
AWS Neuron

AWS

Apr 12, 2024

OVERVIEW

1 Neuron Quick Links 3

2 Get Started with Neuron 5

3 Model Samples and Tutorials 7

4 Neuron Performance 23

5 What’s New 25

6 Announcements 37

7 PyTorch Neuron 39

8 TensorFlow Neuron 381

9 MXNet Neuron 471

10 Transformers NeuronX (transformers-neuronx) 509

11 NeuronX Distributed 535

12 AWS Neuron Reference for NeMo Megatron 619

13 NeuronX Runtime 621

14 Neuron Compiler 693

15 Neuron Custom C++ Operators [Beta] 737

16 Neuron Tools 761

17 Neuron Calculator 883

18 Setup Guide 885

19 Neuron DLAMI User Guide 891

20 Deploy Containers with Neuron 897

21 Developer Flows 945

22 Neuron Architecture 983

i

23 Neuron Features 997

24 Neuron Application Notes 1011

25 Neuron FAQ 1069

26 Troubleshooting Guide 1071

27 Release Details 1073

28 Roadmap 1075

29 Support 1077

Python Module Index 1085

Index 1087

ii

AWS Neuron

AWS Neuron is the SDK used to run deep learning workloads on AWS Inferentia and AWS Trainium based instances.
It supports customers in their end-to-end ML development lifecycle to build new models, train and optimize these
models, and then deploy them for production. To learn about the model architectures currently supported on Inf1, Inf2,
Trn1 and Trn1n instances, please see Model Samples and Tutorials. To learn about upcoming capabilities, please view
the Roadmap.

AWS Neuron includes a deep learning compiler, runtime, and tools that are natively integrated into TensorFlow, Py-
Torch and Apache MXNet. The EC2 Trn1/Trn1n instances are optimized for the highest performance and best price-
performance training in AWS. The EC2 Inf2 instances are designed for high-performance deep learning inference
applications. With Neuron, customers can quickly start using Inf/Trn instances through services like Amazon Sage-
maker, Amazon Elastic Container Service (ECS), Amazon Elastic Kubernetes Service (EKS), AWS Batch, and AWS
Parallel Cluster.

Check Announcements and check Neuron 2.18.1 (04/10/2024) for latest release.

Get Started with Neuron Neuron Quick Links

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

OVERVIEW 1

AWS Neuron

2 OVERVIEW

CHAPTER

ONE

NEURON QUICK LINKS

Overview

• Get Started with Neuron

• Model Samples and Tutorials

• Neuron Performance

• What’s New

• Announcements

ML Frameworks

• PyTorch Neuron

• TensorFlow Neuron

• MXNet Neuron

ML Libraries

• Transformers NeuronX (transformers-neuronx)

• NeuronX Distributed

User Guide

• NeuronX Runtime

• Neuron Compiler

• Neuron Custom C++ Operators [Beta]

• Neuron Tools

• Setup Guide

• Neuron DLAMI User Guide

• Deploy Containers with Neuron

• Developer Flows

3

AWS Neuron

Learn Neuron

• Neuron Architecture

• Neuron Features

• Neuron Application Notes

• Neuron FAQ

• Troubleshooting Guide

About Neuron

• Release Details

• Roadmap

• Support

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

4 Chapter 1. Neuron Quick Links

CHAPTER

TWO

GET STARTED WITH NEURON

This section walks you through the various options to get started with Neuron. You have to install Neuron on Trainium
and Inferentia powered instances to enable deep-learning acceleration.

Get Started with PyTorch Get Started with TensorFlow Get Started with MXNet This
document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

5

AWS Neuron

6 Chapter 2. Get Started with Neuron

CHAPTER

THREE

MODEL SAMPLES AND TUTORIALS

This document is relevant for: Inf2, Trn1, Trn1n

3.1 Training Samples/Tutorials (Trn1/Trn1n)

Table of contents

• Encoders

• Decoders

• Encoder-Decoders

• Vision Transformers

• Stable Diffusion

• Multi Modal

• Convolutional Neural Networks(CNN)

7

AWS Neuron

3.1.1 Encoders

Model Frame-
works/Libraries

Samples and Tutorials

bert-base-cased torch-neuronx
• Fine-tune a “bert-base-cased” PyTorch model for Text

Classification
• How to fine-tune a “bert base cased” PyTorch model with

AWS Trainium (Trn1 instances) for Sentiment Analysis

bert-base-uncased torch-neuronx
• Fine-tune a “bert-base-uncased” PyTorch model
• Fine tuning BERT base model from HuggingFace on

Amazon SageMaker

bert-large-cased torch-neuronx
• Fine-tune a “bert-large-cased” PyTorch model

bert-large-uncased torch-neuronx
• Hugging Face BERT Pretraining Tutorial
• Launch Bert Large Phase 1 pretraining job on Parallel

Cluster
• Launch a Multi-Node PyTorch Neuron Training Job on

Trainium Using TorchX and EKS
• PyTorch Neuron for Trainium Hugging Face BERT

MRPC task finetuning using Hugging Face Trainer API
• Fine-tune a “bert-large-uncased” PyTorch model

roberta-base tensorflow-
neuronx • Fine-tune a “roberta-base” PyTorch model

roberta-large torch-neuronx
• Fine-tune a “roberta-large” PyTorch model

xlm-roberta-base torch-neuronx
• Fine-tune a “xlm-roberta-base” PyTorch model

alberta-base-v2 torch-neuronx
• Fine-tune a “alberta-base-v2” PyTorch model

distilbert-base-uncased torch-neuronx
• Fine-tune a “distilbert-base-uncased” PyTorch model

camembert-base torch-neuronx
• Fine-tune a “camembert-base PyTorch model

cl-tohoku/bert-base-
japanese-whole-word-
masking

torch-neuronx
• Fine-tuning & Deployment Hugging Face BERT

Japanese model

8 Chapter 3. Model Samples and Tutorials

https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/BertBaseCased.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/BertBaseCased.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_sentiment_analysis/01-hf-single-neuron.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_sentiment_analysis/01-hf-single-neuron.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/BertBaseUncased.ipynb
https://github.com/aws-neuron/aws-neuron-sagemaker-samples/blob/master/training/trn1-bert-fine-tuning-on-sagemaker/bert-base-uncased-amazon-polarity.ipynb
https://github.com/aws-neuron/aws-neuron-sagemaker-samples/blob/master/training/trn1-bert-fine-tuning-on-sagemaker/bert-base-uncased-amazon-polarity.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/BertLargeCased.ipynb
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/dp-bert-launch-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/dp-bert-launch-job.md
https://github.com/aws-neuron/aws-neuron-eks-samples/tree/master/dp_bert_hf_pretrain#tutorial-launch-a-multi-node-pytorch-neuron-training-job-on-trainium-using-torchx-and-eks
https://github.com/aws-neuron/aws-neuron-eks-samples/tree/master/dp_bert_hf_pretrain#tutorial-launch-a-multi-node-pytorch-neuron-training-job-on-trainium-using-torchx-and-eks
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/BertLargeCased.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/RobertaBase.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/RobertaLarge.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/XlmRobertaBase.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/AlbertBase.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/DistilbertBaseUncased.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/CamembertBase.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_bert_jp/bert-jp-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_bert_jp/bert-jp-tutorial.ipynb

AWS Neuron

3.1. Training Samples/Tutorials (Trn1/Trn1n) 9

AWS Neuron

3.1.2 Decoders

Model Frame-
works/Libraries

Samples and Tutorials

gpt-2 torch-neuronx
• How to run training jobs for “gpt2” PyTorch model with

AWS Trainium
• ZeRO-1 Tutorial

gpt-3 neuronx-nemo-
megatron • Launch a GPT-3 23B pretraining job using neuronx-

nemo-megatron
• Launch a GPT-3 46B pretraining job using neuronx-

nemo-megatron
• Launch a GPT-3 175B pretraining job using neuronx-

nemo-megatron

GPT-NEOX-20B neuronx-
distributed • Training GPT-NeoX 20B with Tensor Parallelism and

ZeRO-1 Optimizer (neuronx-distributed)
• Training GPT-NEOX 20B model using neuronx-

distributed
• Pre-train GPT Neox 20b on Wikicorpus dataset using

Neuronx Distributed library

GPT-NEOX-6.9B neuronx-
distributed • Training GPT-NeoX 6.9B with Tensor Parallelism and

ZeRO-1 Optimizer (neuronx-distributed)
• Training GPT-NEOX 6.9B model using neuronx-

distributed
• Pre-train GPT Neox 6.9b on Wikicorpus dataset using

Neuronx Distributed library

meta-llama/Llama-2-7b neuronx-
distributed • Training Llama2 7B with Tensor Parallelism and ZeRO-1

Optimizer (neuronx-distributed)
• Training Llama2 7B Model with AWS Batch and

Trainium
• llama2_7b_tp_zero1_ptl_finetune_tutorial
• Pre-train Llama2-7B on Wikicorpus dataset using Neu-

ronx Distributed library

meta-llama/Llama-2-13b neuronx-
distributed • Training Llama-2-13B/70B with Tensor Parallelism and

Pipeline Parallelism (neuronx-distributed)

meta-llama/Llama-2-70b neuronx-
distributed • Training Llama-2-13B/70B with Tensor Parallelism and

Pipeline Parallelism (neuronx-distributed)

codegen25-7b-mono neuronx-
distributed • codegen25_7b_tp_zero1_tutorial

meta-llama/Llama-2 neuronx-nemo-
megatron • Launch a Llama-2-7B pretraining job using neuronx-

nemo-megatron
• Launch a Llama-2-13B pretraining job using neuronx-

nemo-megatron
• Launch a Llama-2-70B pretraining job using neuronx-

nemo-megatron

Mistral-7B neuronx-nemo-
megatron • Training Mistral-7B

10 Chapter 3. Model Samples and Tutorials

https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_language_modeling/gpt2/gpt2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_language_modeling/gpt2/gpt2.ipynb
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-gpt-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-gpt-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-gpt-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-gpt-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-gpt-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-gpt-job.md
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_20b_hf_pretrain
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_20b_hf_pretrain
https://github.com/aws-samples/amazon-eks-machine-learning-with-terraform-and-kubeflow/blob/master/examples/neuronx-distributed/gpt_neox_20b/README.md
https://github.com/aws-samples/amazon-eks-machine-learning-with-terraform-and-kubeflow/blob/master/examples/neuronx-distributed/gpt_neox_20b/README.md
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_6.9b_hf_pretrain
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_6.9b_hf_pretrain
https://github.com/aws-samples/amazon-eks-machine-learning-with-terraform-and-kubeflow/blob/master/examples/neuronx-distributed/gpt_neox_6.9b/README.md#pre-train-gpt-neox-69b-on-wikicorpus-dataset-using-neuronx-distributed-library
https://github.com/aws-samples/amazon-eks-machine-learning-with-terraform-and-kubeflow/blob/master/examples/neuronx-distributed/gpt_neox_6.9b/README.md#pre-train-gpt-neox-69b-on-wikicorpus-dataset-using-neuronx-distributed-library
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/aws-batch/llama2/README.md
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/aws-batch/llama2/README.md
https://github.com/aws-samples/amazon-eks-machine-learning-with-terraform-and-kubeflow/blob/master/examples/neuronx-distributed/llama2_7b/README.md
https://github.com/aws-samples/amazon-eks-machine-learning-with-terraform-and-kubeflow/blob/master/examples/neuronx-distributed/llama2_7b/README.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-llamav2-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-llamav2-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-llamav2-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-llamav2-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-llamav2-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-llamav2-job.md
https://github.com/aws-neuron/neuronx-nemo-megatron/blob/main/nemo/examples/nlp/language_modeling/test_mistral.sh

AWS Neuron

3.1.3 Encoder-Decoders

Model Frame-
works/Libraries

Samples and Tutorials

t5-small
• torch-

neuronx
• optimum-

neuron

• Fine-tune T5 model on Trn1

facebook/bart-large
• torch-

neuronx
• How to fine-tune a “Bart-Large” PyTorch model with

AWS Trainium (trn1 instances)

3.1.4 Vision Transformers

Model Frame-
works/Libraries

Samples and Tutorials

google/vit-base-patch16-
224-in21k

torch-neuronx
• Fine-tune a pretrained HuggingFace vision transformer

PyTorch model

openai/clip-vit-base-
patch32

torch-neuronx
• Fine-tune a pretrained HuggingFace CLIP-base PyTorch

model with AWS Trainium

openai/clip-vit-large-
patch14

torch-neuronx
• Fine-tune a pretrained HuggingFace CLIP-large PyTorch

model with AWS Trainium

3.1.5 Stable Diffusion

Model Frame-
works/Libraries

Samples and Tutorials

stabilityai/stable-
diffusion-2-1-base

torch-neuronx
• [Beta] Train stabilityai/stable-diffusion-2-1-base with

AWS Trainium (trn1 instances)

runwayml/stable-
diffusion-v1-5

torch-neuronx
• [Beta] Train runwayml/stable-diffusion-v1-5 with AWS

Trainium (trn1 instances)

3.1. Training Samples/Tutorials (Trn1/Trn1n) 11

https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/hf_summarization/BartLarge.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/hf_summarization/BartLarge.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_image_classification/vit.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_image_classification/vit.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_contrastive_image_text/CLIPBase.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_contrastive_image_text/CLIPBase.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_contrastive_image_text/CLIPLarge.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_contrastive_image_text/CLIPLarge.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/stable_diffusion/
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/stable_diffusion/
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/stable_diffusion/
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/stable_diffusion/

AWS Neuron

3.1.6 Multi Modal

Model Frame-
works/Libraries

Samples and Tutorials

language-perceiver torch-neuronx
• How to fine-tune a “language perceiver” PyTorch model

with AWS Trainium (trn1 instances)

vision-perceiver-conv torch-neuronx
• How to fine-tune a pretrained HuggingFace Vision Per-

ceiver Conv

3.1.7 Convolutional Neural Networks(CNN)

Model Frame-
works/Libraries

Samples and Tutorials

resnet50 torch-neuronx
• How to fine-tune a pretrained ResNet50 Pytorch model

with AWS Trainium (trn1 instances) using NeuronSDK

milesial/Pytorch-UNet torch-neuronx
• This notebook shows how to fine-tune a pretrained UNET

PyTorch model with AWS Trainium (trn1 instances) using
NeuronSDK.

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

3.2 Inference Samples/Tutorials (Inf2/Trn1)

Table of contents

• Encoders

• Decoders

• Encoder-Decoders

• Vision Transformers

• Convolutional Neural Networks(CNN)

• Stable Diffusion

• Multi Modal

12 Chapter 3. Model Samples and Tutorials

https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/LanguagePerceiver.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/LanguagePerceiver.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_image_classification/VisionPerceiverConv.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_image_classification/VisionPerceiverConv.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/resnet50
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/resnet50
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/unet_image_segmentation
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/unet_image_segmentation
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/unet_image_segmentation

AWS Neuron

3.2.1 Encoders

Model Frame-
works/Libraries

Samples and Tutorials

bert-base-cased-
finetuned-mrpc

torch-neuronx
• BERT TorchServe tutorial
• HuggingFace pretrained BERT tutorial [html] [notebook]
• LibTorch C++ Tutorial for HuggingFace Pretrained

BERT
• Compiling and Deploying HuggingFace Pretrained

BERT on Inf2 on Amazon SageMaker

bert-base-cased-
finetuned-mrpc

neuronx-
distributed • Inference with Tensor Parallelism (neuronx-distributed)

[Beta]

bert-base-uncased torch-neuronx
• HuggingFace Pretrained BERT Inference on Trn1

distilbert-base-uncased torch-neuronx
• HuggingFace Pretrained DistilBERT Inference on Trn1

roberta-base tensorflow-
neuronx • HuggingFace Roberta-Base [html] [notebook]

roberta-large torch-neuronx
• HuggingFace Pretrained RoBERTa Inference on Trn1

3.2. Inference Samples/Tutorials (Inf2/Trn1) 13

https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/torch-neuronx/bert-base-cased-finetuned-mrpc-inference-on-trn1-tutorial.ipynb
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/frameworks/torch/torch-neuron/tutorials/tutorial-libtorch.html#pytorch-tutorials-libtorch
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/frameworks/torch/torch-neuron/tutorials/tutorial-libtorch.html#pytorch-tutorials-libtorch
https://github.com/aws-neuron/aws-neuron-sagemaker-samples/blob/master/inference/inf2-bert-on-sagemaker/inf2_bert_sagemaker.ipynb
https://github.com/aws-neuron/aws-neuron-sagemaker-samples/blob/master/inference/inf2-bert-on-sagemaker/inf2_bert_sagemaker.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_bert_inference_on_trn1.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_distilbert_Inference_on_trn1.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/tensorflow-neuronx/tfneuronx-roberta-base-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_roberta_inference_on_frn1.ipynb

AWS Neuron

3.2.2 Decoders

Model Frame-
works/Libraries

Samples and Tutorials

gpt2 torch-neuronx
• HuggingFace Pretrained GPT2 Feature Extraction on

Trn1

meta-llama/Llama-2-13b transformers-
neuronx • Run Hugging Face meta-llama/Llama-2-13b autoregres-

sive sampling on Inf2 & Trn1

meta-llama/Llama-2-70b transformers-
neuronx • Run Hugging Face meta-llama/Llama-2-70b autoregres-

sive sampling on Inf2 & Trn1
• Run speculative sampling on Meta Llama models [Beta]

meta-llama/Llama-2-7b neuronx-
distributed • Run Hugging Face meta-llama/Llama-2-7b autoregres-

sive sampling on Inf2 & Trn1 ([html] [notebook])

mistralai/Mistral-7B-
Instruct-v0.1

transformers-
neuronx • Run Mistral-7B-Instruct-v0.1 autoregressive sampling on

Inf2 & Trn1

mistralai/Mistral-7B-
Instruct-v0.2

transformers-
neuronx • Run Hugging Face mistralai/Mistral-7B-Instruct-v0.2 au-

toregressive sampling on Inf2 & Trn1 [Beta]

Mixtral-8x7B-v0.1 transformers-
neuronx • Run Hugging Face mistralai/Mixtral-8x7B-v0.1 autore-

gressive sampling on Inf2 & Trn1

codellama/CodeLlama-
13b-hf

transformers-
neuronx • Run Hugging Face codellama/CodeLlama-13b-hf autore-

gressive sampling on Inf2 & Trn1

3.2.3 Encoder-Decoders

Model Frame-
works/Libraries

Samples and Tutorials

t5-large
• torch-

neuronx
• optimum-

neuron

• T5 inference tutorial [html] [notebook]

t5-3b neuronx-
distributed • T5 inference tutorial [html] [notebook]

google/flan-t5-xl neuronx-
distributed • flan-t5-xl inference tutorial [html] [notebook]

14 Chapter 3. Model Samples and Tutorials

https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_gpt2_feature_extraction_on_trn1.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_gpt2_feature_extraction_on_trn1.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/meta-llama-2-13b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/meta-llama-2-13b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/transformers-neuronx/inference/llama-70b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/transformers-neuronx/inference/llama-70b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/speculative_sampling.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/neuronx_distributed/llama/llama2_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/mistralai-Mistral-7b-Instruct-v0.2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/mistralai-Mistral-7b-Instruct-v0.2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/mixtral-8x7b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/mixtral-8x7b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/codellama-13b-16k-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/codellama-13b-16k-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/torch-neuronx/t5-inference-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/neuronx_distributed/t5-inference/t5-inference-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/neuronx_distributed/t5-inference/t5-inference-tutorial.ipynb

AWS Neuron

3.2.4 Vision Transformers

Model Frame-
works/Libraries

Samples and Tutorials

google/vit-base-patch16-
224

torch-neuronx
• HuggingFace Pretrained ViT Inference on Trn1

clip-vit-base-patch32 torch-neuronx
• HuggingFace Pretrained CLIP Base Inference on Inf2

clip-vit-large-patch14 torch-neuronx
• HuggingFace Pretrained CLIP Large Inference on Inf2

3.2.5 Convolutional Neural Networks(CNN)

Model Frame-
works/Libraries

Samples and Tutorials

resnet50 torch-neuronx
• Torchvision Pretrained ResNet50 Inference on Trn1 / Inf2
• Torchvision ResNet50 tutorial [html] [notebook]

resnet50 tensorflow-
neuronx • Using NEURON_RT_VISIBLE_CORES with TensorFlow

Serving

unet torch-neuronx
• Pretrained UNet Inference on Trn1 / Inf2

vgg torch-neuronx
• Torchvision Pretrained VGG Inference on Trn1 / Inf2

3.2. Inference Samples/Tutorials (Inf2/Trn1) 15

https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_vit_inference_on_inf2.ipynb
https://github.com/aws-neuron/aws-neuron-samples-staging/blob/master/torch-neuronx/inference/hf_pretrained_clip_base_inference_on_inf2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_clip_large_inference_on_inf2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/tv_pretrained_resnet50_inference_on_trn1.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/torch-neuronx/resnet50-inference-on-trn1-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/pretrained_unet_inference_on_trn1.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/tv_pretrained_vgg_inference_on_trn1.ipynb

AWS Neuron

3.2.6 Stable Diffusion

Model Frame-
works/Libraries

Samples and Tutorials

stable-diffusion-v1-5 torch-neuronx
• HuggingFace Stable Diffusion 1.5 (512x512) Inference

on Trn1 / Inf2

stable-diffusion-2-1-base torch-neuronx
• HuggingFace Stable Diffusion 2.1 (512x512) Inference

on Trn1 / Inf2

stable-diffusion-2-1 torch-neuronx
• HuggingFace Stable Diffusion 2.1 (768x768) Inference

on Trn1 / Inf2
• Deploy & Run Stable Diffusion on SageMaker and Infer-

entia2

stable-diffusion-xl-base-
1.0

torch-neuronx
• HuggingFace Stable Diffusion XL 1.0 (1024x1024) Infer-

ence on Inf2
• HuggingFace Stable Diffusion XL 1.0 Base and Refiner

(1024x1024) Inference on Inf2

stable-diffusion-2-
inpainting

torch-neuronx
• stable-diffusion-2-inpainting model Inference on Trn1 /

Inf2

3.2.7 Multi Modal

Model Frame-
works/Libraries

Samples and Tutorials

multimodal-perceiver torch-neuronx
• HuggingFace Multimodal Perceiver Inference on Trn1 /

Inf2

language-perceiver torch-neuronx
• HF Pretrained Perceiver Language Inference on Trn1 /

Inf2

vision-perceiver-conv torch-neuronx
• HF Pretrained Perceiver Image Classification Inference

on Trn1 / Inf2

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf1

16 Chapter 3. Model Samples and Tutorials

https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sd15_512_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sd15_512_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sd2_512_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sd2_512_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sd2_768_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sd2_768_inference.ipynb
https://github.com/aws-neuron/aws-neuron-sagemaker-samples/blob/master/inference/stable-diffusion/StableDiffusion2_1.ipynb
https://github.com/aws-neuron/aws-neuron-sagemaker-samples/blob/master/inference/stable-diffusion/StableDiffusion2_1.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sdxl_base_1024_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sdxl_base_1024_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sdxl_base_and_refiner_1024_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sdxl_base_and_refiner_1024_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/inference/hf_pretrained_sd2_inpainting_936_624_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/inference/hf_pretrained_sd2_inpainting_936_624_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_perceiver_multimodal_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_perceiver_multimodal_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_perceiver_language_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_perceiver_language_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_perceiver_vision_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_perceiver_vision_inference.ipynb

AWS Neuron

3.3 Inference Samples/Tutorials (Inf1)

Table of contents

• Encoders

• Vision Transformers

• Convolutional Neural Networks(CNN)

• Vision

3.3.1 Encoders

Model Frame-
works/Libraries

Samples and Tutorials

bert-base-cased-
finetuned-mrpc

torch-neuron
• HuggingFace pretrained BERT tutorial [html] [notebook]
• BertBaseCased Inference on Inf1 instances
• Bert TorchServe tutorial [html]
• Bring your own HuggingFace pretrained BERT container

to Sagemaker Tutorial [html] [notebook]

bert-base-uncased torch-neuron
• NeuronCore Pipeline tutorial [html] [notebook]

bert-large-uncased torch-neuron
• BertLargeUncased Inference on Inf1 instances

bert-large tensorflow-neuron
• Tensorflow 1.x - Running TensorFlow BERT-Large with

AWS Neuron [html]

roberta-base torch-neuron
• Roberta-Base inference on Inf1 instances

distilbert-base-uncased-
finetuned-sst-2-english

tensorflow-neuron
• Tensorflow 2.x - HuggingFace Pipelines distilBERT with

Tensorflow2 Neuron [html] [notebook]

gluon bert mxnet-neuron
• MXNet 1.8: Using data parallel mode tutorial [html]

[notebook]

3.3. Inference Samples/Tutorials (Inf1) 17

https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/bert_tutorial/tutorial_pretrained_bert.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/bertbasecased/BertBaseCased.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/byoc_sm_bert_tutorial/sagemaker_container_neuron.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/pipeline_tutorial/neuroncore_pipeline_pytorch.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/bertlargeuncased/BertLargeUncased.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/robertabase/RobertaBase.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/huggingface_bert/huggingface_bert.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/mxnet/data_parallel/data_parallel_tutorial.ipynb

AWS Neuron

3.3.2 Vision Transformers

Model Frame-
works/Libraries

Samples and Tutorials

ssd torch-neuron
• Inference of SSD model on inf1 instances

ssd tensorflow-neuron
• Tensorflow 1.x - SSD300 tutorial [html]

TrOCR torch-neuron
• TrOCR inference on Inf1 instances

vgg torch-neuron
• VGG inference on Inf1 instances

google/vit-base-patch16-
224

torch-neuron
• ViT model inference on Inf1

18 Chapter 3. Model Samples and Tutorials

https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/ssd/SSD300VGG16.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/trocr/TrOCR.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/vgg/VGG.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/vit/ViT.ipynb

AWS Neuron

3.3. Inference Samples/Tutorials (Inf1) 19

AWS Neuron

3.3.3 Convolutional Neural Networks(CNN)

Model Frame-
works/Libraries

Samples and Tutorials

EfficientNet torch-neuron
• EfficientNet model inference on Inf1 instances

GFL (MMDetection) torch-neuron
• GFL (MMDetection) inference on Inf1 instances

HRNet torch-neuron
• HRNET - Pose Estimation

MarianMT torch-neuron
• HuggingFace MarianMT tutorial [html] [notebook]
• Inference of Pre-trained MarianMT model on Inf1

Detectron2 R-CNN torch-neuron
• R-CNN inference on Inf1

resnet torch-neuron
• Inference of Pre-trained Resnet model

(18,34,50,101,152) on Inf1
• ResNet-50 tutorial [html] [notebook]

resnet tensorflow-neuron
• Tensorflow 1.x - ResNet-50 tutorial [html] [notebook]
• Tensorflow 1.x - Keras ResNet-50 optimization tutorial

[html] [notebook]
• Tensorflow 1.x & 2.x - Using NEU-

RON_RT_VISIBLE_CORES with TensorFlow Serving
[html]

resnet mxnet-neuron
• ResNet-50 tutorial [html] [notebook]
• Getting started with Gluon tutorial [html] [notebook]
• NeuronCore Groups tutorial [html] [notebook]

Resnext torch-neuron
• Inference of Resnext model on Inf1

Yolov3 tensorflow-neuron
• Tensorflow 1.x - YOLOv3 tutorial [html] [notebook]

Yolov4 torch-neuron
• PyTorch YOLOv4 tutorial [html] [notebook]

Yolov4 tensorflow-neuron
• Tensorflow 1.x - YOLOv4 tutorial [html] [notebook]

Yolov5 torch-neuron
• Inference of Yolov5 on Inf1

Yolov6 torch-neuron
• Inference of Yolov6 on Inf1 instances

Yolov7 torch-neuron
• Inference of Yolov7 model on Inf1

Yolof torch-neuron
• Inference of Yolof model on Inf1

fairseq torch-neuron
• Inference of fairseq model on Inf1

openpose tensorflow-neuron
• Tensorflow 1.x - OpenPose tutorial [html] [notebook]

unet tensorflow-neuron
• Unet - Tensorflow 2.x tutorial

20 Chapter 3. Model Samples and Tutorials

https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/efficientnet/EfficientNet.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/gfl_mmdet/GFL.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/hrnet/HRnet.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/transformers-marianmt.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/marianmt/MarianMT.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/rcnn/Rcnn.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/resnet/Resnet.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/resnet/Resnet.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/resnet50.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/tensorflow_resnet50/resnet50.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/keras_resnet50/keras_resnet50.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/mxnet/resnet50/resnet50.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/mxnet/mxnet-gluon-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/mxnet/resnet50_neuroncore_groups.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/resnext/Resnext.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/yolo_v3_demo/yolo_v3.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/yolo_v4.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/yolo_v4_demo/evaluate.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/yolov5/Yolov5.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/yolov6/Yolov6.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuron/inference/yolov7
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/yolof_detectron2/YoloF.ipynb
https://github.com/aws-neuron/aws-neuron-samples-staging/tree/master/torch-neuron/inference/fairseq
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/openpose_demo/openpose.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/tensorflow-neuron/inference/unet

AWS Neuron

3.3.4 Vision

Model Frame-
works/Libraries

Samples and Tutorials

craft-pytorch torch-neuron
• CRAFT model inference on Inf1

This document is relevant for: Inf1

This section gives you the consolidated list of code samples and tutorials published by AWS Neuron across documen-
tation and various github repos.

Training Samples/Tutorials (Trn1/Trn1n) Inference Samples/Tutorials (Inf2/Trn1) Inference
Samples/Tutorials (Inf1) For links to individual github sample repos, please see neuron-github-samples

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

3.3. Inference Samples/Tutorials (Inf1) 21

https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuron/inference/craft

AWS Neuron

22 Chapter 3. Model Samples and Tutorials

CHAPTER

FOUR

NEURON PERFORMANCE

The Neuron Performance pages provide a reference to the expected performance of various open-source models for
popular deep learning in Natural Language Processing (NLP), Computer Vision (CV) and Recommender model tasks.
We have included with each model links to allow you to setup and reconstruct the test with a few steps.

Inference on Inf1 Performance Numbers Inference on Inf2 Performance Numbers Inference on
Trn1/Trn1n Performance Numbers Training on Trn1/Trn1n Performance Numbers This document is
relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

23

AWS Neuron

24 Chapter 4. Neuron Performance

CHAPTER

FIVE

WHAT’S NEW

Table of contents

• Neuron 2.18.1 (04/10/2024)

• Neuron 2.18.0 (04/01/2024)

• Release Artifacts

• Previous Releases

5.1 Neuron 2.18.1 (04/10/2024)

Neuron 2.18.1 release introduces Continuous batching(beta) and Neuron vLLM integration(beta) support in Trans-
formers NeuronX library that improves LLM inference throughput. This release also fixes hang issues related to Triton
Inference Server as well as updating Neuron DLAMIs and DLCs with this release(2.18.1). See more in Transformers
Neuron (transformers-neuronx) release notes and Neuron Compiler (neuronx-cc) release notes

5.2 Neuron 2.18.0 (04/01/2024)

Table of contents

• What’s New

• 2.18.0 Known Issues and Limitations

• Neuron Components Release Notes

– Inf1, Trn1/Trn1n and Inf2 common packages

– Trn1/Trn1n and Inf2 only packages

– Inf1 only packages

25

AWS Neuron

5.2.1 What’s New

Neuron 2.18 release introduces stable support (out of beta) for PyTorch 2.1, introduces new features and performance
improvements to LLM training and inference, and updates Neuron DLAMIs and Neuron DLCs to support this release
(Neuron 2.18).

Training highlights: LLM model training user experience using NeuronX Distributed (NxD) is improved by intro-
ducing asynchronous checkpointing. This release also adds support for auto partitioning pipeline parallelism in NxD
and introduces Pipeline Parallelism in PyTorch Lightning Trainer (beta).

Inference highlights: Speculative Decoding support (beta) in TNx library improves LLM inference throughput and
output token latency(TPOT) by up to 25% (for LLMs such as Llama-2-70B). TNx also improves weight loading per-
formance by adding support for SafeTensor checkpoint format. Inference using Bucketing in PyTorch NeuronX and
NeuronX Distributed is improved by introducing auto-bucketing feature. This release also adds a new sample for
Mixtral-8x7B-v0.1 and mistralai/Mistral-7B-Instruct-v0.2 in TNx.

Neuron DLAMI and Neuron DLC support highlights: This release introduces new Multi Framework DLAMI for
Ubuntu 22 that customers can use to easily get started with latest Neuron SDK on multiple frameworks that Neuron
supports as well as SSM parameter support for DLAMIs to automate the retrieval of latest DLAMI ID in cloud au-
tomation flows. Support for new Neuron Training and Inference Deep Learning containers (DLCs) for PyTorch 2.1, as
well as a new dedicated GitHub repository to host Neuron container dockerfiles and a public Neuron container registry
to host Neuron container images.

More release content can be found in the table below and each component release notes.

26 Chapter 5. What’s New

AWS Neuron

What’s New Details Instances
Transformers NeuronX
(transformers-neuronx) for In-
ference

• [Beta] Support for Specula-
tive Decoding API. See devel-
oper guide and Llama-2-70B
sample

• Support for SafeTensors
checkpoint format with
improved weight loading
performance. See developer
guide

• Support for running Top-K
sampling on Neuron Device
for improved performance.
See developer guide

• Code Llama model inference
sample with 16K input seq
length. See sample

• [Beta] Support for streaming
API and stopping criteria API.
See developer guide

• Support for
Mixtral-8x7B-v0.1 model
inference. See sample

• [Beta] Support
for mistralai/
Mistral-7B-Instruct-v0.
2 model inference. See
sample

• See more at Transformers
Neuron (transformers-
neuronx) release notes

Inf2, Trn1/Trn1n

NeuronX Distributed (neuronx-
distributed) for Training • Support for Pipeline Paral-

lelism training using PyTorch
Lightning. See api guide , de-
veloper guide and tutorial

• Support for auto partition-
ing pipeline parallel stages
when training large models.
See api guide and Developer
guide for Pipeline Parallelism
(neuronx-distributed)

• Support for asynchronous
checkpointing to improve
the time it takes to save
the checkpoint. See api
guide , Developer guide
for save/load checkpoint
(neuronx-distributed) and
Training Llama-2-13B/70B
with Tensor Parallelism
and Pipeline Parallelism
(neuronx-distributed)

• Tutorial to fine-tune Llama-
2-7B model using PyTorch
Lightning and running eval-
uation on the fine-tuned
model using Hugging Face
optimum-neuron. See tutorial

• codegen25-7b-mono
model training tutorial
and script. See code-
gen25_7b_tp_zero1_tutorial

• See more at Neuron Dis-
tributed Release Notes
(neuronx-distributed)

Trn1/Trn1n

NeuronX Distributed (neuronx-
distributed) for Inference • Support for auto bucketing

in inference using a custom
bucket kernel that can be
passed as a bucket configura-
tion to Tracing API. See api
guide and Developer guide
for Neuronx-Distributed In-
ference (neuronx-distributed)

• Support for inference
with bf16 data type us-
ing XLA_USE_BF16=1
flag. See sample ([html]
[notebook])

• See more at Neuron Dis-
tributed Release Notes
(neuronx-distributed)

Inf2,Trn1/Trn1n

PyTorch NeuronX (torch-neuronx)
• PyTorch 2.1 support is now

stable (out of beta). See up-
dated App Note and release
notes for known issues.

• Support for auto bucket-
ing in inference using a
custom bucket kernel that
can be passed as a bucket
configuration to Tracing
API. See torch-neuronx-
autobucketing-devguide

• See more at PyTorch Neuron
(torch-neuronx) release notes

Trn1/Trn1n,Inf2

NeuronX Nemo Megatron for Train-
ing • Support for LoRa finetuning.

See sample script
• Support for Mistral-7B train-

ing. See sample script
• Support for asynchronous

checkpointing to improve
the time it takes to save the
checkpoint.

• See more at neuronx-nemo-
megatron github repo and
neuronx-nemo-rn

Trn1/Trn1n,Inf2

Neuron Compiler (neuronx-cc)
• New
--enable-mixed-precision-accumulation
compiler option to perform
intermediate computations
of an operation in FP32
regardless of the operation’s
defined datatype. See Neuron
Compiler CLI Reference
Guide (neuronx-cc)

• See more at Neuron Compiler
(neuronx-cc) release notes

Trn1/Trn1n,Inf2

Neuron DLAMI and DLC
• New Neuron Multi Frame-

work Deep Learning AMI
(DLAMI) for Ubuntu 22 with
separate virtual environments
for PyTorch 2.1, PyTorch
1.13, Transformers NeuronX
and Tensorflow 2.10. See
setup guide and Neuron
DLAMI User Guide

• Neuron Multi Frame-
work Deep Learning AMI
(DLAMI) is now the default
Neuron AMI in QuickStart
AMI list when launching
Neuron instances for Ubuntu
through AWS console. See
setup guide

• Neuron DLAMIs for PyTorch
1.13 and Tensorflow 2.10 are
updated with 2.18 Neuron
SDK for both Ubuntu 20 and
AL2. See Neuron DLAMI
User Guide

• SSM parameter support for
Neuron DLAMIs to find the
DLAMI id with latest Neu-
ron release SDK. See Neuron
DLAMI User Guide

• New Neuron Deep Learn-
ing Containers(DLCs) for Py-
Torch 2.1 Inference and Train-
ing. See Deploy Containers
with Neuron

• PyTorch 1.13 Inference and
Training DLCs are updated
with latest 2.18 Neuron SDK
and now also comes with
pre-installed NeuronX Dis-
tributed library. See Deploy
Containers with Neuron

• Neuron DLCs are now hosted
both in public Neuron ECR
and as private images. Private
images are only needed when
using with Sagemaker. See
Deploy Containers with Neu-
ron

• New Neuron Github Repos-
itory to host dockerfiles for
Neuron DLCs. See neu-
ron deep learning containers
github repo

Inf1,Inf2,Trn1/Trn1n

Other Documentation Updates
• App Note on snapshotting

models with PyTorch Neu-
ronX 2.1 to support dumping
debug information. See How
to debug models in PyTorch
NeuronX

• Added announcement for
Maintenance mode of Tensor-
Flow 1.x. See announce-tfx-
maintenance

• See more at neuron-
documentation-rn

Inf1, Inf2, Trn1/Trn1n

Minor enhancements and bug fixes.
• See Neuron Components Re-

lease Notes

Trn1/Trn1n , Inf2, Inf1

Known Issues and Limitations
• See 2.18.0 Known Issues and

Limitations

Trn1/Trn1n , Inf2, Inf1

Release Artifacts
• see Release Artifacts Trn1/Trn1n , Inf2, Inf1

5.2. Neuron 2.18.0 (04/01/2024) 27

https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/transformers-neuronx/inference/speculative_sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/transformers-neuronx/inference/speculative_sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/transformers-neuronx/inference/codellama-13b-16k-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/transformers-neuronx/inference/mixtral-8x7b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/transformers-neuronx/inference/mistralai-Mistral-7b-Instruct-v0.2.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/neuronx_distributed/llama/llama2_inference.ipynb
https://github.com/aws-neuron/neuronx-nemo-megatron/tree/main/nemo/examples/nlp/language_modeling/test_llama_lora.sh
https://github.com/aws-neuron/neuronx-nemo-megatron/tree/main/nemo/examples/nlp/language_modeling/test_mistral.sh
https://github.com/aws-neuron/neuronx-nemo-megatron
https://github.com/aws-neuron/neuronx-nemo-megatron
https://github.com/aws-neuron/deep-learning-containers
https://github.com/aws-neuron/deep-learning-containers
https://github.com/aws-neuron/deep-learning-containers

AWS Neuron

5.2.2 2.18.0 Known Issues and Limitations

• For PyTorch 2.1 (NeuronX), slow convergence for LLaMA-2 70B training when using Zero Redundancy Opti-
mizer (ZeRO1) can be resolved by removing all compiler flags.

• For PyTorch 2.1 (NeuronX), torch-xla 2.1 is incompatible with the default GLibC on AL2. Users are advised to
migrate to Amazon Linux 2023 , Ubuntu 22 or Ubuntu 20 Operating systems.

• See component release notes below for any additional known issues.

5.2.3 Neuron Components Release Notes

28 Chapter 5. What’s New

AWS Neuron

Inf1, Trn1/Trn1n and Inf2 common packages

Component Instance/s Package/s Details
Neuron Runtime Trn1/Trn1n, Inf1, Inf2

• Trn1/Trn1n:
aws-neuronx-runtime-lib
(.deb, .rpm)

• Inf1: Runtime is
linked into the
ML frameworks
packages

• Neuron Runtime Re-
lease Notes

Neuron Runtime Driver Trn1/Trn1n, Inf1, Inf2 •
aws-neuronx-dkms
(.deb, .rpm)

• Neuron Driver Re-
lease Notes

Neuron System Tools Trn1/Trn1n, Inf1, Inf2 •
aws-neuronx-tools
(.deb, .rpm)

• Neuron System
Tools

Containers Trn1/Trn1n, Inf1, Inf2 •
aws-neuronx-k8-plugin
(.deb, .rpm)

•
aws-neuronx-k8-scheduler
(.deb, .rpm)

•
aws-neuronx-oci-hooks
(.deb, .rpm)

• Neuron K8 Release
Notes

• Neuron Containers
Release Notes

NeuronPerf (Inference
only)

Trn1/Trn1n, Inf1, Inf2
• neuronperf (.whl) • NeuronPerf 1.x Re-

lease Notes

TensorFlow Model Server
Neuron

Trn1/Trn1n, Inf1, Inf2 •
tensorflow-model-server-neuronx
(.deb, .rpm)

• tensorflow-
modeslserver-
neuronx-rn

Neuron Documentation Trn1/Trn1n, Inf1, Inf2 • • neuron-
documentation-rn

5.2. Neuron 2.18.0 (04/01/2024) 29

AWS Neuron

Trn1/Trn1n and Inf2 only packages

Component Instance/s Package/s Details
PyTorch Neuron Trn1/Trn1n, Inf2

• torch-neuronx
(.whl)

• PyTorch Neuron
(torch-neuronx)
release notes

• PyTorch Neuron
(torch-neuronx) -
Supported Opera-
tors

TensorFlow Neuron Trn1/Trn1n, Inf2 •
tensorflow-neuronx
(.whl)

• TensorFlow Neu-
ron (tensorflow-
neuronx) Release
Notes

Neuron Compiler
(Trn1/Trn1n, Inf2 only)

Trn1/Trn1n, Inf2
• neuronx-cc (.whl) • Neuron Com-

piler (neuronx-cc)
release notes

Collective Communica-
tion library

Trn1/Trn1n, Inf2 •
aws-neuronx-collective
(.deb, .rpm)

• Neuron Collectives
Release Notes

Neuron Custom C++ Op-
erators

Trn1/Trn1n, Inf2 •
aws-neuronx-gpsimd-customop
(.deb, .rpm)

•
aws-neuronx-gpsimd-tools
(.deb, .rpm)

• Neuron Custom
C++ Library
Release Notes

• Neuron Custom
C++ Tools Release
Notes

Transformers Neuron Trn1/Trn1n, Inf2 •
transformers-neuronx
(.whl)

• Transformers Neu-
ron (transformers-
neuronx) release
notes

Neuron Distributed Trn1/Trn1n, Inf2 •
neuronx-distributed
(.whl)

• Neuron Dis-
tributed Release
Notes (neuronx-
distributed)

AWS Neuron Reference
for NeMo Megatron

Trn1/Trn1n • neuronx-nemo-
megatron github
repo

• neuronx-nemo-rn

Note: In next releases aws-neuronx-tools and aws-neuronx-runtime-lib will add support for Inf1.

30 Chapter 5. What’s New

https://github.com/aws-neuron/neuronx-nemo-megatron
https://github.com/aws-neuron/neuronx-nemo-megatron
https://github.com/aws-neuron/neuronx-nemo-megatron

AWS Neuron

Inf1 only packages

Component Instance/s Package/s Details
PyTorch Neuron Inf1

• torch-neuron
(.whl)

• PyTorch Neuron
(torch-neuron)
release notes

• PyTorch Neuron
(torch-neuron) Sup-
ported operators

TensorFlow Neuron Inf1 •
tensorflow-neuron
(.whl)

• TensorFlow Neuron
(tensorflow-neuron
(TF1.x)) Release
Notes

• TensorFlow Neuron
(tensorflow-neuron
(TF1.x)) Supported
operators

• TensorFlow Neuron
(tensorflow-neuron
(TF2.x)) Release
Notes

Apache MXNet Inf1
• mx_neuron (.whl) • Apache MXNet

Neuron Release
Notes

• Neuron Apache
MXNet Supported
operators

Neuron Compiler (Inf1
only)

Inf1
• neuron-cc (.whl) • Neuron Compiler

(neuron-cc) for Inf1
Release Notes

• Neuron Supported
operators

5.3 Release Artifacts

Table of contents

• Trn1 packages

• Inf2 packages

• Inf1 packages

• Supported Python Versions for Inf1 packages

5.3. Release Artifacts 31

AWS Neuron

• Supported Python Versions for Inf2/Trn1 packages

• Supported Numpy Versions

• Supported HuggingFace Transformers Versions

5.3.1 Trn1 packages

List of packages in Neuron 2.18.1:

Component Package
Collective Communication Library aws-neuronx-collectives-2.20.22.0
Driver aws-neuronx-dkms-2.16.7.0
nan aws-neuronx-gpsimd-customop-lib-0.9.1.0
CustomOps Tools aws-neuronx-gpsimd-tools-0.9.0.0
Kubernetes Plugin aws-neuronx-k8-plugin-2.20.13.0
Kubernetes Scheduler aws-neuronx-k8-scheduler-2.20.13.0
OCI aws-neuronx-oci-hook-2.3.0.0
General aws-neuronx-runtime-discovery-2.9
Runtime Library aws-neuronx-runtime-lib-2.20.22.0
System Tools aws-neuronx-tools-2.17.1.0
Framework libneuronxla-2.0.965
Framework libneuronxla-0.5.971
Compiler neuronx-cc-2.13.68.0
Neuron Distributed neuronx_distributed-0.7.0
TensorBoard tensorboard-plugin-neuronx-2.6.7.0
TensorFlow Model Server tensorflow-model-server-neuronx-2.10.1.2.10.19.0
TensorFlow Model Server tensorflow-model-server-neuronx-2.7.4.2.10.19.0
TensorFlow Model Server tensorflow-model-server-neuronx-2.8.4.2.10.19.0
TensorFlow Model Server tensorflow-model-server-neuronx-2.9.3.2.10.19.0
TensorFlow tensorflow-neuronx-2.10.1.2.1.0
TensorFlow tensorflow-neuronx-2.7.4.2.1.0
TensorFlow tensorflow-neuronx-2.8.4.2.1.0
TensorFlow tensorflow-neuronx-2.9.3.2.1.0
PyTorch torch-neuronx-1.13.1.1.14.0
PyTorch torch-neuronx-2.1.2.2.1.0
PyTorch torch_xla-1.13.1+torchneurone
PyTorch torch_xla-2.1.2
Transformers Neuron transformers-neuronx-0.10.0.360

5.3.2 Inf2 packages

List of packages in Neuron 2.18.1:

Component Package
Collective Communication Library aws-neuronx-collectives-2.20.22.0
Driver aws-neuronx-dkms-2.16.7.0
nan aws-neuronx-gpsimd-customop-lib-0.9.1.0
CustomOps Tools aws-neuronx-gpsimd-tools-0.9.0.0
Kubernetes Plugin aws-neuronx-k8-plugin-2.20.13.0

(continues on next page)

32 Chapter 5. What’s New

AWS Neuron

(continued from previous page)

Kubernetes Scheduler aws-neuronx-k8-scheduler-2.20.13.0
OCI aws-neuronx-oci-hook-2.3.0.0
General aws-neuronx-runtime-discovery-2.9
Runtime Library aws-neuronx-runtime-lib-2.20.22.0
System Tools aws-neuronx-tools-2.17.1.0
Framework libneuronxla-2.0.965
Framework libneuronxla-0.5.971
Compiler neuronx-cc-2.13.68.0
Neuron Distributed neuronx_distributed-0.7.0
TensorBoard tensorboard-plugin-neuronx-2.6.7.0
TensorFlow Model Server tensorflow-model-server-neuronx-2.10.1.2.10.19.0
TensorFlow Model Server tensorflow-model-server-neuronx-2.7.4.2.10.19.0
TensorFlow Model Server tensorflow-model-server-neuronx-2.8.4.2.10.19.0
TensorFlow Model Server tensorflow-model-server-neuronx-2.9.3.2.10.19.0
TensorFlow tensorflow-neuronx-2.10.1.2.1.0
TensorFlow tensorflow-neuronx-2.8.4.2.1.0
TensorFlow tensorflow-neuronx-2.9.3.2.1.0
PyTorch torch-neuronx-1.13.1.1.14.0
PyTorch torch-neuronx-2.1.2.2.1.0
PyTorch torch_xla-1.13.1+torchneurone
PyTorch torch_xla-2.1.2
Transformers Neuron transformers-neuronx-0.10.0.360

5.3.3 Inf1 packages

List of packages in Neuron 2.18.1:

Component Package
Driver aws-neuronx-dkms-2.16.7.0
Kubernetes Plugin aws-neuronx-k8-plugin-2.20.13.0
Kubernetes Scheduler aws-neuronx-k8-scheduler-2.20.13.0
OCI aws-neuronx-oci-hook-2.3.0.0
System Tools aws-neuronx-tools-2.17.1.0
Compiler dmlc_nnvm-1.19.0.0
Compiler dmlc_topi-1.19.0.0
Compiler dmlc_tvm-1.19.0.0
Compiler inferentia_hwm-1.17.0.0
MXNet mx_neuron-1.8.0.2.4.50.0
MXNet mxnet_neuron-1.5.1.1.10.0.0
Compiler neuron-cc-1.22.0.0
Perf Tools neuronperf-1.8.55.0
TensorFlow Model Server tensorflow-model-server-neuronx-2.10.1.2.10.19.0
TensorFlow Model Server tensorflow-model-server-neuronx-2.7.4.2.10.19.0
TensorFlow Model Server tensorflow-model-server-neuronx-2.8.4.2.10.19.0
TensorFlow Model Server tensorflow-model-server-neuronx-2.9.3.2.10.19.0
TensorFlow tensorflow-neuron-2.10.1.2.10.19.0
TensorFlow tensorflow-neuron-2.7.4.2.10.19.0
TensorFlow tensorflow-neuron-2.8.4.2.10.19.0
TensorFlow tensorflow-neuron-2.9.3.2.10.19.0
PyTorch torch-neuron-1.10.2.2.9.74.0

(continues on next page)

5.3. Release Artifacts 33

AWS Neuron

(continued from previous page)

PyTorch torch-neuron-1.11.0.2.9.74.0
PyTorch torch-neuron-1.12.1.2.9.74.0
PyTorch torch-neuron-1.13.1.2.9.74.0
PyTorch torch-neuron-1.9.1.2.9.74.0

5.3.4 Supported Python Versions for Inf1 packages

List of packages in Neuron 2.18.1:

Package Supported Python Versions
dmlc_nnvm-1.19.0.0 3.8, 3.9, 3.10
dmlc_topi-1.19.0.0 3.8, 3.9, 3.10
dmlc_tvm-1.19.0.0 3.8, 3.9, 3.10
inferentia_hwm-1.17.0.0 3.8, 3.9, 3.10
mx_neuron-1.8.0.2.4.50.0 3.8, 3.9, 3.10
mxnet_neuron-1.5.1.1.10.0.0 3.8, 3.9, 3.10
neuron-cc-1.22.0.0 3.8, 3.9, 3.10
neuronperf-1.8.55.0 3.8, 3.9, 3.10
tensorflow-neuron-2.10.1.2.10.19.0 3.8, 3.9, 3.10
tensorflow-neuron-2.7.4.2.10.19.0 3.8, 3.9, 3.10
tensorflow-neuron-2.8.4.2.10.19.0 3.8, 3.9, 3.10
tensorflow-neuron-2.9.3.2.10.19.0 3.8, 3.9, 3.10
torch-neuron-1.10.2.2.9.74.0 3.8, 3.9, 3.10
torch-neuron-1.11.0.2.9.74.0 3.8, 3.9, 3.10
torch-neuron-1.12.1.2.9.74.0 3.8, 3.9, 3.10
torch-neuron-1.13.1.2.9.74.0 3.8, 3.9, 3.10
torch-neuron-1.9.1.2.9.74.0 3.8, 3.9, 3.10

5.3.5 Supported Python Versions for Inf2/Trn1 packages

List of packages in Neuron 2.18.1:

Package Supported Python Versions
aws-neuronx-runtime-discovery-2.9 3.8, 3.9, 3.10
libneuronxla-2.0.965 3.8, 3.9, 3.10
libneuronxla-0.5.971 3.8, 3.9, 3.10
neuronx-cc-2.13.68.0 3.8, 3.9, 3.10
neuronx_distributed-0.7.0 3.8, 3.9, 3.10
tensorflow-neuronx-2.10.1.2.1.0 3.8, 3.9, 3.10
tensorflow-neuronx-2.8.4.2.1.0 3.8, 3.9, 3.10
tensorflow-neuronx-2.9.3.2.1.0 3.8, 3.9, 3.10
torch-neuronx-1.13.1.1.14.0 3.8, 3.9, 3.10
torch-neuronx-2.1.2.2.1.0 3.8, 3.9, 3.10
torch_xla-1.13.1+torchneurone 3.8, 3.9, 3.10
torch_xla-2.1.2 3.8, 3.9, 3.10
transformers-neuronx-0.10.0.360 3.8, 3.9, 3.10

34 Chapter 5. What’s New

AWS Neuron

5.3.6 Supported Numpy Versions

Neuron supports versions >= 1.21.6 and <= 1.22.2

5.3.7 Supported HuggingFace Transformers Versions

Package Supported HuggingFace Transformers Versions
torch-neuronx < 4.35 and >=4.37.2
transformers-neuronx >= 4.36.0
neuronx-distributed - Llama model class 4.31
neuronx-distributed - GPT NeoX model class 4.26
neuronx-distributed - Bert model class 4.26
nemo-megatron 4.31.0

5.4 Previous Releases

• prev-rn

• pre-release-content

• prev-n1-rn

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

5.4. Previous Releases 35

AWS Neuron

36 Chapter 5. What’s New

CHAPTER

SIX

ANNOUNCEMENTS

This page will be replaced by ABlog. It’s here to make sure it’s in the TOC.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

37

AWS Neuron

38 Chapter 6. Announcements

CHAPTER

SEVEN

PYTORCH NEURON

PyTorch Neuron unlocks high-performance and cost-effective deep learning acceleration on AWS Trainium-based and
Inferentia-based Amazon EC2 instances.

PyTorch Neuron plugin architecture enables native PyTorch models to be accelerated on Neuron devices, so you can
use your existing framework application and get started easily with minimal code changes.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

7.1 Pytorch Neuron Setup

PyTorch Neuron (torch-neuronx) Setup for Inf2, Trn1/Trn1n Instances PyTorch Neuron (torch-neuron)
Setup for Inf1 Instances This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

7.2 Inference with torch-neuronx (Inf2 & Trn1/Trn1n)

This document is relevant for: Inf2, Trn1, Trn1n

7.2.1 Tutorials for Inference (torch-neuronx)

Compiling and Deploying HuggingFace Pretrained BERT on Trn1 or Inf2

Introduction

In this tutorial we will compile and deploy a HuggingFace Transformers BERT model for accelerated inference on
Neuron. In this tutorial, we will be deploying directly on Trn1/Inf2 instances. If you are looking to deploy this model
through SageMaker on Inf2 instance, please visit the Sagemaker samples repository.

This tutorial will use the bert-base-cased-finetuned-mrpc model. This model has 12 layers, 768 hidden dimensions, 12
attention heads, and 110M total parameters. The final layer is a binary classification head that has been trained on the
Microsoft Research Paraphrase Corpus (mrpc). The input to the model is two sentences and the output of the model is
whether or not those sentences are a paraphrase of each other.

This tutorial has the following main sections:

1. Install dependencies

2. Compile the BERT model

39

https://github.com/aws-neuron/aws-neuron-sagemaker-samples/tree/master/inference/inf2-bert-on-sagemaker
https://huggingface.co/bert-base-cased-finetuned-mrpc

AWS Neuron

3. Run inference on Neuron and compare results to CPU

4. Benchmark the model using multicore inference

5. Finding the optimal batch size

This Jupyter notebook should be run on a Trn1 instance (trn1.2xlarge or larger.) or Inf2 instance (inf2.xlarge or
larger.)

Install dependencies

The code in this tutorial is written for Jupyter Notebooks. To use Jupyter Notebook on the Neuron instance, you can
use this guide.

This tutorial requires the following pip packages:

• torch-neuronx

• neuronx-cc

• transformers

Most of these packages will be installed when configuring your environment using the Trn1/Inf2 setup guide. The
additional dependencies must be installed here:

[]: %env TOKENIZERS_PARALLELISM=True #Supresses tokenizer warnings making errors easier to␣
→˓detect
!pip install --upgrade transformers

Compile the model into an AWS Neuron optimized TorchScript

In the following section, we load the BERT model and tokenizer, get a sample input, run inference on CPU, compile
the model for Neuron using torch_neuronx.trace(), and save the optimized model as TorchScript.

torch_neuronx.trace() expects a tensor or tuple of tensor inputs to use for tracing, so we unpack the tokenizer
output using the encode function.

The result of the trace stage will be a static executable where the operations to be run upon inference are determined
during compilation. This means that when inferring, the resulting Neuron model must be executed with tensors that
are the exact same shape as those provided at compilation time. If a model is given a tensor at inference time whose
shape does not match the tensor given at compilation time, an error will occur.

For language models, the shape of the tokenizer tensors can vary based on the length of input sentence. We can satisfy
the Neuron restriction of using a fixed shape input by padding all varying input tensors to a specified length. In a
deployment scenario, the padding size should be chosen based on the maximum token length that is expected to occur
for the application.

In the following section we will assume that we will receive a maximum of 128 tokens at inference time. We will pad
our example inputs by using padding='max_length' and to avoid potential errors caused by creating a tensor that is
larger than max_length=128, we will always tokenize using truncation=True.

[]: import torch
import torch_neuronx
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import transformers

(continues on next page)

40 Chapter 7. PyTorch Neuron

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/setup/notebook/setup-jupyter-notebook-steps-troubleshooting.html

AWS Neuron

(continued from previous page)

def encode(tokenizer, *inputs, max_length=128, batch_size=1):
tokens = tokenizer.encode_plus(

*inputs,
max_length=max_length,
padding='max_length',
truncation=True,
return_tensors="pt"

)
return (

torch.repeat_interleave(tokens['input_ids'], batch_size, 0),
torch.repeat_interleave(tokens['attention_mask'], batch_size, 0),
torch.repeat_interleave(tokens['token_type_ids'], batch_size, 0),

)

Create the tokenizer and model
name = "bert-base-cased-finetuned-mrpc"
tokenizer = AutoTokenizer.from_pretrained(name)
model = AutoModelForSequenceClassification.from_pretrained(name, torchscript=True)

Set up some example inputs
sequence_0 = "The company HuggingFace is based in New York City"
sequence_1 = "Apples are especially bad for your health"
sequence_2 = "HuggingFace's headquarters are situated in Manhattan"

paraphrase = encode(tokenizer, sequence_0, sequence_2)
not_paraphrase = encode(tokenizer, sequence_0, sequence_1)

Run the original PyTorch BERT model on CPU
cpu_paraphrase_logits = model(*paraphrase)[0]
cpu_not_paraphrase_logits = model(*not_paraphrase)[0]

Compile the model for Neuron
model_neuron = torch_neuronx.trace(model, paraphrase)

Save the TorchScript for inference deployment
filename = 'model.pt'
torch.jit.save(model_neuron, filename)

Run inference and compare results

In this section we load the compiled model, run inference on Neuron, and compare the CPU and Neuron outputs.

NOTE: Although this tutorial section uses one NeuronCore (and the next section uses two NeuronCores), by default
each Jupyter notebook Python process will attempt to take ownership of all NeuronCores visible on the instance. For
multi-process applications where each process should only use a subset of the NeuronCores on the instance you can use
NEURON_RT_NUM_CORES=N or NEURON_RT_VISIBLE_CORES=< list of NeuronCore IDs > when starting the
Jupyter notebook as described in NeuronCore Allocation and Model Placement for Inference.

[]: # Load the TorchScript compiled model
model_neuron = torch.jit.load(filename)

(continues on next page)

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 41

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/frameworks/torch/torch-neuronx/programming-guide/inference/core-placement.html

AWS Neuron

(continued from previous page)

Verify the TorchScript works on both example inputs
neuron_paraphrase_logits = model_neuron(*paraphrase)[0]
neuron_not_paraphrase_logits = model_neuron(*not_paraphrase)[0]

Compare the results
print('CPU paraphrase logits: ', cpu_paraphrase_logits.detach().numpy())
print('Neuron paraphrase logits: ', neuron_paraphrase_logits.detach().numpy())
print('CPU not-paraphrase logits: ', cpu_not_paraphrase_logits.detach().numpy())
print('Neuron not-paraphrase logits: ', neuron_not_paraphrase_logits.detach().numpy())

Benchmarking

In this section we benchmark the performance of the BERT model on Neuron. By default, models compiled with
torch_neuronx will always execute on a single NeuronCore. When loading multiple models, the default behavior of
the Neuron runtime is to evenly distribute models across all available NeuronCores. The runtime places models on the
NeuronCore that has the fewest models loaded to it first. In the following section, we will torch.jit.load multiple
instances of the model which should each be loaded onto their own NeuronCore. It is not useful to load more copies of
a model than the number of NeuronCores on the instance since an individual NeuronCore can only execute one model
at a time.

To ensure that we are maximizing hardware utilization, we must run inferences using multiple threads in parallel. It is
nearly always recommended to use some form of threading/multiprocessing and some form of model replication since
even the smallest Neuron EC2 instance has 2 NeuronCores available. Applications with no form of threading are only
capable of 1 / num_neuron_cores hardware utilization which becomes especially problematic on large instances.

One way to view the hardware utilization is by executing the neuron-top application in the terminal while the bench-
mark is executing. If the monitor shows >90% utilization on all NeuronCores, this is a good indication that the hardware
is being utilized effectively.

In this example we load two models, which utilizes all NeuronCores (2) on a trn1.2xlarge or inf2.xlarge instance.
Additional models can be loaded and run in parallel on larger Trn1 or Inf2 instance sizes to increase throughput.

We define a benchmarking function that loads two optimized BERT models onto two separate NeuronCores, runs
multithreaded inference, and calculates the corresponding latency and throughput.

[]: import time
import concurrent.futures
import numpy as np

def benchmark(filename, example, n_models=2, n_threads=2, batches_per_thread=1000):
"""
Record performance statistics for a serialized model and its input example.

Arguments:
filename: The serialized torchscript model to load for benchmarking.
example: An example model input.
n_models: The number of models to load.
n_threads: The number of simultaneous threads to execute inferences on.
batches_per_thread: The number of example batches to run per thread.

Returns:
(continues on next page)

42 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

A dictionary of performance statistics.
"""

Load models
models = [torch.jit.load(filename) for _ in range(n_models)]

Warmup
for _ in range(8):

for model in models:
model(*example)

latencies = []

Thread task
def task(model):

for _ in range(batches_per_thread):
start = time.time()
model(*example)
finish = time.time()
latencies.append((finish - start) * 1000)

Submit tasks
begin = time.time()
with concurrent.futures.ThreadPoolExecutor(max_workers=n_threads) as pool:

for i in range(n_threads):
pool.submit(task, models[i % len(models)])

end = time.time()

Compute metrics
boundaries = [50, 95, 99]
percentiles = {}

for boundary in boundaries:
name = f'latency_p{boundary}'
percentiles[name] = np.percentile(latencies, boundary)

duration = end - begin
batch_size = 0
for tensor in example:

if batch_size == 0:
batch_size = tensor.shape[0]

inferences = len(latencies) * batch_size
throughput = inferences / duration

Metrics
metrics = {

'filename': str(filename),
'batch_size': batch_size,
'batches': len(latencies),
'inferences': inferences,
'threads': n_threads,
'models': n_models,
'duration': duration,

(continues on next page)

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 43

AWS Neuron

(continued from previous page)

'throughput': throughput,
**percentiles,

}

display(metrics)

def display(metrics):
"""
Display the metrics produced by `benchmark` function.

Args:
metrics: A dictionary of performance statistics.

"""
pad = max(map(len, metrics)) + 1
for key, value in metrics.items():

parts = key.split('_')
parts = list(map(str.title, parts))
title = ' '.join(parts) + ":"

if isinstance(value, float):
value = f'{value:0.3f}'

print(f'{title :<{pad}} {value}')

Benchmark BERT on Neuron
benchmark(filename, paraphrase)

Finding the optimal batch size

Batch size has a direct impact on model performance. The NeuronCore architecture is optimized to maximize through-
put with relatively small batch sizes. This means that a Neuron compiled model can outperform a GPU model, even if
running single digit batch sizes.

As a general best practice, we recommend optimizing your model’s throughput by compiling the model with a small
batch size and gradually increasing it to find the peak throughput on Neuron. To minimize latency, using batch size
= 1will nearly always be optimal. This batch size configuration is typically used for on-demand inference applications.
To maximize throughput, usually 1 < batch_size < 10 is optimal. A configuration which uses a larger batch size
is generally ideal for batched on-demand inference or offline batch processing.

In the following section, we compile BERT for multiple batch size inputs. We then run inference on each batch size
and benchmark the performance. Notice that latency increases consistently as the batch size increases. Throughput
increases as well, up until a certain point where the input size becomes too large to be efficient.

[]: # Compile BERT for different batch sizes
for batch_size in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:

tokenizer = AutoTokenizer.from_pretrained(name)
model = AutoModelForSequenceClassification.from_pretrained(name, torchscript=True)
example = encode(tokenizer, sequence_0, sequence_2, batch_size=batch_size)
model_neuron = torch_neuronx.trace(model, example)

(continues on next page)

44 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

filename = f'model_batch_size_{batch_size}.pt'
torch.jit.save(model_neuron, filename)

[]: # Benchmark BERT for different batch sizes
for batch_size in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:

print('-'*50)
example = encode(tokenizer, sequence_0, sequence_2, batch_size=batch_size)
filename = f'model_batch_size_{batch_size}.pt'
benchmark(filename, example)
print()

This document is relevant for: Inf2, Trn1, Trn1n

BERT TorchServe Tutorial

Table of Contents

• Overview

• Run the tutorial

• Setup TorchServe

• Run TorchServe

• Benchmark TorchServe

Overview

Update 10/02:This tutorial is currently broken and the AWS Neuron team is working on providing the fix.

This tutorial demonstrates the use of TorchServe with Neuron, the SDK for EC2 Inf2 and Trn1 instances. By the end
of this tutorial, you will understand how TorchServe can be used to serve a model backed by EC2 Inf2/Trn1 instances.
We will use a pretrained BERT-Base model to determine if one sentence is a paraphrase of another.

Run the tutorial

Open a terminal, log into your remote instance, and activate a Pytorch virtual environment setup (see the:ref:Install
PyTorch Neuron <setup-torch-neuronx>). To complete this tutorial, you will also need a compiled BERT model. You
can run trace_bert_neuronx.py to obtain a traced BERT model.

You should now have a compiled bert_neuron_b6.pt file, which is required going forward.

Open a shell on the instance you prepared earlier, create a new directory named torchserve. Copy your compiled
model from the previous tutorial into this new directory.

cd torchserve
ls

bert_neuron_b6.pt

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 45

https://pytorch.org/serve

AWS Neuron

Prepare a new Python virtual environment with the necessary Neuron and TorchServe components. Use a virtual
environment to keep (most of) the various tutorial components isolated from the rest of the system in a controlled way.

pip install transformers==4.26.0 torchserve==0.7.0 torch-model-archiver==0.7.0 captum==0.
→˓6.0

Install the system requirements for TorchServe.

Amazon Linux 2 DLAMI Base

sudo yum -y install jq java-11-amazon-corretto-headless
sudo alternatives --config java
sudo alternatives --config javac

Ubuntu 20 DLAMI Base

sudo apt -y install openjdk-11-jdk

java -version

openjdk version "11.0.17" 2022-10-18
OpenJDK Runtime Environment (build 11.0.17+8-post-Ubuntu-1ubuntu218.04)
OpenJDK 64-Bit Server VM (build 11.0.17+8-post-Ubuntu-1ubuntu218.04, mixed mode, sharing)

javac -version

javac 11.0.17

Verify that TorchServe is now available.

torchserve --version

TorchServe Version is 0.7.0

Setup TorchServe

During this tutorial you will need to download a few files onto your instance. The simplest way to accomplish this is to
paste the download links provided above each file into a wget command. (We don’t provide the links directly because
they are subject to change.) For example, right-click and copy the download link for config.json shown below.

Listing 1: config.json

{
"model_name": "bert-base-cased-finetuned-mrpc",
"max_length": 128,
"batch_size": 6

}

Now execute the following in your shell:

46 Chapter 7. PyTorch Neuron

AWS Neuron

wget <paste link here>
ls

bert_neuron_b6.pt config.json

Download the custom handler script that will eventually respond to inference requests.

Listing 2: handler_bert_neuronx.py

1 import os
2 import json
3 import sys
4 import logging
5 from abc import ABC
6

7 import torch
8 import torch_neuronx
9

10 from transformers import AutoTokenizer
11 from ts.torch_handler.base_handler import BaseHandler
12

13

14 # one core per worker
15 os.environ['NEURON_RT_NUM_CORES'] = '1'
16

17 logger = logging.getLogger(__name__)
18

19 class BertEmbeddingHandler(BaseHandler, ABC):
20 """
21 Handler class for Bert Embedding computations.
22 """
23 def __init__(self):
24 super(BertEmbeddingHandler, self).__init__()
25 self.initialized = False
26

27 def initialize(self, ctx):
28 self.manifest = ctx.manifest
29 properties = ctx.system_properties
30 self.device = 'cpu'
31 model_dir = properties.get('model_dir')
32 serialized_file = self.manifest['model']['serializedFile']
33 model_pt_path = os.path.join(model_dir, serialized_file)
34

35 # point sys.path to our config file
36 with open('config.json') as fp:
37 config = json.load(fp)
38 self.max_length = config['max_length']
39 self.batch_size = config['batch_size']
40 self.classes = ['not paraphrase', 'paraphrase']
41

42 self.model = torch.jit.load(model_pt_path)
43 logger.debug(f'Model loaded from {model_dir}')
44 self.model.to(self.device)

(continues on next page)

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 47

https://pytorch.org/serve/custom_service.html

AWS Neuron

(continued from previous page)

45 self.model.eval()
46

47 self.tokenizer = AutoTokenizer.from_pretrained(config['model_name'])
48 self.initialized = True
49

50 def preprocess(self, input_data):
51 """
52 Tokenization pre-processing
53 """
54

55 input_ids = []
56 attention_masks = []
57 token_type_ids = []
58 for row in input_data:
59 seq_0 = row['seq_0'].decode('utf-8')
60 seq_1 = row['seq_1'].decode('utf-8')
61 logger.debug(f'Received text: "{seq_0}", "{seq_1}"')
62

63 inputs = self.tokenizer.encode_plus(
64 seq_0,
65 seq_1,
66 max_length=self.max_length,
67 padding='max_length',
68 truncation=True,
69 return_tensors='pt'
70)
71

72 input_ids.append(inputs['input_ids'])
73 attention_masks.append(inputs['attention_mask'])
74 token_type_ids.append(inputs['token_type_ids'])
75

76 batch = (torch.cat(input_ids, 0),
77 torch.cat(attention_masks, 0),
78 torch.cat(token_type_ids, 0))
79

80 return batch
81

82 def inference(self, inputs):
83 """
84 Predict the class of a text using a trained transformer model.
85 """
86

87 # sanity check dimensions
88 assert(len(inputs) == 3)
89 num_inferences = len(inputs[0])
90 assert(num_inferences <= self.batch_size)
91

92 # insert padding if we received a partial batch
93 padding = self.batch_size - num_inferences
94 if padding > 0:
95 pad = torch.nn.ConstantPad1d((0, 0, 0, padding), value=0)
96 inputs = [pad(x) for x in inputs]

(continues on next page)

48 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

97

98 outputs = self.model(*inputs)[0]
99 predictions = []

100 for i in range(num_inferences):
101 prediction = self.classes[outputs[i].argmax(dim=-1).item()]
102 predictions.append([prediction])
103 logger.debug("Model predicted: '%s'", prediction)
104 return predictions
105

106 def postprocess(self, inference_output):
107 return inference_output

Next, we need to associate the handler script with the compiled model using torch-model-archiver. Run the
following commands in your terminal:

mkdir model_store
MAX_LENGTH=$(jq '.max_length' config.json)
BATCH_SIZE=$(jq '.batch_size' config.json)
MODEL_NAME=bert-max_length$MAX_LENGTH-batch_size$BATCH_SIZE
torch-model-archiver --model-name "$MODEL_NAME" --version 1.0 --serialized-file ./bert_
→˓neuron_b6.pt --handler "./handler_bert_neuronx.py" --extra-files "./config.json" --
→˓export-path model_store

Note: If you modify your model or a dependency, you will need to rerun the archiver command with the -f flag
appended to update the archive.

The result of the above will be a mar file inside the model_store directory.

$ ls model_store

bert-max_length128-batch_size6.mar

This file is essentially an archive associated with a fixed version of your model along with its dependencies (e.g. the
handler code).

Note: The version specified in the torch-model-archiver command can be appended to REST API requests to
access a specific version of your model. For example, if your model was hosted locally on port 8080 and named
“bert”, the latest version of your model would be available at http://localhost:8080/predictions/bert, while
version 1.0 would be accessible at http://localhost:8080/predictions/bert/1.0. We will see how to perform
inference using this API in Step 6.

Create a custom config file to set some parameters. This file will be used to configure the server at launch when we run
torchserve --start.

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 49

https://pytorch.org/serve/configuration.html

AWS Neuron

Listing 3: torchserve.config

bind inference API to all network interfaces with SSL enabled
inference_address=http://0.0.0.0:8080
default_workers_per_model=1

Note: This will cause TorchServe to bind on all interfaces. For security in real-world applications, you’ll probably
want to use port 8443 and enable SSL.

Run TorchServe

It’s time to start the server. Typically we’d want to launch this in a separate console, but for this demo we’ll just redirect
output to a file.

torchserve --start --ncs --model-store model_store --ts-config torchserve.config 2>&1 >
→˓torchserve.log

Verify that the server seems to have started okay.

curl http://127.0.0.1:8080/ping

{
"status": "Healthy"

}

Note: If you get an error when trying to ping the server, you may have tried before the server was fully launched.
Check torchserve.log for details.

Use the Management API to instruct TorchServe to load our model.

First, determine the number of NeuronCores available based on your instance size.

Inf2

Instance Size # of NeuronCores
xlarge 2
8xlarge 2
24xlarge 12
48xlarge 24

50 Chapter 7. PyTorch Neuron

https://pytorch.org/serve/configuration.html#enable-ssl

AWS Neuron

Trn1

Instance Size # of NeuronCores
2xlarge 2
32xlarge 32

MAX_BATCH_DELAY=5000 # ms timeout before a partial batch is processed
INITIAL_WORKERS=<number of NeuronCores from table above>
curl -X POST "http://localhost:8081/models?url=$MODEL_NAME.mar&batch_size=$BATCH_SIZE&
→˓initial_workers=$INITIAL_WORKERS&max_batch_delay=$MAX_BATCH_DELAY"

{
"status": "Model \"bert-max_length128-batch_size6\" Version: 1.0 registered with X␣

→˓initial workers"
}

Warning: You shouldn’t set INITIAL_WORKERS above the number of NeuronCores. If you attempt to load more
models than NeuronCores available, one of two things will occur. Either the extra models will fit in device memory
but performance will suffer, or you will encounter an error on your initial inference. However, you may want to use
fewer cores if you are using the NeuronCore Pipeline feature.

Note: Any additional attempts to configure the model after the initial curl request will cause the server to return a 409
error. You’ll need to stop/start/configure the server to realize any changes.

The MAX_BATCH_DELAY is a timeout value that determines how long to wait before processing a partial batch. This is
why the handler code needs to check the batch dimension and potentially add padding. TorchServe will instantiate the
number of model handlers indicated by INITIAL_WORKERS, so this value controls how many models we will load onto
Inferentia in parallel. If you want to control worker scaling more dynamically, see the docs.

It looks like everything is running successfully at this point, so it’s time for an inference.

Create the infer_bert.py file below on your instance.

Listing 4: infer_bert.py

1 import json
2 import concurrent.futures
3 import requests
4

5 with open('config.json') as fp:
6 config = json.load(fp)
7 max_length = config['max_length']
8 batch_size = config['batch_size']
9 name = f'bert-max_length{max_length}-batch_size{batch_size}'

10

11 # dispatch requests in parallel
12 url = f'http://localhost:8080/predictions/{name}'
13 paraphrase = {'seq_0': "HuggingFace's headquarters are situated in Manhattan",
14 'seq_1': "The company HuggingFace is based in New York City"}
15 not_paraphrase = {'seq_0': paraphrase['seq_0'], 'seq_1': 'This is total nonsense.'}

(continues on next page)

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 51

https://pytorch.org/serve/management_api.html#scale-workers

AWS Neuron

(continued from previous page)

16

17 with concurrent.futures.ThreadPoolExecutor(max_workers=batch_size) as executor:
18 def worker_thread(worker_index):
19 # we'll send half the requests as not_paraphrase examples for sanity
20 data = paraphrase if worker_index < batch_size//2 else not_paraphrase
21 response = requests.post(url, data=data)
22 print(worker_index, response.json())
23

24 for worker_index in range(batch_size):
25 executor.submit(worker_thread, worker_index)

This script will send a batch_size number of requests to our model. In this example, we are using a model that
estimates the probability that one sentence is a paraphrase of another. The script sends positive examples in the first
half of the batch and negative examples in the second half.

Execute the script in your terminal.

$ python infer_bert.py

1 ['paraphrase']
3 ['not paraphrase']
4 ['not paraphrase']
0 ['paraphrase']
5 ['not paraphrase']
2 ['paraphrase']

We can see that the first three threads (0, 1, 2) all report paraphrase, as expected. If we instead modify the script to
send an incomplete batch and then wait for the timeout to expire, the excess padding results will be discarded.

Benchmark TorchServe

We’ve seen how to perform a single batched inference, but how many inferences can we process per second? A separate
upcoming tutorial will document performance tuning to maximize throughput. In the meantime, we can still perform
a simple naïve stress test. The code below will spawn 64 worker threads, with each thread repeatedly sending a full
batch of data to process. A separate thread will periodically print throughput and latency measurements.

Listing 5: benchmark_bert.py

1 import os
2 import argparse
3 import time
4 import numpy as np
5 import requests
6 import sys
7 from concurrent import futures
8

9 import torch
10

11

12 parser = argparse.ArgumentParser()
13 parser.add_argument('--url', help='Torchserve model URL', type=str, default=f'http://127.

→˓0.0.1:8080/predictions/bert-max_length128-batch_size6')
(continues on next page)

52 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

14 parser.add_argument('--num_thread', type=int, default=64, help='Number of threads␣
→˓invoking the model URL')

15 parser.add_argument('--batch_size', type=int, default=6)
16 parser.add_argument('--sequence_length', type=int, default=128)
17 parser.add_argument('--latency_window_size', type=int, default=1000)
18 parser.add_argument('--throughput_time', type=int, default=300)
19 parser.add_argument('--throughput_interval', type=int, default=10)
20 args = parser.parse_args()
21

22 data = { 'seq_0': 'A completely made up sentence.',
23 'seq_1': 'Well, I suppose they are all made up.' }
24 live = True
25 num_infer = 0
26 latency_list = []
27

28

29 def one_thread(pred, feed_data):
30 global latency_list
31 global num_infer
32 global live
33 session = requests.Session()
34 while True:
35 start = time.time()
36 result = session.post(pred, data=feed_data)
37 latency = time.time() - start
38 latency_list.append(latency)
39 num_infer += 1
40 if not live:
41 break
42

43

44 def current_performance():
45 last_num_infer = num_infer
46 for _ in range(args.throughput_time // args.throughput_interval):
47 current_num_infer = num_infer
48 throughput = (current_num_infer - last_num_infer) / args.throughput_interval
49 p50 = 0.0
50 p90 = 0.0
51 if latency_list:
52 p50 = np.percentile(latency_list[-args.latency_window_size:], 50)
53 p90 = np.percentile(latency_list[-args.latency_window_size:], 90)
54 print('pid {}: current throughput {}, latency p50={:.3f} p90={:.3f}'.format(os.

→˓getpid(), throughput, p50, p90))
55 sys.stdout.flush()
56 last_num_infer = current_num_infer
57 time.sleep(args.throughput_interval)
58 global live
59 live = False
60

61

62 with futures.ThreadPoolExecutor(max_workers=args.num_thread+1) as executor:
63 executor.submit(current_performance)

(continues on next page)

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 53

AWS Neuron

(continued from previous page)

64 for _ in range(args.num_thread):
65 executor.submit(one_thread, args.url, data)

Run the benchmarking script.

python benchmark_bert.py

pid 1214554: current throughput 0.0, latency p50=0.000 p90=0.000
pid 1214554: current throughput 713.9, latency p50=0.071 p90=0.184
pid 1214554: current throughput 737.9, latency p50=0.071 p90=0.184
pid 1214554: current throughput 731.6, latency p50=0.068 p90=0.192
pid 1214554: current throughput 732.2, latency p50=0.070 p90=0.194
pid 1214554: current throughput 733.9, latency p50=0.070 p90=0.187
pid 1214554: current throughput 739.3, latency p50=0.071 p90=0.184
...

Note: Your throughput numbers may differ from these based on instance type and size.

Congratulations! By now you should have successfully served a batched model over TorchServe.

You can now shutdown torchserve.

torchserve --stop

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf1

LibTorch C++ Tutorial

Table of Contents

• Overview

• Notes

• Run the tutorial

• Benchmark

• Troubleshooting

54 Chapter 7. PyTorch Neuron

AWS Neuron

Overview

This tutorial demonstrates the use of LibTorch with Neuron, the SDK for Amazon Inf1, Inf2 and Trn1 instances. By
the end of this tutorial, you will understand how to write a native C++ application that performs inference on EC2 Inf1,
Inf2 and Trn1 instances. We will use an inf1.6xlarge and a pretrained BERT-Base model to determine if one sentence
is a paraphrase of another.

Notes

The tutorial has been tested on Inf1, Inf2 and Trn1 instances on ubuntu instances.

Run the tutorial

This tutorial is self contained. It produces similar output to [html] [notebook].

Note: The tutorial will use about 8.5 GB of disk space. Please ensure you have sufficient space before beginning.

Right-click and copy this link address to the tutorial archive.

$ wget <paste archive URL>
$ tar xvf libtorch_demo.tar.gz

Your directory tree should now look like this:

libtorch_demo
bert_neuronx

compile.py
detect_instance.py

clean.sh
core_count

build.sh
main.cpp

example_app
build.sh
core_count.hpp
example_app.cpp
README.txt
utils.cpp
utils.hpp

neuron.patch
run_tests.sh
setup.sh
tokenizer.json
tokenizers_binding

build_python.sh
build.sh
remote_rust_tokenizer.h
run_python.sh
run.sh
tokenizer.json
tokenizer_test
tokenizer_test.cpp
tokenizer_test.py

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 55

https://pytorch.org/cppdocs/installing.html
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/bert_tutorial/tutorial_pretrained_bert.ipynb

AWS Neuron

This tutorial uses the HuggingFace Tokenizers library implemented in Rust. Install Cargo, the package manager for the
Rust programming language.

Ubuntu AL2

$ sudo apt install -y cargo $ sudo yum install -y cargo

Run the setup script to download additional depdendencies and build the app. (This may take a few minutes to com-
plete.)

$ cd libtorch_demo
$ chmod +x setup.sh && ./setup.sh

...
+ g++ utils.cpp example_app.cpp -o ../example-app -O2 -D_GLIBCXX_USE_CXX11_ABI=0 -I../
→˓libtorch/include -L../tokenizers_binding/lib -L/opt/aws/neuron/lib/ -L../libtorch/lib -
→˓Wl,-rpath,libtorch/lib -Wl,-rpath,tokenizers_binding/lib -Wl,-rpath,/opt/aws/neuron/
→˓lib/ -ltokenizers -ltorchneuron -ltorch_cpu -lc10 -lpthread -lnrt
~/libtorch_demo
Successfully completed setup

Benchmark

The setup script should have compiled and saved a PyTorch model compiled for neuron (bert_neuron_b6.pt). Run the
provided sanity tests to ensure everything is working properly.

$./run_tests.sh bert_neuron_b6.pt

Running tokenization sanity checks.

None of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available␣
→˓and only tokenizers, configuration and file/data utilities can be used.
Tokenizing: 100%|| 10000/10000 [00:00<00:00, 15021.69it/s]
Python took 0.67 seconds.
Sanity check passed.
Begin 10000 timed tests.
..........
End timed tests.
C++ took 0.226 seconds.

Tokenization sanity checks passed.
Running end-to-end sanity check.

The company HuggingFace is based in New York City
HuggingFace's headquarters are situated in Manhattan
not paraphrase: 10%
paraphrase: 90%

The company HuggingFace is based in New York City
(continues on next page)

56 Chapter 7. PyTorch Neuron

https://github.com/huggingface/tokenizers

AWS Neuron

(continued from previous page)

Apples are especially bad for your health
not paraphrase: 94%
paraphrase: 6%

Sanity check passed.

Finally, run the example app directly to benchmark the BERT model.

Note: You can safely ignore the warning about None of PyTorch, Tensorflow >= 2.0, This occurs be-
cause the test runs in a small virtual environment that doesn’t require the full frameworks.

$./example-app bert_neuron_b6.pt

Getting ready................
Benchmarking................
Completed 32000 operations in 43 seconds => 4465.12 pairs / second

====================
Summary information:
====================
Batch size = 6
Num neuron cores = 16
Num runs per neuron core = 2000

Congratulations! By now you should have successfully built and used a native C++ application with LibTorch.

Troubleshooting

• In the event of SIGBUS errors you may have insufficient disk space for the creation of temporary model files at
runtime. Consider clearing space or mounting additional disk storage.

• In the event of a neuron runtime failure, confirm that the Neuron kernel module is loaded using sudo modprobe
neuron.

This document is relevant for: Inf1

Compiling and Deploying ResNet50 on Trn1 or Inf2

Introduction

In this tutorial we will compile and deploy a TorchVision ResNet50 model for accelerated inference on Neuron. To get
started with Jupyter Notebook on Neuron Instance you launched, please use this guide.

This tutorial will use the resnet50 model, which is primarily used for arbitrary image classification tasks.

This tutorial has the following main sections:

1. Install dependencies

2. Compile the ResNet model

3. Run inference on Neuron and compare results to CPU

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 57

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/setup/notebook/setup-jupyter-notebook-steps-troubleshooting.html
https://pytorch.org/vision/main/models/generated/torchvision.models.resnet50.html

AWS Neuron

4. Benchmark the model using multicore inference

5. Finding the optimal batch size

This Jupyter notebook should be run on a Trn1 instance (trn1.2xlarge or larger.) or Inf2 instance (inf2.xlarge or
larger.)

