA_TR_DEBUG and XLA_HLO_DEBUG env vars not being set can be ignored for the most
part. This warning only comes into play when compiling the model for Neuron outside of the profiler context manager.

After running this script, notice a . /logs directory has been created. It contains the TensorBoard logs including the
profiler views.
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Example used in this guide

We will use the following code sample to describe in detail how to use the Neuron PyTorch profiling API.

Prerequisites

1. Initial Trnl setup for PyTorch (torch-neuronx) has been done

Environment

#activate python virtual environment and install tensorboard_plugin_neuron

source ~/aws_neuron_venv_pytorch_p38/bin/activate
pip install tensorboard_plugin_neuronx

#create work directory for the Neuron Profiling tutorials
mkdir -p ~/neuron_profiling_tensorboard_examples
cd ~/neuron_profiling_tensorboard_examples

Setup

Create a new working directory:

mkdir simple_demo
cd simple_demo

Save the following code as demo. py:

import os

import torch
import torch.nn as nn
import torch.nn.functional as F

# XLA imports

import torch_xla

import torch_xla.core.xla_model as xm
import torch_xla.debug.profiler as xp

import torch_neuronx
from torch_neuronx.experimental import profiler

os.environ["NEURON_CC_FLAGS"] = "--cache_dir=./compiler_cache"

# Global constants
EPOCHS = 10

# Declare 3-layer MLP Model
class MLP(nn.Module):
def __init__(self, input_size = 10, output_size = 2, layers

(5, 51:

(continues on next page)
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(continued from previous page)
super (MLP, self).__init__Q
self.fcl = nn.Linear(input_size, layers[0])
self.fc2 = nn.Linear(layers[0], layers[1])
self.fc3 = nn.Linear(layers[1], output_size)

def forward(self, x):
x = F.relu(self.fcl(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return F.log_softmax(x, dim=1)

def main(Q):
# Fix the random number generator seeds for reproducibility
torch.manual_seed(0)

# XLA: Specify XLA device (defaults to a NeuronCore on Trnl instance)
device = xm.xla_device()

# Start the proflier context-manager

with torch_neuronx.experimental.profiler.profile(
port=9012,
profile_type="trace',
ms_duration=15000 ) as profiler:

# IMPORTANT: the model has to be transferred to XLA within
# the context manager, otherwise profiling won't work
model = MLP().to(device)

optimizer = torch.optim.SGD(model.parameters(), 1lr=0.01)
loss_fn = torch.nn.NLLLoss()

# start training loop

print('---------- Training -----------—-———- D)

model . train()

for epoch in range (EPOCHS):
optimizer.zero_grad()
train_x = torch.randn(l,10).to(device)
train_label = torch.tensor([1]).to(device)

#forward
loss = loss_fn(model(train_x), train_label)

#back
loss.backward()

optimizer.step()

# XLA: collect ops and run them in XLA runtime
xm.mark_step()

(continues on next page)
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(continued from previous page)

main()

Then run it!

python demo.py

Viewing the Trace on TensorBoard

To view the TensorBoard logs, run tensorboard --logdir=./logs

Note: Depending on TensorBoard version --load_fast=false might be an additional parameter to add to view the
trace.

Take note of the port (usually 6006) and enter localhost:<port> into the local browser (assuming port forwarding
is set up properly):

TensorBoard 1.15.8 at http://ip-172-31-33-242: 6806/ (Press CTRL+C to guit)

Once localhost:<port> is entered, verify that the “NEURON” view is shown:

TensorBoard newron | NACTE ca o0

If “NEURON” isn’t shown on the top left hand side, select “NEURON” from the drop down on the top right hand side

TensorBoard | v

CUSTOM SCALARS.

MAGES
No dashboards are active for the current data set.
Probable causes: AR0
+ Youhavertwitten any data to your event fies. DEBUGGER
+ TensorBoard can't find your event files.

If you're new 10 using TensorBoard, and want to find out how to add data GRAPHS.
check the

and setup y 3
TensorBoard tutorial. DISTRIBUTIONS
If you think of

the README devoted i d consider filing an issue HISTOGRAMS
on GitHub.

Last reload: 8 i ight Time) =

Datalocation: logs/ PRCURVES
PROFILE
BEHOLDER
WHATIF TOOL
HPARAMS
MESH
PROJECTOR

NEURON

On the Left Hand Side, there are two dropdown menus: Run & Tool.
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TensorBoard NEURON

2022_09_27_21_53_53_16 v

trace v

The Run dropdown would contain the Torch Runtime Trace and Operator Level Trace views; however since we only ran
the “trace” (i.e Torch Runtime Trace Level), we’ll only see that log. The Torch Runtime Trace views are simply dates
in year_month_day_hour_minute_second_millisecond format. The Tool Dropdown only contains the “trace*
option.

The trace view should look like this:

TensorBoard

~ t_Computel-106433425#25

~ tf_Compute/1749698412430

TV el eqsid e seeeseE |~

+=

~ H_Compute/1092987799#28

~ t_Computel-1631494591#26

python#11
~ python#13 ‘ \‘

~ python#15 |

~ pythoné7 [ ‘
python# 18 I

~ tf_Compute/926056771#32 ‘

Nothng selected. Top suf.

Let’s zoom into the following section of the trace:
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TensorBoard

in
2022 1014 19 22 22.16 v
[vace v

~ t_Compute-106433425#25

~ H_Compute/ 1749698412430

~ _Compute/1092987799#28

~ t_Computel- 1631494591426

python#11
- 3

~ python#15.
~ python#7

python#18
~ H_Compute/926056771#32

After zooming in the trace should look like this:

~ t_Computel-106433425#25

e | | A [ L T 1 A 0+

il R \ I I A I mi
RS —— I | | oo HI e
=
- ]
python#18 l
— E— JLEE I 1

Nothing selected. Top suf.

Notice on the top, there is a StepMarker process followed by NeuronDevice Execution process. This correlates to
the xm.mark_step () call which executes the collected graph of our model on Neuron. For the Operator Level Trace
(“operator”), we’ll be profiling the model operators that occur on Neuron. In other words, the profiler will zoom into
the NeuronDevice Execution process, if the user specifies profile_type="trace’.
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Using Named Blocks for the Trace

What we’ve produced so far is the default behavior of the profiler, however it would be more useful to profile specific
blocks of our code to narrow down onto performance bottlenecks. To do this, use xp . Trace context manager. Replace
the respective code in the training loop with the following:

optimizer.zero_grad()
train_x = torch.randn(1l,10).to(device)
train_label = torch.tensor([1]).to(device)

with xp.Trace("model_build"):
loss = loss_fn(model(train_x), train_label)
with xp.Trace("loss_backward"):
loss.backward()
with xp.Trace("optimizer_step"):
optimizer.step()

# XLA: collect ops and run them in XLA runtime
xm.mark_step()

Run the script, and follow the same TensorBoard steps. Afterwards, the trace should look like this:
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il l l L

' | 1l |

As seen, the model_build, loss_backward and optimizer_step sections have been profiled.

Note: If you are running your training script in a docker container, to view the tensorboard, you should launch the
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docker container using flag: -network host eg. docker run -network host my_image:my_tag

This document is relevant for: Inf2, Trnl, Trn2

Developer Guide

* Developer Guide for Training with PyTorch NeuronX

* How to debug models in PyTorch NeuronX

* Developer Guide for Profiling with PyTorch NeuronX
This document is relevant for: Trnl, Trn2

This document is relevant for: Inf2, Trnl, Trn2

Misc (Training - torch-neuronx)

This document is relevant for: Inf2, Trnl, Trn2

PyTorch Neuron (torch-neuronx) - Supported Operators

Table of Contents

* Operator support

Operator support

The following list the aten operators supported by torch-neuronx.

aten::_s_where
aten::_softmax
aten::_softmax_backward_data
aten::_unsafe_view
aten::add
aten::addcdiv_
aten::addcmul
aten::addmm
aten::bernoulli_
aten::bmm
aten::constant_pad_nd
aten::div
aten::embedding
aten::embedding_dense_backward
aten::empty
aten::expand
aten::fill_
aten::index_select
continues on next page
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Table 2.1 — continued from previous page
aten::_log_softmax
aten::_log_softmax_backward_data
aten::It

aten::mm

aten::mul

aten::native_batch_norm
aten::native_batch_norm_backward
aten::neg

aten::permute

aten::relu

aten::rsub

aten::select

aten::slice

aten::sqrt

aten::sum

aten::t

aten::tanh

aten::tanh_backward
aten::threshold_backward
aten::transpose

aten::unsqueeze

aten::view

aten::zero_

This document is relevant for: Inf2, Trnl, Trn2

This document is relevant for: Inf2, Trnl, Trn2

How to prepare trn1.32xlarge for multi-node execution

EFA is a low latency transport that is used for inter-node communication. Multi-node jobs, such as distributed training,
requires EFA to be enabled on every participating trnl/trnln 32xlarge instance. Please note that EFA is currently not
available on the smaller instances sizes and they cannot be used for running multi-node jobs.

trnl.32xlarge has 8 EFA devices, trnln.32xlarge has 16 EFA devices. The rest of the document will refer to
trnl.32xlarge but everything in the document also applies to trnln.32xlarge except for the different number of EFA
devices.

Launching an instance

Before launching trnl you need to create a security group that allows EFA traffic between the instances. Follow Stepl
here: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html#efa-start-security and note the newly
created security group ID. It will be used on the next step.

Determine the region, the AMI, the key and the subnet that will be used to launch trnl.

At the moment launching Trn1 instances with EFA support from the console is not recommended. The instances must
be launched using AWS CLI. To launch trnl.32xlarge instance:

export AMI=<ami>
export SUBNET=<subnet id>

(continues on next page)
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(continued from previous page)

export SG=<security group created on the previous step>
export REG=<AWS region>
export KEV=<the key>

aws ec2 run-instances --region ${REG} \

--image-id ${AMI} --instance-type trnl.32xlarge \

--key-name ${KEY} \

--tag-specifications "ResourceType=instance,Tags=[{Key=Name,Value=\"friendly name\"}]" \
--network-interfaces \
"NetworkCardIndex=0,DeviceIndex=0,Groups=${SG},SubnetId=${SUBNET},InterfaceType=efa"
"NetworkCardIndex=1,DeviceIndex=1,Groups=${SG},SubnetId=${SUBNET},InterfaceType=efa"
"NetworkCardIndex=2,DeviceIndex=1,Groups=${SG},SubnetId=${SUBNET},InterfaceType=efa"
"NetworkCardIndex=3,DeviceIndex=1,Groups=${SG}, SubnetId=${SUBNET},InterfaceType=efa"
"NetworkCardIndex=4,DeviceIndex=1,Groups=${SG}, SubnetId=${SUBNET},InterfaceType=efa"
"NetworkCardIndex=5,DeviceIndex=1,Groups=${SG},SubnetId=${SUBNET},InterfaceType=efa"
"NetworkCardIndex=6,DeviceIndex=1,Groups=${SG}, SubnetId=${SUBNET}, InterfaceType=efa"
"NetworkCardIndex=7,DeviceIndex=1,Groups=${SG},SubnetId=${SUBNET},InterfaceType=efa"

P A A A

Note that one of the cards is assigned Devicelndex O and the rest are assigned Devicelndex 1. Cloud-init will configure
instance routing to route outgoing traffic prioritized by the device index field. I.e the outbound traffic will always
egress from the interface with Devicelndex 0. That avoids network connectivity problems when multiple interfaces are
attached to the same subnet.