Install Dependencies

The code in this tutorial is written for Jupyter Notebooks. To use Jupyter Notebook on the Neuron instance, you can
use this guide.

This tutorial requires the following pip packages:

• torch-neuronx

• neuronx-cc

• torchvision

• Pillow

Most of these packages will be installed when configuring your environment using the Trn1 setup guide. The additional
dependencies must be installed here:

[]: !pip install Pillow

Compile the model into an AWS Neuron optimized TorchScript

In the following section, we load the model, get a sample input, run inference on CPU, compile the model for Neuron
using torch_neuronx.trace(), and save the optimized model as TorchScript.

torch_neuronx.trace() expects a tensor or tuple of tensor inputs to use for tracing, so we convert the input image
into a tensor using the get_image function.

The result of the trace stage will be a static executable where the operations to be run upon inference are determined
during compilation. This means that when inferring, the resulting Neuron model must be executed with tensors that
are the exact same shape as those provided at compilation time. If a model is given a tensor at inference time whose
shape does not match the tensor given at compilation time, an error will occur.

In the following section, we assume that we will receive an image shape of [1, 3, 224, 224] at inference time.

[]: import os
import urllib
from PIL import Image

import torch
import torch_neuronx
from torchvision import models
from torchvision.transforms import functional

def get_image(batch_size=1, image_shape=(224, 224)):
Get an example input
filename = "000000039769.jpg"
if not os.path.exists(filename):

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
(continues on next page)

58 Chapter 7. PyTorch Neuron

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/setup/notebook/setup-jupyter-notebook-steps-troubleshooting.html

AWS Neuron

(continued from previous page)

urllib.request.urlretrieve(url, filename)
image = Image.open(filename).convert('RGB')
image = functional.resize(image, (image_shape))
image = functional.to_tensor(image)
image = torch.unsqueeze(image, 0)
image = torch.repeat_interleave(image, batch_size, 0)
return (image,)

Create the model
model = models.resnet50(pretrained=True)
model.eval()

Get an example input
image = get_image()

Run inference on CPU
output_cpu = model(*image)

Compile the model
model_neuron = torch_neuronx.trace(model, image)

Save the TorchScript for inference deployment
filename = 'model.pt'
torch.jit.save(model_neuron, filename)

Run inference and compare results

In this section we load the compiled model, run inference on Neuron, and compare the CPU and Neuron outputs using
the ImageNet classes.

[]: import json

Load the TorchScript compiled model
model_neuron = torch.jit.load(filename)

Run inference using the Neuron model
output_neuron = model_neuron(*image)

Compare the results
print(f"CPU tensor: {output_cpu[0][0:10]}")
print(f"Neuron tensor: {output_neuron[0][0:10]}")

Download and read the ImageNet classes
urllib.request.urlretrieve("https://s3.amazonaws.com/deep-learning-models/image-models/
→˓imagenet_class_index.json","imagenet_class_index.json")
with open("imagenet_class_index.json", "r") as file:

class_id = json.load(file)
id2label = [class_id[str(i)][1] for i in range(len(class_id))]

Lookup and print the top-5 labels
(continues on next page)

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 59

AWS Neuron

(continued from previous page)

top5_cpu = output_cpu[0].sort()[1][-5:]
top5_neuron = output_neuron[0].sort()[1][-5:]
top5_labels_cpu = [id2label[idx] for idx in top5_cpu]
top5_labels_neuron = [id2label[idx] for idx in top5_neuron]
print(f"CPU top-5 labels: {top5_labels_cpu}")
print(f"Neuron top-5 labels: {top5_labels_neuron}")

Benchmarking

In this section we benchmark the performance of the ResNet model on Neuron. By default, models compiled with
torch_neuronx will always execute on a single NeuronCore. When loading multiple models, the default behavior of
the Neuron runtime is to evenly distribute models across all available NeuronCores. The runtime places models on the
NeuronCore that has the fewest models loaded to it first. In the following section, we will torch.jit.load multiple
instances of the model which should each be loaded onto their own NeuronCore. It is not useful to load more copies of
a model than the number of NeuronCores on the instance since an individual NeuronCore can only execute one model
at a time.

To ensure that we are maximizing hardware utilization, we must run inferences using multiple threads in parallel. It is
nearly always recommended to use some form of threading/multiprocessing and some form of model replication since
even the smallest Neuron EC2 instance has 2 NeuronCores available. Applications with no form of threading are only
capable of 1 / num_neuron_cores hardware utilization which becomes especially problematic on large instances.

One way to view the hardware utilization is by executing the neuron-top application in the terminal while the bench-
mark is executing. If the monitor shows >90% utilization on all NeuronCores, this is a good indication that the hardware
is being utilized effectively.

In this example we load two models, which utilizes all NeuronCores (2) on a trn1.2xlarge or inf2.xlarge instance.
Additional models can be loaded and run in parallel on larger Trn1 or Inf2 instance sizes to increase throughput.

We define a benchmarking function that loads two optimized ResNet models onto two separate NeuronCores, runs
multithreaded inference, and calculates the corresponding latency and throughput.

[]: import time
import concurrent.futures
import numpy as np

def benchmark(filename, example, n_models=2, n_threads=2, batches_per_thread=1000):
"""
Record performance statistics for a serialized model and its input example.

Arguments:
filename: The serialized torchscript model to load for benchmarking.
example: An example model input.
n_models: The number of models to load.
n_threads: The number of simultaneous threads to execute inferences on.
batches_per_thread: The number of example batches to run per thread.

Returns:
A dictionary of performance statistics.

"""

Load models
(continues on next page)

60 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

models = [torch.jit.load(filename) for _ in range(n_models)]

Warmup
for _ in range(8):

for model in models:
model(*example)

latencies = []

Thread task
def task(model):

for _ in range(batches_per_thread):
start = time.time()
model(*example)
finish = time.time()
latencies.append((finish - start) * 1000)

Submit tasks
begin = time.time()
with concurrent.futures.ThreadPoolExecutor(max_workers=n_threads) as pool:

for i in range(n_threads):
pool.submit(task, models[i % len(models)])

end = time.time()

Compute metrics
boundaries = [50, 95, 99]
percentiles = {}

for boundary in boundaries:
name = f'latency_p{boundary}'
percentiles[name] = np.percentile(latencies, boundary)

duration = end - begin
batch_size = 0
for tensor in example:

if batch_size == 0:
batch_size = tensor.shape[0]

inferences = len(latencies) * batch_size
throughput = inferences / duration

Metrics
metrics = {

'filename': str(filename),
'batch_size': batch_size,
'batches': len(latencies),
'inferences': inferences,
'threads': n_threads,
'models': n_models,
'duration': duration,
'throughput': throughput,
**percentiles,

}

(continues on next page)

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 61

AWS Neuron

(continued from previous page)

display(metrics)

def display(metrics):
"""
Display the metrics produced by `benchmark` function.

Args:
metrics: A dictionary of performance statistics.

"""
pad = max(map(len, metrics)) + 1
for key, value in metrics.items():

parts = key.split('_')
parts = list(map(str.title, parts))
title = ' '.join(parts) + ":"

if isinstance(value, float):
value = f'{value:0.3f}'

print(f'{title :<{pad}} {value}')

Benchmark ResNet on Neuron
benchmark(filename, image)

Finding the optimal batch size

Batch size has a direct impact on model performance. The NeuronCore architecture is optimized to maximize through-
put with relatively small batch sizes. This means that a Neuron compiled model can outperform a GPU model, even if
running single digit batch sizes.

As a general best practice, we recommend optimizing your model’s throughput by compiling the model with a small
batch size and gradually increasing it to find the peak throughput on Neuron. To minimize latency, using batch size
= 1will nearly always be optimal. This batch size configuration is typically used for on-demand inference applications.
To maximize throughput, usually 1 < batch_size < 10 is optimal. A configuration which uses a larger batch size
is generally ideal for batched on-demand inference or offline batch processing.

In the following section, we compile ResNet for multiple batch size inputs. We then run inference on each batch size
and benchmark the performance. Notice that latency increases consistently as the batch size increases. Throughput
increases as well, up until a certain point where the input size becomes too large to be efficient.

[]: # Compile ResNet for different batch sizes
for batch_size in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:

model = models.resnet50(pretrained=True)
model.eval()
example = get_image(batch_size=batch_size)
model_neuron = torch_neuronx.trace(model, example)
filename = f'model_batch_size_{batch_size}.pt'
torch.jit.save(model_neuron, filename)

62 Chapter 7. PyTorch Neuron

AWS Neuron

[]: # Benchmark ResNet for different batch sizes
for batch_size in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:

print('-'*50)
example = get_image(batch_size=batch_size)
filename = f'model_batch_size_{batch_size}.pt'
benchmark(filename, example)
print()

T5 model inference on Trn1 or Inf2

Introduction

In this tutorial we will compile and deploy a pretrained T5 model for accelerated inference on Neuron.

This tutorial will use the t5-large model. The T5 model can be used for machine translation, document summarization,
question answering, and classification tasks.

This tutorial has the following main sections:

1. Install dependencies

2. Compile the T5 model

3. Run inference with greedy decoding on Neuron

4. Run infernece with beam search on Neuron

This Jupyter notebook should be run on a Trn1 instance (trn1.2xlarge or larger.) or Inf2 instance (inf2.xlarge or
larger.)

Install dependencies

The code in this tutorial is written for Jupyter Notebooks. To use Jupyter Notebook on the Neuron instance, you can
use this guide.

This tutorial requires the following pip packages:

• torch-neuronx

• neuronx-cc

• transformers

• optimum-neuron

Most of these packages will be installed when configuring your environment using the Trn1/Inf2 setup guide. The
additional dependencies must be installed here:

[]: !pip install --upgrade transformers==4.31.0 optimum-neuron==0.0.8

Optimum Neuron is the interface between the Transformers library and AWS Accelerators including AWS Trainium
and AWS Inferentia. It provides a set of tools enabling easy model loading, training and inference on single- and multi-
Accelerator settings for different downstream tasks. In this tutorial we use HuggingFace Optimum Neuron’s generate()
method instead of transformers’s generate() to perform greedy decoding. Optimum Neuron takes care of padding the
inputs which is necessary to infer on Neuron.

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 63

https://huggingface.co/t5-large
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/setup/notebook/setup-jupyter-notebook-steps-troubleshooting.html
https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.GenerationMixin.generate

AWS Neuron

Compile the model into an AWS Neuron optimized TorchScript

In the following section, we load the T5 model, compile the model’s encoder and decoder for Neuron using
torch_neuronx.trace(), and save the optimized encoder and decoder as TorchScript.

Before we trace the model, we need to make a couple of changes.

1. We need to write encoder and decoder wrappers - torch_neuronx can only trace functions with positional
arguments. But the T5 encoder and decoder both use keyword arguments. So, in order to trace them, we have to
write wrappers that convert keyword arguments to positional arguments

2. We modify the t5 code to maximize the computation on the neuron device - Having sections of code running on
cpu will reduce the performance. Moreover, we do not want to move data berween the neuron device and cpu
during inference. The code we trace with torch_neuronx is the code that runs on the neuron device, so we
refactor the t5 code to run computationally heavy operations within the wrapper.

Let us start with the EncoderWrapper.

In the huggingface t5 implementation, the encoder block takes in the input ids and returns the encoder hidden states.
This hidden states are then used to initialize the KV cache in the decoder blocks during the first decoder invocation.
We could trace both the encoder and the cache initialization step separately. But there is a better way, we could just
compute the initial KV cache state within the encoder wrapper. This way, we remove the overhead of moving the hidden
states from neuron device to cpu and back. This also allows neuron’s compiler to optimize execution across both the
encoder and cache initialization.

Why don’t we just initalize the cache on the first decoder run?

This is harder to do on Neuron. Similar to torch.jit.trace(), torch_neuronx.trace() produces a function that
has a fixed control flow, i.e. there are no conditional executions. So we cannot choose to conditionally initialize the
cache in the first decoder iteration. Instead, we can compute the initial cache state outside the generation flow and pass
the cache to it.

[]: import torch

from transformers.models.t5.modeling_t5 import T5Stack, T5LayerCrossAttention

class EncoderWrapper(torch.nn.Module):
'''

We will trace an instance of the EncoderWrapper.
This wrapper just converts positional args to kwargs.

'''

def __init__(self,
encoder,
decoder,
model_config,
batch_size,
max_length,
device,
num_beams,
tp_degree=None):

super().__init__()
self.encoder = encoder
self.decoder = decoder
self.batch_size = batch_size

(continues on next page)

64 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

self.max_length = max_length
self.model_config = model_config
self.device = device
self.num_beams = num_beams
self.num_attention_heads_per_partition = model_config.num_heads
self.tp_degree = tp_degree

def forward(self, input_ids, attention_mask):
'''

This is the core functionality we want to trace.
'''
encoder_output = self.encoder(input_ids=input_ids,

attention_mask=attention_mask,
output_attentions=False,
output_hidden_states=False)

last_hidden_state = encoder_output["last_hidden_state"]
encoder_hidden_states = torch.concat([tensor.unsqueeze(0).repeat(self.num_beams,␣

→˓1, 1) for tensor in last_hidden_state])

decoder_blocks = self.decoder.block
present_key_value_states_sa = []
present_key_value_states_ca = []

for i, block in enumerate(decoder_blocks):

Cross attention has to be initialized with the encoder hidden state
cross_attention: T5LayerCrossAttention = block.layer[1]
attention = cross_attention.EncDecAttention

def shape(states):
"""projection"""
return states.view(self.batch_size, -1, self.num_attention_heads_per_

→˓partition, attention.key_value_proj_dim).transpose(1, 2)

key_states = shape(attention.k(encoder_hidden_states))
value_states = shape(attention.v(encoder_hidden_states))

cross_attn_kv_state
present_key_value_states_ca.append(key_states)
present_key_value_states_ca.append(value_states)

Self attention kv states are initialized to zeros. This is done to keep␣
→˓the size of the kv cache tensor constant.

The kv cache will be an input to the decoder trace. Any traced function␣
→˓will have a fixed control flow. What this means

is that the trace performs the exact same computations on inputs of the␣
→˓same shape in each invocation. So the attention

kv cache is padded here to keep a fixed shape.
present_key_value_states_sa.append(torch.zeros((self.batch_size, ␣

→˓ # key states
self.model_config.num_heads,

(continues on next page)

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 65

AWS Neuron

(continued from previous page)

self.max_length-1,
self.model_config.d_kv),␣

→˓dtype=torch.float32, device=self.device))
present_key_value_states_sa.append(torch.zeros((self.batch_size, ␣

→˓ # value states
self.model_config.num_heads,
self.max_length-1,
self.model_config.d_kv),␣

→˓dtype=torch.float32, device=self.device))

return present_key_value_states_sa + present_key_value_states_ca

In the decoder wrapper, in addition to converting keyword arguments to positional arguments we add support for
attention caching. Generating text from the encoder decoder models is an autoregressive process. For each invocation,
we have to compute the key and value states of the attention heads repeatedly. To improve the performance, we cache
the key and value states. This cache is what HuggingFace transformers code refers to as past_key_values.

In HuggingFace transformers, the past_key_values are updated outside the decoder. This works for training and
evaluation but for inference we want to perform them within a single trace. This way, we can optimize across both the
decoder execution and cache update. So, we move the cache update within the decoder wrapper.

[3]: class DecoderWrapper(torch.nn.Module):

def __init__(self,
decoder: T5Stack,
lm_head: torch.nn.Linear,
model_config,
num_beams: int,
max_length: int,
device: str,
tp_degree=None):

super().__init__()
self.decoder = decoder
self.lm_head = lm_head
self.model_dim=model_config.d_model
self.device = device
self.num_beams = num_beams
self.batch_size = 1
self.config = model_config

num_heads=model_config.num_heads
num_decoder_layers=model_config.num_decoder_layers

self.num_attention_heads_per_partition = num_heads

(num_beams, n_heads, seq_length, dim_per_head)
if device == "cpu":

self.past_key_values_sa = [torch.ones((num_beams,num_heads,max_length-1,
→˓model_config.d_kv), dtype=torch.float32) for _ in range(num_decoder_layers * 2)]

self.past_key_values_ca = [torch.ones((num_beams,num_heads,max_length,model_
→˓config.d_kv), dtype=torch.float32) for _ in range(num_decoder_layers * 2)]

elif device == "xla":
(continues on next page)

66 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

self.past_key_values_sa = torch.nn.ParameterList([torch.nn.Parameter(torch.
→˓ones((num_beams,self.num_attention_heads_per_partition,max_length-1,model_config.d_kv),
→˓ dtype=torch.float32), requires_grad=False) for _ in range(num_decoder_layers * 2)])

self.past_key_values_ca = torch.nn.ParameterList([torch.nn.Parameter(torch.
→˓ones((num_beams,self.num_attention_heads_per_partition,max_length,model_config.d_kv),␣
→˓dtype=torch.float32), requires_grad=False) for _ in range(num_decoder_layers * 2)])

def update_past(self, past_key_values):
new_past_sa = []
new_past_ca = []
for past_layer in past_key_values:

new_past_layer = list(past_layer)
for i in range(len(new_past_layer[:2])):

new_past_layer[i] = past_layer[i][:, :, 1:]
new_past_sa += [new_past_layer[:2],]
new_past_ca += [new_past_layer[2:],]

return new_past_sa, new_past_ca

def reorder_cache(self, past_key_values, beam_idx):
for i in range(len(past_key_values)):

gather_index = beam_idx.view([beam_idx.shape[0],1,1,1]).expand_as(past_key_
→˓values[i])

past_key_values[i] = torch.gather(past_key_values[i], dim = 0, index=gather_
→˓index)

return past_key_values

def forward(self,
input_ids,
decoder_attention_mask,
encoder_hidden_states,
encoder_attention_mask,
beam_idx,
beam_scores,
**kwargs):

if self.num_beams > 1:
We reorder the cache based on the beams selected in each iteration.␣

→˓Required step for beam search.
past_key_values_sa = self.reorder_cache(self.past_key_values_sa, beam_idx)
past_key_values_ca = self.reorder_cache(self.past_key_values_ca, beam_idx)

else:
We do not need to reorder for greedy sampling
past_key_values_sa = self.past_key_values_sa
past_key_values_ca = self.past_key_values_ca

The cache is stored in a flatten form. We order the cache per layer before␣
→˓passing it to the decoder.

Each layer has 4 tensors, so we group by 4.
past_key_values = [[*past_key_values_sa[i*2:i*2+2], *past_key_values_ca[i*2:

→˓i*2+2]] for i in range(0, int(len(past_key_values_ca)/2))]

decoder_output = self.decoder(

(continues on next page)

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 67

AWS Neuron

(continued from previous page)

input_ids=input_ids,
attention_mask=decoder_attention_mask,
past_key_values=past_key_values,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
output_attentions=False,
output_hidden_states=False)

last_hidden_state = decoder_output['last_hidden_state']
past_key_values = decoder_output['past_key_values']

if self.config.tie_word_embeddings:
Rescale output before projecting on vocab
See https://github.com/tensorflow/mesh/blob/

→˓fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py
→˓#L586

last_hidden_state = last_hidden_state * (self.model_dim**-0.5)

lm_logits = self.lm_head(last_hidden_state)

past_key_values_sa, past_key_values_ca = self.update_past(past_key_values)

We flatten the cache to a single array. This is required for the input output␣
→˓aliasing to work

past_key_values_sa = [vec for kv_per_layer in past_key_values_sa for vec in kv_
→˓per_layer]

past_key_values_ca = [vec for kv_per_layer in past_key_values_ca for vec in kv_
→˓per_layer]

if self.device == "cpu":
self.past_key_values_sa = past_key_values_sa
self.past_key_values_ca = past_key_values_ca

We calculate topk inside the wrapper
next_token_logits = lm_logits[:, -1, :]

if self.num_beams > 1:
This section of beam search is run outside the decoder in the huggingface␣

→˓t5 implementation.
To maximize the computation within the neuron device, we move this within␣

→˓the wrapper
logit_max, _ = torch.max(next_token_logits, dim=-1, keepdim=True)
logsumexp = torch.log(torch.exp(next_token_logits - logit_max).sum(dim=-1,␣

→˓keepdim=True))
next_token_scores = next_token_logits - logit_max - logsumexp
next_token_scores = next_token_scores + beam_scores[:, None].expand_as(next_

→˓token_scores)

reshape for beam search
vocab_size = next_token_scores.shape[-1]
next_token_scores = next_token_scores.view(self.batch_size, self.num_beams *␣

→˓vocab_size) (continues on next page)

68 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

next_token_scores = next_token_scores * 1

Sample 2 next tokens for each beam (so we have some spare tokens and match␣
→˓output of beam search)

next_token_scores, next_tokens = torch.topk(
next_token_scores, 2 * self.num_beams, dim=1, largest=True, sorted=True

)

next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
next_tokens = next_tokens % vocab_size

return [next_token_scores, next_tokens, next_indices] + past_key_values_sa +␣
→˓past_key_values_ca

else:
Greedy
next_tokens = torch.argmax(next_token_logits, dim=-1)
return [next_tokens] + past_key_values_sa + past_key_values_ca

Now let’s create a T5 model wrapper to make it compatible with our traced encoder and decoder.

There are two reasons for having this wrapper,

1. The encoder and decoder traces can only be invoked with positional arguments. But the HuggingFace transform-
ers code is written with keyword arguments. So we override the functions that invoke encoder and decoder to
call with positional arguments.

2. The generate() function in the NeuronGenerationMixin performs cache update within the CPU. As we are han-
dling the cache within the DecoderWrapper, we disable the cache update on CPU.

3. The topK computation to determine the next tokens for beam search was moved into the decoder wrapper. So,
we need to override the huggingface’s beam search implementation to accept the next tokens and the beam scores
from the decoder.

Let’s also override the generate() function so that it will intialize the cache using the cache initalizer before starting
the greedy decoding.

[4]: import torch
import torch_xla.core.xla_model as xm

from transformers import T5Tokenizer, T5ForConditionalGeneration
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
from transformers.models.t5.modeling_t5 import T5Stack, T5LayerCrossAttention
from transformers.generation.utils import ModelOutput
from typing import Any, Dict, List, Optional, Tuple, Union
from transformers.generation.beam_search import BeamScorer, BeamSearchScorer

from optimum.neuron.generation import NeuronGenerationMixin

from transformers.generation.logits_process import (
LogitsProcessorList,

)
from transformers.generation.stopping_criteria import (

MaxLengthCriteria,
(continues on next page)

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 69

AWS Neuron

(continued from previous page)

MaxTimeCriteria,
StoppingCriteriaList,
validate_stopping_criteria,

)

from transformers.generation.utils import (
BeamSearchOutput,
GreedySearchOutput,

)

class T5Wrapper(T5ForConditionalGeneration, NeuronGenerationMixin):

def _prepare_encoder_decoder_kwargs_for_generation(
self,
inputs_tensor: torch.Tensor,
model_kwargs,
model_input_name: Optional[str] = None

) -> Dict[str, Any]:
encoder = self.get_encoder()
model_kwargs["encoder_outputs"]: ModelOutput = encoder(inputs_tensor, model_

→˓kwargs["attention_mask"])
return model_kwargs

Override to cut the input_ids to just last token
def prepare_inputs_for_generation(

self,
input_ids,
past_key_values=None,
attention_mask=None,
head_mask=None,
decoder_head_mask=None,
decoder_attention_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,

):
cut decoder_input_ids as past is cached
input_ids = input_ids[:, -1:]

return {
"decoder_input_ids": input_ids,
"past_key_values": past_key_values,
"encoder_outputs": encoder_outputs,
"attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"decoder_attention_mask": decoder_attention_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache,

}

(continues on next page)

70 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

'''
We update the cache in the decoder trace, so lets override the _update_model_

→˓kwargs_for_xla_generation in NeuronGenerationMixin
'''
def _update_model_kwargs_for_xla_generation(

self,
model_kwargs: Dict[str, Any],
batch_size: int,
is_encoder_decoder: bool = False,
standardize_cache_format: bool = False,
max_length: Optional[int] = None,
seq_length: Optional[int] = None,
use_cache: bool = True,

) -> Dict[str, Any]:

def _update_attention(model_kwargs, is_encoder_decoder):
"""Updates the appropriate attention mask -- encoder-decoder models use␣

→˓`decoder_attention_mask`"""

attention_mask_name = "decoder_attention_mask" if is_encoder_decoder else
→˓"attention_mask"

attention_mask = model_kwargs.pop(attention_mask_name)
attention_mask_update_slice = torch.ones(

(batch_size, 1), dtype=attention_mask.dtype, device=attention_mask.device
)
attention_mask = torch.cat([attention_mask[:, 1:], attention_mask_update_

→˓slice], dim=-1)
mask = {attention_mask_name: attention_mask}
return mask

mask = _update_attention(model_kwargs, is_encoder_decoder)
sets the updated variables (mask and past_key_values)
model_kwargs.update(mask)

Set a mock cache tensor
model_kwargs["past_key_values"] = torch.tensor([])

return model_kwargs

def _reorder_cache(self, past_key_values, beam_idx):
'''

This is needed for beam search and not greedy sampling
We reorder the cache within the trace so we can skip it in modelling_t5.py.␣

→˓So we override the _reorder_cache
'''
self.beam_idx = beam_idx
return past_key_values

def generate(self,
tokenizer: T5Tokenizer,
prompt: str,
max_length: int,

(continues on next page)

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 71

AWS Neuron

(continued from previous page)

num_beams: int,
num_return_sequences: int,
device: str):

batch_encoding = tokenizer(prompt, max_length=max_length, truncation=True,␣
→˓padding='max_length',

return_tensors="pt")

past_key_values = self.encoder(batch_encoding['input_ids'],batch_encoding[
→˓'attention_mask'])

decoder_attention_mask = torch.cat([torch.zeros((1, max_length-1), dtype=torch.
→˓int32),

torch.ones((1, 1), dtype=torch.int32)],␣
→˓axis=1)

copy the new cache state to the decoder
if device == "xla":

for state, tensor in zip(self.decoder.parameters(), past_key_values):
state.copy_(tensor)

else:
First half of the cache is self attention and the rest is cross attention
self.decoder.past_key_values_sa = past_key_values[:len(past_key_values)//2]
self.decoder.past_key_values_ca = past_key_values[len(past_key_values)//2:]

output = super().generate(**batch_encoding,
max_length=max_length,
num_beams=num_beams,
num_return_sequences=num_return_sequences,
do_sample=False,
use_cache=True,
decoder_attention_mask=decoder_attention_mask,
encoder_outputs={"last_hidden_state": torch.ones((1,128,

→˓1))}) # Pass fake encoder_outputs so the transfomers code will not invoke the encoder
return output

def forward(
self,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
beam_scores = None,
**kwargs

) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:

hidden_states = encoder_outputs["last_hidden_state"]

if not hasattr(self, 'beam_idx'):
Infering the number of beams from the attention mask
num_beams = attention_mask.shape[0]
self.beam_idx = torch.arange(0, num_beams, dtype=torch.int64)

(continues on next page)

72 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

decoder_outputs = self.decoder(
decoder_input_ids,
decoder_attention_mask,
hidden_states,
attention_mask,
self.beam_idx,
beam_scores

)

lm_logits = decoder_outputs[0]
next_token_scores = decoder_outputs[0]
next_tokens = decoder_outputs[1]
next_indices = decoder_outputs[2]

return next_token_scores, next_tokens, next_indices

def beam_search(
self,
input_ids: torch.LongTensor,
beam_scorer: BeamScorer,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[Union[int, List[int]]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_scores: Optional[bool] = None,
return_dict_in_generate: Optional[bool] = None,
synced_gpus: Optional[bool] = False,
seq_length: Optional[int] = None,
**model_kwargs,

) -> Union[BeamSearchOutput, torch.LongTensor]:

logits_processor = logits_processor if logits_processor is not None else␣
→˓LogitsProcessorList()

stopping_criteria = stopping_criteria if stopping_criteria is not None else␣
→˓StoppingCriteriaList()

pad_token_id = pad_token_id if pad_token_id is not None else self.generation_
→˓config.pad_token_id

eos_token_id = eos_token_id if eos_token_id is not None else self.generation_
→˓config.eos_token_id

if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]

output_scores = output_scores if output_scores is not None else self.generation_
→˓config.output_scores

output_attentions = (
output_attentions if output_attentions is not None else self.generation_

→˓config.output_attentions
)
output_hidden_states = (

(continues on next page)

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 73

AWS Neuron

(continued from previous page)

output_hidden_states if output_hidden_states is not None else self.
→˓generation_config.output_hidden_states

)

batch_size = len(beam_scorer._beam_hyps)
num_beams = beam_scorer.num_beams

batch_beam_size, cur_len = input_ids.shape

Overwrite cur_len
cur_len = seq_length

if num_beams * batch_size != batch_beam_size:
raise ValueError(

f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but␣
→˓is {batch_beam_size}."

)

init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and output_scores) else None
beam_indices = (

tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and␣
→˓output_scores) else None

)

initialise score of first beam with 0 and the rest with -1e9. This makes sure␣
→˓that only tokens

of the first beam are considered to avoid sampling the exact same tokens␣
→˓across all beams.

beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float,␣
→˓device=input_ids.device)

beam_scores_device = "cpu"
beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float,␣

→˓device=beam_scores_device)
beam_scores[:, 1:] = -1e9
beam_scores = beam_scores.view((batch_size * num_beams,))

while True:
prepare model inputs
From max_length-sized input_ids, select first
cur_len - 1 values.
update_indices = torch.stack(

[torch.arange(input_ids.size(0)), torch.tensor(cur_len - 1).repeat(input_
→˓ids.size(0))], dim=-1

)
input_ids_ = input_ids[update_indices[:, 0], update_indices[:, 1], None]
model_inputs = self.prepare_inputs_for_generation(input_ids_, **model_kwargs)

next_token_scores, next_tokens, next_indices = self(
**model_inputs,
return_dict=True,
output_attentions=output_attentions,

(continues on next page)

74 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

output_hidden_states=output_hidden_states,
beam_scores=beam_scores

)

stateless
beam_outputs = beam_scorer.process(

input_ids.to("cpu")[:, :cur_len],
next_token_scores.to("cpu"),
next_tokens.to("cpu"),
next_indices.to("cpu"),
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
beam_indices=beam_indices,

)

beam_scores = beam_outputs["next_beam_scores"]
beam_next_tokens = beam_outputs["next_beam_tokens"]
beam_idx = beam_outputs["next_beam_indices"]

update_indices = torch.stack(
[torch.arange(batch_beam_size), torch.tensor(cur_len - 1).repeat(batch_

→˓beam_size)], dim=-1
)
update_indices_2 = torch.stack(

[torch.arange(batch_beam_size), torch.tensor(cur_len).repeat(batch_beam_
→˓size)], dim=-1

)
First select beam_indices
device = input_ids.device
beam_idx_device = beam_idx.to(device=input_ids.device)
input_ids[:, :] = input_ids[beam_idx_device.long(), :]

Then append new tokens
input_ids[update_indices_2[:, 0], update_indices_2[:, 1], None] = beam_next_

→˓tokens.unsqueeze(-1).to(device).to(torch.long)
input_ids = input_ids * 1 # Hack to materialize tensor

update generated ids, model inputs, and length for next step
model_kwargs = self._update_model_kwargs_for_xla_generation(

model_kwargs,
batch_size=batch_beam_size,
is_encoder_decoder=self.config.is_encoder_decoder,
max_length=stopping_criteria.max_length,
seq_length=cur_len,
use_cache=model_kwargs["use_cache"],

)
if model_kwargs["past_key_values"] is not None:

model_kwargs["past_key_values"] = self._reorder_cache(model_kwargs["past_
→˓key_values"], beam_idx.to(torch.int64))

if return_dict_in_generate and output_scores:
beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i␣

→˓in range(len(beam_indices)))) (continues on next page)

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 75

AWS Neuron

(continued from previous page)

increase cur_len
cur_len = cur_len + 1

stop when each sentence is finished, or if we exceed the maximum length
stop_criterion_1 = beam_scorer.is_done
if isinstance(stopping_criteria, list):

if len(stopping_criteria) == 1:
stopping_criteria = stopping_criteria[0]

Cases that can be handled in XLA without requiring
non-padded input_ids
if isinstance(stopping_criteria, MaxLengthCriteria):

stop_criterion_2 = cur_len >= stopping_criteria.max_length
elif isinstance(stopping_criteria, MaxTimeCriteria):

stop_criterion_2 = stopping_criteria(input_ids, scores)
else:

Other cases will be handled on CPU
batch_size, _ = input_ids.shape
input_ids_cpu = input_ids.to("cpu")
mask = torch.cat(

[torch.ones(batch_size, cur_len), torch.zeros(batch_size, input_ids.
→˓shape[1] - cur_len)], dim=1

).bool()
input_ids_cpu = torch.masked_select(input_ids_cpu, mask).reshape((batch_

→˓size, cur_len))
scores_cpu = scores.to("cpu") if torch.is_tensor(scores) else scores
stop_criterion_2 = stopping_criteria(input_ids_cpu, scores_cpu)

if stop_criterion_1 or stop_criterion_2:
if not synced_gpus:

break
else:

this_peer_finished = True

sequence_outputs = beam_scorer.finalize(
input_ids.to("cpu"),
beam_scores.to("cpu"),
next_tokens.to("cpu"),
next_indices.to("cpu"),
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
max_length=stopping_criteria.max_length,
beam_indices=beam_indices,

)

for k, v in sequence_outputs.items():
if type(v) == torch.Tensor:

sequence_outputs[k] = sequence_outputs[k].to(input_ids.device)

return sequence_outputs["sequences"]

(continues on next page)

76 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

def greedy_search(
self,
input_ids: torch.LongTensor,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[Union[int, List[int]]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_scores: Optional[bool] = None,
return_dict_in_generate: Optional[bool] = None,
seq_length: Optional[int] = int,
streamer: Optional["BaseStreamer"] = None,
**model_kwargs,

) -> Union[GreedySearchOutput, torch.LongTensor]:
"""

Overriding greedy sampling to use next tokens returned from neuron device␣
→˓instead of logits.

"""
init values
logits_processor = logits_processor if logits_processor is not None else␣

→˓LogitsProcessorList()
use_cache = model_kwargs["use_cache"] if "use_cache" in model_kwargs else False
stopping_criteria = stopping_criteria if stopping_criteria is not None else␣

→˓StoppingCriteriaList()
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_

→˓config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_

→˓config.eos_token_id
if isinstance(eos_token_id, int):

eos_token_id = [eos_token_id]
eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_

→˓token_id is not None else None
output_scores = output_scores if output_scores is not None else self.generation_

→˓config.output_scores
output_attentions = (

output_attentions if output_attentions is not None else self.generation_
→˓config.output_attentions

)
output_hidden_states = (

output_hidden_states if output_hidden_states is not None else self.
→˓generation_config.output_hidden_states

)

init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and output_scores) else None
decoder_attentions = () if (return_dict_in_generate and output_attentions) else␣

→˓None
cross_attentions = () if (return_dict_in_generate and output_attentions) else␣

→˓None
(continues on next page)

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 77

AWS Neuron

(continued from previous page)

decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states)␣
→˓else None

keep track of which sequences are already finished
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long,␣

→˓device=input_ids.device)

this_peer_finished = False # used by synced_gpus only
while True:

prepare model inputs
From max_length-sized input_ids, select first
seq_length - 1 values.

if model_kwargs.get("past_key_values") is None:
input_ids_ = input_ids[:, :seq_length]

else:
update_indices = torch.stack(

[torch.arange(input_ids.size(0)), torch.tensor(seq_length - 1).
→˓repeat(input_ids.size(0))],

dim=-1,
)
input_ids_ = input_ids[update_indices[:, 0], update_indices[:, 1], None]

model_inputs = self.prepare_inputs_for_generation(input_ids_, **model_kwargs)

forward pass to get next token
output = self(

**model_inputs,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,

)
next_tokens = output[0]

finished sentences should have their next token be a padding token
if eos_token_id is not None:

if pad_token_id is None:
raise ValueError("If `eos_token_id` is defined, make sure that `pad_

→˓token_id` is defined.")
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 -␣

→˓unfinished_sequences)

update generated ids, model inputs, and length for next step

batch_size, _ = input_ids.shape
update_indices = torch.stack(

[torch.arange(batch_size), torch.tensor(seq_length).repeat(batch_size)],␣
→˓dim=-1

)
input_ids[update_indices[:, 0], update_indices[:, 1]] = next_tokens[:]

(continues on next page)

78 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

model_kwargs = self._update_model_kwargs_for_xla_generation(
model_kwargs,
batch_size=batch_size,
is_encoder_decoder=self.config.is_encoder_decoder,
max_length=stopping_criteria.max_length,
seq_length=seq_length,
use_cache=use_cache,

)

seq_length += 1

if eos_token was found in one sentence, set sentence to finished
if eos_token_id_tensor is not None:

unfinished_sequences = unfinished_sequences.mul(
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_

→˓tensor.unsqueeze(1)).prod(dim=0)
)

stop when each sentence is finished, or if we exceed the maximum length
stop_criterion_1 = unfinished_sequences.max() == 0

if isinstance(stopping_criteria, list):
if len(stopping_criteria) == 1:

stopping_criteria = stopping_criteria[0]

Cases that can be handled in XLA without requiring
non-padded input_ids
if isinstance(stopping_criteria, MaxLengthCriteria):

stop_criterion_2 = seq_length >= stopping_criteria.max_length
elif isinstance(stopping_criteria, MaxTimeCriteria):

stop_criterion_2 = stopping_criteria(input_ids, scores)
else:

Other cases will be handled on CPU
batch_size, _ = input_ids.shape
mask = torch.cat(

[torch.ones(batch_size, seq_length), torch.zeros(batch_size, input_
→˓ids.shape[1] - seq_length)],

dim=1,
).bool()
input_ids_cpu = torch.masked_select(input_ids, mask).reshape((batch_size,

→˓ seq_length)).to("cpu")
scores_cpu = scores.to("cpu") if torch.is_tensor(scores) else scores
stop_criterion_2 = stopping_criteria(input_ids_cpu, scores_cpu)

if stop_criterion_1 or stop_criterion_2:
this_peer_finished = True

if this_peer_finished:
break

if streamer is not None:
streamer.end()

(continues on next page)

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 79

AWS Neuron

(continued from previous page)

return input_ids

Now let’s test inference on CPU with all the wrappers before tracing.

[5]: # Let's set some run parameters

model_name = "t5-large"
num_beams = 1
num_return_sequences = 1
max_length = 128

[6]: from transformers import T5Tokenizer

prompt="translate English to German: Lets eat good food."

tokenizer = T5Tokenizer.from_pretrained(model_name, model_max_length=max_length)
model = T5Wrapper.from_pretrained(model_name)

model.encoder = EncoderWrapper(model.encoder, model.decoder, model.config, num_beams,␣
→˓max_length, "cpu", num_beams)
setattr(model.encoder, 'main_input_name', 'input_ids') # Attribute required by beam␣
→˓search

model.decoder = DecoderWrapper(decoder=model.decoder,
lm_head=model.lm_head,
model_config=model.config,
num_beams=num_beams,
max_length=max_length,
device="cpu")

output = model.generate(tokenizer=tokenizer,
prompt=prompt,
max_length=max_length,
num_beams=num_beams,
num_return_sequences=num_return_sequences,
device="cpu")

results = [tokenizer.decode(t, skip_special_tokens=True) for t in output]

print('Results:')
for i, summary in enumerate(results):

print(i + 1, summary)

Results:
1 Lassen Sie uns gutes Essen essen.

Now that the wrappers are running as expected, let’s trace the encoder, and decoder. To trace these functions, we pass
the function and a sample input to the trace function. The result of the trace stage will be a static executable where the
operations to be run upon inference are determined during compilation. This means that when inferring, the resulting

80 Chapter 7. PyTorch Neuron

AWS Neuron

Neuron model must be executed with tensors that are the exact same shape as those provided at compilation time. If
a model is given a tensor at inference time whose shape does not match the tensor given at compilation time, an error
will occur.

The decoder wrapper returns the new state of the cache as an output which is copied back to the CPU. As the cache
is a large tensor, copying it to and from the XLA device for each decoder invocation will significantly slow down the
inference. Instead, we can use input output aliasing, a feature of torch_neuronx to keep these tensors on device
rather than copying back to the CPU. To use input output aliasing, we need to map the outputs to input parameters
while tracing.

[]: import torch
import torch_neuronx

from transformers import T5Tokenizer, T5ForConditionalGeneration

def trace_encoder(model: T5ForConditionalGeneration,
tokenizer: T5Tokenizer,
max_length: int,
num_beams: int):

Trace encoder
batch_encoding = tokenizer("translate English to German: Lets go home now",

max_length=max_length, truncation=True, padding='max_
→˓length', return_tensors="pt")

input_ids = batch_encoding['input_ids']
attention_mask = batch_encoding['attention_mask']

encoder = EncoderWrapper(model.encoder, model.decoder, model.config, num_beams, max_
→˓length, "xla", num_beams)

traced_encoder = torch_neuronx.trace(encoder, (input_ids, attention_mask), compiler_
→˓workdir="/tmp/encoder/")

setattr(traced_encoder, 'main_input_name', 'input_ids') # Attribute required by␣
→˓beam search

return traced_encoder

def trace_decoder(model: T5ForConditionalGeneration,
num_beams: int,
max_length: int):

decoder = DecoderWrapper(decoder=model.decoder,
lm_head=model.lm_head,
model_config=model.config,
num_beams=num_beams,
max_length=max_length,
device="xla")

We create mock inputs so we can trace the decoder
decoder_input_ids = torch.ones((num_beams, 1), dtype=torch.int64)
decoder_attention_mask = torch.ones((num_beams, max_length), dtype=torch.int32)
encoder_attention_mask = torch.ones((num_beams, max_length), dtype=torch.int64)
encoder_hidden_states = torch.ones((num_beams, max_length, model.config.d_model),␣

→˓dtype=torch.float32)

(continues on next page)

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 81

AWS Neuron

(continued from previous page)

beam_idx = torch.arange(0, num_beams, dtype=torch.int64)
beam_scores = torch.zeros((num_beams,), dtype=torch.float)

num_outputs_from_trace = 3 if num_beams > 1 else 1

aliases = {}
for i in range(len(decoder.past_key_values_sa)):

aliases[decoder.past_key_values_sa[i]] = i + num_outputs_from_trace
for i in range(len(decoder.past_key_values_ca)):

aliases[decoder.past_key_values_ca[i]] = len(decoder.past_key_values_sa) + i +␣
→˓num_outputs_from_trace

traced_decoder = torch_neuronx.trace(decoder, (
decoder_input_ids,
decoder_attention_mask,
encoder_hidden_states,
encoder_attention_mask,
beam_idx,
beam_scores,

), input_output_aliases=aliases, compiler_workdir="/tmp/decoder/")

return traced_decoder

tokenizer = T5Tokenizer.from_pretrained(model_name, model_max_length=max_length)
model = T5ForConditionalGeneration.from_pretrained(model_name)

We enable this flag to ensure model uses attention key value caching
model.config.use_cache = True

traced_encoder = trace_encoder(model, tokenizer, max_length, num_beams)
traced_decoder = trace_decoder(model, num_beams, max_length)

torch.jit.save(traced_encoder, "TracedEncoder.pt")
torch.jit.save(traced_decoder, "TracedDecoder.pt")

Run inference with greedy decoding

Now that we have the traced model, let’s use it for inference.

[8]: runtime = torch.classes.neuron.Runtime()
runtime.initialize()
runtime.set_default_neuron_cores(0, 1)

tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5Wrapper.from_pretrained(model_name)

model.encoder = torch.jit.load("TracedEncoder.pt")
Attribute required by beam search
setattr(model.encoder, 'main_input_name', 'input_ids')

(continues on next page)

82 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

model.decoder = torch.jit.load("TracedDecoder.pt")
torch_neuronx.move_trace_to_device(model.decoder, 0)

output = model.generate(tokenizer=tokenizer,
prompt="translate English to German: Lets eat good food.",
max_length=max_length,
num_beams=num_beams,
num_return_sequences=num_return_sequences,
device="xla")

results = [tokenizer.decode(t, skip_special_tokens=True) for t in output]

print('Results:')
for i, summary in enumerate(results):

print(i + 1, summary)

Results:
1 Lassen Sie uns gutes Essen essen.

Run inference with beam search

[]: # Let's set some run parameters for beam search

model_name = "t5-large"
num_beams = 4
num_return_sequences = 4
max_length = 128

tokenizer = T5Tokenizer.from_pretrained(model_name, model_max_length=max_length)
model = T5ForConditionalGeneration.from_pretrained(model_name)
model.config.use_cache = True

traced_encoder = trace_encoder(model, tokenizer, max_length, num_beams)
traced_decoder = trace_decoder(model, num_beams, max_length)

torch.jit.save(traced_encoder, "TracedEncoder.pt")
torch.jit.save(traced_decoder, "TracedDecoder.pt")

[10]: tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5Wrapper.from_pretrained(model_name)

model.encoder = torch.jit.load("TracedEncoder.pt")
Attribute required by beam search
setattr(model.encoder, 'main_input_name', 'input_ids')

model.decoder = torch.jit.load("TracedDecoder.pt")
(continues on next page)

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 83

AWS Neuron

(continued from previous page)

torch_neuronx.move_trace_to_device(model.decoder, 0)

output = model.generate(tokenizer=tokenizer,
prompt="translate English to German: Lets eat good food.",
max_length=max_length,
num_beams=num_beams,
num_return_sequences=num_return_sequences,
device="xla")

results = [tokenizer.decode(t, skip_special_tokens=True) for t in output]

print('Results:')
for i, summary in enumerate(results):

print(i + 1, summary)

Results:
1 Lassen Sie uns gutes Essen essen.
2 Lassen Sie uns gutes Essen zu essen.
3 Lassen Sie uns essen gutes Essen.
4 Lassen Sie uns gutes Essen.

• HuggingFace pretrained BERT tutorial [html] [notebook]

• TorchServe tutorial [html]

• LibTorch C++ tutorial (for torch-neuron and torch-neuronx) [html]

• Torchvision ResNet50 tutorial [html] [notebook]

• T5 inference tutorial [html] [notebook]

Note: To use Jupyter Notebook see:

• setup-jupyter-notebook-steps-troubleshooting

• running-jupyter-notebook-as-script

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

7.2.2 Additional Examples (torch-neuronx)

• AWS Neuron Samples GitHub Repository

• Transformers Neuron GitHub samples

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

84 Chapter 7. PyTorch Neuron

https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/torch-neuronx/bert-base-cased-finetuned-mrpc-inference-on-trn1-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/torch-neuronx/resnet50-inference-on-trn1-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/torch-neuronx/t5-inference-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/transformers-neuronx

AWS Neuron

7.2.3 API Reference Guide (torch-neuronx)

This document is relevant for: Inf2, Trn1, Trn1n

PyTorch NeuronX Tracing API for Inference

torch_neuronx.trace(func, example_inputs, *_, input_output_aliases={}, compiler_workdir=None,
compiler_args=None, partitioner_config=None, inline_weights_to_neff=True)

Trace and compile operations in the func by executing it using example_inputs.

This function is similar to a torch.jit.trace() since it produces a ScriptModule that can be saved with
torch.jit.save() and reloaded with torch.jit.load(). The resulting module is an optimized fused graph
representation of the func that is only compatible with Neuron.

Tracing a module produces a more efficient inference-only version of the model. XLA Lazy Tensor execution
should be used during training. See: Comparison of Traced Inference versus XLA Lazy Tensor Inference (torch-
neuronx)

Warning: Currently this only supports NeuronCore-v2 type instances (e.g. trn1, inf2). To compile models
compatible with NeuronCore-v1 (e.g. inf1), please see torch_neuron.trace()

Parameters
• func (Module,callable) – The function/module that that will be run using the
example_inputs arguments in order to record the computation graph.

• example_inputs (Tensor,tuple[Tensor]) – A tuple of example inputs that will be
passed to the func while tracing.

Keyword Arguments
• input_output_aliases (dict) – Marks input tensors as state tensors which are device

tensors.

• compiler_workdir (str) – Work directory used by neuronx-cc. This can be useful for
debugging and/or inspecting intermediary neuronx-cc outputs

• compiler_args (str,list[str]) – List of strings representing neuronx-cc compiler ar-
guments. See Neuron Compiler CLI Reference Guide (neuronx-cc) for more information
about compiler options.

• partitioner_config (PartitionerConfig) – A PartitionerConfig object, which can be
optionally supplied if there are unsupported ops in the model that need to be partitioned out
to CPU.

• inline_weights_to_neff (bool) – A boolean indicating whether the weights should be
inlined to the NEFF. If set to False, weights will be separated from the NEFF. The default is
True.

Returns The traced ScriptModule with the embedded compiled Neuron graph. Operations in this
module will execute on Neuron.

Return type ScriptModule

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 85

https://pytorch.org/docs/master/generated/torch.jit.trace.html#torch.jit.trace
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.save.html#torch.jit.save
https://pytorch.org/docs/master/generated/torch.jit.load.html#torch.jit.load
https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#tuple
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule

AWS Neuron

Warning: Behavior Change! The use of using args for kwargs is deprecated starting from release
2.15.0 (torch-neuronx==1.13.1.1.12.0). The current behavior is that a warning will be raised, but
torch_neuronx.trace() will attempt to infer the keyword arguments. This is likely to become an error in
future releases, so to avoid the warning/error, assign kwargs as kwargs and not args.

Notes

This function records operations using torch-xla to create a HloModule representation of the func. This fixed
graph representation is compiled to the Neuron Executable File Format (NEFF) using the neuronx-cc compiler.
The NEFF binary executable is embedded into an optimized ScriptModule for torchscript execution.

In contrast to a regular torch.jit.trace() that produces a graph of many separate operations, tracing with
Neuron produces a graph with a single fused operator that is executed entirely on device. In torchscript this
appears as a stateful neuron::Model component with an associated neuron::forward* operation.

Tracing can be performed on any EC2 machine with sufficient memory and compute resources, but inference
can only be executed on a Neuron instance.

Unlike some devices (such as torch-xla) that use to() to move Parameter and Tensor data between CPU and
device, upon loading a Neuron traced ScriptModule, the model binary executable is automatically moved to a
NeuronCore. When the underlying neuron::Model is initialized after tracing or upon torch.jit.load(), it
is loaded to a Neuron device without specifying a device or map_location argument.

Warning: One small exception is models traced with inline_weights_to_neff=False. For these
models, the NEFF is loaded onto the NeuronCore automatically, but the weights are not moved automat-
ically. To move the weights to the NeuronCore, call torch_neuronx.move_trace_to_device(trace,
device_id).

Furthermore, the Neuron traced ScriptModule expects to consume CPU tensors and produces CPU tensors. The
underlying operation performs all data transfers to and from the Neuron device without explicit data movement.
This is a significant difference from the training XLA device mechanics since XLA operations are no longer
required to be recorded after a trace. See: Developer Guide for Training with PyTorch NeuronX

By default, when multiple NeuronCores are available, every Neuron traced model ScriptModule within in
a process is loaded to each available NeuronCore in round-robin order. This is useful at deployment to fully
utilize the Neuron hardware since it means that multiple calls to torch.jit.load() will attempt to load to
each available NeuronCore in linear order. The default start device is chosen according to the NeuronX Runtime
Configuration.

A traced Neuron module has limitations that are not present in regular torch modules:

• Fixed Control Flow: Similar to torch.jit.trace(), tracing a model with Neuron statically preserves
control flow (i.e. if/for/while statements) and will not re-evaluate the branch conditions upon inference.
If a model result is based on data-dependent control flow, the traced function may produce inaccurate results.

• Fixed Input Shapes: After a function has been traced, the resulting ScriptModule will always expect to
consume tensors of the same shape. If the tensor shapes used at inference differs from the tensor shapes
used in the example_inputs, this will result in an error. See: Running inference on variable input shapes
with bucketing.

• Fixed Tensor Shapes: The intermediate tensors within the func must always stay the same shape for the
same shaped inputs. This means that certain operations which produce data-dependent sized tensors are
not supported. For example, nonzero() produces a different tensor shape depending on the input data.

86 Chapter 7. PyTorch Neuron

https://github.com/pytorch/xla
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/stable/jit.html
https://pytorch.org/docs/master/generated/torch.jit.trace.html#torch.jit.trace
https://pytorch.org/docs/stable/jit.html
https://github.com/pytorch/xla
https://pytorch.org/docs/master/generated/torch.Tensor.to.html#torch.Tensor.to
https://pytorch.org/docs/master/generated/torch.nn.parameter.Parameter.html#torch.nn.parameter.Parameter
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.load.html#torch.jit.load
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.load.html#torch.jit.load
https://pytorch.org/docs/master/generated/torch.jit.trace.html#torch.jit.trace
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.nonzero.html#torch.nonzero

AWS Neuron

• Fixed Data Types: After a model has been traced, the input, output, and intermediate data types cannot be
changed without recompiling.

• Device Compatibility: Due to Neuron using a specialized compiled format (NEFF), a model traced with
Neuron can no longer be executed in any non-Neuron environment.

• Operator Support: If an operator is unsupported by torch-xla, then this will throw an exception.

Examples

Function Compilation

import torch
import torch_neuronx
def func(x, y):

return 2 * x + y
example_inputs = torch.rand(3), torch.rand(3)
Runs `func` with the provided inputs and records the tensor operations
trace = torch.neuronx.trace(func, example_inputs)
`trace` can now be run with the TorchScript interpreter or saved
and loaded in a Python-free environment
torch.jit.save(trace, 'func.pt')
Executes on a NeuronCore
loaded = torch.jit.load('func.pt')
loaded(torch.rand(3), torch.rand(3))

Module Compilation

import torch
import torch_neuronx
import torch.nn as nn
class Model(nn.Module):

def __init__(self):
super().__init__()
self.conv = nn.Conv2d(1, 1, 3)

def forward(self, x):
return self.conv(x) + 1

model = Model()
model.eval()
example_inputs = torch.rand(1, 1, 3, 3)
Traces the forward method and constructs a `ScriptModule`
trace = torch_neuronx.trace(model, example_inputs)
torch.jit.save(trace, 'model.pt')
Executes on a NeuronCore
loaded = torch.jit.load('model.pt')
loaded(torch.rand(1, 1, 3, 3))

Weight Separated Module

import torch
import torch_neuronx
import torch.nn as nn

class Model(nn.Module):
(continues on next page)

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 87

https://github.com/pytorch/xla

AWS Neuron

(continued from previous page)

def __init__(self):
super().__init__()
self.conv = nn.Conv2d(1, 1, 3)

def forward(self, x):
return self.conv(x) + 1

model = Model()
model.eval()

example_inputs = torch.rand(1, 1, 3, 3)

Traces the forward method and constructs a `ScriptModule`
trace = torch_neuronx.trace(model, example_inputs,inline_weights_to_neff=False)

Model can be saved like a normally traced model
torch.jit.save(trace, 'model.pt')

Executes on a NeuronCore like a normally traced model
loaded = torch.jit.load('model.pt')
torch_neuronx.move_trace_to_device(loaded,0)
loaded(torch.rand(1, 1, 3, 3))

Note: Weight Separated models can have its weights replaced via the torch_neuronx.replace_weights API.

Autobucketing

Note: See neuronx_distributed.parallel_model_trace() for the API to use the autobucketing feature along
with tensor parallelism.

class torch_neuronx.BucketModelConfig(bucket_kernel, *_, shared_state_buffer=None,
shared_state_buffer_preprocessor=None, func_kwargs=None)

This object contains configuration data for how buckets are selected based on input via the bucket_kernel.

This also supports the concept of a shared buffer between bucket models. You can use this to define how the shared
buffer can be manipulated to be fed as input to a bucket model via the shared_state_buffer_preprocessor.
Details on how these are defined are found below.

Parameters bucket_kernel (callable) – A function that returns a new TorchScript function.
The TorchScript function has been adapted to the TorchScript representation using torch.jit.
script(). This new function takes in a list of input tensors and outputs a list of tensors and an
index tensor.

Keyword Arguments
• shared_state_buffer (Optional[List[torch.Tensor]]) – A list of tensors that is

used as the initial values for a shared state for bucket models via aliasing.

• shared_state_buffer_preprocessor (Optional[Callable]) – Similar to

88 Chapter 7. PyTorch Neuron

https://pytorch.org/docs/master/generated/torch.jit.script.html#torch.jit.script
https://pytorch.org/docs/master/generated/torch.jit.script.html#torch.jit.script
https://pytorch.org/docs/master/tensors.html#torch.Tensor

AWS Neuron

bucket_kernel, this is a function that returns a new TorchScript function that has been
adapted to the TorchScript representation using torch.jit.script(). This new Torch-
Script function takes in 3 arguments: an n-dimensional integer list representing a list of
tensor shapes, the state_buffer list of tensors, and a tensor representing the bucket index.
This function outputs a reshaped state_buffer to be supplied to the bucket model. If
shared_state_buffer_preprocessor is not supplied when shared_state_buffer is
supplied, the preprocessor returns the full shared_state_buffer.

• func_kwargs (Optional[Union[Dict[str, Any], List[Any]]]) – A single dictio-
nary or a list of dictionaries that can be used to supply custom arguments to the function
supplied to the func argument in torch_neuronx.bucket_model_trace(). If you are
using a list of dictionaries, verify that func_kwargs equals the bucket degree, or number of
buckets. By default func_kwargs is None, which means no arguments.

Returns The torch_neuronx.BucketModelConfig with the configuration defining bucket selec-
tion for inputs and shared buffers.

Return type BucketModelConfig

torch_neuronx.bucket_model_trace(func, example_inputs, bucket_config, compiler_workdir=None,
compiler_args=None)

This function traces a single model with multiple example_inputs and a bucket_config object to pro-
duce a single compiled model that can take in multiple input shapes. This trace function is very similar to
torch_neuronx.trace(), but it has a few key differences:

1. In this case, func does not take in a Model. Instead, it takes in a function that returns a tuple containing a
Model and input_output_aliases. This is like neuronx_distributed.parallel_model_trace(),
and is done for the same reason, which is that bucket models are traced in parallel.

2. Instead of taking in one input, the function takes in multiple inputs in the form of a list. For example,
[torch.rand(128,128),torch.rand(256,256)].

3. The bucket_config argument is of type torch_neuronx.BucketModelConfig(), which defines how
an input is mapped to a bucket. For more details, see the torch_neuronx.BucketModelConfig() API
Reference. You can use this for a variety of bucketing applications, such as sequence length bucketing for
language models or image resolution bucketing for computer vision models.

Apart from the aforementioned differences, the rest of the function behaves similarly to torch_neuronx.
trace(). You can save the model with torch.jit.save() and load it with torch.jit.load().

Parameters
• func (Module,callable) – This is a function that returns a Model object and

a dictionary of states, or input_output_aliases. Similar to neuronx_distributed.
parallel_model_trace(), this API calls this function inside each worker and runs
trace against them. Note: This differs from the torch_neuronx.trace where the
torch_neuronx.trace requires a model object to be passed.

• example_inputs (List[Union[Tensor,tuple[Tensor]]]) – A list of possible inputs
to the bucket model.

• bucket_config (BucketModelConfig) – The config object that defines bucket selection
behavior.

Keyword Arguments
• compiler_workdir (str) – Work directory used by neuronx-cc. This can be useful for

debugging and inspecting intermediary neuronx-cc outputs.

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 89

https://pytorch.org/docs/master/generated/torch.jit.script.html#torch.jit.script
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/master/generated/torch.jit.save.html#torch.jit.save
https://pytorch.org/docs/master/generated/torch.jit.load.html#torch.jit.load
https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#tuple
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#str

AWS Neuron

• compiler_args (str,list[str]) – List of strings representing neuronx-cc compiler ar-
guments. See Neuron Compiler CLI Reference Guide (neuronx-cc) for more information
about compiler options.

Returns The traced ScriptModule with the embedded compiled Neuron graphs for each bucket
model. Operations in this module will execute on Neuron.

Return type ScriptModule

Warning: If you receive the Too Many Open Files error message, increase the ulimit via ulimit -n 65535.
There is a limitation in torch_xla’s xmp.spawn function when dealing with large amounts of data.

The developer guide for Autobucketing is located here, which contains an example usage of autobucketing with BERT.

Dynamic Batching

torch_neuronx.dynamic_batch(neuron_script)
Enables a compiled Neuron model to be called with variable sized batches.

When tracing with Neuron, usually a model can only consume tensors that are the same size as the exam-
ple tensor used in the torch_neuronx.trace() call. Enabling dynamic batching allows a model to con-
sume inputs that may be either smaller or larger than the original trace-time tensor size. Internally, dynamic
batching splits & pads an input batch into chunks of size equal to the original trace-time tensor size. These
chunks are passed to the underlying model(s). Compared to serial inference, the expected runtime scales by
ceil(inference_batch_size / trace_batch_size) / neuron_cores.

This function modifies the neuron_script network in-place. The returned result is a reference to the modified
input.

Dynamic batching is only supported by chunking inputs along the 0th dimension. A network that uses a non-0
batch dimension is incompatible with dynamic batching. Upon inference, inputs whose shapes differ from the
compile-time shape in a non-0 dimension will raise a ValueError. For example, take a model was traced with a
single example input of size [2, 3, 5]. At inference time, when dynamic batching is enabled, a batch of size
[3, 3, 5] is valid while a batch of size [2, 7, 5] is invalid due to changing a non-0 dimension.

Dynamic batching is only supported when the 0th dimension is the same size for all inputs. For example, this
means that dynamic batching would not be applicable to a network which consumed two inputs with shapes [1,
2] and [3, 2] since the 0th dimension is different. Similarly, at inference time, the 0th dimension batch size
for all inputs must be identical otherwise a ValueError will be raised.

Required Arguments

Parameters neuron_script (ScriptModule) – The neuron traced ScriptModule with the em-
bedded compiled neuron graph. This is the output of torch_neuronx.trace().

Returns The traced ScriptModule with the embedded compiled neuron graph. The same type as
the input, but with dynamic_batch enabled in the neuron graph.

Return type ScriptModule

import torch
import torch_neuronx
import torch.nn as nn

class Net(nn.Module):
def __init__(self):

(continues on next page)

90 Chapter 7. PyTorch Neuron

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule

AWS Neuron

(continued from previous page)

super(Net, self).__init__()
self.conv = nn.Conv2d(1, 1, 3)

def forward(self, x):
return self.conv(x) + 1

n = Net()
n.eval()

inputs = torch.rand(1, 1, 3, 3)
inputs_batch_8 = torch.rand(8, 1, 3, 3)

Trace a neural network with input batch size of 1
neuron_net = torch_neuronx.trace(n, inputs)

Enable the dynamic batch size feature so the traced network
can consume variable sized batch inputs
neuron_net_dynamic_batch = torch_neuronx.dynamic_batch(neuron_net)

Run inference on inputs with batch size of 8
different than the batch size used in compilation (tracing)
ouput_batch_8 = neuron_net_dynamic_batch(inputs_batch_8)

Graph Partitioner

torch_neuronx.PartitionerConfig(*, trace_kwargs=None, model_support_percentage_threshold=0.5,
min_subgraph_size=- 1, max_subgraph_count=- 1,
ops_to_partition=None, analyze_parameters=None)

Allows for Neuron to trace a model with unsupported operators and partition these operators to CPU.

This model will contain subgraphs of Neuron and CPU submodules, but it is executed like one model, and can
be saved and loaded like one model as well.

The graph partitioner is customized using this class, and is only enabled (disabled by default) from the
torch_neuronx.trace API by setting partitioner_config keyword argument to this class. Below are the
various configuration options.

Parameters
• trace_kwargs (Dict) – Used if you need to pass trace kwargs to the Neuron subgraphs,

such as the compiler_workdir and/or compiler_args. The default is None correspond-
ing to the default trace args.

• model_support_percentage_threshold (float) – A number between 0 to 1 represent-
ing the maximum allowed percentage of operators that must be supported. If the max is
breached, the function will throw a ValueError. Default is 0.5 (i.e 50% of operators must be
supported by Neuron)

• min_subgraph_size (int) – The minimum number of operators in a subgraph. Can be >=
1 or == -1. If -1, minimum subgraph size is not checked (i.e no minimum). If >= 1, each
subgraph must contain at least that many operators. If not, the graph partitioner will throw a
ValueError.

• max_subgraph_count (int) – The maximum number of subgraphs in the partitioned

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 91

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

AWS Neuron

model. Can be >= 1 or == -1. If -1, max subgraph count is not checked (i.e no maxi-
mum). If >= 1, the partitioned model must contain at most that many subgraphs. If not, the
graph partitioner will throw a ValueError.

• ops_to_partition (Set[str]) – This is a set of strings of this structure
“aten::<operator>”. These are operators that will be partitioned to CPU regardless of
Neuron support. The default is None (i.e no additional operators will be partitioned).

• analyze_parameters (Dict) – This is a dictionary of kwargs used in torch_neuronx.
analyze(). NOTE: Not all kwargs in torch_neuronx.analyze() are supported in the
graph partitioner. The following kwargs in analyze are supported for use in the graph parti-
tioenr.

a) compiler_workdir

b) additional_ignored_ops

c) max_workers

The default is None, corresponding to the default analyze arguments.

Returns The PartitionerConfig with the configuration for the graph partitioner.

Return type PartitionerConfig

Examples

This example demonstrates using the graph partitioner.

The below model is a simple MLP model with sorted log softmax output. The sort operator, torch.sort() or aten:
:sort, is not supported by neuronx-cc at this time, so the graph partitioner will partition out the sort operator to
CPU.

import torch
import torch_neuronx
import torch.nn as nn

import logging

adjust logger level to see what the partitioner is doing
logger = logging.getLogger("Neuron")

class MLP(nn.Module):
def __init__(

self, input_size=28 * 28, output_size=10, layers=[4096, 2048]
):

super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, layers[0])
self.fc2 = nn.Linear(layers[0], layers[1])
self.fc3 = nn.Linear(layers[1], output_size)
self.relu = nn.ReLU()

def forward(self, x):
f1 = self.fc1(x)
r1 = self.relu(f1)
f2 = self.fc2(r1)
r2 = self.relu(f2)

(continues on next page)

92 Chapter 7. PyTorch Neuron

https://docs.python.org/3/library/stdtypes.html#str

AWS Neuron

(continued from previous page)

f3 = self.fc3(r2)
out = torch.log_softmax(f3, dim=1)
sort_out,_ = torch.sort(out)
return sort_out

n = MLP()
n.eval()

inputs = torch.rand(32,784)

Configure the graph partitioner with the default values
partitioner_config = torch_neuronx.PartitionerConfig()

Trace a neural network with graph partitioner enabled
neuron_net = torch_neuronx.trace(n, inputs, partitioner_config=partitioner_config)

Run inference on the partitioned model
output = neuron_net(inputs)

Note: Dynamic batching has a case-by-case support with partitioned models, because it is highly dependent on how
the final partition scheme looks like.

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

PyTorch Neuron (torch-neuronx) Weight Replacement API for Inference

torch_neuronx.replace_weights(neuron_model, weights)
Replaces the weights in a Neuron Model with split weights. This function will emit a warning of the supplied
Neuron model does not contain any separated weights.

Warning: The below API is only applicable for models traced with the parameter
inline_weights_to_neff=False, which is True by default. See torch_neuronx.trace() for
details.

Parameters
• neuron_model (RecursiveScriptModule) – A Neuron model compiled with split

weights

• weights (Module,Dict[str, Tensor]) – Either the original model with the new
weights, or the state_dict of a model.

Returns None, this function performs the weight replacement inline.

Return type None

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 93

https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/master/tensors.html#torch.Tensor

AWS Neuron

Examples

Using a model

import torch
import torch_neuronx

class Network(torch.nn.Module):
def __init__(self, hidden_size=4, layers=3) -> None:

super().__init__()
self.layers = torch.nn.Sequential(

*(torch.nn.Linear(hidden_size, hidden_size) for _ in range(layers)))

def forward(self, tensor):
return self.layers(tensor)

initialize two networks
network = Network()
network2 = Network()
network.eval()
network2.eval()

inp = torch.rand(2,4)

trace weight separated model with first network
weight_separated_trace = torch_neuronx.trace(network,inp,inline_weights_to_
→˓neff=False)

replace with weights from second network
torch_neuronx.replace_weights(weight_separated_trace,network2.state_dict())

get outputs from neuron and cpu networks
out_network2 = network2(inp)
out_neuron = weight_separated_trace(inp)

check that they are equal
print(out_network2,out_neuron)

Using safetensors

The safetensors library is useful for storing/loading model tensors safely and quickly.

import torch
import torch_neuronx

from safetensors import safe_open
from safetensors.torch import save_model

class Network(torch.nn.Module):
def __init__(self, hidden_size=4, layers=3) -> None:

super().__init__()
(continues on next page)

94 Chapter 7. PyTorch Neuron

https://huggingface.co/docs/safetensors/index

AWS Neuron

(continued from previous page)

self.layers = torch.nn.Sequential(
*(torch.nn.Linear(hidden_size, hidden_size) for _ in range(layers)))

def forward(self, tensor):
return self.layers(tensor)

initialize two networks
network = Network()
network2 = Network()
network.eval()
network2.eval()

inp = torch.rand(2,4)

trace weight separated model with first network
weight_separated_trace = torch_neuronx.trace(network,inp,inline_weights_to_
→˓neff=False)

save network2 weights to safetensors
safetensor_path = f"{directory}/network2.safetensors"
save_model(network2,safetensor_path)

#load safetensors from network2 into traced_weight separated model
tensors = {}
with safe_open(safetensor_path,framework="pt") as f:

for k in f.keys():
tensors[k] = f.get_tensor(k)

replace with weights from second network
torch_neuronx.replace_weights(weight_separated_trace,tensors)

get outputs from neuron and cpu networks
out_network2 = network2(inp)
out_neuron = weight_separated_trace(inp)

check that they are equal
print(out_network2,out_neuron)

Note: For non-safetensors models, use torch.load to load the model, and pass the model’s state_dict
inside like the first example.

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 95

AWS Neuron

PyTorch NeuronX NeuronCore Placement APIs [Beta]

Warning: The following functionality is beta and will not be supported in future releases of the NeuronSDK. This
module serves only as a preview for future functionality. In future releases, equivalent functionality may be moved
directly to the torch_neuronx module and will no longer be available in the torch_neuronx.experimental
module.

Functions which enable placement of torch.jit.ScriptModule to specific NeuronCores. Two sets of functions are
provided which can be used interchangeably but have different performance characteristics and advantages:

• The multicore_context()& neuron_cores_context() functions are context managers that allow a model
to be placed on a given NeuronCore only at torch.jit.load() time. These functions are the most efficient
way of loading a model since the model is loaded directly to a NeuronCore. The alternative functions described
below require that a model is unloaded from one core and then reloaded to another.

• The set_multicore() & set_neuron_cores() functions allow a model that has already been loaded to a
NeuronCore to be moved to a different NeuronCore. This functionality is less efficient than directly loading a
model to a NeuronCore within a context manager but allows device placement to be fully dynamic at runtime.
This is analogous to the torch.nn.Module.to() function for device placement.

Important: A prerequisite to enable placement functionality is that the loaded torch.jit.ScriptModule has
already been compiled with the torch_neuronx.trace() API. Attempting to place a regular torch.nn.Module
onto a NeuronCore prior to compilation will do nothing.

torch_neuronx.experimental.set_neuron_cores(trace: torch.jit.ScriptModule, start_nc: int = - 1, nc_count:
int = - 1)

Set the NeuronCore start/count for all Neuron subgraphs in a torch Module.

This will unload the model from an existing NeuronCore if it is already loaded.

Requires Torch 1.8+

Parameters trace (ScriptModule) – A torch module which contains one or more Neuron sub-
graphs.

Keyword Arguments
• start_nc (int) – The starting NeuronCore index where the Module is placed. The value
-1 automatically loads to the optimal NeuronCore (least used). Note that this index is always
relative to NeuronCores visible to this process.

• nc_count (int) – The number of NeuronCores to use. The value -1 will load a model to
exactly one NeuronCore. If nc_count is greater than than one, the model will be replicated
across multiple NeuronCores.

Raises
• [RuntimeError] – If the Neuron runtime cannot be initialized.

• [ValueError] – If the nc_count is an invalid number of NeuronCores.

96 Chapter 7. PyTorch Neuron

https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.load.html#torch.jit.load
https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.to
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#ValueError

AWS Neuron

Examples

Single Load: Move a model to the first visible NeuronCore after loading.

model = torch.jit.load('example_neuron_model.pt')
torch_neuronx.experimental.set_neuron_cores(model, start_nc=0, nc_count=1)

model(example) # Executes on NeuronCore 0
model(example) # Executes on NeuronCore 0
model(example) # Executes on NeuronCore 0

Multiple Core Replication: Replicate a model to 2 NeuronCores after loading. This allows a single torch.jit.
ScriptModule to use multiple NeuronCores by running round-robin executions.

model = torch.jit.load('example_neuron_model.pt')
torch_neuronx.experimental.set_neuron_cores(model, start_nc=2, nc_count=2)

model(example) # Executes on NeuronCore 2
model(example) # Executes on NeuronCore 3
model(example) # Executes on NeuronCore 2

Multiple Model Load: Move and pin 2 models to separate NeuronCores. This causes each torch.jit.
ScriptModule to always execute on a specific NeuronCore.

model1 = torch.jit.load('example_neuron_model.pt')
torch_neuronx.experimental.set_neuron_cores(model1, start_nc=2)

model2 = torch.jit.load('example_neuron_model.pt')
torch_neuronx.experimental.set_neuron_cores(model2, start_nc=0)

model1(example) # Executes on NeuronCore 2
model1(example) # Executes on NeuronCore 2
model2(example) # Executes on NeuronCore 0
model2(example) # Executes on NeuronCore 0

torch_neuronx.experimental.set_multicore(trace: torch.jit.ScriptModule)
Loads all Neuron subgraphs in a torch Module to all visible NeuronCores.

This loads each Neuron subgraph within a torch.jit.ScriptModule to multiple NeuronCores without re-
quiring multiple calls to torch.jit.load(). This allows a single torch.jit.ScriptModule to use multiple
NeuronCores for concurrent threadsafe inferences. Executions use a round-robin strategy to distribute across
NeuronCores.

This will unload the model from an existing NeuronCore if it is already loaded.

Requires Torch 1.8+

Parameters trace (ScriptModule) – A torch module which contains one or more Neuron sub-
graphs.

Raises [RuntimeError] – If the Neuron runtime cannot be initialized.

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 97

https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.load.html#torch.jit.load
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://docs.python.org/3/library/exceptions.html#RuntimeError

AWS Neuron

Examples

Multiple Core Replication: Move a model across all visible NeuronCores after loading. This allows a single
torch.jit.ScriptModule to use all NeuronCores by running round-robin executions.

model = torch.jit.load('example_neuron_model.pt')
torch_neuronx.experimental.set_multicore(model)

model(example) # Executes on NeuronCore 0
model(example) # Executes on NeuronCore 1
model(example) # Executes on NeuronCore 2

torch_neuronx.experimental.neuron_cores_context(start_nc: int = - 1, nc_count: int = - 1)
A context which sets the NeuronCore start/count for Neuron models loaded with torch.jit.load().

This context manager may only be used when loading a model with torch.jit.load(). A model which has
already been loaded into memory will not be affected by this context manager. Furthermore, after loading the
model, inferences do not need to occur in this context in order to use the correct NeuronCores.

Note that this context is not threadsafe. Using multiple core placement contexts from multiple threads may not
correctly place models.

Keyword Arguments
• start_nc (int) – The starting NeuronCore index where the Module is placed. The value
-1 automatically loads to the optimal NeuronCore (least used). Note that this index is always
relative to NeuronCores visible to this process.

• nc_count (int) – The number of NeuronCores to use. The value -1 will load a model to
exactly one NeuronCore. If nc_count is greater than than one, the model will be replicated
across multiple NeuronCores.

Raises
• [RuntimeError] – If the Neuron runtime cannot be initialized.

• [ValueError] – If the nc_count is an invalid number of NeuronCores.

Examples

Single Load: Directly load a model from disk to the first visible NeuronCore.

with torch_neuronx.experimental.neuron_cores_context(start_nc=0, nc_count=1):
model = torch.jit.load('example_neuron_model.pt') # Load must occur within the␣

→˓context

model(example) # Executes on NeuronCore 0
model(example) # Executes on NeuronCore 0
model(example) # Executes on NeuronCore 0

Multiple Core Replication: Directly load a model from disk to 2 NeuronCores. This allows a single torch.jit.
ScriptModule to use multiple NeuronCores by running round-robin executions.

with torch_neuronx.experimental.neuron_cores_context(start_nc=2, nc_count=2):
model = torch.jit.load('example_neuron_model.pt') # Load must occur within the␣

→˓context

(continues on next page)

98 Chapter 7. PyTorch Neuron

https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/generated/torch.jit.load.html#torch.jit.load
https://pytorch.org/docs/master/generated/torch.jit.load.html#torch.jit.load
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule

AWS Neuron

(continued from previous page)

model(example) # Executes on NeuronCore 2
model(example) # Executes on NeuronCore 3
model(example) # Executes on NeuronCore 2

Multiple Model Load: Directly load 2 models from disk and pin them to separate NeuronCores. This causes
each torch.jit.ScriptModule to always execute on a specific NeuronCore.

with torch_neuronx.experimental.neuron_cores_context(start_nc=2):
model1 = torch.jit.load('example_neuron_model.pt') # Load must occur within␣

→˓the context

with torch_neuronx.experimental.neuron_cores_context(start_nc=0):
model2 = torch.jit.load('example_neuron_model.pt') # Load must occur within␣

→˓the context

model1(example) # Executes on NeuronCore 2
model1(example) # Executes on NeuronCore 2
model2(example) # Executes on NeuronCore 0
model2(example) # Executes on NeuronCore 0

torch_neuronx.experimental.multicore_context()

A context manager which loads models to all visible NeuronCores for Neuron models loaded with torch.jit.
load().

This loads each Neuron subgraph within a torch.jit.ScriptModule to multiple NeuronCores without re-
quiring multiple calls to torch.jit.load(). This allows a single torch.jit.ScriptModule to use multiple
NeuronCores for concurrent threadsafe inferences. Executions use a round-robin strategy to distribute across
NeuronCores.

This context manager may only be used when loading a model with torch.jit.load(). A model which has
already been loaded into memory will not be affected by this context manager. Furthermore, after loading the
model, inferences do not need to occur in this context in order to use the correct NeuronCores.

Note that this context is not threadsafe. Using multiple core placement contexts from multiple threads may not
correctly place models.

Raises [RuntimeError] – If the Neuron runtime cannot be initialized.

Examples

Multiple Core Replication: Directly load a model to all visible NeuronCores. This allows a single torch.jit.
ScriptModule to use all NeuronCores by running round-robin executions.

with torch_neuronx.experimental.multicore_context():
model = torch.jit.load('example_neuron_model.pt') # Load must occur within the␣

→˓context

model(example) # Executes on NeuronCore 0
model(example) # Executes on NeuronCore 1
model(example) # Executes on NeuronCore 2

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 99

https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.load.html#torch.jit.load
https://pytorch.org/docs/master/generated/torch.jit.load.html#torch.jit.load
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.load.html#torch.jit.load
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.load.html#torch.jit.load
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule

AWS Neuron

PyTorch NeuronX Analyze API for Inference

torch_neuronx.analyze(func, example_inputs, compiler_workdir=None)
Checks the support of the operations in the func by checking each operator against neuronx-cc.

Parameters
• func (Module,callable) – The function/module that that will be run using the
example_inputs arguments in order to record the computation graph.

• example_inputs (Tensor,tuple[Tensor]) – A tuple of example inputs that will be
passed to the func while tracing.

Keyword Arguments
• compiler_workdir (str) – Work directory used by neuronx-cc. This can be useful for

debugging and/or inspecting intermediary neuronx-cc outputs

• additional_ignored_ops (set) – A set of aten operators to not analyze. Default is an
empty set.

• max_workers (int) – The max number of workers threads to spawn. The default is 4.

• is_hf_transformers (bool) – If the model is a huggingface transformers model, it is
recommended to enable this option to prevent deadlocks. Default is False.

• cleanup (bool) – Specifies whether to delete the compiler artifact directories generated
after running analyze. Default is False.

Returns A JSON like Dict with the supported operators and their count, and unsupported operators
with the failure mode and location of the operator in the python code.

Return type Dict

Examples

Fully supported model

import json

import torch
import torch.nn as nn
import torch_neuronx

class MLP(nn.Module):
def __init__(self, input_size=28*28, output_size=10, layers=[120,84]):

super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, layers[0])
self.relu = nn.ReLU()
self.fc2 = nn.Linear(layers[0], layers[1])

def forward(self, x):
f1 = self.fc1(x)
r1 = self.relu(f1)
f2 = self.fc2(r1)
r2 = self.relu(f2)
f3 = self.fc3(r2)
return torch.log_softmax(f3, dim=1)

(continues on next page)

100 Chapter 7. PyTorch Neuron

https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#tuple
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

AWS Neuron

(continued from previous page)

model = MLP()
ex_input = torch.rand([32,784])

model_support = torch_neuronx.analyze(model,ex_input)
print(json.dumps(model_support,indent=4))

{
"torch_neuronx_version": "1.13.0.1.5.0",
"neuronx_cc_version": "2.0.0.11796a0+24a26e112",
"support_percentage": "100.00%",
"supported_operators": {

"aten::linear": 3,
"aten::relu": 2,
"aten::log_softmax": 1
},
"unsupported_operators": []

}

Unsupported Model/Operator

import json
import torch
import torch_neuronx

def fft(x):
return torch.fft.fft(x)

model = fft
ex_input = torch.arange(4)

model_support = torch_neuronx.analyze(model,ex_input)
print(json.dumps(model_support,indent=4))

{
"torch_neuronx_version": "1.13.0.1.5.0",
"neuronx_cc_version": "2.0.0.11796a0+24a26e112",
"support_percentage": "0.00%",
"supported_operators": {},
"unsupported_operators": [

{
"kind": "aten::fft_fft",
"failureAt": "neuronx-cc",
"call": "test.py(6): fft\n/home/ubuntu/testdir/venv/lib/python3.8/site-

→˓packages/torch_neuronx/xla_impl/analyze.py(35): forward\n/home/ubuntu/testdir/
→˓venv/lib/python3.8/site-packages/torch/nn/modules/module.py(1182): _slow_forward\
→˓n/home/ubuntu/testdir/venv/lib/python3.8/site-packages/torch/nn/modules/module.
→˓py(1194): _call_impl\n/home/ubuntu/testdir/venv/lib/python3.8/site-packages/torch/
→˓jit/_trace.py(976): trace_module\n/home/ubuntu/testdir/venv/lib/python3.8/site-
→˓packages/torch/jit/_trace.py(759): trace\n/home/ubuntu/testdir/venv/lib/python3.8/
→˓site-packages/torch_neuronx/xla_impl/analyze.py(302): analyze\ntest.py(11):
→˓<module>\n",

"opGraph": "graph(%x : Long(4, strides=[1], requires_grad=0, device=cpu),\
→˓n %neuron_4 : NoneType,\n %neuron_5 : int,\n %neuron_6 : NoneType):
→˓\n %neuron_7 : ComplexFloat(4, strides=[1], requires_grad=0, device=cpu) = aten::
→˓fft_fft(%x, %neuron_4, %neuron_5, %neuron_6)\n return (%neuron_7)\n"

(continues on next page)

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 101

AWS Neuron

(continued from previous page)

}
]

}

Note: the failureAt field can either be “neuronx-cc” or “Lowering to HLO”. If the field is “neuronx-cc”, then
it indicates that the provided operator configuration failed to be compiled with neuronx-cc. This could either
indicate that the operator configuration is unsupported, or there is a bug with that operator configuration.

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

PyTorch NeuronX DataParallel API

The torch_neuronx.DataParallel() Python API implements data parallelism on ScriptModule models created
by PyTorch NeuronX Tracing API for Inference. This function is analogous to DataParallel in PyTorch. The Data
Parallel Inference on torch_neuronx application note provides an overview of how torch_neuronx.DataParallel()
can be used to improve the performance of inference workloads on Inferentia.

torch_neuronx.DataParallel(model, device_ids=None, dim=0, set_dynamic_batching=True)
Applies data parallelism by replicating the model on available NeuronCores and distributing data across the
different NeuronCores for parallelized inference.

By default, DataParallel will use all available NeuronCores allocated for the current process for parallelism.
DataParallel will apply parallelism on dim=0 if dim is not specified.

DataParallel automatically enables dynamic batching on eligible models if dim=0. Dynamic batching
can be disabled using torch_neuronx.DataParallel.disable_dynamic_batching(), or by setting
set_dynamic_batching=False when initializing the DataParallel object. If dynamic batching is not enabled,
the batch size at compilation-time must be equal to the batch size at inference-time divided by the number of
NeuronCores being used. Specifically, the following must be true when dynamic batching is disabled: input.
shape[dim] / len(device_ids) == compilation_input.shape[dim].

torch.neuron.DataParallel() requires PyTorch >= 1.8.

Required Arguments

Parameters model (ScriptModule) – Model created by the PyTorch NeuronX Tracing API for In-
ference to be parallelized.

Optional Arguments

Parameters
• device_ids (list) – List of int or 'nc:#' that specify the NeuronCores to use for paral-

lelization (default: all NeuronCores). Refer to the device_ids note for a description of how
device_ids indexing works.

• dim (int) – Dimension along which the input tensor is scattered across NeuronCores (default
dim=0).

• set_dynamic_batching (bool) – Whether to enable dynamic batching.

Attributes

Parameters
• num_workers (int) – Number of worker threads used for multithreaded inference (default:
2 * number of NeuronCores).

102 Chapter 7. PyTorch Neuron

https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.nn.DataParallel.html#torch.nn.DataParallel
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

AWS Neuron

• split_size (int) – Size of the input chunks (default: max(1, input.shape[dim] //
number of NeuronCores)).

torch.neuron.DataParallel.disable_dynamic_batching()

Disables automatic dynamic batching on the DataParallel module. See Dynamic batching disabled for example
of how DataParallel can be used with dynamic batching disabled. Use as follows:

>>> model_parallel = torch_neuronx.DataParallel(model_neuron)
>>> model_parallel.disable_dynamic_batching()

Note: device_ids uses per-process NeuronCore granularity and zero-based indexing. Per-process granularity means
that each Python process “sees” its own view of the world. Specifically, this means that device_ids only “sees” the
NeuronCores that are allocated for the current process. Zero-based indexing means that each Python process will index
its allocated NeuronCores starting at 0, regardless of the “global” index of the NeuronCores. Zero-based indexing
makes it possible to redeploy the exact same code unchanged in different process. This behavior is analogous to the
device_ids argument in the PyTorch DataParallel function.

As an example, assume DataParallel is run on an inf2.48xlarge, which contains 12 Inferentia chips each of which
contains two NeuronCores:

• If NEURON_RT_VISIBLE_CORES is not set, a single process can access all 24 NeuronCores. Thus specify-
ing device_ids=["nc:0"] will correspond to chip0:core0 and device_ids=["nc:13"] will correspond to
chip6:core1.