To launch trn1n.32xlarge instance:

export AMI=<ami>

export SUBNET=<subnet id>

export SG=<security group created on the previous step>
export REG=<AWS region>

export KEV=<the key>

aws ec2 run-instances --region ${REG} \

--image-id ${AMI} --instance-type trnl.32xlarge \

--key-name ${KEY} \

--tag-specifications "ResourceType=instance,Tags=[{Key=Name,Value=\"friendly name\"}]" \

--network-interfaces \
NetworkCardIndex=0,DeviceIndex=0,Groups=$SG, SubnetId=$SUBNET, InterfaceType=efa \
NetworkCardIndex=1,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=2,DeviceIndex=2,Groups=$SG, SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=3,DeviceIndex=3,Groups=$SG, SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=4,DeviceIndex=1,Groups=$SG, SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=5,DeviceIndex=1,Groups=$SG, SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=6,DeviceIndex=1,Groups=$SG, SubnetId=$SUBNET, InterfaceType=efa \
NetworkCardIndex=7,DeviceIndex=1,Groups=$SG, SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=8,DeviceIndex=1,Groups=$SG, SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=9,DeviceIndex=1,Groups=$SG, SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=10,DeviceIndex=1,Groups=$SG, SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=11,DeviceIndex=1,Groups=$SG, SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=12,DeviceIndex=1,Groups=$SG, SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=13,DeviceIndex=1,Groups=$SG, SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=14,DeviceIndex=1,Groups=$SG, SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=15,DeviceIndex=1,Groups=$SG, SubnetId=$SUBNET,InterfaceType=efa
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Assigning public IP address

Multi-interface instances are not assigned public IP automatically. If you require access to the newly launched trnl
from the Internet you need to assign Elastic IP to the interface with Devicelndex = 0. To find the right interface either
parse the output of the instance launch command or use describe-instances command:

$ aws ec2 describe-instances --instance-ids i-01bl7afale6021d6c
{
"Reservations": [
{
"Groups": [],
"Instances": [
{
"AmiLaunchIndex": 0,
"ImageId": "ami-01257e7lech2f431c",
"InstanceId": "i-01bl7afale6021d6c",
"InstanceType": "trnl.32xlarge",
"NetworkInterfaces": [
{
"Attachment": {
"AttachTime": "2023-05-19T17:37:26.000Z",
"AttachmentId": "eni-attach-03730388baedd4b96",
"DeleteOnTermination": true,
"DevicelIndex": 0,
"Status": "attached",
"NetworkCardIndex": 4
e
"Description": "",

"InterfaceType":

efa

"Attachment": {
"AttachTime": "2023-05-19T17:37:26.000Z",
"AttachmentId": "eni-attach-0el1242371cd2532df",
"DeleteOnTermination": true,
"DeviceIndex": O,
"Status": "attached",
"NetworkCardIndex": 3

o

"Description": ,

The second entry in “NetworkInterfaces™ in this example has “Devicelndex” 0 and should be used to attach EIP.
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Software installation

The software required for EFA operation is distributed via aws-efa-installer package. The package is preinstalled on
Neuron DLAML. If you’d like to install the latest or if you are using your own AMI follow these steps:

curl -0 https://efa-installer.amazonaws.com/aws-efa-installer-latest.tar.gz

wget https://efa-installer.amazonaws.com/aws-efa-installer.key && gpg --import aws-efa-
—installer.key

cat aws-efa-installer.key | gpg --fingerprint

wget https://efa-installer.amazonaws.com/aws-efa-installer-latest.tar.gz.sig & gpg --
—verify ./aws-efa-installer-latest.tar.gz.sig

tar -xvf aws-efa-installer-latest.tar.gz

cd aws-efa-installer && sudo bash efa_installer.sh --yes

cd

sudo rm -rf aws-efa-installer-latest.tar.gz aws-efa-installer

Containers

aws-efa-installer package must be installed on the instance. That installs both the efa kernel module and the libraries.
The libraries must be accessible to an application running inside a container. This can be accomplished by either
installing aws-efa-installer package inside the container or by making on the instance library installation path available
inside a container.

If installing aws-efa-installer package inside a container pass the flag that disables the kernel module installation:

sudo bash efa_installer.sh --yes --skip-kmod

The location of the libraries is distribution specific:

/opt/amazon/efa/lib # Ubuntu
/opt/amazon/efa/1ib64 # AL2

Application execution environment

When running an application make sure the following environment variables are set:

FI_PROVIDER=efa
FI_EFA_USE_DEVICE_RDMA=1
FI_EFA_FORK_SAFE=1 # only required when running on AL2

Appendix - trn1 instance launch example script

#!/bin/bash
set -e

# AWS CLI v2 Installation instructions for Linux:
# curl "https://awscli.amazonaws.com/awscli-exe-1linux-x86_64.zip" -o "awscliv2.zip"
# unzip awscliv2.zip

(continues on next page)
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# sudo ./aws/install

# $ aws --version

# aws-cli/2.11.20 Python/3.11.3 Linux/5.15.0-1034-aws exe/x86_64.ubuntu.20 prompt/off
# Someone with AWS console admin privileges can create an access key ID and secret for.
—this:

# Configure credentials: aws configure

# Search the AWS AMIs for the most recent "Deep Learning Base Neuron AMI (Ubuntu 20.04)
—<Latest_Date>"
# This one is 2023-05-17 - ami-01257e7lecb2f431c

AMI= ... # the ami

KEYNAME= ... # your key

SG= ... # the security group
SUBNET= ... # the subnet

REGION=us-west-2

# Launch instances

echo "Starting instances..."

output=$(aws ec2 --region $REGION run-instances \

--tag-specifications 'ResourceType=instance,Tags=[{Key=Name,Value=_Trainium-Big}]' \
--count 1 \

--image-id $AMI \

--instance-type trnl.32xlarge \

--key-name S$KEYNAME \

--network-interfaces "NetworkCardIndex=0,DeviceIndex=0,Groups=$SG, SubnetId=$SUBNET,
—InterfaceType=efa" \
"NetworkCardIndex=1,DeviceIndex=1,Groups=$SG, SubnetId=$§SUBNET, InterfaceType=efa"
"NetworkCardIndex=2,DeviceIndex=1,Groups=$SG, SubnetId=$SUBNET, InterfaceType=efa"
"NetworkCardIndex=3,DeviceIndex=1,Groups=$SG, SubnetId=$SUBNET, InterfaceType=efa"
"NetworkCardIndex=4,DeviceIndex=1,Groups=$SG, SubnetId=$SUBNET, InterfaceType=efa"
"NetworkCardIndex=5,DeviceIndex=1,Groups=$SG, SubnetId=$SUBNET, InterfaceType=efa"
"NetworkCardIndex=6,DeviceIndex=1,Groups=$SG, SubnetId=$§SUBNET, InterfaceType=efa"
"NetworkCardIndex=7,DeviceIndex=1,Groups=$SG, SubnetId=$SUBNET, InterfaceType=efa")

P A A

# Parse the output to get the instance IDs
instance_ids=$(echo $output | jg -r .Instances[].Instanceld)
echo "Got created instance IDs: $instance_ids"

# Loop through each instance ID
public_ips=""
for instance_id in $instance_ids; do
echo "Waiting for instance $instance_id to be running..."
aws ec2 wait instance-running --instance-ids $instance_id --region $REGION

echo "Creating SSH public IP newtork inteface for instance $instance_id..."

interface_id=""

INSTANCE_TINFO=$(aws ec2 describe-instances --region $REGION --instance-ids $instance_
—id)

OUTPUT=$(echo "$INSTANCE_INFO" | jq -r '.Reservations[0].Instances[0].
—NetworkInterfaces[] | "\(.Attachment.DeviceIndex),\(.NetworkInterfaceId)"')

echo $OUTPUT

(continues on next page)
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for pair in $OUTPUT; do

IFS="," read -r device_idx ni_id <<< S$pair
if [ "$device_idx" == "0" ]; then
interface_id=$ni_id
break
fi
done
if [ "$interface_id" == "" ]; then
exit -1

fi
echo $interface_id

echo "Checking for unassociated Elastic IPs..."
unassociated_eips=$(aws ec2 describe-addresses --region $REGION | jgq -r '.Addresses[].
—| select(.AssociationId == null) | .AllocationId')
if [[ -z "$unassociated_eips" ]]; then
echo "No unassociated Elastic IPs found. Allocating new Elastic IP..."
eip_output=$(aws ec2 allocate-address --domain vpc --region $REGION)
eip_id=$(echo $eip_output | jg -r .AllocationId)
echo "Allocated Elastic IP ID: $eip_id"
eip_public_ip=$(echo $eip_output | jgq -r .PublicIp)
echo "Allocated Elastic IP Public IP: $eip_public_ip"
echo "Note that this newly allocated Elasic IP will persist even after the.
—instance termination"
echo "If the Elastic IP is not going to be reused do not forget to delete it"
else
# use the first unassociated Elastic IP found
eip_id=$(echo "$unassociated_eips" | head -n 1)
echo "Found unassociated Elastic IP ID: $eip_id"
eip_public_ip=$(aws ec2 describe-addresses --allocation-ids $eip_id --region
—$REGION | jgq -r .Addresses[0].PublicIp)
echo "Elastic IP Public IP: $eip_public_ip"
fi
public_ips+="${eip_public_ip} "

echo "Associating Elastic IP with network interface $interface_id..."

aws ec2 associate-address --allocation-id $eip_id --network-interface-id S$interface_id.
—,--region $REGION

echo "Associated Elastic IP with network interface."
done

echo "The instance has been launched.\nYou can now SSH into $public_ips with key
- $KEYNAME.\n"

Note: if you face connectivity issues after launching trn1\trn1n 32xlarge instance on Ubuntu, please follow the trou-
bleshooting instructions mentioned /ere.