• However, if two processes are launched where: process 1 has NEURON_RT_VISIBLE_CORES=0-11 and process
2 has NEURON_RT_VISIBLE_CORES=12-23, device_ids=["nc:13"] cannot be specified in either process.
Instead, chip6:core1 can only be accessed in process 2. Additionally, chip6:core1 is specified in process 2 with
device_ids=["nc:1"]. Furthermore, in process 1, device_ids=["nc:0"]would correspond to chip0:core0;
in process 2 device_ids=["nc:0"] would correspond to chip6:core0.

Examples

The following sections provide example usages of the torch_neuronx.DataParallel() module.

Default usage

The default DataParallel use mode will replicate the model on all available NeuronCores in the current process. The
inputs will be split on dim=0.

import torch
import torch_neuronx
from torchvision import models

Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch_neuronx.trace(model, image)

(continues on next page)

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 103

https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/generated/torch.nn.DataParallel.html#torch.nn.DataParallel

AWS Neuron

(continued from previous page)

Create the DataParallel module
model_parallel = torch_neuronx.DataParallel(model_neuron)

Create a batched input
batch_size = 5
image_batched = torch.rand([batch_size, 3, 224, 224])

Run inference with a batched input
output = model_parallel(image_batched)

Specifying NeuronCores

The following example uses the device_ids argument to use the first three NeuronCores for DataParallel inference.

import torch
import torch_neuronx
from torchvision import models

Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch_neuronx.trace(model, image)

Create the DataParallel module, run on the first two NeuronCores
Equivalent to model_parallel = torch.neuron.DataParallel(model_neuron, device_ids=[0,␣
→˓1])
model_parallel = torch_neuronx.DataParallel(model_neuron, device_ids=['nc:0', 'nc:1'])

Create a batched input
batch_size = 5
image_batched = torch.rand([batch_size, 3, 224, 224])

Run inference with a batched input
output = model_parallel(image_batched)

DataParallel with dim != 0

In this example we run DataParallel inference using two NeuronCores and dim = 2. Because dim != 0, dynamic
batching is not enabled. Consequently, the DataParallel inference-time batch size must be two times the compile-time
batch size.

import torch
import torch_neuronx

Create an example model
class Model(torch.nn.Module):

(continues on next page)

104 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(3, 3, 3)

def forward(self, x):
return self.conv(x) + 1

model = Model()
model.eval()

Compile with an example input
image = torch.rand([1, 3, 8, 8])
model_neuron = torch_neuronx.trace(model, image)

Create the DataParallel module using 2 NeuronCores and dim = 2
model_parallel = torch_neuronx.DataParallel(model_neuron, device_ids=[0, 1], dim=2)

Create a batched input
Note that image_batched.shape[dim] / len(device_ids) == image.shape[dim]
batch_size = 2 * 8
image_batched = torch.rand([1, 3, batch_size, 8])

Run inference with a batched input
output = model_parallel(image_batched)

Dynamic batching

In the following example, we use the torch_neuronx.DataParallel() module to run inference using several dif-
ferent batch sizes without recompiling the Neuron model.

import torch
import torch_neuronx
from torchvision import models

Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch_neuronx.trace(model, image)

Create the DataParallel module
model_parallel = torch_neuronx.DataParallel(model_neuron)

Create batched inputs and run inference on the same model
batch_sizes = [2, 3, 4, 5, 6]
for batch_size in batch_sizes:

image_batched = torch.rand([batch_size, 3, 224, 224])

Run inference with a batched input
(continues on next page)

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 105

AWS Neuron

(continued from previous page)

output = model_parallel(image_batched)

Dynamic batching disabled

In the following example, we use torch_neuronx.DataParallel.disable_dynamic_batching() to disable dy-
namic batching. We provide an example of a batch size that will not work when dynamic batching is disabled as well
as an example of a batch size that does work when dynamic batching is disabled.

import torch
import torch_neuronx
from torchvision import models

Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch_neuronx.trace(model, image)

Create the DataParallel module and use 2 NeuronCores
model_parallel = torch_neuronx.DataParallel(model_neuron, device_ids=[0, 1], dim=0)

Disable dynamic batching
model_parallel.disable_dynamic_batching()

Create a batched input (this won't work)
batch_size = 4
image_batched = torch.rand([batch_size, 3, 224, 224])

This will fail because dynamic batching is disabled and
image_batched.shape[dim] / len(device_ids) != image.shape[dim]
output = model_parallel(image_batched)

Create a batched input (this will work)
batch_size = 2
image_batched = torch.rand([batch_size, 3, 224, 224])

This will work because
image_batched.shape[dim] / len(device_ids) == image.shape[dim]
output = model_parallel(image_batched)

This document is relevant for: Inf2, Trn1, Trn1n

106 Chapter 7. PyTorch Neuron

AWS Neuron

API Reference Guide (torch-neuronx)

• PyTorch NeuronX Tracing API for Inference

• PyTorch Neuron (torch-neuronx) Weight Replacement API for Inference

• PyTorch NeuronX NeuronCore Placement APIs [Beta]

• PyTorch NeuronX Analyze API for Inference

• PyTorch NeuronX DataParallel API

• torch_neuronx_lazy_async_load_api

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

7.2.4 Developer Guide (torch-neuronx)

This document is relevant for: Inf2, Trn1, Trn1n

NeuronCore Allocation and Model Placement for Inference (torch-neuronx)

This programming guide describes the how to allocate NeuronCores to processes and place models onto specific Neu-
ronCores. The models in this guide are expected to have been traced with with torch_neuronx.trace().

Warning: This guide is not applicable to NeuronCore placement using XLA LazyTensor device execution. See:
Comparison of Traced Inference versus XLA Lazy Tensor Inference (torch-neuronx)

In order of precedence, the recommendation is to use the following placement techniques:

1. For nearly all regular models, default core placement should be used to take control of all cores for a single
process.

2. For applications using multiple processes, default core placement should be used in conjunction with
NEURON_RT_NUM_CORES (Default Core Allocation & Placement)

3. For more granular control, then the beta explicit placement APIs may be used (Explicit Core Placement [Beta]).

Table of Contents

• NeuronCore Allocation and Model Placement for Inference (torch-neuronx)

– Default Core Allocation & Placement

∗ Example: Default

∗ Example: NEURON_RT_NUM_CORES

∗ Example: NEURON_RT_VISIBLE_CORES

∗ Example: Multiple Processes

– Explicit Core Placement [Beta]

∗ Example: Manual Core Selection

∗ Example: Automatic Multicore

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 107

AWS Neuron

The following guide will assume a machine with 8 NeuronCores:

• NeuronCores will use the notation nc0, nc1, etc.

• Models will use the notation m0, m1 etc.

NeuronCores and model allocations will be displayed in the following format:

The actual cores that are visible to the process can be adjusted according to the NeuronX Runtime Configuration.

Unlike torch-neuron (with neuron-cc) instances, torch-neuronx (with neuronx-cc) does not support NeuronCore
Pipeline. This simplifies model core allocations since it means that model pipelines will likely not span across multiple
NeuronCores.

Default Core Allocation & Placement

The most basic requirement of an inference application is to be able to place a single model on a single NeuronCore.
More complex applications may use multiple NeuronCores or even multiple processes each executing different models.
The important thing to note about designing an inference application is that a single NeuronCore will always be allocated
to a single process. Processes do not share NeuronCores. Different configurations can be used to ensure that an
application process has enough NeuronCores allocated to execute its model(s):

• Default: A process will attempt to take ownership of all NeuronCores visible on the instance. This should be
used when an instance is only running a single inference process since no other process will be allowed to take
ownership of any NeuronCores.

• NEURON_RT_NUM_CORES: Specify the number of NeuronCores to allocate to the process. This places no re-
strictions on which NeuronCores will be used, however, the resulting NeuronCores will always be contiguous.
This should be used in multi-process applications where each process should only use a subset of NeuronCores.

• NEURON_RT_VISIBLE_CORES: Specifies exactly which NeuronCores are allocated to the process by index. Sim-
ilar to NEURON_RT_NUM_CORES, this can be used in multi-process applications where each process should only
use a subset of NeuronCores. This provides more fined-grained controls over the exact NeuronCores that are
allocated to a given process.

See the NeuronX Runtime Configuration for more environment variable details.

Example: Default

Python Script:

import torch
import torch_neuronx

m0 = torch.jit.load('model.pt') # Loads to nc0
m1 = torch.jit.load('model.pt') # Loads to nc1

With no environment configuration, the process will take ownership of all NeuronCores. In this example, only two of
the NeuronCores are used by the process and the remaining are allocated but left idle.

108 Chapter 7. PyTorch Neuron

AWS Neuron

Example: NEURON_RT_NUM_CORES

Environment Setup:

export NEURON_RT_NUM_CORES = '2'

Python Script:

import torch
import torch_neuronx

m0 = torch.jit.load('model.pt') # Loads to nc0
m1 = torch.jit.load('model.pt') # Loads to nc1

Since there is no other process on the instance, only the first 2 NeuronCores will be acquired by the process. Models
load in a simple linear order to the least used NeuronCores.

Example: NEURON_RT_VISIBLE_CORES

Environment Setup:

export NEURON_RT_VISIBLE_CORES = '4-5'

Python Script:

import torch
import torch_neuronx

m0 = torch.jit.load('model.pt') # Loads to nc4
m1 = torch.jit.load('model.pt') # Loads to nc5

Unlike NEURON_RT_NUM_CORES, setting the visible NeuronCores allows the process to take control of a specific con-
tiguous set. This allows an application to have a more fine-grained control of where models will be placed.

Example: Multiple Processes

Environment Setup:

export NEURON_RT_NUM_CORES = '2'

Python Script:

import torch
import torch_neuronx

m0 = torch.jit.load('model.pt') # Loads to nc0
m1 = torch.jit.load('model.pt') # Loads to nc1

In this example, if the script is run twice, the following allocations will be made:

Note that each process will take ownership of as many NeuronCores as is specified by the NEURON_RT_NUM_CORES
configuration.

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 109

AWS Neuron

Explicit Core Placement [Beta]

The torch_neuronx framework allows can be found in the PyTorch NeuronX NeuronCore Placement APIs [Beta]
documentation.

Example: Manual Core Selection

The most direct usage of the placement APIs is to manually select the start NeuronCore that each model is loaded to.

Environment Setup:

export NEURON_RT_NUM_CORES = '4'

Python Script:

import torch
import torch_neuronx

NOTE: Order of loads does NOT matter
with torch_neuronx.experimental.neuron_cores_context(start_nc=3):

m0 = torch.jit.load('model.pt') # Loads to nc3

with torch_neuronx.experimental.neuron_cores_context(start_nc=0, nc_count=2):
m1 = torch.jit.load('model.pt') # Loads replicas to nc0 and nc1

example = torch.rand(1, 3, 224, 224)

m1(example) # Executes on nc3
m1(example) # Executes on nc3

m0(example) # Executes on nc0
m0(example) # Executes on nc1
m0(example) # Executes on nc0

Example: Automatic Multicore

Using explicit core placement it is possible to replicate a model to multiple NeuronCores simultaneously. This means
that a single model object within python can utilize all available NeuronCores (or NeuronCores allocated to the process).

Environment Setup:

export NEURON_RT_NUM_CORES = '8'

Python Script:

import torch
import torch_neuronx

with torch_neuronx.experimental.multicore_context():
m0 = torch.jit.load('model.pt') # Loads replications to nc0-nc7

example = torch.rand(1, 3, 224, 224)
(continues on next page)

110 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

m0(example) # Executes on nc0
m0(example) # Executes on nc1

To make full use of a model that has been loaded to multiple NeuronCores, multiple threads should be used to run
inferences in parallel.

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

Comparison of Traced Inference versus XLA Lazy Tensor Inference (torch-neuronx)

Table of contents

• Introduction

• XLA Lazy Tensor Inference Mechanics

• Traced Inference Mechanics

• Traced Inference Advantages

• Summary

Introduction

Using torch-neuronx, there are two ways that a model can be executed for inference:

• XLA LazyTensor Inference: A model is executed on Neuron by calling to() to move Parameter and Tensor
data using the xm.xla_device(). Executing operations uses torch Lazy Tensor to record, compile, and execute
the graph. These are the same mechanisms used for training.

• (Recommended) Traced Inference: A model is traced prior to inference using the trace() API. This trace is
similar to torch.jit.trace() but instead creates a Neuron-specific TorchScript artifact. This artifact provides
improved performance and portability compared to XLA Lazy Tensor inference.

XLA Lazy Tensor Inference Mechanics

XLA Lazy Tensor inference uses Just-In-Time (JIT) compilation for Neuron execution.

XLA Device execution uses the built-in torch-xla functionality with torch Lazy Tensor to record torch operations us-
ing the xm.xla_device(). The graph of operations is sent to the neuronx-cc compiler upon calling xm.mark_step().
Finally the compiled graph is transferred to a NeuronCore and executed in the Neuron backend.

The initial model inference will be very slow since the model binary file in the Neuron Executable File Format (NEFF)
will need to be generated by the compiler. Upon each subsequent call to a model, the application will re-execute the
python, rebuild the graph, and check a cache to see if an existing NEFF file is available for the given graph before
attempting to recompile.

The process of recording graph operations in python can become a bottleneck for otherwise fast models. This overhead
will always have an effect on performance regardless of model size but may be less noticeable on larger models. Note
that this XLA Lazy Tensor execution performance may improve significantly with new torch features in the future.

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 111

https://pytorch.org/docs/master/generated/torch.Tensor.to.html#torch.Tensor.to
https://pytorch.org/docs/master/generated/torch.nn.parameter.Parameter.html#torch.nn.parameter.Parameter
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://pytorch.org/docs/master/generated/torch.jit.trace.html#torch.jit.trace
https://pytorch.org/docs/stable/jit.html

AWS Neuron

Example

Fixed Shape Example

import torch
import torch_neuronx
import torch_xla.core.xla_model as xm

Create XLA device
device = xm.xla_device()

Load example model and inputs to Neuron device
model = torch.nn.Sequential(

torch.nn.Linear(784, 120),
torch.nn.ReLU(),
torch.nn.Linear(120, 10),
torch.nn.Softmax(dim=-1),

)
model.eval()
model.to(device)
example = torch.rand((1, 784), device=device)

Inference
with torch.no_grad():

result = model(example)
xm.mark_step() # Compilation occurs here
print(result.cpu())

Dynamic Shape Example

The following is an example of a model that dynamically changes the sequence length and batch size of the input token
ID tensor to trigger recompilations. This kind of workflow would require padding when using traced inference.

import torch
import torch_neuronx
import torch_xla.core.xla_model as xm

Create XLA device
device = xm.xla_device()

Load example model and inputs to Neuron device
model = torch.nn.Sequential(

torch.nn.Embedding(num_embeddings=30522, embedding_dim=512),
torch.nn.Linear(512, 128),
torch.nn.ReLU(),
torch.nn.Linear(128, 2),
torch.nn.Softmax(dim=-1),

)
model.eval()
model.to(device)

token_ids_1 = torch.tensor([
(continues on next page)

112 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

[1, 28, 748, 0],
]) # shape: [1, 4]
token_ids_2 = torch.tensor([

[1, 13087, 10439, 1990, 18912, 0],
[1, 12009, 7849, 2509, 3500, 0],

]) # shape: [2, 6]

Inference
with torch.no_grad():

First compilation/inference
result = model(token_ids_1)
xm.mark_step()
print(result.cpu()) # shape: [1, 4, 2]

Recompilation occurs here since token_ids_2 is a different shape. This infer
would have failed if the model had been traced with shape [1, 4]
result = model(token_ids_2)
xm.mark_step()
print(result.cpu()) # shape: [2, 6, 2]

Traced Inference Mechanics

Traced inference uses Ahead-Of-Time (AOT) compilation for Neuron execution.

Similar to XLA Lazy Tensor inference, trace() uses the operation recording mechanisms provided by torch-xla to
build the graph structure. This graph structure is also sent to the neuronx-cc compiler to produce a binary (NEFF) that
is executable on Neuron.

The main difference is that the call to trace() returns a new fully compiled graph as a TorchScript Module. Upon call-
ing this new Module, rather than re-executing the python, rebuilding the graph, and checking the cache for a matching
model, the new Module simply executes the precompiled graph that was preloaded during tracing. This is a significantly
more optimized runtime since it avoids the python operator tracing, graph building, etc.

One disadvantage of this interface is that a model will never dynamically recompile after a trace. This means that
dynamic control flow is not supported within a function/module. Tensor input/output shapes are fixed to the shapes
passed to the trace() API. Dynamic batching and bucketing can be used to avoid the pitfalls of static shapes.

Example

import torch
import torch_neuronx

Create example model and inputs
model = torch.nn.Sequential(

torch.nn.Linear(784, 120),
torch.nn.ReLU(),
torch.nn.Linear(120, 10),
torch.nn.Softmax(dim=-1),

)
model.eval()

(continues on next page)

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 113

https://pytorch.org/docs/stable/jit.html

AWS Neuron

(continued from previous page)

example = torch.rand((1, 784))

Create fixed model trace
trace = torch_neuronx.trace(model, example)

Inference
result = trace(example) # No recompilation. Input shapes must not change
print(result)

Traced Inference Advantages

Traced inference should be used for nearly all deployment purposes since it provides some key advantages over XLA
Lazy Tensor execution:

• Reduced Overhead: There is no overhead associated with graph recording, compilation, and model loading
since these steps are performed only once within the call to trace(). In contrast, when using XLA Lazy Tensor
inference, all of these steps are performed just-in-time (with caching to improve performance).

• Serializable: The TorchScript Module that is produced from the trace() API is serializable using the normal
torch.jit.save() function. It is able to be reloaded in an inference environment with torch.jit.load().
In contrast, XLA device inference does not provide a predetermined serialization format that includes the pre-
compiled NEFF artifacts. These must be manually copied to an inference environment to be used.

• Reduced Dependencies: When using the traced TorchScript Module in an inference environment, it is no longer
required to install the neuronx-cc compiler. In contrast, when using the XLA Lazy Tensor execution, an execution
may require a recompile to successfully infer.

• Static & Predictable: The resulting module produced by trace()will contain a static model that will consume
a predictable amount of Neuron device memory and will never require recompilation based on input changes.
In contrast, since XLA device inference performs just-in-time compilation, it can be more difficult to predict
memory utilization and the compilations that may be required at inference time.

• C++ Usability: If the end application is an inference platform using libtorch, it is easy to integrate with
libtorchneuron to load traced modules. It is not currently possible to set up an environment to use torch in
C++ in conjunction with Neuron XLA Lazy Tensor execution.

Summary

XLA Device Inference Traced Inference
Compilation JIT AOT
Serialization N/A TorchScript
Performance Slower Faster
Dynamic Yes No
C++ Usage No Yes

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

114 Chapter 7. PyTorch Neuron

https://pytorch.org/docs/master/generated/torch.jit.save.html#torch.jit.save
https://pytorch.org/docs/master/generated/torch.jit.load.html#torch.jit.load
https://pytorch.org/docs/stable/jit.html

AWS Neuron

Data Parallel Inference on torch_neuronx

Table of Contents

• Introduction

• Data parallel inference

• torch_neuronx.DataParallel

– NeuronCore selection

– Batch dim

– Dynamic batching

– Performance optimizations

• Examples

– Default usage

– Specifying NeuronCores

– DataParallel with dim != 0

– Dynamic batching

– Dynamic batching disabled

Introduction

This guide introduces torch_neuronx.DataParallel(), a Python API that implements data parallelism on
ScriptModulemodels created by the PyTorch NeuronX Tracing API for Inference. The following sections explain how
data parallelism can improve the performance of inference workloads on Inferentia, including how torch_neuronx.
DataParallel() uses dynamic batching to run inference on variable input sizes. It covers an overview of the
torch_neuronx.DataParallel() module and provides a few example data parallel applications.

Data parallel inference

Data Parallelism is a form of parallelization across multiple devices or cores, referred to as nodes. Each node contains
the same model and parameters, but data is distributed across the different nodes. By distributing the data across
multiple nodes, data parallelism reduces the total execution time of large batch size inputs compared to sequential
execution. Data parallelism works best for smaller models in latency sensitive applications that have large batch size
requirements.

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 115

https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule

AWS Neuron

torch_neuronx.DataParallel

To fully leverage the Inferentia hardware, we want to use all available NeuronCores. An inf2.xlarge and inf2.8xlarge
have two NeuronCores, an inf2.24xlarge has 12 NeuronCores, and an inf2.48xlarge has 24 NeuronCores. For max-
imum performance on Inferentia hardware, we can use torch_neuronx.DataParallel() to utilize all available
NeuronCores.

torch_neuronx.DataParallel() implements data parallelism at the module level by replicating the Neuron model
on all available NeuronCores and distributing data across the different cores for parallelized inference. This function
is analogous to DataParallel in PyTorch. torch_neuronx.DataParallel() requires PyTorch >= 1.8.

The following sections provide an overview of some of the features of torch_neuronx.DataParallel() that enable
maximum performance on Inferentia.

NeuronCore selection

By default, DataParallel will try to use all NeuronCores allocated to the current process to fully saturate the Inferentia
hardware for maximum performance. It is more efficient to make the batch dimension divisible by the number of
NeuronCores. This will ensure that NeuronCores are not left idle during parallel inference and the Inferentia hardware
is fully utilized.

In some applications, it is advantageous to use a subset of the available NeuronCores for DataParallel inference. Dat-
aParallel has a device_ids argument that accepts a list of int or 'nc:#' that specify the NeuronCores to use for
parallelization. See Specifying NeuronCores for an example of how to use device_ids argument.

Batch dim

DataParallel accepts a dim argument that denotes the batch dimension used to split the input data for distributed infer-
ence. By default, DataParalell splits the inputs on dim = 0 if the dim argument is not specified. For applications with
a non-zero batch dim, the dim argument can be used to specify the inference-time input batch dimension. DataParallel
with dim ! = 0 provides an example of data parallel inference on inputs with batch dim = 2.

Dynamic batching

Batch size has a direct impact on model performance. The Inferentia chip is optimized to run with small batch sizes.
This means that a Neuron compiled model can outperform a GPU model, even if running single digit batch sizes.

As a general best practice, we recommend optimizing your model’s throughput by compiling the model with a small
batch size and gradually increasing it to find the peak throughput on Inferentia.

Dynamic batching is a feature that allows you to use tensor batch sizes that the Neuron model was not originally
compiled against. This is necessary because the underlying Inferentia hardware will always execute inferences with
the batch size used during compilation. Fixed batch size execution allows tuning the input batch size for optimal
performance. For example, batch size 1 may be best suited for an ultra-low latency on-demand inference application,
while batch size > 1 can be used to maximize throughput for offline inferencing. Dynamic batching is implemented by
slicing large input tensors into chunks that match the batch size used during the torch_neuronx.trace() compilation
call.

The torch_neuronx.DataParallel() class automatically enables dynamic batching on eligible models. This allows
us to run inference in applications that have inputs with a variable batch size without needing to recompile the model.
See Dynamic batching for an example of how DataParallel can be used to run inference on inputs with a dynamic batch
size without needing to recompile the model.

116 Chapter 7. PyTorch Neuron

https://pytorch.org/docs/master/generated/torch.nn.DataParallel.html#torch.nn.DataParallel
https://docs.python.org/3/library/functions.html#int

AWS Neuron

Dynamic batching using small batch sizes can result in sub-optimal throughput because it involves slicing tensors into
chunks and iteratively sending data to the hardware. Using a larger batch size at compilation time can use the Inferentia
hardware more efficiently in order to maximize throughput. You can test the tradeoff between individual request latency
and total throughput by fine-tuning the input batch size.

Automatic batching in the DataParallel module can be disabled using the disable_dynamic_batching() function
as follows:

>>> model_parallel = torch_neuronx.DataParallel(model_neuron)
>>> model_parallel.disable_dynamic_batching()

If dynamic batching is disabled, the compile-time batch size must be equal to the inference-time batch size divided by
the number of NeuronCores. DataParallel with dim != 0 and Dynamic batching disabled provide examples of running
DataParallel inference with dynamic batching disabled.

Performance optimizations

The DataParallel module has a num_workers attribute that can be used to specify the number of worker threads used
for multithreaded inference. By default, num_workers = 2 * number of NeuronCores. This value can be fine
tuned to optimize DataParallel performance.

DataParallel has a split_size attribute that dictates the size of the input chunks that are distributed to each Neuron-
Core. By default, split_size = max(1, input.shape[dim] // number of NeuronCores). This value can
be modified to optimally match the inference input chunk size with the compile-time batch size.

Examples

The following sections provide example usages of the torch_neuronx.DataParallel() module.

Default usage

The default DataParallel use mode will replicate the model on all available NeuronCores in the current process. The
inputs will be split on dim=0.

import torch
import torch_neuronx
from torchvision import models

Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch_neuronx.trace(model, image)

Create the DataParallel module
model_parallel = torch_neuronx.DataParallel(model_neuron)

Create a batched input
batch_size = 5
image_batched = torch.rand([batch_size, 3, 224, 224])

(continues on next page)

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 117

AWS Neuron

(continued from previous page)

Run inference with a batched input
output = model_parallel(image_batched)

Specifying NeuronCores

The following example uses the device_ids argument to use the first three NeuronCores for DataParallel inference.

import torch
import torch_neuronx
from torchvision import models

Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch_neuronx.trace(model, image)

Create the DataParallel module, run on the first two NeuronCores
Equivalent to model_parallel = torch.neuron.DataParallel(model_neuron, device_ids=[0,␣
→˓1])
model_parallel = torch_neuronx.DataParallel(model_neuron, device_ids=['nc:0', 'nc:1'])

Create a batched input
batch_size = 5
image_batched = torch.rand([batch_size, 3, 224, 224])

Run inference with a batched input
output = model_parallel(image_batched)

DataParallel with dim != 0

In this example we run DataParallel inference using two NeuronCores and dim = 2. Because dim != 0, dynamic
batching is not enabled. Consequently, the DataParallel inference-time batch size must be two times the compile-time
batch size.

import torch
import torch_neuronx

Create an example model
class Model(torch.nn.Module):

def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(3, 3, 3)

def forward(self, x):
return self.conv(x) + 1

(continues on next page)

118 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

model = Model()
model.eval()

Compile with an example input
image = torch.rand([1, 3, 8, 8])
model_neuron = torch_neuronx.trace(model, image)

Create the DataParallel module using 2 NeuronCores and dim = 2
model_parallel = torch_neuronx.DataParallel(model_neuron, device_ids=[0, 1], dim=2)

Create a batched input
Note that image_batched.shape[dim] / len(device_ids) == image.shape[dim]
batch_size = 2 * 8
image_batched = torch.rand([1, 3, batch_size, 8])

Run inference with a batched input
output = model_parallel(image_batched)

Dynamic batching

In the following example, we use the torch_neuronx.DataParallel() module to run inference using several dif-
ferent batch sizes without recompiling the Neuron model.

import torch
import torch_neuronx
from torchvision import models

Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch_neuronx.trace(model, image)

Create the DataParallel module
model_parallel = torch_neuronx.DataParallel(model_neuron)

Create batched inputs and run inference on the same model
batch_sizes = [2, 3, 4, 5, 6]
for batch_size in batch_sizes:

image_batched = torch.rand([batch_size, 3, 224, 224])

Run inference with a batched input
output = model_parallel(image_batched)

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 119

AWS Neuron

Dynamic batching disabled

In the following example, we use torch_neuronx.DataParallel.disable_dynamic_batching() to disable dy-
namic batching. We provide an example of a batch size that will not work when dynamic batching is disabled as well
as an example of a batch size that does work when dynamic batching is disabled.

import torch
import torch_neuronx
from torchvision import models

Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch_neuronx.trace(model, image)

Create the DataParallel module and use 2 NeuronCores
model_parallel = torch_neuronx.DataParallel(model_neuron, device_ids=[0, 1], dim=0)

Disable dynamic batching
model_parallel.disable_dynamic_batching()

Create a batched input (this won't work)
batch_size = 4
image_batched = torch.rand([batch_size, 3, 224, 224])

This will fail because dynamic batching is disabled and
image_batched.shape[dim] / len(device_ids) != image.shape[dim]
output = model_parallel(image_batched)

Create a batched input (this will work)
batch_size = 2
image_batched = torch.rand([batch_size, 3, 224, 224])

This will work because
image_batched.shape[dim] / len(device_ids) == image.shape[dim]
output = model_parallel(image_batched)

This document is relevant for: Inf2, Trn1, Trn1n

Developer Guide for Inference (torch-neuronx)

• NeuronCore Allocation and Model Placement for Inference (torch-neuronx)

• Comparison of Traced Inference versus XLA Lazy Tensor Inference (torch-neuronx)

• Data Parallel Inference on torch_neuronx

• torch-neuronx-autobucketing-devguide

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

120 Chapter 7. PyTorch Neuron

AWS Neuron

7.2.5 Misc (torch-neuronx)

This document is relevant for: Inf2, Trn1, Trn1n

PyTorch Neuron (torch-neuronx) release notes

Table of Contents

• Release [2.1.2.2.1.0]

• Release [1.13.1.1.14.0]

• Release [2.1.1.2.0.0b0] (Beta)

• Release [1.13.1.1.13.0]

• Release [2.0.0.2.0.0b0] (Beta)

• Release [1.13.1.1.12.0]

• Release [1.13.1.1.11.0]

• Release [1.13.1.1.10.1]

• Release [1.13.1.1.10.0]

• Release [1.13.1.1.9.0]

• Release [1.13.1.1.8.0]

• Release [1.13.1.1.7.0]

• Release [1.13.0.1.6.1]

• Release [1.13.0.1.6.1]

• Release [1.13.0.1.6.0]

• Release [1.13.0.1.5.0]

• Release [1.13.0.1.4.0]

• Release [1.12.0.1.4.0]

• Release [1.11.0.1.2.0]

• Release [1.11.0.1.1.1]

PyTorch Neuron for Trn1/Inf2 is a software package that enables PyTorch users to train, evaluate, and perform inference
on second-generation Neuron hardware (See: NeuronCore-v2).

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 121

AWS Neuron

Release [2.1.2.2.1.0]

Date: 04/01/2024

Summary

This release of 2.1 includes support for Neuron Profiler, multi-instance distributed training, Nemo Megatron, and
HuggingFace Trainer API.

What’s new in this release

In addition to previously supported features (Transformers-NeuronX, Torch-NeuronX Trace API, Torch-NeuronX train-
ing, NeuronX-Distributed training), torch-neuronx 2.1 now includes support for:

• (Inference) NeuronX-Distributed inference

• (Training/Inference) Neuron Profiler

• (Training) Multi-instance distributed training

• (Training) Nemo Megatron

• (Training) analyze feature in neuron_parallel_compile

• (Training) HuggingFace Trainer API

Additionally, auto-bucketing is a new feature for torch-neuronx and Neuronx-Distributed allowing users to define bucket
models that can be serialized into a single model for multi-shape inference.

Known limitations

The following features are not yet supported in this version of Torch-NeuronX 2.1:

• (Training) GSPMD

• (Training) TorchDynamo (torch.compile)

• (Training) DDP/FSDP

• (Training) S3 caching during distributed training can lead to throttling issues

Resolved issues

“Attempted to access the data pointer on an invalid python storage”

When using Hugging Face Trainer API with transformers version >= 4.35 and < 4.37.3, user would see the error
"Attempted to access the data pointer on an invalid python storage" during model checkpoint sav-
ing. This issue is fixed in transformers version >= 4.37.3. See https://github.com/huggingface/transformers/issues/
27578 for more information.

122 Chapter 7. PyTorch Neuron

https://github.com/huggingface/transformers/issues/27578
https://github.com/huggingface/transformers/issues/27578

AWS Neuron

Too many graph compilations when using HF Trainer API

When using Hugging Face transformers version >= 4.35 and < 4.37.3, user would see many graph compilations (see
https://github.com/aws-neuron/aws-neuron-sdk/issues/813 for more information). To work around this issue, in trans-
formers version >= 4.37.3, user can add the option --save_safetensors False to Trainer API function call and
modify the installed trainer.py as follows (don’t move model to CPU before saving checkpoint):

Workaround https://github.com/aws-neuron/aws-neuron-sdk/issues/813
sed -i "s/model\.to(\"cpu\")//" `python -c "import site; print(site.getsitepackages()[0])
→˓"`/trainer.py

Divergence (non-convergence) of loss for BERT/LLaMA when using release 2.16 compiler

With release 2.18, the divergence (non-convergence) of BERT/LLaMA loss is resolved. No compiler flag change is
required.

Known Issues

Please see the Introducing PyTorch 2.1 Support for a full list of known issues.

GlibC error on Amazon Linux 2

If using Torch-NeuronX 2.1 on Amazon Linux 2, you will see a GlibC error below. Please switch to a newer supported
OS such as Ubuntu 20, Ubuntu 22, or Amazon Linux 2023.

ImportError: /lib64/libc.so.6: version `GLIBC_2.27' not found (required by /tmp/debug/_
→˓XLAC.cpython-38-x86_64-linux-gnu.so)

"EOFError: Ran out of input" or "_pickle.UnpicklingError: invalid load key, '!'" errors dur-
ing Neuron Parallel Compile

With torch-neuronx 2.1, HF Trainer API’s use of XLA function .mesh_reduce causes "EOFError: Ran out of
input" or "_pickle.UnpicklingError: invalid load key, '!'" errors during Neuron Parallel Compile.
This is an issue with the trial execution of empty NEFFs and should not affect the normal execution of the training
script.

Check failed: tensor_data error during when using torch.utils.data.DataLoader with
shuffle=True

With torch-neuronx 2.1, using torch.utils.data.DataLoader with shuffle=True would cause the following
error in synchronize_rng_states (i.e. ZeRO1 tutorial):

RuntimeError: torch_xla/csrc/xla_graph_executor.cpp:562 : Check failed: tensor_data

This is due to synchronize_rng_states using xm.mesh_reduce to synchronize RNG states. xm.mesh_reduce in
turn uses xm.rendezvous() with payload, which as noted in 2.x migration guide, would result in extra graphs that
could lead to lower performance due to change in xm.rendezvous() in torch-xla 2.x. In the case of ZeRO1 tutorial,

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 123

https://github.com/aws-neuron/aws-neuron-sdk/issues/813

AWS Neuron

using xm.rendezvous() with payload also lead to the error above. This limitation will be fixed in an upcoming re-
lease. For now, to work around the issue, please disable shuffle in DataLoader when NEURON_EXTRACT_GRAPHS_ONLY
environment is set automatically by Neuron Parallel Compile:

train_dataloader = DataLoader(
train_dataset, shuffle=(os.environ.get("NEURON_EXTRACT_GRAPHS_ONLY", None) == None),␣

→˓collate_fn=default_data_collator, batch_size=args.per_device_train_batch_size
)

Additionally, you can add the following code snippet (after python imports) to replace xm.mesh_reduce with a form
that uses xm.all_gather instead of xm.rendezvous()with payload. This will add additional small on-device graphs
(as opposed to the original xm.mesh_reduce which runs on CPU).

import copy
import torch_xla.core.xla_model as xm
def mesh_reduce(tag, data, reduce_fn):

xm.rendezvous(tag)
xdatain = copy.deepcopy(data)
xdatain = xdatain.to("xla")
xdata = xm.all_gather(xdatain, pin_layout=False)
cpu_xdata = xdata.detach().to("cpu")
cpu_xdata_split = torch.split(cpu_xdata, xdatain.shape[0])
xldata = [x for x in cpu_xdata_split]
return reduce_fn(xldata)

xm.mesh_reduce = mesh_reduce

Compiler error when torch_neuronx.xla_impl.ops.set_unload_prior_neuron_models_mode(True)

Currently with torch-neuronx 2.1, using the torch_neuronx.xla_impl.ops.
set_unload_prior_neuron_models_mode(True) (as previously done in the ZeRO1 tutorial) to unload graphs
during execution would cause a compilation error Expecting value: line 1 column 1 (char 0). You can
remove this line as it is not recommended for use. Please see the updated ZeRO1 tutorial in release 2.18.

Compiler assertion error when running Stable Diffusion training

Currently, with torch-neuronx 2.1, we are seeing the following compiler assertion error with Stable Diffusion training.
This will be fixed in an upcoming release. For now, if you would like to run Stable Diffusion training with Neuron
SDK release 2.18, please use torch-neuronx==1.13.*.

ERROR 222163 [NeuronAssert]: Assertion failure in usr/lib/python3.8/concurrent/futures/
→˓process.py at line 239 with exception:
too many partition dims! {{0,+,960}[10],+,10560}[10]

124 Chapter 7. PyTorch Neuron

AWS Neuron

Compiler assertion error when training using Hugging Face deepmind/language-perceiver model

Currently, with torch-neuronx 2.1, we are seeing the following compiler assertion error when training with Hug-
ging Face deepmind/language-perceiver model. This will be fixed in an upcoming release. For now, if you
would like to train Hugging Face deepmind/language-perceiver model with Neuron SDK release 2.18, please use
torch-neuronx==1.13.*.

ERROR 176659 [NeuronAssert]: Assertion failure in usr/lib/python3.8/multiprocessing/
→˓process.py at line 108 with exception:
Unsupported batch-norm-training op: tensor_op_name: _batch-norm-training.852 | hlo_id:␣
→˓852| file_name: | Line: 0 | Column: 0 | .

Lower performance for BERT-Large

Currently we see 8% less performance when running the BERT-Large pre-training tutorial with Torch-NeuronX 2.1 as
compared to Torch-NeuronX 1.13.

Slower loss convergence for GPT-2 pretraining using ZeRO1 tutorial when using recommended com-
piler flags

Currently with Torch-NeuronX 2.1, we see slower loss convergence in the ZeRO1 tutorial when using recommended
compiler flags. To work-around this issue and restore faster convergence, please replace the NEURON_CC_FLAGS as
below:

export NEURON_CC_FLAGS="--retry_failed_compilation --distribution-strategy llm-
→˓training --model-type transformer"
export NEURON_CC_FLAGS="--retry_failed_compilation -O1"

Slower loss convergence for NxD LLaMA 70B pretraining using ZeRO1 tutorial when using recom-
mended compiler flags

Currently with Torch-NeuronX 2.1, we see slower loss convergence in the LLaMA-2 70B tutorial for neuronx-
distributed when using recommended compiler flags. To work-around this issue and restore faster convergence, please
replace the NEURON_CC_FLAGS as below:

export NEURON_CC_FLAGS="--retry_failed_compilation --distribution-strategy llm-
→˓training --model-type transformer"
export NEURON_CC_FLAGS="--retry_failed_compilation"

Lower accuracy for BERT-base finetuning using HF Trainer API

Currently, with Torch-NeuronX 2.1, MRPC dataset accuracy for BERT-base finetuning after 5 epochs is 83% instead
of 87%. A work-around is to remove the option --model-type=transformer from NEURON_CC_FLAGS. This will
be fixed in an upcoming release.

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 125

AWS Neuron

Increased in Neuron Parallel Compile time

Currently, with Torch-NeuronX 2.1, the time to run Neuron Parallel Compile for some model configuration is increased.
In one example, the Neuron Parallel Compile time for NeuronX Nemo-Megatron LLaMA 13B is 2x compared to when
using Torch-NeuronX 1.13. This will be fixed in an upcoming release.

Release [1.13.1.1.14.0]

Date: 3/27/2023

Summary

Auto-bucketing is a new feature for torch-neuronx and Neuronx-Distributed allowing users to define bucket models
that can be serialized into a single model for multi-shape inference.

Resolved issues

• (Inference) Fixed an issue where transformers-neuronx inference errors could crash the application and cause it
to hang. Inference errors should now correctly throw a runtime exception.

• (Inference/Training) Fixed an issue where torch.argmin() produced incorrect results.

• (Training) neuron_parallel_compile tool now use traceback.print_exc instead of format to support
Python 3.10.

• (Training) Fixed an issue in ZeRO1 when sharded params are initialized with torch.double.

Known issues and limitations

Memory leaking in glibc

glibc malloc memory leaks affect Neuron and may be temporarily limited by setting MALLOC_ARENA_MAX or using
jemalloc library (see https://github.com/aws-neuron/aws-neuron-sdk/issues/728).

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data

126 Chapter 7. PyTorch Neuron

https://pytorch.org/docs/master/generated/torch.argmin.html#torch.argmin
https://github.com/aws-neuron/aws-neuron-sdk/issues/728
https://pytorch.org/xla/release/1.13/index.html#mnist-with-real-data
https://pytorch.org/xla/release/1.13/index.html#mnist-with-real-data

AWS Neuron

Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in the
runtime, and you may see errors that look like this:

bootstrap.cc:86 CCOM WARN Call to accept failed : Too many open files``.

Hence, it is recommended to use fewer workers per node with DDP.

Known issues and limitations (Inference)

Torchscript serialization error with compiled artifacts larger than 4GB

When using torch_neuronx.trace(), compiled artifacts that exceed 4GB cannot be serialized. Serializing the
TorchScript artifact triggers a segmentation fault. This issue is resolved in PyTorch but is not yet released: https:
//github.com/pytorch/pytorch/pull/99104

Release [2.1.1.2.0.0b0] (Beta)

Date: 12/21/2023

Summary

Introducing the beta release of Torch-NeuronX with PyTorch 2.1 support.

What’s new in this release

This version of Torch-NeuronX 2.1 supports:

• (Inference) Transformers-NeuronX

• (Inference) Torch-NeuronX Trace API

• (Training) NeuronX-Distributed training

• (Training) Torch-NeuronX training

• (Training) New snapshotting capability enabled via the XLA_FLAGS environment variable (see debug guide)

Known limitations

The following features are not yet supported in this version of Torch-NeuronX 2.1:

• (Training/Inference) Neuron Profiler

• (Inference) NeuronX-Distributed inference

• (Training) Nemo Megatron

• (Training) GSPMD

• (Training) TorchDynamo (torch.compile)

• (Training) analyze feature in neuron_parallel_compile

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 127

https://github.com/pytorch/pytorch/pull/99104
https://github.com/pytorch/pytorch/pull/99104

AWS Neuron

• (Training) HuggingFace Trainer API (see Known Issues below)

Additional limitations are noted in the Known Issues section below.

Known Issues

Please see the Introducing PyTorch 2.1 Support (Beta) for a full list of known issues.

Lower performance for BERT-Large

Currently we see 8% less performance when running the BERT-Large pre-training tutorial with Torch-NeuronX 2.1 as
compared to Torch-NeuronX 1.13.

Divergence (non-convergence) of loss for BERT/LLaMA when using release 2.16 compiler

Currently, when using release 2.16 compiler version 2.12.54.0+f631c2365, you may see divergence (non-convergence)
of loss curve. To workaround this issue, please use release 2.15 compiler version 2.11.0.35+4f5279863.

Error “Attempted to access the data pointer on an invalid python storage” when using HF Trainer
API

Currently, if using HuggingFace Transformers Trainer API to train (i.e. HuggingFace Trainer API fine-tuning tutorial),
you may see the error “Attempted to access the data pointer on an invalid python storage”. This is a known issue
https://github.com/huggingface/transformers/issues/27578 and will be fixed in a future release.

Release [1.13.1.1.13.0]

Date: 12/21/2023

Summary

What’s new in this release

• Added Weight Replacement API For Inference)

Resolved issues

• Add bucketting logic to control the size of tensors for all-gather and reduce-scatter

• Fixed ZeRO-1 bug for inferring local ranks in 2-D configuration (https://github.com/pytorch/xla/pull/5936)

128 Chapter 7. PyTorch Neuron

https://github.com/huggingface/transformers/issues/27578
https://github.com/pytorch/xla/pull/5936

AWS Neuron

Known issues and limitations

Memory leaking in glibc

glibc malloc memory leaks affect Neuron and may be temporarily limited by setting MALLOC_ARENA_MAX or using
jemalloc library (see https://github.com/aws-neuron/aws-neuron-sdk/issues/728).

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data

Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in the
runtime, and you may see errors that look like this:

bootstrap.cc:86 CCOM WARN Call to accept failed : Too many open files``.

Hence, it is recommended to use fewer workers per node with DDP.

Known issues and limitations (Inference)

torch.argmin() produces incorrect results

torch.argmin() produces incorrect results.

Torchscript serialization error with compiled artifacts larger than 4GB

When using torch_neuronx.trace(), compiled artifacts that exceed 4GB cannot be serialized. Serializing the
TorchScript artifact triggers a segmentation fault. This issue is resolved in PyTorch but is not yet released: https:
//github.com/pytorch/pytorch/pull/99104

Release [2.0.0.2.0.0b0] (Beta)

Date: 10/26/2023

Summary

Introducing the beta release of Torch-NeuronX with PyTorch 2.0 and PJRT support.

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 129

https://github.com/aws-neuron/aws-neuron-sdk/issues/728
https://pytorch.org/xla/release/1.13/index.html#mnist-with-real-data
https://pytorch.org/xla/release/1.13/index.html#mnist-with-real-data
https://pytorch.org/docs/master/generated/torch.argmin.html#torch.argmin
https://github.com/pytorch/pytorch/pull/99104
https://github.com/pytorch/pytorch/pull/99104

AWS Neuron

What’s new in this release

• Updating from XRT to PJRT runtime. For more info see: <link to intro pjrt doc>

• (Inference) Added the ability to partition unsupported ops to CPU during traced inference (See torch_neuronx.
trace API guide)

Known issues and limitations

• Snapshotting is not supported

• NEURON_FRAMEWORK_DEBUG=1 is not supported

• Analyze in neuron_parallel_compile is not supported

• Neuron Profiler is not supported

• VGG11 with input sizes 300x300 may show accuracy issues

• Possible issues with NeMo Megatron checkpointing

• S3 caching with neuron_parallel_compile may show compilation errors

• Compiling without neuron_parallel_compile on multiple nodes may show compilation errors

• GPT2 inference may show errors with torch_neuronx.trace

Release [1.13.1.1.12.0]

Date: 10/26/2023

Summary

What’s new in this release

• (Training) Added coalescing of all-gather and reduce-scatter inside ZeRO1, which should help in improving
performance at high cluster sizes.

• (Inference) Added the ability to partition unsupported ops to CPU during traced inference. (See
torch_neuronx.trace API guide)

• (Inference) Previously undocumented arguments trace API args state and options are now unsupported (have
no effect) and will result in a deprecation warning if used.

Resolved issues

• Fixed an issue where torch.topk would fail on specific dimensions

• (Inference) Fixed an issue where NaNs could be produced when using torch_neuronx.dynamic_batch

• (Inference) Updated torch_neuronx.dynamic_batch to better support Modules (traced, scripted, and normal mod-
ules) with multiple Neuron subgraphs

• (Inference) Isolate frontend calls to the Neuron compiler to working directories, so concurrent compilations do
not conflict by being run from the same directory.

130 Chapter 7. PyTorch Neuron

AWS Neuron

Known issues and limitations (Training)

Memory leaking in glibc

glibc malloc memory leaks affect Neuron and may be temporarily limited by setting MALLOC_ARENA_MAX.

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data

Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in the
runtime, and you may see errors that look like this:

bootstrap.cc:86 CCOM WARN Call to accept failed : Too many open files``.

Hence, it is recommended to use fewer workers per node with DDP.

Known issues and limitations (Inference)

torch.argmin() produces incorrect results

torch.argmin() produces incorrect results.

Torchscript serialization error with compiled artifacts larger than 4GB

When using torch_neuronx.trace(), compiled artifacts that exceed 4GB cannot be serialized. Serializing the
TorchScript artifact triggers a segmentation fault. This issue is resolved in PyTorch but is not yet released: https:
//github.com/pytorch/pytorch/pull/99104

Release [1.13.1.1.11.0]

Date: 9/15/2023

Summary

Resolved issues

• Fixed an issue in torch_neuronx.analyze() which could cause failures with scalar inputs.

• Improved performance of torch_neuronx.analyze().

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 131

https://pytorch.org/xla/release/1.13/index.html#mnist-with-real-data
https://pytorch.org/xla/release/1.13/index.html#mnist-with-real-data
https://pytorch.org/docs/master/generated/torch.argmin.html#torch.argmin
https://github.com/pytorch/pytorch/pull/99104
https://github.com/pytorch/pytorch/pull/99104

AWS Neuron

Release [1.13.1.1.10.1]

Date: 9/01/2023

Summary

Minor bug fixes and enhancements.

Release [1.13.1.1.10.0]

Date: 8/28/2023

Summary

What’s new in this release

• Removed support for Python 3.7

• (Training) Added a neuron_parallel_compile command to clear file locks left behind when a neu-
ron_parallel_compile execution was interrupted (neuron_parallel_compile –command clear-locks)

• (Training) Seedable dropout now enabled by default

Resolved issues

• (Training) Convolution is now supported

• Fixed segmentation fault when using torch-neuronx to compile models on U22

• Fixed XLA tensor stride information in torch-xla package, which blocked lowering of log_softmax and similar
functions and showed errors like:

File "/home/ubuntu/waldronn/asr/test_env/lib/python3.7/site-packages/torch/nn/functional.
→˓py", line 1930, in log_softmax

ret = input.log_softmax(dim)
RuntimeError: dimensionality of sizes (3) must match dimensionality of strides (1)

Known issues and limitations (Training)

Memory leaking in glibc

glibc malloc memory leaks affect Neuron and may be temporarily limited by setting MALLOC_ARENA_MAX.

132 Chapter 7. PyTorch Neuron

AWS Neuron

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data

Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in the
runtime, and you may see errors that look like this:

bootstrap.cc:86 CCOM WARN Call to accept failed : Too many open files``.

Hence, it is recommended to use fewer workers per node with DDP.

Known issues and limitations (Inference)

torch.argmin() produces incorrect results

torch.argmin() produces incorrect results.

No automatic partitioning

Currently, when Neuron encounters an operation that it does not support during torch_neuronx.trace(), it may
exit with the following compiler error: “Import of the HLO graph into the Neuron Compiler has failed. This may be
caused by unsupported operators or an internal compiler error.” The intended behavior when tracing is to automatically
partition the model into separate subgraphs that run on NeuronCores and subgraphs that run on CPU. This will be
supported in a future release. See PyTorch Neuron (torch-neuronx) - Supported Operators for a list of supported
operators.

Torchscript serialization error with compiled artifacts larger than 4GB

When using torch_neuronx.trace(), compiled artifacts that exceed 4GB cannot be serialized. Serializing the
TorchScript artifact triggers a segmentation fault. This issue is resolved in PyTorch but is not yet released: https:
//github.com/pytorch/pytorch/pull/99104

Release [1.13.1.1.9.0]

Date: 7/19/2023

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 133

https://pytorch.org/xla/release/1.13/index.html#mnist-with-real-data
https://pytorch.org/xla/release/1.13/index.html#mnist-with-real-data
https://pytorch.org/docs/master/generated/torch.argmin.html#torch.argmin
https://github.com/pytorch/pytorch/pull/99104
https://github.com/pytorch/pytorch/pull/99104

AWS Neuron

Summary

What’s new in this release

Training support:

• Uses jemalloc as the primary malloc lib to avoid memory leak at checkpointing

• Added support for ZeRO-1 along with tutorial

Inference support:

• Add async load and lazy model load options to accelerate model loading

• Optimize DataParallel API to load onto multiple cores simultaneously when device IDs specified in device_ids
are consecutive

Resolved issues (Training)

• Remove extra graph creation in torch_neuronx.optim.adamw when the beta/lr parameters values become 0 or 1.

• Stability improvements and faster failure on hitting a fault in XRT server used by XLA.

Known issues and limitations (Training)

Memory leaking in glibc

glibc malloc memory leaks affect Neuron and may be temporarily limited by setting MALLOC_ARENA_MAX.

Convolution is not supported

Convolution is not supported during training.

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data

Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in the
runtime, and you may see errors that look like this:

bootstrap.cc:86 CCOM WARN Call to accept failed : Too many open files``.

Hence, it is recommended to use fewer workers per node with DDP.

134 Chapter 7. PyTorch Neuron

https://pytorch.org/xla/release/1.13/index.html#mnist-with-real-data
https://pytorch.org/xla/release/1.13/index.html#mnist-with-real-data

AWS Neuron

Known issues and limitations (Inference)

torch.argmin() produces incorrect results

torch.argmin() produces incorrect results.

No automatic partitioning

Currently, when Neuron encounters an operation that it does not support during torch_neuronx.trace(), it may
exit with the following compiler error: “Import of the HLO graph into the Neuron Compiler has failed. This may be
caused by unsupported operators or an internal compiler error.” The intended behavior when tracing is to automatically
partition the model into separate subgraphs that run on NeuronCores and subgraphs that run on CPU. This will be
supported in a future release. See PyTorch Neuron (torch-neuronx) - Supported Operators for a list of supported
operators.

Torchscript serialization error with compiled artifacts larger than 4GB

When using torch_neuronx.trace(), compiled artifacts that exceed 4GB cannot be serialized. Serializing the
TorchScript artifact triggers a segmentation fault. This issue is resolved in PyTorch but is not yet released: https:
//github.com/pytorch/pytorch/pull/99104

Release [1.13.1.1.8.0]

Date: 6/14/2023

Summary

• Added s3 caching to NeuronCache.

• Added extract/compile/analyze phases to neuron_parallel_compile.

What’s new in this release

Training support:

• Added S3 caching support to NeuronCache. Removed NeuronCache options –cache_size/cache_ttl (please delete
cache directories as needed).

• Added separate extract and compile phases Neuron Parallel Compile.

• Added model analyze API to Neuron Parallel Compile.

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 135

https://pytorch.org/docs/master/generated/torch.argmin.html#torch.argmin
https://github.com/pytorch/pytorch/pull/99104
https://github.com/pytorch/pytorch/pull/99104

AWS Neuron

Known issues and limitations (Training)

Memory leaking in glibc

glibc malloc memory leaks affect Neuron and may be temporarily limited by setting MALLOC_ARENA_MAX.

Convolution is not supported

Convolution is not supported during training.

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data

Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in the
runtime, and you may see errors that look like this:

bootstrap.cc:86 CCOM WARN Call to accept failed : Too many open files``.

Hence, it is recommended to use fewer workers per node with DDP.

Known issues and limitations (Inference)

torch.argmin() produces incorrect results

torch.argmin() produces incorrect results.

No automatic partitioning

Currently, when Neuron encounters an operation that it does not support during torch_neuronx.trace(), this will
cause an error. The intended behavior when tracing is to automatically partition the model into separate subgraphs that
run on NeuronCores and subgraphs that run on CPU. See PyTorch Neuron (torch-neuronx) - Supported Operators for
a list of supported operators.

136 Chapter 7. PyTorch Neuron

https://pytorch.org/xla/release/1.13/index.html#mnist-with-real-data
https://pytorch.org/xla/release/1.13/index.html#mnist-with-real-data
https://pytorch.org/docs/master/generated/torch.argmin.html#torch.argmin

AWS Neuron

Torchscript serialization error with compiled artifacts larger than 4GB

When using torch_neuronx.trace(), compiled artifacts that exceed 4GB cannot be serialized. Serializing the
TorchScript artifact triggers a segmentation fault. This issue is resolved in PyTorch but is not yet released: https:
//github.com/pytorch/pytorch/pull/99104

Release [1.13.1.1.7.0]

Date: 05/01/2023

Summary

What’s new in this release

Training support:

• Added an improved Neuron-optimized AdamW optimizer implementation.

• Added an improved Neuron-optimized torch.nn.Dropout implementation.

• Added an assertion when the torch.nn.Dropout argument inplace=True during training. This is currently
not supported on Neuron.

• Added XLA lowering for aten::count_nonzero

Inference support:

• Added profiling support for models compiled with torch_neuronx.trace()

• Added torch_neuronx.DataParallel for models compiled with torch_neuronx.trace()

Resolved issues (Training)

Unexpected behavior with torch.autocast

Fixed an issue where torch.autocast did not correctly autocast when using torch.bfloat16

Resolved slower BERT bf16 Phase 1 Single Node Performance

As of the Neuron 2.9.0 release, BERT phase 1 pretraining performance has regressed by approximately 8-9% when
executed on a single node only (i.e. just one trn1.32xlarge instance). This is resolved in 2.10 release.

Resolved lower throughput for BERT-large training on AL2 instances

Starting in release 2.7, we see a performance drop of roughly 5-10% for BERT model training on AL2 instances. This
is resolved in release 2.10.

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 137

https://github.com/pytorch/pytorch/pull/99104
https://github.com/pytorch/pytorch/pull/99104
https://pytorch.org/docs/master/generated/torch.nn.Dropout.html#torch.nn.Dropout
https://pytorch.org/docs/master/generated/torch.nn.Dropout.html#torch.nn.Dropout
https://pytorch.org/docs/master/amp.html#torch.autocast

AWS Neuron

Resolved issues (Inference)

Error when using the original model after torch_neuronx.trace

Fixed an issue where model parameters would be moved to the Neuron 'xla' device during torch_neuronx.trace()
and would no longer be available to execute on the original device. This made it more difficult to compare Neuron
models against CPU since previously this would require manually moving parameters back to CPU.

Error when using the xm.xla_device() object followed by using torch_neuronx.trace

Fixed an issue where XLA device execution and torch_neuronx.trace() could not be performed in the same python
process.

Error when executing torch_neuronx.trace with torch.bfloat16 input/output tensors

Fixed an issue where torch_neuronx.trace() could not compile models which consumed or produced torch.
bfloat16 values.

Known issues and limitations (Training)

Memory leaking in glibc

glibc malloc memory leaks affect Neuron and may be temporarily limited by setting MALLOC_ARENA_MAX.

Convolution is not supported

Convolution is not supported during training.

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data

Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in the
runtime, and you may see errors that look like this:

bootstrap.cc:86 CCOM WARN Call to accept failed : Too many open files``.

Hence, it is recommended to use fewer workers per node with DDP.

138 Chapter 7. PyTorch Neuron

https://pytorch.org/xla/release/1.13/index.html#mnist-with-real-data
https://pytorch.org/xla/release/1.13/index.html#mnist-with-real-data

AWS Neuron

Known issues and limitations (Inference)

torch.argmin() produces incorrect results

torch.argmin() produces incorrect results.

No automatic partitioning

Currently, when Neuron encounters an operation that it does not support during torch_neuronx.trace(), this will
cause an error. The intended behavior when tracing is to automatically partition the model into separate subgraphs that
run on NeuronCores and subgraphs that run on CPU. See PyTorch Neuron (torch-neuronx) - Supported Operators for
a list of supported operators.

Torchscript serialization error with compiled artifacts larger than 4GB

When using torch_neuronx.trace(), compiled artifacts that exceed 4GB cannot be serialized. Serializing the
TorchScript artifact triggers a segmentation fault. This issue is resolved in PyTorch but is not yet released: https:
//github.com/pytorch/pytorch/pull/99104

Release [1.13.0.1.6.1]

Date: 04/19/2023

Summary

What’s new in this release

Training support:

• No changes

Inference support:

• Enable deserialized TorchScript modules to be compiled with torch_neuronx.trace()

Release [1.13.0.1.6.1]

Date: 04/19/2023

Summary

What’s new in this release

Training support:

• No changes

Inference support:

• Enable deserialized TorchScript modules to be compiled with torch_neuronx.trace()

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 139

https://pytorch.org/docs/master/generated/torch.argmin.html#torch.argmin
https://github.com/pytorch/pytorch/pull/99104
https://github.com/pytorch/pytorch/pull/99104

AWS Neuron

Release [1.13.0.1.6.0]

Date: 03/28/2023

Summary

What’s new in this release

Training support:

• Added pipeline parallelism support in AWS Samples for Megatron-LM

Inference support:

• Added model analysis API: torch_neuronx.analyze

• Added HLO opcode support for:

– kAtan2

– kAfterAll

– kMap

• Added XLA lowering support for:

– aten::glu

– aten::scatter_reduce

• Updated torch.nn.MSELoss to promote input data types to a compatible type

Resolved issues (Training)

GRPC timeout errors when running Megatron-LM GPT 6.7B tutorial on multiple instances

When running AWS Samples for Megatron-LM GPT 6.7B tutorial over multiple instances, you may encounter GRPC
timeout errors like below:

E0302 01:10:20.511231294 138645 chttp2_transport.cc:1098] Received a GOAWAY with␣
→˓error code ENHANCE_YOUR_CALM and debug data equal to "too_many_pings"
2023-03-02 01:10:20.511500: W tensorflow/core/distributed_runtime/rpc/grpc_remote_master.
→˓cc:157] RPC failed with status = "UNAVAILABLE: Too many pings" and grpc_error_string =
→˓"{"created":"@1677719420.511317309","description":"Error received from peer ipv4:10.1.
→˓35.105:54729","file":"external/com_github_grpc_grpc/src/core/lib/surface/call.cc",
→˓"file_line":1056,"grpc_message":"Too many pings","grpc_status":14}", maybe retrying␣
→˓the RPC

or:

2023-03-08 21:18:27.040863: F tensorflow/compiler/xla/xla_client/xrt_computation_client.
→˓cc:476] Non-OK-status: session->session()->Run(session_work->feed_inputs, session_work-
→˓>outputs_handles, &outputs) status: UNKNOWN: Stream removed

This is due to excessive DNS lookups during execution, and is fixed in this release.

140 Chapter 7. PyTorch Neuron

AWS Neuron

NaNs seen with transformers version >= 4.21.0 when running HF GPT fine-tuning or pretraining with
XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1

Using Hugging Face transformers version >= 4.21.0 can produce NaN outputs for GPT models when using full BF16
(XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1) plus stochastic rounding. This issue occurs due to large neg-
ative constants used to implement attention masking (https://github.com/huggingface/transformers/pull/17306). To
workaround this issue, please use transformers version <= 4.20.0.

Resolved issues (Inference)

torch.argmax() now supports single argument call variant

Previously only the 3 argument variant of torch.argmax() was supported. Now the single argument call variant is
supported.

Known issues and limitations (Training)

Slower BERT bf16 Phase 1 Single Node Performance

In the Neuron 2.9.0 release, BERT phase 1 pretraining performance has regressed by approximately 8-9% when exe-
cuted on a single node only (i.e. just one trn1.32xlarge instance).

Convolution is not supported

In this release, convolution is not supported.

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data

Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in
the runtime, and you may see errors that look like this: bootstrap.cc:86 CCOM WARN Call to accept failed
: Too many open files.

Hence, it is recommended to use fewer workers per node with DDP.

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 141

https://github.com/huggingface/transformers/pull/17306
https://pytorch.org/docs/master/generated/torch.argmax.html#torch.argmax
https://pytorch.org/xla/release/1.13/index.html#mnist-with-real-data
https://pytorch.org/xla/release/1.13/index.html#mnist-with-real-data

AWS Neuron

Lower throughput for BERT-large training on AL2 instances

We see a performance drop of roughly 5-10% for BERT model training on AL2 instances. This is because of the
increase in time required for tracing the model.

Known issues and limitations (Inference)

torch.argmin() produces incorrect results

torch.argmin() now supports both the single argument call variant and the 3 argument variant. However, torch.
argmin() currently produces incorrect results.

Error when using the xm.xla_device() object followed by using torch_neuronx.trace

Executing a model using the xm.xla_device() object followed by using torch_neuronx.trace in the same process
can produce errors in specific situations due to torch-xla caching behavior. It is recommended that only one type of
execution is used per process.

Error when executing torch_neuronx.trace with torch.bfloat16 input/output tensors

Executing torch_neuronx.trace with torch.bfloat16 input/output tensors can cause an error. It is currently
recommended to use an alternative torch data type in combination with compiler casting flags instead.

No automatic partitioning

Currently, there’s no automatic partitioning of a model into subgraphs that run on NeuronCores and subgraphs that
run on CPU Operations in the model that are not supported by Neuron would result in compilation error. Please see
PyTorch Neuron (torch-neuronx) - Supported Operators for a list of supported operators.

Release [1.13.0.1.5.0]

Date: 02/24/2023

Summary

What’s new in this release

Training support:

• Added SPMD flag for XLA backend to generate global collective-compute replica groups

Inference support:

• Expanded inference support to inf2

• Added Dynamic Batching

142 Chapter 7. PyTorch Neuron

https://pytorch.org/docs/master/generated/torch.argmin.html#torch.argmin
https://pytorch.org/docs/master/generated/torch.argmin.html#torch.argmin
https://pytorch.org/docs/master/generated/torch.argmin.html#torch.argmin

AWS Neuron

Resolved issues

Known issues and limitations (Training)

Convolution is not supported

In this release, convolution is not supported.

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data

Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in
the runtime, and you may see errors that look like this: bootstrap.cc:86 CCOM WARN Call to accept failed
: Too many open files.

Hence, it is recommended to use fewer workers per node with DDP.

Lower throughput for BERT-large training on AL2 instances

We see a performance drop of roughly 5-10% for BERT model training on AL2 instances. This is because of the
increase in time required for tracing the model.

Known issues and limitations (Inference)

torch.argmax() and torch.argmin() do not support the single argument call variant

torch.argmax() and torch.argmin() do not support the single argument call variant. Only the 3 argument variant
of these functions is supported. The dim argument must be specified or this function will fail at the call-site. Secondly,
torch.argmin() may produce incorrect results.

No automatic partitioning

Currently, there’s no automatic partitioning of a model into subgraphs that run on NeuronCores and subgraphs that
run on CPU Operations in the model that are not supported by Neuron would result in compilation error. Please see
PyTorch Neuron (torch-neuronx) - Supported Operators for a list of supported operators.

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 143

https://pytorch.org/xla/release/1.13/index.html#mnist-with-real-data
https://pytorch.org/xla/release/1.13/index.html#mnist-with-real-data
https://pytorch.org/docs/master/generated/torch.argmax.html#torch.argmax
https://pytorch.org/docs/master/generated/torch.argmin.html#torch.argmin
https://pytorch.org/docs/master/generated/torch.argmin.html#torch.argmin

AWS Neuron

Release [1.13.0.1.4.0]

Date: 02/08/2023

Summary

What’s new in this release

Training support:

• Added support for PyTorch 1.13

• Added support for Python version 3.9

• Added support for torch.nn.parallel.DistributedDataParallel (DDP) along with a tutorial

• Added optimized lowering for Softmax activation

• Added support for LAMB optimizer in BF16 mode

Added initial support for inference on Trn1, including the following features:

• Trace API (torch_neuronx.trace)

• Core placement API (Beta)

• Python 3.7, 3.8 and 3.9 support

• Support for tracing models larger than 2 GB

The following inference features are not included in this release:

• Automatic partitioning of a model into subgraphs that run on NeuronCores and subgraphs that run on CPU

• cxx11 ABI wheels

Resolved issues

Known issues and limitations

Convolution is not supported

In this release, convolution is not supported.

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data

144 Chapter 7. PyTorch Neuron

https://pytorch.org/xla/release/1.13/index.html#mnist-with-real-data
https://pytorch.org/xla/release/1.13/index.html#mnist-with-real-data

AWS Neuron

Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in
the runtime, and you may see errors that look like this: bootstrap.cc:86 CCOM WARN Call to accept failed
: Too many open files.

Hence, it is recommended to use fewer workers per node with DDP.

Lower throughput for BERT-large training on AL2 instances

We see a performance drop of roughly 5-10% for BERT model training on AL2 instances. This is because of the
increase in time required for tracing the model.

Release [1.12.0.1.4.0]

Date: 12/12/2022

Summary

What’s new in this release

• Added support for PyTorch 1.12.

• Setting XLA_DOWNCAST_BF16=1 now also enables stochastic rounding by default (as done with
XLA_USE_BF16=1).

• Added support for capturing snapshots of inputs, outputs and graph HLO for debug.

• Fixed issue with parallel compile error when both train and evaluation are enabled in HuggingFace fine-tuning
tutorial.

• Added support for LAMB optimizer in FP32 mode.

Resolved issues

NaNs seen with transformers version >= 4.21.0 when running HF BERT fine-tuning or pretraining
with XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1

When running HuggingFace BERT (any size) fine-tuning tutorial or pretraining tutorial with transformers version
>= 4.21.0 and using XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1, you will see NaNs in the loss immedi-
ately at the first step. More details on the issue can be found at pytorch/xla#4152. The workaround is to use 4.20.0
or earlier (the tutorials currently recommend version 4.15.0) or add the line transformers.modeling_utils.
get_parameter_dtype = lambda x: torch.bfloat16 to your Python training script (as now done in latest tuto-
rials). A permanent fix will become part of an upcoming HuggingFace transformers release.

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 145

https://github.com/pytorch/xla/issues/4152
https://github.com/huggingface/transformers/pull/20562

AWS Neuron

Known issues and limitations

Convolution is not supported

In this release, convolution is not supported.

Number of data parallel training workers on one Trn1 instance

The number of workers used in single-instance data parallel training can be one of the following values: 1 or 2 for
trn1.2xlarge and 1, 2, 8 or 32 for trn1.32xlarge.

Release [1.11.0.1.2.0]

Date: 10/27/2022

Summary

What’s new in this release

• Added support for argmax.

• Clarified error messages for runtime errors NRT_UNINITIALIZED and NRT_CLOSED.

• When multi-worker training is launched using torchrun on one instance, framework now handles runtime state
cleanup at end of training.

Resolved issues

Drop-out rate ignored in dropout operation

A known issue in the compiler’s implementation of dropout caused drop-rate to be ignored in the last release. It is fixed
in the current release.

Runtime error “invalid offset in Coalesced_memloc_. . . ” followed by “Failed to process dma block:
1703”

Previously, when running MRPC fine-tuning tutorial with bert-base-* model, you would encounter runtime error
“invalid offset in Coalesced_memloc_. . . ” followed by “Failed to process dma block: 1703”. This is fixed in the current
release.

146 Chapter 7. PyTorch Neuron

AWS Neuron

Compilation error: “TongaSBTensor[0x7fb2a46e0830]:TongaSB partitions[0] uint8 %138392[128,
512]”

Previously, when compiling MRPC fine-tuning tutorial with bert-large-* and FP32 (no XLA_USE_BF16=1)
for two workers or more, you would encounter compiler error that looks like Error message:
TongaSBTensor[0x7fb2a46e0830]:TongaSB partitions[0] uint8 %138392[128, 512] followed by
Error class: KeyError. Single worker fine-tuning is not affected. This is fixed in the current release.

Known issues and limitations

Convolution is not supported

In this release, convolution is not supported.

Number of data parallel training workers on one Trn1 instance

The number of workers used in single-instance data parallel training can be one of the following values: 1 or 2 for
trn1.2xlarge and 1, 2, 8 or 32 for trn1.32xlarge.

Release [1.11.0.1.1.1]

Date: 10/10/2022

Summary

This is the initial release of PyTorch Neuron that supports Trainium for users to train their models on the new EC2 Trn1
instances.

What’s new in this release

Announcing the first PyTorch Neuron release for training.

• XLA device support for Trainium

• PyTorch 1.11 with XLA backend support in torch.distributed

• torch-xla distributed support

• Single-instance and multi-instance distributed training using torchrun

• Support for ParallelCluster and SLURM with node-level scheduling granularity

• Persistent cache for compiled graph

• neuron_parallel_compile utility to help speed up compilation

• Optimizer support: SGD, AdamW

• Loss functions supported: NLLLoss

• Python versions supported: 3.7, 3.8

• Multi-instance training support with EFA

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 147

AWS Neuron

• Support PyTorch’s BF16 automatic mixed precision

Known issues and limitations

Convolution is not supported

In this release, convolution is not supported.

Number of data parallel training workers on one Trn1 instance

The number of workers used in single-instance data parallel training can be one of the following values: 1 or 2 for
trn1.2xlarge and 1, 2, 8 or 32 for trn1.32xlarge.

Drop-out rate ignored in dropout operation

A known issue in the compiler’s implementation of dropout caused drop-rate to be ignored. Will be fixed in a follow-on
release.

Runtime error “invalid offset in Coalesced_memloc_. . . ” followed by “Failed to process dma block:
1703”

Currently, when running MRPC fine-tuning tutorial with bert-base-* model, you will encounter runtime error “in-
valid offset in Coalesced_memloc_. . . ” followed by “Failed to process dma block: 1703”. This issue will be fixed in
an upcoming release.

Compilation error: “TongaSBTensor[0x7fb2a46e0830]:TongaSB partitions[0] uint8 %138392[128,
512]”

When compiling MRPC fine-tuning tutorial with bert-large-* and FP32 (no XLA_USE_BF16=1) for two workers
or more, you will encounter compiler error that looks like Error message: TongaSBTensor[0x7fb2a46e0830]:
TongaSB partitions[0] uint8 %138392[128, 512] followed by Error class: KeyError. Single worker
fine-tuning is not affected. This issue will be fixed in an upcoming release.

This document is relevant for: Inf2, Trn1, Trn1n

• PyTorch Neuron (torch-neuronx) release notes

This document is relevant for: Inf2, Trn1, Trn1n

Setup (torch-neuronx)

148 Chapter 7. PyTorch Neuron

AWS Neuron

Tutorials (torch-neuronx)

• HuggingFace pretrained BERT tutorial [html] [notebook]

• TorchServe tutorial [html]

• LibTorch C++ tutorial (for torch-neuron and torch-neuronx) [html]

• Torchvision ResNet50 tutorial [html] [notebook]

• T5 inference tutorial [html] [notebook]

Note: To use Jupyter Notebook see:

• setup-jupyter-notebook-steps-troubleshooting

• running-jupyter-notebook-as-script

Additional Examples (torch-neuronx)

• AWS Neuron Samples GitHub Repository

• Transformers Neuron GitHub samples

API Reference Guide (torch-neuronx)

• PyTorch NeuronX Tracing API for Inference

• PyTorch Neuron (torch-neuronx) Weight Replacement API for Inference

• PyTorch NeuronX NeuronCore Placement APIs [Beta]

• PyTorch NeuronX Analyze API for Inference

• PyTorch NeuronX DataParallel API

• torch_neuronx_lazy_async_load_api

Developer Guide (torch-neuronx)

• NeuronCore Allocation and Model Placement for Inference (torch-neuronx)

• Comparison of Traced Inference versus XLA Lazy Tensor Inference (torch-neuronx)

• Data Parallel Inference on torch_neuronx

• torch-neuronx-autobucketing-devguide

7.2. Inference with torch-neuronx (Inf2 & Trn1/Trn1n) 149

https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/torch-neuronx/bert-base-cased-finetuned-mrpc-inference-on-trn1-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/torch-neuronx/resnet50-inference-on-trn1-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/torch-neuronx/t5-inference-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/transformers-neuronx

AWS Neuron

Misc (torch-neuronx)

• PyTorch Neuron (torch-neuronx) release notes

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf1

7.3 Inference with torch-neuron (Inf1)

This document is relevant for: Inf1

7.3.1 Tutorials for Inference with torch-neuron (Inf1)

This document is relevant for: Inf1

Computer Vision Tutorials (torch-neuron)

• ResNet-50 tutorial [html] [notebook]

• PyTorch YOLOv4 tutorial [html] [notebook]

This document is relevant for: Inf1

This document is relevant for: Inf1

Natural Language Processing (NLP) Tutorials (torch-neuron)

• HuggingFace pretrained BERT tutorial [html] [notebook]

• HuggingFace pretrained BERT tutorial with shared weights [html] [notebook]

• Bring your own HuggingFace pretrained BERT container to Sagemaker Tutorial [html] [notebook]

• LibTorch C++ tutorial [html]

• TorchServe tutorial [html]

• HuggingFace MarianMT tutorial [html] [notebook]

Compiling and Deploying HuggingFace Pretrained BERT

Introduction

In this tutorial we will compile and deploy BERT-base version of HuggingFace Transformers BERT for Inferentia. The
full list of HuggingFace’s pretrained BERT models can be found in the BERT section on this page https://huggingface.
co/transformers/pretrained_models.html.

This Jupyter notebook should be run on an instance which is inf1.6xlarge or larger. The compile part of this tutorial
requires inf1.6xlarge and not the inference itself. For simplicity we will run this tutorial on inf1.6xlarge but in real life
scenario the compilation should be done on a compute instance and the deployment on inf1 instance to save costs.

Verify that this Jupyter notebook is running the Python kernel environment that was set up according to the PyTorch
Installation Guide. You can select the kernel from the “Kernel -> Change Kernel” option on the top of this Jupyter
notebook page.

150 Chapter 7. PyTorch Neuron

https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/resnet50.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/yolo_v4.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/bert_tutorial/tutorial_pretrained_bert.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/bert_tutorial/tutorial_pretrained_bert_shared_weights.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/byoc_sm_bert_tutorial/sagemaker_container_neuron.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/transformers-marianmt.ipynb
https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/pretrained_models.html
../../../../frameworks/torch/torch-neuron/setup/pytorch-install.html
../../../../frameworks/torch/torch-neuron/setup/pytorch-install.html

AWS Neuron

Install Dependencies:

This tutorial requires the following pip packages:

• torch-neuron

• neuron-cc[tensorflow]

• transformers

Most of these packages will be installed when configuring your environment using the Neuron PyTorch setup guide.
The additional dependencies must be installed here.

[]: %env TOKENIZERS_PARALLELISM=True #Supresses tokenizer warnings making errors easier to␣
→˓detect
!pip install --upgrade "transformers==4.6.0"

Compile the model into an AWS Neuron optimized TorchScript

[]: import tensorflow # to workaround a protobuf version conflict issue
import torch
import torch.neuron
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
import transformers
import os
import warnings

Setting up NeuronCore groups for inf1.6xlarge with 16 cores
num_cores = 16 # This value should be 4 on inf1.xlarge and inf1.2xlarge
os.environ['NEURON_RT_NUM_CORES'] = str(num_cores)

Build tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased-finetuned-mrpc")
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased-finetuned-
→˓mrpc", return_dict=False)

Setup some example inputs
sequence_0 = "The company HuggingFace is based in New York City"
sequence_1 = "Apples are especially bad for your health"
sequence_2 = "HuggingFace's headquarters are situated in Manhattan"

max_length=128
paraphrase = tokenizer.encode_plus(sequence_0, sequence_2, max_length=max_length,␣
→˓padding='max_length', truncation=True, return_tensors="pt")
not_paraphrase = tokenizer.encode_plus(sequence_0, sequence_1, max_length=max_length,␣
→˓padding='max_length', truncation=True, return_tensors="pt")

Run the original PyTorch model on compilation exaple
paraphrase_classification_logits = model(**paraphrase)[0]

Convert example inputs to a format that is compatible with TorchScript tracing
example_inputs_paraphrase = paraphrase['input_ids'], paraphrase['attention_mask'],␣
→˓paraphrase['token_type_ids']

(continues on next page)

7.3. Inference with torch-neuron (Inf1) 151

AWS Neuron

(continued from previous page)

example_inputs_not_paraphrase = not_paraphrase['input_ids'], not_paraphrase['attention_
→˓mask'], not_paraphrase['token_type_ids']

Run torch.neuron.trace to generate a TorchScript that is optimized by AWS Neuron
model_neuron = torch.neuron.trace(model, example_inputs_paraphrase)

Verify the TorchScript works on both example inputs
paraphrase_classification_logits_neuron = model_neuron(*example_inputs_paraphrase)
not_paraphrase_classification_logits_neuron = model_neuron(*example_inputs_not_
→˓paraphrase)

Save the TorchScript for later use
model_neuron.save('bert_neuron.pt')

You may inspect model_neuron.graph to see which part is running on CPU versus running on the accelerator. All
native aten operators in the graph will be running on CPU.

[]: print(model_neuron.graph)

Deploy the AWS Neuron optimized TorchScript

To deploy the AWS Neuron optimized TorchScript, you may choose to load the saved TorchScript from disk and skip
the slow compilation.

[]: # Load TorchScript back
model_neuron = torch.jit.load('bert_neuron.pt')
Verify the TorchScript works on both example inputs
paraphrase_classification_logits_neuron = model_neuron(*example_inputs_paraphrase)
not_paraphrase_classification_logits_neuron = model_neuron(*example_inputs_not_
→˓paraphrase)
classes = ['not paraphrase', 'paraphrase']
paraphrase_prediction = paraphrase_classification_logits_neuron[0][0].argmax().item()
not_paraphrase_prediction = not_paraphrase_classification_logits_neuron[0][0].argmax().
→˓item()
print('BERT says that "{}" and "{}" are {}'.format(sequence_0, sequence_2,␣
→˓classes[paraphrase_prediction]))
print('BERT says that "{}" and "{}" are {}'.format(sequence_0, sequence_1, classes[not_
→˓paraphrase_prediction]))

Now let’s run the model in parallel on four cores

[]: def get_input_with_padding(batch, batch_size, max_length):
Reformulate the batch into three batch tensors - default batch size batches the␣

→˓outer dimension
encoded = batch['encoded']
inputs = torch.squeeze(encoded['input_ids'], 1)
attention = torch.squeeze(encoded['attention_mask'], 1)
token_type = torch.squeeze(encoded['token_type_ids'], 1)
quality = list(map(int, batch['quality']))

if inputs.size()[0] != batch_size:
(continues on next page)

152 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

print("Input size = {} - padding".format(inputs.size()))
remainder = batch_size - inputs.size()[0]
zeros = torch.zeros([remainder, max_length], dtype=torch.long)
inputs = torch.cat([inputs, zeros])
attention = torch.cat([attention, zeros])
token_type = torch.cat([token_type, zeros])

assert(inputs.size()[0] == batch_size and inputs.size()[1] == max_length)
assert(attention.size()[0] == batch_size and attention.size()[1] == max_length)
assert(token_type.size()[0] == batch_size and token_type.size()[1] == max_length)

return (inputs, attention, token_type), quality

def count(output, quality):
assert output.size(0) >= len(quality)
correct_count = 0
count = len(quality)

batch_predictions = [row.argmax().item() for row in output]

for a, b in zip(batch_predictions, quality):
if int(a)==int(b):

correct_count += 1

return correct_count, count

Data parallel inference

In the below cell, we use the data parallel approach for inference. In this approach, we load multiple models, all of
them running in parallel. Each model is loaded onto a single NeuronCore. In the below implementation, we launch 16
models, thereby utilizing all the 16 cores on an inf1.6xlarge.

Note: Now if you try to decrease the num_cores in the above cells, please restart the notebook and run
!sudo rmmod neuron; sudo modprobe neuron step in cell 2 to clear the Neuron cores.

Since, we can run more than 1 model concurrently, the throughput for the system goes up. To achieve maximum gain
in throughput, we need to efficiently feed the models so as to keep them busy at all times. In the below setup, this is
done by using a producer-consumer model. We maintain a common python queue shared across all the models. The
common queue enables feeding data continuously to the models.

[]: from parallel import NeuronSimpleDataParallel
from bert_benchmark_utils import BertTestDataset, BertResults
import time
import functools

max_length = 128
num_cores = 16
batch_size = 1

tsv_file="glue_mrpc_dev.tsv"

data_set = BertTestDataset(tsv_file=tsv_file, tokenizer=tokenizer, max_length=max_
→˓length) (continues on next page)

7.3. Inference with torch-neuron (Inf1) 153

AWS Neuron

(continued from previous page)

data_loader = torch.utils.data.DataLoader(data_set, batch_size=batch_size, shuffle=True)

#Result aggregation class (code in bert_benchmark_utils.py)
results = BertResults(batch_size, num_cores)
def result_handler(output, result_id, start, end, input_dict):

correct_count, inference_count = count(output[0], input_dict.pop(result_id))
elapsed = end - start
results.add_result(correct_count, inference_count, [elapsed], [end], [start])

parallel_neuron_model = NeuronSimpleDataParallel('bert_neuron.pt', num_cores)

#Starting the inference threads
parallel_neuron_model.start_continuous_inference()

Warm up the cores
z = torch.zeros([batch_size, max_length], dtype=torch.long)
batch = (z, z, z)
for _ in range(num_cores*4):

parallel_neuron_model.infer(batch, -1, None)

input_dict = {}
input_id = 0
for _ in range(30):

for batch in data_loader:
batch, quality = get_input_with_padding(batch, batch_size, max_length)
input_dict[input_id] = quality
callback_fn = functools.partial(result_handler, input_dict=input_dict)
parallel_neuron_model.infer(batch, input_id, callback_fn)
input_id+=1

Stop inference
parallel_neuron_model.stop()

with open("benchmark.txt", "w") as f:
results.report(f, window_size=1)

with open("benchmark.txt", "r") as f:
for line in f:

print(line)

Now recompile with a larger batch size of six sentence pairs

[]: batch_size = 6

example_inputs_paraphrase = (
torch.cat([paraphrase['input_ids']] * batch_size,0),
torch.cat([paraphrase['attention_mask']] * batch_size,0),
torch.cat([paraphrase['token_type_ids']] * batch_size,0)

)

Run torch.neuron.trace to generate a TorchScript that is optimized by AWS Neuron
(continues on next page)

154 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

model_neuron_batch = torch.neuron.trace(model, example_inputs_paraphrase)

Save the batched model
model_neuron_batch.save('bert_neuron_b{}.pt'.format(batch_size))

Rerun inference with batch 6

[]: from parallel import NeuronSimpleDataParallel
from bert_benchmark_utils import BertTestDataset, BertResults
import time
import functools

max_length = 128
num_cores = 16
batch_size = 6

data_set = BertTestDataset(tsv_file=tsv_file, tokenizer=tokenizer, max_length=max_
→˓length)
data_loader = torch.utils.data.DataLoader(data_set, batch_size=batch_size, shuffle=True)

#Result aggregation class (code in bert_benchmark_utils.py)
results = BertResults(batch_size, num_cores)
def result_handler(output, result_id, start, end, input_dict):

correct_count, inference_count = count(output[0], input_dict.pop(result_id))
elapsed = end - start
results.add_result(correct_count, inference_count, [elapsed], [end], [start])

parallel_neuron_model = NeuronSimpleDataParallel('bert_neuron_b{}.pt'.format(batch_size),
→˓ num_cores)

#Starting the inference threads
parallel_neuron_model.start_continuous_inference()

Adding to the input queue to warm all cores
z = torch.zeros([batch_size, max_length], dtype=torch.long)
batch = (z, z, z)
for _ in range(num_cores*4):

parallel_neuron_model.infer(batch, -1, None)

input_dict = {}
input_id = 0
for _ in range(30):

for batch in data_loader:
batch, quality = get_input_with_padding(batch, batch_size, max_length)
input_dict[input_id] = quality
callback_fn = functools.partial(result_handler, input_dict=input_dict)
parallel_neuron_model.infer(batch, input_id, callback_fn)
input_id+=1

Stop inference
parallel_neuron_model.stop()

(continues on next page)

7.3. Inference with torch-neuron (Inf1) 155

AWS Neuron

(continued from previous page)

with open("benchmark_b{}.txt".format(batch_size), "w") as f:
results.report(f, window_size=1)

with open("benchmark_b{}.txt".format(batch_size), "r") as f:
for line in f:

print(line)

Data Parallel HuggingFace Pretrained BERT with Weight Sharing (Deduplication)

Introduction

In this tutorial we will compile and deploy BERT-base version of HuggingFace Transformers BERT for Inferentia,
with additional demonstration of using Weight Sharing (Deduplication) feature.

To use the Weight Sharing (Deduplication) feature, you must set the Neuron Runtime environmental vari-
able NEURON_RT_MULTI_INSTANCE_SHARED_WEIGHTS to “TRUE” together with the core placement API
(torch_neuron.experimental.neuron_cores_context()).

This Jupyter notebook should be run on an instance which is inf1.6xlarge or larger. The compile part of this tutorial
requires inf1.6xlarge and not the inference itself. For simplicity we will run this tutorial on inf1.6xlarge but in real life
scenario the compilation should be done on a compute instance and the deployment on inf1 instance to save costs.

Verify that this Jupyter notebook is running the Python kernel environment that was set up according to the PyTorch
Installation Guide. You can select the kernel from the “Kernel -> Change Kernel” option on the top of this Jupyter
notebook page.

Install Dependencies:

This tutorial requires the following pip packages:

• torch-neuron

• neuron-cc[tensorflow]

• transformers

Most of these packages will be installed when configuring your environment using the Neuron PyTorch setup guide.
The additional dependencies must be installed here.

[1]: %env TOKENIZERS_PARALLELISM=True #Supresses tokenizer warnings making errors easier to␣
→˓detect
!pip install --upgrade "transformers==4.6.0"

156 Chapter 7. PyTorch Neuron

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-runtime/nrt-configurable-parameters.html#shared-weights-neuron-rt-multi-instance-shared-weights
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/frameworks/torch/torch-neuron/api-core-placement.html
../../../../frameworks/torch/torch-neuron/setup/pytorch-install.html
../../../../frameworks/torch/torch-neuron/setup/pytorch-install.html

AWS Neuron

Compile the model into an AWS Neuron optimized TorchScript

This step compiles the model into an AWS Neuron optimized TorchScript, and saves it in the filed bert_neuron.pt.
This step is the same as the pretrained BERT tutorial without Shared Weights feature. We use batch 1 for simplicity.

[1]: import tensorflow # to workaround a protobuf version conflict issue
import torch
import torch.neuron
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
import transformers
import os
import warnings

Build tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased-finetuned-mrpc")
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased-finetuned-
→˓mrpc", return_dict=False)

Setup some example inputs
sequence_0 = "The company HuggingFace is based in New York City"
sequence_1 = "Apples are especially bad for your health"
sequence_2 = "HuggingFace's headquarters are situated in Manhattan"

max_length=128
paraphrase = tokenizer.encode_plus(sequence_0, sequence_2, max_length=max_length,␣
→˓padding='max_length', truncation=True, return_tensors="pt")
not_paraphrase = tokenizer.encode_plus(sequence_0, sequence_1, max_length=max_length,␣
→˓padding='max_length', truncation=True, return_tensors="pt")

Run the original PyTorch model on compilation exaple
paraphrase_classification_logits = model(**paraphrase)[0]

Convert example inputs to a format that is compatible with TorchScript tracing
example_inputs_paraphrase = paraphrase['input_ids'], paraphrase['attention_mask'],␣
→˓paraphrase['token_type_ids']
example_inputs_not_paraphrase = not_paraphrase['input_ids'], not_paraphrase['attention_
→˓mask'], not_paraphrase['token_type_ids']

Run torch.neuron.trace to generate a TorchScript that is optimized by AWS Neuron
model_neuron = torch.neuron.trace(model, example_inputs_paraphrase)

Verify the TorchScript works on both example inputs
paraphrase_classification_logits_neuron = model_neuron(*example_inputs_paraphrase)
not_paraphrase_classification_logits_neuron = model_neuron(*example_inputs_not_
→˓paraphrase)

Save the TorchScript for later use
model_neuron.save('bert_neuron.pt')

7.3. Inference with torch-neuron (Inf1) 157

AWS Neuron

Deploy the AWS Neuron optimized TorchScript

To deploy the AWS Neuron optimized TorchScript, you may choose to load the saved TorchScript from disk and skip
the slow compilation. This step is the same as the pretrained BERT tutorial without Shared Weights feature

[2]: # Load TorchScript back
model_neuron = torch.jit.load('bert_neuron.pt')
Verify the TorchScript works on both example inputs
paraphrase_classification_logits_neuron = model_neuron(*example_inputs_paraphrase)
not_paraphrase_classification_logits_neuron = model_neuron(*example_inputs_not_
→˓paraphrase)
classes = ['not paraphrase', 'paraphrase']
paraphrase_prediction = paraphrase_classification_logits_neuron[0][0].argmax().item()
not_paraphrase_prediction = not_paraphrase_classification_logits_neuron[0][0].argmax().
→˓item()
print('BERT says that "{}" and "{}" are {}'.format(sequence_0, sequence_2,␣
→˓classes[paraphrase_prediction]))
print('BERT says that "{}" and "{}" are {}'.format(sequence_0, sequence_1, classes[not_
→˓paraphrase_prediction]))

We define two helper functions to pad input and to count correct results.

[3]: def get_input_with_padding(batch, batch_size, max_length):
Reformulate the batch into three batch tensors - default batch size batches the␣

→˓outer dimension
encoded = batch['encoded']
inputs = torch.squeeze(encoded['input_ids'], 1)
attention = torch.squeeze(encoded['attention_mask'], 1)
token_type = torch.squeeze(encoded['token_type_ids'], 1)
quality = list(map(int, batch['quality']))

if inputs.size()[0] != batch_size:
print("Input size = {} - padding".format(inputs.size()))
remainder = batch_size - inputs.size()[0]
zeros = torch.zeros([remainder, max_length], dtype=torch.long)
inputs = torch.cat([inputs, zeros])
attention = torch.cat([attention, zeros])
token_type = torch.cat([token_type, zeros])

assert(inputs.size()[0] == batch_size and inputs.size()[1] == max_length)
assert(attention.size()[0] == batch_size and attention.size()[1] == max_length)
assert(token_type.size()[0] == batch_size and token_type.size()[1] == max_length)

return (inputs, attention, token_type), quality

def count(output, quality):
assert output.size(0) >= len(quality)
correct_count = 0
count = len(quality)

batch_predictions = [row.argmax().item() for row in output]

for a, b in zip(batch_predictions, quality):
(continues on next page)

158 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

if int(a)==int(b):
correct_count += 1

return correct_count, count

Data parallel inference

In the below cell, we use the data parallel approach for inference. In this approach, we load multiple models,
all of them running in parallel. Each model is loaded onto a single NeuronCore via the core placement API
(torch_neuron.experimental.neuron_cores_context()). We also set Neuron Runtime environment variable
NEURON_RT_MULTI_INSTANCE_SHARED_WEIGHTS to “TRUE” as required to use the Weight Sharing feature.

In the below implementation, we launch 16 models, thereby utilizing all the 16 cores on an inf1.6xlarge.

Note: Now if you try to decrease the num_cores in the below cells, please restart the notebook and run
!sudo rmmod neuron; sudo modprobe neuron step in cell 2 to clear the Neuron cores.

Since, we can run more than 1 model concurrently, the throughput for the system goes up. To achieve maximum gain
in throughput, we need to efficiently feed the models so as to keep them busy at all times. In the below setup, we use
parallel threads to feed data continuously to the models.

When running the cell below, you can monitor the Inferentia device activities by running neuron-top in another
terminal. You will see that “Device Used Memory” is 1.6GB total, and the model instance loaded onto NeuronDevice
0 NeuronCore 0 uses the most device memory (272MB) while the other model instances loaded onto other NeuronCores
use less device memory (92MB). This shows the effect of using Shared Weights as the device memory usage is lower. If
you change NEURON_RT_MULTI_INSTANCE_SHARED_WEIGHTS to “FALSE” you will see that “Device Used Memory”
is 3.2GB, and the model instances loaded onto NeuronDevice 0 NeuronCore 0 and 1 use the most device memory
(360MB) while the other model instances now use 180MB each.

[5]: from bert_benchmark_utils import BertTestDataset, BertResults
import time
import functools
import os
import torch.neuron as torch_neuron
from concurrent import futures

Setting up NeuronCore groups for inf1.6xlarge with 16 cores
num_cores = 16 # This value should be 4 on inf1.xlarge and inf1.2xlarge
os.environ['NEURON_RT_NUM_CORES'] = str(num_cores)
os.environ['NEURON_RT_MULTI_INSTANCE_SHARED_WEIGHTS'] = 'TRUE'
#os.environ['NEURON_RT_MULTI_INSTANCE_SHARED_WEIGHTS'] = 'FALSE'

max_length = 128
num_cores = 16
batch_size = 1

tsv_file="glue_mrpc_dev.tsv"

data_set = BertTestDataset(tsv_file=tsv_file, tokenizer=tokenizer, max_length=max_
→˓length)
data_loader = torch.utils.data.DataLoader(data_set, batch_size=batch_size, shuffle=True)

#Result aggregation class (code in bert_benchmark_utils.py)
(continues on next page)

7.3. Inference with torch-neuron (Inf1) 159

AWS Neuron

(continued from previous page)

results = BertResults(batch_size, num_cores)
def result_handler(output, result_id, start, end, input_dict):

correct_count, inference_count = count(output[0], input_dict.pop(result_id))
elapsed = end - start
results.add_result(correct_count, inference_count, [elapsed], [end], [start])

with torch_neuron.experimental.neuron_cores_context(start_nc=0, nc_count=num_cores):
model = torch.jit.load('bert_neuron.pt')

Warm up the cores
z = torch.zeros([batch_size, max_length], dtype=torch.long)
batch = (z, z, z)
for _ in range(num_cores*4):

model(*batch)

Prepare the input data
batch_list = []
for batch in data_loader:

batch, quality = get_input_with_padding(batch, batch_size, max_length)
batch_list.append((batch, quality))

One thread running a model on one core
def one_thread(feed_data, quality):

start = time.time()
result = model(*feed_data)
end = time.time()
return result[0], quality, start, end

Launch more threads than models/cores to keep them busy
processes = []
with futures.ThreadPoolExecutor(max_workers=num_cores*2) as executor:

extra loops to help you see activities in neuron-top
for _ in range(10):

for input_id, (batch, quality) in enumerate(batch_list):
processes.append(executor.submit(one_thread, batch, quality))

results = BertResults(batch_size, num_cores)
for _ in futures.as_completed(processes):

(output, quality, start, end) = _.result()
correct_count, inference_count = count(output, quality)
results.add_result(correct_count, inference_count, [start - end], [start], [end])

with open("benchmark.txt", "w") as f:
results.report(f, window_size=1)

with open("benchmark.txt", "r") as f:
for line in f:

print(line)

[]:

160 Chapter 7. PyTorch Neuron

AWS Neuron

Deploy a pretrained PyTorch BERT model from HuggingFace on Amazon SageMaker with Neuron
container

Overview

In this tutotial we will deploy on SageMaker a pretraine BERT Base model from HuggingFace Transformers, using the
AWS Deep Learning Containers. We will use the same model as shown in the Neuron Tutorial “PyTorch - HuggingFace
Pretrained BERT Tutorial”. We will compile the model and build a custom AWS Deep Learning Container, to include
the HuggingFace Transformers Library.

This Jupyter Notebook should run on a ml.c5.4xlarge SageMaker Notebook instance. You can set up your SageMaker
Notebook instance by following the Get Started with Amazon SageMaker Notebook Instances documentation.

We recommend increasing the size of the base root volume of you SM notebook instance, to accomodate
the models and containers built locally. A root volume of 10Gb should suffice.

Install Dependencies:

This tutorial requires the following pip packages:

• torch-neuron

• neuron-cc[tensorflow]

• transformers

[]: %env TOKENIZERS_PARALLELISM=True #Supresses tokenizer warnings making errors easier to␣
→˓detect
!pip install --upgrade --no-cache-dir torch-neuron neuron-cc[tensorflow] torchvision␣
→˓torch --extra-index-url=https://pip.repos.neuron.amazonaws.com
!pip install --upgrade --no-cache-dir 'transformers==4.6.0'

Compile the model into an AWS Neuron optimized TorchScript

[]: import torch
import torch_neuron

from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig

[]: # Build tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased-finetuned-mrpc")
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased-finetuned-
→˓mrpc", return_dict=False)

Setup some example inputs
sequence_0 = "The company HuggingFace is based in New York City"
sequence_1 = "Apples are especially bad for your health"
sequence_2 = "HuggingFace's headquarters are situated in Manhattan"

max_length=128
paraphrase = tokenizer.encode_plus(sequence_0, sequence_2, max_length=max_length,␣
→˓padding='max_length', truncation=True, return_tensors="pt")

(continues on next page)

7.3. Inference with torch-neuron (Inf1) 161

https://github.com/aws/deep-learning-containers
../../../../frameworks/torch/torch-neuronx/tutorials/training/bert.html
../../../../frameworks/torch/torch-neuronx/tutorials/training/bert.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-console.html

AWS Neuron

(continued from previous page)

not_paraphrase = tokenizer.encode_plus(sequence_0, sequence_1, max_length=max_length,␣
→˓padding='max_length', truncation=True, return_tensors="pt")

Run the original PyTorch model on compilation exaple
paraphrase_classification_logits = model(**paraphrase)[0]

Convert example inputs to a format that is compatible with TorchScript tracing
example_inputs_paraphrase = paraphrase['input_ids'], paraphrase['attention_mask'],␣
→˓paraphrase['token_type_ids']
example_inputs_not_paraphrase = not_paraphrase['input_ids'], not_paraphrase['attention_
→˓mask'], not_paraphrase['token_type_ids']

[]: %%time
Run torch.neuron.trace to generate a TorchScript that is optimized by AWS Neuron
This step may need 3-5 min
model_neuron = torch.neuron.trace(model, example_inputs_paraphrase, verbose=1, compiler_
→˓workdir='./compilation_artifacts')

You may inspect model_neuron.graph to see which part is running on CPU versus running on the accelerator. All
native aten operators in the graph will be running on CPU.

[]: # See which part is running on CPU versus running on the accelerator.
print(model_neuron.graph)

Save the compiled model, so it can be packaged and sent to S3.

[]: # Save the TorchScript for later use
model_neuron.save('neuron_compiled_model.pt')

Package the pre-trained model and upload it to S3

To make the model available for the SageMaker deployment, you will TAR the serialized graph and upload it to the
default Amazon S3 bucket for your SageMaker session.

[]: # Now you'll create a model.tar.gz file to be used by SageMaker endpoint
!tar -czvf model.tar.gz neuron_compiled_model.pt

[]: import boto3
import time
from sagemaker.utils import name_from_base
import sagemaker

[]: # upload model to S3
role = sagemaker.get_execution_role()
sess=sagemaker.Session()
region=sess.boto_region_name
bucket=sess.default_bucket()
sm_client=boto3.client('sagemaker')

162 Chapter 7. PyTorch Neuron

AWS Neuron

[]: model_key = '{}/model/model.tar.gz'.format('inf1_compiled_model')
model_path = 's3://{}/{}'.format(bucket, model_key)
boto3.resource('s3').Bucket(bucket).upload_file('model.tar.gz', model_key)
print("Uploaded model to S3:")
print(model_path)

Build and Push the container

The following shell code shows how to build the container image using docker build and push the container image to
ECR using docker push. The Dockerfile in this example is available in the container folder. Here’s an example of the
Dockerfile:

FROM 763104351884.dkr.ecr.us-east-1.amazonaws.com/pytorch-inference-neuron:1.7.1-neuron-
→˓py36-ubuntu18.04

Install packages
RUN pip install "transformers==4.7.0"

[]: !cat container/Dockerfile

Before running the next cell, make sure your SageMaker IAM role has access to ECR. If not, you can attache the
role AmazonEC2ContainerRegistryPowerUser to your IAM role ARN, which allows you to upload image layers to
ECR.

It takes 5 minutes to build docker images and upload image to ECR

[]: %%sh

The name of our algorithm
algorithm_name=neuron-py36-inference

cd container

account=$(aws sts get-caller-identity --query Account --output text)

Get the region defined in the current configuration (default to us-west-2 if none␣
→˓defined)
region=$(aws configure get region)
region=${region:-us-west-2}

fullname="${account}.dkr.ecr.${region}.amazonaws.com/${algorithm_name}:latest"

If the repository doesn't exist in ECR, create it.

aws ecr describe-repositories --repository-names "${algorithm_name}" > /dev/null 2>&1

if [$? -ne 0]
then

aws ecr create-repository --repository-name "${algorithm_name}" > /dev/null
fi

Get the login command from ECR in order to pull down the SageMaker PyTorch image
(continues on next page)

7.3. Inference with torch-neuron (Inf1) 163

AWS Neuron

(continued from previous page)

aws ecr get-login-password --region us-east-1 | docker login --username AWS --password-
→˓stdin 763104351884.dkr.ecr.us-east-1.amazonaws.com
Build the docker image locally with the image name and then push it to ECR
with the full name.
docker build -t ${algorithm_name} . --build-arg REGION=${region}
docker tag ${algorithm_name} ${fullname}

Get the login command from ECR and execute it directly
aws ecr get-login-password --region ${region} | docker login --username AWS --password-
→˓stdin ${account}.dkr.ecr.${region}.amazonaws.com
docker push ${fullname}

Deploy Container and run inference based on the pretrained model

To deploy a pretrained PyTorch model, you’ll need to use the PyTorch estimator object to create a PyTorchModel object
and set a different entry_point.

You’ll use the PyTorchModel object to deploy a PyTorchPredictor. This creates a SageMaker Endpoint – a hosted
prediction service that we can use to perform inference.

[]: import sys

!{sys.executable} -m pip install Transformers

[]: import os
import boto3
import sagemaker

role = sagemaker.get_execution_role()
sess = sagemaker.Session()

bucket = sess.default_bucket()
prefix = "inf1_compiled_model/model"

Get container name in ECR
client=boto3.client('sts')
account=client.get_caller_identity()['Account']

my_session=boto3.session.Session()
region=my_session.region_name

algorithm_name="neuron-py36-inference"
ecr_image='{}.dkr.ecr.{}.amazonaws.com/{}:latest'.format(account, region, algorithm_name)
print(ecr_image)

An implementation of model_fn is required for inference script. We are going to implement our own model_fn and
predict_fn for Hugging Face Bert, and use default implementations of input_fn and output_fn defined in sagemaker-
pytorch-containers.

In this example, the inference script is put in code folder. Run the next cell to see it:

164 Chapter 7. PyTorch Neuron

AWS Neuron

[]: !pygmentize code/inference.py

Path of compiled pretrained model in S3:

[]: key = os.path.join(prefix, "model.tar.gz")
pretrained_model_data = "s3://{}/{}".format(bucket, key)
print(pretrained_model_data)

The model object is defined by using the SageMaker Python SDK’s PyTorchModel and pass in the model from the
estimator and the entry_point. The endpoint’s entry point for inference is defined by model_fn as seen in the previous
code block that prints out inference.py. The model_fn function will load the model and required tokenizer.

Note, image_uri must be user’s own ECR images.

[]: from sagemaker.pytorch.model import PyTorchModel

pytorch_model = PyTorchModel(
model_data=pretrained_model_data,
role=role,
source_dir="code",
framework_version="1.7.1",
entry_point="inference.py",
image_uri=ecr_image

)

Let SageMaker know that we've already compiled the model via neuron-cc
pytorch_model._is_compiled_model = True

The arguments to the deploy function allow us to set the number and type of instances that will be used for the Endpoint.

Here you will deploy the model to a single ml.inf1.2xlarge instance. It may take 6-10 min to deploy.

[]: %%time

predictor = pytorch_model.deploy(initial_instance_count=1, instance_type="ml.inf1.2xlarge
→˓")

[]: print(predictor.endpoint_name)

Since in the input_fn we declared that the incoming requests are json-encoded, we need to use a json serializer, to
encode the incoming data into a json string. Also, we declared the return content type to be json string, we Need to use
a json deserializer to parse the response.

[]: predictor.serializer = sagemaker.serializers.JSONSerializer()
predictor.deserializer = sagemaker.deserializers.JSONDeserializer()

Using a list of sentences, now SageMaker endpoint is invoked to get predictions.

[]: %%time
result = predictor.predict(

[
"Never allow the same bug to bite you twice.",
"The best part of Amazon SageMaker is that it makes machine learning easy.",

]
(continues on next page)

7.3. Inference with torch-neuron (Inf1) 165

AWS Neuron

(continued from previous page)

)
print(result)

[]: %%time
result = predictor.predict(

[
"The company HuggingFace is based in New York City",
"HuggingFace's headquarters are situated in Manhattan",

]
)
print(result)

Benchmarking your endpoint

The following cells create a load test for your endpoint. You first define some helper functions: inference_latency
runs the endpoint request, collects cliend side latency and any errors, random_sentence builds random to be sent to
the endpoint.

[]: import numpy as np
import datetime
import math
import time
import boto3
import matplotlib.pyplot as plt
from joblib import Parallel, delayed
import numpy as np
from tqdm import tqdm
import random

[]: def inference_latency(model,*inputs):
"""
infetence_time is a simple method to return the latency of a model inference.

Parameters:
model: torch model onbject loaded using torch.jit.load
inputs: model() args

Returns:
latency in seconds

"""
error = False
start = time.time()
try:

results = model(*inputs)
except:

error = True
results = []

return {'latency':time.time() - start, 'error': error, 'result': results}

166 Chapter 7. PyTorch Neuron

AWS Neuron

[]: def random_sentence():

s_nouns = ["A dude", "My mom", "The king", "Some guy", "A cat with rabies", "A sloth
→˓", "Your homie", "This cool guy my gardener met yesterday", "Superman"]

p_nouns = ["These dudes", "Both of my moms", "All the kings of the world", "Some guys
→˓", "All of a cattery's cats", "The multitude of sloths living under your bed", "Your␣
→˓homies", "Like, these, like, all these people", "Supermen"]

s_verbs = ["eats", "kicks", "gives", "treats", "meets with", "creates", "hacks",
→˓"configures", "spies on", "retards", "meows on", "flees from", "tries to automate",
→˓"explodes"]

p_verbs = ["eat", "kick", "give", "treat", "meet with", "create", "hack", "configure
→˓", "spy on", "retard", "meow on", "flee from", "try to automate", "explode"]

infinitives = ["to make a pie.", "for no apparent reason.", "because the sky is␣
→˓green.", "for a disease.", "to be able to make toast explode.", "to know more about␣
→˓archeology."]

return (random.choice(s_nouns) + ' ' + random.choice(s_verbs) + ' ' + random.
→˓choice(s_nouns).lower() or random.choice(p_nouns).lower() + ' ' + random.
→˓choice(infinitives))

print([random_sentence(), random_sentence()])

The following cell creates number_of_clients concurrent threads to run number_of_runs requests. Once com-
pleted, a boto3 CloudWatch client will query for the server side latency metrics for comparison.

[]: # Defining Auxiliary variables
number_of_clients = 2
number_of_runs = 1000
t = tqdm(range(number_of_runs),position=0, leave=True)

Starting parallel clients
cw_start = datetime.datetime.utcnow()

results = Parallel(n_jobs=number_of_clients,prefer="threads")(delayed(inference_
→˓latency)(predictor.predict,[random_sentence(), random_sentence()]) for mod in t)
avg_throughput = t.total/t.format_dict['elapsed']

cw_end = datetime.datetime.utcnow()

Computing metrics and print
latencies = [res['latency'] for res in results]
errors = [res['error'] for res in results]
error_p = sum(errors)/len(errors) *100
p50 = np.quantile(latencies[-1000:],0.50) * 1000
p90 = np.quantile(latencies[-1000:],0.95) * 1000
p95 = np.quantile(latencies[-1000:],0.99) * 1000

print(f'Avg Throughput: :{avg_throughput:.1f}\n')
print(f'50th Percentile Latency:{p50:.1f} ms')
print(f'90th Percentile Latency:{p90:.1f} ms')
print(f'95th Percentile Latency:{p95:.1f} ms\n')
print(f'Errors percentage: {error_p:.1f} %\n')

(continues on next page)

7.3. Inference with torch-neuron (Inf1) 167

AWS Neuron

(continued from previous page)

Querying CloudWatch
print('Getting Cloudwatch:')
cloudwatch = boto3.client('cloudwatch')
statistics=['SampleCount', 'Average', 'Minimum', 'Maximum']
extended=['p50', 'p90', 'p95', 'p100']

Give 5 minute buffer to end
cw_end += datetime.timedelta(minutes=5)

Period must be 1, 5, 10, 30, or multiple of 60
Calculate closest multiple of 60 to the total elapsed time
factor = math.ceil((cw_end - cw_start).total_seconds() / 60)
period = factor * 60
print('Time elapsed: {} seconds'.format((cw_end - cw_start).total_seconds()))
print('Using period of {} seconds\n'.format(period))

cloudwatch_ready = False
Keep polling CloudWatch metrics until datapoints are available
while not cloudwatch_ready:
time.sleep(30)
print('Waiting 30 seconds ...')
Must use default units of microseconds
model_latency_metrics = cloudwatch.get_metric_statistics(MetricName='ModelLatency',

Dimensions=[{'Name': 'EndpointName',
'Value': predictor.endpoint_

→˓name},
{'Name': 'VariantName',
'Value': "AllTraffic"}],

Namespace="AWS/SageMaker",
StartTime=cw_start,
EndTime=cw_end,
Period=period,
Statistics=statistics,
ExtendedStatistics=extended
)

Should be 1000
if len(model_latency_metrics['Datapoints']) > 0:
print('{} latency datapoints ready'.format(model_latency_metrics['Datapoints'][0][

→˓'SampleCount']))
side_avg = model_latency_metrics['Datapoints'][0]['Average'] / number_of_runs
side_p50 = model_latency_metrics['Datapoints'][0]['ExtendedStatistics']['p50'] /␣

→˓number_of_runs
side_p90 = model_latency_metrics['Datapoints'][0]['ExtendedStatistics']['p90'] /␣

→˓number_of_runs
side_p95 = model_latency_metrics['Datapoints'][0]['ExtendedStatistics']['p95'] /␣

→˓number_of_runs
side_p100 = model_latency_metrics['Datapoints'][0]['ExtendedStatistics']['p100'] /␣

→˓number_of_runs

print(f'50th Percentile Latency:{side_p50:.1f} ms')
print(f'90th Percentile Latency:{side_p90:.1f} ms')
print(f'95th Percentile Latency:{side_p95:.1f} ms\n')

(continues on next page)

168 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

cloudwatch_ready = True

Cleanup

Endpoints should be deleted when no longer in use, to avoid costs.

[]: predictor.delete_endpoint(predictor.endpoint)

[]:

This document is relevant for: Inf1

BERT TorchServe Tutorial

Table of Contents

• Overview

• Run the tutorial

• Setup TorchServe

• Run TorchServe

• Benchmark TorchServe

Overview

This tutorial demonstrates the use of TorchServe with Neuron, the SDK for Amazon Inf1 instances. By the end of this
tutorial, you will understand how TorchServe can be used to serve a model backed by EC2 Inf1 instances. We will use
a pretrained BERT-Base model to determine if one sentence is a paraphrase of another.

Run the tutorial

Open a terminal, log into your remote instance, and activate a Pytorch virtual environment setup (see the Pytorch
Installation Guide). To complete this tutorial, you will need a compiled BERT model. If you have already completed
the HuggingFace Pretrained BERT tutorial [html] [notebook] then you already have the necessary file. Otherwise, you
can setup your environment as shown below and then run trace_bert_neuron.py to obtain a traced BERT model.

You should now have a compiled bert_neuron_b6.pt file, which is required going forward.

Open a shell on the instance you prepared earlier, create a new directory named torchserve. Copy your compiled
model from the previous tutorial into this new directory.

7.3. Inference with torch-neuron (Inf1) 169

https://pytorch.org/serve
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/bert_tutorial/tutorial_pretrained_bert.ipynb

AWS Neuron

cd torchserve
ls

bert_neuron_b6.pt

Prepare a new Python virtual environment with the necessary Neuron and TorchServe components. Use a virtual
environment to keep (most of) the various tutorial components isolated from the rest of the system in a controlled way.

pip install transformers==4.20.1 torchserve==0.7.0 torch-model-archiver==0.7.0 captum==0.
→˓6.0

Install the system requirements for TorchServe.

Amazon Linux 2 DLAMI Base

sudo yum install jq java-11-amazon-corretto-headless
sudo alternatives --config java
sudo alternatives --config javac

Ubuntu 20 DLAMI Base

sudo apt install openjdk-11-jdk

java -version

openjdk version "11.0.17" 2022-10-18
OpenJDK Runtime Environment (build 11.0.17+8-post-Ubuntu-1ubuntu218.04)
OpenJDK 64-Bit Server VM (build 11.0.17+8-post-Ubuntu-1ubuntu218.04, mixed mode, sharing)

javac -version

javac 11.0.17

Verify that TorchServe is now available.

torchserve --version

TorchServe Version is 0.7.0

Setup TorchServe

During this tutorial you will need to download a few files onto your instance. The simplest way to accomplish this is to
paste the download links provided above each file into a wget command. (We don’t provide the links directly because
they are subject to change.) For example, right-click and copy the download link for config.json shown below.

170 Chapter 7. PyTorch Neuron

AWS Neuron

Listing 6: config.json

{
"model_name": "bert-base-cased-finetuned-mrpc",
"max_length": 128,
"batch_size": 6

}

Now execute the following in your shell:

wget <paste link here>
ls

bert_neuron_b6.pt config.json

Download the custom handler script that will eventually respond to inference requests.

Listing 7: handler_bert.py

1 import os
2 import json
3 import sys
4 import logging
5 from abc import ABC
6

7 import torch
8 import torch_neuron
9

10 from transformers import AutoTokenizer
11 from ts.torch_handler.base_handler import BaseHandler
12

13

14 # one core per worker
15 os.environ['NEURON_RT_NUM_CORES'] = '1'
16

17 logger = logging.getLogger(__name__)
18

19 class BertEmbeddingHandler(BaseHandler, ABC):
20 """
21 Handler class for Bert Embedding computations.
22 """
23 def __init__(self):
24 super(BertEmbeddingHandler, self).__init__()
25 self.initialized = False
26

27 def initialize(self, ctx):
28 self.manifest = ctx.manifest
29 properties = ctx.system_properties
30 self.device = 'cpu'
31 model_dir = properties.get('model_dir')
32 serialized_file = self.manifest['model']['serializedFile']
33 model_pt_path = os.path.join(model_dir, serialized_file)
34

35 # point sys.path to our config file
(continues on next page)

7.3. Inference with torch-neuron (Inf1) 171

https://pytorch.org/serve/custom_service.html

AWS Neuron

(continued from previous page)

36 with open('config.json') as fp:
37 config = json.load(fp)
38 self.max_length = config['max_length']
39 self.batch_size = config['batch_size']
40 self.classes = ['not paraphrase', 'paraphrase']
41

42 self.model = torch.jit.load(model_pt_path)
43 logger.debug(f'Model loaded from {model_dir}')
44 self.model.to(self.device)
45 self.model.eval()
46

47 self.tokenizer = AutoTokenizer.from_pretrained(config['model_name'])
48 self.initialized = True
49

50 def preprocess(self, input_data):
51 """
52 Tokenization pre-processing
53 """
54

55 input_ids = []
56 attention_masks = []
57 token_type_ids = []
58 for row in input_data:
59 seq_0 = row['seq_0'].decode('utf-8')
60 seq_1 = row['seq_1'].decode('utf-8')
61 logger.debug(f'Received text: "{seq_0}", "{seq_1}"')
62

63 inputs = self.tokenizer.encode_plus(
64 seq_0,
65 seq_1,
66 max_length=self.max_length,
67 padding='max_length',
68 truncation=True,
69 return_tensors='pt'
70)
71

72 input_ids.append(inputs['input_ids'])
73 attention_masks.append(inputs['attention_mask'])
74 token_type_ids.append(inputs['token_type_ids'])
75

76 batch = (torch.cat(input_ids, 0),
77 torch.cat(attention_masks, 0),
78 torch.cat(token_type_ids, 0))
79

80 return batch
81

82 def inference(self, inputs):
83 """
84 Predict the class of a text using a trained transformer model.
85 """
86

87 # sanity check dimensions

(continues on next page)

172 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

88 assert(len(inputs) == 3)
89 num_inferences = len(inputs[0])
90 assert(num_inferences <= self.batch_size)
91

92 # insert padding if we received a partial batch
93 padding = self.batch_size - num_inferences
94 if padding > 0:
95 pad = torch.nn.ConstantPad1d((0, 0, 0, padding), value=0)
96 inputs = [pad(x) for x in inputs]
97

98 outputs = self.model(*inputs)[0]
99 predictions = []

100 for i in range(num_inferences):
101 prediction = self.classes[outputs[i].argmax().item()]
102 predictions.append([prediction])
103 logger.debug("Model predicted: '%s'", prediction)
104 return predictions
105

106 def postprocess(self, inference_output):
107 return inference_output

Next, we need to associate the handler script with the compiled model using torch-model-archiver. Run the
following commands in your terminal:

mkdir model_store
MAX_LENGTH=$(jq '.max_length' config.json)
BATCH_SIZE=$(jq '.batch_size' config.json)
MODEL_NAME=bert-max_length$MAX_LENGTH-batch_size$BATCH_SIZE
torch-model-archiver --model-name "$MODEL_NAME" --version 1.0 --serialized-file ./bert_
→˓neuron_b6.pt --handler "./handler_bert.py" --extra-files "./config.json" --export-path␣
→˓model_store

Note: If you modify your model or a dependency, you will need to rerun the archiver command with the -f flag
appended to update the archive.

The result of the above will be a mar file inside the model_store directory.

$ ls model_store

bert-max_length128-batch_size6.mar

This file is essentially an archive associated with a fixed version of your model along with its dependencies (e.g. the
handler code).

Note: The version specified in the torch-model-archiver command can be appended to REST API requests to
access a specific version of your model. For example, if your model was hosted locally on port 8080 and named
“bert”, the latest version of your model would be available at http://localhost:8080/predictions/bert, while
version 1.0 would be accessible at http://localhost:8080/predictions/bert/1.0. We will see how to perform
inference using this API in Step 6.

7.3. Inference with torch-neuron (Inf1) 173

AWS Neuron

Create a custom config file to set some parameters. This file will be used to configure the server at launch when we run
torchserve --start.

Listing 8: torchserve.config

bind inference API to all network interfaces with SSL enabled
inference_address=http://0.0.0.0:8080
default_workers_per_model=1

Note: This will cause TorchServe to bind on all interfaces. For security in real-world applications, you’ll probably
want to use port 8443 and enable SSL.

Run TorchServe

It’s time to start the server. Typically we’d want to launch this in a separate console, but for this demo we’ll just redirect
output to a file.

torchserve --start --ncs --model-store model_store --ts-config torchserve.config 2>&1 >
→˓torchserve.log

Verify that the server seems to have started okay.

curl http://127.0.0.1:8080/ping

{
"status": "Healthy"

}

Note: If you get an error when trying to ping the server, you may have tried before the server was fully launched.
Check torchserve.log for details.

Use the Management API to instruct TorchServe to load our model.

$ MAX_BATCH_DELAY=5000 # ms timeout before a partial batch is processed
$ INITIAL_WORKERS=4 # number of models that will be loaded at launch
$ curl -X POST "http://localhost:8081/models?url=$MODEL_NAME.mar&batch_size=$BATCH_SIZE&
→˓initial_workers=$INITIAL_WORKERS&max_batch_delay=$MAX_BATCH_DELAY"

{
"status": "Model \"bert-max_length128-batch_size6\" Version: 1.0 registered with 4␣

→˓initial workers"
}

Note: Any additional attempts to configure the model after the initial curl request will cause the server to return a 409
error. You’ll need to stop/start/configure the server to realize any changes.

The MAX_BATCH_DELAY is a timeout value that determines how long to wait before processing a partial batch. This is
why the handler code needs to check the batch dimension and potentially add padding. TorchServe will instantiate the

174 Chapter 7. PyTorch Neuron

https://pytorch.org/serve/configuration.html
https://pytorch.org/serve/configuration.html#enable-ssl

AWS Neuron

number of model handlers indicated by INITIAL_WORKERS, so this value controls how many models we will load onto
Inferentia in parallel. This tutorial was performed on an inf1.xlarge instance (one Inferentia chip), so there are four
NeuronCores available. If you want to control worker scaling more dynamically, see the docs.

Warning: If you attempt to load more models than NeuronCores available, one of two things will occur. Either
the extra models will fit in device memory but performance will suffer, or you will encounter an error on your initial
inference. You shouldn’t set INITIAL_WORKERS above the number of NeuronCores. However, you may want to
use fewer cores if you are using the NeuronCore Pipeline feature.

It looks like everything is running successfully at this point, so it’s time for an inference.

Create the infer_bert.py file below on your instance.

Listing 9: infer_bert.py

1 import json
2 import concurrent.futures
3 import requests
4

5 with open('config.json') as fp:
6 config = json.load(fp)
7 max_length = config['max_length']
8 batch_size = config['batch_size']
9 name = f'bert-max_length{max_length}-batch_size{batch_size}'

10

11 # dispatch requests in parallel
12 url = f'http://localhost:8080/predictions/{name}'
13 paraphrase = {'seq_0': "HuggingFace's headquarters are situated in Manhattan",
14 'seq_1': "The company HuggingFace is based in New York City"}
15 not_paraphrase = {'seq_0': paraphrase['seq_0'], 'seq_1': 'This is total nonsense.'}
16

17 with concurrent.futures.ThreadPoolExecutor(max_workers=batch_size) as executor:
18 def worker_thread(worker_index):
19 # we'll send half the requests as not_paraphrase examples for sanity
20 data = paraphrase if worker_index < batch_size//2 else not_paraphrase
21 response = requests.post(url, data=data)
22 print(worker_index, response.json())
23

24 for worker_index in range(batch_size):
25 executor.submit(worker_thread, worker_index)

This script will send a batch_size number of requests to our model. In this example, we are using a model that
estimates the probability that one sentence is a paraphrase of another. The script sends positive examples in the first
half of the batch and negative examples in the second half.

Execute the script in your terminal.

$ python infer_bert.py

1 ['paraphrase']
3 ['not paraphrase']
4 ['not paraphrase']
0 ['paraphrase']

(continues on next page)

7.3. Inference with torch-neuron (Inf1) 175

https://pytorch.org/serve/management_api.html#scale-workers

AWS Neuron

(continued from previous page)

5 ['not paraphrase']
2 ['paraphrase']

We can see that the first three threads (0, 1, 2) all report paraphrase, as expected. If we instead modify the script to
send an incomplete batch and then wait for the timeout to expire, the excess padding results will be discarded.

Benchmark TorchServe

We’ve seen how to perform a single batched inference, but how many inferences can we process per second? A separate
upcoming tutorial will document performance tuning to maximize throughput. In the meantime, we can still perform
a simple naïve stress test. The code below will spawn 64 worker threads, with each thread repeatedly sending a full
batch of data to process. A separate thread will periodically print throughput and latency measurements.

Listing 10: benchmark_bert.py

1 import os
2 import argparse
3 import time
4 import numpy as np
5 import requests
6 import sys
7 from concurrent import futures
8

9 import torch
10

11

12 parser = argparse.ArgumentParser()
13 parser.add_argument('--url', help='Torchserve model URL', type=str, default=f'http://127.

→˓0.0.1:8080/predictions/bert-max_length128-batch_size6')
14 parser.add_argument('--num_thread', type=int, default=64, help='Number of threads␣

→˓invoking the model URL')
15 parser.add_argument('--batch_size', type=int, default=6)
16 parser.add_argument('--sequence_length', type=int, default=128)
17 parser.add_argument('--latency_window_size', type=int, default=1000)
18 parser.add_argument('--throughput_time', type=int, default=300)
19 parser.add_argument('--throughput_interval', type=int, default=10)
20 args = parser.parse_args()
21

22 data = { 'seq_0': 'A completely made up sentence.',
23 'seq_1': 'Well, I suppose they are all made up.' }
24 live = True
25 num_infer = 0
26 latency_list = []
27

28

29 def one_thread(pred, feed_data):
30 global latency_list
31 global num_infer
32 global live
33 session = requests.Session()
34 while True:

(continues on next page)

176 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

35 start = time.time()
36 result = session.post(pred, data=feed_data)
37 latency = time.time() - start
38 latency_list.append(latency)
39 num_infer += 1
40 if not live:
41 break
42

43

44 def current_performance():
45 last_num_infer = num_infer
46 for _ in range(args.throughput_time // args.throughput_interval):
47 current_num_infer = num_infer
48 throughput = (current_num_infer - last_num_infer) / args.throughput_interval
49 p50 = 0.0
50 p90 = 0.0
51 if latency_list:
52 p50 = np.percentile(latency_list[-args.latency_window_size:], 50)
53 p90 = np.percentile(latency_list[-args.latency_window_size:], 90)
54 print('pid {}: current throughput {}, latency p50={:.3f} p90={:.3f}'.format(os.

→˓getpid(), throughput, p50, p90))
55 sys.stdout.flush()
56 last_num_infer = current_num_infer
57 time.sleep(args.throughput_interval)
58 global live
59 live = False
60

61

62 with futures.ThreadPoolExecutor(max_workers=args.num_thread+1) as executor:
63 executor.submit(current_performance)
64 for _ in range(args.num_thread):
65 executor.submit(one_thread, args.url, data)

Run the benchmarking script.

python benchmark_bert.py

pid 28523: current throughput 0.0, latency p50=0.000 p90=0.000
pid 28523: current throughput 617.7, latency p50=0.092 p90=0.156
pid 28523: current throughput 697.3, latency p50=0.082 p90=0.154
pid 28523: current throughput 702.8, latency p50=0.081 p90=0.149
pid 28523: current throughput 699.1, latency p50=0.085 p90=0.147
pid 28523: current throughput 703.8, latency p50=0.083 p90=0.148
pid 28523: current throughput 699.3, latency p50=0.083 p90=0.148
...

Congratulations! By now you should have successfully served a batched model over TorchServe.

You can now shutdown torchserve.

torchserve --stop

This document is relevant for: Inf1

7.3. Inference with torch-neuron (Inf1) 177

AWS Neuron

Transformers MarianMT Tutorial

In this tutorial, you will deploy the HuggingFace MarianMT model for text translation.

This Jupyter notebook should be run on an inf1.6xlarge instance since you will be loading and compiling several large
models.

Verify that this Jupyter notebook is running the Python kernel environment that was set up according to the PyTorch
Installation Guide. You can select the kernel from the “Kernel -> Change Kernel” option on the top of this Jupyter
notebook page.

To generate text, you will be using the beam search algorithm to incrementally generate token candidates until the
full output text has been created. Unlike simple single-pass models, this algorithm divides the work into two distinct
phases:

• Encoder: Convert the input text into an encoded representation. (Executed once)

• Decoder: Use the encoded representation of the input text and the current output tokens to incrementally generate
the set of next best candidate tokens. (Executed many times)

In this tutorial you will perform the following steps:

• Compile: Compile both the Encoder and Decoder for Neuron using simplified interfaces for inference.

• Infer: Run on CPU and Neuron and compare results.

Finally, a completely unrolled decoder will be built which simplifies the implementation at the cost of performing
fixed-length inferences.

Install Dependencies:

This tutorial has the following dependencies:

• transformers==4.25.1

• torch-neuron

• sentencepiece

• neuron-cc[tensorflow]

The following will install the required transformers version. Note that encoder/decoder API changes across different
minor versions requires that you are specific about the version used. Also note that the torch-neuron version is pinned
due to transformer compatibility issues.

[]: !pip install sentencepiece transformers==4.26.1

Parameters

The parameters of a generative model can be tuned for different use-cases. In this example, you’ll tailor the parameters
to a single inference beam search for an on-demand inference use-case. See the MarianConfig for parameter details.

Rather than varying the encoder/decoder token sizes at runtime, you must define these parameters prior to compilation.
The encoder/decoder token sizes are important tunable parameters as a large token sequence will offer greater sentence
length flexibility but perform worse than a small token sequence.

To maximize performance on Neuron, the num_beams, max_encode_length and max_decoder_length should be
made as small as possible for the use-case.

For this tutorial you will use a model that translates sentences of up to 32 token from English to German.

178 Chapter 7. PyTorch Neuron

https://huggingface.co/transformers/v4.0.1/model_doc/marian.html
../../../frameworks/torch/torch-neuron/setup/pytorch-install.html
../../../frameworks/torch/torch-neuron/setup/pytorch-install.html
https://huggingface.co/transformers/v4.0.1/model_doc/marian.html#marianconfig

AWS Neuron

[]: %env TOKENIZERS_PARALLELISM=True #Supresses tokenizer warnings making errors easier to␣
→˓detect
model_name = "Helsinki-NLP/opus-mt-en-de" # English -> German model
num_texts = 1 # Number of input texts to decode
num_beams = 4 # Number of beams per input text
max_encoder_length = 32 # Maximum input token length
max_decoder_length = 32 # Maximum output token length

CPU Model Inference

Start by executing the model on CPU to test its execution.

The following defines the inference function which will be used to compare the Neuron and CPU output. In this example
you will display all beam search sequences that were generated. For a real on-demand use case, set the num_beams to
1 to return only the top result.

[]: def infer(model, tokenizer, text):

Truncate and pad the max length to ensure that the token size is compatible with␣
→˓fixed-sized encoder (Not necessary for pure CPU execution)

batch = tokenizer(text, max_length=max_decoder_length, truncation=True, padding='max_
→˓length', return_tensors="pt")

output = model.generate(**batch, max_length=max_decoder_length, num_beams=num_beams,␣
→˓num_return_sequences=num_beams)

results = [tokenizer.decode(t, skip_special_tokens=True) for t in output]

print('Texts:')
for i, summary in enumerate(results):

print(i + 1, summary)

Note that after loading the model, we also set the maximum length. This will later be used to limit the size of the
compiled model.

[]: from transformers import MarianMTModel, MarianTokenizer

model_cpu = MarianMTModel.from_pretrained(model_name)
model_cpu.config.max_length = max_decoder_length
model_cpu.eval()

tokenizer = MarianTokenizer.from_pretrained(model_name)

sample_text = "I am a small frog."

[]: infer(model_cpu, tokenizer, sample_text)

7.3. Inference with torch-neuron (Inf1) 179

AWS Neuron

Padded Model

In order to perform inference on Neuron, the model must be changed in a way that it supports tracing and fixed-
sized inputs. One way in which this is possible is to use a pad the model inputs to the maximum possible tensor
sizes. The benefit of using a padded model is that it supports variable length text generation up to a specified length
max_decoder_length. A consequence of padding is that it can negatively impact performance due to large data
transfers.

PaddedEncoder & PaddedDecoder Modules

Here you will define wrappers around the encoder and decoder portions of the generation model that are compatible
with torch.jit.trace as well as fixed-sized inputs.

The following are important features which are distinct from the default configuration:

1. Disabled return_dict. When this is enabled, the network uses dataclass type outputs which are not com-
patible with torch.jit.trace.

2. Disabled use_cache. When this option is enabled, the network expects a collection of cache tensors which grow
upon each iteration. Since Neuron requires fixed sized inputs, this must be disabled.

3. The GenerationMixin:beam_search implementation uses only the logits for the current iteration index from
the original decoder layer output. Since inputs must be padded, performance can be improved by selecting
only a subset of the hidden state prior to the final linear layer. For efficiency on Neuron, this reduction uses an
elementwise-multiply to mask out the unused hidden values and then sums along an axis.

4. Since a reduction step is insterted between the decoder output and the final logit calculation, the original model
attribute is not used. Instead the PaddedDecoder class combines the decoder, reducer, and linear layers into a
combined forward pass. In the original model there is a clear distinction between the decoder layer and the final
linear layer. These layers are fused together to get one large fully optimized graph.

[]: import torch
from torch.nn import functional as F

class PaddedEncoder(torch.nn.Module):

def __init__(self, model):
super().__init__()
self.encoder = model.model.encoder
self.main_input_name = 'input_ids'

def forward(self, input_ids, attention_mask):
return self.encoder(input_ids, attention_mask=attention_mask, return_dict=False)

class PaddedDecoder(torch.nn.Module):

def __init__(self, model):
super().__init__()
self.weight = model.model.shared.weight.clone().detach()
self.bias = model.final_logits_bias.clone().detach()
self.decoder = model.model.decoder

(continues on next page)

180 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

def forward(self, input_ids, attention_mask, encoder_outputs, index):

Invoke the decoder
hidden, = self.decoder(

input_ids=input_ids,
encoder_hidden_states=encoder_outputs,
encoder_attention_mask=attention_mask,
return_dict=False,
use_cache=False,

)

_, n_length, _ = hidden.shape

Create selection mask
mask = torch.arange(n_length, dtype=torch.float32) == index
mask = mask.view(1, -1, 1)

Broadcast mask
masked = torch.multiply(hidden, mask)

Reduce along 1st dimension
hidden = torch.sum(masked, 1, keepdims=True)

Compute final linear layer for token probabilities
logits = F.linear(

hidden,
self.weight,
bias=self.bias

)
return logits

PaddedGenerator - GenerationMixin Class

On text generation tasks, HuggingFace Transformers defines a GenerationMixin base class which provides standard
methods and algorithms to generate text. For this tutorial, you will be using the beam search algorithm on en-
coder/decoder architectures.

To be able to use these methods, you will be defining your own class derived from the GenerationMixin class to
run a beam search. This will invoke the encoder and decoder layers in a way that is compatible with fixed sized
inputs and traced modules. This means you must import the base class and the output objects (Seq2SeqLMOutput,
BaseModelOutput) used by the beam_search algorithm.

The GenerationMixin:generate method will use GenerationMixin:beam_search which requires that you to
define your own class implementation that invokes the PaddedEncoder and PaddedDecoder modules using padded
inputs. The standard generator model implementation will not work by default because it is intended to infer with
variable-sized (growing) input tensors.

The from_model method is defined to create the PaddedGenerator from an existing pretrained generator class.

To invoke the Encoder and Decoder traced modules in a way that is compatible with the GenerationMixin:
beam_search implementation, the get_encoder, __call__, and prepare_inputs_for_generation methods are
overriden.

7.3. Inference with torch-neuron (Inf1) 181

https://huggingface.co/transformers/v4.0.1/main_classes/model.html?highlight=generate#transformers.generation_utils.GenerationMixin
https://huggingface.co/transformers/v4.0.1/main_classes/output.html#transformers.modeling_outputs.Seq2SeqLMOutput
https://huggingface.co/transformers/v4.0.1/main_classes/output.html#transformers.modeling_outputs.BaseModelOutput
https://huggingface.co/transformers/v4.0.1/main_classes/model.html?highlight=generate#transformers.generation_utils.GenerationMixin.beam_search

AWS Neuron

Lastly, the class defines methods for serialization so that the model can be easily saved and loaded.

[]: import os

from transformers import GenerationMixin, AutoConfig
from transformers.modeling_outputs import Seq2SeqLMOutput, BaseModelOutput
from transformers.modeling_utils import PreTrainedModel

class PaddedGenerator(PreTrainedModel, GenerationMixin):

@classmethod
def from_model(cls, model):

generator = cls(model.config)
generator.encoder = PaddedEncoder(model)
generator.decoder = PaddedDecoder(model)
return generator

def prepare_inputs_for_generation(
self,
input_ids,
encoder_outputs=None,
attention_mask=None,
**kwargs,

):
Pad the inputs for Neuron
current_length = input_ids.shape[1]
pad_size = self.config.max_length - current_length
return dict(

input_ids=F.pad(input_ids, (0, pad_size)),
attention_mask=attention_mask,
encoder_outputs=encoder_outputs.last_hidden_state,
current_length=torch.tensor(current_length - 1),

)

def get_encoder(self):
def encode(input_ids, attention_mask, **kwargs):

output, = self.encoder(input_ids, attention_mask)
return BaseModelOutput(

last_hidden_state=output,
)

return encode

def forward(self, input_ids, attention_mask, encoder_outputs, current_length,␣
→˓**kwargs):

logits = self.decoder(input_ids, attention_mask, encoder_outputs, current_length)
return Seq2SeqLMOutput(logits=logits)

@property
def device(self): # Attribute required by beam search

return torch.device('cpu')

def save_pretrained(self, directory):
(continues on next page)

182 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

if os.path.isfile(directory):
print(f"Provided path ({directory}) should be a directory, not a file")
return

os.makedirs(directory, exist_ok=True)
torch.jit.save(self.encoder, os.path.join(directory, 'encoder.pt'))
torch.jit.save(self.decoder, os.path.join(directory, 'decoder.pt'))
self.config.save_pretrained(directory)

@classmethod
def from_pretrained(cls, directory):

config = AutoConfig.from_pretrained(directory)
obj = cls(config)
obj.encoder = torch.jit.load(os.path.join(directory, 'encoder.pt'))
obj.decoder = torch.jit.load(os.path.join(directory, 'decoder.pt'))
setattr(obj.encoder, 'main_input_name', 'input_ids') # Attribute required by␣

→˓beam search
return obj

Padded CPU Inference

To start, it is important to ensure that the transformations we have made to the model were successful. Using the classes
defined above we can test that the padded model execution on CPU is identical to the original output also running on
CPU.

[]: padded_model_cpu = PaddedGenerator.from_model(model_cpu)
infer(padded_model_cpu, tokenizer, sample_text)

Padded Neuron Tracing & Inference

Now that the padded version of model is confirmed to produce the same outputs as the non-padded version, the model
can be compiled for Neuron.

[]: import torch
import torch_neuron

def trace(model, num_texts, num_beams, max_decoder_length, max_encoder_length):
"""
Traces the encoder and decoder modules for use on Neuron.

This function fixes the network to the given sizes. Once the model has been
compiled to a given size, the inputs to these networks must always be of
fixed size.

Args:
model (PaddedGenerator): The padded generator to compile for Neuron
num_texts (int): The number of input texts to translate at once
num_beams (int): The number of beams to compute per text

(continues on next page)

7.3. Inference with torch-neuron (Inf1) 183

AWS Neuron

(continued from previous page)

max_decoder_length (int): The maximum number of tokens to be generated
max_encoder_length (int): The maximum number of input tokens that will be encoded

"""

Trace the encoder
inputs = (

torch.ones((num_texts, max_encoder_length), dtype=torch.long),
torch.ones((num_texts, max_encoder_length), dtype=torch.long),

)
encoder = torch_neuron.trace(model.encoder, inputs)

Trace the decoder (with expanded inputs)
batch_size = num_texts * num_beams
inputs = (

torch.ones((batch_size, max_decoder_length), dtype=torch.long),
torch.ones((batch_size, max_encoder_length), dtype=torch.long),
torch.ones((batch_size, max_encoder_length, model.config.d_model), dtype=torch.

→˓float),
torch.tensor(0),

)
decoder = torch_neuron.trace(model.decoder, inputs)

traced = PaddedGenerator(model.config)
traced.encoder = encoder
traced.decoder = decoder
setattr(encoder, 'main_input_name', 'input_ids') # Attribute required by beam search
return traced

[]: padded_model_neuron = trace(padded_model_cpu, num_texts, num_beams, max_decoder_length,␣
→˓max_encoder_length)

Comparing the Neuron execution to the original CPU implementation, you will see the exact same generated text.

[]: # CPU execution for comparison
infer(padded_model_neuron, tokenizer, sample_text)

Padded Neuron Serialization

Finally, we can test that we can serialize and reload the model so that it can be used later in its precompiled format.

[]: padded_model_neuron.save_pretrained('NeuronPaddedMarianMT')
padded_model_loaded = PaddedGenerator.from_pretrained('NeuronPaddedMarianMT')
infer(padded_model_loaded, tokenizer, sample_text)

184 Chapter 7. PyTorch Neuron

AWS Neuron

Greedy Unrolled Model

An unrolled version of the model can achieve better performance in some cases since all operations will be executed
on the Neuron hardware without returning to CPU. The consequence of this type of model is that since the generation
loop execution never returns to CPU, the entire sequence up to max_decoder_length is performed in a single forward
pass.

The following module performs greedy text generation. Unlike the original beam search text generation, this imple-
mentation always selects the most probable token and does not generate multiple result texts.

GreedyUnrolledGenerator Module

[]: class GreedyUnrolledGenerator(torch.nn.Module):

def __init__(self, model):
super().__init__()
self.config = model.config
self.model = model

def forward(self, input_ids, attention_mask):

Generate the encoder state for the input tokens. This is only done once and␣
→˓the state is reused.

encoder_outputs, = self.model.model.encoder(input_ids, attention_mask=attention_
→˓mask, return_dict=False)

Set the intial state for the decode loop. This will grow per decoder iteration
tokens = torch.full((input_ids.size(0), 2), self.config.decoder_start_token_id)

Iteratively invoke the decoder on incrementally generated `tokens` to generate␣
→˓a `next_token`.

Note that unlike the GeneratorMixin.generate function, there is no early-exit␣
→˓if the stop token

has been reached. This will always run a fixed number of iterations.
for i in range(self.config.max_length):

hidden, = self.model.model.decoder(
input_ids=tokens,
encoder_hidden_states=encoder_outputs,
encoder_attention_mask=attention_mask,
return_dict=False,
use_cache=False,

) # size: [batch, current_length, vocab_size]

logits = F.linear(
hidden[:, -1, :],
self.model.model.shared.weight,
bias=self.model.final_logits_bias

)
next_tokens = torch.argmax(logits, dim=1, keepdims=True)
tokens = torch.cat([tokens, next_tokens], dim=1)

(continues on next page)

7.3. Inference with torch-neuron (Inf1) 185

AWS Neuron

(continued from previous page)

return tokens

Greedy CPU Inference

The inference code must be updated since the generatemethod is no longer used. This is because the entire generative
inference loop occurs within the GreedyUnrolledGenerator.forward method.

[]: def infer_greedy(model, tokenizer, text):
batch = tokenizer(text, max_length=max_decoder_length, truncation=True, padding='max_

→˓length', return_tensors="pt")
inputs = batch['input_ids'], batch['attention_mask']
tokens = greedy_cpu(*inputs)
print('Texts:')
for i, t in enumerate(tokens):

result = tokenizer.decode(t, skip_special_tokens=True)
print(i + 1, result)

Like in previous section of this tutorial, first the greedy model is executed on CPU to validate that the correct results
were produced. In this example, the generated text matches the first result of the original beam search.

[]: model_cpu.config.max_length = 8 # This controls the number of decoder loops. Reduced to␣
→˓improve compilation speed.
greedy_cpu = GreedyUnrolledGenerator(model_cpu)
infer_greedy(greedy_cpu, tokenizer, sample_text)

Greedy Neuron Tracing & Inference

Similarly the tracing is simplified since the now the GreedyUnrolledGenerator.forward can be compiled as a
single unit.

For compilation efficiency, two changes will be made compared to normal compilaition: - torch.jit.freeze is used
because it can sometimes speed up compilation by in the case where a module is re-used multiple times. In this case,
it is more efficient because the self.model.model.decoder is used in a loop. - The torch_neuron.trace option
fallback is set to False. This forces all operations to execute on Neuron. Most of the time this is not recommended
or efficient. In this case, it is more efficient because it means a single subgraph is produced rather than many. Usually
one subgraph would be produced per decoder iteration since aten::embedding is executed in a loop. The aten::
embedding operation is otherwise exected on CPU by default since this is usually more efficient than executing on
Neuron.

You may notice that compilation will take significantly longer with the unrolled model since the model inserts new
operations into the compute graph for every single decoder iteration. This creates a much larger model graph even
though the weights are re-used.

[]: example = (
torch.ones((num_texts, max_encoder_length), dtype=torch.long),
torch.ones((num_texts, max_encoder_length), dtype=torch.long),

)
greedy_cpu.eval()
greedy_trace = torch.jit.trace(greedy_cpu, example)
greedy_frozen = torch.jit.freeze(greedy_trace)
greedy_neuron = torch_neuron.trace(greedy_frozen, example, fallback=False)

186 Chapter 7. PyTorch Neuron

AWS Neuron

[]: infer_greedy(greedy_neuron, tokenizer, sample_text)

Greedy Neuron Serialization

Unlike the previous version of the model that used the GenerationMixin base class. This greedy version of the
model can be serialized using the regular torch.jit.save and torch.jit.load utilities since it is a pure torchscript
module.

[]: torch.jit.save(greedy_neuron, 'greedy_neuron.pt')
loaded_greedy_neuron = torch.jit.load('greedy_neuron.pt')
infer_greedy(loaded_greedy_neuron, tokenizer, sample_text)

Appendix

BART (Mask Filling Task)

These PaddedGenerator class can be applied to the BART model for the task of filling in mask tokens.

[]: from transformers import BartForConditionalGeneration, BartTokenizer
bart_name = "facebook/bart-large"
bart_model = BartForConditionalGeneration.from_pretrained(bart_name)
bart_model.config.max_length = max_decoder_length
bart_tokenizer = BartTokenizer.from_pretrained(bart_name)
bart_text = "UN Chief Says There Is No <mask> in Syria"

[]: # CPU Execution
infer(bart_model, bart_tokenizer, bart_text)

[]: # Neuron Execution
paddded_bart = PaddedGenerator.from_model(bart_model)
bart_neuron = trace(paddded_bart, num_texts, num_beams, max_decoder_length, max_encoder_
→˓length)
infer(bart_neuron, bart_tokenizer, bart_text)

Pegasus (Summarization Task)

These PaddedGenerator class can be applied to the Pegasus model for summarization.

[]: from transformers import PegasusForConditionalGeneration, PegasusTokenizer
pegasus_name = 'google/pegasus-xsum'
pegasus_model = PegasusForConditionalGeneration.from_pretrained(pegasus_name)
pegasus_model.config.max_length = max_decoder_length
pegasus_tokenizer = PegasusTokenizer.from_pretrained(pegasus_name)
pegasus_text = "PG&E stated it scheduled the blackouts in response to forecasts for high␣
→˓winds amid dry conditions. The aim is to reduce the risk of wildfires."

[]: # CPU Execution
infer(pegasus_model, pegasus_tokenizer, pegasus_text)

7.3. Inference with torch-neuron (Inf1) 187

AWS Neuron

[]: # Neuron Execution
paddded_pegasus = PaddedGenerator.from_model(pegasus_model)
pegasus_neuron = trace(paddded_pegasus, num_texts, num_beams, max_decoder_length, max_
→˓encoder_length)
infer(pegasus_neuron, pegasus_tokenizer, pegasus_text)

This document is relevant for: Inf1

This document is relevant for: Inf1

Utilizing Neuron Capabilities Tutorials

• BERT TorchServe tutorial [html]

• NeuronCore Pipeline tutorial [html] [notebook]

Using NeuronCore Pipeline with PyTorch

In this tutorial you compile a pretrained BERT base model from HuggingFace Transformers, using the NeuronCore
Pipeline feature of the AWS Neuron SDK. You benchmark model latency of the pipeline parallel mode and compare
with the usual data parallel (multi-worker) deployment.

This tutorial is intended to run in an inf1.6xlarge, running the latest AWS Deep Learning AMI (DLAMI). The
inf1.6xlarge instance size has AWS Inferentia chips for a total of 16 NeuronCores.

Verify that this Jupyter notebook is running the Python or Conda kernel environment that was set up according to the
PyTorch Installation Guide. You can select the kernel from the “Kernel -> Change Kernel” option on the top of this
Jupyter notebook page.

Note: Do not execute this tutorial using “Run -> Run all cells” option.

Install Dependencies:

This tutorial requires the following pip packages:

• torch-neuron

• neuron-cc[tensorflow]

• transformers

Most of these packages will be installed when configuring your environment using the Neuron PyTorch setup guide.
The additional HuggingFace Transformers dependency must be installed here.

[]: %env TOKENIZERS_PARALLELISM=True #Supresses tokenizer warnings making errors easier to␣
→˓detect
!pip install --upgrade "transformers==4.6.0"

188 Chapter 7. PyTorch Neuron

https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/pipeline_tutorial/neuroncore_pipeline_pytorch.ipynb
../../../../frameworks/torch/torch-neuron/setup/pytorch-install.html

AWS Neuron

Compiling a BERT base model for a single NeuronCore

To run a HuggingFace BERTModel on Inferentia, you only need to add a single extra line of code to the usual Trans-
formers PyTorch implementation, after importing the torch_neuron framework.

Add the argument return_dict=False to the BERT transformers model so it can be traced with TorchScript. Torch-
Script is a way to create serializable and optimizable models from PyTorch code.

Enable padding to a maximum sequence length of 128, to test the model’s performance with a realistic payload size.
You can adapt this sequence length to your application’s requirement.

You can adapt the original example on the BertModel forward pass docstring according to the following cell

[]: import torch
import torch_neuron
from transformers import BertTokenizer, BertModel

from joblib import Parallel, delayed
import numpy as np
from tqdm import tqdm

import os
import time

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased',return_dict=False)

inputs = tokenizer("Hello, my dog is cute",return_tensors="pt",max_length=128,padding=
→˓'max_length',truncation=True)

The one extra line required is the call to torch.neuron.trace() method. This call compiles the model and returns the
forwad method of the torch nn.Model method, which you can use to run inference.

The compiled graph can be saved using the torch.jit.save function and restored using torch.jit.load function
for inference on Inf1 instances. During inference, the previously compiled artifacts will be loaded into the Neuron
Runtime for inference execution.

[]: neuron_model = torch.neuron.trace(model,
example_inputs = (inputs['input_ids'],inputs[

→˓'attention_mask']),
verbose=1)

Running the BERT base model on a single NeuronCore

With the model already available in memory, you can time one execution and check for the latency on the single
inference call. You will load the model into Inferentia with a single inference call. A large “wall time” is expected
when you first run the next cell, running the cell twice will show the actual inference latency:

[]: %%time
The following line tests inference and should be executed on Inf1 instance family.
outputs = neuron_model(*(inputs['input_ids'],inputs['attention_mask']))

7.3. Inference with torch-neuron (Inf1) 189

https://huggingface.co/transformers/model_doc/bert.html#bertmodel
https://pytorch.org/docs/stable/jit.html
https://huggingface.co/transformers/model_doc/bert.html#transformers.BertModel.forward

AWS Neuron

You can also check for the throughput of the single model running on a single NeuronCore.

The sequential inference test (for loop) does not measure all the performance one can achieve in an instance with
multiple NeuronCores. To improve hardwar utilization you can run parallel inference requests over multiple model
workers, which you’ll test in the Data Parallel Bonus Section below.

[]: %%time
for _ in tqdm(range(100)):

outputs = neuron_model(*(inputs['input_ids'],inputs['attention_mask']))

Save the compiled model for later use:

[]: neuron_model.save('bert-base-uncased-neuron.pt')

Compiling a BERT base model for 16 NeuronCores

Our next step is to compile the same model for all 16 NeuronCores available in the inf1.6xlarge and check the perfor-
mance difference when running pipeline parallel inferences..

[]: import torch
import torch_neuron
from transformers import BertTokenizer, BertModel

from joblib import Parallel, delayed
import numpy as np
from tqdm import tqdm

import os
import time

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased',return_dict=False)

inputs = tokenizer("Hello, my dog is cute",return_tensors="pt",max_length=128,padding=
→˓'max_length',truncation=True)

To enable pipeline mode during compilation, you need only to add the compiler flag --neuroncore-pipeline-cores
and set the number of desired cores. The cell below sets up a neuroncore_pipeline_cores string, which you can
set for the available number of NeuronCores on the instance: inf1.6xlarge has 16 NeuronCores in 4 Inferentia chips.

[]: # Number of Cores in the Pipeline Mode
neuroncore_pipeline_cores = 16 # This string should be '4' on an inf1.xlarge

Compiling for neuroncore-pipeline-cores='16'
neuron_pipeline_model = torch.neuron.trace(model,

example_inputs = (inputs['input_ids'],inputs[
→˓'attention_mask']),

verbose=1,
compiler_args = ['--neuroncore-pipeline-cores

→˓', str(neuroncore_pipeline_cores)]
)

190 Chapter 7. PyTorch Neuron

AWS Neuron

Running the BERT base model on 16 NeuronCores

Next, time one execution and check for the latency on the single inference call over 16 cores. You will load the model
into Inferentia with a single inference call. A large “wall time” is expected when you first run the next cell, running the
cell twice will show the actual inference latency:

[]: %%time
The following line tests inference and should be executed on Inf1 instance family.
outputs = neuron_pipeline_model(*(inputs['input_ids'],inputs['attention_mask']))

Check also for the throughput of the single model running over a 16 NeuronCores.

The sequential inference test (for loop) does not measure all the performance one can achieve with Pipeline mode. As
the inference runs in streaming fashion, at least 15 cores are waiting for a new call until the last one processes the first
call. This results in low NeuronCore utilization. To improve hardware utilization you will require parallel inference
requests, which you’ll test in the next section.

[]: for _ in tqdm(range(100)):
outputs = neuron_pipeline_model(*(inputs['input_ids'],inputs['attention_mask']))

Load Testing the Pipeline Parallel Mode

To put the 16 NeuronCores group to test, a client has to run concurrent requests to the model. In this Notebook setup
you achieve it by creating a thread pool with Joblib.Parallel, with all workers on the pool runing one inference
call.

You can define a new method called inference_latency() so that you measure the amount of time each inference
calls take.

[]: def inference_latency(model,*inputs):
"""
infetence_time is a simple method to return the latency of a model inference.

Parameters:
model: torch model onbject loaded using torch.jit.load
inputs: model() args

Returns:
latency in seconds

"""
start = time.time()
_ = model(*inputs)
return time.time() - start

Use tqdm to measure total throughput of your experiment, with a nice side-effect of “cool progress bar!”. The total
throughput is expected to be high, so set your experiment range to a large number, here 30k inferences.

To calculate the latency statistics over the returned 30k list of latencies use numpy.qunatile() method.

[]: t = tqdm(range(30000), position=0, leave=True)
latency = Parallel(n_jobs=12,prefer="threads")(delayed(inference_latency)(neuron_
→˓pipeline_model,*(inputs['input_ids'],inputs['attention_mask'])) for i in t)

p50 = np.quantile(latency[-10000:],0.50) * 1000
(continues on next page)

7.3. Inference with torch-neuron (Inf1) 191

AWS Neuron

(continued from previous page)

p95 = np.quantile(latency[-10000:],0.95) * 1000
p99 = np.quantile(latency[-10000:],0.99) * 1000
avg_throughput = t.total/t.format_dict['elapsed']
print(f'Avg Throughput: :{avg_throughput:.1f}')
print(f'50th Percentile Latency:{p50:.1f} ms')
print(f'95th Percentile Latency:{p95:.1f} ms')
print(f'99th Percentile Latency:{p99:.1f} ms')

Save compile model for later use:

[]: # Save the TorchScript graph
neuron_pipeline_model.save('bert-base-uncased-neuron-pipeline.pt')

Bonus Section - Load Testing Data Parallel Mode

[]: import torch
import torch_neuron
from transformers import BertTokenizer

from joblib import Parallel, delayed
import numpy as np
from tqdm import tqdm

import os
import time

def inference_latency(model,*inputs):
"""
infetence_time is a simple method to return the latency of a model inference.

Parameters:
model: torch model onbject loaded using torch.jit.load
inputs: model() args

Returns:
latency in seconds

"""
start = time.time()
_ = model(*inputs)
return time.time() - start

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

inputs = tokenizer("Hello, my dog is cute",return_tensors="pt",max_length=128,padding=
→˓'max_length',truncation=True)

You use the 'NEURON_RT_NUM_CORES' environment variable to define how many Neuron cores to be used. Set the
environment variable to the number of individual workers you want to test in parallel.

torch_neuron will load one model per NeuronCore group until it runs out of cores. At that point, if the Python
process continues to spawn more model objest using torch.jit.load, torch_neuron will start stacking more than

192 Chapter 7. PyTorch Neuron

AWS Neuron

one model per core, until the Inferentia chip memory is full.

Inferentia is able to run inference over all the loaded models, but only one at a time. The Neuron Runtime takes care
of dynamically switching the model context as requests come in, no extra worker process management required. Use
1 model per NeuronCore to achieve maximum performance.

The following cell creates a list with as many models as NeuronCore Groups and execute one single dummy inference
to load the models into Inferentia.

[]: import warnings
Number of data parallel workers
number_of_workers=16 # This number should be 4 on an inf1.xlarge

Setting up a data parallel group
os.environ['NEURON_RT_NUM_CORES'] = str(number_of_workers)

Loading 'number_of_workers' amount of models in Python memory
model_list = [torch.jit.load('bert-base-uncased-neuron.pt') for _ in range(number_of_
→˓workers)]

Dummy inference to load models to Inferentia
_ = [mod(*(inputs['input_ids'],inputs['attention_mask'])) for mod in model_list]

Adapt the call to joblib.Parallel() iterating over a concatenated version of the model_list, to run ‘round-robin’
calls to each of the model workers.

[]: t = tqdm(model_list*1500,position=0, leave=True)
latency = Parallel(n_jobs=number_of_workers,prefer="threads")(delayed(inference_
→˓latency)(mod,*(inputs['input_ids'],inputs['attention_mask'])) for mod in t)

p50 = np.quantile(latency[-10000:],0.50) * 1000
p95 = np.quantile(latency[-10000:],0.95) * 1000
p99 = np.quantile(latency[-10000:],0.99) * 1000
avg_throughput = t.total/t.format_dict['elapsed']
print(f'Avg Throughput: :{avg_throughput:.1f}')
print(f'50th Percentile Latency:{p50:.1f} ms')
print(f'95th Percentile Latency:{p95:.1f} ms')
print(f'99th Percentile Latency:{p99:.1f} ms')

For this model, despite the larger number of workers, the per-worker latency increases when running a single model
per core, which in turn reduces the total throughput.

This behavior may not repeat if the model memory footprint or the input payload size changes, i.e batch size > 1. We
encourage you to experiment with the data parallel and pipeline parallel modes to optimize your application perfor-
mance.

This document is relevant for: Inf1

7.3. Inference with torch-neuron (Inf1) 193

AWS Neuron

Computer Vision Tutorials

• ResNet-50 tutorial [html] [notebook]

• PyTorch YOLOv4 tutorial [html] [notebook]

Natural Language Processing (NLP) Tutorials

• HuggingFace pretrained BERT tutorial [html] [notebook]

• HuggingFace pretrained BERT tutorial with shared weights [html] [notebook]

• Bring your own HuggingFace pretrained BERT container to Sagemaker Tutorial [html] [notebook]

• LibTorch C++ tutorial [html]

• TorchServe tutorial [html]

• HuggingFace MarianMT tutorial [html] [notebook]

Utilizing Neuron Capabilities Tutorials

• BERT TorchServe tutorial [html]

• NeuronCore Pipeline tutorial [html] [notebook]

Note: To use Jupyter Notebook see:

• setup-jupyter-notebook-steps-troubleshooting

• running-jupyter-notebook-as-script

This document is relevant for: Inf1

This document is relevant for: Inf1

7.3.2 Additional Examples (torch-neuron)

• AWS Neuron Samples GitHub Repository

This document is relevant for: Inf1

This document is relevant for: Inf1

7.3.3 API Reference Guide (torch-neuron)

This document is relevant for: Inf1

194 Chapter 7. PyTorch Neuron

https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/resnet50.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/yolo_v4.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/bert_tutorial/tutorial_pretrained_bert.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/bert_tutorial/tutorial_pretrained_bert_shared_weights.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/byoc_sm_bert_tutorial/sagemaker_container_neuron.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/transformers-marianmt.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/pipeline_tutorial/neuroncore_pipeline_pytorch.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuron/inference

AWS Neuron

PyTorch-Neuron trace python API

The PyTorch-Neuron trace Python API provides a method to generate PyTorch models for execution on Inferentia,
which can be serialized as TorchScript. It is analogous to torch.jit.trace() function in PyTorch.

torch_neuron.trace(model, example_inputs, **kwargs)
The torch_neuron.trace() method sends operations to the Neuron-Compiler (neuron-cc) for compilation
and embeds compiled artifacts in a TorchScript graph.

Compilation can be done on any EC2 machine with sufficient memory and compute resources. c5.4xlarge or
larger is recommended.

Options can be passed to Neuron compiler via the compile function. See Neuron compiler CLI Reference Guide
(neuron-cc) for more information about compiler options.

This function partitions nodes into operations that are supported by Neuron and operations which are not.
Operations which are not supported by Neuron are run on CPU. Graph partitioning can be controlled by the
subgraph_builder_function, minimum_segment_size, and fallback parameters (See below). By de-
fault all supported operations are compiled and run on Neuron.

The compiled graph can be saved using the torch.jit.save() function and restored using torch.jit.
load() function for inference on Inf1 instances. During inference, the previously compiled artifacts will be
loaded into the Neuron Runtime for inference execution.

Required Arguments

Parameters
• model (Module,callable) – The functions that that will be run with example_inputs

arguments. The arguments and return types must compatible with torch.jit.trace().
When a Module is passed to torch_neuron.trace(), only the forward() method is run
and traced.

• example_inputs (tuple) – A tuple of example inputs that will be passed to the model
while tracing. The resulting trace can be run with inputs of different types and shapes as-
suming the traced operations support those types and shapes. This parameter may also be a
single torch.Tensor in which case it is automatically wrapped in a tuple.

Optional Keyword Arguments

Keyword Arguments
• compiler_args (list[str]) – List of strings representing neuron-cc compiler argu-

ments. Note that these arguments apply to all subgraphs generated by allowlist partition-
ing. For example, use compiler_args=['--neuroncore-pipeline-cores', '4'] to
set number of NeuronCores per subgraph to 4. See Neuron compiler CLI Reference Guide
(neuron-cc) for more information about compiler options.

• compiler_timeout (int) – Timeout in seconds for waiting neuron-cc to complete. Ex-
ceeding this timeout will cause a subprocess.TimeoutExpired exception.

• compiler_workdir (str) – Work directory used by neuron-cc. Useful for debugging
and/or inspecting neuron-cc logs/IRs.

• subgraph_builder_function (callable) – A function which is evaluated on each node
during graph partitioning. This takes in a torch graph operator node and returns a bool value
of whether it should be included in the fused Neuron graph or not. By default the partitioner
selects all operators which are supported by Neuron.

• minimum_segment_size (int) – A parameter used during partitioning. This specifies the
minimum number of graph nodes which should be compiled into a Neuron graph (default=
2). If the number of nodes is smaller than this size, the operations will run on CPU.

7.3. Inference with torch-neuron (Inf1) 195

https://pytorch.org/docs/master/generated/torch.jit.trace.html#torch.jit.trace
https://pytorch.org/docs/master/generated/torch.jit.save.html#torch.jit.save
https://pytorch.org/docs/master/generated/torch.jit.load.html#torch.jit.load
https://pytorch.org/docs/master/generated/torch.jit.load.html#torch.jit.load
https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/docs/master/generated/torch.jit.trace.html#torch.jit.trace
https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module
https://docs.python.org/3/library/stdtypes.html#tuple
https://pytorch.org/docs/master/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

AWS Neuron

• single_fusion_ratio_threshold (float) – A parameter used during partitioning. Dur-
ing partitioning, if a single partition contains a fraction of operations greater than this thresh-
old, only one graph partition will be compiled (default= 0.6). This is used to avoid compiling
many small Neuron graphs. To force compilation of all graphs to Neuron (even when they
are very small), a value of 1.0 can be used.

• fallback (bool) – A function parameter to turn off graph partitioning. Indicates whether
to attempt to fall back to CPU operations if an operation is not supported by Neuron. By
default this is True. If this is set to False and an operation is not supported by Neuron, this
will fail compilation and raise an AttributeError.

• dynamic_batch_size (bool) – A flag to allow Neuron graphs to consume variable sized
batches of data. Dynamic sizing is restricted to the 0th dimension of a tensor.

• optimizations (list) – A list of Optimization passes to apply to the model.

• separate_weights (bool) – A flag to enable compilation of models with over 1.9GB of
constant parameters. By default this flag is False. If this is set to True and the compiler
version is not new enough to support the flag, this will raise an NotImplementedError.

• **kwargs – All other keyword arguments will be forwarded directly to torch.jit.
trace(). This supports flags like strict=False in order to allow dictionary outputs.

Returns
The traced ScriptModulewith embedded compiled neuron sub-graphs. Operations in this mod-
ule will run on Neuron unless they are not supported by Neuron or manually partitioned to run
on CPU.

Note that in torch<1.8 This would return a ScriptFunction if the input was function type.

Return type ScriptModule, ScriptFunction

class torch_neuron.Optimization

A set of optimization passes that can be applied to the model.

FLOAT32_TO_FLOAT16

A post-processing pass that converts all torch.float32 tensors to torch.float16 tensors. The advan-
tage to this optimization pass is that input/output tensors will be type cast. This reduces the amount of data
that will be copied to and from Inferentia hardware. The resulting traced model will accept both torch.
float32 and torch.float16 inputs where the model used torch.float32 inputs during tracing. It is
only beneficial to enable this optimization if the throughput of a model is highly dependent upon data trans-
fer speed. This optimization is not recommended if the final application will use torch.float32 inputs
since the torch.float16 type cast will occur on CPU during inference.

Example Usage

Function Compilation

import torch
import torch_neuron

def foo(x, y):
return 2 * x + y

Run `foo` with the provided inputs and record the tensor operations
traced_foo = torch.neuron.trace(foo, (torch.rand(3), torch.rand(3)))

(continues on next page)

196 Chapter 7. PyTorch Neuron

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/master/generated/torch.jit.trace.html#torch.jit.trace
https://pytorch.org/docs/master/generated/torch.jit.trace.html#torch.jit.trace
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.ScriptFunction.html#torch.jit.ScriptFunction
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.ScriptFunction.html#torch.jit.ScriptFunction

AWS Neuron

(continued from previous page)

`traced_foo` can now be run with the TorchScript interpreter or saved
and loaded in a Python-free environment
torch.jit.save(traced_foo, 'foo.pt')
traced_foo = torch.jit.load('foo.pt')

Module Compilation

import torch
import torch_neuron
import torch.nn as nn

class Net(nn.Module):
def __init__(self):

super(Net, self).__init__()
self.conv = nn.Conv2d(1, 1, 3)

def forward(self, x):
return self.conv(x) + 1

n = Net()
n.eval()

inputs = torch.rand(1, 1, 3, 3)

Trace a specific method and construct `ScriptModule` with
a single `forward` method
neuron_forward = torch.neuron.trace(n.forward, inputs)

Trace a module (implicitly traces `forward`) and constructs a
`ScriptModule` with a single `forward` method
neuron_net = torch.neuron.trace(n, inputs)

Pre-Trained Model Compilation

The following is an example usage of the compilation Python API, with default compilation arguments, using a pre-
trained torch.nn.Module:

import torch
import torch_neuron
from torchvision import models

Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image)

7.3. Inference with torch-neuron (Inf1) 197

https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module

AWS Neuron

Compiling models with torch.jit.trace kwargs

This example uses the strict=False flag to compile a model with dictionary outputs. Similarly, any other keyword
argument of torch.jit.trace() can be passed directly to torch_neuron.trace() so that it is passed to the un-
derlying trace call.

import torch
import torch_neuron
import torch.nn as nn

class Model(nn.Module):
def __init__(self):

super(Model, self).__init__()
self.conv = nn.Conv2d(1, 1, 3)

def forward(self, x):
return {'conv': self.conv(x) + 1}

model = Model()
model.eval()

inputs = torch.rand(1, 1, 3, 3)

use the strict=False kwarg to compile a model with dictionary outputs
the model output format does not change
model_neuron = torch.neuron.trace(model, inputs, strict=False)

Dynamic Batching

This example uses the optional dynamic_batch_size option in order to support variable sized batches at inference
time.

import torch
import torch_neuron
from torchvision import models

Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

Compile with an example input of batch size 1
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image, dynamic_batch_size=True)

Execute with a batch of 7 images
batch = torch.rand([7, 3, 224, 224])
results = model_neuron(batch)

198 Chapter 7. PyTorch Neuron

https://pytorch.org/docs/master/generated/torch.jit.trace.html#torch.jit.trace

AWS Neuron

Manual Partitioning

The following example uses the optional subgraph_builder_function parameter to ensure that only a specific
convolution layer is compiled to Neuron. The remaining operations are executed on CPU.

import torch
import torch_neuron
import torch.nn as nn

class ExampleConvolutionLayer(nn.Module):
def __init__(self):

super().__init__()
self.conv = nn.Conv2d(1, 1, 3)

def forward(self, x):
return self.conv(x) + 1

class Model(nn.Module):
def __init__(self):

super().__init__()
self.layer = ExampleConvolutionLayer()

def forward(self, x):
return self.layer(x) * 100

def subgraph_builder_function(node) -> bool:
"""Select if the node will be included in the Neuron graph"""

Node names are tuples of Module names.
if 'ExampleConvolutionLayer' in node.name:

return True

Ignore all operations not in the example convolution layer
return False

model = Model()
model.eval()

inputs = torch.rand(1, 1, 3, 3)

Log output shows that `aten::_convolution` and `aten::add` are compiled
but `aten::mul` is not. This will seamlessly switch between Neuron/CPU
execution in a single graph.
neuron_model = torch_neuron.trace(

model,
inputs,
subgraph_builder_function=subgraph_builder_function

)

7.3. Inference with torch-neuron (Inf1) 199

AWS Neuron

Separate Weights

This example uses the optional separate_weights option in order to support compilation of models greater than
1.9GB.

import torch
import torch_neuron
from torchvision import models

Load the model
model = models.resnet50(pretrained=True)
model.eval()

Compile with an example input
image = torch.rand([1, 3, 224, 224])
#the models' output format does not change
model_neuron = torch.neuron.trace(model, image, separate_weights=True)

This document is relevant for: Inf1

This document is relevant for: Inf1

torch.neuron.DataParallel API

The torch.neuron.DataParallel() Python API implements data parallelism on ScriptModule models created
by the PyTorch-Neuron trace python API . This function is analogous to DataParallel in PyTorch. The Data Parallel
Inference on Torch Neuron application note provides an overview of how torch.neuron.DataParallel() can be
used to improve the performance of inference workloads on Inferentia.

torch.neuron.DataParallel(model, device_ids=None, dim=0)
Applies data parallelism by replicating the model on available NeuronCores and distributing data across the
different NeuronCores for parallelized inference.

By default, DataParallel will use all available NeuronCores allocated for the current process for parallelism.
DataParallel will apply parallelism on dim=0 if dim is not specified.

DataParallel automatically enables dynamic batching on eligible models if dim=0. Dynamic batching can be
dsiabled using torch.neuron.DataParallel.disable_dynamic_batching(). If dynamic batching is not
enabled, the batch size at compilation-time must be equal to the batch size at inference-time divided by the
number of NeuronCores being used. Specifically, the following must be true when dynamic batching is disabled:
input.shape[dim] / len(device_ids) == compilation_input.shape[dim]. DataParallel will throw
a warning if dynamic batching cannot be enabled.

DataParallel will try load all of a model’s NEFFs onto a single NeuronCore, only if all of the NEFFs can fit on a
single NeuronCore. DataParallel does not currently support models that have been compiled with NeuronCore
Pipeline.

torch.neuron.DataParallel() requires PyTorch >= 1.8.

Required Arguments

Parameters model (ScriptModule) – Model created by the PyTorch-Neuron trace python API to
be parallelized.

Optional Arguments

Parameters

200 Chapter 7. PyTorch Neuron

https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.nn.DataParallel.html#torch.nn.DataParallel
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule

AWS Neuron

• device_ids (list) – List of int or 'nc:#' that specify the NeuronCores to use for paral-
lelization (default: all NeuronCores). Refer to the device_ids note for a description of how
device_ids indexing works.

• dim (int) – Dimension along which the input tensor is scattered across NeuronCores (default
dim=0).

Attributes

Parameters
• num_workers (int) – Number of worker threads used for multithreaded inference (default:
2 * number of NeuronCores).