This document is relevant for: Inf2, Trnl, Trn2

This document is relevant for: Trnl, Trn2
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PyTorch Neuron (torch-neuronx) for Training Troubleshooting Guide

Table of contents

* General Troubleshooting
* Possible Error Conditions

— Eager debug mode fails with “urllib3.exceptions. URLSchemeUnknown: Not supported URL scheme
http+unix”

— Eager debug mode fails with “TypeError: HTTPConnection.request() got an unexpected keyword ar-
gument ‘chunked’”

— Non-Fatal Error OpKernel (‘op: “TPU*” device_type: “CPU”’)
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Import error “import _XLAC ImportError: <>/site-packages/ XLAC.cpython-38-x86_64-linux-
gnu.so: undefined symbol”

Network Connectivity Issue on trnl/trnln 32xlarge with Ubuntu

“Too many open files” when running training job

“undefined symbol”

This document shows common issues users may encounter while using PyTorch-Neuron and provides guidance how
to resolve or work-around them.

General Troubleshooting

For setting up EFA that is needed for multi-node training, please see How to prepare trnl.32xlarge for multi-node
execution

For XL A-related troubleshooting notes see How to debug models in PyTorch Neuron and PyTorch-XLA troubleshooting
guide.

If your multi-worker training run is interrupted, you may need to kill all the python processes (WARNING: this kills
all python processes and reload the driver):

killall -9 python
killall -9 python3
sudo rmmod neuron; sudo modprobe neuron

To turn on RT debug:

os.environ["NEURON_RT_LOG_LEVEL"] = "INFO"

To turn on Neuron NCCL debug:

os.environ["NCCL_DEBUG"] = "WARN"
os.environ["NCCL_DEBUG_SUBSYS"] = "ALL"

If some process crashed during training, you can enable core dumps using ulimit command:

ulimit -S -c unlimited

To see the type of signals that would cause core dumps, see https://www.man7.org/linux/man-pages/man7/signal.7.
html.

Note that core dumps take significant amount of storage, so make sure there is enough free disk space before enabling
core dumps.

On Ubuntu, if Apport is not running, core dump file name is by default “core” in the local directory. To change file
location and name format, modify /proc/sys/kernel/core_pattern (see https://www.kernel.org/doc/html/latest/
admin-guide/sysctl/kernel.html#core-pattern for pattern info). For example, to dump to /tmp with executable filename
and process ID:

echo '/tmp/core.%e.%p' | sudo tee /proc/sys/kernel/core_pattern

For containers, install appropriate dependencies during docker build (“apt-get update && apt-get -y install build-
essential gdb”) and start the container with --ulimit core=-1 to enable core dump and -v /tmp/:/tmp/ to ensure
core dumps to /tmp are preserved when container is stopped or deleted. Dependencies can also be installed after
container is started.
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On Ubuntu, core dumps can also handled by Apport which is disabled by default. To enable Apport, run sudo service
apport start. The /proc/sys/kernel/core_patternisupdated by Apportservice. After a crash, look in /var/
log/apport. log for the core dump file name, which should be in located in /var/lib/apport/coredump/.

Once you have the core dump, you can use gdb to debug further (for Python applications, <executable> is python or
python3):

gdb <executable> <core file>

If some process (i.e. XRT server) is killed due to out-of-memory on host (i.e. you see Out of memory: Killed
process <PID>in /var/log/syslog or output of dmesg), there won’t be any core dump generated. However, you
can change to it to kernel panic mode to trigger core dump by setting /proc/sys/vm/panic_on_oom to value of 1 on
the host or from inside container.

On the host where you need sudo (this change will be reflected inside the container also):

echo 1 | sudo tee /proc/sys/vm/panic_on_oom

From inside container where sudo doesn’t work (this change will be reflected on the host also):

echo 1 > /proc/sys/vm/panic_on_oom

Possible Error Conditions

Eager debug mode fails with “urllib3.exceptions.URLSchemeUnknown: Not supported URL scheme
http+unix”

When running with eager debug mode (NEURON_USE_EAGER_DEBUG_MODE-=1) using torch-neuronx and
neuronx-cc from releases 2.19.1 and 2.20, you may see the following error:

urllib3.exceptions.URLSchemeUnknown: Not supported URL scheme http+unix

This error is due to requests version >= 2.32. While neuronx-cc pins requests package version be less than 2.32,
installing other packages like transformers could bring in a newer version of requests. To work-around this, you
can pin requests to version 2.31.0 with the following command, which also include ur11ib3 pinning due to a related
issue noted in the next note:

pip install requests==2.31.0 urllib3==1.26.20

Eager debug mode fails with “TypeError: HTTPConnection.request() got an unexpected keyword
argument ‘chunked’”

When running with eager debug mode (NEURON_USE_EAGER_DEBUG_MODE=1) using torch-neuronx and
neuronx-cc from releases 2.19.1 and 2.20, you may see the following error:

TypeError: HTTPConnection.request() got an unexpected keyword argument 'chunked'

This error is due to urllib3 version >= 2.* and can be a dependency of requests < 2.32. To work-around this, you
can pin urllib3 to version 1.26.20 with the following command (which also include requests pinning due a related
issue noted the previous note):

pip install requests==2.31.0 urllib3==1.26.20
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Non-Fatal Error OpKernel (‘op: “TPU*” device_type: “CPU””)

During execution using PyTorch Neuron, you may see these non-fatal error messages:

E tensorflow/core/framework/op_kernel.cc:1676] OpKernel ('op: "TPURoundRobin" device_
—type: "CPU"') for unknown op: TPURoundRobin

E tensorflow/core/framework/op_kernel.cc:1676] OpKernel ('op: "TpuHandleToProtoKey".
—device_type: "CPU"') for unknown op: TpuHandleToProtoKey

They don’t affect operation of the PyTorch Neuron and can be ignored.

XLA runtime error: “Invalid argument: Cannot assign a device for operation”

RuntimeError: tensorflow/compiler/xla/xla_client/xrt_computation_client.cc:490 : Check.
—failed: session->session()->Run(session_work->feed_inputs, session_work->outputs_
—handles, &outputs) == ::tensorflow::Status::0K() (INVALID_ARGUMENT: Cannot assign a.
—.device for operation XRTAllocateFromTensor: {{node XRTAllocateFromTensor}} was.
—explicitly assigned to /job:localservice/replica:0/task:0/device:TPU:® but available.
—.devices are [ /job:localservice/replica:0/task:0/device:CPU:0, /job:localservice/
—replica:0/task:0/device:TPU_SYSTEM:0, /job:localservice/replica:0/task:0/device:XLA_
—CPU:0 ]. Make sure the device specification refers to a valid device.
[[XRTAllocateFromTensor]] vs. OK)
**%* Begin stack trace **¥*
tensorflow: :CurrentStackTrace()

xla::util::MultiWait::Complete(std::function<void ()> const&)

clone
**% End stack trace ***

The above error indicates that the framework was not able to initialize the neuron runtime. If you get the above error,
check for the following:

1. No other process is taking the neuron cores. If yes, you may have to kill that process.

2. If no process is running, try reloading the driver using sudo rmmod neuron; sudo modprobe neuron

Error: “Could not start gRPC server”

If you get “Could not start gRPC server” error, please check if there are any leftover python processes from a previous
interrupted run and terminate them before restarting run.

EQ207 17:22:12.592127280 30834 server_chttp2.cc:40] {"created":"@1644254532.
-»592081429","description":"No address added out of total 1 resolved","file":"external/
—com_github_grpc_grpc/src/core/ext/t
ransport/chttp2/server/chttp2_server.cc","file_line":395, "referenced_errors":[{"created":
—'"'@1644254532.592078907","description":"Failed to add any wildcard listeners","file":
- "external/com_github_grpc_grpc/s
rc/core/lib/iomgr/tcp_server_posix.cc","file_line":342,"referenced_errors":[{"created":
—»"@1644254532.592072626", "description":"Unable to configure socket","fd":10,"file":
—"external /com_github_grpc_grpc/src/c
ore/lib/iomgr/tcp_server_utils_posix_common.cc","file_line":216,"referenced_errors":[{
(continues on next page)
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—"created":"@1644254532.592068939", "description":"Address already in use",'"errno":98,
—"file":"external/com_github_grpc_grpc/src/core/lib/iomgr/tcp_server_utils_posix_common.
—cc","file_line":189,"os_error":"Address already in use","syscall":"bind"}]},{"created":
-,"'@1644254532.592078512","description":"Unable to configure socket"
,'£fd":10,"file":"external/com_github_grpc_grpc/src/core/lib/iomgr/tcp_server_utils_posix_
—common.cc","file_line":216,"referenced_errors":[{"created":"@1644254532.592077123",

—"description":"Address already in

use","errno":98,"file":"external/com_github_grpc_grpc/src/core/lib/iomgr/tcp_server_
—utils_posix_common.cc","file_line":189,"os_error":"Address already in use","syscall":
<"bind"}13}1}1}

2022-02-07 17:22:12.592170: E tensorflow/core/distributed_runtime/rpc/grpc_server_lib.cc:

—545] Unknown: Could not start gRPC server

Failed compilation result in the cache

All compilation results are by default saved in Neuron Persistent Cache. If the Neuron Compiler fails to compile
a graph, we save the failed result in the cache. The reason for doing so is, if the user tries to run the same script, we
want the users to error out early rather than wait for the compilation to progress and see an error at the later stage.
However, there could be certain cases under which a failed compilation may be do you some environment issues. One
possible reason of failure could be, during compilation the process went out of memory. This can happen if you are
running multiple processes in parallel such that not enough memory is available for compilation of graph. Failure due
to such reasons can be easily mitigated by re-running the compilation. In case, you want to retry a failed compilation,
you can do that by passing --retry_failed_compilation as follows:

os.environ[ 'NEURON_CC_FLAGS'] = os.environ.get('NEURON_CC_FLAGS', '') + ' --retry_failed_
—compilation'

This would retry the compilation and would replace a failed result in the cache with a successful compilation result.