• split_size (int) – Size of the input chunks (default: max(1, input.shape[dim] //
number of NeuronCores)).

torch.neuron.DataParallel.disable_dynamic_batching()

Disables automatic dynamic batching on the DataParallel module. See Dynamic batching disabled for example
of how DataParallel can be used with dynamic batching disabled. Use as follows:

>>> model_parallel = torch.neuron.DataParallel(model_neuron)
>>> model_parallel.disable_dynamic_batching()

Note: device_ids uses per-process NeuronCore granularity and zero-based indexing. Per-process granularity means
that each Python process “sees” its own view of the world. Specifically, this means that device_ids only “sees” the
NeuronCores that are allocated for the current process. Zero-based indexing means that each Python process will index
its allocated NeuronCores starting at 0, regardless of the “global” index of the NeuronCores. Zero-based indexing
makes it possible to redeploy the exact same code unchanged in different process. This behavior is analogous to the
device_ids argument in the PyTorch DataParallel function.

As an example, assume DataParallel is run on an inf1.6xlarge, which contains four Inferentia chips each of which
contains four NeuronCores:

• If NEURON_RT_VISIBLE_CORES is not set, a single process can access all 16 NeuronCores. Thus specify-
ing device_ids=["nc:0"] will correspond to chip0:core0 and device_ids=["nc:14"] will correspond to
chip3:core2.

• However, if two processes are launched where: process 1 has NEURON_RT_VISIBLE_CORES=0-6 and process
2 has NEURON_RT_VISIBLE_CORES=7-15, device_ids=["nc:14"] cannot be specified in either process. In-
stead, chip3:core2 can only be accessed in process 2. Additionally, chip3:core2 is specified in process 2 with
device_ids=["nc:7"]. Furthermore, in process 1, device_ids=["nc:0"]would correspond to chip0:core0;
in process 2 device_ids=["nc:0"] would correspond to chip1:core3.

Examples

The following sections provide example usages of the torch.neuron.DataParallel() module.

7.3. Inference with torch-neuron (Inf1) 201

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/generated/torch.nn.DataParallel.html#torch.nn.DataParallel

AWS Neuron

Default usage

The default DataParallel use mode will replicate the model on all available NeuronCores in the current process. The
inputs will be split on dim=0.

import torch
import torch_neuron
from torchvision import models

Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image)

Create the DataParallel module
model_parallel = torch.neuron.DataParallel(model_neuron)

Create a batched input
batch_size = 5
image_batched = torch.rand([batch_size, 3, 224, 224])

Run inference with a batched input
output = model_parallel(image_batched)

Specifying NeuronCores

The following example uses the device_ids argument to use the first three NeuronCores for DataParallel inference.

import torch
import torch_neuron
from torchvision import models

Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image)

Create the DataParallel module, run on the first three NeuronCores
Equivalent to model_parallel = torch.neuron.DataParallel(model_neuron, device_ids=[0,␣
→˓1, 2])
model_parallel = torch.neuron.DataParallel(model_neuron, device_ids=['nc:0', 'nc:1', 'nc:
→˓2'])

Create a batched input
batch_size = 5
image_batched = torch.rand([batch_size, 3, 224, 224])

(continues on next page)

202 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

Run inference with a batched input
output = model_parallel(image_batched)

DataParallel with dim != 0

In this example we run DataParallel inference using four NeuronCores and dim = 2. Because dim != 0, dynamic
batching is not enabled. Consequently, the DataParallel inference-time batch size must be four times the compile-time
batch size. DataParallel will generate a warning that dynamic batching is disabled because dim != 0.

import torch
import torch_neuron

Create an example model
class Model(torch.nn.Module):

def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(3, 3, 3)

def forward(self, x):
return self.conv(x) + 1

model = Model()
model.eval()

Compile with an example input
image = torch.rand([1, 3, 8, 8])
model_neuron = torch.neuron.trace(model, image)

Create the DataParallel module using 4 NeuronCores and dim = 2
model_parallel = torch.neuron.DataParallel(model_neuron, device_ids=[0, 1, 2, 3], dim=2)

Create a batched input
Note that image_batched.shape[dim] / len(device_ids) == image.shape[dim]
batch_size = 4 * 8
image_batched = torch.rand([1, 3, batch_size, 8])

Run inference with a batched input
output = model_parallel(image_batched)

Dynamic batching

In the following example, we use the torch.neuron.DataParallel()module to run inference using several different
batch sizes without recompiling the Neuron model.

import torch
import torch_neuron
from torchvision import models

(continues on next page)

7.3. Inference with torch-neuron (Inf1) 203

AWS Neuron

(continued from previous page)

Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image)

Create the DataParallel module
model_parallel = torch.neuron.DataParallel(model_neuron)

Create batched inputs and run inference on the same model
batch_sizes = [2, 3, 4, 5, 6]
for batch_size in batch_sizes:

image_batched = torch.rand([batch_size, 3, 224, 224])

Run inference with a batched input
output = model_parallel(image_batched)

Dynamic batching disabled

In the following example, we use torch.neuron.DataParallel.disable_dynamic_batching() to disable dy-
namic batching. We provide an example of a batch size that will not work when dynamic batching is disabled as well
as an example of a batch size that does work when dynamic batching is disabled.

import torch
import torch_neuron
from torchvision import models

Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image)

Create the DataParallel module and use 4 NeuronCores
model_parallel = torch.neuron.DataParallel(model_neuron, device_ids=[0, 1, 2, 3], dim=0)

Disable dynamic batching
model_parallel.disable_dynamic_batching()

Create a batched input (this won't work)
batch_size = 8
image_batched = torch.rand([batch_size, 3, 224, 224])

This will fail because dynamic batching is disabled and
image_batched.shape[dim] / len(device_ids) != image.shape[dim]
output = model_parallel(image_batched)

(continues on next page)

204 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

Create a batched input (this will work)
batch_size = 4
image_batched = torch.rand([batch_size, 3, 224, 224])

This will work because
image_batched.shape[dim] / len(device_ids) == image.shape[dim]
output = model_parallel(image_batched)

Full tutorial with torch.neuron.DataParallel

For an end-to-end tutorial that uses DataParallel, see the PyTorch Resnet Tutorial.

This document is relevant for: Inf1

This document is relevant for: Inf1

PyTorch Neuron (torch-neuron) Core Placement API [Beta]

Warning: The following functionality is beta and will not be supported in future releases of the Neuron SDK.
This module serves only as a preview for future functionality. In future releases, equivalent functionality may be
moved directly to the torch_neuronmodule and will no longer be available in the torch_neuron.experimental
module.

Functions which enable placement of torch.jit.ScriptModule to specific NeuronCores. Two sets of functions are
provided which can be used interchangeably but have different performance characteristics and advantages:

• The multicore_context()& neuron_cores_context() functions are context managers that allow a model
to be placed on a given NeuronCore at torch.jit.load() time. These functions are the most efficient way of
loading a model since the model is loaded directly to a NeuronCore. The alternative functions described below
require that a model is unloaded from one core and then reloaded to another.

• The set_multicore() & set_neuron_cores() functions allow a model that has already been loaded to a
NeuronCore to be moved to a different NeuronCore. This functionality is less efficient than directly loading a
model to a NeuronCore within a context manager but allows device placement to be fully dynamic at runtime.
This is analogous to the torch.nn.Module.to() function for device placement.

Important: A prerequisite to enable placement functionality is that the loaded torch.jit.ScriptModule has
already been compiled with the torch_neuron.trace()API. Attempting to place a regular torch.nn.Module onto
a NeuronCore prior to compilation will do nothing.

torch_neuron.experimental.multicore_context()

A context which loads all Neuron subgraphs to all visible NeuronCores.

This loads each Neuron subgraph within a torch.jit.ScriptModule to multiple NeuronCores without re-
quiring multiple calls to torch.jit.load(). This allows a single torch.jit.ScriptModule to use multiple
NeuronCores for concurrent threadsafe inferences. Executions use a round-robin strategy to distribute across
NeuronCores.

Any calls to torch.jit.load() will cause any underlying Neuron subgraphs to load to the specified Neuron-
Cores within this context. This context manager only needs to be used during the model load. After loading,
inferences do not need to occur in this context in order to use the correct NeuronCores.

7.3. Inference with torch-neuron (Inf1) 205

https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.load.html#torch.jit.load
https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.to
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.load.html#torch.jit.load
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.load.html#torch.jit.load

AWS Neuron

Note that this context is not threadsafe. Using multiple core placement contexts from multiple threads may not
correctly place models.

Raises RuntimeError – If the Neuron runtime cannot be initialized.

Examples

Multiple Core Replication: Directly load a model to all visible NeuronCores. This allows a single torch.jit.
ScriptModule to use all NeuronCores by running round-robin executions.

>>> with torch_neuron.experimental.multicore_context():
>>> model = torch.jit.load('example_neuron_model.pt')
>>> model(example) # Executes on NeuronCore 0
>>> model(example) # Executes on NeuronCore 1
>>> model(example) # Executes on NeuronCore 2

torch_neuron.experimental.neuron_cores_context(start_nc: int = - 1, nc_count: int = - 1)
A context which sets the NeuronCore start/count for all Neuron subgraphs.

Any calls to torch.jit.load() will cause any underlying Neuron subgraphs to load to the specified Neuron-
Cores within this context. This context manager only needs to be used during the model load. After loading,
inferences do not need to occur in this context in order to use the correct NeuronCores.

Note that this context is not threadsafe. Using multiple core placement contexts from multiple threads may not
correctly place models.

Parameters
• start_nc – The starting NeuronCore index where the Module is placed. The value -1

automatically loads to the optimal NeuronCore (least used). Note that this index is always
relative to NeuronCores visible to this process.

• nc_count – The number of NeuronCores to use. The value -1 will load a model to ex-
actly the number of cores required by that model (1 for most models, >1 when using Neu-
ronCore Pipeline). If nc_count is greater than the number of NeuronCores required by
the model, the model will be replicated across multiple NeuronCores. (replications =
floor(nc_count / cores_per_model))

Raises
• RuntimeError – If the Neuron runtime cannot be initialized.

• ValueError – If the nc_count is an invalid number of NeuronCores.

Examples

Single Load: Directly load a model from disk to the first visible NeuronCore.

>>> with torch_neuron.experimental.neuron_cores_context(start_nc=0, nc_count=1):
>>> model = torch.jit.load('example_neuron_model.pt')
>>> model(example) # Executes on NeuronCore 0
>>> model(example) # Executes on NeuronCore 0
>>> model(example) # Executes on NeuronCore 0

Multiple Core Replication: Directly load a model from disk to 2 NeuronCores. This allows a single torch.jit.
ScriptModule to use multiple NeuronCores by running round-robin executions.

206 Chapter 7. PyTorch Neuron

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/master/generated/torch.jit.load.html#torch.jit.load
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule

AWS Neuron

>>> with torch_neuron.experimental.neuron_cores_context(start_nc=2, nc_count=2):
>>> model = torch.jit.load('example_neuron_model.pt')
>>> model(example) # Executes on NeuronCore 2
>>> model(example) # Executes on NeuronCore 3
>>> model(example) # Executes on NeuronCore 2

Multiple Model Load: Directly load 2 models from disk and pin them to separate NeuronCores. This causes
each torch.jit.ScriptModule to always execute on a specific NeuronCore.

>>> with torch_neuron.experimental.neuron_cores_context(start_nc=2):
>>> model1 = torch.jit.load('example_neuron_model.pt')
>>> with torch_neuron.experimental.neuron_cores_context(start_nc=0):
>>> model2 = torch.jit.load('example_neuron_model.pt')
>>> model1(example) # Executes on NeuronCore 2
>>> model1(example) # Executes on NeuronCore 2
>>> model2(example) # Executes on NeuronCore 0
>>> model2(example) # Executes on NeuronCore 0

torch_neuron.experimental.set_multicore(trace: torch.jit.ScriptModule)
Loads all Neuron subgraphs in a torch Module to all visible NeuronCores.

This loads each Neuron subgraph within a torch.jit.ScriptModule to multiple NeuronCores without re-
quiring multiple calls to torch.jit.load(). This allows a single torch.jit.ScriptModule to use multiple
NeuronCores for concurrent threadsafe inferences. Executions use a round-robin strategy to distribute across
NeuronCores.

This will unload the model from an existing NeuronCore if it is already loaded.

Requires Torch 1.8+

Parameters trace – A torch module which contains one or more Neuron subgraphs.

Raises RuntimeError – If the Neuron runtime cannot be initialized.

Examples

Multiple Core Replication: Move a model across all visible NeuronCores after loading. This allows a single
torch.jit.ScriptModule to use all NeuronCores by running round-robin executions.

>>> model = torch.jit.load('example_neuron_model.pt')
>>> torch_neuron.experimental.set_multicore(model)
>>> model(example) # Executes on NeuronCore 0
>>> model(example) # Executes on NeuronCore 1
>>> model(example) # Executes on NeuronCore 2

torch_neuron.experimental.set_neuron_cores(trace: torch.jit.ScriptModule, start_nc: int = - 1, nc_count:
int = - 1)

Set the NeuronCore start/count for all Neuron subgraphs in a torch Module.

This will unload the model from an existing NeuronCore if it is already loaded.

Requires Torch 1.8+

Parameters
• trace – A torch module which contains one or more Neuron subgraphs.

7.3. Inference with torch-neuron (Inf1) 207

https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.load.html#torch.jit.load
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

AWS Neuron

• start_nc – The starting NeuronCore index where the Module is placed. The value -1
automatically loads to the optimal NeuronCore (least used). Note that this index is always
relative to NeuronCores visible to this process.

• nc_count – The number of NeuronCores to use. The value -1 will load a model to ex-
actly the number of cores required by that model (1 for most models, >1 when using Neu-
ronCore Pipeline). If nc_count is greater than the number of NeuronCores required by
the model, the model will be replicated across multiple NeuronCores. (replications =
floor(nc_count / cores_per_model))

Raises
• RuntimeError – If the Neuron runtime cannot be initialized.

• ValueError – If the nc_count is an invalid number of NeuronCores.

Examples

Single Load: Move a model to the first visible NeuronCore after loading.

>>> model = torch.jit.load('example_neuron_model.pt')
>>> torch_neuron.experimental.set_neuron_cores(model, start_nc=0, nc_count=1)
>>> model(example) # Executes on NeuronCore 0
>>> model(example) # Executes on NeuronCore 0
>>> model(example) # Executes on NeuronCore 0

Multiple Core Replication: Replicate a model to 2 NeuronCores after loading. This allows a single torch.jit.
ScriptModule to use multiple NeuronCores by running round-robin executions.

>>> model = torch.jit.load('example_neuron_model.pt')
>>> torch_neuron.experimental.set_neuron_cores(model, start_nc=2, nc_count=2)
>>> model(example) # Executes on NeuronCore 2
>>> model(example) # Executes on NeuronCore 3
>>> model(example) # Executes on NeuronCore 2

Multiple Model Load: Move and pin 2 models to separate NeuronCores. This causes each torch.jit.
ScriptModule to always execute on a specific NeuronCore.

>>> model1 = torch.jit.load('example_neuron_model.pt')
>>> torch_neuron.experimental.set_neuron_cores(model1, start_nc=2)
>>> model2 = torch.jit.load('example_neuron_model.pt')
>>> torch_neuron.experimental.set_neuron_cores(model2, start_nc=0)
>>> model1(example) # Executes on NeuronCore 2
>>> model1(example) # Executes on NeuronCore 2
>>> model2(example) # Executes on NeuronCore 0
>>> model2(example) # Executes on NeuronCore 0

This document is relevant for: Inf1

• PyTorch Neuron trace Python API

• torch.neuron.DataParallel API

• PyTorch Neuron (torch-neuron) Core Placement API [Beta]

This document is relevant for: Inf1

This document is relevant for: Inf1

208 Chapter 7. PyTorch Neuron

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule

AWS Neuron

7.3.4 Developer Guide (torch-neuron)

This document is relevant for: Inf1

Running inference on variable input shapes with bucketing

Table of contents

• Introduction

• Applications that benefit from bucketing

• Implementing bucketing

– Creating bucketed models

– Running inference with bucketing

• Examples

– Computer vision bucketing

– End-to-end computer vision bucketing example

– Natural language processing bucketing

– End-to-end natural language processing bucketing example

Introduction

With Inferentia, the shape of every input must be fixed at compile time. For applications that require multiple input
sizes, we recommend using padding or bucketing techniques. Padding requires you to compile your model with the
largest expected input size and pad every input to this maximum size. If the performance of your model using padding
is not within your targets, you can consider implementing bucketing.

This guide introduces bucketing, a technique to run inference on inputs with variable shapes on Inferentia. The fol-
lowing sections explain how bucketing can improve the performance of inference workloads on Inferentia. It covers an
overview of how bucketing works and provides examples of using bucketing in computer vision and natural language
processing applications.

Applications that benefit from bucketing

Bucketing refers to compiling your model multiple times with different target input shapes to create “bucketed models.”
Creating bucketed models provides an overview on selecting the input shapes that you use to create bucketed models.
At inference time, each input is padded until its shape matches the next largest bucket shape. The padded input is then
passed into the corresponding bucketed model for inference. By compiling the same model with multiple different
input shapes, the amount of input padding is reduced compared to padding every input to the maximum size in your
dataset. This technique minimizes the compute overhead and improves inference performance compared to padding
every image to the maximum shape in your dataset.

Bucketing works best when multiple different bucketed models are created to efficiently cover the full range of input
shapes. You can fine-tune the model performance by experimenting with different bucket sizes that correspond to the
distribution of input shapes in your dataset.

7.3. Inference with torch-neuron (Inf1) 209

AWS Neuron

Bucketing can only be used if there is an upper bound on the shape of the inputs. If necessary, an upper bound on the
input shape can be enforced using resizing and other forms of preprocessing.

The upper bound on the number of bucketed models that you use is dictated by the total size of the compiled bucketed
models. Each Inferentia chip has 8GB of DRAM, or 2GB of DRAM per NeuronCore. An inf1.xlarge and inf1.2xlarge
have 1 Inferentia chip, an inf1.6xlarge has 4 Inferentia chips, and an inf1.24xlarge has 16 Inferentia chips. Thus,
you should limit the total size of all bucketed models to around 8GB per Inferentia chip or 2GB per NeuronCore.
The following formula provides an approximation for the number of compiled bucketed models you can fit on each
NeuronCore:

number-of-buckets = round(10^9 / number-of-weights-in-model)

We recommend using neuron-top to monitor the memory usage on your inf1 instance as you load multiple bucketed
models.

Implementing bucketing

Implementing bucketing consists of two main parts: creating multiple bucketed models at compile-time and running
inference using the bucketed models on (padded) inputs. The following sections describe how to implement bucketing
to run inference in applications that have variable input shapes.

Creating bucketed models

Before running inference, models should be compiled for different input shapes that are representative of the input
dataset. The input shapes that are used to compile the models determine the bucket shapes that are used during inference.
The bucket shapes should be chosen to minimize the amount of padding on each new input. Additionally, there should
always be a bucket that’s large enough to handle the maximum input shape in the dataset. The limit on the number of
compiled bucketed models that can be used is described in this section.

Running inference with bucketing

At inference time, each input should be padded to match the size of the next largest bucket, such that the height and
width (or sequence length) of the padded input equals the size of the bucket. Then, the padded input should be passed
into the corresponding bucket for inference. If necessary, it’s important to remove and/or crop any aberrant predictions
that occur in the padded region. For example, in object detection applications, bounding box predictions that occur in
the padded regions should be removed to avoid erroneous predictions.

Examples

The following sections provide examples of applying the bucketing technique to run inference in applications that have
variable input shapes.

210 Chapter 7. PyTorch Neuron

AWS Neuron

Computer vision bucketing

As an example of implementing bucketing for computer vision models, consider an application where the height and
width of images in dataset are uniformly distributed between [400, 400] and [800, 800]. Given that every input shape
between [400, 400] and [800, 800] is equally likely, it could make sense to create bucketed models that divide up the
range of input shapes into equally sized chunks. For example, we could create bucketed models for the input shapes
[500, 500], [600, 600], [700, 700], and [800, 800].

As an example of running inference with bucketing, let’s assume that we created bucketed models for the input shapes
[500, 500], [600, 600], [700, 700], and [800, 800]. If we receive an input with shape [640, 640], we would pad the
input to the next largest bucket, [700, 700], and use this bucket for inference. If we receive an input with shape [440,
540], we would need to pad the input to the bucket size, [600, 600], and use this bucket for inference.

As another example of creating bucketed models, consider a computer vision application where the dataset is not
uniformly distributed. As before, let’s assume the input shapes range between [400, 400] to [800, 800]. Now, let’s
assume the data shape distribution is bimodal, such that [540, 540] and [720, 720] are the two most common input
shapes. In this example, it might make sense to create bucketed models for input shapes [540, 540], [720, 720], and
[800, 800] to target the most common shapes while still including the entire range of input shapes.

End-to-end computer vision bucketing example

In this example, we run inference in a computer vision application that has variable shaped images that range in shape
from [400, 400] to [800, 800]. We create bucketed models for the input shapes [500, 500], [600, 600], [700, 700],
and [800, 800] to handle the variable input shapes.

import numpy as np
import torch
from torchvision import models
import torch_neuron

Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

Define the bucket sizes that will be used for compilation and inference
bucket_sizes = [(500, 500), (600, 600), (700, 700), (800, 800)]

Create the bucketed models by compiling a model for each bucket size
buckets = {}
for bucket_size in bucket_sizes:

Create an example input that is the desired bucket size
h, w = bucket_size
image = torch.rand([1, 3, h, w])

Compile with the example input to create the bucketed model
model_neuron = torch.neuron.trace(model, image)

Run a warm up inference to load the model into Inferentia memory
model_neuron(image)

Add the bucketed model based on its bucket size
buckets[bucket_size] = model_neuron

(continues on next page)

7.3. Inference with torch-neuron (Inf1) 211

AWS Neuron

(continued from previous page)

def get_bucket_and_pad_image(image):
Determine which bucket size to use
oh, ow = image.shape[-2:]
target_bucket = None
for bucket_size in bucket_sizes:

Choose a bucket that's larger in both the height and width dimensions
if oh <= bucket_size[0] and ow <= bucket_size[1]:

target_bucket = bucket_size
break

Pad the image to match the size of the bucket
h_delta = target_bucket[0] - oh
w_delta = target_bucket[1] - ow

b_pad = h_delta # Bottom padding
l_pad = 0 # Left padding
t_pad = 0 # Top padding
r_pad = w_delta # Right padding

Pad the height and width of the image
padding_amounts = (l_pad, r_pad, t_pad, b_pad)
image_padded = torch.nn.functional.pad(image, padding_amounts, value=0)

return image_padded, target_bucket

Run inference on inputs with different shapes
for _ in range(10):

Create an image with a random height and width in range [400, 400] to [800, 800]
h = int(np.random.uniform(low=400, high=800))
w = int(np.random.uniform(low=400, high=800))
image = torch.rand(1, 3, h, w)

Determine bucket and pad the image
image_padded, target_bucket = get_bucket_and_pad_image(image)

Use the corresponding bucket to run inference
output = buckets[target_bucket](image_padded)

Natural language processing bucketing

As an example of implementing bucketing for natural language processing models, consider an application where the
lengths of tokenized sequences in a dataset are uniformly distributed between 0 and 128 tokens. Given that every
tokenized sequence length between 0 and 128 is equally likely, it might make sense to create bucketed models that
divide up the range of tokenized sequence lengths into equally sized chunks. For example, we could create bucketed
models for tokenized sequence lengths 64 and 128.

As an example of running inference with bucketing, let’s assume that we created bucketed models for the input tokenized
sequence lengths 64 and 128. If we receive a tokenized sequence with length 55, we would need to pad it to the bucket
size 64 and use this bucket for inference. If we receive a tokenized sequence with length 112, we would need to pad it
to the bucket size 128 and use this bucket for inference.

212 Chapter 7. PyTorch Neuron

AWS Neuron

End-to-end natural language processing bucketing example

In this example, we run inference in a natural language processing application that has variable length tokenized se-
quences that range from 0 to 128. We create bucketed models for lengths 64 and 128 to handle the variable input
lengths.

import numpy as np
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch_neuron

Build tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased-finetuned-mrpc")
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased-finetuned-
→˓mrpc", return_dict=False)
model.eval()

Define the bucket sizes that will be used for compilation and inference
bucket_sizes = [64, 128]

Create the bucketed models by compiling a model for each bucket size
buckets = {}
for bucket_size in bucket_sizes:

Setup some example inputs
sequence_0 = "The company HuggingFace is based in New York City"
sequence_1 = "HuggingFace's headquarters are situated in Manhattan"

Create an example input that is the desired bucket size
paraphrase = tokenizer.encode_plus(sequence_0,

sequence_1,
max_length=bucket_size,
padding='max_length',
truncation=True,
return_tensors="pt")

Convert example inputs to a format that is compatible with TorchScript tracing
example_inputs_paraphrase = paraphrase['input_ids'], paraphrase['attention_mask'],␣

→˓paraphrase['token_type_ids']

Compile with the example input to create the bucketed model
model_neuron = torch.neuron.trace(model, example_inputs_paraphrase)

Run a warm up inference to load the model into Inferentia memory
model_neuron(*example_inputs_paraphrase)

Add the bucketed model based on its bucket size
buckets[bucket_size] = model_neuron

def get_bucket_and_pad_paraphrase(paraphrase):
Determine which bucket size to use
inputs = paraphrase['input_ids']
attention = paraphrase['attention_mask']

(continues on next page)

7.3. Inference with torch-neuron (Inf1) 213

AWS Neuron

(continued from previous page)

token_type = paraphrase['token_type_ids']
paraphrase_len = inputs.shape[1]
target_bucket = None
for bucket_size in bucket_sizes:

if paraphrase_len <= bucket_size:
target_bucket = bucket_size
break

Pad the paraphrase to match the size of the bucket
delta = target_bucket - paraphrase_len
zeros = torch.zeros([1, delta], dtype=torch.long)
inputs = torch.cat([inputs, zeros], dim=1)
attention = torch.cat([attention, zeros], dim=1)
token_type = torch.cat([token_type, zeros], dim=1)

paraphrase_padded = inputs, attention, token_type
return paraphrase_padded, target_bucket

Create two sample sequences
sequence_0 = ("The only other bear similar in size to the polar bear is the "

"Kodiak bear, which is a subspecies of the brown bear. Adult male "
"polar bears weigh 350–700 kg and measure 2.4–3 meters in total "
"length. All bears are short-tailed, the polar bear's tail is "
"relatively the shortest amongst living bears.")

sequence_1 = ("Around the Beaufort Sea, however, mature males reportedly "
"average 450 kg. Adult females are roughly half the size of males "
"and normally weigh 150–250 kg, measuring 1.8–2.4 meters in length. "
"The legs are stocky and the ears and tail are small.")

Run inference on inputs with different shapes
We create the variable shapes by randomly cropping the sequences
for _ in range(10):

Get random sequence lengths between 0 and 128
paraphrase_len = int(np.random.uniform(128))

Crop the paraphrase
paraphrase_cropped = tokenizer.encode_plus(sequence_0,

sequence_1,
max_length=paraphrase_len,
padding='max_length',
truncation=True,
return_tensors="pt")

Determine bucket and pad the paraphrase
paraphrase_padded, target_bucket = get_bucket_and_pad_paraphrase(paraphrase_cropped)

Use the corresponding bucket to run inference
output = buckets[target_bucket](*paraphrase_padded)

This document is relevant for: Inf1

This document is relevant for: Inf1

214 Chapter 7. PyTorch Neuron

AWS Neuron

Data Parallel Inference on Torch Neuron

Table of Contents

• Introduction

• Data parallel inference

• torch.neuron.DataParallel

– NeuronCore selection

– Batch dim

– Dynamic batching

– Performance optimizations

• Examples

– Default usage

– Specifying NeuronCores

– DataParallel with dim != 0

– Dynamic batching

– Dynamic batching disabled

– Full tutorial with torch.neuron.DataParallel

Introduction

This guide introduces torch.neuron.DataParallel(), a Python API that implements data parallelism on
ScriptModule models created by the /neuron-guide/neuron-frameworks/pytorch-neuron/api-compilation-python-
api.rst. The following sections explain how data parallelism can improve the performance of inference workloads
on Inferentia, including how torch.neuron.DataParallel() uses dynamic batching to run inference on variable
input sizes. It covers an overview of the torch.neuron.DataParallel() module and provides a few example data
parallel applications.

Data parallel inference

Data Parallelism is a form of parallelization across multiple devices or cores, referred to as nodes. Each node contains
the same model and parameters, but data is distributed across the different nodes. By distributing the data across
multiple nodes, data parallelism reduces the total execution time of large batch size inputs compared to sequential
execution. Data parallelism works best for smaller models in latency sensitive applications that have large batch size
requirements.

7.3. Inference with torch-neuron (Inf1) 215

https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule

AWS Neuron

torch.neuron.DataParallel

To fully leverage the Inferentia hardware, we want to use all available NeuronCores. An inf1.xlarge and inf1.2xlarge
have four NeuronCores, an inf1.6xlarge has 16 NeuronCores, and an inf1.24xlarge has 64 NeuronCores. For maximum
performance on Inferentia hardware, we can use torch.neuron.DataParallel() to utilize all available Neuron-
Cores.

torch.neuron.DataParallel() implements data parallelism at the module level by replicating the Neuron model
on all available NeuronCores and distributing data across the different cores for parallelized inference. This function
is analogous to DataParallel in PyTorch. torch.neuron.DataParallel() requires PyTorch >= 1.8.

The following sections provide an overview of some of the features of torch.neuron.DataParallel() that enable
maximum performance on Inferentia.

NeuronCore selection

By default, DataParallel will try to use all NeuronCores allocated to the current process to fully saturate the Inferentia
hardware for maximum performance. It is more efficient to make the batch dimension divisible by the number of
NeuronCores. This will ensure that NeuronCores are not left idle during parallel inference and the Inferentia hardware
is fully utilized.

In some applications, it is advantageous to use a subset of the available NeuronCores for DataParallel inference. Dat-
aParallel has a device_ids argument that accepts a list of int or 'nc:#' that specify the NeuronCores to use for
parallelization. See Specifying NeuronCores for an example of how to use device_ids argument.

Batch dim

DataParallel accepts a dim argument that denotes the batch dimension used to split the input data for distributed infer-
ence. By default, DataParalell splits the inputs on dim = 0 if the dim argument is not specified. For applications with
a non-zero batch dim, the dim argument can be used to specify the inference-time input batch dimension. DataParallel
with dim ! = 0 provides an example of data parallel inference on inputs with batch dim = 2.

Dynamic batching

Batch size has a direct impact on model performance. The Inferentia chip is optimized to run with small batch sizes.
This means that a Neuron compiled model can outperform a GPU model, even if running single digit batch sizes.

As a general best practice, we recommend optimizing your model’s throughput by compiling the model with a small
batch size and gradually increasing it to find the peak throughput on Inferentia.

Dynamic batching is a feature that allows you to use tensor batch sizes that the Neuron model was not originally
compiled against. This is necessary because the underlying Inferentia hardware will always execute inferences with
the batch size used during compilation. Fixed batch size execution allows tuning the input batch size for optimal
performance. For example, batch size 1 may be best suited for an ultra-low latency on-demand inference application,
while batch size > 1 can be used to maximize throughput for offline inferencing. Dynamic batching is implemented by
slicing large input tensors into chunks that match the batch size used during the torch_neuron.trace() compilation
call.

The torch.neuron.DataParallel() class automatically enables dynamic batching on eligible models. This allows
us to run inference in applications that have inputs with a variable batch size without needing to recompile the model.
See Dynamic batching for an example of how DataParallel can be used to run inference on inputs with a dynamic batch
size without needing to recompile the model.

216 Chapter 7. PyTorch Neuron

https://pytorch.org/docs/master/generated/torch.nn.DataParallel.html#torch.nn.DataParallel
https://docs.python.org/3/library/functions.html#int

AWS Neuron

Dynamic batching using small batch sizes can result in sub-optimal throughput because it involves slicing tensors into
chunks and iteratively sending data to the hardware. Using a larger batch size at compilation time can use the Inferentia
hardware more efficiently in order to maximize throughput. You can test the tradeoff between individual request latency
and total throughput by fine-tuning the input batch size.

Automatic batching in the DataParallel module can be disabled using the disable_dynamic_batching() function
as follows:

>>> model_parallel = torch.neuron.DataParallel(model_neuron)
>>> model_parallel.disable_dynamic_batching()

If dynamic batching is disabled, the compile-time batch size must be equal to the inference-time batch size divided by
the number of NeuronCores. DataParallel with dim != 0 and Dynamic batching disabled provide examples of running
DataParallel inference with dynamic batching disabled.

Performance optimizations

The DataParallel module has a num_workers attribute that can be used to specify the number of worker threads used
for multithreaded inference. By default, num_workers = 2 * number of NeuronCores. This value can be fine
tuned to optimize DataParallel performance.

DataParallel has a split_size attribute that dictates the size of the input chunks that are distributed to each Neuron-
Core. By default, split_size = max(1, input.shape[dim] // number of NeuronCores). This value can
be modified to optimally match the inference input chunk size with the compile-time batch size.

Examples

The following sections provide example usages of the torch.neuron.DataParallel() module.

Default usage

The default DataParallel use mode will replicate the model on all available NeuronCores in the current process. The
inputs will be split on dim=0.

import torch
import torch_neuron
from torchvision import models

Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image)

Create the DataParallel module
model_parallel = torch.neuron.DataParallel(model_neuron)

Create a batched input
batch_size = 5
image_batched = torch.rand([batch_size, 3, 224, 224])

(continues on next page)

7.3. Inference with torch-neuron (Inf1) 217

AWS Neuron

(continued from previous page)

Run inference with a batched input
output = model_parallel(image_batched)

Specifying NeuronCores

The following example uses the device_ids argument to use the first three NeuronCores for DataParallel inference.

import torch
import torch_neuron
from torchvision import models

Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image)

Create the DataParallel module, run on the first three NeuronCores
Equivalent to model_parallel = torch.neuron.DataParallel(model_neuron, device_ids=[0,␣
→˓1, 2])
model_parallel = torch.neuron.DataParallel(model_neuron, device_ids=['nc:0', 'nc:1', 'nc:
→˓2'])

Create a batched input
batch_size = 5
image_batched = torch.rand([batch_size, 3, 224, 224])

Run inference with a batched input
output = model_parallel(image_batched)

DataParallel with dim != 0

In this example we run DataParallel inference using four NeuronCores and dim = 2. Because dim != 0, dynamic
batching is not enabled. Consequently, the DataParallel inference-time batch size must be four times the compile-time
batch size. DataParallel will generate a warning that dynamic batching is disabled because dim != 0.

import torch
import torch_neuron

Create an example model
class Model(torch.nn.Module):

def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(3, 3, 3)

def forward(self, x):
(continues on next page)

218 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

return self.conv(x) + 1

model = Model()
model.eval()

Compile with an example input
image = torch.rand([1, 3, 8, 8])
model_neuron = torch.neuron.trace(model, image)

Create the DataParallel module using 4 NeuronCores and dim = 2
model_parallel = torch.neuron.DataParallel(model_neuron, device_ids=[0, 1, 2, 3], dim=2)

Create a batched input
Note that image_batched.shape[dim] / len(device_ids) == image.shape[dim]
batch_size = 4 * 8
image_batched = torch.rand([1, 3, batch_size, 8])

Run inference with a batched input
output = model_parallel(image_batched)

Dynamic batching

In the following example, we use the torch.neuron.DataParallel()module to run inference using several different
batch sizes without recompiling the Neuron model.

import torch
import torch_neuron
from torchvision import models

Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image)

Create the DataParallel module
model_parallel = torch.neuron.DataParallel(model_neuron)

Create batched inputs and run inference on the same model
batch_sizes = [2, 3, 4, 5, 6]
for batch_size in batch_sizes:

image_batched = torch.rand([batch_size, 3, 224, 224])

Run inference with a batched input
output = model_parallel(image_batched)

7.3. Inference with torch-neuron (Inf1) 219

AWS Neuron

Dynamic batching disabled

In the following example, we use torch.neuron.DataParallel.disable_dynamic_batching() to disable dy-
namic batching. We provide an example of a batch size that will not work when dynamic batching is disabled as well
as an example of a batch size that does work when dynamic batching is disabled.

import torch
import torch_neuron
from torchvision import models

Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image)

Create the DataParallel module and use 4 NeuronCores
model_parallel = torch.neuron.DataParallel(model_neuron, device_ids=[0, 1, 2, 3], dim=0)

Disable dynamic batching
model_parallel.disable_dynamic_batching()

Create a batched input (this won't work)
batch_size = 8
image_batched = torch.rand([batch_size, 3, 224, 224])

This will fail because dynamic batching is disabled and
image_batched.shape[dim] / len(device_ids) != image.shape[dim]
output = model_parallel(image_batched)

Create a batched input (this will work)
batch_size = 4
image_batched = torch.rand([batch_size, 3, 224, 224])

This will work because
image_batched.shape[dim] / len(device_ids) == image.shape[dim]
output = model_parallel(image_batched)

Full tutorial with torch.neuron.DataParallel

For an end-to-end tutorial that uses DataParallel, see the PyTorch Resnet Tutorial.

This document is relevant for: Inf1

This document is relevant for: Inf1

220 Chapter 7. PyTorch Neuron

AWS Neuron

Developer Guide - PyTorch Neuron (torch-neuron) LSTM Support

The torch-neuron package can support LSTM operations and yield high performance on both fixed-length and
variable-length sequences. Most network configurations can be supported, with the exception of those that require
PackedSequence usage outside of LSTM or pad_packed_sequence() operations. Neuron must guarantee that the
shapes can remain fixed throughout the network.

The following sections describe which scenarios can and cannot be supported.

Supported Usage

Fixed-Length Sequences

In normal usage of an LSTM, the inputs and outputs are expected to be a fixed size sequence length. This is the most
basic usage of an LSTM but may not be applicable to applications where the input sequence length may vary.

import torch
import torch_neuron

class Network(torch.nn.Module):

def __init__(self):
super().__init__()
self.lstm = torch.nn.LSTM(input_size=3, hidden_size=7)

def forward(self, inputs):
output, (ht, ct) = self.lstm(inputs)
return output, (ht, ct)

Example Inputs
seq_len, batch_size, input_size = 5, 2, 3
inputs = torch.rand(seq_len, batch_size, input_size)

Trace
torch_neuron.trace(Network(), (inputs,))

Packed Input, Padded Output, Pre-Sorted Inputs

A common usage of an LSTM is when the input sequence sizes vary according to an input sequence lengths (such as
tokens).

For example, the following sentences could result in two different sequence lengths after tokenization:

Input
text = [
'Hello, sailor',
'Example',

]

... Tokenization ...

Result
(continues on next page)

7.3. Inference with torch-neuron (Inf1) 221

https://pytorch.org/docs/master/generated/torch.nn.LSTM.html#torch.nn.LSTM
https://pytorch.org/docs/master/generated/torch.nn.utils.rnn.PackedSequence.html#torch.nn.utils.rnn.PackedSequence
https://pytorch.org/docs/master/generated/torch.nn.LSTM.html#torch.nn.LSTM
https://pytorch.org/docs/master/generated/torch.nn.utils.rnn.pad_packed_sequence.html#torch.nn.utils.rnn.pad_packed_sequence
https://pytorch.org/docs/master/generated/torch.nn.LSTM.html#torch.nn.LSTM
https://pytorch.org/docs/master/generated/torch.nn.LSTM.html#torch.nn.LSTM
https://pytorch.org/docs/master/generated/torch.nn.LSTM.html#torch.nn.LSTM

AWS Neuron

(continued from previous page)

tokens = [
[101, 7592, 1010, 11803, 102],
[101, 2742, 102, 0, 0],

]
lengths = [5, 3]

Because the lengths are different, the final LSTM state will be dependent upon the lengths of each sequence in the batch.
Torch provides a way to deal with these types of sequences by densely packing batches into a PackedSequence. The
most common way this is constructed is by using the pack_padded_sequence() utility function prior to feeding
inputs into the LSTM.

Packing the above sequences would result in the following data and batch size tensors.

data = [101, 101, 7592, 2742, 1010, 102, 11803, 102]
batch_sizes = [2, 2, 2, 1, 1]

In addition to correctly computing final LSTM state, using a packed sequence instead of a padded sequence also improves
model performance on CPU. On Neuron, where computation is fixed to the maximum length ahead of time, this is does
not improve performance.

When an LSTM is processing a PackedSequence, it must do so in a descending sorted length order. To ensure that
sequences are sorted, pack_padded_sequence() provides an enforce_sorted flag. When enforce_sorted is
True, the input is already expected to contain sequences sorted by length in a decreasing order along the batch dimen-
sion. Note that this must be enforced in the application-level code but is only relevant when batch size > 1.

The following network can compile successfully because the input and output to the network are guaranteed to be a
fixed shape. The input shape is expected to be a padded tensor and the output tensor is expected to be padded to the
maximum sequence length using the pad_packed_sequence() function call:

import torch
import torch_neuron

class Network(torch.nn.Module):

def __init__(self):
super().__init__()
self.lstm = torch.nn.LSTM(input_size=3, hidden_size=7)

def forward(self, inputs, lengths):
packed_input = torch.nn.utils.rnn.pack_padded_sequence(

inputs,
lengths=lengths,
enforce_sorted=True,

)
packed_result, (ht, ct) = self.lstm(packed_input)
padded_result, _ = torch.nn.utils.rnn.pad_packed_sequence(packed_result)
return padded_result, ht, ct

Example Inputs
seq_len, batch_size, input_size = 5, 2, 3
inputs = torch.rand(seq_len, batch_size, input_size)
lengths = torch.tensor([seq_len] * batch_size)

Trace
(continues on next page)

222 Chapter 7. PyTorch Neuron

https://pytorch.org/docs/master/generated/torch.nn.LSTM.html#torch.nn.LSTM
https://pytorch.org/docs/master/generated/torch.nn.utils.rnn.PackedSequence.html#torch.nn.utils.rnn.PackedSequence
https://pytorch.org/docs/master/generated/torch.nn.utils.rnn.pack_padded_sequence.html#torch.nn.utils.rnn.pack_padded_sequence
https://pytorch.org/docs/master/generated/torch.nn.LSTM.html#torch.nn.LSTM
https://pytorch.org/docs/master/generated/torch.nn.LSTM.html#torch.nn.LSTM
https://pytorch.org/docs/master/generated/torch.nn.LSTM.html#torch.nn.LSTM
https://pytorch.org/docs/master/generated/torch.nn.utils.rnn.PackedSequence.html#torch.nn.utils.rnn.PackedSequence
https://pytorch.org/docs/master/generated/torch.nn.utils.rnn.pack_padded_sequence.html#torch.nn.utils.rnn.pack_padded_sequence
https://pytorch.org/docs/master/generated/torch.nn.utils.rnn.pad_packed_sequence.html#torch.nn.utils.rnn.pad_packed_sequence

AWS Neuron

(continued from previous page)

torch_neuron.trace(Network(), (inputs, lengths))

Packed Input, Padded Output, Unsorted Inputs

When enforce_sorted is False, the input will be sorted unconditionally. This causes some CPU overhead on
Neuron because unsupported operators will be inserted into the graph such as aten::sort and aten::scatter_.
The aten::lstm operation can still be supported, but it will be less efficient than when enforce_sorted is True.

The following code is able to be traced, but results in the sorting operations running on CPU. This is not problematic
in this case because the aten::sort and aten::scatter_ are executed on CPU at the very beginning of the graph
just prior to Neuron execution.

Like the previous example, the call to pad_packed_sequence() ensures that the output is a fixed-shape based on the
maximum sequence length.

import torch
import torch_neuron

class Network(torch.nn.Module):

def __init__(self):
super().__init__()
self.lstm = torch.nn.LSTM(input_size=3, hidden_size=7)

def forward(self, inputs, lengths):
packed_input = torch.nn.utils.rnn.pack_padded_sequence(

inputs,
lengths=lengths,
enforce_sorted=False,

)
packed_result, (ht, ct) = self.lstm(packed_input)
padded_result, _ = torch.nn.utils.rnn.pad_packed_sequence(packed_result)
return padded_result, ht, ct

Example Inputs
seq_len, batch_size, input_size = 5, 2, 3
inputs = torch.rand(seq_len, batch_size, input_size)
lengths = torch.tensor([seq_len] * batch_size)

Trace
trace = torch_neuron.trace(Network(), (inputs, lengths))

7.3. Inference with torch-neuron (Inf1) 223

https://pytorch.org/docs/master/generated/torch.nn.utils.rnn.pad_packed_sequence.html#torch.nn.utils.rnn.pad_packed_sequence

AWS Neuron

Packed Inputs, Final Hidden & Cell State Only

When only the final LSTM hidden & cell state is used, it does not matter if the inputs are packed or unpacked since these
state tensors will not vary in size.

import torch
import torch_neuron

class Network(torch.nn.Module):

def __init__(self):
super().__init__()
self.lstm = torch.nn.LSTM(input_size=3, hidden_size=7)

def forward(self, inputs, lengths):
packed_input = torch.nn.utils.rnn.pack_padded_sequence(

inputs,
lengths=lengths,
enforce_sorted=True,

)
packed_output, (ht, ct) = self.lstm(packed_input)
return ht, ct

Example Inputs
seq_len, batch_size, input_size = 5, 2, 3
inputs = torch.rand(seq_len, batch_size, input_size)
lengths = torch.tensor([seq_len] * batch_size)

Trace
trace = torch_neuron.trace(Network(), (inputs, lengths))

Note that when the packed_output is unused, it does not need to be passed to the pad_packed_sequence() to
enable the LSTM to be compiled.

Unsupported Usage

Neuron does not support the use of a PackedSequence outside of the LSTM operation and the
pad_packed_sequence() operation. This is because the shape of a PackedSequence can vary depending on
the input data. This is incompatible with the Neuron restriction that all tensor sizes must be known at compilation time.
When a PackedSequence is used only by an LSTM or pad_packed_sequence() operation, Neuron can guarantee
the size of the intermediary tensors by padding on behalf of the application.

This means that If the PackedSequence is either used by a different operation or returned from the network this would
result in all of the LSTM operations to be executed on CPU or the network compilation will fail.

224 Chapter 7. PyTorch Neuron

https://pytorch.org/docs/master/generated/torch.nn.LSTM.html#torch.nn.LSTM
https://pytorch.org/docs/master/generated/torch.nn.utils.rnn.pad_packed_sequence.html#torch.nn.utils.rnn.pad_packed_sequence
https://pytorch.org/docs/master/generated/torch.nn.LSTM.html#torch.nn.LSTM
https://pytorch.org/docs/master/generated/torch.nn.utils.rnn.PackedSequence.html#torch.nn.utils.rnn.PackedSequence
https://pytorch.org/docs/master/generated/torch.nn.LSTM.html#torch.nn.LSTM
https://pytorch.org/docs/master/generated/torch.nn.utils.rnn.pad_packed_sequence.html#torch.nn.utils.rnn.pad_packed_sequence
https://pytorch.org/docs/master/generated/torch.nn.utils.rnn.PackedSequence.html#torch.nn.utils.rnn.PackedSequence
https://pytorch.org/docs/master/generated/torch.nn.utils.rnn.PackedSequence.html#torch.nn.utils.rnn.PackedSequence
https://pytorch.org/docs/master/generated/torch.nn.LSTM.html#torch.nn.LSTM
https://pytorch.org/docs/master/generated/torch.nn.utils.rnn.pad_packed_sequence.html#torch.nn.utils.rnn.pad_packed_sequence
https://pytorch.org/docs/master/generated/torch.nn.utils.rnn.PackedSequence.html#torch.nn.utils.rnn.PackedSequence
https://pytorch.org/docs/master/generated/torch.nn.LSTM.html#torch.nn.LSTM

AWS Neuron

PackedSequence Returned

The following is unsupported because the PackedSequence result of the LSTM is returned by the network:

class Network(torch.nn.Module):

def __init__(self):
super().__init__()
self.lstm = torch.nn.LSTM(input_size=3, hidden_size=7)

def forward(self, inputs, lengths):
packed_input = torch.nn.utils.rnn.pack_padded_sequence(

inputs,
lengths=lengths,
enforce_sorted=False,

)
packed_result, (ht, ct) = self.lstm(packed_input)
return packed_result.data, ht, ct

Behavior: In this case, compilation fails and the following warning is generated:

Operator "aten::lstm" consuming a PackedSequence input can only be supported when its␣
→˓corresponding PackedSequence output is unused or unpacked using "aten::_pad_packed_
→˓input". Found usage by "prim::Return"

Resolution: To avoid this error, the packed_result should be padded prior to being returned from the network by
using pad_packed_sequence()

Invalid PackedSequence Usage

The following is unsupported because the PackedSequence result of the LSTM is used by a non-LSTM operator:

class Network(torch.nn.Module):

def __init__(self):
super().__init__()
self.lstm = torch.nn.LSTM(input_size=3, hidden_size=7)

def forward(self, inputs, lengths):
packed_input = torch.nn.utils.rnn.pack_padded_sequence(

inputs,
lengths=lengths,
enforce_sorted=False,

)
packed_result, (ht, ct) = self.lstm(packed_input)
return torch.max(packed_result.data)

Behavior: In this case, compilation fails and the following warning is generated:

Operator "aten::lstm" consuming a PackedSequence input can only be supported when its␣
→˓corresponding PackedSequence output is unused or unpacked using "aten::_pad_packed_
→˓input". Found usage by "aten::max"

7.3. Inference with torch-neuron (Inf1) 225

https://pytorch.org/docs/master/generated/torch.nn.utils.rnn.PackedSequence.html#torch.nn.utils.rnn.PackedSequence
https://pytorch.org/docs/master/generated/torch.nn.LSTM.html#torch.nn.LSTM
https://pytorch.org/docs/master/generated/torch.nn.utils.rnn.pad_packed_sequence.html#torch.nn.utils.rnn.pad_packed_sequence
https://pytorch.org/docs/master/generated/torch.nn.utils.rnn.PackedSequence.html#torch.nn.utils.rnn.PackedSequence
https://pytorch.org/docs/master/generated/torch.nn.LSTM.html#torch.nn.LSTM

AWS Neuron

Resolution: To avoid this error, the packed_result should be padded prior to being used in the max() from the
network by using pad_packed_sequence().

This document is relevant for: Inf1

This document is relevant for: Inf1

PyTorch Neuron (torch-neuron) Core Placement

This programming guide describes the available techniques and APIs to be able to allocate NeuronCores to a process and
place models onto specific NeuronCores. In order of precedence, the current recommendation is to use the following
placement techniques:

1. For most regular models, default core placement should be used in conjunction with NEURON_RT_NUM_CORES
(Default Core Allocation & Placement)

2. For more specific core placement for NeuronCore Pipelined models, then NEURONCORE_GROUP_SIZES should
be used (NEURONCORE_GROUP_SIZES).

3. Finally, for even more granular control, then the beta explicit placement APIs may be used (Explicit Core Place-
ment [Beta]).

Table of Contents

• PyTorch Neuron (torch-neuron) Core Placement

– NeuronCore Pipeline

– Default Core Allocation & Placement

∗ Example: Default

∗ Example: NEURON_RT_NUM_CORES

∗ Example: NEURON_RT_VISIBLE_CORES

∗ Example: Overlapping Models

∗ Example: Multiple Processes

– NEURONCORE_GROUP_SIZES

∗ Example: Single NeuronCore Group

∗ Example: Multiple NeuronCore Groups

∗ Issue: Overlapping Models with Differing Model Sizes

∗ Issue: Incompatible Model Sizes

∗ Issue: Multiple Model Copies

∗ Issue Summary

– Explicit Core Placement [Beta]

∗ Example: Manual Core Selection

∗ Example: Automatic Multicore

∗ Example: Explicit Replication

The following guide will assume a machine with 8 NeuronCores:

226 Chapter 7. PyTorch Neuron

https://pytorch.org/docs/master/generated/torch.max.html#torch.max
https://pytorch.org/docs/master/generated/torch.nn.utils.rnn.pad_packed_sequence.html#torch.nn.utils.rnn.pad_packed_sequence

AWS Neuron

• NeuronCores will use the notation nc0, nc1, etc.

• NeuronCore Groups will use the notation ncg0, ncg1 etc.

• Models will use the notation m0, m1 etc.

NeuronCores, NeuronCore Groups, and model allocations will be displayed in the following format:

Note that the actual cores that are visible to the process can be adjusted according to the NeuronX Runtime Configura-
tion.

NeuronCore Pipeline

A key concept to understand the intent behind certain core placement strategies is NeuronCore Pipelining (See Neuron-
Core Pipeline). NeuronCore Pipelining allows a model to be automatically split into pieces and executed on different
NeuronCores.

For most models only 1 NeuronCore will be required for execution. A model will only require more than one Neuron-
Core when using NeuronCore Pipeline. When model pipelining is enabled, the model is split between multiple Neu-
ronCores and data is transferred between them. For example, if the compiler flag --neuroncore-pipeline-cores
4 is used, this splits the model into 4 pieces to be executed on 4 separate NeuronCores.

Default Core Allocation & Placement

The most basic requirement of an inference application is to be able to place a single model on a single NeuronCore.
More complex applications may use multiple NeuronCores or even multiple processes each executing different models.
The important thing to note about designing an inference application is that a single NeuronCore will always be allocated
to a single process. Processes do not share NeuronCores. Different configurations can be used to ensure that an
application process has enough NeuronCores allocated to execute its model(s):

• Default: A process will attempt to take ownership of all NeuronCores visible on the instance. This should be
used when an instance is only running a single inference process since no other process will be allowed to take
ownership of any NeuronCores.

• NEURON_RT_NUM_CORES: Specify the number of NeuronCores to allocate to the process. This places no re-
strictions on which NeuronCores will be used, however, the resulting NeuronCores will always be contiguous.
This should be used in multi-process applications where each process should only use a subset of NeuronCores.

• NEURON_RT_VISIBLE_CORES: Specifies exactly which NeuronCores are allocated to the process by index. Sim-
ilar to NEURON_RT_NUM_CORES, this can be used in multi-process applications where each process should only
use a subset of NeuronCores. This provides more fined-grained controls over the exact NeuronCores that are
allocated to a given process.

• NEURONCORE_GROUP_SIZES: Specifies a number of NeuronCore Groups which are allocated to the process.
This is described in more detail in the NEURONCORE_GROUP_SIZES section.

See the NeuronX Runtime Configuration for more environment variable details.

7.3. Inference with torch-neuron (Inf1) 227

AWS Neuron

Example: Default

Python Script:

import torch
import torch_neuron

m0 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc0
m1 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc1

With no environment configuration, the process will take ownership of all NeuronCores. In this example, only two of
the NeuronCores are used by the process and the remaining are allocated but left idle.

Example: NEURON_RT_NUM_CORES

Environment Setup:

export NEURON_RT_NUM_CORES = '2'

Python Script:

import torch
import torch_neuron

m0 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc0
m1 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc1

Since there is no other process on the instance, only the first 2 NeuronCores will be acquired by the process. Models
load in a simple linear order to the least used NeuronCores.

Example: NEURON_RT_VISIBLE_CORES

Environment Setup:

export NEURON_RT_VISIBLE_CORES = '4-5'

Python Script:

import torch
import torch_neuron

m0 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc4
m1 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc5

Unlike NEURON_RT_NUM_CORES, setting the visible NeuronCores allows the process to take control of a specific con-
tiguous set. This allows an application to have a more fine-grained control of where models will be placed.

228 Chapter 7. PyTorch Neuron

AWS Neuron

Example: Overlapping Models

Environment Setup:

export NEURON_RT_VISIBLE_CORES = '0-1'

Python Script:

import torch
import torch_neuron

m0 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc0
m1 = torch.jit.load('model-with-2-neuron-pipeline-cores.pt') # Loads to nc0-nc1
m2 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc1

This shows how models may share NeuronCores but the default model placement will attempt to evenly distribute
NeuronCore usage rather than overlapping all models on a single NeuronCore.

Example: Multiple Processes

Environment Setup:

export NEURON_RT_NUM_CORES = '2'

Python Script:

import torch
import torch_neuron

m0 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc0
m1 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc1

In this example, if the script is run twice, the following allocations will be made:

Note that each process will take ownership of as many NeuronCores as is specified by the NEURON_RT_NUM_CORES
configuration.

NEURONCORE_GROUP_SIZES

Important: The use of explicit core placement should only be used when a specific performance goal is required. By
default torch-neuron places models on the least used NeuronCores. This should be optimal for most applications.

Secondly, NEURONCORE_GROUP_SIZES is being deprecated in a future release and should be avoided in favor of newer
placement methods. Use NEURON_RT_NUM_CORES or NEURON_RT_VISIBLE_CORES with default placement if possible
(See Default Core Allocation & Placement)

In the current release of NeuronSDK, the most well-supported method of placing models onto specific NeuronCores is
to use the NEURONCORE_GROUP_SIZES environment variable. This will define a set of “NeuronCore Groups” for the
application process.

NeuronCore Groups are contiguous sets of NeuronCores that are allocated to a given process. Creating groups allows
an application to ensure that a model has a defined set of NeuronCores that will always be allocated to it.

7.3. Inference with torch-neuron (Inf1) 229

AWS Neuron

Note that NeuronCore Groups can be used to allocate non-pipelined models (those requiring exactly 1 NeuronCore) to
specific NeuronCores but this is not the primary intended use. The intended use of NeuronCore Groups is to ensure
pipelined models (those requiring >1 NeuronCore) have exclusive access to a specific set of contiguous NeuronCores.

In the cases where models are being used without NeuronCore Pipeline, the general recommendation is to use default
placement (See Default Core Allocation & Placement).

The following section demonstrates how NEURONCORE_GROUP_SIZES can be used and the issues that may arise.

Example: Single NeuronCore Group

In the example where one model requires 4 NeuronCores, the correct environment configuration would be:

Environment Setup:

export NEURONCORE_GROUP_SIZES = '4'

Python Script:

import torch
import torch_neuron

m0 = torch.jit.load('model-with-4-neuron-pipeline-cores.pt') # Loads to nc0-nc3

This is the most basic usage of a NeuronCore Group. The environment setup causes the process to take control of 4
NeuronCores and then the script loads a model compiled with a NeuronCore Pipeline size of 4 to the first group.

Example: Multiple NeuronCore Groups

With more complicated configurations, the intended use of NEURONCORE_GROUP_SIZES is to create 1 Group per model
with the correct size to ensure that the models are placed on the intended NeuronCores. Similarly, the environment
would need to be configured to create a NeuronCore Group for each model:

Environment Setup:

export NEURONCORE_GROUP_SIZES = '3,4,1'

Python Script:

import torch
import torch_neuron

m0 = torch.jit.load('model-with-3-neuron-pipeline-cores.pt') # Loads to nc0-nc2
m1 = torch.jit.load('model-with-4-neuron-pipeline-cores.pt') # Loads to nc3-nc6
m2 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc7

230 Chapter 7. PyTorch Neuron

AWS Neuron

Issue: Overlapping Models with Differing Model Sizes

When multiple models are loaded to a single NeuronCore Group, this can cause unintended inefficiencies. A single
model is only intended to span a single NeuronCore Group. Applications with many models of varying sizes can be
restricted by NeuronCore Group configurations since the most optimal model layout may require more fine-grained
controls.

Environment Setup:

export NEURONCORE_GROUP_SIZES = '2,2'

Python Script:

import torch
import torch_neuron

m0 = torch.jit.load('model-with-2-neuron-pipeline-cores.pt') # Loads to nc0-nc1
m1 = torch.jit.load('model-with-2-neuron-pipeline-cores.pt') # Loads to nc2-nc3
m2 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc0
m3 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc2
m4 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc0

Here the NEURONCORE_GROUP_SIZES does not generate an optimal layout because placement strictly follows the layout
of NeuronCore Groups. A potentially more optimal layout would be to place m4 onto nc1. In this case, since a
pipelined model will not be able to have exclusive access to a set of NeuronCores, the default NeuronCore placement
(no NeuronCore Groups specified) would more evenly distribute the models.

Also note here that this is an example of where the order of model loads affects which model is assigned to which
NeuronCore Group. If the order of the load statements is changed, models may be assigned to different NeuronCore
Groups.

Issue: Incompatible Model Sizes

Another problem occurs when attempting to place a model which does not evenly fit into a single group:

Environment Setup:

export NEURONCORE_GROUP_SIZES = '2,2'

Python Script:

import torch
import torch_neuron

m0 = torch.jit.load('model-with-2-neuron-pipeline-cores.pt') # Loads to nc0-nc1
m1 = torch.jit.load('model-with-2-neuron-pipeline-cores.pt') # Loads to nc2-nc3
m2 = torch.jit.load('model-with-3-neuron-pipeline-cores.pt') # Loads to nc0-nc2

The model will be placed across NeuronCore Groups since there is no obvious group to assign the model to accord-
ing to the environment variable configuration. Depending on the individual model and application requirements, the
placement here may not be optimal.

7.3. Inference with torch-neuron (Inf1) 231

AWS Neuron

Issue: Multiple Model Copies

It is common in inference serving applications to use multiple replicas of a single model across different NeuronCores.
This allows the hardware to be fully utilized to maximize throughput. In this scenario, when using NeuronCore Groups,
the only way to replicate a model on multiple NeuronCores is to create a new model object. In the example below, 4
models loads are performed to place a model in each NeuronCore Group.

Environment Setup:

export NEURONCORE_GROUP_SIZES = '2,2,2,2'

Python Script:

import torch
import torch_neuron

models = list()
for _ in range(4):

model = torch.jit.load('model-with-2-neuron-pipeline-cores.pt')
models.append(model)

The largest consequence of this type of model allocation is that the application code is responsible for routing inference
requests to models. There are a variety of ways to implement the inference switching but in all cases routing logic
needs to be implemented in the application code.

Issue Summary

The use of NEURONCORE_GROUP_SIZES has the following problems:

• Variable Sized Models: Models which require crossing NeuronCore Group boundaries may be placed poorly.
This means group configuration limits the size of which models can be loaded.

• Model Load Order: Models are loaded to NeuronCore Groups greedily. This means that the order of model
loads can potentially negatively affect application performance by causing unintentional overlap.

• Implicit Placement: NeuronCore Groups cannot be explicitly chosen in the application code.

• Manual Replication: When loading multiple copies of a model to different NeuronCore Groups, this requires
that multiple model handles are used.

Explicit Core Placement [Beta]

To address the limitations of NEURONCORE_GROUP_SIZES, a new set of APIs has been added which allows specific
NeuronCores to be chosen by the application code. These can be found in the torch_neuron_core_placement_api
documentation.

232 Chapter 7. PyTorch Neuron

AWS Neuron

Example: Manual Core Selection

The most direct usage of the placement APIs is to manually select the start NeuronCore that each model is loaded to.
This will automatically use as many NeuronCores as is necessary for that model (1 for most models, >1 for NeuronCore
Pipelines models).

Environment Setup:

export NEURON_RT_NUM_CORES = '4'

Python Script:

import torch
import torch_neuron

NOTE: Order of loads does NOT matter

with torch_neuron.experimental.neuron_cores_context(2):
m1 = torch.jit.load('model-with-2-neuron-pipeline-cores.pt') # Loads to nc2-nc3

with torch_neuron.experimental.neuron_cores_context(0):
m2 = torch.jit.load('model-with-3-neuron-pipeline-cores.pt') # Loads to nc0-nc2

with torch_neuron.experimental.neuron_cores_context(0):
m0 = torch.jit.load('model-with-2-neuron-pipeline-cores.pt') # Loads to nc0-nc1

with torch_neuron.experimental.neuron_cores_context(3):
m3 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc3

Note that this directly solves the NEURONCORE_GROUP_SIZES issues of:

• Variable Sized Models: Now since models are directly placed on the NeuronCores requested by the application,
there is no disconnect between the model sizes and NeuronCore Group sizes.

• Model Load Order: Since the NeuronCores are explicitly selected, there is no need to be careful about the order
in which models are loaded since they can be placed deterministically regardless of the load order.

• Implicit Placement: Similarly, explicit placement means there is no chance that a model will end up being
allocated to an incorrect NeuronCore Group.

Example: Automatic Multicore

Using explicit core placement it is possible to replicate a model to multiple NeuronCores simultaneously. This means
that a single model object within python can utilize all available NeuronCores (or NeuronCores allocated to the process).

Environment Setup:

export NEURON_RT_NUM_CORES = '8'

Python Script:

import torch
import torch_neuron

(continues on next page)

7.3. Inference with torch-neuron (Inf1) 233

AWS Neuron

(continued from previous page)

with torch_neuron.experimental.multicore_context():
m0 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads replications␣

→˓to nc0-nc7

This addresses the last NEURONCORE_GROUP_SIZES issue of:

• Manual Replication: Since models can be automatically replicated to multiple NeuronCores, this means that
applications no longer need to implement routing logic and perform multiple loads.

This API has a secondary benefit that the exact same loading logic can be used on an inf1.xlarge or an inf1.
6xlarge. In either case, it will use all of the NeuronCores that are visible to the process. This means that no special
logic needs to be coded for different instance types.

Example: Explicit Replication

Replication is also possible with the neuron_cores_context() API. The number of replications is chosen by
replications = floor(nc_count / cores_per_model).

Environment Setup:

export NEURON_RT_NUM_CORES = '8'

Python Script:

import torch
import torch_neuron

with torch_neuron.experimental.neuron_cores_context(start_nc=2, nc_count=4):
m0 = torch.jit.load('model-with-2-neuron-pipeline-cores.pt') # Loads replications␣

→˓to nc2-nc5

This document is relevant for: Inf1

• Running Inference on Variable Input Shapes with Bucketing

• Data Parallel Inference on PyTorch Neuron

• Developer Guide - PyTorch Neuron (torch-neuron) LSTM Support

• PyTorch Neuron (torch-neuron) Core Placement

This document is relevant for: Inf1

This document is relevant for: Inf1

7.3.5 Misc (torch-neuron)

This document is relevant for: Inf1

234 Chapter 7. PyTorch Neuron

AWS Neuron

PyTorch Neuron (torch-neuron) Supported operators

Current operator lists may be generated with these commands inside python:

import torch.neuron
print(*torch.neuron.get_supported_operations(), sep='\n')

PyTorch Neuron release [package version 1.*.*.2.9.1.0, SDK 2.13.0]

Date: 08/28/2023

Added support for new operators:

• aten::clamp_min

• aten::clamp_max

PyTorch Neuron release [2.9.0.0]

Date: 03/28/2023

Added support for new operators:

• aten::tensordot

• aten::adaptive_avg_pool1d

• aten::prelu

• aten::reflection_pad2d

• aten::baddbmm

• aten::repeat

PyTorch Neuron release [2.5.0.0]

Date: 11/23/2022

Added support for new operators:

• aten::threshold

• aten::roll

• aten::instance_norm

• aten::amin

• aten::amax

• aten::new_empty

• aten::new_ones

• aten::tril

• aten::triu

• aten::zero_

• aten::all

7.3. Inference with torch-neuron (Inf1) 235

AWS Neuron

• aten::broadcast_tensors

• aten::broadcast_to

• aten::logical_and

• aten::logical_not

• aten::logical_or

• aten::logical_xor

• aten::_convolution_mode

Added limited support for new operators:

• LSTM Operations. See: Developer Guide - PyTorch Neuron (torch-neuron) LSTM Support

– aten::lstm

– aten::_pack_padded_sequence

– aten::_pad_packed_sequence

• aten::norm: Supported when p argument is one of (1, 2, inf, -inf, 'fro')

PyTorch Neuron release [2.2.0.0]

Date: 03/25/2022

Added support for new operators:

• aten::max_pool2d_with_indices: Fully supported (Was previously supported only when indices were un-
used).

PyTorch Neuron release [2.1.7.0]

Date: 01/20/2022

Added support for new operators:

• aten::bucketize

• aten::any

• aten::remainder

• aten::clip

• aten::repeat_interleave

• aten::tensor_split

• aten::split_with_sizes

• aten::isnan

• aten::embedding_renorm_

• aten::dot

• aten::mv

• aten::hardsigmoid

• aten::hardswish

236 Chapter 7. PyTorch Neuron

AWS Neuron

• aten::trunc

• aten::one_hot: Supported when num_classes is known at trace time. The dynamic version of this oper-
ation when num_classes = -1 is not supported.

• aten::adaptive_max_pool1d

• aten::adaptive_max_pool2d

PyTorch Neuron Release [2.0.536.0]

• The following are operators with limited support on Neuron. Unlike fully supported operators, these operators
are not returned when using torch_neuron.get_supported_operations(). See each operator description
for conditional support:

– aten::max_pool2d_with_indices - Supported when indices outputs are not used by a downstream
operation. This allows the operation to be compiled to Neuron when it is equivalent to an aten::
max_pool2d.

– aten::max_pool3d_with_indices - Supported when indices outputs are not used by a downstream
operation. This allows the operation to be compiled to Neuron when it is equivalent to an aten::
max_pool3d.

– aten::where - Supported when used as a conditional selection (3-argument variant). Unsupported when
used to generate a dynamic list of indices (1-argument variant). See torch.where().

PyTorch Neuron Release [2.0.318.0]

Added support for new operators:

• aten::empty_like

• aten::log

• aten::type_as

• aten::movedim

• aten::einsum

• aten::argmax

• aten::min

• aten::argmin

• aten::abs

• aten::cos

• aten::sin

• aten::linear

• aten::pixel_shuffle

• aten::group_norm

• aten::_weight_norm

7.3. Inference with torch-neuron (Inf1) 237

https://pytorch.org/docs/master/generated/torch.where.html#torch.where

AWS Neuron

PyTorch Neuron Release [1.5.21.0]

No change

PyTorch Neuron Release [1.5.7.0]

Added support for new operators:

• aten::erf

• prim::DictConstruct

PyTorch Neuron Release [1.4.1.0]

No change

PyTorch Neuron Release [1.3.5.0]

Added support for new operators:

• aten::numel

• aten::ones_like

• aten::reciprocal

• aten::topk

PyTorch Neuron Release [1.2.16.0]

No change

PyTorch Neuron Release [1.2.15.0]

No change

PyTorch Neuron Release [1.2.3.0]

Added support for new operators:

• aten::silu

• aten::zeros_like

238 Chapter 7. PyTorch Neuron

AWS Neuron

PyTorch Neuron Release [1.1.7.0]

Added support for new operators:

• aten::_shape_as_tensor

• aten::chunk

• aten::empty

• aten::masked_fill

PyTorch Neuron Release [1.0.24045.0]

Added support for new operators:

• aten::__and__

• aten::bmm

• aten::clone

• aten::expand_as

• aten::fill_

• aten::floor_divide

• aten::full

• aten::hardtanh

• aten::hardtanh_

• aten::le

• aten::leaky_relu

• aten::lt

• aten::mean

• aten::ne

• aten::softplus

• aten::unbind

• aten::upsample_bilinear2d

PyTorch Neuron Release [1.0.1720.00]

Added support for new operators:

• aten::constant_pad_nd

• aten::meshgrid

7.3. Inference with torch-neuron (Inf1) 239

AWS Neuron

PyTorch Neuron Release [1.0.1532.0]

Added support for new operators:

• aten::ones

PyTorch Neuron Release [1.0.1522.0]

No change

PyTorch Neuron Release [1.0.1386.0]

Added support for new operators:

• aten::ceil

• aten::clamp

• aten::eq

• aten::exp

• aten::expand_as

• aten::flip

• aten::full_like

• aten::ge

• aten::gt

• aten::log2

• aten::log_softmax

• aten::max

• aten::neg

• aten::relu

• aten::rsqrt

• aten::scalarImplicit

• aten::sqrt

• aten::squeeze

• aten::stack

• aten::sub

• aten::sum

• aten::true_divide

• aten::upsample_nearest2d

• prim::Constant

• prim::GetAttr

• prim::ImplicitTensorToNum

240 Chapter 7. PyTorch Neuron

AWS Neuron

• prim::ListConstruct

• prim::ListUnpack

• prim::NumToTensor

• prim::TupleConstruct

• prim::TupleUnpack

Please note, primitives are included in this list from this release.

PyTorch Neuron Release [1.0.1168.0]

Added support for new operators:

• aten::ScalarImplicit

PyTorch Neuron Release [1.0.1001.0]

Added support for new operators:

• aten::detach

• aten::floor

• aten::gelu

• aten::pow

• aten::sigmoid

• aten::split

Remove support for operators:

• aten::embedding: Does not meet performance criteria

• aten::erf: Error function does not meet accuracy criteria

• aten::tf_dtype_from_torch: Internal support function, not an operator

PyTorch Neuron Release [1.0.825.0]

No change

PyTorch Neuron Release [1.0.763.0]

Added support for new operators:

• aten::Int

• aten::arange

• aten::contiguous

• aten::div

• aten::embedding

• aten::erf

7.3. Inference with torch-neuron (Inf1) 241

AWS Neuron

• aten::expand

• aten::eye

• aten::index_select

• aten::layer_norm

• aten::matmul

• aten::mm

• aten::permute

• aten::reshape

• aten::rsub

• aten::select

• aten::size

• aten::slice

• aten::softmax

• aten::tf_dtype_from_torch

• aten::to

• aten::transpose

• aten::unsqueeze

• aten::view

• aten::zeros

Remove support for operators:

• aten::tf_broadcastable_slice: Internal support function, not an operator

• aten::tf_padding: Internal support function, not an operator

These operators were already supported previously:

• aten::_convolution

• aten::adaptive_avg_pool2d

• aten::add

• aten::add_

• aten::addmm

• aten::avg_pool2d

• aten::batch_norm

• aten::cat

• aten::dimension_value

• aten::dropout

• aten::flatten

• aten::max_pool2d

• aten::mul

242 Chapter 7. PyTorch Neuron

AWS Neuron

• aten::relu_

• aten::t

• aten::tanh

• aten::values

• prim::Constant

• prim::GetAttr

• prim::ListConstruct

• prim::ListUnpack

• prim::TupleConstruct

• prim::TupleUnpack

PyTorch Neuron Release [1.0.672.0]

No change

PyTorch Neuron Release [1.0.552.0]

Added support for new operators:

• aten::_convolution

• aten::adaptive_avg_pool2d

• aten::add

• aten::add_

• aten::addmm

• aten::avg_pool2d

• aten::batch_norm

• aten::cat

• aten::dimension_value

• aten::dropout

• aten::flatten

• aten::max_pool2d

• aten::mul

• aten::relu_

• aten::t

• aten::tanh

• aten::tf_broadcastable_slice

• aten::tf_padding

• aten::values

7.3. Inference with torch-neuron (Inf1) 243

AWS Neuron

• prim::Constant

• prim::GetAttr

• prim::ListConstruct

• prim::ListUnpack

• prim::TupleConstruct

• prim::TupleUnpack

This document is relevant for: Inf1

This document is relevant for: Inf1

Troubleshooting Guide for PyTorch Neuron (torch-neuron)

General Torch-Neuron issues

If you see an error about “Unknown builtin op: neuron::forward_1” like below, please ensure that import line “import
torch_neuron” (to register the Neuron custom operation) is in the inference script before using torch.jit.load.

Unknown builtin op: neuron::forward_1.
Could not find any similar ops to neuron::forward_1. This op may not exist or may not be␣
→˓currently supported in TorchScript.

TorchVision related issues

If you encounter an error like below, it is because latest torchvision version >= 0.7 is not compatible with Torch-Neuron
1.5.1. Please downgrade torchvision to version 0.6.1:

E AttributeError: module 'torch.jit' has no attribute '_script_if_tracing'

2GB protobuf limit related issues

If you encounter an error like below, it is because the model size is larger than 2GB. To compile such large models,
use the separate_weights=True flag. Note, ensure that you have the latest version of compiler installed to support
this flag. You can upgrade neuron-cc using python3 -m pip install neuron-cc[tensorflow] -U --force
--extra-index-url=https://pip.repos.neuron.amazonaws.com

E google.protobuf.message.DecodeError: Error parsing message with type 'tensorflow.
→˓GraphDef'

244 Chapter 7. PyTorch Neuron

AWS Neuron

torch.jit.trace issues

The /neuron-guide/neuron-frameworks/pytorch-neuron/api-compilation-python-api.rst uses the PyTorch torch.jit.
trace() function to generate ScriptModule models for execution on Inferentia. Due to that, to execute your PyTorch
model on Inferentia it must be torch-jit-traceable, otherwise you need to make sure your model is torch-jit-traceable.
You can try modifying your underlying PyTorch model code to make it traceable. If it’s not possible to change your
model code, you can write a wrapper around your model that makes it torch-jit-traceable to compile it for Inferentia.

Please visit torch.jit.trace() to review the properties that a model must have to be torch-jit-traceable. The
PyTorch-Neuron trace API torch_neuron.trace() accepts **kwargs for torch.jit.trace(). For example, you
can use the strict=False flag to compile models with dictionary outputs.

Compiling models with outputs that are not torch-jit-traceable

To enable compilation of models with non torch-jit-traceable outputs, you can use a technique that involves writing
a wrapper that converts the model’s output into a form that is torch-jit-traceable. You can then compile the wrapped
model for Inferentia using torch_neuron.trace().

The following example uses a wrapper to compile a model with non torch-jit-traceable outputs. This model cannot be
compiled for Inferentia in its current form because it outputs a list of tuples and tensors, which is not torch-jit-traceable.

import torch
import torch_neuron
import torch.nn as nn

class Model(nn.Module):
def __init__(self):

super(Model, self).__init__()
self.conv = nn.Conv2d(1, 1, 3)

def forward(self, x):
a = self.conv(x) + 1
b = self.conv(x) + 2
c = self.conv(x) + 3
An output that is a list of tuples and tensors is not torch-traceable
return [(a, b), c]

model = Model()
model.eval()

inputs = torch.rand(1, 1, 3, 3)

Try to compile the model
model_neuron = torch.neuron.trace(model, inputs) # ERROR: This cannot be traced, we must␣
→˓change the output format

To compile this model for Inferentia, we can write a wrapper around the model to convert its outputs into a tuple of
tensors, which is torch-jit-traceable.

class NeuronCompatibilityWrapper(nn.Module):
def __init__(self):

super(NeuronCompatibilityWrapper, self).__init__()
self.model = Model()

(continues on next page)

7.3. Inference with torch-neuron (Inf1) 245

https://pytorch.org/docs/master/generated/torch.jit.trace.html#torch.jit.trace
https://pytorch.org/docs/master/generated/torch.jit.trace.html#torch.jit.trace
https://pytorch.org/docs/master/generated/torch.jit.ScriptModule.html#torch.jit.ScriptModule
https://pytorch.org/docs/master/generated/torch.jit.trace.html#torch.jit.trace
https://pytorch.org/docs/master/generated/torch.jit.trace.html#torch.jit.trace

AWS Neuron

(continued from previous page)

def forward(self, x):
out = self.model(x)
An output that is a tuple of tuples and tensors is torch-jit-traceable
return tuple(out)

Now, we can successfully compile the model for Inferentia using the NeuronCompatibilityWrapper wrapper as
follows:

model = NeuronCompatibilityWrapper()
model.eval()

Compile the traceable wrapped model
model_neuron = torch.neuron.trace(model, inputs)

If the model’s outputs must be in the original form, a second wrapper can be used to transform the outputs after
compilation for Inferentia. The following example uses the OutputFormatWrapper wrapper to convert the compiled
model’s output back into the original form of a list of tuples and tensors.

class OutputFormatWrapper(nn.Module):
def __init__(self):

super(OutputFormatWrapper, self).__init__()
self.traceable_model = NeuronCompatibilityWrapper()

def forward(self, x):
out = self.traceable_model(x)
Return the output in the original format of Model()
return list(out)

model = OutputFormatWrapper()
model.eval()

Compile the traceable wrapped model
model.traceable_model = torch.neuron.trace(model.traceable_model, inputs)

Compiling a submodule in a model that is not torch-jit-traceable

The following example shows how to compile a submodule that is part of a non torch-jit-traceable model. In this
example, the top-level model Outer uses a dynamic flag, which is not torch-jit-traceable. However, the submodule
Inner is torch-jit-traceable and can be compiled for Inferentia.

import torch
import torch_neuron
import torch.nn as nn

class Inner(nn.Module) :
def __init__(self):

super().__init__()
self.conv = nn.Conv2d(1, 1, 3)

def forward(self, x):
(continues on next page)

246 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

return self.conv(x) + 1

class Outer(nn.Module):
def __init__(self):

super().__init__()
self.inner = Inner()

def forward(self, x, add_offset: bool = False):
base = self.inner(x)
if add_offset:

return base + 1
return base

model = Outer()
inputs = torch.rand(1, 1, 3, 3)

Compile the traceable wrapped submodule
model.inner = torch.neuron.trace(model.inner, inputs)

TorchScript the model for serialization
script = torch.jit.script(model)
torch.jit.save(script, 'model.pt')

loaded = torch.jit.load('model.pt')

Alternatively, for usage scenarios in which the model configuration is static during inference, the dynamic flags can be
hardcoded in a wrapper to make the model torch-jit-traceable and enable compiling the entire model for Inferentia. In
this example, we assume the add_offset flag is always True during inference, so we can hardcode this conditional
path in the Static wrapper to remove the dynmaic behavior and compile the entire model for Inferentia.

class Static(nn.Module):
def __init__(self):

super().__init__()
self.outer = Outer()

def forward(self, x):
hardcode `add_offset=True`
output = self.outer(x, add_offset=True)
return output

model = Static()

We can now compile the entire model because `add_offset=True` is hardcoded in the␣
→˓Static wrapper
model_neuron = torch.neuron.trace(model, inputs)

This document is relevant for: Inf1

This document is relevant for: Inf1

7.3. Inference with torch-neuron (Inf1) 247

AWS Neuron

PyTorch Neuron (torch-neuron) release notes

Table of contents

• Known Issues and Limitations - Updated 03/21/2023

• PyTorch Neuron release [package ver. 1.*.*.2.9.17.0, SDK ver. 2.16.0]

• PyTorch Neuron release [package ver. 1.*.*.2.9.6.0, SDK ver. 2.15.0]

• PyTorch Neuron release [package ver. 1.*.*.2.9.1.0, SDK ver. 2.13.0]

• PyTorch Neuron release [package ver. 1.*.*.2.8.9.0, SDK ver. 2.12.0]

• PyTorch Neuron release [2.7.10.0]

• PyTorch Neuron release [2.7.1.0]

• PyTorch Neuron release [2.6.5.0]

• PyTorch Neuron release [2.5.0.0]

• PyTorch Neuron release [2.3.0.0]

• PyTorch Neuron release [2.2.0.0]

• PyTorch Neuron release [2.1.7.0]

• PyTorch Neuron release [2.0.536.0]

• PyTorch Neuron release [2.0.468.0]

• PyTorch Neuron release [2.0.392.0]

• PyTorch Neuron release [2.0.318.0]

• [1.8.1.1.5.21.0]

• [1.8.1.1.5.7.0]

• [1.8.1.1.4.1.0]

• [1.7.1.1.3.5.0]

• [1.7.1.1.2.16.0]

• [1.7.1.1.2.15.0]

• [1.7.1.1.2.3.0]

• [1.1.7.0]

• [1.0.1978.0]

• [1.0.1721.0]

• [1.0.1532.0]

• [1.0.1522.0]

• [1.0.1386.0]

• [1.0.1168.0]

• [1.0.1001.0]

• [1.0.825.0]

248 Chapter 7. PyTorch Neuron

AWS Neuron

• [1.0.763.0]

• [1.0.672.0]

• [1.0.627.0]

This document lists the release notes for the Pytorch-Neuron package.

Known Issues and Limitations - Updated 03/21/2023

Min & Max Accuracy

The index outputs of the aten::argmin, aten::argmax, aten::min, and aten::max operator implementations
are sensitive to precision. For models that contain these operators and have float32 inputs, we recommend using the
--fp32-cast=matmult --fast-math no-fast-relayout compiler option to avoid numerical imprecision issues.
Additionally, the aten::min and aten::max operator implementations do not currently support int64 inputs when
dim=0. For more information on precision and performance-accuracy tuning, see Mixed precision and performance-
accuracy tuning (neuron-cc).

Python 3.5

If you attempt to import torch.neuron from Python 3.5 you will see this error in 1.1.7.0 - please use Python 3.6 or
greater:

File "/tmp/install_test_env/lib/python3.5/site-packages/torch_neuron/__init__.py", line␣
→˓29

f'Invalid dependency version torch=={torch.__version__}. '
^

SyntaxError: invalid syntax

• Torchvision has dropped support for Python 3.5

• HuggingFace transformers has dropped support for Python 3.5

Torchvision

When versions of torchvision and torch are mismatched, this can result in exceptions when compiling
torchvision based models. Specific versions of torchvision are built against each release of torch. For example:

• torch==1.5.1 matches torchvision==0.6.1

• torch==1.7.1 matches torchvision==0.8.2

• etc.

Simultaneously installing both torch-neuron and torchvision is the recommended method of correctly resolving
versions.

7.3. Inference with torch-neuron (Inf1) 249

AWS Neuron

Dynamic Batching

Dynamic batching does not work properly for some models that use the aten::size operator. When this issue occurs,
the input batch sizes are not properly recorded at inference time, resulting in an error such as:

RuntimeError: The size of tensor a (X) must match the size of tensor b (Y) at non-
→˓singleton dimension 0.

This error typically occurs when aten::size operators are partitioned to CPU. We are investigating a fix for this issue.

PyTorch Neuron release [package ver. 1.*.*.2.9.17.0, SDK ver. 2.16.0]

Date: 12/21/2023

• Minor updates.

PyTorch Neuron release [package ver. 1.*.*.2.9.6.0, SDK ver. 2.15.0]

Date: 10/26/2023

• Minor updates.

PyTorch Neuron release [package ver. 1.*.*.2.9.1.0, SDK ver. 2.13.0]

Date: 8/28/2023

• Added support for clamp_min/clamp_max ATEN operators.

PyTorch Neuron release [package ver. 1.*.*.2.8.9.0, SDK ver. 2.12.0]

Date: 7/19/2023

• Minor updates.

PyTorch Neuron release [2.7.10.0]

Date: 6/14/2023

New in this release

• Added support for Python 3.10

250 Chapter 7. PyTorch Neuron

AWS Neuron

Bug fixes

• torch.pow Operation now correctly handles mismatch between base and exponent data types

PyTorch Neuron release [2.7.1.0]

Date: 05/1/2023

• Minor updates.