Compilation errors when placing NeuronCache home directory on NFS/EFS/FSx mounted drive

Currently, NeuronCache default root directory is /var/tmp which is local to the instance you are running on. You
can modify the location of the NeuronCache root directory using NEURON_CC_FLAGS="--cache_dir=<root dir>'.
However, when the NeuronCache directory is placed in a directory that is part of a NFS mounted drive shared among
multiple instances, you may encounter file errors such as file not found, file corruption, or KeyError when running
multi-instance training:

KeyError: 'neff cache2/neuron-compile-cache/USER_neuroncc-1.0.48875.0+7437fbf18/MODULE_
«»7223055628515330524/MODULE_0_SyncTensorsGraph.14_7223055628515330524_computel-dy-
—training-2-1-e859998e-3035-5df63dab5ce63"’

This is a result of limitations to file locking on NFS. EFS/FSx also exhibit similar limitation. The workaround is to setup
separate NeuronCache root directories for each worker instance, such as NEURON_CC_FLAGS="--cache_dir=$HOME/
neuron_cache/bert/ hostname ", where the home directory is shared among worker instances as in ParallelClus-
ter.

Consider the use case of a ParallelCluster with SLURM cluster management. The home directory of the head node
is shared via NFS with worker instances. Also, SLURM would terminate the idle worker instances when the cluster
is configured as dynamic auto-scaling cluster, and the default cache in the terminated worker instance’s /var/tmp is
deleted. So to persist the cache across runs separated by a cluster idle period, we use the workaround above to create
separate NeuronCache root directories for each worker instance. For example, see BERT ParallelCluster script.
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Compilation error: “Expect ap datatype to be of type float32 float16 bfloat16 uint8”

If an XLLA example fails to run because of failed compilation and one of the error messages is “Expect ap datatype to
be of type float32 float16 bfloat16 uint8”, then please set the environment variable XLA_USE_32BIT_LONG=1 in your
script:

os.environ[ 'XLA_USE_32BIT_LONG'] = '1'

11/18/2021 0©4:51:25 PM WARNING 34567 [StaticProfiler]: matmul-based transposes inserted.
—by penguin takes up 93.66 percent of all matmul computation
terminate called after throwing an instance of 'std::runtime_error'
what(): === BIR verification failed ===
Reason: Expect ap datatype to be of type float32 floatl6 bfloatl6 uint8
Instruction: I-545-0
Opcode: Matmult
Input index: O
Argument AP:
Access Pattern: [[1,8],[1,1],[1,11]
Offset: O
Memory Location: {compare.85-t604_i0}@SB<0,0>(8x2)#Internal DebugInfo: <compare.
85| |uint16| |UNDEF||[8, 1, 1]>

NeuronCore(s) not available - Requested:1 Available:0

When you see “NeuronCore(s) not available” please terminate processes that may be holding the NeuronCores and
terminate any neuron-top sessions that are running. Also check if someone else is using the system. Then do “sudo
rmmod neuron; sudo modprobe neuron” to reload the driver.

2021-Nov-15 15:21:28.0231 7245:7245 ERROR NRT:nrt_allocate_neuron_cores NeuronCore(s).
—not available - Requested:ncl-ncl Available:®

2021-11-15 15:21:28.231864: F ./tensorflow/compiler/xla/service/neuron/neuron_runtime.h:
—1037] Check failed: status == NRT_SUCCESS NEURONPOC : nrt_init failed. Status = 1

Often when you run multi-worker training, there can be many python processes leftover after a run is interrupted. To
kill all python processes, run the follow (WARNING: this kills all python processes on the system) then reload the
driver:

killall -9 python
killall -9 python3
sudo rmmod neuron; sudo modprobe neuron

TDRYV error “TDRV:exec_consume_infer_status_notification”

If you see TDRV error “TDRV:exec_consume_infer_status_notification”, try reloading the driver using sudo
modprobe -r neuron; sudo modprobe neuron;.

2022-Mar-10 18:51:19.07392022-Mar-10 18:51:19.0739 17821:17931 ERROR TDRV:exec_consume_
—infer_status_notifications 17822:18046 ERROR TDRV:exec_consume_infer_status_
—notifications Unexpected number of CC notifications: mod->cc_op_count=1, cc_start_
—cnt=0, cc_end_cnt=0Unexpected number of CC notifications: mod->cc_op_count=1, cc_

(continues on next page)
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—start_cnt=0, cc_end_cnt=0

2022-Mar-10 18:51:19.07392022-Mar-10 18:51:19.0739 17821:17931 ERROR TDRV:exec_consume_
—infer_status_notifications 17822:18046 ERROR TDRV:exec_consume_infer_status_
—notifications (NON-FATAL, Ignoring) inference timeout (180000 ms) on Neuron Device 0.
—NC 0, waiting for cc status notifications.

(NON-FATAL, Ignoring) inference timeout (180000 ms) on Neuron Device ® NC 1, waiting for.
—,cc status notifications.

TDRYV error “TDRV:tdrv_one_tmpbuf_reserve Number of ONE TMPBUF pages requested exceeded
the max number of pages allowed (requested: <N>, max allowed: 16).”

If you see the TDRV error “TDRV:tdrv_one_tmpbuf_reserve Number of ONE TMPBUF pages requested exceeded
the max number of pages allowed (requested: <N>, max allowed: 16)”, it maybe due to model tensors requiring more
device memory then available. A solution is to try training with a smaller data batch size.

ERROR TDRV:tdrv_one_tmpbuf_reserve Number of ONE TMPBUF pages requested..
—.exceeded the max number of pages allowed (requested: 28, max allowed: 16).

ERROR TDRV:copy_and_stage_mr Failed to reserve one tmpbuf memory
ERROR TDRV:kbl_model_add copy_and_stage_mr() error

W tensorflow/core/distributed_runtime/rpc/grpc_remote_master.cc:157] RPC failed with..
—»status = "UNAVAILABLE: Socket closed" and grpc_error_string = "{"created":"@1669183391.
-.155135683", "description":"Error received from peer ipv4:172.31.58.24:43941","file":

- "external/com_github_grpc_grpc/src/core/lib/surface/call.cc","file_line":1056, "grpc_

—message' :"Socket closed","grpc_status":14}", maybe retrying the RPC

Could not open the ndX, close device failed, TDRV not initialized

If you see error messages stating “Could not open the ndX” (where X is an integer from 0..15), please run neuron-1s
and ensure that you are able to see all 16 Neuron devices in the output. If one or more devices are missing please report
the issue to aws-neuron-support@amazon.com with the instance ID and a screen capture of neuron-1s output.

2021-Nov-11 15:33:20.0161 7912:7912 ERROR TDRV:tdrv_init_mla_phasel o
— Could not open the nd®

2021-Nov-11 15:33:20.0161 7912:7912 ERROR TDRV:tdrv_destroy_one_mla o
— close device failed

2021-Nov-11 15:33:20.0161 7912:7912 ERROR TDRV:tdrv_destroy o
-, TDRV not initialized

2021-Nov-11 15:33:20.0161 7912:7912 ERROR NRT:nrt_init o

<, Failed to initialize devices, error:1
2021-11-11 15:33:20.161331: F ./tensorflow/compiler/xla/service/neuron/neuron_runtime.h:
—.1033] Check failed: status == NRT_SUCCESS NEURONPOC : nrt_init failed. Status = 1
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Multiworker execution hangs during NCCL init

When your multi-worker execution hangs during NCCL init, you can try to reserve the port used by environment
variable NEURON_RT_ROOT_COMM_ID by (here we use host:port localhost:48620 as an example but you can use any
free port and root node’s host IP):

sudo sysctl -w net.ipv4.ip_local_reserved_ports=48620

Then set the environment variable NEURON_RT_ROOT_COMM_ID in your script:

os.environ["NEURON_RT_ROOT_COMM_ID"] = "localhost:48620"

NRT init error “One or more engines are running. Please restart device by reloading driver”

If you see an error stating “One or more engines are running. Please restart device by reloading driver” please follow
the instruction and reload the driver using “sudo modprobe -r neuron; sudo modprobe neuron;”.

2021-Nov-15 20:23:27.0280 3793:3793 ERROR TDRV:tpb_eng_init_hals_v2 CRITICAL HW ERROR:._
—.One or more engines are running. Please restart device by reloading driver:

sudo modprobe -r neuron; sudo modprobe neuron;

2021-Nov-15 20:23:27.0280 3793:3793 ERROR TDRV:tdrv_init_one_mla_phase2 nd® nc® HAL init.
—failed. error:1

NRT error “ERROR TDRV:kbl_model_add Attempting to load an incompatible model!”

If you see an NRT error “ERROR TDRV:kbl_model_add Attempting to load an incompatible model!” this means that
the compiler neuronx-cc used to compile the model is too old. See installation instruction to update to latest compiler.

NRT error “ERROR HAL:aws_hal_sprot_config_remap_entry SPROT remap destination address
must be aligned size”

If you see an NRT error “ERROR HAL:aws_hal_sprot_config_remap_entry SPROT remap destination address must
be aligned size”, please check the kernel version and upgrade it to the distribution’s latest kernel.

For example, on Ubuntu 18.04.6 LTS, the kernel version 4.15.0-66-generic is known to cause this error when running
MLP tutorial. This is due to a known bug in the kernel in aligned memory allocation. To fix this issue, please upgrade
your kernel to latest version (i.e. 4.15.0-171-generic):

uname -a
sudo apt-get update

sudo apt-get upgrade
sudo apt-get dist-upgrade

Please reboot after the upgrade. Use “uname -a” to check kernel version again after reboot.
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NCCL warning : “NCCL WARN Timeout waiting for RX (waited 120 sec) - retrying”

When running multi-worker training, if a graph has collective communication operator like an all_reduce, it requires
all the workers involved in the collective communication to load the graph in the runtime at approximately same time.
If any of the worker doesn’t load the graph within a 120 sec window from the first model load by any of the worker,
you would see warnings like NCCL WARN Timeout waiting for RX (waited 120 sec) - retrying. When
you see such warnings check for the following in the log messages:

1. One of the workers is compiling a graph: In multi-worker training, there is a chance that each worker builds a slightly
different graph. This would result in cache miss and can result in compilation. Since the compilations during training
run are serialized, the first worker can compile and load the graph with collective communication. It would then wait
for 120 secs for other works to join. If they don’t show up because they are compiling their own graphs, first worker
would start throwing a warning message as above. The warning in this case is non-fatal and would go away once all
workers have compiled their respective graphs and then loaded them. To identify this scenario, look for No candidate
found under .... logs around the warning. You should also see ... .. which indicates compilation is in progress.

2. Server on one of the nodes crashed: In distributed training across multiple nodes, if the server on one node crashed,
the workers on other nodes would keep waiting on model load and you would see above timeout logs on those nodes.
To identify if the server crashed, check if you see the following error on any of the nodes:

"RPC failed with status = "UNAVAILABLE: Socket closed" and grpc_error_string = "{"created
":"01664146011.016500243","description":"Error received from peer ipv4:10.1.24.109:
-,37379","file" :"external/com_github_grpc_grpc/src/core/lib/surface/call.cc","file_line":
1056, "grpc_message": "Socket closed","grpc_status":14}", maybe retrying the RPC"

If you see the above error, then it means there is a server crash and you need to cancel the traning run.

RPC error: “RPC failed with status = ‘UNAVAILABLE: Socket closed’”

When you see the above error, it means that the xrt server crashed. When you see such an error, look for the following:

1. Check for any error logs before the RPC error. That should indicate the root cause of server crash. Note: The
actual error log might be buried because of all the RPC error logs that swamp the logs.

2. Sometimes the server can crash because of host OOM. This can happen when we are loading and saving check-
points. In such cases, you only see RPC errors and no other log. You can check if any instance is going out of
memory by using tools like dmesg

Error “Assertion "listp->slotinfo[cnt].gen <= GL(dI_tls_generation)’ failed” followed by ‘RPC failed
with status = “UNAVAILABLE: Connection reset by peer’”’

The error “Assertion "listp->slotinfo[cnt].gen <= GL(dl_tls_generation)’ failed” is intermittent and occurs when using
glibc 2.26. To find out the glibc version you have, you can run 1dd --version. The workaround is to use Ubuntu 20
where glibc is 2.27.

INFO: Inconsistency detected by ld.so: ../elf/dl-tls.c: 488: _dl_allocate_tls_init:.
—Assertion "listp->slotinfo[cnt].gen <= GL(dl_tls_generation)' failed!

INFO: 2022-10-03 02:16:04.488054: W tensorflow/core/distributed_runtime/rpc/grpc_remote_
—master.cc:157] RPC failed with status = "UNAVAILABLE: Connection reset by peer" and.
—grpc_error_string = "{"created":"@1664763364.487962663","description":"Error received.
—from peer ipv4:10.0.9.150:41677","file":"external/com_github_grpc_grpc/src/core/lib/
—surface/call.cc","file_1ine":1056, "grpc_message":"Connection reset by peer",'"grpc_
—status":14}", maybe retrying the RPC
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RPC connection error: “RPC failed with status = UNAVAILABLE: Connection reset by peer” not
preceded by any error

This error may not be preceded by another error like shown in the previous section. In this case, the RPC connection
error usually happens when we do distributed training across multiple nodes. When you see such error, please wait for
a few minutes. It might be because some node is taking time to setup and hence the other node is not able to connect
to it just yet. Once, all nodes are up, training should resume.

Runtime errors “Missing infer_status notification” followed by “inference timeout”

If you get a timeout error like below:

ERROR TDRV:exec_consume_tpb_status_notifications Missing infer_status notification:.
—(end:4)

ERROR TDRV:exec_consume_infer_status_notifications (FATAL-RT-UNDEFINED-STATE) inference..
—timeout (600000 ms) on Neuron Device 4 NC 1, waiting for execution completion.
—notification

It maybe due to long graph execution time causing synchronization delays exceeding the default timeout. Please try
increasing the timeout to larger value using NEURON_RT_EXEC_TIMEOUT (unit in seconds) and see if the problem is
resolved.

Protobuf Error “TypeError: Descriptors cannot not be created directly.”

If you install torch-neuronx after neuronx-cc, you may get the Protobuf error “TypeError: Descriptors cannot not be
created directly.”. To fix this, please reinstall neuronx-cc using “pip install —force-reinstall neuronx-cc”.

Traceback (most recent call last):
File "./run_glue.py", line 570, in <module>
main()
File "./run_glue.py", line 478, in main
data_collator=data_collator,
File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/
—transformers/trainer.py"”, line 399, in __init__
callbacks, self.model, self.tokenizer, self.optimizer, self.lr_scheduler
File "/home/ec2-user/aws_neuron_venv_pytorch p37_exp/lib64/python3.7/site-packages/
—transformers/trainer_callback.py", line 292, in __init__
self.add_callback(ch)
File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/
—transformers/trainer_callback.py", line 309, in add_callback
cb = callback() if isinstance(callback, type) else callback
File "/home/ec2-user/aws_neuron_venv_pytorch p37_exp/lib64/python3.7/site-packages/
—transformers/integrations.py", line 390, in __init__
from torch.utils.tensorboard import SummaryWriter # noga: F401
File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/
—torch/utils/tensorboard/__init__.py", line 10, in <module>
from .writer import FileWriter, SummaryWriter # noga: F401
File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/
—torch/utils/tensorboard/writer.py", line 9, in <module>
from tensorboard.compat.proto.event_pb2 import SessionlLog
File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/
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—tensorboard/compat/proto/event_pb2.py", line 17, in <module>
from tensorboard.compat.proto import summary_pb2 as tensorboard_dot_compat_dot_proto_
—dot_summary__pb2
File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/
—tensorboard/compat/proto/summary_pb2.py", line 17, in <module>
from tensorboard.compat.proto import tensor_pb2 as tensorboard_dot_compat_dot_proto_
—.dot_tensor__pb2
File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/
—tensorboard/compat/proto/tensor_pb2.py", line 16, in <module>
from tensorboard.compat.proto import resource_handle_pb2 as tensorboard_dot_compat_
—dot_proto_dot_resource__handle__pb2
File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/
—tensorboard/compat/proto/resource_handle_pb2.py", line 16, in <module>
from tensorboard.compat.proto import tensor_shape_pb2 as tensorboard_dot_compat_dot_
—proto_dot_tensor__shape__pbh2
File "/home/ec2-user/aws_neuron_venv_pytorch p37_exp/lib64/python3.7/site-packages/
—tensorboard/compat/proto/tensor_shape_pb2.py", line 42, in <module>
serialized_options=None, file=DESCRIPTOR),
File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/
—»google/protobuf/descriptor.py"”, line 560, in __new_
_message.Message._CheckCalledFromGeneratedFile()
TypeError: Descriptors cannot not be created directly.
If this call came from a _pb2.py file, your generated code is out of date and must be.
—regenerated with protoc >= 3.19.0.
If you cannot immediately regenerate your protos, some other possible workarounds are:
1. Downgrade the protobuf package to 3.20.x or lower.
2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python..
—.parsing and will be much slower).

TDRYV error “Timestamp program stop timeout”

If you see TDRYV error “Timestamp program stop timeout”, i.e. when rerunning a training script after it was interrupted,
try first reloading the driver using sudo modprobe -r neuron; sudo modprobe neuron; (make sure neuron-top
and/or neuron-monitor are not running).

2022-Aug-31 04:59:21.0546 117717:117717 ERROR TDRV:tsync_wait_eng_stop -
—  nd® ncO® Timestamp program stop timeout (1000 ms)

2022-Aug-31 04:59:21.0546 117717:117717 ERROR TDRV:tsync_wait_nc_stop -
<~ nd® ncO® Error while waiting for timestamp program to end on TPB eng 0

2022-Aug-31 04:59:21.0546 117717:117717 ERROR TDRV:tsync_timestamps_finish o
<~ nd® ncO® Failed to stop neuron core

2022-Aug-31 04:59:21.0546 117717:117717 ERROR TDRV:tdrv_tsync_timestamps -
— nd® ncO® Failed to end timestamp sync programs

2022-Aug-31 04:59:22.0768 117717:117717 ERROR TDRV:tdrv_destroy o
<> TDRV not initialized

2022-Aug-31 04:59:22.0768 117717:117717 ERROR  NRT:nrt_init o

< Failed to initialize devices, error:5
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Compiler error “module ‘numpy’ has no attribute ‘asscalar

When you have a newer version of numpy in the Python environment, compilations may fail with the “error mod-
ule ‘numpy’ has no attribute ‘asscalar’”. Please note the neuronx-cc has the following dependency on numpy
“numpy<=1.20.0,>=1.13.3”. To workaround this error, please do “pip install —force-reinstall neuronx-cc” to reinstall

neuronx-cc with the proper dependencies.

ERROR 227874 [neuronx-cc]:.

R o e R R R R R R R R R R R TR R R R R T R o e o i o o ke ke ke kS Sk Sk

ERROR 227874 [neuronx-cc]: An Internal Compiler Error has occurred
ERROR 227874 [neuronx-cc]:.
Q***************************************************************

ERROR 227874 [neuronx-cc]:

ERROR 227874 [neuronx-cc]: Error message: module 'numpy' has no attribute 'asscalar'
ERROR 227874 [neuronx-cc]:

ERROR 227874 [neuronx-cc]: Error class: AttributeError

ERROR 227874 [neuronx-cc]: Error location: Unknown

ERROR 227874 [neuronx-cc]: Version information:

ERROR 227874 [neuronx-cc]: NeuronX Compiler version 2.1.0.76+2909d26a2
ERROR 227874 [neuronx-cc]:

ERROR 227874 [neuronx-cc]: HWM version 2.1.0.7-64eaede0®8

ERROR 227874 [neuronx-cc]: NEFF version Dynamic

ERROR 227874 [neuronx-cc]: TVM not available

ERROR 227874 [neuronx-cc]: NumPy version 1.23.3

ERROR 227874 [neuronx-cc]: MXNet not available

ERROR 227874 [neuronx-cc]:

Import errors ‘generic_type: type “IrValue” is already registered!” or ‘generic_type: type
“XlaBuilder” is already registered!’

When you encounter a PyTorch import error ‘import _XLAC ... generic_type: type “IrValue” is already registered!’
or ‘import _XLAC ... generic_type: type “XlaBuilder” is already registered!’, please check that TensorFlow and/or
JAX are not installed in the Python environment. If they are installed, please uninstall them.

Import error “import _XLAC ImportError: <>/site-packages/_XLAC.cpython-38-x86_64-linux-gnu.so:
undefined symbol”

When you encounter a PyTorch import error “import _XIL.AC ImportError:
<>/site-packages/_XLAC.cpython-38-x86_64-linux-gnu.so: undefined symbol”’ during execution, please check:

1. TensorFlow and/or JAX are not installed in the Python environment. If they are installed, please uninstall
them.

2. The installed PyTorch (torch) package major/minor versions match the installed torch-neuronx package’s
major/minor versions (ie. 1.11). If they don’t match, please install the version of PyTorch that matches
torch-neuronx.