PyTorch Neuron release [2.6.5.0]

Date: 03/28/2023

New in this release

• Added support for torch==1.13.1

• New releases of torch-neuron no longer include versions for torch==1.7 and torch==1.8

• Added support for Neuron runtime 2.12

• Added support for new operators:

– aten::tensordot

– aten::adaptive_avg_pool1d

– aten::prelu

– aten::reflection_pad2d

– aten::baddbmm

– aten::repeat

• Added a separate_weights flag to torch_neuron.trace() to support models that are larger than 2GB

Bug fixes

• Fixed aten::_convolution with grouping for:

– torch.nn.Conv1d

– torch.nn.Conv3d

– torch.nn.ConvTranspose2d

• Fixed aten::linear to support 1d input tensors

• Fixed an issue where an input could not be directly returned from the network

7.3. Inference with torch-neuron (Inf1) 251

https://pytorch.org/docs/master/generated/torch.nn.Conv1d.html#torch.nn.Conv1d
https://pytorch.org/docs/master/generated/torch.nn.Conv3d.html#torch.nn.Conv3d
https://pytorch.org/docs/master/generated/torch.nn.ConvTranspose2d.html#torch.nn.ConvTranspose2d

AWS Neuron

PyTorch Neuron release [2.5.0.0]

Date: 11/23/2022

New in this release

• Added PyTorch 1.12 support

• Added Python 3.8 support

• Added new operators support. See PyTorch Neuron (torch-neuron) Supported operators

• Added support for aten::lstm. See: Developer Guide - PyTorch Neuron (torch-neuron) LSTM Support

• Improved logging:

– Improved error messages for specific compilation failure modes, including out-of-memory errors

– Added a warning to show the code location of prim::PythonOp operations

– Removed overly-verbose tracing messages

– Added improved error messages for neuron-cc and tensorflow dependency issues

– Added more debug information when an invalid dynamic batching configuration is used

• Added new beta explicit NeuronCore placement API. See: torch_neuron_core_placement_api

• Added new guide for NeuronCore placement. See: PyTorch Neuron (torch-neuron) Core Placement

• Improved torch_neuron.trace() performance when using large graphs

• Reduced host memory usage of loaded models in libtorchneuron.so

• Added single_fusion_ratio_threshold argument to torch_neuron.trace() to give more fine-grained
control of partitioned graphs

Bug fixes

• Improved handling of tensor mutations which previously caused accuracy issues on certain models (i.e. yolor,
yolov5)

• Fixed an issue where inf and -inf values would cause unexpected NaN values. This could occur with newer
versions of transformers

• Fixed an issue where torch.neuron.DataParallel() would not fully utilize all NeuronCores for specific
batch sizes

• Fixed and improved operators:

– aten::upsample_bilinear2d: Improved error messages in cases where the operation cannot be sup-
ported

– aten::_convolution: Added support for output_padding argument

– aten::div: Added support for rounding_mode argument

– aten::sum: Fixed to handle non-numeric data types

– aten::expand: Fixed to handle scalar tensors

– aten::permute: Fixed to handle negative indices

– aten::min: Fixed to support more input types

252 Chapter 7. PyTorch Neuron

AWS Neuron

– aten::max: Fixed to support more input types

– aten::max_pool2d: Fixed to support both 3-dimensional and 4-dimensional input tensors

– aten::Int: Fixed an issue where long values would incorrectly lose precision

– aten::constant_pad_nd: Fixed to correctly use non-0 padding values

– aten::pow: Fixed to support more input types & values

– aten::avg_pool2d: Added support for count_include_pad argument. Added support for ceil_mode
argument if padding isn’t specified

– aten::zero: Fixed to handle scalars correctly

– prim::Constant: Fixed an issue where -inf was incorrectly handled

– Improved handling of scalars in arithmetic operators

PyTorch Neuron release [2.3.0.0]

Date: 04/29/2022

New in this release

• Added support PyTorch 1.11.

• Updated PyTorch 1.10 to version 1.10.2.

• End of support for torch-neuron 1.5, see eol-pt-15.

• Added support for new operators:

– aten::masked_fill_

– aten::new_zeros

– aten::frobenius_norm

Bug fixes

• Improved aten::gelu accuracy

• Updated aten::meshgrid to support optional indexing argument introduced in torch 1.10 , see PyTorch
issue 50276

PyTorch Neuron release [2.2.0.0]

Date: 03/25/2022

7.3. Inference with torch-neuron (Inf1) 253

https://github.com/pytorch/pytorch/issues/50276
https://github.com/pytorch/pytorch/issues/50276

AWS Neuron

New in this release

• Added full support for aten::max_pool2d_with_indices - (Was previously supported only when indices
were unused).

• Added new torch-neuron packages compiled with -D_GLIBCXX_USE_CXX11_ABI=1, the new packages sup-
port PyTorch 1.8, PyTorch 1.9, and PyTorch 1.10. To install the additional packages compiled with
-D_GLIBCXX_USE_CXX11_ABI=1 please change the package repo index to https://pip.repos.neuron.
amazonaws.com (https://pip.repos.neuron.amazonaws.com/)/cxx11/

PyTorch Neuron release [2.1.7.0]

Date: 01/20/2022

New in this release

• Added PyTorch 1.10 support

• Added new operators support, see PyTorch Neuron (torch-neuron) Supported operators

• Updated aten::_convolution to support 2d group convolution

• Updated neuron::forward operators to allocate less dynamic memory. This can increase performance on
models with many input & output tensors.

• Updated neuron::forward to better handle batch sizes when dynamic_batch_size=True. This can increase
performance at inference time when the input batch size is exactly equal to the traced model batch size.

Bug fixes

• Added the ability to torch.jit.trace a torch.nn.Module where a submodule has already been traced with
torch_neuron.trace() on a CPU-type instance. Previously, if this had been executed on a CPU-type instance,
an initialization exception would have been thrown.

• Fixed aten::matmul behavior on 1-dimensional by n-dimensional multiplies. Previously, this would cause a
validation error.

• Fixed binary operator type promotion. Previously, in unusual situations, operators like aten::mul could produce
incorrect results due to invalid casting.

• Fixed aten::select when index was -1. Previously, this would cause a validation error.

• Fixed aten::adaptive_avg_pool2d padding and striding behavior. Previously, this could generate incorrect
results with specific configurations.

• Fixed an issue where dictionary inputs could be incorrectly traced when the tensor values had gradients.

254 Chapter 7. PyTorch Neuron

AWS Neuron

PyTorch Neuron release [2.0.536.0]

Date: 01/05/2022

New in this release

• Added new operator support for specific variants of operations (See PyTorch Neuron (torch-neuron) Supported
operators)

• Added optional optimizations keyword to torch_neuron.trace() which accepts a list of Optimization
passes.

PyTorch Neuron release [2.0.468.0]

Date: 12/15/2021

New in this release

• Added support for aten::cumsum operation.

• Fixed aten::expand to correctly handle adding new dimensions.

PyTorch Neuron release [2.0.392.0]

Date: 11/05/2021

• Updated Neuron Runtime (which is integrated within this package) to libnrt 2.2.18.0 to fix a container issue
that was preventing the use of containers when /dev/neuron0 was not present. See details here neuron-runtime-
release-notes.

PyTorch Neuron release [2.0.318.0]

Date: 10/27/2021

New in this release

• PyTorch Neuron 1.x now support Neuron Runtime 2.x (libnrt.so shared library) only.

Important:
– You must update to the latest Neuron Driver (aws-neuron-dkms version 2.1 or newer) for proper func-

tionality of the new runtime library.

– Read Introducing Neuron Runtime 2.x (libnrt.so) application note that describes why are we making this
change and how this change will affect the Neuron SDK in detail.

– Read Migrate your application to Neuron Runtime 2.x (libnrt.so) for detailed information of how to migrate
your application.

• Introducing PyTorch 1.9.1 support (support for torch==1.9.1)

7.3. Inference with torch-neuron (Inf1) 255

AWS Neuron

• Added torch_neuron.DataParallel, see ResNet-50 tutorial [html] and Data Parallel Inference on Torch
Neuron application note.

• Added support for tracing on GPUs

• Added support for ConvTranspose1d

• Added support for new operators:

– aten::empty_like

– aten::log

– aten::type_as

– aten::movedim

– aten::einsum

– aten::argmax

– aten::min

– aten::argmin

– aten::abs

– aten::cos

– aten::sin

– aten::linear

– aten::pixel_shuffle

– aten::group_norm

– aten::_weight_norm

• Added torch_neuron.is_available()

Resolved Issues

• Fixed a performance issue when using both the dynamic_batch_size=True trace option and
--neuron-core-pipeline compiler option. Dynamic batching now uses OpenMP to execute pipeline
batches concurrently.

• Fixed torch_neuron.trace issues:

– Fixed a failure when the same submodule was traced with multiple inputs

– Fixed a failure where some operations would fail to be called with the correct arguments

– Fixed a failure where custom operators (torch plugins) would cause a trace failure

• Fixed variants of aten::upsample_bilinear2d when scale_factor=1

• Fixed variants of aten::expand using dim=-1

• Fixed variants of aten::stack using multiple different input data types

• Fixed variants of aten::max using indices outputs

256 Chapter 7. PyTorch Neuron

AWS Neuron

[1.8.1.1.5.21.0]

Date: 08/12/2021

Summary

• Minor updates.

[1.8.1.1.5.7.0]

Date: 07/02/2021

Summary

• Added support for dictionary outputs using strict=False flag. See /neuron-guide/neuron-frameworks/pytorch-
neuron/troubleshooting-guide.rst.

• Updated aten::batch_norm to correctly implement the affine flag.

• Added support for aten::erf and prim::DictConstruct. See PyTorch Neuron (torch-neuron) Supported
operators.

• Added dynamic batch support. See /neuron-guide/neuron-frameworks/pytorch-neuron/api-compilation-python-
api.rst.

[1.8.1.1.4.1.0]

Date: 5/28/2021

Summary

• Added support for PyTorch 1.8.1

– Models compatibility

∗ Models compiled with previous versions of PyTorch Neuron (<1.8.1) are compatible with PyTorch
Neuron 1.8.1.

∗ Models compiled with PyTorch Neuron 1.8.1 are not backward compatible with previous versions of
PyTorch Neuron (<1.8.1) .

– Updated tutorials to use Hugging Face Transformers 4.6.0.

– Added a new set of forward operators (forward_v2)

– Host memory allocation when loading the same model on multiple NeuronCores is significantly reduced

– Fixed an issue where models would not deallocate all memory within a python session after being garbage
collected.

– Fixed a TorchScript/C++ issue where loading the same model multiple times would not use multiple Neu-
ronCores by default.

• Fixed logging to no longer configure the root logger.

7.3. Inference with torch-neuron (Inf1) 257

AWS Neuron

• Removed informative messages that were produced during compilations as warnings. The number of warnings
reduced significantly.

• Convolution operator support has been extended to include ConvTranspose2d variants.

• Reduce the amount of host memory usage during inference.

[1.7.1.1.3.5.0]

Date: 4/30/2021

Summary

• ResNext models now functional with new operator support

• Yolov5 support refer to https://github.com/aws/aws-neuron-sdk/issues/253 note https://github.com/ultralytics/
yolov5/pull/2953 which optimized YoloV5 for AWS Neuron

• Convolution operator support has been extended to include most Conv1d and Conv3d variants

• New operator support. Please see PyTorch Neuron (torch-neuron) Supported operators for the complete list of
operators.

[1.7.1.1.2.16.0]

Date: 3/4/2021

Summary

• Minor enhancements.

[1.7.1.1.2.15.0]

Date: 2/24/2021

Summary

• Fix for CVE-2021-3177.

[1.7.1.1.2.3.0]

Date: 1/30/2021

258 Chapter 7. PyTorch Neuron

https://github.com/aws/aws-neuron-sdk/issues/253
https://github.com/ultralytics/yolov5/pull/2953
https://github.com/ultralytics/yolov5/pull/2953

AWS Neuron

Summary

• Made changes to allow models with -inf scalar constants to correctly compile

• Added new operator support. Please see PyTorch Neuron (torch-neuron) Supported operators for the complete
list of operators.

[1.1.7.0]

Date: 12/23/2020

Summary

• We are dropping support for Python 3.5 in this release

• torch.neuron.trace behavior will now throw a RuntimeError in the case that no operators are compiled for neuron
hardware

• torch.neuron.trace will now display compilation progress indicators (dots) as default behavior (neuron-cc must
updated to the December release to greater to see this feature)

• Added new operator support. Please see PyTorch Neuron (torch-neuron) Supported operators for the complete
list of operators.

• Extended the BERT pretrained tutorial to demonstrate execution on multiple cores and batch modification, up-
dated the tutorial to accomodate changes in the Hugging Face Transformers code for version 4.0

• Added a tutorial for torch-serve which extends the BERT tutorial

• Added support for PyTorch 1.7

[1.0.1978.0]

Date: 11/17/2020

Summary

• Fixed bugs in comparison operators, and added remaining variantes (eq, ne, gt, ge, lt, le)

• Added support for prim::PythonOp - note that this must be run on CPU and not Neuron. We recommend you
replace this code with PyTorch operators if possible

• Support for a series of new operators. Please see PyTorch Neuron (torch-neuron) Supported operators for the
complete list of operators.

• Performance improvements to the runtime library

• Correction of a runtime library bug which caused models with large tensors to generate incorrect results in some
cases

7.3. Inference with torch-neuron (Inf1) 259

AWS Neuron

[1.0.1721.0]

Date: 09/22/2020

Summary

• Various minor improvements to the Pytorch autopartitioner feature

• Support for the operators aten::constant_pad_nd, aten::meshgrid

• Improved performance on various torchvision models. Of note are resnet50 and vgg16

[1.0.1532.0]

Date: 08/08/2020

Summary

• Various minor improvements to the Pytorch autopartitioner feature

• Support for the aten:ones operator

[1.0.1522.0]

Date: 08/05/2020

Summary

Various minor improvements.

[1.0.1386.0]

Date: 07/16/2020

Summary

This release adds auto-partitioning, model analysis and PyTorch 1.5.1 support, along with a number of new operators

260 Chapter 7. PyTorch Neuron

AWS Neuron

Major New Features

• Support for Pytorch 1.5.1

• Introduce an automated operator device placement mechanism in torch.neuron.trace to run sub-graphs that con-
tain operators that are not supported by the neuron compiler in native PyTorch. This new mechanism is on by
default and can be turned off by adding argument fallback=False to the compiler arguments.

• Model analysis to find supported and unsupported operators in a model

Resolved Issues

[1.0.1168.0]

Date 6/11/2020

Summary

Major New Features

Resolved Issues

Known Issues and Limitations

[1.0.1001.0]

Date: 5/11/2020

Summary

Additional PyTorch operator support and improved support for model saving and reloading.

Major New Features

• Added Neuron Compiler support for a number of previously unsupported PyTorch operators. Please see
:ref:`neuron-cc-ops-pytorch`for the complete list of operators.

• Add support for torch.neuron.trace on models which have previously been saved using torch.jit.save and then
reloaded.

7.3. Inference with torch-neuron (Inf1) 261

AWS Neuron

Resolved Issues

Known Issues and Limitations

[1.0.825.0]

Date: 3/26/2020

Summary

Major New Features

Resolved Issues

Known Issues and limitations

[1.0.763.0]

Date: 2/27/2020

Summary

Added Neuron Compiler support for a number of previously unsupported PyTorch operators. Please see PyTorch
Neuron (torch-neuron) Supported operators for the complete list of operators.

Major new features

• None

Resolved issues

• None

[1.0.672.0]

Date: 1/27/2020

262 Chapter 7. PyTorch Neuron

AWS Neuron

Summary

Major new features

Resolved issues

• Python 3.5 and Python 3.7 are now supported.

Known issues and limitations

Other Notes

[1.0.627.0]

Date: 12/20/2019

Summary

This is the initial release of torch-neuron. It is not distributed on the DLAMI yet and needs to be installed from the
neuron pip repository.

Note that we are currently using a TensorFlow as an intermediate format to pass to our compiler. This does not affect
any runtime execution from PyTorch to Neuron Runtime and Inferentia. This is why the neuron-cc installation must
include [tensorflow] for PyTorch.

Major new features

Resolved issues

Known issues and limitations

Models TESTED

The following models have successfully run on neuron-inferentia systems

1. SqueezeNet

2. ResNet50

3. Wide ResNet50

7.3. Inference with torch-neuron (Inf1) 263

AWS Neuron

Pytorch Serving

In this initial version there is no specific serving support. Inference works correctly through Python on Inf1 instances
using the neuron runtime. Future releases will include support for production deployment and serving of models

Profiler support

Profiler support is not provided in this initial release and will be available in future releases

Automated partitioning

Automatic partitioning of graphs into supported and non-supported operations is not currently supported. A tutorial is
available to provide guidance on how to manually parition a model graph. Please see pytorch-manual-partitioning-jn-
tutorial

PyTorch dependency

Currently PyTorch support depends on a Neuron specific version of PyTorch v1.3.1. Future revisions will add support
for 1.4 and future releases.

Trace behavior

In order to trace a model it must be in evaluation mode. For examples please see /src/examples/pytorch/resnet50.ipynb

Six pip package is required

The Six package is required for the torch-neuron runtime, but it is not modeled in the package dependencies. This will
be fixed in a future release.

Multiple NeuronCore support

If the num-neuroncores options is used the number of cores must be manually set in the calling shell environment
variable for compilation and inference.

For example: Using the keyword argument compiler_args=[‘—num-neuroncores’, ‘4’] in the trace call, requires NEU-
RONCORE_GROUP_SIZES=4 to be set in the environment at compile time and runtime

CPU execution

At compilation time a constant output is generated for the purposes of tracing. Running inference on a non neuron
instance will generate incorrect results. This must not be used. The following error message is generated to stderr:

Warning: Tensor output are ** NOT CALCULATED ** during CPU execution and only
indicate tensor shape

264 Chapter 7. PyTorch Neuron

AWS Neuron

Other notes

• Python version(s) supported:

– 3.6

• Linux distribution supported:

– DLAMI Ubuntu 18 and Amazon Linux 2 (using Python 3.6 Conda environments)

– Other AMIs based on Ubuntu 18

– For Amazon Linux 2 please install Conda and use Python 3.6 Conda environment

This document is relevant for: Inf1

• PyTorch Neuron (torch-neuron) Supported operators

• Troubleshooting Guide for PyTorch Neuron (torch-neuron)

• PyTorch Neuron (torch-neuron) release notes

This document is relevant for: Inf1

Setup (torch-neuron)

Tutorials (torch-neuron)

Computer Vision Tutorials

• ResNet-50 tutorial [html] [notebook]

• PyTorch YOLOv4 tutorial [html] [notebook]

Natural Language Processing (NLP) Tutorials

• HuggingFace pretrained BERT tutorial [html] [notebook]

• HuggingFace pretrained BERT tutorial with shared weights [html] [notebook]

• Bring your own HuggingFace pretrained BERT container to Sagemaker Tutorial [html] [notebook]

• LibTorch C++ tutorial [html]

• TorchServe tutorial [html]

• HuggingFace MarianMT tutorial [html] [notebook]

Utilizing Neuron Capabilities Tutorials

• BERT TorchServe tutorial [html]

• NeuronCore Pipeline tutorial [html] [notebook]

Note: To use Jupyter Notebook see:

• setup-jupyter-notebook-steps-troubleshooting

• running-jupyter-notebook-as-script

7.3. Inference with torch-neuron (Inf1) 265

https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/resnet50.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/yolo_v4.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/bert_tutorial/tutorial_pretrained_bert.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/bert_tutorial/tutorial_pretrained_bert_shared_weights.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/byoc_sm_bert_tutorial/sagemaker_container_neuron.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/transformers-marianmt.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/pipeline_tutorial/neuroncore_pipeline_pytorch.ipynb

AWS Neuron

Additional Examples (torch-neuron)

• AWS Neuron Samples GitHub Repository

API Reference Guide (torch-neuron)

• PyTorch Neuron trace Python API

• torch.neuron.DataParallel API

• PyTorch Neuron (torch-neuron) Core Placement API [Beta]

Developer Guide (torch-neuron)

• Running Inference on Variable Input Shapes with Bucketing

• Data Parallel Inference on PyTorch Neuron

• Developer Guide - PyTorch Neuron (torch-neuron) LSTM Support

• PyTorch Neuron (torch-neuron) Core Placement

Misc (torch-neuron)

• PyTorch Neuron (torch-neuron) Supported operators

• Troubleshooting Guide for PyTorch Neuron (torch-neuron)

• PyTorch Neuron (torch-neuron) release notes

This document is relevant for: Inf1

This document is relevant for: Trn1, Trn1n

7.4 Training (torch-neuronx)

This document is relevant for: Trn1, Trn1n

7.4.1 Tutorials for Training(torch-neuronx)

This document is relevant for: Trn1, Trn1n

Hugging Face BERT Pretraining Tutorial

This tutorial explains how to run Hugging Face BERT-Large model pretraining on Trainium using PyTorch Neuron.

The Hugging Face BERT pretraining example demonstrates the steps required to perform single-node, multi-accelerator
PyTorch model training using the new AWS EC2 Trn1 (Trainium) instances and the AWS Neuron SDK. This tutorial
is an adaptation of an existing BERT example with the following important characteristics:

• Framework: PyTorch/XLA

• Model: Hugging Face BertForPreTraining

• Optimizer: AdamW, LAMB (Layerwise Adaptive Moments optimizer)

266 Chapter 7. PyTorch Neuron

https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuron/inference
https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/BERT/run_pretraining.py

AWS Neuron

• Scheduler: Hugging Face’s get_linear_schedule_with_warmup

• Allreduce occurs before optimizer step, after gradient accumulations (following DeepSpeed’s Smart Gradient
Accumulation)

• Training data types: Float32, full BFloat16 casting and Stochastic Rounding (SR), PyTorch Autocast (Automatic
Mixed Precision or AMP) and SR

As done in the original BERT paper, BERT pretraining happens in two phases. In the first phase (phase 1) BERT
maximum sequence length is fixed at 128 tokens, while in phase 2 it is fixed at 512 tokens.

Neuron provides access to Trainium devices through an extension of PyTorch/XLA - a library that includes the familiar
PyTorch interface along with XLA-specific additions. For additional details relating to PyTorch/XLA, please refer to
the official PyTorch/XLA documentation.

Table of Contents

• Phase 1 BERT-Large pretraining

– Setting up the training environment on trn1.32xlarge

– Downloading tokenized and sharded dataset files

– Number of workers

– BFloat16 and stochastic rounding in phase 1

– Pre-compilation

– Initiating a Training Job

– Monitoring Progress of the Training Job

– Monitoring Training Job Progress using neuron-top

– Monitoring Training Job Progress using TensorBoard

– Finishing the tutorial

• Phase 1 BERT-Large pretraining with Layerwise Adaptive Moments based optimizer (LAMB)

• Phase 1 BERT-Large pretraining with PyTorch Autocast (AMP) and stochastic rounding

• Phase 1 BERT-Large pretraining on two instances

• Phase 2 BERT-Large pretraining

– Training Environment

– Initiating a Training Job

• Tools

– neuron-ls

– neuron-top

– Generating tokenized and sharded dataset files

• Known issues and limitations

– NaNs seen with transformers version >= 4.21.0 when running HF BERT fine-tuning or pretraining with
XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1

– BERT-large compilation limitations

– BERT-large pretraining with pretokenized dataset hangs when using xm.save

7.4. Training (torch-neuronx) 267

https://pytorch.org/xla/

AWS Neuron

– BERT-large two worker pretraining hangs or run out of host memory during checkpointing on
trn1.2xlarge

– BERT precompilation using neuron_parallel_compile hangs when using torchrun

– Reduced multi-node performance with Neuron PyTorch 1.12 (release 2.6)

• Troubleshooting

– ModuleNotFoundError: No module named ‘torch’ , ‘torch_xla’, ‘transformers’, etc

Note: Logs used in tutorials do not present latest performance numbers

For latest performance numbers visit Neuron Performance

Phase 1 BERT-Large pretraining

Setting up the training environment on trn1.32xlarge

The BERT training script dp_bert_large_hf_pretrain_hdf5.py can run on a Trainium instance (trn1.32xlarge)
that contains the appropriate Neuron runtime and Python dependencies.

First, on a trn1.32xlarge instance, follow the installation instructions at:

Install PyTorch Neuron on Trn1

Please set the storage of instance to 512GB or more if you intent to run multiple experiments and save many checkpoints.

For all the commands below, make sure you are in the virtual environment that you have created above before you run
the commands:

source ~/aws_neuron_venv_pytorch/bin/activate

Next, clone the AWS Neuron Samples repository and install requirements in the BERT tutorial directory
aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain:

cd ~/
git clone https://github.com/aws-neuron/aws-neuron-samples.git
python3 -m pip install -r ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_
→˓pretrain/requirements.txt

Downloading tokenized and sharded dataset files

To download the tokenized and sharded dataset files needed for this tutorial, please run the following commands:

mkdir -p ~/examples_datasets/
pushd ~/examples_datasets/
aws s3 cp s3://neuron-s3/training_datasets/bert_pretrain_wikicorpus_tokenized_hdf5/bert_
→˓pretrain_wikicorpus_tokenized_hdf5_seqlen128.tar . --no-sign-request
tar -xf bert_pretrain_wikicorpus_tokenized_hdf5_seqlen128.tar
rm bert_pretrain_wikicorpus_tokenized_hdf5_seqlen128.tar
aws s3 cp s3://neuron-s3/training_datasets/bert_pretrain_wikicorpus_tokenized_hdf5/bert_
→˓pretrain_wikicorpus_tokenized_hdf5_seqlen512.tar . --no-sign-request

(continues on next page)

268 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

tar -xf bert_pretrain_wikicorpus_tokenized_hdf5_seqlen512.tar
rm bert_pretrain_wikicorpus_tokenized_hdf5_seqlen512.tar
popd

~/examples_datasets/bert_pretrain_wikicorpus_tokenized_hdf5_seqlen128 will now
have the tokenized and sharded dataset files for phase 1 pretraining and ~/examples_datasets/
bert_pretrain_wikicorpus_tokenized_hdf5_seqlen512 for phase 2 pretraining.

Number of workers

You will be using torchrun (PyTorch’s Elastic Launch) to run some of the commands in this tutorial. When run-
ning the training script, you can configure the number of NeuronCores to use for training by using torchrun’s
--nproc_per_node option. In this tutorial, we use 32 NeuronCores on trn1.32xlarge.

Note: Currently Neuron Runtime only support 1 and 2 worker configurations on trn1.2xlarge and 1, 2, 8, and 32-worker
configurations on trn1.32xlarge.

BFloat16 and stochastic rounding in phase 1

Phase 1 pretraining performance can be increased by using BFloat16 casting and stochastic rounding. BFloat16
casting and stochastic rounding can be enabled by setting environment variable XLA_USE_BF16=1 when launch-
ing the pretraining job. XLA_DOWNCAST_BF16=1 can also be used instead of XLA_USE_BF16=1 to preserve part of
the training loop in FP32. Here we use XLA_DOWNCAST_BF16=1 to ensure smooth loss curve when loss averag-
ing is used. We also preserve the optimizer states in FP32 using a modified HuggingFace AdamW implementa-
tion in order to match FP32 loss with BFloat16. To achieve maximum performance while maintaining loss con-
vergence characteristics, we are using batch size of 16 and gradient accumulation microsteps of 32 to maintain
global batch size of 16384 for phase 1. The batch size and gradient accumulation microstep changes can be set
by launching the BERT pretraining script dp_bert_large_hf_pretrain_hdf5.py with command-line arguments
--batch_size=16 --grad_accum_usteps=32, as seen in the following steps.

Another option with BFloat16 using PyTorch AutoCast (Automatic Mixed Precision or AMP) is covered at Phase 1
BERT-Large pretraining with PyTorch Autocast (AMP) and stochastic rounding.

Pre-compilation

PyTorch Neuron evaluates operations lazily during execution of the training loops, which means it builds a sym-
bolic graph in the background and the graph is executed in hardware only when the tensor is printed, transfered
to CPU, or xm.mark_step() is encountered (xm.mark_step() is implicitly called by pl.MpDeviceLoader/pl.
ParallelLoader). During execution of the training loops, PyTorch Neuron can build multiple graphs depending on
the number of conditional paths taken. For BERT-Large pretraining, PyTorch Neuron builds multiple unique graphs
that should be compiled before running on the NeuronCores. PyTorch Neuron will compile those graphs only if they
are not in the XLA in-memory cache or the persistent cache. To reduce the compilation time of these graphs, you can
pre-compile those graphs using the utility neuron_parallel_compile (provided by the libneuronxla package, a
transitive dependency of torch-neuronx) as shown:

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain
neuron_parallel_compile XLA_DOWNCAST_BF16=1 torchrun --nproc_per_node=32 \
dp_bert_large_hf_pretrain_hdf5.py \

(continues on next page)

7.4. Training (torch-neuronx) 269

https://pytorch.org/docs/stable/elastic/run.html

AWS Neuron

(continued from previous page)

--steps_this_run 10 \
--batch_size 16 \
--grad_accum_usteps 32 |& tee compile_log.txt

This command performs a fast trial run of the training script to build graphs and then do parallel compilations on those
graphs using multiple processes of Neuron Compiler before populating the on-disk persistent cache with compiled
graphs. This helps make the actual training run faster because the compiled graphs will loaded from the persistent
cache. Currently it takes ~13 minutes to compile the BERT-Large model training step using the pre-compilation script
(compare to ~40 minute if not using the pre-compilation script). Note that the command above specifies 32 Neuron-
Cores for trn1.32xlarge via –nproc_per_node option.

The script run_dp_bert_large_hf_pretrain_bf16_s128.sh is provided in the same BERT tuto-
rial directory for convenience and you can simply run the script using neuron_parallel_compile ./
run_dp_bert_large_hf_pretrain_bf16_s128.sh to start the precompilation.

The pretokenized dataset is expected to be at ~/examples_datasets/bert_pretrain_wikicorpus_tokenized_hdf5_seqlen128/
by default (see above for downloading instructions) and can be changed via the --data_dir option.

Note: The trial run during pre-compilation currently outputs invalid loss numbers. Please disregard them.

Note: The command after neuron_parallel_compile should match the actual run command, except for the option
--steps_this_run which shortens the trial run just enough to allow the tool to build all the graphs needed for the
actual run.

If you interrupt the run and restart the execution without changing model configurations or training hyperparameters,
the new run will detect the cached graphs in the persistent cache (on-disk) and reload the compiled graphs for execution,
avoiding any recompilation time.

Changes made to the BERT model configuration (layers, hidden size, attention heads in the get_model function), batch
size (using --batch_size option), optimizer or number of workers may trigger graph recompilation. It is best to rerun
the pre-compilation step above if these changes are made.

You can adjust the following hyperparameters without changing the model and causing recompilation:

• Number of global steps to run (--steps_this_run option)

• Learning rate (--lr option)

• Gradient accumulation steps > 1 (--grad_accum_usteps option). If 1 then there’s no gradient accumulation
and the graphs change causing recompilation.

Initiating a Training Job

After running the pre-compilation step, continue with the actual phase 1 pretraining by running the following set of
commands to launch 32 data parallel distributed training workers on trn1.32xlarge:

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain
XLA_DOWNCAST_BF16=1 torchrun --nproc_per_node=32 \
dp_bert_large_hf_pretrain_hdf5.py \
--batch_size 16 \
--grad_accum_usteps 32 |& tee run_pretrain_log.txt

270 Chapter 7. PyTorch Neuron

AWS Neuron

The script run_dp_bert_large_hf_pretrain_bf16_s128.sh is provided in the same BERT tutorial directory for
convenience and you can simply run the script to start the training.

As the training script launches, you will initially see several console messages indicating that the Neuron Runtime is
initializing:

Using Neuron Runtime
Using Neuron Runtime
Using Neuron Runtime
Using Neuron Runtime
Using Neuron Runtime
...

A few moments later, you will see the Training Configuration and Model Configuration in the output:

--------TRAINING CONFIG----------
Namespace(batch_size=16, data_dir='~/examples_datasets/
bert_pretrain_wikicorpus_tokenized_hdf5_seqlen128/', debug=False,
enable_pt_autocast=False, grad_accum_usteps=32, local_rank=0, lr=0.0004,
max_pred_len=20, max_steps=28125, metrics_file='/tmp/test_dict.json',
minimal_ckpt=False, num_ckpts_to_keep=1, output_dir='./output',
phase1_end_step=28125, phase2=False, resume_ckpt=False, resume_step=-1,
seed=12349, seq_len=128, shards_per_ckpt=1, steps_this_run=28125, warmup_steps=2000)

--------MODEL CONFIG----------
BertConfig {
"_name_or_path": "bert-large-uncased",
"architectures": [
"BertForMaskedLM"
],
"attention_probs_dropout_prob": 0.1,
"classifier_dropout": null,
"gradient_checkpointing": false,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 1024,
"initializer_range": 0.02,
"intermediate_size": 4096,
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_type": "bert",
"num_attention_heads": 16,
"num_hidden_layers": 24,
"pad_token_id": 0,
"position_embedding_type": "absolute",
"transformers_version": "4.15.0",
"type_vocab_size": 2,
"use_cache": true,
"vocab_size": 30522
}

As the worker processes begin training on the BERT dataset, you will begin to see training metrics and the learning rate
logged to the console approximately every training step. The metrics include average_loss, step_loss, and throughput:

7.4. Training (torch-neuronx) 271

AWS Neuron

LOG Thu Sep 29 22:30:10 2022 - (0, 78) step_loss : 9.1875 learning_rate : 1.56e-05 ␣
→˓throughput : 2873.14
LOG Thu Sep 29 22:30:16 2022 - (0, 79) step_loss : 8.9375 learning_rate : 1.58e-05 ␣
→˓throughput : 2878.09
LOG Thu Sep 29 22:30:22 2022 - (0, 80) step_loss : 9.0000 learning_rate : 1.60e-05 ␣
→˓throughput : 2875.31
LOG Thu Sep 29 22:30:27 2022 - (0, 81) step_loss : 9.0000 learning_rate : 1.62e-05 ␣
→˓throughput : 2877.35
LOG Thu Sep 29 22:30:33 2022 - (0, 82) step_loss : 8.8750 learning_rate : 1.64e-05 ␣
→˓throughput : 2872.55
LOG Thu Sep 29 22:30:39 2022 - (0, 83) step_loss : 9.0000 learning_rate : 1.66e-05 ␣
→˓throughput : 2876.17
LOG Thu Sep 29 22:30:44 2022 - (0, 84) step_loss : 9.1250 learning_rate : 1.68e-05 ␣
→˓throughput : 2872.48
LOG Thu Sep 29 22:30:50 2022 - (0, 85) step_loss : 9.0000 learning_rate : 1.70e-05 ␣
→˓throughput : 2873.39

By default, the training script will store all output files under ~/aws-neuron-samples/torch-neuronx/training/
dp_bert_hf_pretrain/output. The output files consist of the following:

• PyTorch model checkpoint files, with names containing the global step of the checkpoint (ckpt_2000.pt,
ckpt_4000.pt, etc.). Currently, the training script saves a checkpoint after every dataset shard. The fre-
quency of saving checkpoint can be reduced by increasing the number of dataset shards per checkpoint, us-
ing option --shards_per_ckpt. Furthermore, the number of checkpoints kept at a given time is limited by
--num_ckpts_to_keep option (currently default to 1).

• TensorBoard log files (each training run will store its logs in a subdirectory with prefix neuron_tblogs_).

Monitoring Progress of the Training Job

Using a single Trn1 instance with 32 NeuronCores, the current BERT phase 1 pretraining will finish in about 45 hours.
During this time, you will see the average loss metric begin at about 11.2 and ultimately converge to about 1.4.

Monitoring Training Job Progress using neuron-top

With the training job still running, launch a second SSH connection into the trn1 instance, and use the neuron-top
command to examine the aggregate NeuronCore utilization. If you have not modified the --nproc_per_node option
in the run command, you should observe that all 32 NeuronCores are participating in the training job, with utilization
fluctuating around 80%.

Monitoring Training Job Progress using TensorBoard

The demo includes TensorBoard-compatible logging, which allows the learning rate and training met-
rics to be monitored in real-time. By default, the training script logs metrics to the following Ten-
sorBoard log directory ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain/output/
neuron_tblogs_<date/time>_<training configs>.

In order to view your training metrics in TensorBoard, first run the following commands in your SSH session:

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain
tensorboard --logdir ./output

272 Chapter 7. PyTorch Neuron

AWS Neuron

Once running, open a new SSH connection to the instance and port-forward TCP port 6006 (ex: -L 6006:127.
0.0.1:6006). Once the tunnel is established, TensorBoard can then be accessed via web browser at the following
URL: http://localhost:6006. Please note that you will not be able to access TensorBoard if you disconnect your port-
forwarding SSH session to the Trainium instance.

Finishing the tutorial

Once you are ready, there are a couple of options for finishing the BERT pretraining demo:

1. Allow the training script to run to completion. If you would like to observe the training script run to com-
pletion, it is recommended to launch the training script from a terminal multiplexer such as tmux or screen,
and then detach the session so that the training script can run in the background. With this approach, you can
safely let the training script run unattended, without risk of an SSH disconnection causing the training job to stop
running.

2. Stop the training job early. To stop the training job early, press CTRL-C in the terminal window in which you
launched the training script. In some cases, if you manually cancel a job using CTRL-C and then later want to
run the job again, you might first need to execute sudo rmmod neuron; sudo modprobe neuron in order to
reload/reset the Neuron driver.

7.4. Training (torch-neuronx) 273

http://localhost:6006/

AWS Neuron

Phase 1 BERT-Large pretraining with Layerwise Adaptive Moments based optimizer (LAMB)

Sometimes, to reduce the training wall time, you can use higher learning rate and larger global batch size. The approach
is discussed in LARGE BATCH OPTIMIZATION FOR DEEP LEARNING: TRAINING BERT IN 76 MINUTES.
Tranium supports LAMB, and in this tutorial, we use publicly available XLA-friendly LAMB implemenation from
https://github.com/rwightman/pytorch-image-models/blob/master/timm/optim/lamb.py.

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain
torchrun --nproc_per_node=32 \
dp_bert_large_hf_pretrain_hdf5.py \
--max_steps 7032 \
--batch_size 8 \
--optimizer LAMB \
--lr 6e-3 \
--grad_accum_usteps 256 |& tee run_pretrain_log.txt

The command-line argument --optimizer LAMB is needed, otherwise, the default optimizer AdamW will be used.
Besides, you need to use a set of hyper-parameters supporting the larger global batch size (GBS). In this case, we have
64k as GBS for LAMB and use a set of hyper-params similar to https://github.com/NVIDIA/DeepLearningExamples/
blob/master/PyTorch/LanguageModeling/BERT/README.md. Given higher GBS from LAMB than AdamW, it takes
fewer steps (roughly 7k) to achieve similar level of accuracy as AdamW, which takes more than 28k steps. In addi-
tion, you can also use different data types on top of LAMB. Below is an example using the BFloat16 and Stochastic
Roundings.

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain
XLA_DOWNCAST_BF16=1 torchrun --nproc_per_node=32 \
dp_bert_large_hf_pretrain_hdf5.py \
--max_steps 7032 \
--batch_size 16 \
--optimizer LAMB \
--lr 6e-3 \
--grad_accum_usteps 128 |& tee run_pretrain_log.txt

The script run_dp_bert_large_hf_pretrain_bf16_s128_lamb.sh is provided in the same BERT tutorial direc-
tory for convenience and you can simply run the script to start the training.

Phase 1 BERT-Large pretraining with PyTorch Autocast (AMP) and stochastic rounding

Besides the BFloat16 and stochastic rounding in phase 1 , you can also use AMP with stochastic round-
ing. The detailed background is at https://pytorch.org/docs/stable/amp.html. It uses both data types BFloat16
and Float32, hence provides better performance over Float32. A detailed comparison is available at
trn1_training_perf. To launch the AMP, one additional command-line argument is needed --enable_pt_autocast.
NEURON_RT_STOCHASTIC_ROUNDING_EN=1 enables the stochastic roundings.

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain
NEURON_RT_STOCHASTIC_ROUNDING_EN=1 \
torchrun --nproc_per_node=32 dp_bert_large_hf_pretrain_hdf5.py \
--batch_size 16 \
--enable_pt_autocast \
--grad_accum_usteps 32 |& tee run_pretrain_log.txt

The script run_dp_bert_large_hf_pretrain_bf16_s128.sh is provided in the same BERT tu-
torial directory for convenience and you can simply run the script with amp option like ./

274 Chapter 7. PyTorch Neuron

https://arxiv.org/pdf/1904.00962.pdf
https://github.com/rwightman/pytorch-image-models/blob/master/timm/optim/lamb.py
https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/BERT/README.md
https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/BERT/README.md
https://pytorch.org/docs/stable/amp.html

AWS Neuron

run_dp_bert_large_hf_pretrain_bf16_s128.sh amp to start the training with AMP.

Phase 1 BERT-Large pretraining on two instances

If you have two trn1.32xlarge instances with EFA-enabled interfaces, using EFA-enabled security group, and setup
using Install PyTorch Neuron on Trn1, you can run multi-instance BERT-Large pretraining. The following example
demonstrate running BERT phase 1 pretraining on two instances. To ensure that the global batch size remains at 16384
for phase 1, the gradient accumulation microstep count is reduced by half when the number of instances is 2. NOTE: To
run on multiple instances, you will need to use trn1.32xlarge instances and using all 32 NeuronCores on each instance.

On the rank-0 Trn1 host (root), run with --node_rank=0 using torchrun utility, and --master_addr set to rank-0
host’s IP address:

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain
export FI_EFA_USE_DEVICE_RDMA=1
export FI_PROVIDER=efa
export BUCKET_CAP_MB=512
export XLA_TRANSFER_SEED_ASYNC=1
XLA_DOWNCAST_BF16=1 torchrun --nproc_per_node=32 --nnodes=2 --node_rank=0 --master_addr=
→˓<root IP> --master_port=2020 \
dp_bert_large_hf_pretrain_hdf5.py \
--batch_size 16 \
--grad_accum_usteps 16 |& tee run_pretrain_log.txt

On another Trn1 host, run with --node_rank=1, and --master_addr also set to rank-0 host’s IP address:

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain
export FI_EFA_USE_DEVICE_RDMA=1
export FI_PROVIDER=efa
export BUCKET_CAP_MB=512
export XLA_TRANSFER_SEED_ASYNC=1
XLA_DOWNCAST_BF16=1 torchrun --nproc_per_node=32 --nnodes=2 --node_rank=1 --master_addr=
→˓<root IP> --master_port=2020 \
dp_bert_large_hf_pretrain_hdf5.py \
--batch_size 16 \
--grad_accum_usteps 16 |& tee run_pretrain_log.txt

It is important to launch rank-0 worker with --node_rank=0 to avoid hang.

To train on multiple instances, it is recommended to use a ParallelCluster. For a ParallelCluster example, please see
Train a model on AWS Trn1 ParallelCluster.

Phase 2 BERT-Large pretraining

As mentioned above, BERT pretraining happens in two phases. In phase 1, the sequence length is 128. In phase 2, the
sequence length increases to 512. This additional training phase will further reduce the pretraining loss and improve
the metrics for the fine-tune tasks that usually follow. The setup is very similar to the phase 1, with some differences
in training environment and command line arguments highlighted below.

7.4. Training (torch-neuronx) 275

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start-nccl-base.html#nccl-start-base-setup
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples

AWS Neuron

Training Environment

The following dataset and checkpoint are required:

• ~/examples_datasets/bert_pretrain_wikicorpus_tokenized_hdf5_seqlen512 is WikiCorpus train-
ing dataset that is preprocessed (tokenized and pre-masked) for phase 2.

• ~/examples/dp_bert_hf_pretrain/output/ckpt_<phase1_end_step>.pt is the final checkpoint
from phase 1. It’s generated automatically at the end of phase 1 pretraining. For convenience, one
can also download the example available at s3://neuron-s3/training_checkpoints/pytorch/
dp_bert_large_hf_pretrain/ckpt_28125.pt, which is collected after 28125 training steps in phase 1.
Phase 2 will continue training by loading this checkpoint. During its progression, phase 2 continues to generate
its own checkpoints in output directory, following the naming convention ckpt_<global_steps>.pt

Initiating a Training Job

To launch the phase 2 pretraining job with AdamW optimizer, run the same python script
dp_bert_large_hf_pretrain_hdf5.py as before except with different options for phase 2. Again, we
are using BFloat16 casting and stochastic rounding by setting environment variable XLA_DOWNCAST_BF16=1.
For phase 2, we are using global batch size of 32768, with worker device batch size of 2 and gradient
accumulation microsteps of 512. The pretokenized dataset is expected to be at ~/examples_datasets/
bert_pretrain_wikicorpus_tokenized_hdf5_seqlen512/ following the setup steps above and is set via
--data_dir option.

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain
XLA_DOWNCAST_BF16=1 torchrun --nproc_per_node=32 dp_bert_large_hf_pretrain_hdf5.py \

--data_dir ~/examples_datasets/bert_pretrain_wikicorpus_tokenized_hdf5_seqlen512/ \
--lr 2.8e-4 \
--phase2 \
--resume_ckpt \
--phase1_end_step 28125 \
--batch_size 2 \
--grad_accum_usteps 512 \
--seq_len 512 \
--max_pred_len 80 \
--warmup_steps 781 \
--max_steps 1563 \
|& tee run_pretrain_log_phase2.txt

The script run_dp_bert_large_hf_pretrain_bf16_s128.sh is provided in the same BERT tutorial directory for
convenience and you can simply run the script to start the training with AdamW optimizer. Similarly, you can use
LAMB optimizer using the script run_dp_bert_large_hf_pretrain_bf16_s512_lamb_phase2.sh.

The output below is expected as the job is initiated. Step 28125 is the phase1_end_step in this run, which could be
different if phase1 training stops at a different global step.

Worker 21 resuming from checkpoint ./output/ckpt_28125.pt at step 28125
Worker 23 resuming from checkpoint ./output/ckpt_28125.pt at step 28125
Worker 27 resuming from checkpoint ./output/ckpt_28125.pt at step 28125
Worker 26 resuming from checkpoint ./output/ckpt_28125.pt at step 28125
Worker 20 resuming from checkpoint ./output/ckpt_28125.pt at step 28125
Worker 22 resuming from checkpoint ./output/ckpt_28125.pt at step 28125

--------TRAINING CONFIG----------
(continues on next page)

276 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

Namespace(batch_size=2, data_dir='/home/ec2-user/examples_datasets/
bert_pretrain_wikicorpus_tokenized_hdf5_seqlen512/', debug=False,
enable_pt_autocast=False, grad_accum_usteps=512, local_rank=0, lr=0.0002,
max_pred_len=80, max_steps=28125, metrics_file='/tmp/test_dict.json',
minimal_ckpt=False, num_ckpts_to_keep=1, output_dir='./output',
phase1_end_step=28125, phase2=True, resume_ckpt=True, resume_step=-1,
seed=12349, seq_len=512, shards_per_ckpt=1, steps_this_run=32, warmup_steps=781)

--------MODEL CONFIG----------
BertConfig {
"_name_or_path": "bert-large-uncased",
"architectures": [
"BertForMaskedLM"

],
"attention_probs_dropout_prob": 0.1,
"classifier_dropout": null,
"gradient_checkpointing": false,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 1024,
"initializer_range": 0.02,
"intermediate_size": 4096,
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_type": "bert",
"num_attention_heads": 16,
"num_hidden_layers": 24,
"pad_token_id": 0,
"position_embedding_type": "absolute",
"transformers_version": "4.15.0",
"type_vocab_size": 2,
"use_cache": true,
"vocab_size": 30522

}

As the phase 2 training proceeds, similar metrics to phase 1 will appear on the console, showing the loss, learning rate,
and throughput:

LOG Tue Sep 27 20:56:35 2022 - (0, 26) step_loss : 4.3438 learning_rate : 6.66e-06 ␣
→˓throughput : 494.55
LOG Tue Sep 27 20:57:40 2022 - (0, 27) step_loss : 4.0938 learning_rate : 6.91e-06 ␣
→˓throughput : 495.67
LOG Tue Sep 27 20:58:46 2022 - (0, 28) step_loss : 4.1875 learning_rate : 7.17e-06 ␣
→˓throughput : 496.18
LOG Tue Sep 27 20:59:53 2022 - (0, 29) step_loss : 4.0000 learning_rate : 7.43e-06 ␣
→˓throughput : 495.31
LOG Tue Sep 27 21:00:58 2022 - (0, 30) step_loss : 4.2500 learning_rate : 7.68e-06 ␣
→˓throughput : 495.60
LOG Tue Sep 27 21:02:05 2022 - (0, 31) step_loss : 4.3125 learning_rate : 7.94e-06 ␣
→˓throughput : 495.50
LOG Tue Sep 27 21:03:10 2022 - (0, 32) step_loss : 4.4688 learning_rate : 8.19e-06 ␣
→˓throughput : 496.02

7.4. Training (torch-neuronx) 277

AWS Neuron

Tools

While running the tutorial, try experimenting with the following Neuron tools, which help monitor and evaluate com-
pute utilization in real-time:

neuron-ls

The neuron-ls command describes the number of Neuron devices present in the system, along with the associated
NeuronCore count, memory, and PCI device information:

You will find that the Trn1 instance has 16 Neuron devices, each with 2 NeuronCores. This configuration allows you
to train the model using a total of 32 workers, one per NeuronCore, within a single instance.

Additional information regarding neuron-ls can be found in the neuron-ls user guide.

neuron-top

The neuron-top command presents a high-level view of the Neuron environment, including the utilization of each of
the NeuronCores, any models that are currently loaded onto one or more NeuronCores, process IDs for any processes
that are leveraging the Neuron runtime, and basic system statistics relating to vCPU and memory usage.

Please note that neuron-top can either display aggregate NeuronCore utilization for ‘all’ processes (the default), or
alternatively display the NeuronCore utilization for a particular process. You can toggle through the aggregate and
per-process views using the a and d keys. The screenshot below illustrates the default aggregate view:

278 Chapter 7. PyTorch Neuron

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-tools/neuron-ls.html

AWS Neuron

Please refer to the neuron-top user guide for additional details.

Generating tokenized and sharded dataset files

This section is for generating tokenized and sharded dataset files from WikiCorpus dataset. If you just want the pre-
genenerated dataset files, please see Downloading tokenized and sharded dataset files section above.

On a c5n.18xlarge instance launched with Deep Learning Conda AMI and 512GB disk space, you can generate the
preprocessed datasets from WikiCorpus dataset using NVidia’s DeepLearningExamples for BERT pretraining. The
preprocessing converts the WikiCorpus dataset to tokenized data and shard the data into multiple shards for parallel
loading. The full flow takes about 8.7 hours:

source activate pytorch_latest_p37
cd ~/
git clone https://github.com/NVIDIA/DeepLearningExamples.git
cd DeepLearningExamples
git checkout 81b9010096b6f9812e3977b607669f6ec8b16561
sudo mkdir -m a=rwx /workspace
cp -rf PyTorch/LanguageModeling/BERT /workspace/bert
cd /workspace
git clone https://github.com/attardi/wikiextractor.git
cd wikiextractor
git checkout 6408a430fc504a38b04d37ce5e7fc740191dee16
cd /workspace/bert
increase num processes and shards
ex -s "+%s/\(bertPrep\.py\)\(--action create_hdf5_files\)/\1 --n_processes 32 --n_test_
→˓shards 1024 --n_training_shards 1024\2" "+wq" data/create_datasets_from_start.sh
export BERT_PREP_WORKING_DIR=/workspace/data/
time ./data/create_datasets_from_start.sh wiki_only |& tee log

7.4. Training (torch-neuronx) 279

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-tools/neuron-top-user-guide.html

AWS Neuron

After execution is finished, phase 1 pre-tokenized and sharded dataset is located at:

/workspace/data/hdf5_lower_case_1_seq_len_128_max_pred_20_masked_lm_prob_0.
15_random_seed_12345_dupe_factor_5/wikicorpus_en/

Copy this entire directory to ~/examples_datasets/bert_pretrain_wikicorpus_tokenized_hdf5_seqlen128
of the trn1.32xlarge machine.

Phase 2 pre-tokenized dataset is located at:

/workspace/data/hdf5_lower_case_1_seq_len_512_max_pred_80_masked_lm_prob_0.
15_random_seed_12345_dupe_factor_5/wikicorpus_en/

Copy this entire directory to ~/examples_datasets/bert_pretrain_wikicorpus_tokenized_hdf5_seqlen512
of the trn1.32xlarge machine.

Known issues and limitations

NaNs seen with transformers version >= 4.21.0 when running HF BERT fine-tuning or pretraining
with XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1

When running HuggingFace BERT (any size) fine-tuning tutorial or pretraining tutorial with transformers version >=
4.21.0 and using XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1, you will see NaNs in the loss immediately at
the first step. More details on the issue can be found at pytorch/xla#4152. The workaround is to use 4.20.0 or earlier (the
tutorials currently recommend version 4.15.0) or add transformers.modeling_utils.get_parameter_dtype =
lambda x: torch.bfloat16 to the Python script.

BERT-large compilation limitations

Optimal BERT-large phase 1 (sequence length 128) batch size is currently 8 for FP32 and 16 for full BF16 with stochas-
tic rounding. Optimal BERT-large phase 2 (sequence length 512) batch size is currently 1 for FP32 and 2 for full BF16
with stochastic rounding.

BERT-large pretraining with pretokenized dataset hangs when using xm.save

Currently, BERT-large pretraining with pretokenized dataset hangs when xm.save is used outside of the main training
loop.

Loop through HDF5 sharded dataset files:
Train on one HDF5 sharded dataset file

Loop through batched samples:
Training iteration

Save checkpoint using xm.save

The reason is that xm.save has a synchronization point. However, the HDF5 shared data files do not have the same
number of training samples so the workers cannot all reach xm.save in the same iteration.

The workaround is to use xm._maybe_convert_to_cpu to ensure tensors are moved to CPU followed by torch.save
as done in the BERT-large pretraining tutorial:

cpu_data = xm._maybe_convert_to_cpu(data)

280 Chapter 7. PyTorch Neuron

https://github.com/pytorch/xla/issues/4152

AWS Neuron

BERT-large two worker pretraining hangs or run out of host memory during checkpointing on
trn1.2xlarge

On trn1.2xlarge, where there’s limited host memory and CPU resources, the BERT-large two worker pretraining may
hang or run out of host memory during checkpointing. This problem can be worked around by not saving optimizer
and LR scheduler states in the checkpoint. This is enabled by --minimal_ckpt option of the pretraining script.

BERT precompilation using neuron_parallel_compile hangs when using torchrun

We use neuron_parallel_compile in front of the short run command to do precompilation. However, the following
command hangs when running BERT parallel compilation with torchrun:

neuron_parallel_compile XLA_DOWNCAST_BF16=1 torchrun --nproc_per_node=32 --nnodes=1 dp_
→˓bert_large_hf_pretrain_hdf5.py --steps_this_run 5

...
Updating train metrics in provide results.json file
Current data: {'num_workers': 32, 'epoch': 0, 'steps': 5, 'microsteps': 320, 'loss': -
→˓22172234.0, 'train_time_minutes': 0.7424166639645894, 'throughput_average': 1839.
→˓0391805624324, 'throughput_peak': 1840.0107059878164, 'batch_size': 8, 'max_length':␣
→˓128}
Updating with data: {'num_workers': 32, 'epoch': 0, 'steps': 5, 'microsteps': 320, 'loss
→˓': -22172234.0, 'train_time_minutes': 0.7826640844345093, 'throughput_average': 1744.
→˓4691285659471, 'throughput_peak': 1745.4964663587539, 'batch_size': 8, 'max_length':␣
→˓128}
Checkpointing...
Checkpointing done...
(hangs)

The fix is to add xm.rendezvous at the end of training to ensure all workers sync up before exiting the script
dp_bert_large_pretrain_hdf5.py.

def _mp_fn(index, flags):
torch.set_default_tensor_type('torch.FloatTensor')
train_bert_hdf5(flags)
xm.rendezvous("_mp_fn finished")

7.4. Training (torch-neuronx) 281

AWS Neuron

Reduced multi-node performance with Neuron PyTorch 1.12 (release 2.6)

Default BERT performance on multiple instances is reduced with Neuron PyTorch 1.12 (release 2.6). The workaround
is to set the XLA flag XLA_TRANSFER_SEED_ASYNC=1.

Troubleshooting

The following are troubleshooting tips related to this tutorial. See PyTorch Neuron on Trainium Troubleshooting Guide
for additional troubleshooting tips.

ModuleNotFoundError: No module named ‘torch’ , ‘torch_xla’, ‘transformers’, etc

If you encounter ‘ModuleNotFoundError’ messages while attempting to run the demo scripts, please ensure that you
have activated the appropriate Python virtualenv which contains all of the demo dependencies:

cd ~
source <python virtual environment path>/bin/activate

This document is relevant for: Trn1, Trn1n

This document is relevant for: Trn1, Trn1n

Multi-Layer Perceptron Training Tutorial

MNIST is a standard dataset for handwritten digit recognition. A multi-layer perceptron (MLP) model can be trained
with MNIST dataset to recognize hand-written digits. This tutorial starts with a 3-layer MLP training example in
PyTorch on CPU, then show how to modify it to run on Trainium using PyTorch Neuron. It also shows how to do
multiple worker data parallel MLP training.

Table of Contents

• Setup environment and download examples

• Multi-layer perceptron MNIST model

• Single-worker MLP training script in PyTorch on CPU

• Single-worker MLP training on Trainium

• Multi-worker data-parallel MLP training using torchrun

• Single-worker MLP evaluation on Trainium

• Known issues and limitations

Note: Logs used in tutorials do not present latest performance numbers

For latest performance numbers visit Neuron Performance

282 Chapter 7. PyTorch Neuron

AWS Neuron

Setup environment and download examples

Before running the tutorial please follow the installation instructions at:

Install PyTorch Neuron on Trn1

Please set the storage of instance to 512GB or more if you also want to run through the BERT pretraining and GPT
pretraining tutorials.

For all the commands below, make sure you are in the virtual environment that you have created above before you run
the commands:

source ~/aws_neuron_venv_pytorch/bin/activate

Install needed dependencies in your environment by running:

pip install pillow

Torchvision package is needed for MNIST dataset and has already been installed as part of Install PyTorch Neuron
on Trn1. Installing Torchvision together with torch-neuronx ensures that the compatible version of Torchvision is
selected. For example, torchvision==0.12 is compatible with torch==1.11 and torchvision==0.13 is compatible with
torch==1.12.

To download the MNIST MLP examples, do:

git clone https://github.com/aws-neuron/aws-neuron-samples.git
cd aws-neuron-samples/torch-neuronx/training/mnist_mlp

Multi-layer perceptron MNIST model

In model.py, we define the multi-layer perceptron (MLP) MNIST model with 3 linear layers and ReLU activations,
followed by a log-softmax layer. This model will be used in multiple example scripts.

Single-worker MLP training script in PyTorch on CPU

We will show how to modify a training script that runs on other platform to run on Trainium.

We begin with a single-worker MLP training script for running on the host CPUs of the Trainium instance. The training
script imports the MLP model from model.py.

In this training script, we load the MNIST train dataset and, within the main() method, set the data loader to read
batches of 32 training examples and corresponding labels.

Next we instantiate the MLP model and move it to the device. We use device = 'cpu' to illustrate the use of device
in PyTorch. On GPU you would use device = 'cuda' instead.

We also instantiate the other two components of a neural network trainer: stochastic-gradient-descent (SGD) optimizer
and negative-log-likelihood (NLL) loss function (also known as cross-entropy loss).

After the optimizer and loss function, we create a training loop to iterate over the training samples and labels, performing
the following steps for each batch in each iteration:

• Zero gradients using:

optimizer.zero_grad()

• Move training samples and labels to device using the ‘tensor.to’ method.

7.4. Training (torch-neuronx) 283

AWS Neuron

• Perform forward/prediction pass using

output = model(train_x)

• The prediction results are compared against the corresponding labels using the loss function to compute the loss

loss_fn(output, train_label)

• The loss is propagated back through the model using chain-rule to compute the weight gradients

loss.backward()

• The weights are updated with a change that is proportional to the computed weights gradients

optimizer.step()

At the end of training we compute the throughput, display the final loss and save the checkpoint.

Expected CPU output:

----------Training ---------------
Train throughput (iter/sec): 286.96994718801335
Final loss is 0.1040
----------End Training ---------------

For a full tutorial on training in PyTorch, please see https://pytorch.org/tutorials/beginner/introyt/trainingyt.html.

Thus far we have used PyTorch without Trainium. Next, we will show how to change this script to run on Trainium.

Single-worker MLP training on Trainium

To run on Trainium, first we modify the CPU training script train_cpu.py to run with PyTorch Neuron torch_xla as
described in PyTorch Neuron for Trainium Getting Started Guide by changing the device:

import torch_xla.core.xla_model as xm
device = xm.xla_device()
or
device = 'xla'

When the model is moved to the XLA device using model.to(device) method, subsequent operations on the model
are recorded for later execution. This is XLA’s lazy execution which is different from PyTorch’s eager execution. Within
the training loop, we must mark the graph to be optimized and run on XLA device (NeuronCore) using xm.mark_step()
(unless MpDeviceLoader is used as you will see in the next section). Without this mark, XLA cannot determine where
the graph ends. The collected computational graph also gets compiled and executed when you request the value of a
tensor such as by calling loss.item() or print(loss).

To save a checkpoint, it is recommended to use the xm.save() function instead of torch.save() to ensure states are
moved to CPU. xm.save() also prevents the “XRT memory handle not found” warning at the end of evaluation script
(if the checkpoint saved using torch.save() is used for evaluation).

The resulting script train.py can be executed as python3 train.py. Again, note that we import the MLP model
from model.py. When you examine the script, the comments that begin with ‘XLA’ indicate the changes required to
make the script compatible with torch_xla.

Expected output on trn1.32xlarge (start from a fresh compilation cache, located at /var/tmp/neuron-compile-cache by
default):

284 Chapter 7. PyTorch Neuron

https://pytorch.org/tutorials/beginner/introyt/trainingyt.html

AWS Neuron

2022-04-12 16:15:00.000947: INFO ||NCC_WRAPPER||: No candidate found under /var/tmp/
→˓neuron-compile-cache/USER_neuroncc-1.0.47218.0+162039557/MODULE_18200615679846498221.
2022-04-12 16:15:00.000949: INFO ||NCC_WRAPPER||: Cache dir for the neff: /var/tmp/
→˓neuron-compile-cache/USER_neuroncc-1.0.47218.0+162039557/MODULE_18200615679846498221/
→˓MODULE_0_SyncTensorsGraph.318_18200615679846498221_ip-172-31-69-14.ec2.internal-
→˓8355221-28940-5dc775cd78aa2/83a0fd4a-b07e-4404-aa55-701ab3b2700c
........
Compiler status PASS
2022-04-12 16:18:05.000843: INFO ||NCC_WRAPPER||: Exiting with a successfully compiled␣
→˓graph
2022-04-12 16:18:05.000957: INFO ||NCC_WRAPPER||: No candidate found under /var/tmp/
→˓neuron-compile-cache/USER_neuroncc-1.0.47218.0+162039557/MODULE_5000680699473283909.
2022-04-12 16:18:05.000960: INFO ||NCC_WRAPPER||: Cache dir for the neff: /var/tmp/
→˓neuron-compile-cache/USER_neuroncc-1.0.47218.0+162039557/MODULE_5000680699473283909/
→˓MODULE_1_SyncTensorsGraph.390_5000680699473283909_ip-172-31-69-14.ec2.internal-8355221-
→˓28940-5dc7767e5fc69/7d0a2955-11b4-42e6-b536-6f0f02cc68df
.
Compiler status PASS
2022-04-12 16:18:12.000912: INFO ||NCC_WRAPPER||: Exiting with a successfully compiled␣
→˓graph
----------Training ---------------
Train throughput (iter/sec): 95.06756661972014
Final loss is 0.1979
----------End Training ---------------

If you re-run the training script a second time, you will see messages indicating that the compiled graphs are cached in
the persistent cache from the previous run and that the startup time is quicker:

(aws_neuron_venv_pytorch_p36) [ec2-user@ip-172-31-69-14 mnist_mlp]$ python train.py |&␣
→˓tee log_trainium
2022-04-12 16:21:58.000241: INFO ||NCC_WRAPPER||: Using a cached neff at /var/tmp/neuron-
→˓compile-cache/USER_neuroncc-1.0.47218.0+162039557/MODULE_18200615679846498221/MODULE_0_
→˓SyncTensorsGraph.318_18200615679846498221_ip-172-31-69-14.ec2.internal-8355221-28940-
→˓5dc775cd78aa2/83a0fd4a-b07e-4404-aa55-701ab3b2700c/MODULE_0_SyncTensorsGraph.318_
→˓18200615679846498221_ip-172-31-69-14.ec2.internal-8355221-28940-5dc775cd78aa2.neff.␣
→˓Exiting with a successfully compiled graph
2022-04-12 16:21:58.000342: INFO ||NCC_WRAPPER||: Using a cached neff at /var/tmp/neuron-
→˓compile-cache/USER_neuroncc-1.0.47218.0+162039557/MODULE_5000680699473283909/MODULE_1_
→˓SyncTensorsGraph.390_5000680699473283909_ip-172-31-69-14.ec2.internal-8355221-28940-
→˓5dc7767e5fc69/7d0a2955-11b4-42e6-b536-6f0f02cc68df/MODULE_1_SyncTensorsGraph.390_
→˓5000680699473283909_ip-172-31-69-14.ec2.internal-8355221-28940-5dc7767e5fc69.neff.␣
→˓Exiting with a successfully compiled graph
----------Training ---------------
Train throughput (iter/sec): 93.16748895384832
Final loss is 0.1979
----------End Training ---------------

Multiple graphs can be created during execution since there are differences between some iterations (first, steady state,
last). After the first iteration, the graph for each iteration should remain the same from iteration to iteration. This allows
XLA runtime to execute a previous compiled graph that has been cached in XLA runtime cache.

If the inner training loop has some control-flows, for example for gradient accumulation, the number of compiled
graphs may increase due to the generation and consumption of intermediates as well as additional operations when the
conditional path is taken.

7.4. Training (torch-neuronx) 285

AWS Neuron

Multi-worker data-parallel MLP training using torchrun

Data parallel training allows you to replicate your script across multiple workers, each worker processing a proportional
portion of the dataset, in order to train faster.

The PyTorch distributed utility torchrun can be used to launch multiple processes in a server node for multi-worker
data parallel training.

To run multiple workers in data parallel configuration using torchrun, modify the single-worker training script
train.py as follows (below we use xm as alias for torch_xla.core.xla_model and xmp as alias for torch_xla.
distributed.xla_multiprocessing):

1. Import XLA backend for torch.distributed using import torch_xla.distributed.xla_backend.

2. Use torch.distributed.init_process_group('xla') to initialize PyTorch XLA runtime and Neuron
runtime.

3. Use XLA multiprocessing device loader (MpDeviceLoader) from torch_xla.distributed to wrap PyTorch
data loader.

4. Use xm.optimizer_step(optimizer) to perform allreduce and take optimizer step.

XLA MpDeviceLoader is optimized for XLA and is recommended for best performance. It also takes care of mark-
ing the step for execution (compile and execute the lazily collected operations for an iteration) so no separate xm.
mark_step() is needed.

The following are general best-practice changes needed to scale up the training:

1. Set the random seed to be the same across workers.

2. Scale up the learning rate by the number of workers. Use xm.xrt_world_size() to get the global number of
workers.

3. Add distributed sampler to allow different worker to sample different portions of dataset.

Also, the xm.save() function used to save checkpoint automatically saves only for the rank-0 worker’s parameters.

The resulting script is train_torchrun.py (note again that we import the MLP model from model.py):

Next we use the torchrun utility that is included with torch installation to run multiple processes, each using one
NeuronCore. Use the option nproc_per_node to indicate the number of processes to launch. For example, to run on
two NeuronCores on one Trn1 instance only, do:

torchrun --nproc_per_node=2 train_torchrun.py

NOTE: Currently we only support 1 and 2 worker configurations on trn1.2xlarge and 1, 2, 8, and 32-worker configura-
tions on trn1.32xlarge.

Expected output on trn1.32xlarge (second run to avoid compilations):

----------Training ---------------
----------Training ---------------
... (Info messages truncated)
Train throughput (iter/sec): 163.25353269069706
Train throughput (iter/sec): 163.23261047441036
Final loss is 0.3469
Final loss is 0.1129
----------End Training ---------------
----------End Training ---------------

286 Chapter 7. PyTorch Neuron

AWS Neuron

In another example, we run on two trn1.32xlarge instances launched with EFA-enabled interfaces, using EFA-enabled
security group, and setup using Install PyTorch Neuron on Trn1. NOTE: To run on multiple instances, you will need
to use trn1.32xlarge instances and using all 32 NeuronCores on each instance.

On the rank-0 Trn1 host (root), run with --node_rank=0 using torchrun utility, and --master_addr set to rank-0
host’s IP address:

export FI_EFA_USE_DEVICE_RDMA=1
export FI_PROVIDER=efa
torchrun --nproc_per_node=32 --nnodes=2 --node_rank=0 --master_addr=<root IP> --master_
→˓port=2020 train_torchrun.py

On another Trn1 host, run with --node_rank=1, and --master_addr also set to rank-0 host’s IP address:

export FI_EFA_USE_DEVICE_RDMA=1
export FI_PROVIDER=efa
torchrun --nproc_per_node=32 --nnodes=2 --node_rank=1 --master_addr=<root IP> --master_
→˓port=2020 train_torchrun.py

It is important to launch rank-0 worker with --node_rank=0 to avoid hang.

To train on multiple instances, it is recommended to use a ParallelCluster. For a ParallelCluster example, please see
Train a model on AWS Trn1 ParallelCluster.

Single-worker MLP evaluation on Trainium

After training, the final checkpoint is saved in checkpoints directory. You can run the evaluation step by running the
eval.py script in the same directory as the training script:

cd ~/aws-neuron-samples/torch-neuronx/training/mnist_mlp
python eval.py

This evaluation phase can be merged with the training script to check accuracy, for example at the end of every epoch.
It is kept separate for illustration purpose.

The evaluation script follow similar flow as the training script with the following differences:

• The input data used is the validation subset of the MNIST dataset.

• Only need to loop through the dataset once (no epochs).

• There’s only forward pass through the model, and no backward pass or optimizer update.

• Compute the accuracy across validation set instead of loss per batch.

Expected results (after a second execution to eliminate warmup compilation time during first execution):

----------Evaluating---------------
Test throughput (iter/sec): 47.897945949832845
Accuracy: 0.9273833632469177
----------Done Evaluating---------------

If you get a lower accuracy than above, please check that the training is done with at least 4 epochs.

You can also use PyTorch NeuronX Tracing API for Inference in the evaluation loop. This can be achieved by the
following changes to the eval.py:

• Use device = 'cpu' instead of XLA device.

7.4. Training (torch-neuronx) 287

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start-nccl-base.html#nccl-start-base-setup
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start-nccl-base.html#nccl-start-base-setup
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples

AWS Neuron

• Don’t use mark_step().

• Trace the model at the first iteration to freeze it and precompile for inference:

if idx == 0:
import torch_neuronx
model = torch_neuronx.trace(model, test_x)

However, note that the inference trace API fixed the input tensor shape, so that every input tensor will need to match
the size used during the tracing step. To ensure every batch from DataLoader has the same tensor shape, pass
drop_last=True option when instantiating DataLoader.

test_loader = DataLoader(test_dataset, batch_size=32, drop_last=True)

The script eval_using_trace.py can be compared against eval.py to show the above modifications. It can be
executed using:

python eval_using_trace.py

Expected results (note the large increase in performance when using trace API for inference):

----------Evaluating---------------
Test throughput (iter/sec): 409.0836291417652
Accuracy: 0.9288585186004639
----------Done Evaluating---------------

Known issues and limitations

MLP model is not optimized for performance. For the single-worker training, the performance can be improved by
using MpDeviceLoader which exists in the multiprocessing example. For example, by setting --nproc_per_node=1
in the torchrun example, you will see higher MLP performance.

(aws_neuron_venv_pytorch_p36) [ec2-user@ip-172-31-69-14 mnist_mlp]$ torchrun --nproc_per_
→˓node=1 train_torchrun.py

----------Training ---------------
... (Info messages truncated)
Train throughput (iter/sec): 192.43508922834008
Final loss is 0.2720
----------End Training ---------------

This document is relevant for: Trn1, Trn1n

This document is relevant for: Trn1, Trn1n

288 Chapter 7. PyTorch Neuron

AWS Neuron

PyTorch Neuron for Trainium Hugging Face BERT MRPC task finetuning using Hugging Face Trainer
API

Note: Please use Hugging Face Optimum-Neuron<https://huggingface.co/docs/optimum-neuron/index> for best cov-
erage and support of Hugging Face models running on Trainium and Inferentia devices.

In this tutorial, we show how to run a Hugging Face script that uses Hugging Face Trainer API to do fine-tuning
on Trainium. The example follows the text-classification example which fine-tunes BERT-base model for sequence
classification on the GLUE benchmark.

Table of Contents

• Setup and compilation

• Single-worker training

• Multi-worker training

• Converting BERT pretrained checkpoint to Hugging Face pretrained model format

• Older versions of transformers <4.27.0 or PyTorch Neuron <1.13.0

• Known issues and limitations

Note: Logs used in tutorials do not present latest performance numbers

For latest performance numbers visit Neuron Performance

Setup and compilation

Before running the tutorial please follow the installation instructions at:

Install PyTorch Neuron on Trn1

Please set the storage of instance to 512GB or more if you also want to run through the BERT pretraining and GPT
pretraining tutorials.

For all the commands below, make sure you are in the virtual environment that you have created above before you run
the commands:

source ~/aws_neuron_venv_pytorch/bin/activate

First we install a recent version of HF transformers, scikit-learn and evaluate packages in our environment as well as
download the source matching the installed version. In this example, we use the text classification example from HF
transformers source:

export HF_VER=4.27.4
pip install -U transformers==$HF_VER datasets evaluate scikit-learn
cd ~/
git clone https://github.com/huggingface/transformers --branch v$HF_VER
cd ~/transformers/examples/pytorch/text-classification

7.4. Training (torch-neuronx) 289

https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification

AWS Neuron

Single-worker training

We will run MRPC task fine-tuning following the example in README.md located in the path ~/transformers/
examples/pytorch/text-classification. In this part of the tutorial we will use the Hugging Face model hub’s
pretrained bert-large-uncased model.

Note: If you are using older versions of transformers <4.27.0 or PyTorch Neuron <1.13.0, please see section Older
versions of transformers <4.27.0 or PyTorch Neuron <1.13.0 for necessary workarounds.

We use full BF16 casting using XLA_USE_BF16=1 and compiler flag --model-type=transformer to enable best
performance. First, paste the following script into your terminal to create a “run.sh” file and change it to executable:

tee run.sh > /dev/null <<EOF
#!/usr/bin/env bash
export TASK_NAME=mrpc
export NEURON_CC_FLAGS="--model-type=transformer"
XLA_USE_BF16=1 python3 ./run_glue.py \\
--model_name_or_path bert-large-uncased \\
--task_name \$TASK_NAME \\
--do_train \\
--do_eval \\
--max_seq_length 128 \\
--per_device_train_batch_size 8 \\
--learning_rate 2e-5 \\
--num_train_epochs 5 \\
--save_total_limit 1 \\
--overwrite_output_dir \\
--output_dir /tmp/\$TASK_NAME/ |& tee log_run
EOF

chmod +x run.sh

We optionally precompile the model and training script using neuron_parallel_compile to warm up the persistent graph
cache (Neuron Cache) such that the actual run has fewer compilations (faster run time):

neuron_parallel_compile ./run.sh

Please ignore the results from this precompile run as it is only for extracting and compiling the XLA graphs.

Note: With both train and evaluation options (--do_train and --do_eval), you will encounter harmless error
ValueError: Target is multiclass but average='binary' when using neuron_parallel_compile.

Precompilation is optional and only needed to be done once unless hyperparameters such as batch size are modified.
After the optional precompilation, the actual run will be faster with minimal additional compilations.

./run.sh

If precompilation was not done, the first execution of ./run.sh will be slower due to serial compilations. Rerunning the
same script a second time would show quicker execution as the compiled graphs will be already cached in persistent
cache.

290 Chapter 7. PyTorch Neuron

AWS Neuron

Multi-worker training

The above script would run one worker on one NeuronCore. To run on multiple cores, launch the run_glue.py script
with torchrun using --nproc_per_node=N option to specify the number of workers (N=2 for trn1.2xlarge, and N=2,
8, or 32 for trn1.32xlarge).

Note: If you are using older versions of transformers <4.27.0 or PyTorch Neuron <1.13.0, please see section Older
versions of transformers <4.27.0 or PyTorch Neuron <1.13.0 for necessary workarounds.

The following example runs 2 workers. Paste the following script into your terminal to create a “run_2w.sh” file and
change it to executable:

tee run_2w.sh > /dev/null <<EOF
#!/usr/bin/env bash
export TASK_NAME=mrpc
export NEURON_CC_FLAGS="--model-type=transformer"
XLA_USE_BF16=1 torchrun --nproc_per_node=2 ./run_glue.py \\
--model_name_or_path bert-large-uncased \\
--task_name \$TASK_NAME \\
--do_train \\
--do_eval \\
--max_seq_length 128 \\
--per_device_train_batch_size 8 \\
--learning_rate 2e-5 \\
--num_train_epochs 5 \\
--save_total_limit 1 \\
--overwrite_output_dir \\
--output_dir /tmp/\$TASK_NAME/ |& tee log_run_2w
EOF

chmod +x run_2w.sh

Again, we optionally precompile the model and training script using neuron_parallel_compile to warm up the persistent
graph cache (Neuron Cache), ignoring the results from this precompile run as it is only for extracting and compiling
the XLA graphs:

neuron_parallel_compile ./run_2w.sh

Precompilation is optional and only needed to be done once unless hyperparameters such as batch size are modified.
After the optional precompilation, the actual run will be faster with minimal additional compilations.

./run_2w.sh

During run, you will now notice that the “Total train batch size” is now 16 and the “Total optimization steps” is now
half the number for one worker training.

7.4. Training (torch-neuronx) 291

AWS Neuron

Converting BERT pretrained checkpoint to Hugging Face pretrained model format

If you have a pretrained checkpoint (i.e., from the BERT phase 2 pretraining tutorial), you can run the script be-
low (saved as “convert.py”) to convert BERT pretrained saved checkpoint to Hugging Face pretrained model format.
An example phase 2 pretrained checkpoint can be downloaded from s3://neuron-s3/training_checkpoints/
pytorch/dp_bert_large_hf_pretrain/ckpt_29688.pt. Note that here we also use the bert-large-uncased
model configuration to match the BERT-Large model trained following BERT phase 2 pretraining tutorial.

import os
import sys
import argparse
import torch
import transformers
from transformers import (

BertForPreTraining,
)
import torch_xla.core.xla_model as xm
from transformers.utils import check_min_version
from transformers.utils.versions import require_version

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', type=str, default='bert-large-uncased', help=

→˓"Path to model identifier from huggingface.co/models")
parser.add_argument('--output_saved_model_path', type=str, default='./hf_saved_model

→˓', help="Directory to save the HF pretrained model format.")
parser.add_argument('--checkpoint_path', type=str, required=True, help="Path to␣

→˓pretrained checkpoint which needs to be converted to a HF pretrained model format")
args = parser.parse_args(sys.argv[1:])

model = BertForPreTraining.from_pretrained(args.model_name)
check_point = torch.load(args.checkpoint_path, map_location='cpu')
model.load_state_dict(check_point['model'], strict=False)
model.save_pretrained(args.output_saved_model_path, save_config=True, save_

→˓function=xm.save)
print("Done converting checkpoint {} to HuggingFace saved model in directory {}.".

→˓format(args.checkpoint_path, args.output_saved_model_path))

Run the conversion script as:

python convert.py --checkpoint_path ckpt_29688.pt

After conversion, the new Hugging Face pretrained model is stored in the output directory specified by the
--output_saved_model_path option which is hf_saved_model by default. You will use this directory in the next
step.

Paste the following script into your terminal to create a “run_converted.sh” file and change it to executable: (note that
it uses the converted Hugging Face pretrained model in hf_saved_model directory):

tee run_converted.sh > /dev/null <<EOF
#!/usr/bin/env bash
export TASK_NAME=mrpc
export NEURON_CC_FLAGS="--model-type=transformer"
XLA_USE_BF16=1 python3 ./run_glue.py \\

(continues on next page)

292 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

--model_name_or_path hf_saved_model \\
--tokenizer_name bert-large-uncased \\
--task_name \$TASK_NAME \\
--do_train \\
--do_eval \\
--max_seq_length 128 \\
--per_device_train_batch_size 8 \\
--learning_rate 2e-5 \\
--num_train_epochs 5 \\
--save_total_limit 1 \\
--overwrite_output_dir \\
--output_dir /tmp/\$TASK_NAME/ |& tee log_run_converted
EOF

chmod +x run_converted.sh

If it is the first time running with bert-large-uncased model or if hyperparameters have changed, then the optional
one-time precompilation step can save compilation time:

neuron_parallel_compile ./run_converted.sh

If you have run the single worker training in a previous section, then you can skip the precompilation step and just do:

./run_converted.sh

Older versions of transformers <4.27.0 or PyTorch Neuron <1.13.0

If using older versions of transformers package before 4.27.0 or PyTorch Neuron before 1.13.0, please edit the python
script run_glue.py and add the following lines after the Python imports. They set the compiler flag for transformer
model type and enable data parallel training using torchrun:

Enable torchrun
import os
import torch
import torch_xla.distributed.xla_backend
from packaging import version
from transformers import __version__, Trainer
if version.parse(__version__) < version.parse("4.26.0") and os.environ.get("WORLD_SIZE"):

torch.distributed.init_process_group('xla')

Disable DDP for torchrun
import contextlib
if version.parse(__version__) < version.parse("4.20.0"):

def _wrap_model(self, model, training=True):
model.no_sync = lambda: contextlib.nullcontext()
return model

else:
def _wrap_model(self, model, training=True, dataloader=None):

model.no_sync = lambda: contextlib.nullcontext()
return model

Trainer._wrap_model = _wrap_model
(continues on next page)

7.4. Training (torch-neuronx) 293

AWS Neuron

(continued from previous page)

Workaround for NaNs seen with transformers version >= 4.21.0
https://github.com/aws-neuron/aws-neuron-sdk/issues/593
import transformers
if os.environ.get("XLA_USE_BF16") or os.environ.get("XLA_DOWNCAST_BF16"):

transformers.modeling_utils.get_parameter_dtype = lambda x: torch.bfloat16

Known issues and limitations

The following are currently known issues:

• With torch-neuronx 2.1, HF Trainer API’s use of XLA function xm.mesh_reduce causes "EOFError: Ran
out of input" or "_pickle.UnpicklingError: invalid load key, '!'" errors during Neuron Paral-
lel Compile. This is an issue with the trial execution of empty NEFFs and should not affect the normal execution
of the training script.

• Multi-worker training using Trainer API resulted in too many graph compilations for HF transform-
ers>=4.35: This is resolved with HF transformers>=4.37 with the additional workarounds as shown in the
ticket<https://github.com/aws-neuron/aws-neuron-sdk/issues/813>.

• Long compilation times: this can be alleviated with neuron_parallel_compile tool to extract graphs from a
short trial run and compile them in parallel ahead of the actual run, as shown above.

• When precompiling using batch size of 16 on trn1.2xlarge, you will see ERROR ||PARALLEL_COMPILE||:
parallel compilation with neuronx-cc exited with error.Received error code: -9. To
workaround this error, please set NEURON_PARALLEL_COMPILE_MAX_RETRIES=1 in the environment.

• With release 2.6 and transformers==4.25.1, using neuron_parallel_compile tool to run run_glue.py
script with both train and evaluation options (--do_train and --do_eval), you will encounter harmless error
ValueError: Target is multiclass but average='binary'

• Reduced accuracy for RoBerta-Large is seen with Neuron PyTorch 1.12 (release 2.6) in FP32 mode with
compiler BF16 autocast. The workaround is to set NEURON_CC_FLAGS=”–auto-cast none” or set NEU-
RON_RT_STOCHASTIC_ROUNDING_EN=1.

• When using DDP in PT 1.13, compilation of one graph will fail with “Killed” error message for
bert-large-uncased. For bert-base-cased, the final MRPC evaluation accuracy is 31% which is lower
than expected. These issues are being investigated and will be fixed in an upcoming release. For now, DDP is
disabled with the workaround shown above in Multi-worker Training.

• When using DDP in PT 1.13 with neuron_parallel_compile precompilation, you will hit an error Rank 1 has
393 params, while rank 0 has inconsistent 0 params.. To workaround this error, add the follow
code snippet at the top of run_glue.py to skip the problematic shape verification code during precompilation:

import os
if os.environ.get("NEURON_EXTRACT_GRAPHS_ONLY", None):

import torch.distributed as dist
_verify_param_shape_across_processes = lambda process_group, tensors, logger=None:␣

→˓True

• Variable input sizes: When fine-tune models such as dslim/bert-base-NER using the token-classification exam-
ple, you may encounter timeouts (lots of “socket.h:524 CCOM WARN Timeout waiting for RX” messages) and
execution hang. This occurs because NER dataset has different sample sizes, which causes many recompilations
and compiled graph (NEFF) reloads. Furthermore, different data parallel workers can execute different compiled

294 Chapter 7. PyTorch Neuron

https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification
https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification

AWS Neuron

graph. This multiple-program multiple-data behavior is currently unsupported. To workaround this issue, please
pad to maximum length using the Trainer API option --pad_to_max_length.

• When running HuggingFace GPT fine-tuning with transformers version >= 4.21.0 and using XLA_USE_BF16=1
or XLA_DOWNCAST_BF16=1, you might see NaNs in the loss immediately at the first step. This issue
occurs due to large negative constants used to implement attention masking (https://github.com/huggingface/
transformers/pull/17306). To workaround this issue, please use transformers version <= 4.20.0.

• When using Trainer API option –bf16, you will see “RuntimeError: No CUDA GPUs are available”. To
workaround this error, please add “import torch; torch.cuda.is_bf16_supported = lambda: True” to the Python
script (i.e. run_glue.py). (Trainer API option –fp16 is not yet supported).

The following are resolved issues:

• Using neuron_parallel_compile tool to run run_glue.py script with both train and evaluation options
(--do_train and --do_eval), you will encounter INVALID_ARGUMENT error. To avoid this, only en-
able train for parallel compile (--do_train). This will cause compilations during evaluation step. The IN-
VALID_ARGUMENT error is fixed in release 2.6 together with latest transformers package version 4.25.1.

• When running HuggingFace BERT (any size) fine-tuning tutorial or pretraining tutorial with transformers ver-
sion >= 4.21.0 and < 4.25.1 and using XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1, you will see NaNs
in the loss immediately at the first step. More details on the issue can be found at pytorch/xla#4152. The
workaround is to use transformers version < 4.21.0 or >= 4.25.1, or add transformers.modeling_utils.
get_parameter_dtype = lambda x: torch.bfloat16 to your Python script (i.e. run_glue.py).

• Some recompilation is seen at the epoch boundary even after neuron_parallel_compile is used. This can be
fixed by using the same number of epochs both during precompilation and the actual run.

• When running multi-worker training, you may see the process getting killed at the time of model saving on
trn1.2xlarge. This happens because the transformers trainer.save_model api uses xm.save for saving mod-
els. This api is known to cause high host memory usage in multi-worker setting see Saving and Loading XLA
Tensors in . Coupled with a compilation at the same time results in a host OOM. To avoid this issue, we can: Pre-
compile all the graphs in multi-worker training. This can be done by running the multi-worker training first with
neuron_parallel_compile <script> followed by the actual training. This would avoid the compilation at
model save during actual training.

This document is relevant for: Trn1, Trn1n

This document is relevant for: Trn1, Trn1n

Fine-tune T5 model on Trn1

Note: Update 01/03/24: This tutorial is currently broken and the AWS Neuron team is working on the fix.

In this tutorial, we show how to fine-tune a Hugging Face (HF) T5 model using HF trainer API. This example fine-tunes
a T5 model for a text-summarization task on CNN/DailyMail dataset.