Traceback (most recent call last):
File "/opt/ml/mlp_train.py", line 11, in <module>
import torch_xla.core.xla_model as xm
File "/usr/local/lib/python3.8/site-packages/torch_xla/__init__.py", line 117, in
—<module>

(continues on next page)
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import _XLAC
ImportError: /usr/local/lib/python3.8/site-packages/_XLAC.cpython-38-x86_64-linux-gnu.so:
— undefined symbol: _ZNK3c1010TensorImpl7stridesEv

NaNs seen with transformers version >= 4.21.0 when running HF BERT fine-tuning or pretraining
with XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1

When running HuggingFace BERT (any size) fine-tuning tutorial or pretraining tutorial with transformers version >=
4.21.0 and using XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1, you will see NaNs in the loss immediately at
the first step. More details on the issue can be found at pytorch/xla#4152. The workaround is to use 4.20.0 or earlier (the
tutorials currently recommend version 4.15.0) or add transformers.modeling_utils.get_parameter_dtype =
lambda x: torch.bfloatl6 to the Python script.

Network Connectivity Issue on trn1/trn1n 32xlarge with Ubuntu

Description

Ubuntu distributions have network connectivity issues when multiple interfaces are connected to the same subnet.
trnl/trnln 32xlarge comes with 8/16 network interfaces. (To launch trnl/trnln with 8/16 interfaces please follow /ere)

AWS publishes a package that installs a helper service to address the issue. This service runs at the startup, creates the
appropriate netplan files, updates the netplan and the the instance networking and terminates.

Note that the following fix is only required on instances launched using generic Ubuntu AMIs. Neuron AMIs and
instances launched via ParalleCluster do not require the fix.

Patch to fix networking on a multi-interface instance

wget -0 /tmp/aws-ubuntu-eni-helper.deb 'https://github.com/aws-samples/aws-efa-nccl-
—baseami-pipeline/blob/master/nvidia-efa-ami_base/networking/aws-ubuntu-eni-helper_0.3-
—1_all.deb?raw=true'

sudo apt install /tmp/aws-ubuntu-eni-helper.deb -y

sudo systemctl enable aws-ubuntu-eni-helper.service

sudo systemctl start aws-ubuntu-eni-helper.service

How to apply the patch?

The following steps could be followed to resolve this issue:

¢ Launch trn1.32x] from AWS console (starts with single interface, does not suffer from the multi-interface
issue)

* Apply the patch on this newly launched single-interface instance
* Create a new AMI from this instance

* Launch an 8 or 16 interface instance using that AMI.

Note: The patch installs and enables the service but does not run it. This is intentional. The service will run at the
startup when the AMI is used to launch a multi-interface instance.

FAQs
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Note: Neuron DLAMI has the patch installed, users are always encouraged to launch the instances using the DLAMI
which does not require any fix. Please refer to the Ser Up Guide to know how to launch an instance using DLAMI.

“Too many open files” when running training job

When running a large model training with several workers, it can result in errors like the following.

2023-Jun-14 19:05:29.0312 4112959:4113326 [23] bootstrap.cc:106 CCOM WARN Call to accept.
—failed : Too many open files

2023-Jun-14 19:05:29.0312 4112959:4113263 [14] include/socket.h:438 CCOM WARN Net :._
—.Socket creation failed : Too many open files

2023-Jun-14 19:05:29.0312 4112959:4113326 ERROR  ENC:ncclBootstrapRecv o
. failed neuronBootstrapRecv request to NCCL

2023-Jun-14 19:05:29.0312 4112959:4113249 [12] bootstrap.cc:106 CCOM WARN Call to accept..
—.failed : Too many open files

2023-Jun-14 19:05:29.0312 4112959:4113263 ERROR  ENC:ncclBootstrapSend o
< failed neuronBootstrapSend request to NCCL2023-Jun-14 19:05:29.03122023-Jun-14 19:
05:29.0312 4112959:4113270 [15] bootstrap.cc:106 CCOM WARN Call to accept failed : Too.
—many open files

This can result when the default OS limits is low. The hard and soft limits can be set on OS using the following
commands or by manually opening and setting the limits.

sudo sed -i 'H;1h;$!d;x;/hard *nofile/!s/$/\n* hard nofile 65536/' /etc/security/limits.
—conf

sudo sed -i 'H;1h;$!d;x;/soft *nofile/!s/$/\n* soft nofile 65536/' /etc/security/limits.
—conf

sudo sed -i 's/A#*\(\*\|\s*\*\)\s*soft\s*nofile\s*[0-9]\+$/\1 soft nofile 65536/' /etc/
—security/limits.conf

sudo sed -i 's/A#*\(\*\|\s*\*\)\s*hard\s*nofile\s*[0-9]\+$/\1 hard nofile 65536/' /etc/
—,security/limits.conf

sudo sed -i 's/A#*\(\*\|\s*\*\)\s*soft\s*nofile\s*[0-9]\+$/\1 soft nofile 65536/' /etc/
—security/limits.d/01_efa.conf || true

sudo sed -i 's/A#*\(\*\|\s*\*\)\s*hard\s*nofile\s*[0-9]\+$/\1 hard nofile 65536/' /etc/
—security/limits.d/01_efa.conf || true

The 01_efa.conf file is created as part of the EFA installation and needs to be updated. If EFA driver is not installed
the file 01_efa.conf doesn’t exist and the sed commands will fail with No such file or directory. If there are other files
under limits.d with file limits they need to be updated as well.

“undefined symbol”

To maintain compatibility with the packages vended publicly in Pypi, AWS Neuron python packages contain binary
extensions that are compiled with the pre-2011 libstdc++ application binary interface (ABI). If a custom version of
a package - such as torch - is compiled using a modern compiler, it can result in “undefined symbol” errors due to
mismatches between the package and AWS Neuron package.

To support this situation, we provide alternative versions of AWS Neuron packages that are compiled according to the
newer 2011 ABI. For information on how to use these packages, see pytorch-install-cxx11.

This document is relevant for: Trnl, Trn2
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* PyTorch Neuron (torch-neuronx) - Supported Operators
* How to prepare trnl.32xlarge for multi-node execution
* PyTorch Neuron (torch-neuronx) for Training Troubleshooting Guide
e PyTorch Neuron (torch-neuronx) release notes
This document is relevant for: Inf2, Trnl, Trn2

Setup (torch-neuronx)

Tutorials

* Hugging Face BERT Pretraining Tutorial (Data-Parallel)

* Multi-Layer Perceptron Training Tutorial

* PyTorch Neuron for Trainium Hugging Face BERT MRPC task finetuning using Hugging Face Trainer API
* Fine-tune T5 model on Trnl

* ZeRO-1 Tutorial

* Analyze for Training Tutorial

* Neuron Custom C++ Operators in MLP Training

* Neuron Custom C++ Operators Performance Optimization

Note: To use Jupyter Notebook see:
* setup-jupyter-notebook-steps-troubleshooting

* running-jupyter-notebook-as-script

Additional Examples

AWS Neuron Reference for Nemo Megatron GitHub Repository

AWS Neuron Samples for EKS
* AWS Neuron Samples for AWS ParallelCluster
* AWS Neuron Samples GitHub Repository

API Reference Guide

* PyTorch NeuronX neuron_parallel_compile CLI
* Neuron Persistent Cache
e PyTorch NeuronX Environment Variables

* PyTorch NeuronX Profiling API
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Developer Guide

* Developer Guide for Training with PyTorch NeuronX
* How to debug models in PyTorch NeuronX
e Developer Guide for Profiling with PyTorch NeuronX

Misc

» PyTorch Neuron (torch-neuronx) - Supported Operators

* How to prepare trnl.32xlarge for multi-node execution

* PyTorch Neuron (torch-neuronx) for Training Troubleshooting Guide
* PyTorch Neuron (torch-neuronx) release notes

This document is relevant for: Trnl, Trn2

2.1.5 PyTorch NeuronX

PyTorch NeuronX for training on Trnl and Trn2 Pytorch NeuronX for inference on Inf2, Trn1, and Trn2

2.1.6 PyTorch Neuron

PyTorch Neuron for inference on Inf1 This document is relevant for: Infl, Inf2, Trnl, Trn2

This document is relevant for: Inf2, Trnl, Trn2

2.2 JAX Neuron (beta)

JAX Neuron is a software package containing Neuron-specific JAX features, such as the Neuron NKI JAX interface. It
also serves as a meta-package for providing a tested combination of the jax-neuronx, jax, jaxlib, libneuronxla
, and neuronx-cc packages.

This document is relevant for: Inf2, Trnl, Trn2

2.2.1 JAX Neuron plugin Setup

The JAX Neuron plugin is a set of modularized JAX plugin packages integrating AWS Trainium and Inferentia machine
learning accelerators into JAX as pluggable devices. It includes the following Python packages, all hosted on the AWS
Neuron pip repository.

e libneuronxla: A package containing Neuron’s integration into JAX’s runtime PJRT, built using the PIRT C-
API plugin mechanism. Installing this package enables using Trainium and Inferentia natively as JAX devices.

e jax-neuronx: A package containing Neuron-specific JAX features, such as the Neuron NKI JAX inter-
face. It also serves as a meta-package for providing a tested combination of the jax-neuronx, jax, jaxlib,
libneuronxla, and neuronx-cc packages. Making proper use of the features provided in jax-neuronx will
unleash the full potential of Trainium and Inferentia.
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Note: If you are facing a connectivity issue during the model loading process on a Trnl instance with Ubuntu, that
could probably be because of Ubuntu limitations with multiple interfaces. To solve this problem, please follow the
steps mentioned here.

Users are highly encouraged to use DLAMI to launch the instances, since DLAMIs come with the required fix.

Launch the Instance

¢ To launch an instance, follow the instructions at launch an Amazon EC2 Instance. Make sure to select the correct
instance type on the EC2 console.

* For more information about instance sizes and pricing, see Amazon EC2 Trnl Instances and Amazon EC2 Inf2
Instances

* Select Ubuntu Server 22 AMI.

e When launching a Trnl, adjust your primary EBS volume size to a minimum of 512GB.

 After launching the instance, follow the instructions in Connect to your instance to connect to the instance.

Install Drivers and Tools

Ubuntu

# Configure Linux for Neuron repository updates

. /etc/os-release

sudo tee /etc/apt/sources.list.d/neuron.list > /dev/null <<EOF

deb https://apt.repos.neuron.amazonaws.com ${VERSION_CODENAME} main

EOF

wget -q0 - https://apt.repos.neuron.amazonaws.com/GPG-PUB-KEY-AMAZON-AWS-NEURON.PUB |.
—sudo apt-key add -

# Update OS packages
sudo apt-get update -y

# Install OS headers
sudo apt-get install linux-headers-$(uname -r) -y

# Install git
sudo apt-get install git -y

# install Neuron Driver
sudo apt-get install aws-neuronx-dkms=2.* -y

# Install Neuron Runtime
sudo apt-get install aws-neuronx-collectives=2.* -y
sudo apt-get install aws-neuronx-runtime-lib=2.* -y

# Install Neuron Tools
sudo apt-get install aws-neuronx-tools=2.%* -y

# Add PATH
export PATH=/opt/aws/neuron/bin:$PATH
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Amazon Linux 2023

# Configure Linux for Neuron repository updates

sudo tee /etc/yum.repos.d/neuron.repo > /dev/null <<EOF

[neuron]

name=Neuron YUM Repository

baseurl=https://yum.repos.neuron.amazonaws . com

enabled=1

metadata_expire=0

EOF

sudo rpm --import https://yum.repos.neuron.amazonaws .com/GPG-PUB-KEY-AMAZON-AWS-NEURON.
-.PUB

# Update OS packages
sudo yum update -y

# Install OS headers
sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r) -y

# Install git
sudo yum install git -y

# install Neuron Driver
sudo yum install aws-neuronx-dkms-2.* -y

# Install Neuron Runtime
sudo yum install aws-neuronx-collectives-2.* -y
sudo yum install aws-neuronx-runtime-lib-2.* -y

# Install Neuron Tools
sudo yum install aws-neuronx-tools-2.* -y

# Add PATH
export PATH=/opt/aws/neuron/bin:$PATH

Install the JAX Neuron Plugin

We provide two methods for installing the JAX Neuron plugin. The first is to install the jax-neuronx meta-
package from the AWS Neuron pip repository. This method provides a production-ready JAX environment where
jax-neuronx’s major dependencies, namely jax, jaxlib, libneuronxla, and neuronx-cc, have undergone thor-
ough testing by the AWS Neuron team and will have their versions pinned during installation.

python3 -m pip install jax-neuronx[stable] --extra-index-url=https://pip.repos.neuron.
—;amazonaws . com

The second is to install packages jax, jax1lib, libneuronxla, and neuronx-cc separately, with jax-neuronx being
an optional addition. Because libneuronxla supports a broad range of jaxlib versions through the PIRT C-API
mechanism, this method provides flexibility when choosing jax and jaxlib versions, enabling JAX users to bring the
JAX Neuron plugin into their own JAX environments.

python3 -m pip install jax==0.4.31 jaxlib==0.4.31 jax-neuronx libneuronxla neuronx-cc==2.
—* --extra-index-url=https://pip.repos.neuron.amazonaws.com

We can now run some simple JAX programs on the Trainium or Inferentia accelerators.
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~$ python3 -c 'import jax; print(jax.numpy.multiply(l, 1))'
Platform 'neuron' is experimental and not all JAX functionality may be correctly.
—,supported!

Compiler status PASS
1

Compatibility between packages jaxlib and 1ibneuronxla can be determined from PIRT C-API version. For more
information, see PJRT integration guide.

To determine compatible JAX versions, you can use the libneuronxla.supported_clients API for querying
known supported client packages and their versions.

Help on function supported_clients in module libneuronxla.version:

supported_clients()
Return a description of supported client (jaxlib, torch-xla, etc.) versions,
as a list of strings formatted as " "<package> <version> (PJRT C-API <c-api version>)

For example,

>>> import libneuronxla

>>> libneuronxla.supported_clients()

['jaxlib 0.4.31 (PJRT C-API 0.54)', 'torch_xla 2.2.0 (PJRT C-API 0.35)', 'torch_xla.
—2.3.0 (PIRT C-API 0.46)']

Note that the list of supported client packages and versions covers known versions only and may be incomplete. More
versions could be supported, including Google’s future jax1lib releases, assuming the PJRT C-API stays compatible
with the current release of libneuronxla. As a result, we avoid specifying any dependency relationship between
libneuronxla and jaxlib. This provides more freedom when coordinating jax and libneuronxla installations.

This document is relevant for: Inf2, Trnl, Trn2

This document is relevant for: Inf2, Trnl, Trn2

2.2.2 JAX NeuronX Known Issues
e Threefry RNG algorithm is not completely supported. Use rbg algorithm instead. This can be configured by
setting the following config option jax.config.update("jax_default_prng_impl", "rbg")

» For JAX versions older than 0.4. 34, caching does not work out of the box. Use the following to enable caching
support,

import jax
import jax_neuronx
from jax._src import compilation_cache

compilation_cache.set_cache_dir('./cache_directory')

e For JAX versions older than 0.4.34, Buffer donation does not work out of the box. Add the follow-
ing snippet to your script to enable it - jax._src.interpreters.mlir._platforms_with_donation.
append( 'neuron')

* jax.random.randint does not produce expected distribution of randint values. Run it on CPU instead.

* Dynamic loops are not supported for jax.lax.while_loop. Only static while loops are supported.
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e jax.lax.cond is not supported.

e Host callbacks are not supported. As a result APIs based on callbacks from jax.debug and jax.
experimental.checkify are not supported.

¢ Mesh configurations which use non-connected Neuron cores might crash during execution. You might observe
compilation or Neuron runtime errors for such configurations. Device connectivity can be determined by using
neuron-1s --topology.

* Not all dtypes supported by JAX work on Neuron. Check Data Types for supported data types.
* jax.dlpack is not supported.

* jax.experimental.sparse is not supported.

* jax.lax.sort only supports comparators with LE, GE, LT and GT operations.

* jax.lax.reduce_precision is not supported.

e Certain operations (for example, rng weight initialization) might result in slow compilations. Try
to run such operations on the CPU backend or by setting the following environment variable
NEURON_RUN_TRIVIAL_COMPUTATION_ON_CPU=1.

* Neuron only supports float8_e4m3 and float8_e5m2 for FP8 dtypes.

¢ Complex dtypes (jnp.complex64 and jnp.complex128) are not supported.
* Variadic reductions are not supported.

* QOut of bound access for scatter/gather operations can result in runtime errors.
* Dot operations on int dtypes are not supported.

e lax.DotAlgorithmPreset is not always respected. Dot operations occur in operand dtypes. This is a config-
urable parameter for jax.lax.dot and jax.lax.dot_general.

This document is relevant for: Inf2, Trnl, Trn2

This document is relevant for: Inf2, Trnl, Trn2

2.2.3 API Reference Guide for JAX Neuronx

This document is relevant for: Inf2, Trnl, Trn2

JAX NeuronX Environment Variables

Environment variables allow modifications to JAX NeuronX behavior without requiring code change to user script. Itis
recommended to set them in code or just before invoking the python process, such as NEURON_RT_VISIBLE_CORES=8
python3 <script> to avoid inadvertently changing behavior for other scripts. Environment variables specific to JAX
Neuronx are:

NEURON_CC_FLAGS
* Compiler options. Full compiler options are described in the mixed-precision-casting-options.
XLA_FLAGS

e When set to "--xla_dump_hlo_snapshots --xla_dump_to=<dir>", this environmental variable enables
dumping snapshots in <dir> directory. See Snapshotting With Torch-Neuronx 2.1 section for more information.
The snapshotting interface for JAX and Pytorch are identical.
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e When set to "--xla_dump_hlo_as_text --xla_dump_hlo_as_proto --xla_dump_to=<dir>

Tk n

--xla_dump_hlo_pass_re=". , this environmental variable enables dumping HLOs in proto and
text formats after each XLA pass. The dumped *.hlo.pb files are in HloProto format.

NEURON_FORCE_PJRT_PLUGIN_REGISTRATION

e When NEURON_FORCE_PJRT_PLUGIN_REGISTRATION=1, the Neuron PJRT plugin will be registered in JAX
regardless of the instance type.

NEURON_RUN_TRIVIAL_COMPUTATION_ON_CPU

* When NEURON_RUN_TRIVIAL_COMPUTATION_ON_CPU=1, the Neuron PJRT plugin will compile and execute
“trivial” computations on CPU instead of Neuron cores. A “trivial” computation is defined as an HLO program
that does not contain any collective-compute instructions. The HLO program will be compiled by the XLA CPU
compiler and outputs of the computation will be allocated on Neuron cores. The following HLO instructions are
considered as collective-compute instructions.

— all-gather

— all-gather-done

— all-gather-start

— all-reduce-done

— all-reduce-start

— all-to-all

— collective-permute

— partition-id

— replica-id

— recv

— recv-done

— reduce-scatter

- send

— send-done
NEURON_PJRT_PROCESSES_NUM_DEVICES

 Should be set to a comma-separated list stating the number of NeuronCores used by each worker process. It
is used to construct a global device array with its size equal to the sum of the list. This gets reported to the
XLA PJRT runtime when requested. Must be set for multi-process executions. It can be used in conjunc-
tion with NEURON_RT_VISIBLE_CORES to expose a limited number of NeuronCores to each worker process.
If NEURON_RT_VISIBLE_CORES is not set, it should be set to available number of NeuronCores on the host.
NEURON_PJRT_PROCESSES_NUM_DEVICES must be less than or equal to NEURON_RT_VISIBLE_CORES.

NEURON_PJRT_PROCESS_INDEX

* An integer stating the index (or rank) of the current worker process. This is required for multi-process environ-
ments where all workers need to know information on all participating processes. Must be set for multi-process
executions. The value should be between ® and NEURON_PJRT_PROCESS_INDEX - 1.

NEURON_RT_STOCHASTIC_ROUNDING_EN [Neuron Runtime]

e When NEURON_RT_STOCHASTIC_ROUNDING_EN=1, JAX Neuron will use stochastic rounding instead of round-
nearest-even for all internal rounding operations when casting from FP32 to a reduced precision data type (FP16,
BF16, FP8, TF32). This feature has been shown to improve training convergence for reduced precision training
jobs. To switch to round-nearest-even mode, set NEURON_RT_STOCHASTIC_ROUNDING_EN=0.
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NEURON_RT_STOCHASTIC_ROUNDING_SEED [Neuron Runtime]

* Sets the seed for the random number generator used in stochastic rounding (see previous section). If this environ-
ment variable is not set, the seed is set to 0 by default. Please set NEURON_RT_STOCHASTIC_ROUNDING_SEED
to a fixed value to ensure reproducibility between runs.

NEURON_RT_VISIBLE_CORES [Neuron Runtime]

* Integer range of specific NeuronCores needed by the process (for example, 0-3 specifies NeuronCores 0, 1, 2, and
3). Use this environment variable when launching processes to limit the launched process to specific consecutive
NeuronCores.