Table of Contents

• Setup and compilation

• Single-worker training

• Multi-worker Training

• Known issues and limitations

7.4. Training (torch-neuronx) 295

https://github.com/huggingface/transformers/pull/17306
https://github.com/huggingface/transformers/pull/17306
https://github.com/pytorch/xla/issues/4152
https://github.com/pytorch/xla/blob/master/API_GUIDE.md
https://github.com/pytorch/xla/blob/master/API_GUIDE.md
https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization

AWS Neuron

Note: Logs used in tutorials do not present latest performance numbers

For latest performance numbers visit Neuron Performance

Setup and compilation

Before running the tutorial please follow the installation instructions at:

Install PyTorch Neuron on Trn1

Please set the storage of instance to 512GB or more if you also want to run through the BERT pretraining and GPT
pretraining tutorials.

For all the commands below, make sure you are in the virtual environment that you have created above before you run
the commands:

source ~/aws_neuron_venv_pytorch/bin/activate

First we install a recent version of HF transformers, scikit-learn and evaluate packages in our environment as well as
download the source matching the installed version. In this example, we chose version 4.26.0 and the text summarization
example from HF transformers source:

export HF_VER=4.26.0
pip install -U transformers==$HF_VER datasets evaluate scikit-learn rouge_score␣
→˓pandas==1.4.0
cd ~/
git clone https://github.com/huggingface/transformers --branch v$HF_VER
cd ~/transformers/examples/pytorch/summarization

Single-worker training

We will run text-summarization fine-tuning task following the example in README.md located in the path ~/trans-
formers/examples/pytorch/summarization.

We use full BF16 casting using XLA_USE_BF16=1 to enable best performance. First, paste the following script into
your terminal to create a “run.sh” file and change it to executable:

tee run.sh > /dev/null <<EOF
#!/bin/bash
if [\$NEURON_PARALLEL_COMPILE == "1"]
then

XLA_USE_BF16=1 python3 ./run_summarization.py \
--model_name_or_path t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--do_train \
--do_eval \
--source_prefix "summarize: " \
--max_source_length 512 \
--per_device_train_batch_size 32 \
--per_device_eval_batch_size 4 \
--overwrite_output_dir \

(continues on next page)

296 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

--pad_to_max_length \
--max_steps 100 \
--max_eval_samples 100 \
--gradient_accumulation_steps=32 \
--output_dir /tmp/tst-summarization |& tee log_run

else
XLA_USE_BF16=1 python3 ./run_summarization.py \
--model_name_or_path t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--do_train \
--do_eval \
--source_prefix "summarize: " \
--max_source_length 512 \
--per_device_train_batch_size 32 \
--per_device_eval_batch_size 4 \
--overwrite_output_dir \
--pad_to_max_length \
--gradient_accumulation_steps=32 \
--output_dir /tmp/tst-summarization |& tee log_run

fi
EOF

chmod +x run.sh

We optionally precompile the model and training script using neuron_parallel_compile to warm up the persistent graph
cache (Neuron Cache) such that the actual run has fewer compilations (faster run time):

neuron_parallel_compile ./run.sh

Note: For these auto-regressive models, do not run the predict_with_generate method when doing the precompile
step. This is because the neuron_parallel_compile utility will run the training script in graph extraction mode and
no actual execution of the graph will be done. Hence, the outputs at each step are invalid. Since the auto-regressive
generation at each step is dependent on output of previous step, the generate step would fail since the outputs from
previous steps are invalid.

Precompilation is optional and only needs to be done once unless hyperparameters such as batch size are modified.
After the optional precompilation, the actual run will be faster with minimal additional compilations.

./run.sh

If precompilation was not done, the first execution of ./run.sh will be slower due to serial compilations. Rerunning the
same script a second time would show quicker execution as the compiled graphs will be already cached in persistent
cache.

Running the above script will run the T5-small fine-tuning on a single process.

Note: As you may have noticed, we are not running the predict_with_generate as part of training. This is because,
predict_with_generate requires auto-regressive sampling where the inputs to the decoder are created by appending
outputs of previous steps. This causes the inputs to the decoder to change shape and thereby resulting in a new graph.
In other words, the current generate api provided by HF transformers leads to repeated compilations. We are working
on building a Neuron friendly version of generate api and it will be made available as part of future release. This
will enable us to run predict_with_generate as part of training script.

As a workaround, we can run the predict_with_generate on CPU after the model is trained. Once training is

7.4. Training (torch-neuronx) 297

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/frameworks/torch/torch-neuronx/api-reference-guide/training/pytorch-neuron-parallel-compile.html?highlight=neuron_parallel_compile

AWS Neuron

completed, a trained checkpoint would be saved. We can load the trained model and run the predict_with_generate
to compute the final accuracy.

To do so, in run_summarization.py, add the following before transformers get imported. This can be done by adding
the below lines before all the imports:

import libneuronxla
Disable configuring xla env
def _configure_env():

pass
libneuronxla.configure_environment = _configure_env

You can now run the following and it should run the predict method on CPU device.

NEURON_NUM_DEVICES=0 python3 ./run_summarization.py \
--model_name_or_path <CHECKPOINT_DIR> \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--do_predict \
--predict_with_generate \
--source_prefix "summarize: " \
--per_device_eval_batch_size 4 \
--max_source_length 512 \
--pad_to_max_length \
--no_cuda \
--output_dir /tmp/tst-summarization |& tee log_run

Note: To run on CPU, we need to make sure that NEURON_NUM_DEVICES is set to 0. This will make sure no
xla_devices are created and the trainer would use the default device (CPU).

Multi-worker Training

The above script will run one worker on one NeuronCore. To run on multiple cores, first add these lines to top of
run_summarization.py to disable Distributed Data Parallel (DDP) when using torchrun (see Known issues and limita-
tions section below):

Disable DDP for torchrun
from transformers import __version__, Trainer
Trainer._wrap_model = lambda self, model, training=True, dataloader=None: model

Then launch the run_summarization.py script with torchrun using –nproc_per_node=N option to specify the number
of workers (N=2 for trn1.2xlarge, and N=2, 8, or 32 for trn1.32xlarge). The following example runs 2 workers. Paste
the following script into your terminal to create a “run_2w.sh” file and change it to executable:

tee run_2w.sh > /dev/null <<EOF
#!/bin/bash
if [\$NEURON_PARALLEL_COMPILE == "1"]
then

XLA_USE_BF16=1 torchrun --nproc_per_node=2 ./run_summarization.py \
--model_name_or_path t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--do_train \

(continues on next page)

298 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

--do_eval \
--source_prefix "summarize: " \
--max_source_length 512 \
--per_device_train_batch_size 32 \
--per_device_eval_batch_size 4 \
--overwrite_output_dir \
--pad_to_max_length \
--max_steps 100 \
--max_eval_samples 100 \
--gradient_accumulation_steps=32 \
--output_dir /tmp/tst-summarization |& tee log_run

else
XLA_USE_BF16=1 torchrun --nproc_per_node=2 ./run_summarization.py \
--model_name_or_path t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--do_train \
--do_eval \
--source_prefix "summarize: " \
--max_source_length 512 \
--per_device_train_batch_size 32 \
--per_device_eval_batch_size 4 \
--overwrite_output_dir \
--pad_to_max_length \
--gradient_accumulation_steps=32 \
--output_dir /tmp/tst-summarization |& tee log_run

fi
EOF

chmod +x run_2w.sh

Again, we optionally precompile the model and training script using neuron_parallel_compile to warm up the persistent
graph cache (Neuron Cache), ignoring the results from this precompile run as it is only for extracting and compiling
the XLA graphs:

neuron_parallel_compile ./run_2w.sh

Precompilation is optional and only needs to be done once unless hyperparameters such as batch size are modified.
After the optional precompilation, the actual run will be faster with minimal additional compilations.

./run_2w.sh

During run, you will notice that the “Total train batch size” is now 8 and the “Total optimization steps” is now half the
number for one worker training. Also, if you open neuron-top in a separate terminal, you should see 2 cores been
utilized.

To train T5-large model, you can set the model_name_or_path argument to t5-large. Please note, currently running
t5-large on trn1-2xl machine can result in HOST OOM during compilation. Hence, it is recommended that you run a
t5-large model training on a trn1-32xl machine.

On a trn1-32xl machine, you can create a run_32w.sh on the terminal using the following commands:

tee run_32w.sh > /dev/null <<EOF
#!/bin/bash

(continues on next page)

7.4. Training (torch-neuronx) 299

AWS Neuron

(continued from previous page)

if [\$NEURON_PARALLEL_COMPILE == "1"]
then

XLA_USE_BF16=1 torchrun --nproc_per_node=32 ./run_summarization.py \
--model_name_or_path t5-large \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--do_train \
--do_eval \
--source_prefix "summarize: " \
--max_source_length 512 \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 4 \
--overwrite_output_dir \
--pad_to_max_length \
--max_steps 100 \
--max_eval_samples 100 \
--gradient_accumulation_steps=11 \
--output_dir /tmp/tst-summarization |& tee log_run

else
XLA_USE_BF16=1 torchrun --nproc_per_node=32 ./run_summarization.py \
--model_name_or_path t5-large \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--do_train \
--do_eval \
--source_prefix "summarize: " \
--max_source_length 512 \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 4 \
--overwrite_output_dir \
--pad_to_max_length \
--gradient_accumulation_steps=11 \
--output_dir /tmp/tst-summarization |& tee log_run

fi
EOF

chmod +x run_32w.sh

You can now follow the same steps as listed above. This script would run a t5-large model by launching a training script
using 32 data-parallel workers.

Known issues and limitations

The following are currently known issues:

• Long compilation times: this can be alleviated with neuron_parallel_compile tool to extract graphs from a
short trial run and compile them in parallel ahead of the actual run, as shown above.

• T5-Large compilation causing processes to get killed on trn1-2xl: It is recommended to t5-largemodel training
on a trn1-32xl machine, as it avoids CPU OOM and also provides faster training by making use of 32 data-parallel
workers.

This document is relevant for: Trn1, Trn1n

300 Chapter 7. PyTorch Neuron

AWS Neuron

This document is relevant for: Trn1, Trn1n

ZeRO-1 Tutorial

What is ZeRO-1?

ZeRO-1 (Zero Redundancy Optimizer Stage 1, https://arxiv.org/abs/1910.02054) is an optimization technique for large-
scale deep learning models. It is a memory efficient variation of data parallelism. ZeRO leverages the aggregate com-
putation and memory resources of data parallelism to reduce the memory and compute requirements of each accelerator
used for model training. ZeRO reduces the memory consumption of each accelerator by partitioning the various model
training states (weights, gradients, and optimizer states) across the available devices in the distributed training hard-
ware. ZeRO is being implemented as incremental stages of optimizations. In stage 1, the optimizer states (e.g., for
Adam optimizer, 32-bit weights, and the first, and second moment estimates) are partitioned across the processes, so
that each process updates only its partition.

We implemented an XLA-friendly version of ZeRO-1 and it has been merged in open-source PyTorch/XLA project.
Users can use it to enable ZeRO-1 algorithm by simply wrapping the origin optimizer as shown below.

Before:
optimizer = torch.optim.Adam(model.parameters(), lr=0.0001)

After
optimizer = ZeroRedundancyOptimizer(model.parameters(), torch.optim.Adam, lr=0.0001)

Then just call optimizer.step() directly, the wrapped optimizer will handle the distributed operations automatically.

The above code snippet illustrates the basic usage. Generally, users can use ZeRO-1 optimizer like a normal optimizer.
In addition, ZeroRedundancyOptimizer also provides other features: enable gradient clipping or use other data type
for wrapped optimizer. Note that though the most of optimizers can be used with ZeRO-1, optimizers that compute
norm for parameters (e.g. LAMB) might lead to accuracy disparities compared to using original local optimizer when
using ZeRO-1, because these optimizers cannot get full parameters but shards.

7.4. Training (torch-neuronx) 301

https://arxiv.org/abs/1910.02054

AWS Neuron

Usage

To enable ZeRO-1 optimizer, just import it and replace origin optimizer with ZeRO-1 wrapped version

from torch_xla.distributed.zero_redundancy_optimizer import ZeroRedundancyOptimizer
...
...

device = xm.xla_device()
model = model.to(device)

optimizer = ZeroRedundancyOptimizer(model.parameters(), AdamW, lr=0.001)

Then in training loop, just call optimizer.step() , note that we should not use xm.reduce_gradients() or xm.
optimizer_step() as gradient reduction will be handle by ZeRO-1.

...
loss.backward()
xm.mark_step()
optimizer.step()
xm.mark_step()

ZeRO-1 optimizer also provides some additional features, user can pass these arguments to the wrapper constructor:

• change optimizer_dtype to choose data used by optimizer, default is torch.float32

• change grad_clipping to enable grad clipping, default is true

• change max_norm to determine the maximum norm value used by grad clipping, default is 1.0

GPT2-XL Pretraining Tutorial

Table of contents

• Setup

• Dataset

• Training

• Known Issues, Work-arounds and Limitations

Setup

We use single Trn1.32xlarge instance. Follow Install PyTorch Neuron on Trn1 to setup the environment first. For all
the commands below, make sure you are in the virtual environment that you have created above before you run the
commands:

requirements.txt: We pin the following Hugging Face Library versions necessary for the tutorial

transformers==4.27.3
accelerate==0.17
tensorboard==2.12.2

302 Chapter 7. PyTorch Neuron

AWS Neuron

source ~/aws_neuron_venv_pytorch/bin/activate

git clone https://github.com/aws-neuron/aws-neuron-samples.git
cd aws-neuron-samples/torch-neuronx/training/zero1_gpt2
python3 -m pip install -r requirements.txt

The specific files you need for this tutorial:

• config_1p5B_gpt2.json: The model configuration used in the tutorial for GPT 2.7B Neo

• neuron_utils.py: includes utility functions and the logging tools

• run_clm_no_trainer.py: the main training script that runs the actual training

• run_clm.sh: the shell script to launch the training job

Dataset

For the dataset, we use the wikitext dataset, specifically wikitext-103-raw-v1, provided by the HuggingFace https:
//huggingface.co/datasets/wikitext. The data will be preprocessed the first time running through the training script and
then preprocessed data will be cached in the HuggingFace cache directory for any future training runs.

If the main process downloads the dataset, tokenizes the data and groups them together successfully, the expected
output would be as below at the beginning of the training.

***** Running training *****
Num examples = 114248
Num Epochs = 29
Instantaneous batch size per device = 1
Total train batch size (w. parallel, distributed & accumulation) = 32
Gradient Accumulation steps = 1
Total optimization steps = 100000

Training

The GPT2 python fine-tuning script is adapted from the example run_clm_no_trainer.py in https://github.com/
huggingface/transformers/tree/main/examples/pytorch/language-modeling. It incorporates the Accelerate https://
github.com/huggingface/accelerate. Given its beta stage, some modifications are needed, along with the bridge code
to XLA. Particularly, some workarounds to support Accelerate for the training script are listed in “Known Issues
Workarounds and Limitations” below.

In this example, we use GPT2-xl as example, and show the training steps with mixed precision (bfloat16 and float32)

• single node training:

compile graphs
neuron_parallel_compile bash run_clm.sh MIXED wikitext-103-raw-v1
bash run_clm.sh MIXED wikitext-103-raw-v1

• multi-node training, run:

sbatch run_clm_compile.slurm

then

7.4. Training (torch-neuronx) 303

https://huggingface.co/datasets/wikitext
https://huggingface.co/datasets/wikitext
https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm_no_trainer.py
https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling
https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate

AWS Neuron

sbatch run_clm.slurm

Known Issues, Work-arounds and Limitations

1. Error message: ValueError: invalid literal for int() with base 10: ''. Simply re-run the script
can solve this issue. This issue is already solved in the newer versions of transformers, see https://github.com/
huggingface/transformers/pull/22427.

2. Accelerator API workarounds:

• Error message: “Gradient accumulation is not supported on TPU. Please set gradient_accumulation_steps
to 1 and don’t pass in a GradientAccumulationPlugin object.” More context here: https://github.com/
huggingface/accelerate/pull/479. The training still works by commenting out the assertion and avoid using
the accumulation wrapper with accelerator.accumulate(model)

• Accelerator.prepare call: We have noticed that using the optimizer returned by this API are not directly
reusable. It is due to gaps in configuring accelerate API for XLA devices.

This document is relevant for: Trn1, Trn1n

This document is relevant for: Trn1, Trn1n

Analyze for Training Tutorial

This tutorial explains how to analyze a model for training support using via torch-neuronx.

Note: For analyzing models for inference support via torch-neuronx, please refer to torch_neuronx.analyze()

Setup

For this tutorial we’ll be using two scripts: supported.py and unsupported.py. Create these files by copy pasting
the below code to their respective files.

supported.py

import torch
import torch_xla.core.xla_model as xm

class NN(torch.nn.Module):
def __init__(self):

super().__init__()

self.layer1 = torch.nn.Linear(4,4)
self.nl1 = torch.nn.ReLU()
self.layer2 = torch.nn.Linear(4,2)
self.nl2 = torch.nn.Tanh()

def forward(self, x):
x = self.nl1(self.layer1(x))
return self.nl2(self.layer2(x))

(continues on next page)

304 Chapter 7. PyTorch Neuron

https://github.com/huggingface/transformers/pull/22427
https://github.com/huggingface/transformers/pull/22427
https://github.com/huggingface/accelerate/pull/479
https://github.com/huggingface/accelerate/pull/479

AWS Neuron

(continued from previous page)

def main():
device = xm.xla_device()

model = NN().to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
loss_fn = torch.nn.MSELoss()

inp = torch.rand(4)
target = torch.tensor([1,0])

model.train()
for epoch in range(2):

optimizer.zero_grad()
inp = inp.to(device)
target = target.to(device)
output = model(inp)
loss = loss_fn(output,target)
loss.backward()
optimizer.step()
xm.mark_step()

if __name__ == '__main__':
main()

unsupported.py

import torch
import torch_xla.core.xla_model as xm

class UnsupportedModel(torch.nn.Module):
def __init__(self):

super().__init__()

def forward(self, x):
y = torch.fft.fft(x)
x = x + 10
return x * y

def main():
device = xm.xla_device()

model = UnsupportedModel().to(device)

inp = torch.rand(4)

model.train()
for epoch in range(1):

inp = inp.to(device)
output = model(inp)

(continues on next page)

7.4. Training (torch-neuronx) 305

AWS Neuron

(continued from previous page)

xm.mark_step()

if __name__ == '__main__':
main()

Running analyze via neuron_parallel_compile

To analyze a model, we supply the training script to the analyze command, which is shipped with
neuron_parallel_compile. The command is:

neuron_parallel_compile --command analyze python supported.py

This will generate a lot of output showing a lot of compilation statuses. Here’s a snippet of the output when running
the above command.

.2023-05-25 00:43:43.000394: 776642 INFO ||ANALYZE||: Compiling /tmp/model_analyis_
→˓graphs/compare_7841189860629745939_23.hlo.pb using following command: neuronx-cc␣
→˓compile --target=trn1 --framework XLA /tmp/model_analyis_graphs/compare_
→˓7841189860629745939_23.hlo.pb --verbose=35 --query-compute-placement
2023-05-25 00:43:43.000418: 776642 INFO ||ANALYZE||: Compiling /tmp/model_analyis_
→˓graphs/multiply_15640857564712679356_53.hlo.pb using following command: neuronx-cc␣
→˓compile --target=trn1 --framework XLA /tmp/model_analyis_graphs/multiply_
→˓15640857564712679356_53.hlo.pb --verbose=35 --query-compute-placement
.
Compiler status PASS
2023-05-25 00:43:43.000549: 776642 INFO ||ANALYZE||: Compiling /tmp/model_analyis_
→˓graphs/subtract_1927104012014828209_49.hlo.pb using following command: neuronx-cc␣
→˓compile --target=trn1 --framework XLA /tmp/model_analyis_graphs/subtract_
→˓1927104012014828209_49.hlo.pb --verbose=35 --query-compute-placement
...
Compiler status PASS

The analysis report will be generated as a JSON file. The location of the report is shown as the last log entry:

2023-05-25 00:43:49.000252: 776642 INFO ||ANALYZE||: Removing existing report /home/
→˓ubuntu/analyze_for_training/model_analysis_result/result.json
2023-05-25 00:43:49.000252: 776642 INFO ||ANALYZE||: Model analysis completed. Report -
→˓ /home/ubuntu/analyze_for_training/model_analysis_result/result.json

Note: Note that if a report is already present in the specified path, analyze will remove/overwrite it.

The report generated running the above command looks like:

{
"torch_neuronx_version": "1.13.0.1.6.1",
"neuronx_cc_version": "2.5.0.28+1be23f232",
"support_percentage": "100.00%",
"supported_operators": {

"aten": {
"aten::permute": 8,

(continues on next page)

306 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

"aten::add": 8,
"aten::mul": 8,
"aten::expand": 18,
"aten::mm": 10,
"aten::mse_loss_backward": 12,
"aten::relu": 3,
"aten::threshold_backward": 4,
"aten::squeeze": 4,
"aten::view": 4,
"aten::pow": 2,
"aten::mse_loss": 2,
"aten::tanh": 2

}
},
"unsupported_operators": {

"aten": []
}

}

Note: Note that the torch_neuronx and neuronx_cc versions may be different from this example

Understanding analyze report for Unsupported Models

Default Verbosity

Let’s run analyze for unsupported.py

neuron_parallel_compile --command analyze python unsupported.py

Here is the report generated by the above command:

{
"torch_neuronx_version": "1.13.0.1.6.1",
"neuronx_cc_version": "2.5.0.28+1be23f232",
"support_percentage": "60.00%",
"supported_operators": {

"aten": {
"aten::add": 2,
"aten::mul": 1

}
},
"unsupported_operators": {

"aten": [
{

"kind": "aten::mul",
"failureAt": "neuronx-cc",
"call": "test2_unsup.py 24"

}
]

(continues on next page)

7.4. Training (torch-neuronx) 307

AWS Neuron

(continued from previous page)

}
}

In the list of unsupported operators we are provided the specific aten op that failed, and where that operator is in the
training script.

One thing to notice is that the support_percentage doesn’t exactly add up. This is because the
support_percentage is calculated based on the supported number of XLA/HLO instructions (explained more in
the next section). To see the specific XLA/HLO op lowerings, use the flag --analyze-verbosity 1, as the default
is 2.

The last thing is that a specific aten operator can be supported and unsupported simultaneously. In our example, this
can be seen with aten::mul. This is due to the configuration of the aten op. The below section will describe what
went wrong with the aten::mul op.

Lower Level Verbosity

Let’s run again with lower verbosity level:

neuron_parallel_compile --command analyze --analyze-verbosity 1 python unsupported.py

The report looks like:

{
"torch_neuronx_version": "1.13.0.1.6.1",
"neuronx_cc_version": "2.5.0.28+1be23f232",
"support_percentage": "60.00%",
"supported_operators": {

"aten": {
"aten::mul": 1,
"aten::add": 2

},
"xla": [

"f32[] multiply(f32[], f32[])",
"f32[4]{0} broadcast(f32[]), dimensions={}",
"f32[4]{0} add(f32[4]{0}, f32[4]{0})"

]
},
"unsupported_operators": {

"aten": [
{

"kind": "aten::mul",
"failureAt": "neuronx-cc",
"call": "test2_unsup.py 24"

}
],
"xla": [

{
"hlo_instruction": "c64[4]{0} convert(f32[4]{0})",
"aten_op": "aten::mul"

},
{

(continues on next page)

308 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

"hlo_instruction": "c64[4]{0} multiply(c64[4]{0}, c64[4]{0})",
"aten_op": "aten::mul"

}
]

}
}

This report provides both the aten operator and the failed XLA/HLO instructions. There will be more HLO instructions
than aten ops since an aten op generally lowers to multiple HLO instructions. As a result, the support_percentage
field doesn’t exactly line up with the aten operator count, but does line up the XLA/HLO instruction count. This level of
verbosity is intended for use when you have the ability to modify the model’s HLO lowering, or generally have insight
into the HLO lowering.

As mentioned before, the aten::mul op appears to be both supported and unsupported. This is because the compiler
does not support a specific configuration of aten::mul, which can be seen more clearly with the HLO lowering. In
the above example, the aten::mul operator is unsupported since at least one parameter provided was a complex type
(C64), which is unsupported by neuronx-cc.

This concludes the tutorial. The API for analyze can be found within neuron_parallel_compile

This document is relevant for: Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

Neuron Custom C++ Operators in MLP Training

In this tutorial we’ll demonstrate how to prepare a PyTorch model that contains a custom operator (ie. CppExtension)
for Neuron compilation to run on Trainium EC2 instances. To learn more about Neuron CustomOps see Neuron Custom
C++ Operators [Beta]. For a deeper dive on MNIST or Multi-Layer Perceptron models, see the Multi-Layer Perceptron
Training Tutorial. This tutorial assumes the reader is familiar with PyTorch Custom Extensions.

Table of Contents

• Setup Environment and Download Examples

• Basic PyTorch Custom Relu Operator

• Multi-layer perceptron MNIST model

• Training the MLP model on CPU

• Neuron Relu CustomOp

• Training the MLP model on Trainium

7.4. Training (torch-neuronx) 309

https://pytorch.org/tutorials/advanced/cpp_extension.html

AWS Neuron

Setup Environment and Download Examples

Before running the tutorial please follow the installation instructions at:

• pytorch-neuronx-install on Trn1

Note: The name of aws-neuronx-gpsimd-customop has been changed to aws-neuronx-gpsimd-customop-lib
as of the neuron 2.10 release.

Note: Custom C++ Operators are supported as of Neuron SDK Version 2.7 as a beta feature. As such this feature is
not installed by default, additional tooling and library packages (RPM and DEB) are required.

For AL2023 only, the following packages need be installed as dependencies:

sudo yum install libnsl
sudo yum install libxcrypt-compat

On AL2 and AL2023, they can be installed with the following commands:

sudo yum remove python3-devel -y
sudo yum remove aws-neuronx-gpsimd-tools-0.* -y
sudo yum remove aws-neuronx-gpsimd-customop-lib-0.* -y

sudo yum install python3-devel -y
sudo yum install aws-neuronx-gpsimd-tools-0.* -y
sudo yum install aws-neuronx-gpsimd-customop-lib-0.* -y

On Ubuntu, they can be installed with the following commands:

sudo apt-get remove python3-dev -y
sudo apt-get remove aws-neuronx-gpsimd-tools=0.* -y
sudo apt-get remove aws-neuronx-gpsimd-customop-lib=0.* -y

sudo apt-get install python3-dev -y
sudo apt-get install aws-neuronx-gpsimd-tools=0.* -y
sudo apt-get install aws-neuronx-gpsimd-customop-lib=0.* -y

For all the commands below, make sure you are in the virtual environment that you have created above before you run
the commands:

source ~/aws_neuron_venv_pytorch/bin/activate

Install dependencies for PyTorch Custom Extensions in your environment by running:

pip install regex
pip install ninja

The ninja package is only needed for the reference CPU example. It is not needed by Neuron to run on Trainium
instances.

To download the source code for this tutorial, do:

310 Chapter 7. PyTorch Neuron

AWS Neuron

git clone https://github.com/aws-neuron/aws-neuron-samples.git
cd aws-neuron-samples/torch-neuronx/training/customop_mlp

In the customop_mlp directory there are two subdirectories. The pytorch directory contains an example model and
training script using a custom operator that runs using the cpu device with standard PyTorch APIs and libraries (ie.
not specific to AWS/Neuron). The neuron directory contains a version of the same model and training script with the
custom operator ported to Neuron to run on trn1 using the XLA device.

Basic PyTorch Custom Relu Operator

For the next few sections we’ll review the example model in the pytorch directory. This is a condensed and simplified
explanation of PyTorch C++ Extensions, for more details see the PyTorch documentation. In my_ops.pywe implement
a custom relu activation op as a torch autograd function so that we can use it in a training loop:

import torch

torch.ops.load_library('librelu.so')

class Relu(torch.autograd.Function):
@staticmethod
def forward(ctx, input):

ctx.save_for_backward(input)
return torch.ops.my_ops.relu_forward(input)

@staticmethod
def backward(ctx, grad):

input, = ctx.saved_tensors
return torch.ops.my_ops.relu_backward(grad, input), None

Notice that here we first load librelu.so using the load_library API. And then call the relu_forward and
relu_backward functions from our library within the relevant static methods.

We implemented these two library functions in the relu.cpp file:

torch::Tensor relu_forward(const torch::Tensor& t_in) {
...
t_out_acc[i][j] = t_in_acc[i][j] > 0.0 ? t_in_acc[i][j] : 0.0;
...

}

torch::Tensor relu_backward(const torch::Tensor& t_grad, const torch::Tensor& t_in) {
...
t_out_acc[i][j] = t_in_acc[i][j] > 0.0 ? t_grad_acc[i][j] : 0.0;
...

}

TORCH_LIBRARY(my_ops, m) {
m.def("relu_forward", &relu_forward);
m.def("relu_backward", &relu_backward);

}

And then built them into a library using the PyTorch Cpp Extension APIs in the build.py script:

7.4. Training (torch-neuronx) 311

https://pytorch.org/tutorials/advanced/cpp_extension.html

AWS Neuron

torch.utils.cpp_extension.load(
name='librelu',
sources=['relu.cpp'],
is_python_module=False,
build_directory=os.getcwd()

)

Run python build.py to produce the librelu.so library.

Multi-layer perceptron MNIST model

In model.py, we define the multi-layer perceptron (MLP) MNIST model with 3 linear layers and a custom ReLU
activation, followed by a log-softmax layer. Highlighted below are the relevant custom changes in the model.py file:

import torch
import torch.nn as nn
from torch.nn import functional as F
import my_ops

Declare 3-layer MLP for MNIST dataset
class MLP(nn.Module):

def __init__(self, input_size = 28 * 28, output_size = 10, layers = [120, 84]):
super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, layers[0])
self.fc2 = nn.Linear(layers[0], layers[1])
self.fc3 = nn.Linear(layers[1], output_size)

def forward(self, x):
f1 = self.fc1(x)
r1 = my_ops.Relu.apply(f1)
f2 = self.fc2(r1)
r2 = my_ops.Relu.apply(f2)
f3 = self.fc3(r2)
return torch.log_softmax(f3, dim=1)

Training the MLP model on CPU

In the train_cpu.py script we load the MNIST train dataset, instantiate the MLP model, and use device='cpu' to
execute on the host CPU. Expected CPU output:

----------Training ---------------
Train throughput *(*iter/sec*)*: *286*.96994718801335
Final loss is *0*.1040
----------End Training ---------------

312 Chapter 7. PyTorch Neuron

AWS Neuron

Neuron Relu CustomOp

Now switch over into the neuron directory. To migrate our PyTorch customOp to Neuron, we have to make a few
small changes. First, we create a new shape.cpp file to implement our shape function as required by XLA (see
Neuron Custom C++ Operators Developer Guide [Beta] for details). We also replace the TORCH_LIBRARY API with
NEURON_LIBRARY.

torch::Tensor relu_fwd_shape(torch::Tensor t_in) {
torch::Tensor t_out = torch::zeros(t_in.sizes(), torch::kFloat);
return t_out;

}

torch::Tensor relu_bwd_shape(torch::Tensor t_grad, torch::Tensor t_in) {
torch::Tensor t_out = torch::zeros(t_in.sizes(), torch::kFloat);
return t_out;

}

NEURON_LIBRARY(my_ops, m) {
m.def("relu_forward", &relu_fwd_shape, "relu_forward");
m.def("relu_backward", &relu_bwd_shape, "relu_backward");

}

And then we build it using the torch_neuronx package in build.py:

from torch_neuronx.xla_impl import custom_op

custom_op.load(
name='relu',
compute_srcs=['relu.cpp'],
shape_srcs=['shape.cpp'],
build_directory=os.getcwd()

)

Notice that here we specify both the relu.cpp and shape.cpp files separately. This is because the shape functions
will be compiled with an x86 compiler and run on the host during the XLA compilation, and the compute functions
will be compiled for the NeuronCore device and executed during the training loop. Running build.py produces the
same librelu.so as in the CPU example, but compiles the source code to execute on the NeuronCore.

In our my_ops.py file we just use the torch_neuronx API to load our new library and execute our customOp exactly
the same way we did before:

import torch
import torch_neuronx
from torch_neuronx.xla_impl import custom_op

custom_op.load_library('librelu.so')

class Relu(torch.autograd.Function):
@staticmethod
def forward(ctx, input):

ctx.save_for_backward(input)
return torch.ops.my_ops.relu_forward(input)

@staticmethod
(continues on next page)

7.4. Training (torch-neuronx) 313

AWS Neuron

(continued from previous page)

def backward(ctx, grad):
input, = ctx.saved_tensors
return torch.ops.my_ops.relu_backward(grad, input), None

Training the MLP model on Trainium

In the train.py script we modify the CPU training script train_cpu.py to run with PyTorch Neuron torch_xla.
Expected output on a trn1 instance:

----------Training ---------------
2023-02-02 22 (tel:2023020222):46:58.000299: INFO ||NCC_WRAPPER||: Using a cached neff␣
→˓at /var/tmp/neuron-compile-cache/USER_neuroncc-2.0.0.8683a0+c94c3936c/MODULE_
→˓4447837791278761679/MODULE_0_SyncTensorsGraph.329_4447837791278761679_ip-172-31-38-167.
→˓us-west-2.compute.internal-49ad7ade-14011-5f3bf523d8788/1650ba41-bcfd-4d15-9038-
→˓16d391c4a57c/MODULE_0_SyncTensorsGraph.329_4447837791278761679_ip-172-31-38-167.us-
→˓west-2.compute.internal-49ad7ade-14011-5f3bf523d8788.neff. Exiting with a successfully␣
→˓compiled graph
2023-02-02 22 (tel:2023020222):46:58.000433: INFO ||NCC_WRAPPER||: Using a cached neff␣
→˓at /var/tmp/neuron-compile-cache/USER_neuroncc-2.0.0.8683a0+c94c3936c/MODULE_
→˓16964505026440903899/MODULE_1_SyncTensorsGraph.401_16964505026440903899_ip-172-31-38-
→˓167.us-west-2.compute.internal-4d0cabba-14011-5f3bf529794a3/23d74230-59dd-4347-b247-
→˓fa98aed416bd/MODULE_1_SyncTensorsGraph.401_16964505026440903899_ip-172-31-38-167.us-
→˓west-2.compute.internal-4d0cabba-14011-5f3bf529794a3.neff. Exiting with a successfully␣
→˓compiled graph
Train throughput (iter/sec): 117.47151142662648
Final loss is 0.1970
----------End Training ---------------

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

Neuron Custom C++ Operators Performance Optimization

In this tutorial, we will build on the small MLP model shown in Neuron Custom C++ Operators in MLP Training and
demonstrate methods to optimize the performance of a custom C++ operator. We will be taking advantage of the TCM
accessor as well as the usage of multiple GPSIMD cores to enhance performance.

This tutorial assumes the reader has read and set up an environment described in Neuron Custom C++ Operators in
MLP Training.

Table of Contents

• Download Examples

• Model Configuration Adjustment

• Performance with Element-wise Accessor

• Performance with TCM Accessor

• Extending the example to utilize multiple GPSIMD cores

314 Chapter 7. PyTorch Neuron

AWS Neuron

Download Examples

To download the source code for this tutorial, do:

git clone https://github.com/aws-neuron/aws-neuron-samples.git
cd aws-neuron-samples/torch-neuronx/inference/customop_mlp

Note: We will be using an inference example in this tutorial in order to adhere to certain Custom C++ operator
restrictions when using multiple GPSIMD cores (see Custom Operators API Reference Guide [Beta] for details on
current restrictions).

Note: Custom C++ Operators are supported as of Neuron SDK Version 2.7 as a beta feature. As such this feature is
not installed by default, additional tooling and library packages (RPM and DEB) are required.

For AL2023 only, the following packages need be installed as dependencies:

sudo yum install libnsl
sudo yum install libxcrypt-compat

On AL2 and AL2023, they can be installed with the following commands:

sudo yum remove python3-devel -y
sudo yum remove aws-neuronx-gpsimd-tools-0.* -y
sudo yum remove aws-neuronx-gpsimd-customop-lib-0.* -y

sudo yum install python3-devel -y
sudo yum install aws-neuronx-gpsimd-tools-0.* -y
sudo yum install aws-neuronx-gpsimd-customop-lib-0.* -y

On Ubuntu, they can be installed with the following commands:

sudo apt-get remove python3-dev -y
sudo apt-get remove aws-neuronx-gpsimd-tools=0.* -y
sudo apt-get remove aws-neuronx-gpsimd-customop-lib=0.* -y

sudo apt-get install python3-dev -y
sudo apt-get install aws-neuronx-gpsimd-tools=0.* -y
sudo apt-get install aws-neuronx-gpsimd-customop-lib=0.* -y

Activate the virtual environment created in Neuron Custom C++ Operators in MLP Training,

source ~/aws_neuron_venv_pytorch/bin/activate

As a reminder, ninja should be already installed in the virtual environment. If not, install it for PyTorch Custom
Extensions in your environment by running:

pip install regex
pip install ninja

7.4. Training (torch-neuronx) 315

AWS Neuron

Model Configuration Adjustment

For this tutorial, we will enlarge the size of the hidden layer from [120, 84] to [4096, 2048] in model.py.

import torch
import torch.nn as nn
from torch.nn import functional as F
import my_ops

Declare 3-layer MLP for MNIST dataset
class MLP(nn.Module):

def __init__(self, input_size = 28 * 28, output_size = 10, layers = [4096, 2048]):
super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, layers[0])
self.fc2 = nn.Linear(layers[0], layers[1])
self.fc3 = nn.Linear(layers[1], output_size)

def forward(self, x):
f1 = self.fc1(x)
r1 = my_ops.Relu.apply(f1)
f2 = self.fc2(r1)
r2 = my_ops.Relu.apply(f2)
f3 = self.fc3(r2)
return torch.log_softmax(f3, dim=1)

Performance with Element-wise Accessor

The neuron directory contains the same code shown in Neuron Custom C++ Operators in MLP Training, where the
relu_forward is implemented with element-wise accessor. Go to neuron directory, run build.py then inference.
py, the expected output on a trn1 instance is,

Inf throughput (iter/sec): 8.098649744235592
----------End Inference ---------------

Performance with TCM Accessor

Now we switch to neuron-tcm folder. As mentioned in Custom Operators API Reference Guide [Beta], TCM accessors
provide faster read and write performance. We implement the relu_forward using TCM accessor in relu.cpp:

torch::Tensor relu_forward(const torch::Tensor& t_in) {
size_t num_elem = t_in.numel();
torch::Tensor t_out = torch::zeros(t_in.sizes(), torch::kFloat);

static constexpr size_t buffer_size = 1024;
float *tcm_buffer = (float*)torch::neuron::tcm_malloc(sizeof(float) * buffer_size);

if (tcm_buffer != nullptr) {
auto t_in_tcm_acc = t_in.tcm_accessor();
auto t_out_tcm_acc = t_out.tcm_accessor();

(continues on next page)

316 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

for (size_t i = 0; i < num_elem; i += buffer_size) {
size_t remaining_elem = num_elem - i;
size_t copy_size = (remaining_elem > buffer_size) ? buffer_size : remaining_elem;

t_in_tcm_acc.tensor_to_tcm<float>(tcm_buffer, i, copy_size);
for (size_t j = 0; j < copy_size; j++) {

tcm_buffer[j] = tcm_buffer[j] > 0.0 ? tcm_buffer[j] : 0.0;
}
t_out_tcm_acc.tcm_to_tensor<float>(tcm_buffer, i, copy_size);
}

}
torch::neuron::tcm_free(tcm_buffer);
return t_out;

}

Run build.py then inference.py, the expected output on a trn1 instance is:

Inf throughput (iter/sec): 220.73800131604054
----------End Inference ---------------

Extending the example to utilize multiple GPSIMD cores

Now we switch to the neuron-multicore folder. We first enable the usage of multiple GPSIMD cores by
multicore=True in the build.py.

custom_op.load(
name='relu',
compute_srcs=['relu.cpp'],
shape_srcs=['shape.cpp'],
build_directory=os.getcwd(),
multicore=True,
verbose=True

)

After passing the flag, the kernel function relu_forward defined in relu.cpp will execute on all GPSIMD cores.
Thus we need to use cpu_id to partition the workload among all cores.

torch::Tensor relu_forward(const torch::Tensor& t_in) {
size_t num_elem = t_in.numel();
torch::Tensor t_out = get_dst_tensor();

uint32_t cpu_id = get_cpu_id();
uint32_t cpu_count = get_cpu_count();
uint32_t partition = num_elem / cpu_count;
if (cpu_id == cpu_count - 1) {

partition = num_elem - partition * (cpu_count - 1);
}

static constexpr size_t buffer_size = 1024;
float *tcm_buffer = (float*)torch::neuron::tcm_malloc(sizeof(float) * buffer_size);

(continues on next page)

7.4. Training (torch-neuronx) 317

AWS Neuron

(continued from previous page)

if (tcm_buffer != nullptr) {
auto t_in_tcm_acc = t_in.tcm_accessor();
auto t_out_tcm_acc = t_out.tcm_accessor();

for (size_t i = 0; i < partition; i += buffer_size) {
size_t remaining_elem = partition - i;
size_t copy_size = (remaining_elem > buffer_size) ? buffer_size : remaining_elem;

t_in_tcm_acc.tensor_to_tcm<float>(tcm_buffer, partition *cpu_id + i, copy_size);
for (size_t j = 0; j < copy_size; j++) {

tcm_buffer[j] = tcm_buffer[j] > 0.0 ? tcm_buffer[j] : 0.0;
}
t_out_tcm_acc.tcm_to_tensor<float>(tcm_buffer, partition *cpu_id + i, copy_size);
}

}
torch::neuron::tcm_free(tcm_buffer);
return t_out;

}

There are two things noteworthy in the code:

1. We use cpu_id and cpu_count to distribute the workload among all cores. Particularly, each cores performs
relu on a partition of the tensor, the offset is computed based on cpu_id.

2. The output of the operator is directly written to the tensor from get_dst_tensor(). The return t_out;
statement is ignored during execution.

Run build.py then inference.py, the expected output on a trn1 instance is:

Inf throughput (iter/sec): 269.936119707143
----------End Inference ---------------

Details of the API used in the sample here can be found in Custom Operators API Reference Guide [Beta].

This document is relevant for: Inf2, Trn1, Trn1n

• Hugging Face BERT Pretraining Tutorial

• Multi-Layer Perceptron Training Tutorial

• PyTorch Neuron for Trainium Hugging Face BERT MRPC task finetuning using Hugging Face Trainer API

• Fine-tune T5 model on Trn1

• ZeRO-1 Tutorial

• Analyze for Training Tutorial

• Neuron Custom C++ Operators in MLP Training

• Neuron Custom C++ Operators Performance Optimization

Note: To use Jupyter Notebook see:

• setup-jupyter-notebook-steps-troubleshooting

• running-jupyter-notebook-as-script

This document is relevant for: Trn1, Trn1n

318 Chapter 7. PyTorch Neuron

AWS Neuron

This document is relevant for: Inf2, Trn1, Trn1n

7.4.2 Additional Examples (torch-neuronx)

• AWS Neuron Reference for Nemo Megatron GitHub Repository

• AWS Neuron Samples for EKS

• AWS Neuron Samples for AWS ParallelCluster

• AWS Neuron Samples GitHub Repository

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Trn1, Trn1n

7.4.3 API Reference Guide for Training (torch-neuronx)

This document is relevant for: Trn1, Trn1n

PyTorch NeuronX neuron_parallel_compile CLI

PyTorch NeuronX performs just-in-time compilation of graphs during execution. At every step, a graph is traced.
If the traced graph varies from the previous executions, it is compiled by the neuron compiler. For large models, the
compilation time for each graph can be high. Moreover, because of JIT, we would compile all these graphs sequentially,
hence incurring huge compilation penalty.

To reduce this compilation time during execution, the neuron_parallel_compile utility is provided as part of Py-
Torch Neuron installation. The neuron_parallel_compilewill extract graphs from a trial run of your script, perform
parallel pre-compilation of the graphs, and populate the Neuron Persistent Cache on disk or in AWS S3 bucket with
compiled graphs. Your trial run should be limited to a few steps (eg.10-15), enough for the utility to extract the different
graphs needed for full execution. To run the utility:

neuron_parallel_compile <run commands>

Where <run commands> are the commands to run a short run (i.e. 10 steps) to trace training loops for pre-compilation.
The example for the run command is torchrun --nproc_per_node=2 <train script>, where train script accepts
--steps_this_run option to limit number of run steps:

neuron_parallel_compile torchrun --nproc_per_node=2 <train script> --steps_this_run=10

You may notice that the output from the model is invalid when you use neuron_parallel_compile. This is because
when you initiate your training run command with neuron_parallel_compile, the utility will run your command
with environment variables that puts your training script into graph extraction mode. In this mode, no real execution is
performed and the outputs are invalid. You will also see outputs similar to the following about the compile cache path
and the extracted graphs:

INFO ||NEURON_CACHE||: Compile cache path: /var/tmp/neuron-compile-cache
INFO ||NEURON_CC_WRAPPER||: Extracting graphs (/var/tmp/neuron-compile-cache/neuronxcc-2.
→˓0.0.22266a0+a69f71e55/MODULE_9219523464496887986+abb26765/model.hlo.pb) for ahead-of-
→˓time parallel compilation. No compilation was done.

After the trial execution ends and the graphs are extracted, neuron_parallel_compile would launch multiple com-
pilation processes in parallel to compile all these graphs. Compiled graphs (NEFFs) are inserted into the Neuron
Persistent Cache. You will also see outputs similar to the following about the compile cache path, the list of graphs
(HLOs) to be compiled, and the running statistics of compiled graphs (count of remaining graphs, locked graphs, failed
graphs, done compiled graphs).

7.4. Training (torch-neuronx) 319

https://github.com/aws-neuron/neuronx-nemo-megatron
https://github.com/aws-neuron/aws-neuron-eks-samples
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training

AWS Neuron

INFO ||NEURON_CACHE||: Compile cache path: /var/tmp/neuron-compile-cache
INFO ||NEURON_CACHE||: Current remaining items are 5, locked are 0, failed are 0, done␣
→˓are 0, total is 5
INFO ||NEURON_PARALLEL_COMPILE||: master grab hlos to compile: ['/var/tmp/neuron-compile-
→˓cache/neuronxcc-2.0.0.22266a0+a69f71e55/MODULE_8068656800389078395+abb26765/model.hlo.
→˓pb', '/var/tmp/neuron-compile-cache/neuronxcc-2.0.0.22266a0+a69f71e55/MODULE_
→˓17109392703413819652+abb26765/model.hlo.pb', '/var/tmp/neuron-compile-cache/neuronxcc-
→˓2.0.0.22266a0+a69f71e55/MODULE_9219523464496887986+abb26765/model.hlo.pb', '/var/tmp/
→˓neuron-compile-cache/neuronxcc-2.0.0.22266a0+a69f71e55/MODULE_
→˓16969875447143373016+abb26765/model.hlo.pb', '/var/tmp/neuron-compile-cache/neuronxcc-
→˓2.0.0.22266a0+a69f71e55/MODULE_3000743782456078279+abb26765/model.hlo.pb']
...
INFO ||NEURON_CACHE||: Current remaining items are 0, locked are 0, failed are 0, done␣
→˓are 5, total is 5

After all compilations are completed, a compilation summary is shown:

INFO: 2023-08-24 20:21:11.000895: 161136 INFO ||NEURON_PARALLEL_COMPILE||: {
INFO: "compilation_summary": {
INFO: "true": 2
INFO: },
INFO: "compilation_report": {
INFO: "/var/tmp/neuron-compile-cache/neuronxcc-2.0.0.22266a0+a69f71e55/MODULE_
→˓1970132581169579119+abb26765/model.hlo.pb": {
INFO: "status": true,
INFO: "retry": 0
INFO: },
INFO: "/var/tmp/neuron-compile-cache/neuronxcc-2.0.0.22266a0+a69f71e55/MODULE_
→˓16141953836240613513+abb26765/model.hlo.pb": {
INFO: "status": true,
INFO: "retry": 0
INFO: }
INFO: }
INFO: }
INFO: 2023-08-24 20:21:11.000895: 161136 INFO ||NEURON_PARALLEL_COMPILE||: Total␣
→˓graphs: 2
INFO: 2023-08-24 20:21:11.000895: 161136 INFO ||NEURON_PARALLEL_COMPILE||: Total␣
→˓successful compilations: 2
INFO: 2023-08-24 20:21:11.000895: 161136 INFO ||NEURON_PARALLEL_COMPILE||: Total␣
→˓failed compilations: 0

Now if you run your script (without neuron_parallel_compile), it will be faster since the compiled graphs are
already cached.

torchrun --nproc_per_node=2 <train script>

Note: Except for the option to limit number of run steps (such as --steps_this_run), the other options of <run
commands> must match between the pre-compilation and actual run. If this is not the case, you may see additional
compilations during training run because of new graphs getting generated, resulting in cache miss.

There may be additional compilations due to unreached execution paths (in case the execution path is not reached in
the first few steps of graph extraction), or changes in parameters such as number of data parallel workers.

Each precompilation command or actual script execution command above can be prefixed with
NEURON_COMPILE_CACHE_URL=<cache URL> or NEURON_CC_FLAGS="--cache_dir=<cache URL>" to specify a

320 Chapter 7. PyTorch Neuron

AWS Neuron

different cache location than the default (with --cache_dir taking precedence over NEURON_COMPILE_CACHE_URL
if both are specified). Alternatively, the cache URL can also be specify in Python code using:

os.environ['NEURON_CC_FLAGS'] = os.environ.get('NEURON_CC_FLAGS', '') + "--cache_dir=
→˓<cache URL>"

You need to specify the same cache URL for both the precompilation command (using neuron_parallel_compile)
and the actual script execution command if you want the previously compiled and cached graphs to be used for actual
script execution.

The environment variables below are available to help modify neuron_parallel_compile behavior:

NEURON_PARALLEL_COMPILE_MAX_RETRIES :

• Set the maximum number of retries when using Neuron Persistent Cache or neuron_parallel_compile. If set
to N, the tool will try compilation N more time(s) if the first graph compilation failed. Example: Set NEU-
RON_PARALLEL_COMPILE_MAX_RETRIES=1 when precompiling on trn1.2xlarge where there’s limited
host memory and CPU resources. Default is 0.

NEURON_IGNORE_TRAINING_SCRIPT_ERROR_AND_COMPILE :

• When using Neuron Persistent Cache or neuron_parallel_compile , if you want to ignore the error in train-
ing script and compile the accumulated HLO graphs, you can do so by setting this environment vari-
able. Example: If NEURON_IGNORE_TRAINING_SCRIPT_ERROR_AND_COMPILE=1 is set when using
neuron_parallel_compile, a crash in the training script would be ignored and the graphs collected up to the
crash would be compiled.

NEURON_COMPILE_CACHE_URL:

• Set the Neuron Persistent Cache URL or neuron_parallel_compile. If starts with s3://, it will use AWS S3 as
cache backend. Otherwise it will use local disk cache. Default is /var/tmp/neuron-compile-cache. If this
is specified together with cache_dir=<cache_url> option via NEURON_CC_FLAGS, the --cache_dir option
takes precedence.

Debugging with Neuron Persistent Cache

A graph compilation can fail because of a compilation error or an environment issue (for example, compilation is
interrupted by ctrl-C). The graph would be marked as failed and subsequent rerun would encounter message like below:

INFO ||NCC_WRAPPER||: Got a cached failed neff at /var/tmp/neuron-compile-cache/
→˓neuronxcc-2.8.0.25+a3ad0f342/MODULE_12486829708343293975+d41d8cd9/model.neff. Will␣
→˓skip compilation, please set --retry_failed_compilation for recompilation.

To retry compilation, add --retry_failed_compilation in NEURON_CC_FLAGS environment variable. This will
retry the compilation even if the graph was previously marked as failed compilation.

os.environ['NEURON_CC_FLAGS'] = os.environ.get('NEURON_CC_FLAGS', '') + ' --retry_failed_
→˓compilation'

See Neuron Persistent Cache for more information.

7.4. Training (torch-neuronx) 321

AWS Neuron

Separate collection and compilation commands

For cases like finetuning, there could be multiple independent training tasks running on different nodes and sharing
many compilation graphs in common. neuron_parallel_compile provides commands to separate the graph col-
lection and compilation phases, so users can collect all graphs across different training sessions in advance to avoid
duplicate compilations.

To only collect the graphs from trial executions of training scripts into Neuron Persistent Cache:

neuron_parallel_compile --command collect <run_script>

To compile the graph previously collected using collect command and store compiled result (NEFFs) back into
Neuron Persistent Cache (make sure to use the same neuronx-cc compiler version as during the graph collection step):

``neuron_parallel_compile --command compile <run_script>``

Note: if --command is not specified, neuron_parallel_compile will do both collection and compilation phases by
default.

Cache maintenance commands

The following commands are available to help maintain the cache.

Warning: Make sure no running process is using the cache when you use clean or clear-locks command
because it can cause cache errors.

To clean cached files:

WARNING: Make sure no running process is using the cache
neuron_parallel_compile --command clean

To clear file locks left behind when a neuron_parallel_compile execution was interrupted:

WARNING: Make sure no running process is using the cache
neuron_parallel_compile --command clear-locks

Each command above can be prefixed with NEURON_COMPILE_CACHE_URL=<cache URL> or NEURON_CC_FLAGS=
"--cache_dir=<cache URL>" to specify a different cache location than the default.

Note: Currently there’s no automatic maintenance of cache size either on disk or in S3. Please delete files (i.e. older
compiler versions) as necessary to keep cache size within your limit.

322 Chapter 7. PyTorch Neuron

AWS Neuron

Analyze operations support

The analyze command checks the support of operations within the training script by checking each operator against
neuronx-cc. It is only supported for PyTorch models. The output of the tool will be available as result.json within the
output location.

neuron_parallel_compile --command analyze python3 training_script.py

Optional Arguments:

--analyze-output ANALYZE_OUTPUT_LOCATION Only supported for –command analyze. Path to lo-
cation where output will be persisted. Default: cwd/model_analysis_result

--analyze-verbosity {1,2} Only supported for –command analyze. Level of information to be in-
cluded within the output. 1: add XLA operator information into the results. 2: add aten metadata into
results. Default: 2

The tutorial for analyze can be found here

This document is relevant for: Trn1, Trn1n

This document is relevant for: Trn1, Trn1n

PyTorch NeuronX Environment Variables

Environment variables allow modifications to PyTorch NeuronX behavior without requiring code change to
user script. It is recommended to set them in code or just before invoking the python process, such as
NEURON_FRAMEWORK_DEBUG=1 python3 <script> to avoid inadvertently changing behavior for other scripts. En-
vironment variables specific to PyTorch Neuron are (beta ones are noted):

NEURON_CC_FLAGS

• Compiler options. Full compiler options are described in the mixed-precision-casting-options. Additional op-
tions for the Neuron Persistent Cache can be found in the Neuron Persistent Cache guide.

NEURON_FRAMEWORK_DEBUG

• Enable dumping of XLA graphs in both HLO format (intermediate representation) and text form for debugging.

NEURON_EXTRACT_GRAPHS_ONLY

• Dump the XLA graphs in HLO format (intermediate representation) and execute empty stubs with zero outputs
in order to allow multiple XLA graphs to be traced through a trial execution. Used automatically for ahead-of-
time graph extraction for parallel compilation in neuron_parallel_compile tool. This environment variable can
be checked in the training script to prevent checking of bad outputs during trial run.

NEURON_NUM_RECENT_MODELS_TO_KEEP

• Keep only N number of graphs loaded in Neuron runtime for each process, where N is the value this environment
variable is set to. Default is to keep all graphs loaded by a process.

NEURON_COMPILE_CACHE_URL

• Set the Neuron Persistent Cache URL or neuron_parallel_compile. If starts with s3://, it will use AWS S3 as
cache backend. Otherwise it will use local disk cache. Default is /var/tmp/neuron-compile-cache. If this
is specified together with cache_dir=<cache_url> option via NEURON_CC_FLAGS, the --cache_dir option
takes precedence.

NEURON_PARALLEL_COMPILE_MAX_RETRIES

7.4. Training (torch-neuronx) 323

AWS Neuron

• Set the maximum number of retries when using Neuron Persistent Cache or neuron_parallel_compile. If set
to N, the tool will try compilation N more time(s) if the first graph compilation failed. Example: Set NEU-
RON_PARALLEL_COMPILE_MAX_RETRIES=1 when precompiling on trn1.2xlarge where there’s limited
host memory and CPU resources. Default is 0.

NEURON_IGNORE_TRAINING_SCRIPT_ERROR_AND_COMPILE

• When using Neuron Persistent Cache or neuron_parallel_compile , if you want to ignore the error in train-
ing script and compile the accumulated HLO graphs, you can do so by setting this environment vari-
able. Example: If NEURON_IGNORE_TRAINING_SCRIPT_ERROR_AND_COMPILE=1 is set when using
neuron_parallel_compile, a crash in the training script would be ignored and the graphs collected up to the
crash would be compiled.

NEURON_FUSE_SOFTMAX

• Enable custom lowering for Softmax operation to enable compiler optimizations.

NEURONCORE_NUM_DEVICES [Use only with xmp.spawn]
• Number of NeuronCores for setting up distributed data parallel training when using

torch_xla.distributed.xla_multiprocessing.spawn (xmp.spawn) utility only. See `MNIST MLP train-
ing with xmp.spawn<https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-
neuronx/training/mnist_mlp/train_xmp.py>`__ for example. NOTE: Do not use this environment vari-
able when using torchrun, which has --nproc_per_node option instead for this purpose. torchrun is
recommended for consistent experience on one instance as well as across multiple instances.

NEURON_DUMP_HLO_SNAPSHOT [Beta] [Torch-NeuronX 1.13 only]
• Dump the inputs, outputs, and graph in HLO format of a graph execution in a snapshot file. This variable can be

set to 1, ON_NRT_ERROR, ON_NRT_ERROR_CPU, ON_NRT_ERROR_HYBRID to dump snapshots at every iteration
using CPU memory, or dump only on errors automatically using device, host, and both device and host memory
respectively.

NEURON_NC0_ONLY_SNAPSHOT [Beta] [Torch-NeuronX 1.13 only]
• Dump only the snapshot associated with Neuron Core 0 when NEURON_NC0_ONLY_SNAPSHOT=1 and the
NEURON_DUMP_HLO_SNAPSHOT flag is set.

NEURON_TRANSFER_ALL_PARAMETERS_WITH_STATIC_RING [Beta]
• When set to 1, mark all parameter transfers as static to enable runtime optimizations for torch.nn modules that

are wrapped as done in Megatron-LM. This setting is not needed if torch.nn modules are not wrapped.

BUCKET_CAP_MB [PyTorch XLA]
• If there are many parameters, such as in BERT training, small allreduce sizes can limit performance. To improve

performance, you can try increasing the bucket size using BUCKET_CAP_MB environment variable, which is set
to 50MB by default. For example, BERT pretraining on multiple instances can see improved performance with
BUCKET_CAP_MB=512.

XLA_FLAGS [PyTorch XLA] [Torch-NeuronX 2.1+]
• When set to "--xla_dump_hlo_snapshots --xla_dump_to=<dir>", this environmental variable enables

dumping snapshots in <dir> directory. See Snapshotting With Torch-Neuronx 2.1 section for more information.

XLA_USE_BF16 [PyTorch XLA]
• When XLA_USE_BF16=1, PyTorch Neuron will automatically map both torch.float and torch.double tensors to

bfloat16 tensors and turn on Stochastic Rounding mode. This can both reduce memory footprint and improve
performance. Example: to enable bfloat16 autocasting and stochastic rounding, set XLA_USE_BF16=1 only, as
stochastic rounding mode is on by default when XLA_USE_BF16=1. If you would like to preserve some tensors
in float32, see XLA_DOWNCAST_BF16 below.

324 Chapter 7. PyTorch Neuron

AWS Neuron

XLA_DOWNCAST_BF16 [PyTorch XLA]
• When XLA_DOWNCAST_BF16=1, PyTorch Neuron will automatically map torch.float tensors to bfloat16 tensors,

torch.double tensors to float32 tensors and turn on Stochastic Rounding mode. This can both reduce memory foot-
print and improve performance, while preserving some tensors in float32. Example: to enable float to bfloat16
and double to float autocasting and stochastic rounding, set XLA_DOWNCAST_BF16=1 only, as stochastic
rounding mode is on by default when XLA_DOWNCAST_BF16=1. If you want to cast both torch.float and
torch.double to bfloat16, please see XLA_USE_BF16 above.

NEURON_RT_STOCHASTIC_ROUNDING_EN [Neuron Runtime]
• When NEURON_RT_STOCHASTIC_ROUNDING_EN=1, PyTorch Neuron will use stochastic rounding instead of

round-nearest-even for all internal rounding operations when casting from FP32 to a reduced precision data
type (FP16, BF16, FP8, TF32). This feature has been shown to improve training convergence for reduced preci-
sion training jobs, such as when bfloat16 autocasting is enabled. This is set to 1 by default by PyTorch Neuron
when XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1. To switch to round-nearest-even mode, please set
NEURON_RT_STOCHASTIC_ROUNDING_EN=0.

NEURON_RT_STOCHASTIC_ROUNDING_SEED [Neuron Runtime]
• Sets the seed for the random number generator used in stochastic rounding (see previous section). If this environ-

ment variable is not set, the seed is set to 0 by default. Please set NEURON_RT_STOCHASTIC_ROUNDING_SEED
to a fixed value to ensure reproducibility between runs.

NEURON_RT_VISIBLE_CORES [Neuron Runtime]
Integer range of specific NeuronCores needed by the process (for example, 0-3 specifies NeuronCores 0,
1, 2, and 3). You this environment variable when using torchrun to limit the launched processs to specific
consecutive NeuronCores. To ensure best performance, the multi-core jobs requiring N NeuronCores for
collective communication must be placed at the NeuronCore ID that starts at a multiple of N, where N is
the world size limited to 1, 2, 8, 32. For example, a process using 2 NeuronCores can be mapped to 2 free
NeuronCores starting at NeuronCore id 0, 2, 4, 6, etc, and a process using 8 NeuronCores can be mapped
to 8 free NeuronCores starting at NeuronCore id 0, 8, 16, 24.

Additional Neuron runtime environment variables are described in runtime configuration documentation.

Additional XLA runtime environment variables are described in PyTorch-XLA troubleshooting guide.

This document is relevant for: Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

Neuron Persistent Cache

PyTorch Neuron (torch-neuronx) uses torch-xla, and torch-xla operates in lazy mode. In other words, every
operation in training script is recorded in a graph. The graph is executed only when the results are requested by the
user when they use print or xm.mark_step. Requesting results tells torch-xla that the recorded graph needs to be
executed.

Before executing the graph on a Neuron device, torch-xla would call Neuron Compiler (neuronx-cc) to compile
the graph into Neuron specific graph. Then the graph is executed on the NeuronCore/s. Compiling the graph involves
running optimizations that can make use of the NeuronCore/s efficiently. Running these optimizations can be expensive
and can result in long compile times. To save the users from compiling these graphs at every iteration, torch-xla
maintains an in-memory cache called Just in Time (JIT) cache. When the user re-runs the same graph (eg. 2nd iteration
of the training run), torch-xla would check in this JIT cache and re-use the cached compilation result, thereby avoiding
the wait times.

Since the JIT cache is an in-memory cache, it needs to be constructed every time the training script is run. Hence, if
the user re-runs the training script, a new JIT cache is created. This causes a compilation for the first training graph.
To avoid such compilations across training runs, PyTorch Neuron (torch-neuronx) has built an on-disk Neuron

7.4. Training (torch-neuronx) 325

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-runtime/nrt-configurable-parameters.html
https://github.com/pytorch/xla/blob/v1.10.0/TROUBLESHOOTING.md#user-content-environment-variables

AWS Neuron

Persistent Cache. Since this cache is on-disk, its persistent across training runs. So now, when a graph is compiled
for the fist time, the compilation result is saved in Neuron Persistent Cache. When the user re-runs the training
script, since the JIT cache is not ready, it would send the graph for compilation. PyTorch Neuron (torch-neuronx)
would then check if the compiled result is present in the Neuron Persistent Cache, if yes, it would return with the
compiled result. This on-disk cache thereby avoids compilations across training runs. This cache is enabled by default
for Neuron’s PyTorch/XLA flow (training) as well as transformers-neuronx LLM inference package. The default cache
path is the directory /var/tmp/neuron-compile-cache.

Look at the diagram below on the end to end flow:

As seen from the diagram, the operations are recorded in a graph in lazy mode and only when a mark_step is hit, the

326 Chapter 7. PyTorch Neuron

AWS Neuron

graph is executed. Before execution, the graph passes through two caches to check if we have compiled the graph
sometime in the past. If yes, we reuse the compilation result and execute with it. This avoid duplicate compilations.
One thing to note, both JIT cache and Neuron Cache are complementary to each other. JIT cache prevents duplicate
compilation within a run and Neuron Cache prevents duplicate compilations across training runs. For example, within
a training script, we have a training loop that iterates through the dataset. The first iteration would trace a unique
graph and the following iteration would trace a graph that is similar to the first one. In this case, the subsequent
iterations would hit the JIT cache and reuse the result. However, to save users from compiling for the first iteration
graph, Neuron Persistent Cache would be used. In this case, the very first time when the script is run, the Neuron
Persistent Cache would be updated. Going forward when we re-run the training script, compilation results from
Neuron Persistent Cache would be used.

To better understand how Neuron Persistent Cache works, consider the example below:

import torch
import torch_xla
import torch_xla.core.xla_model as xm
device = xm.xla_device()
t1 = torch.randn(3, 3).to(device)
t2 = t1 / 0.5
x = t2.cpu()

Running the above example produces the following logs:

2023-08-25 21:51:36.000433: INFO ||NCC_WRAPPER||: Compile cache path: /var/tmp/neuron-
→˓compile-cache
.
Compiler status PASS

Re-running the above script would fetch the graph from the neuron cache and you would see logs as follows:

2023-08-25 21:52:23.000451: INFO ||NCC_WRAPPER||: Compile cache path: /var/tmp/neuron-
→˓compile-cache
2023-08-25 21:52:23.000453: INFO ||NCC_WRAPPER||: Using a cached neff at /var/tmp/neuron-
→˓compile-cache/neuronxcc-2.8.0.25+a3ad0f342/MODULE_198775565831884870+d41d8cd9/model.
→˓neff. Exiting with a successfully compiled graph.

As you can see, the next run picks the compiled graph from cache, thereby saving the compilation time. The cache uses
hash of the Neuron compiler flags and XLA graph as the key. If the Neuron compiler version or XLA graph changes,
you will see recompilation. Examples of changes that would cause XLA graph change include:

• Model type and size

• Batch size

• Optimizer and optimizer hyperparameters

• Location of xm.mark_step()

To keep cache size small and to enable weights/parameters updates without recompilation, only the compute graphs
are cached when using transformers-neuronx (weights/parameters are inputs to the compute graphs) and training flow
using torch-neuronx’s XLA (weights/parameters are inputs and outputs of the compute graphs). Note that this caching
mechanism doesn’t apply to the torch-neuronx trace API where the weights/parameters are frozen and converted to
constants, then compiled together with the compute operations (traced graphs with frozen weights/parameters are not
cached).

All compilation results are saved in the cache. To disable the cache, you can pass --no_cache option via NEU-
RON_CC_FLAGS:

7.4. Training (torch-neuronx) 327

AWS Neuron

os.environ['NEURON_CC_FLAGS'] = os.environ.get('NEURON_CC_FLAGS', '') + ' --no_cache'

The default cache path is the directory /var/tmp/neuron-compile-cache. To change the cache’s location, pass
cache_dir=<cache_url> option via NEURON_CC_FLAGS or NEURON_COMPILE_CACHE_URL=<cache_url> environ-
ment variables:

os.environ['NEURON_CC_FLAGS'] = os.environ.get('NEURON_CC_FLAGS', '') + ' --cache_dir=
→˓<cache URL>'

os.environ['NEURON_COMPILE_CACHE_URL'] = '<cache_URL>'

The cache URL specified using --cache_dir is prioritized over that specified using NEURON_COMPILE_CACHE_URL
if both are set. If <cache_url> starts with s3://, it will use the AWS S3 URL as the cache location, provided that
the corresponding S3 bucket exists and is both readable and writeable.

You can change the verbose level of the compiler by adding log_level to either WARNING, INFO or ERROR. This can
be done as follows:

os.environ['NEURON_CC_FLAGS'] = os.environ.get('NEURON_CC_FLAGS', '') + ' --log_
→˓level=INFO'

A graph compilation can fail because of a compilation error or an environment issue (for example, compilation is
interrupted by ctrl-C). The graph would be marked as failed and subsequent rerun would encounter message like below:

INFO ||NCC_WRAPPER||: Got a cached failed neff at /var/tmp/neuron-compile-cache/
→˓neuronxcc-2.8.0.25+a3ad0f342/MODULE_12486829708343293975+d41d8cd9/model.neff. Will␣
→˓skip compilation, please set --retry_failed_compilation for recompilation.

To retry compilation, add --retry_failed_compilation in NEURON_CC_FLAGS environment variable. When the
script is reran, all the previously failed compilations are recompiled and fresh results are saved in the cache.

os.environ['NEURON_CC_FLAGS'] = os.environ.get('NEURON_CC_FLAGS', '') + ' --retry_failed_
→˓compilation'

Note that all flags demonstrated above will be parsed by a tool called neuron_cc_wrapper, which is a wrapper over
Neuron Compiler CLI to provide caching mechanism. All these flags will not be passed into Neuron Compiler CLI.

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

PyTorch NeuronX Profiling API

The profiler provides a method to generate a context manager to capture trace events at the operator or runtime level.

torch_neuronx.experimental.profiler.profile(port=9012, ms_duration=60000,
neuron_tensorboard_plugin_dir='logs/plugins/neuron',
profile_type='operator', auto_start=True,
delete_working=True)

The torch_neuronx.experimental.profiler.profile()method returns a profile context manager ob-
ject. This object doesn’t need to be used directly, as default options are set to auto capture events based on the
profile_type.

The context manager will wrap around the entire model and training/inference loop. The context-manager is
backwards-compatible with the torch_xla.debug.profiler``

328 Chapter 7. PyTorch Neuron

AWS Neuron

Required Arguments

None

Optional Keyword Arguments

Keyword Arguments
• port (int) – Port to run the profiling GRPC server on. Default is 9012.

• ms_duration (int) – This defines how long the profiler will capture the HLO artifacts from
the model to view in the profiler. The unit is in milliseconds. The default value is 60000 ms,
or 1 minute.

• neuron_tensorboard_plugin_dir (str) – The directory the neuron tensorboard plugin
will file write to. This will be logs/plugins/neuron by default/

• profile_type (str) – There is “trace” and “operator”. “trace” is the Torch Runtime Trace
Level, while “operator” is the Model Operator Trace Level. Default is “operator”

• auto_start (bool) – If set to true, the profiler will start profiling immediately. If set to
false, the profiler can be set to start at a later condition. Refer to profile.start() for
more details. Default is True.

• delete_working (bool) – If set to False turns off the deletion of temporary files. Default
True.

• traced_only (str) – This should be set to True if profiling a model that has been traced
with torch_neuronx.trace(). Default is False.

Returns The traced profile

Return type ~profile

torch_neuronx.experimental.profiler.profile.start()

The torch_neuronx.experimental.profiler.profile.start() method starts the profiler if not started
(i.e when auto_start=False). This function does not take in any parameters, nor return anything.

Required Arguments

None

Optional Keyword Arguments

None

Returns None

This document is relevant for: Inf2, Trn1, Trn1n

API Reference Guide for Training (torch-neuronx)

• PyTorch NeuronX neuron_parallel_compile CLI

• Neuron Persistent Cache

• PyTorch NeuronX Environment Variables

• PyTorch NeuronX Profiling API

This document is relevant for: Trn1, Trn1n

This document is relevant for: Trn1, Trn1n

7.4. Training (torch-neuronx) 329

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

AWS Neuron

7.4.4 Developer Guide (torch-neuronx)

This document is relevant for: Trn1, Trn1n

Developer Guide for Training with PyTorch NeuronX

Table of Contents

• PyTorch NeuronX

– Neuron XLA device

• PyTorch NeuronX single-worker training/evaluation quick-start

• PyTorch NeuronX multi-worker data parallel training using torchrun

• Conversion from Distributed Data Parallel (DDP) application

• PyTorch NeuronX environment variables

• Neuron Persistent Cache for compiled graphs

• Number of graphs

• Automatic casting of float tensors to BFloat16

• Automatic Mixed-Precision

– BF16 mixed-precision using PyTorch Autocast

• Tips and Best Practices

– Understand the lazy mode in PyTorch NeuronX

– Minimize the number of compilation-and-executions

– Ensure common initial weights across workers

– Use PyTorch/XLA’s model save function

• FAQ

– What is the difference between Trainium and Inferentia?

• Debugging and troubleshooting

Trainium is designed to speed up model training and reduce training cost. It is available on the Trn1 instances. Each
Trainium accelerator has two NeuronCores, which are the main neural network compute units.

PyTorch NeuronX enables PyTorch users to train their models on Trainium’s NeuronCores with little code change to
their training code. It is based on the PyTorch/XLA software package.

This guide helps you get started with single-worker training and distributed training using PyTorch Neuron.

330 Chapter 7. PyTorch Neuron

https://pytorch.org/xla

AWS Neuron

PyTorch NeuronX

Neuron XLA device

With PyTorch NeuronX the default XLA device is mapped to a NeuronCore. By default, one NeuronCore is configured.
To use Neuron XLA device, specify the device as xm.xla_device() or 'xla':

import torch_xla.core.xla_model as xm
device = xm.xla_device()

or

device = 'xla'

PyTorch models and tensors can be mapped to the device as usual:

model.to(device)
tensor.to(device)

To move tensor back to CPU, do :

tensor.cpu()

or

tensor.to('cpu')

PyTorch NeuronX single-worker training/evaluation quick-start

PyTorch NeuronX uses XLA to enable conversion of PyTorch operations to Trainium instructions. To get started on
PyTorch NeuronX, first modify your training script to use XLA in the same manner as described in PyTorch/XLA
documentation and use XLA device:

import torch_xla.core.xla_model as xm

device = xm.xla_device()
or
device = 'xla'

The NeuronCore is mapped to an XLA device. On Trainium instance, the XLA device is automatically mapped to the
first available NeuronCore.

By default the above steps will enable the training or evaluation script to run on one NeuronCore. NOTE: Each process
is mapped to one NeuronCore.

Finally, add mark_step at the end of the training or evaluation step to compile and execute the training or evaluation
step:

xm.mark_step()

These changes can be placed in control-flows in order to keep the script the same between PyTorch Neuron and
CPU/GPU. For example, you can use an environment variable to disable XLA which would cause the script to run
in PyTorch native mode (using CPU on Trainium instances and GPU on GPU instances):

7.4. Training (torch-neuronx) 331

https://pytorch.org/xla
https://pytorch.org/xla

AWS Neuron

device = 'cpu'
if not os.environ.get("DISABLE_XLA", None):

device = 'xla'

...

end of training step
if not os.environ.get("DISABLE_XLA", None):

xm.mark_step()

More on the need for mark_step is at Understand the lazy mode in PyTorch Neuron.

For a full runnable example, please see the Single-worker MLP training on Trainium tutorial.

PyTorch NeuronX multi-worker data parallel training using torchrun

Data parallel training allows you to replicate your script across multiple workers, each worker processing a proportional
portion of the dataset, in order to train faster.

To run multiple workers in data parallel configuration, with each worker using one NeuronCore, first add additional
imports for parallel dataloader and multi-processing utilities:

import torch_xla.distributed.parallel_loader as pl

Next we initialize the Neuron distributed context using the XLA backend for torch.distributed:

import torch_xla.distributed.xla_backend
torch.distributed.init_process_group('xla')

Next, replace optimizer.step() function call with xm.optimizer_step(optimizer) which adds gradient syn-
chronization across workers before taking the optimizer step:

xm.optimizer_step(optimizer)

If you’re using a distributed dataloader, wrap your dataloader in the PyTorch/XLA’s MpDeviceLoader class which
provides buffering to hide CPU to device data load latency:

parallel_loader = pl.MpDeviceLoader(dataloader, device)

Within the training code, use xm.xrt_world_size() to get the world size, and xm.get_ordinal to get the global rank of
the current process.

Then run use PyTorch torchrun utility to run the script. For example, to run 32 worker data parallel training:

torchrun --nproc_per_node=32 <script and options>

To run on multiple instances, make sure to use trn1.32xlarge instances and use all 32 NeuronCores on each instance.
For example, with two instances, on the rank-0 Trn1 host, run with –node_rank=0 using torchrun utility:

torchrun --nproc_per_node=32 --nnodes=2 --node_rank=0 --master_addr=<root IP> --master_
→˓port=<root port> <script and options>

On another Trn1 host, run with –node_rank=1 :

torchrun --nproc_per_node=32 --nnodes=2 --node_rank=1 --master_addr=<root IP> --master_
→˓port=<root port> <script and options>

332 Chapter 7. PyTorch Neuron

https://pytorch.org/docs/stable/elastic/run.html#launcher-api

AWS Neuron

It is important to launch rank-0 worker with –node_rank=0 to avoid hang.

More information about torchrun can be found PyTorch documentation at https://pytorch.org/docs/stable/elastic/run.
html#launcher-api .

See the Multi-worker data-parallel MLP training using torchrun tutorial for a full example.

Conversion from Distributed Data Parallel (DDP) application

Distributed Data Parallel (DDP) in torch.distributed module is a wrapper to help convert a single-worker training to
distributed training. To convert from torch.distributed Distributed Data Parallel (DDP) application to PyTorch Neuron,
first convert the application back to single-worker training, which simply involves removing the DDP wrapper, for
example model = DDP(model, device_ids=[rank]). After this, follow the previous section to change to multi-
worker training.

PyTorch NeuronX environment variables

Environment variables allow modifications to PyTorch Neuron behavior without requiring code change to user script.
See PyTorch Neuron environment variables for more details.

Neuron Persistent Cache for compiled graphs

See Neuron Persistent Cache for compiled graphs

Number of graphs

PyTorch/XLA converts PyTorch’s eager mode execution to lazy-mode graph-based execution. During this process,
there can be multiple graphs compiled and executed if there are extra mark-steps or functions with implicit mark-steps.
Additionally, more graphs can be generated if there are different execution paths taken due to control-flows.

Automatic casting of float tensors to BFloat16

With PyTorch Neuron, the default behavior is for torch.float (FP32) and torch.double (FP64) tensors to be mapped to
torch.float in hardware. To reduce memory footprint and improve performance, torch.float and torch.double tensors
can automatically be converted to BFloat16 by setting the environment variable XLA_USE_BF16=1. Alternatively,
torch.float can automatically be converted to BFloat16 and torch.double converted to FP32 by setting the environment
variable XLA_DOWNCAST_BF16=1.

Automatic Mixed-Precision

BF16 mixed-precision using PyTorch Autocast

By default, the compiler automatically cast internal FP32 operations to BF16. You can disable this and allow PyTorch’s
BF16 mixed-precision to do the casting. PyTorch’s BF16 mixed-precision is achieved by casting certain operations to
operate BF16. We currently use CUDA’s list of operations that can operate in BF16:

(NOTE: Although convolution is in the list below, it is currently unsupported by Neuron. See model-architecture-fit)

7.4. Training (torch-neuronx) 333

https://pytorch.org/docs/stable/elastic/run.html#launcher-api
https://pytorch.org/docs/stable/elastic/run.html#launcher-api

AWS Neuron

_convolution
_convolution
_convolution_nogroup
conv1d
conv2d
conv3d
conv_tbc
conv_transpose1d
conv_transpose2d
conv_transpose3d
convolution
cudnn_convolution
cudnn_convolution_transpose
cudnn_convolution
cudnn_convolution_transpose
cudnn_convolution
cudnn_convolution_transpose
prelu
addmm
addmv
addr
matmul
mm
mv
linear
addbmm
baddbmm
bmm
chain_matmul
linalg_multi_dot

To enable PyTorch’s BF16 mixed-precision, first turn off the Neuron compiler auto-cast:

os.environ["NEURON_CC_FLAGS"] = "--auto-cast=none"

Next, overwrite torch.cuda.is_bf16_supported to return True:

torch.cuda.is_bf16_supported = lambda: True

Next, per recommendation from official PyTorch documentation, place only the forward-pass of the training step in the
torch.autocast scope:

with torch.autocast(dtype=torch.bfloat16, device_type='cuda'):
forward pass

The device type is CUDA because we are using CUDA’s list of BF16 compatible operations as mentioned above.

Example showing the original training code snippet:

def train_loop_fn(train_loader):
for i, data in enumerate(train_loader):

inputs = data[0]
labels = data[3]
outputs = model(inputs, labels=labels)

(continues on next page)

334 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

loss = outputs.loss/ flags.grad_acc_steps
loss.backward()
optimizer.step()
xm.mark_step()

The following shows the training loop modified to use BF16 autocast:

os.environ["NEURON_CC_FLAGS"] = "--auto-cast=none"

def train_loop_fn(train_loader):
for i, data in enumerate(train_loader):

torch.cuda.is_bf16_supported = lambda: True
with torch.autocast(dtype=torch.bfloat16, device_type='cuda'):

inputs = data[0]
labels = data[3]
outputs = model(inputs, labels=labels)

loss = outputs.loss/ flags.grad_acc_steps
loss.backward()
optimizer.step()
xm.mark_step()

For a full example of BF16 mixed-precision, see PyTorch Neuron BERT Pretraining Tutorial.

See official PyTorch documentation for more details about torch.autocast .

Tips and Best Practices

Understand the lazy mode in PyTorch NeuronX

One significant difference between PyTorch NeuronX and native PyTorch is that the PyTorch NeuronX system runs in
lazy mode while the native PyTorch runs in eager mode. Tensors in lazy mode are placeholders for building the com-
putational graph until they are materialized after the compilation and evaluation are complete. The PyTorch NeuronX
system builds the computational graph on the fly when you call PyTorch APIs to build the computation using tensors
and operators. The computational graph gets compiled and executed when xm.mark_step() is called explicitly or
implicitly by pl.MpDeviceLoader/pl.ParallelLoader, or when you explicitly request the value of a tensor such
as by calling loss.item() or print(loss).

Minimize the number of compilation-and-executions

For best performance, you should keep in mind the possible ways to initiate compilation-and-executions as described
in Understand the lazy mode in PyTorch/XLA and should try to minimize the number of compilation-and-executions.
Ideally, only one compilation-and-execution is necessary per training iteration and is initiated automatically by pl.
MpDeviceLoader/pl.ParallelLoader. The MpDeviceLoader is optimized for XLA and should always be used
if possible for best performance. During training, you might want to examine some intermediate results such as loss
values. In such case, the printing of lazy tensors should be wrapped using xm.add_step_closure() to avoid unnec-
essary compilation-and-executions.

7.4. Training (torch-neuronx) 335

https://pytorch.org/docs/stable/amp.html#autocasting

AWS Neuron

Ensure common initial weights across workers

To achieve best accuracy during data parallel training, all workers need to have the same initial parameter states. This
can be achieved by using the same seed across the workers. In the case of HuggingFace library, the set_seed function
can be used. (https://github.com/pytorch/xla/issues/3216).

Use PyTorch/XLA’s model save function

To avoid problems with saving and loading checkpoints, make sure you use PyTorch/XLA’s model save function to
properly checkpoint your model. For more information about the function, see torch_xla.core.xla_model.save in the
PyTorch on XLA Devices documentation.

When training using multiple devices, xla_model.save can result in high host memory usage. If you see such
high usage causing the host to run out of memory, please use torch_xla.utils.serialization.save . This would save the
model in a serialized manner. When saved using the serialization.save api, the model should be loaded using
serialization.load api. More information on this here: Saving and Loading Tensors

FAQ

What is the difference between Trainium and Inferentia?

Trainium is an accelerator designed to speed up training, whereas Inferentia is an accelerator designed to speed up
inference.

Debugging and troubleshooting

To debug on PyTorch Neuron, please follow the debug guide.

This document is relevant for: Trn1, Trn1n

This document is relevant for: Trn1, Trn1n

How to debug models in PyTorch NeuronX

Table of Contents

• Printing metrics

• Printing tensors

• Use mark_step

• Using Eager Debug Mode

• Profiling model run

• Snapshotting With Torch-Neuronx 2.1

• Snapshotting with Torch-Neuronx 1.13

– Snapshot FAQs:

336 Chapter 7. PyTorch Neuron

https://github.com/pytorch/xla/issues/3216
https://pytorch.org/xla/release/1.9/index.html#torch_xla.core.xla_model.save
https://pytorch.org/xla/release/1.9/index.html#torch_xla.utils.serialization.save
https://pytorch.org/xla/release/1.9/index.html#saving-and-loading-xla-tensors

AWS Neuron

Torch-XLA evaluates operations lazily, which means it builds a symbolic graph in the background and the graph is
executed in hardware only when the users request (print) for the output or a mark_step is encountered. To effectively
debug training scripts with torch-xla, please use one of the approaches mentioned below:

Printing metrics

Torch-xla provides a utility that records metrics of different sections of the code. These metrics can help figure out
things like: How much time is spent in compilation? How much time is spent in execution? To check the metrics:

1. Import metrics: import torch_xla.debug.metrics as met

2. Print metrics at the end of the step: print(met.metrics_report())

Printing metrics should produce an output that looks like this:

Metric: CompileTime
TotalSamples: 1
Accumulator: 09s969ms486.408us
Percentiles: 1%=09s969ms486.408us; 5%=09s969ms486.408us; 10%=09s969ms486.408us; 20

→˓%=09s969ms486.408us; 50%=09s969ms486.408us; 80%=09s969ms486.408us; 90%=09s969ms486.
→˓408us; 95%=09s969ms486.408us; 99%=09s969ms486.408us
.....
Metric: ExecuteTime
TotalSamples: 1
Accumulator: 186ms062.970us
Percentiles: 1%=186ms062.970us; 5%=186ms062.970us; 10%=186ms062.970us; 20%=186ms062.

→˓970us; 50%=186ms062.970us; 80%=186ms062.970us; 90%=186ms062.970us; 95%=186ms062.970us;␣
→˓99%=186ms062.970us
....
Metric: TensorsGraphSize
TotalSamples: 1
Accumulator: 9.00
Percentiles: 1%=9.00; 5%=9.00; 10%=9.00; 20%=9.00; 50%=9.00; 80%=9.00; 90%=9.00; 95%=9.

→˓00; 99%=9.00
Metric: TransferFromServerTime
TotalSamples: 2
Accumulator: 010ms130.597us
ValueRate: 549ms937.108us / second
Rate: 108.372 / second
Percentiles: 1%=004ms948.602us; 5%=004ms948.602us; 10%=004ms948.602us; 20%=004ms948.

→˓602us; 50%=006ms181.995us; 80%=006ms181.995us; 90%=006ms181.995us; 95%=006ms181.995us;␣
→˓99%=006ms181.995us
Metric: TransferToServerTime
TotalSamples: 6
Accumulator: 061ms698.791us
ValueRate: 007ms731.182us / second
Rate: 0.665369 / second
Percentiles: 1%=006ms848.579us; 5%=006ms848.579us; 10%=006ms848.579us; 20%=007ms129.