Additional Neuron runtime environment variables are described in NeuronX Runtime Configuration.
This document is relevant for: Inf2, Trnl, Trn2

e JAX NeuronX Environment Variables
This document is relevant for: Inf2, Trnl, Trn2

This document is relevant for: Infl, Inf2, Trnl, Trn2

2.2.4 JAX NeuronX (jax-neuronx) release notes

Table of Contents

e Release [0.6.0.1.0.%]

e Release [0.5.3.1.0.%]
e Release [0.1.3]
e Release [0.1.2]
e Release [0.1.1]

JAX NeuronX is a software package containing Neuron-specific JAX features, such as the Neuron NKI JAX interface.
It also serves as a meta-package for providing a tested combination of the jax-neuronx, jax, jaxlib, libneuronxla
, and neuronx-cc packages.

Release [0.6.0.1.0.%]
Date: 06/20/2025
Summary

* This release supports JAX versions up to 0.6.0.

e Known issues are listed within JAX NeuronX Known Issues.
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Release [0.5.3.1.0.]

Date: 05/20/2025

Summary

* This release supports JAX versions up to 0.5. 3.

e jax_neuronx.nki_call is no longer supported. Use neuronxcc.nki. jit instead.

¢ Known issues are listed within JAX NeuronX Known Issues.

Release [0.1.3]

Date: 04/03/2025

Summary

* This release supports JAX versions up to 8.5.0.

¢ Known issues are listed within JAX NeuronX Known Issues.

Release [0.1.2]

Date: 12/20/2024

Summary

This release supports JAX versions up to 0.4. 35.

What’s new in this release

* Support for JAX versions up to 0.4.35.
* Support for JAX caching API for versions 0.4.30+.

Release [0.1.1]

Date: 09/16/2024
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Summary

This is the initial beta release of JAX NeuronX that contains Neuron-specific JAX features, such as the Neuron NKI
JAX interface

What’s new in this release

Announcing the first JAX NeuronX release
» JAX interface for Neuron NKI
This document is relevant for: Infl, Inf2, Trnl, Trn2
* JAX Neuron plugin Setup
e JAX NeuronX Known Issues
* API Reference Guide for JAX Neuronx
* JAX NeuronX (jax-neuronx) release notes
This document is relevant for: Inf2, Trnl, Trn2

This document is relevant for: Infl, Inf2, Trnl

2.3 TensorFlow Neuron

TensorFlow Neuron unlocks high-performance and cost-effective deep learning acceleration on AWS Trainium-based
and Inferentia-based Amazon EC2 instances.

TensorFlow Neuron enables native TensorFlow models to be accelerated on Neuron devices, so you can use your
existing framework application and get started easily with minimal code changes.

This document is relevant for: Infl, Inf2, Trnl

2.3.1 Tensorflow Neuron Setup

Tensorflow Neuron (tensorflow-neuronx) Setup for Inf2, Trnl/Trnln Instances Tensorflow Neuron
(tensorflow-neuron) Setup for Infl Instances This document is relevant for: Infl, Inf2, Trnl

This document is relevant for: Inf2, Trnl

2.3.2 Inference on Inf2 & Trn1/Trn1n (tensorflow-neuronx)

This document is relevant for: Inf2, Trnl
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Tutorials (tensorflow-neuronx)

Running Huggingface Roberta-Base with TensorFlow-NeuronX

This tutorial demonstrates how to compile the Huggingface roberta-base model and infer on a trnl.2xlarge instance
with tensorflow-neuronx. To compile larger models like roberta-large, please consider using an inf2 instance.

Setup

To run this tutorial please follow the instructions for TensorFlow-NeuronX Setup and the Jupyter Notebook Quickstart
and set your kernel to “Python (tensorflow-neuronx)”.

Next, install some additional dependencies.

%env TOKENIZERS_PARALLELISM=True #Supresses tokenizer warnings making errors easier to..
—detect
lpip install transformers

Download From Huggingface and Compile for AWS-Neuron

import tensorflow as tf

import tensorflow_neuronx as tfnx

from transformers import RobertaTokenizer, TFRobertaModel
from transformers import BertTokenizer, TFBertModel

# Create a wrapper for the roberta model that will accept inputs as a list
# instead of a dictionary. This will allow the compiled model to be saved
# to disk with the model.save() fucntion.
class RobertaWrapper(tf.keras.Model):
def __init__(self, model):
super().__init__Q)
self.model = model
def __call__(self, example_inputs):
return self.model({'input_ids' : example_inputs[0], 'attention_mask' : example_
<inputs[1]})

tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
model = RobertaWrapper (TFRobertalModel. from_pretrained('roberta-base'))

batch_size = 16

# create example inputs with a batch size of 16
text = ["Paris is the <mask> of France."] * batch_size
encoded_input = tokenizer(text, return_tensors='tf', padding='max_length', max_length=64)

# turn inputs into a list
example_input = [encoded_input['input_ids'], encoded_input['attention_mask']]

#compile
model_neuron = tfnx.trace(model, example_input)
(continues on next page)
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(continued from previous page)

print ("Running on neuron:", model_neuron(example_input))

# save the model to disk to save recompilation time for next usage
model_neuron.save('./roberta-neuron-b16"')

Run Basic Inference Benchmarking

import numpy as np
import concurrent.futures
import time

reloaded_neuron_model = tf.keras.models.load_model('./roberta-neuron-bl6')
print("Reloaded model running on neuron:", reloaded_neuron_model(example_input))

num_threads = 4
num_inferences = 1000

latency_list = []
def inference_with_latency_calculation(example_input):
global latency_list
start = time.time()
result = reloaded_neuron_model (example_input)
end = time.time()
latency_list.append((end-start) * 1000)
return result

start = time.time()
with concurrent.futures.ThreadPoolExecutor (max_workers=num_threads) as executor:
futures = []
for i in range(num_inferences):
futures.append(executor.submit(inference_with_latency_calculation, example_
< input))
for future in concurrent.futures.as_completed(futures):
get_result = future.result()
end = time.time()

total_time = end - start

print (£"Throughput was {(num_inferences * batch_size)/total_time} samples per second.™)
print(f"Latency p50 was {np.percentile(latency_list, 50)} ms")

print(f"Latency p90 was {np.percentile(latency_list, 90)} ms")

print(f"Latency p99 was {np.percentile(latency_list, 99)} ms")

This document is relevant for: Inf2, Trnl
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Using NEURON_RT _VISIBLE_CORES with TensorFlow Serving

TensorFlow serving allows customers to scale-up inference workloads across a network. TensorFlow Neuron Serving
uses the same API as normal TensorFlow Serving with two differences: (a) the saved model must be compiled for
neuron and (b) the entry point is a different binary named tensorflow_model_server_neuronx. Follow the steps
below to install the package using apt-get or yum. This will be pre-installed in a future release.

Install TensorFlow Model Server and Serving API

Follow the steps in the install-neuronx-tensorflow.

Then ensure you install using either apt-get or yum.

sudo apt-get install tensorflow-model-server-neuronx

or

sudo yum install tensorflow-model-server-neuronx

Also, you would need TensorFlow Serving API (use —no-deps to prevent installation of regular tensorflow).

pip install --no-deps tensorflow_serving_api

For the example image preprocessing using Keras preprocessing, the Python Imaging Library Pillow is required:

pip install pillow

To workaround h5py issue https://github.com/aws/aws-neuron-sdk/issues/220:

pip install "h5py<3.0.0"

Export and Compile Saved Model

The following example shows graph construction followed by the addition of Neuron compilation step before exporting
to saved model.

import tensorflow as tf
import tensorflow_neuronx as tfnx
import numpy as np

tf.keras.backend.set_learning_phase(0)
tf.keras.backend.set_image_data_format('channels_last')

image_sizes = [224, 224]

model = tf.keras.applications.ResNet50(weights="imagenet")

example_inputs = tf.random.uniform([1, *image_sizes, 3], dtype=tf.float32)

model_neuron = tfnx.trace(model, example_inputs)

# run the model once to define the forward pass and allow for saving
model_neuron(example_inputs)

tf.keras.models.save_model (model_neuron, './resnet50_neuron/1")
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Serving Saved Model

User can now serve the saved model with the tensorflow_model_server_neuron binary. To utilize multiple Neuron-
Cores, it is recommended to launch multiple tensorflow model servers that listen to the same gRPC port:

export NEURON_RT_VISIBLE_CORES=0 # important to set this environment variable before.
—launching model servers
tensorflow_model_server_neuron --model_name=resnet50_neuron \

--model_base_path=$(pwd) /resnet50_neuron/ --port=8500

# then to run another server on a different neuron core open another
# window and run this, except this time set NEURON_RT_VISIBLE_ CORES=1
# you can keep doing this up to the number of Neuron Cores on your machine

export NEURON_RT_VISIBLE_CORES=1
tensorflow_model_server_neuron --model_name=resnet50_neuron \
--model_base_path=$(pwd) /resnet50_neuron/ --port=8500

The compiled model is staged in neuron DRAM by the server to prepare for inference.

Generate inference requests to the model server

Now run inferences via GRPC as shown in the following sample client code:

import numpy as np

import grpc

import tensorflow as tf

from tensorflow.keras.preprocessing import image

from tensorflow.keras.applications.resnet50 import preprocess_input
from tensorflow_serving.apis import predict_pb2

from tensorflow_serving.apis import prediction_service_pb2_grpc

from tensorflow.keras.applications.resnet50 import decode_predictions

tf.keras.backend.set_image_data_format('channels_last')

if _name__ == '__main__"':
channel = grpc.insecure_channel('localhost:8500")
stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
img_file = tf.keras.utils.get_file(
"./kitten_small.jpg",
"https://raw.githubusercontent.com/awslabs/mxnet-model-server/master/docs/images/
—kitten_small.jpg")
img = image.load_img(img_file, target_size=(224, 224))
img_array = preprocess_input(image.img_to_array(img) [None, ...])
request = predict_pb2.PredictRequest()
request.model_spec.name = 'resnet50_neuron'
request.inputs['input_1"'].CopyFrom(
tf.make_tensor_proto(img_array, shape=img_array.shape))
result = stub.Predict(request)
prediction = tf.make_ndarray(result.outputs['output_1'])
print (decode_predictions(prediction))

This document is relevant for: Inf2, Trnl
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» HuggingFace Roberta-Base [/tml] [notebook]
* Using NEURON_RT _VISIBLE _CORES with TensorFlow Serving

Note: To use Jupyter Notebook see:
* setup-jupyter-notebook-steps-troubleshooting

* running-jupyter-notebook-as-script

This document is relevan