→˓666us; 50%=008ms940.718us; 80%=008ms496.166us; 90%=024ms636.413us; 95%=024ms636.413us;␣
→˓99%=024ms636.413us
Metric: TransferToServerTransformTime
TotalSamples: 6
Accumulator: 011ms835.717us
ValueRate: 001ms200.844us / second

(continues on next page)

7.4. Training (torch-neuronx) 337

AWS Neuron

(continued from previous page)

Rate: 0.664936 / second
Percentiles: 1%=108.403us; 5%=108.403us; 10%=108.403us; 20%=115.676us; 50%=167.399us;␣

→˓80%=516.659us; 90%=010ms790.400us; 95%=010ms790.400us; 99%=010ms790.400us
.....
Counter: xla::_copy_from
Value: 7

Counter: xla::addmm
Value: 2

Counter: xla::empty
Value: 5

Counter: xla::t
Value: 2

....
Metric: XrtCompile
TotalSamples: 1
Accumulator: 09s946ms607.609us
Mean: 09s946ms607.609us
StdDev: 000.000us
Percentiles: 25%=09s946ms607.609us; 50%=09s946ms607.609us; 80%=09s946ms607.609us; 90

→˓%=09s946ms607.609us; 95%=09s946ms607.609us; 99%=09s946ms607.609us
Metric: XrtExecute
TotalSamples: 1
Accumulator: 176ms932.067us
Mean: 176ms932.067us
StdDev: 000.000us
Percentiles: 25%=176ms932.067us; 50%=176ms932.067us; 80%=176ms932.067us; 90%=176ms932.

→˓067us; 95%=176ms932.067us; 99%=176ms932.067us
Metric: XrtReadLiteral
TotalSamples: 2
Accumulator: 608.578us
Mean: 304.289us
StdDev: 067.464us
Rate: 106.899 / second
Percentiles: 25%=236.825us; 50%=371.753us; 80%=371.753us; 90%=371.753us; 95%=371.753us;

→˓ 99%=371.753us

As seen, you can get useful information about graph compile times/execution times. You can also know which operators
are present in the graph, which operators are run on the CPU and which operators are run on an XLA device. For
example, operators that have a prefix aten:: would run on the CPU, since they do not have xla lowering. All operators
with prefix xla:: would run on an XLA device. Note: aten operators that do not have xla lowering would result in
a graph fragmentation and might end up slowing down the entire execution. If you encounter such operators, create a
request for operator support.

338 Chapter 7. PyTorch Neuron

AWS Neuron

Printing tensors

Users can print tensors in their script as below:

import os
import torch
import torch_xla
import torch_xla.core.xla_model as xm

device = xm.xla_device()
input1 = torch.randn(2,10).to(device)
Defining 2 linear layers
linear1 = torch.nn.Linear(10,30).to(device)
linear2 = torch.nn.Linear(30,20).to(device)

Running forward
output1 = linear1(input1)
output2 = linear2(output1)
print(output2)

Since torch-xla evaluates operations lazily, when you try to print output2 , the graph associated with the tensor would
be evaluated. When a graph is evaluated, it is first compiled for the device and executed on the selected device. Note:
Each tensor would have a graph associated with it and can result in graph compilations and executions. For example,
in the above script, if you try to print output1 , a new graph is cut and you would see another evaluation. To avoid
multiple evaluations, you can make use of mark_step (next section).

Use mark_step

Torch-XLA provides an api called mark_step which evaluates a graph collected up to that point. While this is similar
to printing of an output tensor wherein a graph is also evaluated, there is a difference. When an output tensor is printed,
only the graph associated with that specific tensor is evaluated, whereas mark_step enables all the output tensors up to
mark_step call to be evaluated in a single graph. Hence, any tensor print after mark_step would be effectively free
of cost as the tensor values are already evaluated. Consider the example below:

import os
import torch
import torch_xla
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met

device = xm.xla_device()
input1 = torch.randn(2,10).to(device)
Defining 2 linear layers
linear1 = torch.nn.Linear(10,30).to(device)
linear2 = torch.nn.Linear(30,20).to(device)

Running forward
output1 = linear1(input1)
output2 = linear2(output1)
xm.mark_step()
print(output2)
print(output1)

(continues on next page)

7.4. Training (torch-neuronx) 339

AWS Neuron

(continued from previous page)

Printing the metrics to check if compilation and execution occurred
print(met.metrics_report())

In the printed metrics, the number of compiles and executions is only 1, even though 2 tensors are printed. Hence, to
avoid multiple graph evaluations, it is recommended that you visualize tensors after a mark_step . You can also make
use of the add_step_closure api for this purpose. With this api, you pass in the tensors that needs to be visualized/printed.
The added tensors would then be preserved in the graph and can be printed as part of the callback function passed to
the api. Here is a sample usage: https://github.com/pytorch/xla/blob/master/test/test_train_mp_mnist.py#L133

Note: Graph compilations can take time as the compiler optimizes the graph to run on device.

Using Eager Debug Mode

Eager debug mode provides a convenient utility to step through the code and evaluate operators one by one for correct-
ness. Eager debug mode is useful to inspect your models the way you would do in eager-mode frameworks like PyTorch
and Tensorflow. With Eager Debug Mode operations are executed eagerly. As soon as an operation is registered with
torch-xla, it would be sent for compilation and execution. Since compiling a single operation, the time spent would be
minimal. Moreover, the chances of hitting the framework compilation cache increases as models would have repeated
operations throughout. Consider example 1 below:

Example 1

import os
You need to set this env variable before importing torch-xla
to run in eager debug mode.
os.environ["NEURON_USE_EAGER_DEBUG_MODE"] = "1"

import torch
import torch_xla
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met

device = xm.xla_device()
input1 = torch.randn(2,10).to(device)
Defining 2 linear layers
linear1 = torch.nn.Linear(10,30).to(device)
linear2 = torch.nn.Linear(30,20).to(device)

Running forward
output1 = linear1(input1)
output2 = linear2(output1)

Printing the metrics to check if compilation and execution occurred
Here, in the metrics you should notice that the XRTCompile and XRTExecute
value is non-zero, even though no tensor is printed. This is because, each
operation is executed eagerly.
print(met.metrics_report())

print(output2)
print(output1)
Printing the metrics to check if compilation and execution occurred.
Here the XRTCompile count should be same as the previous count.

(continues on next page)

340 Chapter 7. PyTorch Neuron

https://pytorch.org/xla/release/1.9/index.html#torch_xla.core.xla_model.add_step_closure
https://github.com/pytorch/xla/blob/master/test/test_train_mp_mnist.py#L133

AWS Neuron

(continued from previous page)

In other words, printing tensors did not incur any extra compile
and execution of the graph
print(met.metrics_report())

As seen from the above scripts, each operator is evaluated eagerly and there is no extra compilation when output
tensors are printed. Moreover, together with the on-disk Neuron persistent cache, eager debug mode only incurs one
time compilation cost when the ops is first run. When the script is run again, the compiled ops will be pulled from
the persistent cache. Any changes you make to the training script would result in the re-compilation of only the newly
inserted operations. This is because each operation is compiled independently. Consider example 2 below:

Example 2

import os
You need to set this env variable before importing torch-xla
to run in eager debug mode.
os.environ["NEURON_USE_EAGER_DEBUG_MODE"] = "1"

import torch
import torch_xla
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met

os.environ['NEURON_CC_FLAGS'] = "--log_level=INFO"

device = xm.xla_device()
input1 = torch.randn(2,10).to(device)
Defining 2 linear layers
linear1 = torch.nn.Linear(10,30).to(device)
linear2 = torch.nn.Linear(30,20).to(device)
linear3 = torch.nn.Linear(20,30).to(device)
linear4 = torch.nn.Linear(30,20).to(device)

Running forward
output1 = linear1(input1)
output2 = linear2(output1)
output3 = linear3(output2)

Note the number of compiles at this point and compare
with the compiles in the next metrics print
print(met.metrics_report())

output4 = linear4(output3)
print(met.metrics_report())

Running the above example 2 script after running example 1 script, you may notice that from the start until the state-
ment output2 = linear2(output1) , all the graphs would hit the persistent cache. Executing the line output3
= linear3(output2) would result in a new compilation for linear3 layer only because the layer configuration is
new. Now, when we run output4 = linear4(output3) , you would observe no new compilation happens. This is
because the graph for linear4 is same as the graph for linear2 and hence the compiled graph for linear2 is reused
for linear4 by the framework’s internal cache.

Eager debug mode avoids the wait times involved with tensor printing because of larger graph compilation. It is designed
only for debugging purposes, so when the training script is ready, please remove the NEURON_USE_EAGER_DEBUG_MODE

7.4. Training (torch-neuronx) 341

AWS Neuron

environment variable from the script in order to obtain optimal performance.

By default, in eager debug mode the logging level in the Neuron compiler is set to error mode. Hence, no logs would
be generated unless there is an error. Before your first print, if there are many operations that needs to be compiled,
there might be a small delay. In case you want to check the logs, switch on the INFO logs for compiler using:

os.environ["NEURON_CC_FLAGS"] = "--log_level=INFO"

Profiling model run

Profiling model run can help to identify different bottlenecks and resolve issues faster. You can profile different sections
of the code to see which block is the slowest. To profile model run, you can follow the steps below:

1. Add: import torch_xla.debug.profiler as xp

2. Start server. This can be done by adding the following line after creating xla device: server = xp.
start_server(9012)

3. In a separate terminal, start tensorboard. The logdir should be in the same directory from which you run the
script.

Open the tensorboard on a browser. Go to profile section in the top right. Note: you may have to install the
profile plugin using: pip install tensorboard-plugin-profile

4. When you click on the profile, it should give an option to capture profile. Clicking on capture profile produces
the following pop-up.

342 Chapter 7. PyTorch Neuron

AWS Neuron

In the URL enter: localhost:9012 . Port in this URL should be same as the one you gave when starting the
server in the script.

5. Once done, click capture and it should automatically load the following page:

6. To check the profile for different blocks of code, head to trace_viewer under Tools (on the left column).

7.4. Training (torch-neuronx) 343

AWS Neuron

7. It should show a profile that looks like this:

Note: By default, torch-xla would time different blocks of code inside the library. However, you can also profile block
of code in your scripts. This can be done by adding the code within a xp.Trace context as follows:

....
for epoch in range(total_epochs):

inputs = torch.randn(1,10).to(device)
labels = torch.tensor([1]).to(device)
with xp.Trace("model_build"):

loss = model(inputs, labels)
(continues on next page)

344 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

with xp.Trace("loss_backward"):
loss.backward()

....

It should produce a profile that has the model_build and loss_backward section timed. This way you can time any
block of script for debugging.

Note: If you are running your training script in a docker container, to view the tensorboard, you should launch the
docker container using flag: --network host eg. docker run --network host my_image:my_tag

Snapshotting With Torch-Neuronx 2.1

Snapshotting models can be used to dump debug information that can then be sent to the Neuron team. Neuron execution
relies on a series of compiled graphs. Internally, graph HLOs are used as an intermediate representation which is then
compiled. Then, during execution, the graph inputs are passed to the Neuron runtime, which produces outputs using
the compiled graph. Snapshotting saves the inputs to a graph execution, executes the graphs, saves the outputs of the
execution, and then bundles and dumps the inputs, outputs and graph HLO in one file. This is illustrated here:

7.4. Training (torch-neuronx) 345

AWS Neuron

This feature can be enabled using the following environment variables, which can be set at the beginning of your script
as follows (./dump is the snapshot dump directory that will be created):

....
os.environ["XLA_FLAGS"] = "--xla_dump_hlo_snapshots --xla_dump_to=./dump"
....

This environment variable will produce snapshots in the ./dump folder with the extension .
decomposed_hlo_snapshot at every iteration for every process. For example, files that look like the following
would be produced.

SyncTensorsGraph.27737-process000000-executable000003-device000000-execution000496.
→˓inputs.decomposed_hlo_snapshot

Note that NEURON_FRAMEWORK_DEBUG does not need to be set, as in torch-neuronx 1.13. Also note that
NEURON_DUMP_HLO_SNAPSHOT and NEURON_NC0_ONLY_SNAPSHOT environment variables used in torch-neuronx 1.13
are now no longer used to control snapshot dumping.

Snapshots can take up a large amount of disk space. To avoid running out of disk space, you can limit the snapshoting
for a certain rank, such as rank 0. The following example code would work with torchrun utility which sets the RANK
environment variable for each process:

if os.environ.get("RANK", "0") == "0":
os.environ["XLA_FLAGS"]="--xla_dump_hlo_snapshots --xla_dump_to=./dump"

or if not using torchrun:

import torch_xla.core.xla_model as xm

....
if xm.is_master_ordinal():

os.environ["XLA_FLAGS"]="--xla_dump_hlo_snapshots --xla_dump_to=./dump"
....

346 Chapter 7. PyTorch Neuron

AWS Neuron

Torch-NeuronX 2.1+ provides a register_hlo_snapshot_callback API to allow more control over when to dump
the snapshot. By default, Torch-NeuronX 2.1+ includes the following callback function:

def _dump_hlo_snapshot_callback(name: str, addressable_device_index: int, execution_
→˓count: int) -> str:
return 'inputs'

As the return value is always ‘inputs’, the backend will always dump snapshot files containing HLO and input data
only. Recognized return value keywords are ‘inputs’ and ‘outputs’. If the return value is an empty string ‘’, then the
backend will skip this dump. If the return value is ‘inputs outputs’, then the backend will dump two snapshot files for
each execution, one holding inputs, and another one holding outputs.

To implement selective dumping, we can make use of the callback function’s parameters name, address-
able_device_index, execution_count , where:

• name is a string that stands for the HLO graph’s name.

• addressable_device_index is an integer that refers to the index of the addressable Neuron device as one
NEFF can load onto multiple addressable Neuron devices (NeuronCores) for SPMD executions. Note that this
is not the same as the worker process rank in multi-process execution, in which RANK/xm.get_ordinal() or
LOCAL_RANK/xm.get_local_ordinal() should be used. See examples above.

• execution_count is an integer that indicates the value of an internal execution counter that increments by one
for each execution of a compiled graph when HloSnapshot dumping is requested. Note that each compiled graph
maintains multiple execution counters, one for each addressable device that it loads onto.

For example, the following will dump snapshot files containing outputs at execution #2 (Note that this is graph execution
number, not the iteration or step; for iteration or step, see the next example):

def callback(name, addressable_device_index, execution_count):
if execution_count == 2:

return 'outputs'
else:

return ''

import libneuronxla
old_callback = libneuronxla.register_hlo_snapshot_callback(callback)

Callback functions can be use to dump at a certain condition, such as when the global step count equal a value:

step = 0
def callback(name, addressable_device_index, execution_count):

if step == 5:
return 'inputs'

else:
return ''

import libneuronxla
old_callback = libneuronxla.register_hlo_snapshot_callback(callback)

...
for epoch in range(EPOCHS):

for idx, (train_x, train_label) in enumerate(train_loader):
step += 1

...

7.4. Training (torch-neuronx) 347

AWS Neuron

Note: Snapshot dumping triggered by a runtime error such as NaN is not yet available. It will be available in a feature
release.

Snapshotting with Torch-Neuronx 1.13

Note: If you are using Torch-NeuronX 2.1, please see Snapshotting With Torch-Neuronx 2.1

With Torch-Neuronx 1.13, the snapshotting feature can be enabled using the following environment variables, which
can be set at the beginning of your script as follows.

....
os.environ["XLA_FLAGS"] = " --xla_dump_to=dump"
os.environ["NEURON_FRAMEWORK_DEBUG"] = "1"
os.environ["NEURON_DUMP_HLO_SNAPSHOT"] = "1"
....

This set of environment variables will produce snapshots under the dump folder with the extensions .hlo.snapshot.
pb or .decomposed_hlo_snapshot at every iteration. For example a file that looks like the following would be
produced.

dump/module_SyncTensorsGraph.387.pid_12643.execution_7496.hlo_snapshot.pb

The dumping environment variable can be set and unset at specific iterations as shown in the following example.

....
for step in range(STEPS):

if step == 20:
os.environ["NEURON_DUMP_HLO_SNAPSHOT"] = "1"

else:
os.environ.pop('NEURON_DUMP_HLO_SNAPSHOT', None)

train_x = torch.randn(BATCH_SIZE, 28, 28)
train_x = train_x.to(device)
loss = model(train_x)
loss.backward()
optimizer.step()
xm.mark_step()

....

Additionally, we provide capabilities to snapshot graphs automatically. The environment variables above can be set as
follows:

....
os.environ["XLA_FLAGS"] = " --xla_dump_to=dump"
os.environ["NEURON_FRAMEWORK_DEBUG"] = "1"
os.environ["NEURON_DUMP_HLO_SNAPSHOT"] = "ON_NRT_ERROR"
....

When unexpected errors such as a graph execution producing NaNs occurs, snapshots will be automatically pro-
duced and execution will be terminated. Occasionally, for larger models, automatic snapshotting may not capture

348 Chapter 7. PyTorch Neuron

AWS Neuron

snapshots due to the device memory being exhausted. In this case, the above flag can be set to os.environ[
"NEURON_DUMP_HLO_SNAPSHOT"] = "ON_NRT_ERROR_HYBRID", this will allocate memory for inputs on both the
device and host memory. In some additional cases, this may still go out of memory and may need to be set to os.
environ["NEURON_DUMP_HLO_SNAPSHOT"] = "ON_NRT_ERROR_CPU" to avoid allocating any memory on the de-
vice at all for automatic snapshotting.

Snapshot FAQs:

When should I use this features?
This feature should be used when debugging errors that requires interfacing with and providing debug data to the
Neuron team. Snapshotting may be redundant and unnecessary in some situations. For example, when only the model
weights are necessary for debugging, methods such as checkpointing may be more convenient to use.

What sort of data is captured with these snapshots?
The type of data captured by these snapshots may include model graphs in HLO form, weights/parameters, optimizer
states, intermediate tensors and gradients. This data may be considered sensitive and this should be taken into account
before sending the data to the Neuron team.

What is the size of these snapshots?
The size of snapshots can be significant for larger models such as GPT or BERT with several GBs worth of data for
larger graphs, so it is recommended to check that sufficient disk space exists before using snapshotting. In addition,
limiting the amount of snapshots taken in a run will help to preserve disk space.

Will snapshotting add overhead to my execution?
Snapshotting does add a small overhead to the execution in most cases. This overhead can be significant if snapshots
are dumped at every iteration. In order to alleviate some of this overhead, in the case that snapshotting is not necessary
on all cores the following environment variable can be set to collect snapshots only on the first core in torch-neuronx
1.13:

....
os.environ["NEURON_NC0_ONLY_SNAPSHOT"] = "1"
....

In torch-neuronx 2.1, use RANK environmental variable when using torchrun or xm.is_master_ordinal() to limit
dumping to the first process (see above):

....
if os.environ.get("RANK", "0") == "0":

os.environ["XLA_FLAGS"]="--xla_dump_hlo_snapshots --xla_dump_to=./dump"
....

or (not using torchrun):

import torch_xla.core.xla_model as xm

....
if xm.is_master_ordinal():

os.environ["XLA_FLAGS"]="--xla_dump_hlo_snapshots --xla_dump_to=./dump"
....

In addition, checkpointing in tandem with snapshotting can be useful to reduce overhead. A checkpoint close to the
problem iteration can be captured, then execution resumed with snapshots enabled.

How can I share snapshots with the Neuron team?

7.4. Training (torch-neuronx) 349

AWS Neuron

These snapshots can be shared with the Neuron team via S3 bucket.

This document is relevant for: Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

Developer Guide for Profiling with PyTorch NeuronX

Table of Contents

• Introduction

• Example used in this guide

– Prerequisites

– Environment

– Setup

• Viewing the Trace on TensorBoard

• Using Named Blocks for the Trace

Introduction

The Neuron PyTorch profiler is a context manager wrapping around the entire model and training loop. Specifically this
is the context manager: torch_neuronx.experimental.profiler.profile. This is a wrapper of the XLA Debug
Profiler which we imported earlier as import torch_xla.debug.profiler as xp, and is backwards-compatible.
Here are the parameters of the profiler context manager:

1. port: Port to run the profiling GRPC server on. Default is 9012.

2. profile_type: There is “trace” and “operator”. “trace” is the Torch Runtime Trace Level, while “operator” is
the Model Operator Trace Level.

3. ms_duration: This defines how long the profiler will capture the HLO artifacts from the model to view in the
profiler. The unit is in milliseconds.

4. neuron_tensorboard_plugin_dir: The directory the neuron tensorboard plugin will file write to (NB: As-
sumes that the tensorboard logdir=”log/”)

5. delete_working: If set to False turns off the deletion of temporary files (default True)

We move the model to the xla device inside the context manager. This is important, as this allows the profiler to collect
the operations and processes from the neuronx-cc compiler artifacts. If the model is moved to the xla device outside
of the context manager, the profiling won’t work.

Note: The warnings about the XLA_IR_DEBUG and XLA_HLO_DEBUG env vars not being set can be ignored for the most
part. This warning only comes into play when compiling the model for Neuron outside of the profiler context manager.

After running this script, notice a ./logs directory has been created. It contains the TensorBoard logs including the
profiler views.

350 Chapter 7. PyTorch Neuron

AWS Neuron

Example used in this guide

We will use the following code sample to describe in detail how to use the Neuron PyTorch profiling API.

Prerequisites

1. Initial Trn1 setup for PyTorch (torch-neuronx) has been done

Environment

#activate python virtual environment and install tensorboard_plugin_neuron
source ~/aws_neuron_venv_pytorch_p38/bin/activate
pip install tensorboard_plugin_neuronx

#create work directory for the Neuron Profiling tutorials
mkdir -p ~/neuron_profiling_tensorboard_examples
cd ~/neuron_profiling_tensorboard_examples

Setup

Create a new working directory:

mkdir simple_demo
cd simple_demo

Save the following code as demo.py:

import os

import torch
import torch.nn as nn
import torch.nn.functional as F

XLA imports
import torch_xla
import torch_xla.core.xla_model as xm
import torch_xla.debug.profiler as xp

import torch_neuronx
from torch_neuronx.experimental import profiler

os.environ["NEURON_CC_FLAGS"] = "--cache_dir=./compiler_cache"

Global constants
EPOCHS = 10

Declare 3-layer MLP Model
class MLP(nn.Module):
def __init__(self, input_size = 10, output_size = 2, layers = [5, 5]):

(continues on next page)

7.4. Training (torch-neuronx) 351

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/frameworks/torch/torch-neuronx/setup/pytorch-install.html

AWS Neuron

(continued from previous page)

super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, layers[0])
self.fc2 = nn.Linear(layers[0], layers[1])
self.fc3 = nn.Linear(layers[1], output_size)

def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return F.log_softmax(x, dim=1)

def main():
Fix the random number generator seeds for reproducibility
torch.manual_seed(0)

XLA: Specify XLA device (defaults to a NeuronCore on Trn1 instance)
device = xm.xla_device()

Start the proflier context-manager
with torch_neuronx.experimental.profiler.profile(

port=9012,
profile_type='trace',
ms_duration=15000) as profiler:

IMPORTANT: the model has to be transferred to XLA within
the context manager, otherwise profiling won't work
model = MLP().to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
loss_fn = torch.nn.NLLLoss()

start training loop
print('----------Training ---------------')
model.train()
for epoch in range(EPOCHS):

optimizer.zero_grad()
train_x = torch.randn(1,10).to(device)
train_label = torch.tensor([1]).to(device)

#forward
loss = loss_fn(model(train_x), train_label)

#back
loss.backward()
optimizer.step()

XLA: collect ops and run them in XLA runtime
xm.mark_step()

print('----------End Training ---------------')

if __name__ == '__main__':

(continues on next page)

352 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

main()

Then run it!

python demo.py

Viewing the Trace on TensorBoard

To view the TensorBoard logs, run tensorboard --logdir=./logs

Note: Depending on TensorBoard version --load_fast=false might be an additional parameter to add to view the
trace.

Take note of the port (usually 6006) and enter localhost:<port> into the local browser (assuming port forwarding
is set up properly):

Once localhost:<port> is entered, verify that the “NEURON” view is shown:

If “NEURON” isn’t shown on the top left hand side, select “NEURON” from the drop down on the top right hand side

On the Left Hand Side, there are two dropdown menus: Run & Tool.

7.4. Training (torch-neuronx) 353

AWS Neuron

The Run dropdown would contain the Torch Runtime Trace and Operator Level Trace views; however since we only ran
the “trace” (i.e Torch Runtime Trace Level), we’ll only see that log. The Torch Runtime Trace views are simply dates
in year_month_day_hour_minute_second_millisecond format. The Tool Dropdown only contains the “trace“
option.

The trace view should look like this:

Let’s zoom into the following section of the trace:

354 Chapter 7. PyTorch Neuron

AWS Neuron

After zooming in the trace should look like this:

Notice on the top, there is a StepMarker process followed by NeuronDevice Execution process. This correlates to
the xm.mark_step() call which executes the collected graph of our model on Neuron. For the Operator Level Trace
(“operator”), we’ll be profiling the model operators that occur on Neuron. In other words, the profiler will zoom into
the NeuronDevice Execution process, if the user specifies profile_type='trace'.

7.4. Training (torch-neuronx) 355

AWS Neuron

Using Named Blocks for the Trace

What we’ve produced so far is the default behavior of the profiler, however it would be more useful to profile specific
blocks of our code to narrow down onto performance bottlenecks. To do this, use xp.Trace context manager. Replace
the respective code in the training loop with the following:

...
optimizer.zero_grad()
train_x = torch.randn(1,10).to(device)
train_label = torch.tensor([1]).to(device)

with xp.Trace("model_build"):
loss = loss_fn(model(train_x), train_label)

with xp.Trace("loss_backward"):
loss.backward()

with xp.Trace("optimizer_step"):
optimizer.step()

XLA: collect ops and run them in XLA runtime
xm.mark_step()
...

Run the script, and follow the same TensorBoard steps. Afterwards, the trace should look like this:

356 Chapter 7. PyTorch Neuron

AWS Neuron

As seen, the model_build, loss_backward and optimizer_step sections have been profiled.

Note: If you are running your training script in a docker container, to view the tensorboard, you should launch the

7.4. Training (torch-neuronx) 357

AWS Neuron

docker container using flag: —network host eg. docker run —network host my_image:my_tag

This document is relevant for: Inf2, Trn1, Trn1n

Developer Guide

• Developer Guide for Training with PyTorch NeuronX

• How to debug models in PyTorch NeuronX

• Developer Guide for Profiling with PyTorch NeuronX

This document is relevant for: Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

7.4.5 Misc (Training - torch-neuronx)

This document is relevant for: Inf2, Trn1, Trn1n

PyTorch Neuron (torch-neuronx) - Supported Operators

Table of Contents

• Operator support

Operator support

The following list the aten operators supported by torch-neuronx.

aten::_s_where
aten::_softmax
aten::_softmax_backward_data
aten::_unsafe_view
aten::add
aten::addcdiv_
aten::addcmul
aten::addmm
aten::bernoulli_
aten::bmm
aten::constant_pad_nd
aten::div
aten::embedding
aten::embedding_dense_backward
aten::empty
aten::expand
aten::fill_
aten::index_select

continues on next page

358 Chapter 7. PyTorch Neuron

AWS Neuron

Table 1 – continued from previous page
aten::_log_softmax
aten::_log_softmax_backward_data
aten::lt
aten::mm
aten::mul
aten::native_batch_norm
aten::native_batch_norm_backward
aten::neg
aten::permute
aten::relu
aten::rsub
aten::select
aten::slice
aten::sqrt
aten::sum
aten::t
aten::tanh
aten::tanh_backward
aten::threshold_backward
aten::transpose
aten::unsqueeze
aten::view
aten::zero_

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

How to prepare trn1.32xlarge for multi-node execution

EFA is a low latency transport that is used for inter-node communication. Multi-node jobs, such as distributed training,
requires EFA to be enabled on every participating trn1/trn1n 32xlarge instance. Please note that EFA is currently not
available on the smaller instances sizes and they cannot be used for running multi-node jobs.

trn1.32xlarge has 8 EFA devices, trn1n.32xlarge has 16 EFA devices. The rest of the document will refer to
trn1.32xlarge but everything in the document also applies to trn1n.32xlarge except for the different number of EFA
devices.

Launching an instance

Before launching trn1 you need to create a security group that allows EFA traffic between the instances. Follow Step1
here: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html#efa-start-security and note the newly
created security group ID. It will be used on the next step.

Determine the region, the AMI, the key and the subnet that will be used to launch trn1.

At the moment launching Trn1 instances with EFA support from the console is not recommended. The instances must
be launched using AWS CLI. To launch trn1.32xlarge instance:

export AMI=<ami>
export SUBNET=<subnet id>
export SG=<security group created on the previous step>

(continues on next page)

7.4. Training (torch-neuronx) 359

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html#efa-start-security

AWS Neuron

(continued from previous page)

export REG=<AWS region>
export KEY=<the key>

aws ec2 run-instances --region ${REG} \
--image-id ${AMI} --instance-type trn1.32xlarge \
--key-name ${KEY} \
--tag-specifications "ResourceType=instance,Tags=[{Key=Name,Value=\"friendly name\"}]" \
--network-interfaces \
"NetworkCardIndex=0,DeviceIndex=0,Groups=${SG},SubnetId=${SUBNET},InterfaceType=efa" \
"NetworkCardIndex=1,DeviceIndex=1,Groups=${SG},SubnetId=${SUBNET},InterfaceType=efa" \
"NetworkCardIndex=2,DeviceIndex=1,Groups=${SG},SubnetId=${SUBNET},InterfaceType=efa" \
"NetworkCardIndex=3,DeviceIndex=1,Groups=${SG},SubnetId=${SUBNET},InterfaceType=efa" \
"NetworkCardIndex=4,DeviceIndex=1,Groups=${SG},SubnetId=${SUBNET},InterfaceType=efa" \
"NetworkCardIndex=5,DeviceIndex=1,Groups=${SG},SubnetId=${SUBNET},InterfaceType=efa" \
"NetworkCardIndex=6,DeviceIndex=1,Groups=${SG},SubnetId=${SUBNET},InterfaceType=efa" \
"NetworkCardIndex=7,DeviceIndex=1,Groups=${SG},SubnetId=${SUBNET},InterfaceType=efa"

Note that one of the cards is assigned DeviceIndex 0 and the rest are assigned DeviceIndex 1. Cloud-init will configure
instance routing to route outgoing traffic prioritized by the device index field. I.e the outbound traffic will always
egress from the interface with DeviceIndex 0. That avoids network connectivity problems when multiple interfaces are
attached to the same subnet.

To launch trn1n.32xlarge instance:

export AMI=<ami>
export SUBNET=<subnet id>
export SG=<security group created on the previous step>
export REG=<AWS region>
export KEY=<the key>

aws ec2 run-instances --region ${REG} \
--image-id ${AMI} --instance-type trn1.32xlarge \
--key-name ${KEY} \
--tag-specifications "ResourceType=instance,Tags=[{Key=Name,Value=\"friendly name\"}]" \
--network-interfaces \

NetworkCardIndex=0,DeviceIndex=0,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=1,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=2,DeviceIndex=2,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=3,DeviceIndex=3,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=4,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=5,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=6,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=7,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=8,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=9,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=10,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=11,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=12,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=13,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=14,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=15,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa

360 Chapter 7. PyTorch Neuron

AWS Neuron

Assigning public IP address

Multi-interface instances are not assigned public IP automatically. If you require access to the newly launched trn1
from the Internet you need to assign Elastic IP to the interface with DeviceIndex = 0. To find the right interface either
parse the output of the instance launch command or use describe-instances command:

$ aws ec2 describe-instances --instance-ids i-01b17afa1e6021d6c
{

"Reservations": [
{

"Groups": [],
"Instances": [

{
"AmiLaunchIndex": 0,
"ImageId": "ami-01257e71ecb2f431c",
"InstanceId": "i-01b17afa1e6021d6c",
"InstanceType": "trn1.32xlarge",
.........
"NetworkInterfaces": [

{
"Attachment": {

"AttachTime": "2023-05-19T17:37:26.000Z",
"AttachmentId": "eni-attach-03730388baedd4b96",
"DeleteOnTermination": true,
"DeviceIndex": 0,
"Status": "attached",
"NetworkCardIndex": 4

},
"Description": "",
.........
"InterfaceType": "efa"

},
{

"Attachment": {
"AttachTime": "2023-05-19T17:37:26.000Z",
"AttachmentId": "eni-attach-0e1242371cd2532df",
"DeleteOnTermination": true,
"DeviceIndex": 0,
"Status": "attached",
"NetworkCardIndex": 3

},
"Description": "",
................

}
]

}

The second entry in “NetworkInterfaces” in this example has “DeviceIndex” 0 and should be used to attach EIP.

7.4. Training (torch-neuronx) 361

AWS Neuron

Software installation

The software required for EFA operation is distributed via aws-efa-installer package. The package is preinstalled on
Neuron DLAMI. If you’d like to install the latest or if you are using your own AMI follow these steps:

curl -O https://efa-installer.amazonaws.com/aws-efa-installer-latest.tar.gz
wget https://efa-installer.amazonaws.com/aws-efa-installer.key && gpg --import aws-efa-
→˓installer.key
cat aws-efa-installer.key | gpg --fingerprint
wget https://efa-installer.amazonaws.com/aws-efa-installer-latest.tar.gz.sig && gpg --
→˓verify ./aws-efa-installer-latest.tar.gz.sig
tar -xvf aws-efa-installer-latest.tar.gz
cd aws-efa-installer && sudo bash efa_installer.sh --yes
cd
sudo rm -rf aws-efa-installer-latest.tar.gz aws-efa-installer

Containers

aws-efa-installer package must be installed on the instance. That installs both the efa kernel module and the libraries.
The libraries must be accessible to an application running inside a container. This can be accomplished by either
installing aws-efa-installer package inside the container or by making on the instance library installation path available
inside a container.

If installing aws-efa-installer package inside a container pass the flag that disables the kernel module installation:

sudo bash efa_installer.sh --yes --skip-kmod

The location of the libraries is distribution specific:

/opt/amazon/efa/lib # Ubuntu
/opt/amazon/efa/lib64 # AL2

Application execution environment

When running an application make sure the following environment variables are set:

FI_PROVIDER=efa
FI_EFA_USE_DEVICE_RDMA=1
FI_EFA_FORK_SAFE=1 # only required when running on AL2

Appendix - trn1 instance launch example script

#!/bin/bash

set -e

AWS CLI v2 Installation instructions for Linux:
curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip"
unzip awscliv2.zip

(continues on next page)

362 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

sudo ./aws/install
$ aws --version
aws-cli/2.11.20 Python/3.11.3 Linux/5.15.0-1034-aws exe/x86_64.ubuntu.20 prompt/off
Someone with AWS console admin privileges can create an access key ID and secret for␣
→˓this:
Configure credentials: aws configure

Search the AWS AMIs for the most recent "Deep Learning Base Neuron AMI (Ubuntu 20.04)
→˓<Latest_Date>"
This one is 2023-05-17 - ami-01257e71ecb2f431c
AMI= ... # the ami
KEYNAME= ... # your key
SG= ... # the security group
SUBNET= ... # the subnet
REGION=us-west-2

Launch instances
echo "Starting instances..."
output=$(aws ec2 --region $REGION run-instances \
--tag-specifications 'ResourceType=instance,Tags=[{Key=Name,Value=_Trainium-Big}]' \
--count 1 \
--image-id $AMI \
--instance-type trn1.32xlarge \
--key-name $KEYNAME \
--network-interfaces "NetworkCardIndex=0,DeviceIndex=0,Groups=$SG,SubnetId=$SUBNET,
→˓InterfaceType=efa" \
"NetworkCardIndex=1,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa" \
"NetworkCardIndex=2,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa" \
"NetworkCardIndex=3,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa" \
"NetworkCardIndex=4,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa" \
"NetworkCardIndex=5,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa" \
"NetworkCardIndex=6,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa" \
"NetworkCardIndex=7,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa")

Parse the output to get the instance IDs
instance_ids=$(echo $output | jq -r .Instances[].InstanceId)
echo "Got created instance IDs: $instance_ids"

Loop through each instance ID
public_ips=""
for instance_id in $instance_ids; do

echo "Waiting for instance $instance_id to be running..."
aws ec2 wait instance-running --instance-ids $instance_id --region $REGION

echo "Creating SSH public IP newtork inteface for instance $instance_id..."
interface_id=""
INSTANCE_INFO=$(aws ec2 describe-instances --region $REGION --instance-ids $instance_

→˓id)
OUTPUT=$(echo "$INSTANCE_INFO" | jq -r '.Reservations[0].Instances[0].

→˓NetworkInterfaces[] | "\(.Attachment.DeviceIndex),\(.NetworkInterfaceId)"')
echo $OUTPUT

(continues on next page)

7.4. Training (torch-neuronx) 363

AWS Neuron

(continued from previous page)

for pair in $OUTPUT; do
IFS="," read -r device_idx ni_id <<< $pair
if ["$device_idx" == "0"]; then

interface_id=$ni_id
break

fi
done
if ["$interface_id" == ""]; then

exit -1
fi
echo $interface_id

echo "Checking for unassociated Elastic IPs..."
unassociated_eips=$(aws ec2 describe-addresses --region $REGION | jq -r '.Addresses[]␣

→˓| select(.AssociationId == null) | .AllocationId')
if [[-z "$unassociated_eips"]]; then

echo "No unassociated Elastic IPs found. Allocating new Elastic IP..."
eip_output=$(aws ec2 allocate-address --domain vpc --region $REGION)
eip_id=$(echo $eip_output | jq -r .AllocationId)
echo "Allocated Elastic IP ID: $eip_id"
eip_public_ip=$(echo $eip_output | jq -r .PublicIp)
echo "Allocated Elastic IP Public IP: $eip_public_ip"
echo "Note that this newly allocated Elasic IP will persist even after the␣

→˓instance termination"
echo "If the Elastic IP is not going to be reused do not forget to delete it"

else
use the first unassociated Elastic IP found
eip_id=$(echo "$unassociated_eips" | head -n 1)
echo "Found unassociated Elastic IP ID: $eip_id"
eip_public_ip=$(aws ec2 describe-addresses --allocation-ids $eip_id --region

→˓$REGION | jq -r .Addresses[0].PublicIp)
echo "Elastic IP Public IP: $eip_public_ip"

fi
public_ips+="${eip_public_ip} "

echo "Associating Elastic IP with network interface $interface_id..."
aws ec2 associate-address --allocation-id $eip_id --network-interface-id $interface_id␣

→˓--region $REGION
echo "Associated Elastic IP with network interface."

done

echo "The instance has been launched.\nYou can now SSH into $public_ips with key
→˓$KEYNAME.\n"

Note: if you face connectivity issues after launching trn1\trn1n 32xlarge instance on Ubuntu, please follow the trou-
bleshooting instructions mentioned here.

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Trn1, Trn1n

364 Chapter 7. PyTorch Neuron

AWS Neuron

PyTorch Neuron (torch-neuronx) for Training Troubleshooting Guide

Table of contents

• General Troubleshooting

• Possible Error Conditions

– Non-Fatal Error OpKernel (‘op: “TPU*” device_type: “CPU”’)

– XLA runtime error: “Invalid argument: Cannot assign a device for operation”

– Error: “Could not start gRPC server”

– Failed compilation result in the cache

– Compilation errors when placing NeuronCache home directory on NFS/EFS/FSx mounted drive

– Compilation error: “Expect ap datatype to be of type float32 float16 bfloat16 uint8”

– NeuronCore(s) not available - Requested:1 Available:0

– TDRV error “TDRV:exec_consume_infer_status_notification”

– TDRV error “TDRV:tdrv_one_tmpbuf_reserve Number of ONE TMPBUF pages requested exceeded the
max number of pages allowed (requested: <N>, max allowed: 16).”

– Could not open the ndX, close device failed, TDRV not initialized

– Multiworker execution hangs during NCCL init

– NRT init error “One or more engines are running. Please restart device by reloading driver”

– NRT error “ERROR TDRV:kbl_model_add Attempting to load an incompatible model!”

– NRT error “ERROR HAL:aws_hal_sprot_config_remap_entry SPROT remap destination address must
be aligned size”

– NCCL warning : “NCCL WARN Timeout waiting for RX (waited 120 sec) - retrying”

– RPC error: “RPC failed with status = ‘UNAVAILABLE: Socket closed’”

– Error “Assertion `listp->slotinfo[cnt].gen <= GL(dl_tls_generation)’ failed” followed by ‘RPC failed
with status = “UNAVAILABLE: Connection reset by peer”’

– RPC connection error: “RPC failed with status = UNAVAILABLE: Connection reset by peer” not pre-
ceded by any error

– Runtime errors “Missing infer_status notification” followed by “inference timeout”

– Protobuf Error “TypeError: Descriptors cannot not be created directly.”

– TDRV error “Timestamp program stop timeout”

– Compiler error “module ‘numpy’ has no attribute ‘asscalar’”

– Import errors ‘generic_type: type “IrValue” is already registered!’ or ‘generic_type: type “XlaBuilder”
is already registered!’

– Import error “import _XLAC ImportError: <>/site-packages/_XLAC.cpython-38-x86_64-linux-gnu.so:
undefined symbol”

– Network Connectivity Issue on trn1/trn1n 32xlarge with Ubuntu

– “Too many open files” when running training job

7.4. Training (torch-neuronx) 365

AWS Neuron

– “undefined symbol”

This document shows common issues users may encounter while using PyTorch-Neuron and provides guidance how
to resolve or work-around them.

General Troubleshooting

For setting up EFA that is needed for multi-node training, please see How to prepare trn1.32xlarge for multi-node
execution

For XLA-related troubleshooting notes see How to debug models in PyTorch Neuron and PyTorch-XLA troubleshooting
guide.

If your multi-worker training run is interrupted, you may need to kill all the python processes (WARNING: this kills
all python processes and reload the driver):

killall -9 python
killall -9 python3
sudo rmmod neuron; sudo modprobe neuron

To turn on RT debug:

os.environ["NEURON_RT_LOG_LEVEL"] = "INFO"

To turn on Neuron NCCL debug:

os.environ["NCCL_DEBUG"] = "WARN"
os.environ["NCCL_DEBUG_SUBSYS"] = "ALL"

If some process crashed during training, you can enable core dumps using ulimit command:

ulimit -S -c unlimited

To see the type of signals that would cause core dumps, see https://www.man7.org/linux/man-pages/man7/signal.7.
html.

Note that core dumps take significant amount of storage, so make sure there is enough free disk space before enabling
core dumps.

On Ubuntu, if Apport is not running, core dump file name is by default “core” in the local directory. To change file
location and name format, modify /proc/sys/kernel/core_pattern (see https://www.kernel.org/doc/html/latest/
admin-guide/sysctl/kernel.html#core-pattern for pattern info). For example, to dump to /tmp with executable filename
and process ID:

echo '/tmp/core.%e.%p' | sudo tee /proc/sys/kernel/core_pattern

For containers, install appropriate dependencies during docker build (“apt-get update && apt-get -y install build-
essential gdb”) and start the container with --ulimit core=-1 to enable core dump and -v /tmp/:/tmp/ to ensure
core dumps to /tmp are preserved when container is stopped or deleted. Dependencies can also be installed after
container is started.

On Ubuntu, core dumps can also handled by Apport which is disabled by default. To enable Apport, run sudo service
apport start. The /proc/sys/kernel/core_pattern is updated by Apport service. After a crash, look in /var/
log/apport.log for the core dump file name, which should be in located in /var/lib/apport/coredump/.

Once you have the core dump, you can use gdb to debug further (for Python applications, <executable> is python or
python3):

366 Chapter 7. PyTorch Neuron

https://github.com/pytorch/xla/blob/master/TROUBLESHOOTING.md
https://github.com/pytorch/xla/blob/master/TROUBLESHOOTING.md
https://www.man7.org/linux/man-pages/man7/signal.7.html
https://www.man7.org/linux/man-pages/man7/signal.7.html
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/kernel.html#core-pattern
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/kernel.html#core-pattern

AWS Neuron

gdb <executable> <core file>

If some process (i.e. XRT server) is killed due to out-of-memory on host (i.e. you see Out of memory: Killed
process <PID> in /var/log/syslog or output of dmesg), there won’t be any core dump generated. However, you
can change to it to kernel panic mode to trigger core dump by setting /proc/sys/vm/panic_on_oom to value of 1 on
the host or from inside container.

On the host where you need sudo (this change will be reflected inside the container also):

echo 1 | sudo tee /proc/sys/vm/panic_on_oom

From inside container where sudo doesn’t work (this change will be reflected on the host also):

echo 1 > /proc/sys/vm/panic_on_oom

Possible Error Conditions

Non-Fatal Error OpKernel (‘op: “TPU*” device_type: “CPU”’)

During execution using PyTorch Neuron, you may see these non-fatal error messages:

E tensorflow/core/framework/op_kernel.cc:1676] OpKernel ('op: "TPURoundRobin" device_
→˓type: "CPU"') for unknown op: TPURoundRobin
E tensorflow/core/framework/op_kernel.cc:1676] OpKernel ('op: "TpuHandleToProtoKey"␣
→˓device_type: "CPU"') for unknown op: TpuHandleToProtoKey

They don’t affect operation of the PyTorch Neuron and can be ignored.

XLA runtime error: “Invalid argument: Cannot assign a device for operation”

RuntimeError: tensorflow/compiler/xla/xla_client/xrt_computation_client.cc:490 : Check␣
→˓failed: session->session()->Run(session_work->feed_inputs, session_work->outputs_
→˓handles, &outputs) == ::tensorflow::Status::OK() (INVALID_ARGUMENT: Cannot assign a␣
→˓device for operation XRTAllocateFromTensor: {{node XRTAllocateFromTensor}} was␣
→˓explicitly assigned to /job:localservice/replica:0/task:0/device:TPU:0 but available␣
→˓devices are [/job:localservice/replica:0/task:0/device:CPU:0, /job:localservice/
→˓replica:0/task:0/device:TPU_SYSTEM:0, /job:localservice/replica:0/task:0/device:XLA_
→˓CPU:0]. Make sure the device specification refers to a valid device.

[[XRTAllocateFromTensor]] vs. OK)
*** Begin stack trace ***

tensorflow::CurrentStackTrace()

xla::util::MultiWait::Complete(std::function<void ()> const&)

clone
*** End stack trace ***

The above error indicates that the framework was not able to initialize the neuron runtime. If you get the above error,
check for the following:

1. No other process is taking the neuron cores. If yes, you may have to kill that process.

7.4. Training (torch-neuronx) 367

AWS Neuron

2. If no process is running, try reloading the driver using sudo rmmod neuron; sudo modprobe neuron

Error: “Could not start gRPC server”

If you get “Could not start gRPC server” error, please check if there are any leftover python processes from a previous
interrupted run and terminate them before restarting run.

E0207 17:22:12.592127280 30834 server_chttp2.cc:40] {"created":"@1644254532.
→˓592081429","description":"No address added out of total 1 resolved","file":"external/
→˓com_github_grpc_grpc/src/core/ext/t
ransport/chttp2/server/chttp2_server.cc","file_line":395,"referenced_errors":[{"created":
→˓"@1644254532.592078907","description":"Failed to add any wildcard listeners","file":
→˓"external/com_github_grpc_grpc/s
rc/core/lib/iomgr/tcp_server_posix.cc","file_line":342,"referenced_errors":[{"created":
→˓"@1644254532.592072626","description":"Unable to configure socket","fd":10,"file":
→˓"external/com_github_grpc_grpc/src/c
ore/lib/iomgr/tcp_server_utils_posix_common.cc","file_line":216,"referenced_errors":[{
→˓"created":"@1644254532.592068939","description":"Address already in use","errno":98,
→˓"file":"external/com_github_grpc_grpc/src/core/lib/iomgr/tcp_server_utils_posix_common.
→˓cc","file_line":189,"os_error":"Address already in use","syscall":"bind"}]},{"created":
→˓"@1644254532.592078512","description":"Unable to configure socket"
,"fd":10,"file":"external/com_github_grpc_grpc/src/core/lib/iomgr/tcp_server_utils_posix_
→˓common.cc","file_line":216,"referenced_errors":[{"created":"@1644254532.592077123",
→˓"description":"Address already in
use","errno":98,"file":"external/com_github_grpc_grpc/src/core/lib/iomgr/tcp_server_
→˓utils_posix_common.cc","file_line":189,"os_error":"Address already in use","syscall":
→˓"bind"}]}]}]}
2022-02-07 17:22:12.592170: E tensorflow/core/distributed_runtime/rpc/grpc_server_lib.cc:
→˓545] Unknown: Could not start gRPC server

Failed compilation result in the cache

All compilation results are by default saved in Neuron Persistent Cache. If the Neuron Compiler fails to compile
a graph, we save the failed result in the cache. The reason for doing so is, if the user tries to run the same script, we
want the users to error out early rather than wait for the compilation to progress and see an error at the later stage.
However, there could be certain cases under which a failed compilation may be do you some environment issues. One
possible reason of failure could be, during compilation the process went out of memory. This can happen if you are
running multiple processes in parallel such that not enough memory is available for compilation of graph. Failure due
to such reasons can be easily mitigated by re-running the compilation. In case, you want to retry a failed compilation,
you can do that by passing --retry_failed_compilation as follows:

os.environ['NEURON_CC_FLAGS'] = os.environ.get('NEURON_CC_FLAGS', '') + ' --retry_failed_
→˓compilation'

This would retry the compilation and would replace a failed result in the cache with a successful compilation result.

368 Chapter 7. PyTorch Neuron

AWS Neuron

Compilation errors when placing NeuronCache home directory on NFS/EFS/FSx mounted drive

Currently, NeuronCache default root directory is /var/tmp which is local to the instance you are running on. You
can modify the location of the NeuronCache root directory using NEURON_CC_FLAGS='--cache_dir=<root dir>'.
However, when the NeuronCache directory is placed in a directory that is part of a NFS mounted drive shared among
multiple instances, you may encounter file errors such as file not found, file corruption, or KeyError when running
multi-instance training:

KeyError: 'neff_cache2/neuron-compile-cache/USER_neuroncc-1.0.48875.0+7437fbf18/MODULE_
→˓7223055628515330524/MODULE_0_SyncTensorsGraph.14_7223055628515330524_compute1-dy-kaena-
→˓training-2-1-e859998e-3035-5df63dab5ce63'

This is a result of limitations to file locking on NFS. EFS/FSx also exhibit similar limitation. The workaround is to setup
separate NeuronCache root directories for each worker instance, such as NEURON_CC_FLAGS="--cache_dir=$HOME/
neuron_cache/bert/`hostname`", where the home directory is shared among worker instances as in ParallelClus-
ter.

Consider the use case of a ParallelCluster with SLURM cluster management. The home directory of the head node
is shared via NFS with worker instances. Also, SLURM would terminate the idle worker instances when the cluster
is configured as dynamic auto-scaling cluster, and the default cache in the terminated worker instance’s /var/tmp is
deleted. So to persist the cache across runs separated by a cluster idle period, we use the workaround above to create
separate NeuronCache root directories for each worker instance. For example, see BERT ParallelCluster script.

Compilation error: “Expect ap datatype to be of type float32 float16 bfloat16 uint8”

If an XLA example fails to run because of failed compilation and one of the error messages is “Expect ap datatype to
be of type float32 float16 bfloat16 uint8”, then please set the environment variable XLA_USE_32BIT_LONG=1 in your
script:

os.environ['XLA_USE_32BIT_LONG'] = '1'

11/18/2021 04:51:25 PM WARNING 34567 [StaticProfiler]: matmul-based transposes inserted␣
→˓by penguin takes up 93.66 percent of all matmul computation
terminate called after throwing an instance of 'std::runtime_error'
what(): === BIR verification failed ===

Reason: Expect ap datatype to be of type float32 float16 bfloat16 uint8
Instruction: I-545-0
Opcode: Matmult
Input index: 0
Argument AP:
Access Pattern: [[1,8],[1,1],[1,1]]
Offset: 0
Memory Location: {compare.85-t604_i0}@SB<0,0>(8x2)#Internal DebugInfo: <compare.
→˓85||uint16||UNDEF||[8, 1, 1]>

7.4. Training (torch-neuronx) 369

https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/dp_bert_hf_pretrain/run_dp_bert_large_hf_pretrain_bf16_s128.sh#L42

AWS Neuron

NeuronCore(s) not available - Requested:1 Available:0

When you see “NeuronCore(s) not available” please terminate processes that may be holding the NeuronCores and
terminate any neuron-top sessions that are running. Also check if someone else is using the system. Then do “sudo
rmmod neuron; sudo modprobe neuron” to reload the driver.

2021-Nov-15 15:21:28.0231 7245:7245 ERROR NRT:nrt_allocate_neuron_cores NeuronCore(s)␣
→˓not available - Requested:nc1-nc1 Available:0
2021-11-15 15:21:28.231864: F ./tensorflow/compiler/xla/service/neuron/neuron_runtime.h:
→˓1037] Check failed: status == NRT_SUCCESS NEURONPOC : nrt_init failed. Status = 1

Often when you run multi-worker training, there can be many python processes leftover after a run is interrupted. To
kill all python processes, run the follow (WARNING: this kills all python processes on the system) then reload the
driver:

killall -9 python
killall -9 python3
sudo rmmod neuron; sudo modprobe neuron

TDRV error “TDRV:exec_consume_infer_status_notification”

If you see TDRV error “TDRV:exec_consume_infer_status_notification”, try reloading the driver using sudo
modprobe -r neuron; sudo modprobe neuron;.

2022-Mar-10 18:51:19.07392022-Mar-10 18:51:19.0739 17821:17931 ERROR TDRV:exec_consume_
→˓infer_status_notifications 17822:18046 ERROR TDRV:exec_consume_infer_status_
→˓notifications Unexpected number of CC notifications: mod->cc_op_count=1, cc_start_
→˓cnt=0, cc_end_cnt=0Unexpected number of CC notifications: mod->cc_op_count=1, cc_
→˓start_cnt=0, cc_end_cnt=0

2022-Mar-10 18:51:19.07392022-Mar-10 18:51:19.0739 17821:17931 ERROR TDRV:exec_consume_
→˓infer_status_notifications 17822:18046 ERROR TDRV:exec_consume_infer_status_
→˓notifications (NON-FATAL, Ignoring) inference timeout (180000 ms) on Neuron Device 0␣
→˓NC 0, waiting for cc status notifications.

(NON-FATAL, Ignoring) inference timeout (180000 ms) on Neuron Device 0 NC 1, waiting for␣
→˓cc status notifications.

TDRV error “TDRV:tdrv_one_tmpbuf_reserve Number of ONE TMPBUF pages requested exceeded
the max number of pages allowed (requested: <N>, max allowed: 16).”

If you see the TDRV error “TDRV:tdrv_one_tmpbuf_reserve Number of ONE TMPBUF pages requested exceeded
the max number of pages allowed (requested: <N>, max allowed: 16)”, it maybe due to model tensors requiring more
device memory then available. A solution is to try training with a smaller data batch size.

ERROR TDRV:tdrv_one_tmpbuf_reserve Number of ONE TMPBUF pages requested␣
→˓exceeded the max number of pages allowed (requested: 28, max allowed: 16).
ERROR TDRV:copy_and_stage_mr Failed to reserve one tmpbuf memory
ERROR TDRV:kbl_model_add copy_and_stage_mr() error
W tensorflow/core/distributed_runtime/rpc/grpc_remote_master.cc:157] RPC failed with␣
→˓status = "UNAVAILABLE: Socket closed" and grpc_error_string = "{"created":"@1669183391.
→˓155135683","description":"Error received from peer ipv4:172.31.58.24:43941","file":
→˓"external/com_github_grpc_grpc/src/core/lib/surface/call.cc","file_line":1056,"grpc_
→˓message":"Socket closed","grpc_status":14}", maybe retrying the RPC

(continues on next page)

370 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

Could not open the ndX, close device failed, TDRV not initialized

If you see error messages stating “Could not open the ndX” (where X is an integer from 0..15), please run neuron-ls
and ensure that you are able to see all 16 Neuron devices in the output. If one or more devices are missing please report
the issue to aws-neuron-support@amazon.com with the instance ID and a screen capture of neuron-ls output.

2021-Nov-11 15:33:20.0161 7912:7912 ERROR TDRV:tdrv_init_mla_phase1 ␣
→˓ Could not open the nd0
2021-Nov-11 15:33:20.0161 7912:7912 ERROR TDRV:tdrv_destroy_one_mla ␣
→˓ close device failed
2021-Nov-11 15:33:20.0161 7912:7912 ERROR TDRV:tdrv_destroy ␣
→˓ TDRV not initialized
2021-Nov-11 15:33:20.0161 7912:7912 ERROR NRT:nrt_init ␣
→˓ Failed to initialize devices, error:1
2021-11-11 15:33:20.161331: F ./tensorflow/compiler/xla/service/neuron/neuron_runtime.h:
→˓1033] Check failed: status == NRT_SUCCESS NEURONPOC : nrt_init failed. Status = 1

Multiworker execution hangs during NCCL init

When your multi-worker execution hangs during NCCL init, you can try to reserve the port used by environment
variable NEURON_RT_ROOT_COMM_ID by (here we use host:port localhost:48620 as an example but you can use any
free port and root node’s host IP):

sudo sysctl -w net.ipv4.ip_local_reserved_ports=48620

Then set the environment variable NEURON_RT_ROOT_COMM_ID in your script:

os.environ["NEURON_RT_ROOT_COMM_ID"] = "localhost:48620"

NRT init error “One or more engines are running. Please restart device by reloading driver”

If you see an error stating “One or more engines are running. Please restart device by reloading driver” please follow
the instruction and reload the driver using “sudo modprobe -r neuron; sudo modprobe neuron;”.

2021-Nov-15 20:23:27.0280 3793:3793 ERROR TDRV:tpb_eng_init_hals_v2 CRITICAL HW ERROR:␣
→˓One or more engines are running. Please restart device by reloading driver:
sudo modprobe -r neuron; sudo modprobe neuron;
2021-Nov-15 20:23:27.0280 3793:3793 ERROR TDRV:tdrv_init_one_mla_phase2 nd0 nc0 HAL init␣
→˓failed. error:1

7.4. Training (torch-neuronx) 371

mailto:aws-neuron-support@amazon.com

AWS Neuron

NRT error “ERROR TDRV:kbl_model_add Attempting to load an incompatible model!”

If you see an NRT error “ERROR TDRV:kbl_model_add Attempting to load an incompatible model!” this means that
the compiler neuronx-cc used to compile the model is too old. See installation instruction to update to latest compiler.

NRT error “ERROR HAL:aws_hal_sprot_config_remap_entry SPROT remap destination address
must be aligned size”

If you see an NRT error “ERROR HAL:aws_hal_sprot_config_remap_entry SPROT remap destination address must
be aligned size”, please check the kernel version and upgrade it to the distribution’s latest kernel.

For example, on Ubuntu 18.04.6 LTS, the kernel version 4.15.0-66-generic is known to cause this error when running
MLP tutorial. This is due to a known bug in the kernel in aligned memory allocation. To fix this issue, please upgrade
your kernel to latest version (i.e. 4.15.0-171-generic):

uname -a
sudo apt-get update
sudo apt-get upgrade
sudo apt-get dist-upgrade

Please reboot after the upgrade. Use “uname -a” to check kernel version again after reboot.

NCCL warning : “NCCL WARN Timeout waiting for RX (waited 120 sec) - retrying”

When running multi-worker training, if a graph has collective communication operator like an all_reduce, it requires
all the workers involved in the collective communication to load the graph in the runtime at approximately same time.
If any of the worker doesn’t load the graph within a 120 sec window from the first model load by any of the worker,
you would see warnings like NCCL WARN Timeout waiting for RX (waited 120 sec) - retrying. When
you see such warnings check for the following in the log messages:

1. One of the workers is compiling a graph: In multi-worker training, there is a chance that each worker builds a slightly
different graph. This would result in cache miss and can result in compilation. Since the compilations during training
run are serialized, the first worker can compile and load the graph with collective communication. It would then wait
for 120 secs for other works to join. If they don’t show up because they are compiling their own graphs, first worker
would start throwing a warning message as above. The warning in this case is non-fatal and would go away once all
workers have compiled their respective graphs and then loaded them. To identify this scenario, look for No candidate
found under logs around the warning. You should also see which indicates compilation is in progress.

2. Server on one of the nodes crashed: In distributed training across multiple nodes, if the server on one node crashed,
the workers on other nodes would keep waiting on model load and you would see above timeout logs on those nodes.
To identify if the server crashed, check if you see the following error on any of the nodes:

`RPC failed with status = "UNAVAILABLE: Socket closed" and grpc_error_string = "{"created
→˓":"@1664146011.016500243","description":"Error received from peer ipv4:10.1.24.109:
→˓37379","file":"external/com_github_grpc_grpc/src/core/lib/surface/call.cc","file_line":
→˓1056,"grpc_message":"Socket closed","grpc_status":14}", maybe retrying the RPC`

If you see the above error, then it means there is a server crash and you need to cancel the traning run.

372 Chapter 7. PyTorch Neuron

AWS Neuron

RPC error: “RPC failed with status = ‘UNAVAILABLE: Socket closed’”

When you see the above error, it means that the xrt server crashed. When you see such an error, look for the following:

1. Check for any error logs before the RPC error. That should indicate the root cause of server crash. Note: The
actual error log might be buried because of all the RPC error logs that swamp the logs.

2. Sometimes the server can crash because of host OOM. This can happen when we are loading and saving check-
points. In such cases, you only see RPC errors and no other log. You can check if any instance is going out of
memory by using tools like dmesg

Error “Assertion `listp->slotinfo[cnt].gen <= GL(dl_tls_generation)’ failed” followed by ‘RPC failed
with status = “UNAVAILABLE: Connection reset by peer”’

The error “Assertion `listp->slotinfo[cnt].gen <= GL(dl_tls_generation)’ failed” is intermittent and occurs when using
glibc 2.26. To find out the glibc version you have, you can run ldd --version. The workaround is to use Ubuntu 20
where glibc is 2.27.

INFO: Inconsistency detected by ld.so: ../elf/dl-tls.c: 488: _dl_allocate_tls_init:␣
→˓Assertion `listp->slotinfo[cnt].gen <= GL(dl_tls_generation)' failed!
INFO: 2022-10-03 02:16:04.488054: W tensorflow/core/distributed_runtime/rpc/grpc_remote_
→˓master.cc:157] RPC failed with status = "UNAVAILABLE: Connection reset by peer" and␣
→˓grpc_error_string = "{"created":"@1664763364.487962663","description":"Error received␣
→˓from peer ipv4:10.0.9.150:41677","file":"external/com_github_grpc_grpc/src/core/lib/
→˓surface/call.cc","file_line":1056,"grpc_message":"Connection reset by peer","grpc_
→˓status":14}", maybe retrying the RPC

RPC connection error: “RPC failed with status = UNAVAILABLE: Connection reset by peer” not
preceded by any error

This error may not be preceded by another error like shown in the previous section. In this case, the RPC connection
error usually happens when we do distributed training across multiple nodes. When you see such error, please wait for
a few minutes. It might be because some node is taking time to setup and hence the other node is not able to connect
to it just yet. Once, all nodes are up, training should resume.

Runtime errors “Missing infer_status notification” followed by “inference timeout”

If you get a timeout error like below:

ERROR TDRV:exec_consume_tpb_status_notifications Missing infer_status notification:␣
→˓(end:4)
ERROR TDRV:exec_consume_infer_status_notifications (FATAL-RT-UNDEFINED-STATE) inference␣
→˓timeout (600000 ms) on Neuron Device 4 NC 1, waiting for execution completion␣
→˓notification

It maybe due to long graph execution time causing synchronization delays exceeding the default timeout. Please try
increasing the timeout to larger value using NEURON_RT_EXEC_TIMEOUT (unit in seconds) and see if the problem is
resolved.

7.4. Training (torch-neuronx) 373

https://man7.org/linux/man-pages/man1/dmesg.1.html

AWS Neuron

Protobuf Error “TypeError: Descriptors cannot not be created directly.”

If you install torch-neuronx after neuronx-cc, you may get the Protobuf error “TypeError: Descriptors cannot not be
created directly.”. To fix this, please reinstall neuronx-cc using “pip install –force-reinstall neuronx-cc”.

Traceback (most recent call last):
File "./run_glue.py", line 570, in <module>
main()

File "./run_glue.py", line 478, in main
data_collator=data_collator,

File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/
→˓transformers/trainer.py", line 399, in __init__

callbacks, self.model, self.tokenizer, self.optimizer, self.lr_scheduler
File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/

→˓transformers/trainer_callback.py", line 292, in __init__
self.add_callback(cb)

File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/
→˓transformers/trainer_callback.py", line 309, in add_callback

cb = callback() if isinstance(callback, type) else callback
File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/

→˓transformers/integrations.py", line 390, in __init__
from torch.utils.tensorboard import SummaryWriter # noqa: F401

File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/
→˓torch/utils/tensorboard/__init__.py", line 10, in <module>

from .writer import FileWriter, SummaryWriter # noqa: F401
File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/

→˓torch/utils/tensorboard/writer.py", line 9, in <module>
from tensorboard.compat.proto.event_pb2 import SessionLog

File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/
→˓tensorboard/compat/proto/event_pb2.py", line 17, in <module>

from tensorboard.compat.proto import summary_pb2 as tensorboard_dot_compat_dot_proto_
→˓dot_summary__pb2
File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/

→˓tensorboard/compat/proto/summary_pb2.py", line 17, in <module>
from tensorboard.compat.proto import tensor_pb2 as tensorboard_dot_compat_dot_proto_

→˓dot_tensor__pb2
File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/

→˓tensorboard/compat/proto/tensor_pb2.py", line 16, in <module>
from tensorboard.compat.proto import resource_handle_pb2 as tensorboard_dot_compat_

→˓dot_proto_dot_resource__handle__pb2
File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/

→˓tensorboard/compat/proto/resource_handle_pb2.py", line 16, in <module>
from tensorboard.compat.proto import tensor_shape_pb2 as tensorboard_dot_compat_dot_

→˓proto_dot_tensor__shape__pb2
File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/

→˓tensorboard/compat/proto/tensor_shape_pb2.py", line 42, in <module>
serialized_options=None, file=DESCRIPTOR),

File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/
→˓google/protobuf/descriptor.py", line 560, in __new__

_message.Message._CheckCalledFromGeneratedFile()
TypeError: Descriptors cannot not be created directly.
If this call came from a _pb2.py file, your generated code is out of date and must be␣
→˓regenerated with protoc >= 3.19.0.

(continues on next page)

374 Chapter 7. PyTorch Neuron

AWS Neuron

(continued from previous page)

If you cannot immediately regenerate your protos, some other possible workarounds are:
1. Downgrade the protobuf package to 3.20.x or lower.
2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python␣
→˓parsing and will be much slower).

TDRV error “Timestamp program stop timeout”

If you see TDRV error “Timestamp program stop timeout”, i.e. when rerunning a training script after it was interrupted,
try first reloading the driver using sudo modprobe -r neuron; sudo modprobe neuron; (make sure neuron-top
and/or neuron-monitor are not running).

2022-Aug-31 04:59:21.0546 117717:117717 ERROR TDRV:tsync_wait_eng_stop ␣
→˓ nd0 nc0 Timestamp program stop timeout (1000 ms)
2022-Aug-31 04:59:21.0546 117717:117717 ERROR TDRV:tsync_wait_nc_stop ␣
→˓ nd0 nc0 Error while waiting for timestamp program to end on TPB eng 0
2022-Aug-31 04:59:21.0546 117717:117717 ERROR TDRV:tsync_timestamps_finish ␣
→˓ nd0 nc0 Failed to stop neuron core
2022-Aug-31 04:59:21.0546 117717:117717 ERROR TDRV:tdrv_tsync_timestamps ␣
→˓ nd0 nc0 Failed to end timestamp sync programs
2022-Aug-31 04:59:22.0768 117717:117717 ERROR TDRV:tdrv_destroy ␣
→˓ TDRV not initialized
2022-Aug-31 04:59:22.0768 117717:117717 ERROR NRT:nrt_init ␣
→˓ Failed to initialize devices, error:5

Compiler error “module ‘numpy’ has no attribute ‘asscalar’”

When you have a newer version of numpy in the Python environment, compilations may fail with the “error mod-
ule ‘numpy’ has no attribute ‘asscalar’”. Please note the neuronx-cc has the following dependency on numpy
“numpy<=1.20.0,>=1.13.3”. To workaround this error, please do “pip install –force-reinstall neuronx-cc” to reinstall
neuronx-cc with the proper dependencies.

ERROR 227874 [neuronx-cc]:␣
→˓***
ERROR 227874 [neuronx-cc]: An Internal Compiler Error has occurred
ERROR 227874 [neuronx-cc]:␣
→˓***
ERROR 227874 [neuronx-cc]:
ERROR 227874 [neuronx-cc]: Error message: module 'numpy' has no attribute 'asscalar'
ERROR 227874 [neuronx-cc]:
ERROR 227874 [neuronx-cc]: Error class: AttributeError
ERROR 227874 [neuronx-cc]: Error location: Unknown
ERROR 227874 [neuronx-cc]: Version information:
ERROR 227874 [neuronx-cc]: NeuronX Compiler version 2.1.0.76+2909d26a2
ERROR 227874 [neuronx-cc]:
ERROR 227874 [neuronx-cc]: HWM version 2.1.0.7-64eaede08
ERROR 227874 [neuronx-cc]: NEFF version Dynamic
ERROR 227874 [neuronx-cc]: TVM not available
ERROR 227874 [neuronx-cc]: NumPy version 1.23.3
ERROR 227874 [neuronx-cc]: MXNet not available
ERROR 227874 [neuronx-cc]:

7.4. Training (torch-neuronx) 375

AWS Neuron

Import errors ‘generic_type: type “IrValue” is already registered!’ or ‘generic_type: type
“XlaBuilder” is already registered!’

When you encounter a PyTorch import error ‘import _XLAC . . . generic_type: type “IrValue” is already registered!’
or ‘import _XLAC . . . generic_type: type “XlaBuilder” is already registered!’, please check that TensorFlow and/or
JAX are not installed in the Python environment. If they are installed, please uninstall them.

Import error “import _XLAC ImportError: <>/site-packages/_XLAC.cpython-38-x86_64-linux-gnu.so:
undefined symbol”

When you encounter a PyTorch import error “import _XLAC ImportError: <>/site-packages/_XLAC.cpython-38-x86_64-linux-gnu.so: undefined symbol” during execution, please check:

1. TensorFlow and/or JAX are not installed in the Python environment. If they are installed, please uninstall
them.

2. The installed PyTorch (torch) package major/minor versions match the installed torch-neuronx package’s
major/minor versions (ie. 1.11). If they don’t match, please install the version of PyTorch that matches
torch-neuronx.

Traceback (most recent call last):
File "/opt/ml/mlp_train.py", line 11, in <module>
import torch_xla.core.xla_model as xm

File "/usr/local/lib/python3.8/site-packages/torch_xla/__init__.py", line 117, in
→˓<module>

import _XLAC
ImportError: /usr/local/lib/python3.8/site-packages/_XLAC.cpython-38-x86_64-linux-gnu.so:
→˓ undefined symbol: _ZNK3c1010TensorImpl7stridesEv

NaNs seen with transformers version >= 4.21.0 when running HF BERT fine-tuning or pretraining
with XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1

When running HuggingFace BERT (any size) fine-tuning tutorial or pretraining tutorial with transformers version >=
4.21.0 and using XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1, you will see NaNs in the loss immediately at
the first step. More details on the issue can be found at pytorch/xla#4152. The workaround is to use 4.20.0 or earlier (the
tutorials currently recommend version 4.15.0) or add transformers.modeling_utils.get_parameter_dtype =
lambda x: torch.bfloat16 to the Python script.

Network Connectivity Issue on trn1/trn1n 32xlarge with Ubuntu

Description
Ubuntu distributions have network connectivity issues when multiple interfaces are connected to the same subnet.
trn1/trn1n 32xlarge comes with 8/16 network interfaces. (To launch trn1/trn1n with 8/16 interfaces please follow here)

AWS publishes a package that installs a helper service to address the issue. This service runs at the startup, creates the
appropriate netplan files, updates the netplan and the the instance networking and terminates.

Note that the following fix is only required on instances launched using generic Ubuntu AMIs. Neuron AMIs and
instances launched via ParalleCluster do not require the fix.

Patch to fix networking on a multi-interface instance

376 Chapter 7. PyTorch Neuron

https://github.com/pytorch/xla/issues/4152

AWS Neuron

wget -O /tmp/aws-ubuntu-eni-helper.deb 'https://github.com/aws-samples/aws-efa-nccl-
→˓baseami-pipeline/blob/master/nvidia-efa-ami_base/networking/aws-ubuntu-eni-helper_0.3-
→˓1_all.deb?raw=true'
sudo apt install /tmp/aws-ubuntu-eni-helper.deb -y
sudo systemctl enable aws-ubuntu-eni-helper.service
sudo systemctl start aws-ubuntu-eni-helper.service

How to apply the patch?
The following steps could be followed to resolve this issue:

• Launch trn1.32xl from AWS console (starts with single interface, does not suffer from the multi-interface
issue)

• Apply the patch on this newly launched single-interface instance

• Create a new AMI from this instance

• Launch an 8 or 16 interface instance using that AMI.

Note: The patch installs and enables the service but does not run it. This is intentional. The service will run at the
startup when the AMI is used to launch a multi-interface instance.

FAQs

Note: Neuron DLAMI has the patch installed, users are always encouraged to launch the instances using the DLAMI
which does not require any fix. Please refer to the Set Up Guide to know how to launch an instance using DLAMI.

“Too many open files” when running training job

When running a large model training with several workers, it can result in errors like the following.

2023-Jun-14 19:05:29.0312 4112959:4113326 [23] bootstrap.cc:106 CCOM WARN Call to accept␣
→˓failed : Too many open files
2023-Jun-14 19:05:29.0312 4112959:4113263 [14] include/socket.h:438 CCOM WARN Net :␣
→˓Socket creation failed : Too many open files
2023-Jun-14 19:05:29.0312 4112959:4113326 ERROR ENC:ncclBootstrapRecv ␣
→˓ failed neuronBootstrapRecv request to NCCL
2023-Jun-14 19:05:29.0312 4112959:4113249 [12] bootstrap.cc:106 CCOM WARN Call to accept␣
→˓failed : Too many open files
2023-Jun-14 19:05:29.0312 4112959:4113263 ERROR ENC:ncclBootstrapSend ␣
→˓ failed neuronBootstrapSend request to NCCL2023-Jun-14 19:05:29.03122023-Jun-14 19:
→˓05:29.0312 4112959:4113270 [15] bootstrap.cc:106 CCOM WARN Call to accept failed : Too␣
→˓many open files

This can result when the default OS limits is low. The hard and soft limits can be set on OS using the following
commands or by manually opening and setting the limits.

sudo sed -i 'H;1h;$!d;x;/hard *nofile/!s/$/\n* hard nofile 65536/' /etc/security/limits.
→˓conf
sudo sed -i 'H;1h;$!d;x;/soft *nofile/!s/$/\n* soft nofile 65536/' /etc/security/limits.
→˓conf

(continues on next page)

7.4. Training (torch-neuronx) 377

AWS Neuron

(continued from previous page)

sudo sed -i 's/^#*\(*\|\s**\)\s*soft\s*nofile\s*[0-9]\+$/\1 soft nofile 65536/' /etc/
→˓security/limits.conf
sudo sed -i 's/^#*\(*\|\s**\)\s*hard\s*nofile\s*[0-9]\+$/\1 hard nofile 65536/' /etc/
→˓security/limits.conf
sudo sed -i 's/^#*\(*\|\s**\)\s*soft\s*nofile\s*[0-9]\+$/\1 soft nofile 65536/' /etc/
→˓security/limits.d/01_efa.conf || true
sudo sed -i 's/^#*\(*\|\s**\)\s*hard\s*nofile\s*[0-9]\+$/\1 hard nofile 65536/' /etc/
→˓security/limits.d/01_efa.conf || true

The 01_efa.conf file is created as part of the EFA installation and needs to be updated. If EFA driver is not installed
the file 01_efa.conf doesn’t exist and the sed commands will fail with No such file or directory. If there are other files
under limits.d with file limits they need to be updated as well.

“undefined symbol”

To maintain compatibility with the packages vended publicly in Pypi, AWS Neuron python packages contain binary
extensions that are compiled with the pre-2011 libstdc++ application binary interface (ABI). If a custom version of
a package - such as torch - is compiled using a modern compiler, it can result in “undefined symbol” errors due to
mismatches between the package and AWS Neuron package.

To support this situation, we provide alternative versions of AWS Neuron packages that are compiled according to the
newer 2011 ABI. For information on how to use these packages, see pytorch-install-cxx11.

This document is relevant for: Trn1, Trn1n

• PyTorch Neuron (torch-neuronx) - Supported Operators

• How to prepare trn1.32xlarge for multi-node execution

• PyTorch Neuron (torch-neuronx) for Training Troubleshooting Guide

• PyTorch Neuron (torch-neuronx) release notes

This document is relevant for: Inf2, Trn1, Trn1n

Setup (torch-neuronx)

Tutorials

• Hugging Face BERT Pretraining Tutorial

• Multi-Layer Perceptron Training Tutorial

• PyTorch Neuron for Trainium Hugging Face BERT MRPC task finetuning using Hugging Face Trainer API

• Fine-tune T5 model on Trn1

• ZeRO-1 Tutorial

• Analyze for Training Tutorial

• Neuron Custom C++ Operators in MLP Training

• Neuron Custom C++ Operators Performance Optimization

Note: To use Jupyter Notebook see:

• setup-jupyter-notebook-steps-troubleshooting

378 Chapter 7. PyTorch Neuron

AWS Neuron

• running-jupyter-notebook-as-script

Additional Examples

• AWS Neuron Reference for Nemo Megatron GitHub Repository

• AWS Neuron Samples for EKS

• AWS Neuron Samples for AWS ParallelCluster

• AWS Neuron Samples GitHub Repository

API Reference Guide

• PyTorch NeuronX neuron_parallel_compile CLI

• Neuron Persistent Cache

• PyTorch NeuronX Environment Variables

• PyTorch NeuronX Profiling API

Developer Guide

• Developer Guide for Training with PyTorch NeuronX

• How to debug models in PyTorch NeuronX

• Developer Guide for Profiling with PyTorch NeuronX

Misc

• PyTorch Neuron (torch-neuronx) - Supported Operators

• How to prepare trn1.32xlarge for multi-node execution

• PyTorch Neuron (torch-neuronx) for Training Troubleshooting Guide

• PyTorch Neuron (torch-neuronx) release notes

This document is relevant for: Trn1, Trn1n

Note: For help selecting a framework type for Inference, see:

torch-neuron_vs_torch-neuronx

PyTorch NeuronX for Inference on Inf2 & Trn1 / Trn1n PyTorch Neuron for Inference on Inf1
PyTorch NeuronX for Training on Trn1 / Trn1n This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

7.4. Training (torch-neuronx) 379

https://github.com/aws-neuron/neuronx-nemo-megatron
https://github.com/aws-neuron/aws-neuron-eks-samples
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training

AWS Neuron

380 Chapter 7. PyTorch Neuron

CHAPTER

EIGHT

TENSORFLOW NEURON

TensorFlow Neuron unlocks high-performance and cost-effective deep learning acceleration on AWS Trainium-based
and Inferentia-based Amazon EC2 instances.

TensorFlow Neuron enables native TensorFlow models to be accelerated on Neuron devices, so you can use your
existing framework application and get started easily with minimal code changes.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

8.1 Tensorflow Neuron Setup

Tensorflow Neuron (tensorflow-neuronx) Setup for Inf2, Trn1/Trn1n Instances Tensorflow Neuron
(tensorflow-neuron) Setup for Inf1 Instances This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

8.2 Inference on Inf2 & Trn1/Trn1n (tensorflow-neuronx)

This document is relevant for: Inf2, Trn1, Trn1n

8.2.1 Tutorials (tensorflow-neuronx)

Running Huggingface Roberta-Base with TensorFlow-NeuronX

This tutorial demonstrates how to compile the Huggingface roberta-base model and infer on a trn1.2xlarge instance
with tensorflow-neuronx. To compile larger models like roberta-large, please consider using an inf2 instance.

Setup

To run this tutorial please follow the instructions for TensorFlow-NeuronX Setup and the Jupyter Notebook Quickstart
and set your kernel to “Python (tensorflow-neuronx)”.

Next, install some additional dependencies.

[]: %env TOKENIZERS_PARALLELISM=True #Supresses tokenizer warnings making errors easier to␣
→˓detect
!pip install transformers

381

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/frameworks/tensorflow/tensorflow-neuronx/setup/tensorflow-neuronx-install.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/setup/notebook/setup-jupyter-notebook-steps-troubleshooting.html

AWS Neuron

Download From Huggingface and Compile for AWS-Neuron

[]: import tensorflow as tf
import tensorflow_neuronx as tfnx
from transformers import RobertaTokenizer, TFRobertaModel
from transformers import BertTokenizer, TFBertModel

Create a wrapper for the roberta model that will accept inputs as a list
instead of a dictionary. This will allow the compiled model to be saved
to disk with the model.save() fucntion.
class RobertaWrapper(tf.keras.Model):

def __init__(self, model):
super().__init__()
self.model = model

def __call__(self, example_inputs):
return self.model({'input_ids' : example_inputs[0], 'attention_mask' : example_

→˓inputs[1]})

tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
model = RobertaWrapper(TFRobertaModel.from_pretrained('roberta-base'))

batch_size = 16

create example inputs with a batch size of 16
text = ["Paris is the <mask> of France."] * batch_size
encoded_input = tokenizer(text, return_tensors='tf', padding='max_length', max_length=64)

turn inputs into a list
example_input = [encoded_input['input_ids'], encoded_input['attention_mask']]

#compile
model_neuron = tfnx.trace(model, example_input)

print("Running on neuron:", model_neuron(example_input))

save the model to disk to save recompilation time for next usage
model_neuron.save('./roberta-neuron-b16')

Run Basic Inference Benchmarking

[]: import numpy as np
import concurrent.futures
import time

reloaded_neuron_model = tf.keras.models.load_model('./roberta-neuron-b16')
print("Reloaded model running on neuron:", reloaded_neuron_model(example_input))

num_threads = 4
num_inferences = 1000

(continues on next page)

382 Chapter 8. TensorFlow Neuron

AWS Neuron

(continued from previous page)

latency_list = []
def inference_with_latency_calculation(example_input):

global latency_list
start = time.time()
result = reloaded_neuron_model(example_input)
end = time.time()
latency_list.append((end-start) * 1000)
return result

start = time.time()
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:

futures = []
for i in range(num_inferences):

futures.append(executor.submit(inference_with_latency_calculation, example_
→˓input))
for future in concurrent.futures.as_completed(futures):

get_result = future.result()
end = time.time()

total_time = end - start

print(f"Throughput was {(num_inferences * batch_size)/total_time} samples per second.")
print(f"Latency p50 was {np.percentile(latency_list, 50)} ms")
print(f"Latency p90 was {np.percentile(latency_list, 90)} ms")
print(f"Latency p99 was {np.percentile(latency_list, 99)} ms")

This document is relevant for: Inf2, Trn1, Trn1n

Using NEURON_RT_VISIBLE_CORES with TensorFlow Serving

TensorFlow serving allows customers to scale-up inference workloads across a network. TensorFlow Neuron Serv-
ing uses the same API as normal TensorFlow Serving with two differences: (a) the saved model must be compiled
for neuron and (b) the entry point is a different binary named tensorflow_model_server_neuron. The binary
is found at /usr/local/bin/tensorflow_model_server_neuron and is pre-installed in the DLAMI or installed
with APT/YUM tensorflow-model-server-neuronx package.

Install TensorFlow Model Server and Serving API

Follow the steps in the install-neuronx-tensorflow.

Then ensure you install using either apt-get or yum.

sudo apt-get install tensorflow-model-server-neuronx

or

sudo yum install tensorflow-model-server-neuronx

Also, you would need TensorFlow Serving API (use –no-deps to prevent installation of regular tensorflow).

pip install --no-deps tensorflow_serving_api

8.2. Inference on Inf2 & Trn1/Trn1n (tensorflow-neuronx) 383

AWS Neuron

For the example image preprocessing using Keras preprocessing, the Python Imaging Library Pillow is required:

pip install pillow

To workaround h5py issue https://github.com/aws/aws-neuron-sdk/issues/220:

pip install "h5py<3.0.0"

Export and Compile Saved Model

The following example shows graph construction followed by the addition of Neuron compilation step before exporting
to saved model.

import tensorflow as tf
import tensorflow_neuronx as tfnx
import numpy as np

tf.keras.backend.set_learning_phase(0)
tf.keras.backend.set_image_data_format('channels_last')
image_sizes = [224, 224]
model = tf.keras.applications.ResNet50(weights='imagenet')
example_inputs = tf.random.uniform([1, *image_sizes, 3], dtype=tf.float32)

model_neuron = tfnx.trace(model, example_inputs)
run the model once to define the forward pass and allow for saving
model_neuron(example_inputs)
tf.keras.models.save_model(model_neuron, './resnet50_neuron/1')

Serving Saved Model

User can now serve the saved model with the tensorflow_model_server_neuron binary. To utilize multiple Neuron-
Cores, it is recommended to launch multiple tensorflow model servers that listen to the same gRPC port:

export NEURON_RT_VISIBLE_CORES=0 # important to set this environment variable before␣
→˓launching model servers
tensorflow_model_server_neuron --model_name=resnet50_neuron \

--model_base_path=$(pwd)/resnet50_neuron/ --port=8500

then to run another server on a different neuron core open another
window and run this, except this time set NEURON_RT_VISIBLE_CORES=1
you can keep doing this up to the number of Neuron Cores on your machine

export NEURON_RT_VISIBLE_CORES=1
tensorflow_model_server_neuron --model_name=resnet50_neuron \

--model_base_path=$(pwd)/resnet50_neuron/ --port=8500

The compiled model is staged in neuron DRAM by the server to prepare for inference.

384 Chapter 8. TensorFlow Neuron

https://github.com/aws/aws-neuron-sdk/issues/220

AWS Neuron

Generate inference requests to the model server

Now run inferences via GRPC as shown in the following sample client code:

import numpy as np
import grpc
import tensorflow as tf
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.resnet50 import preprocess_input
from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2_grpc
from tensorflow.keras.applications.resnet50 import decode_predictions

tf.keras.backend.set_image_data_format('channels_last')

if __name__ == '__main__':
channel = grpc.insecure_channel('localhost:8500')
stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
img_file = tf.keras.utils.get_file(

"./kitten_small.jpg",
"https://raw.githubusercontent.com/awslabs/mxnet-model-server/master/docs/images/

→˓kitten_small.jpg")
img = image.load_img(img_file, target_size=(224, 224))
img_array = preprocess_input(image.img_to_array(img)[None, ...])
request = predict_pb2.PredictRequest()
request.model_spec.name = 'resnet50_neuron'
request.inputs['input_1'].CopyFrom(

tf.make_tensor_proto(img_array, shape=img_array.shape))
result = stub.Predict(request)
prediction = tf.make_ndarray(result.outputs['output_1'])
print(decode_predictions(prediction))

This document is relevant for: Inf2, Trn1, Trn1n

• HuggingFace Roberta-Base [html] [notebook]

• Using NEURON_RT_VISIBLE_CORES with TensorFlow Serving

Note: To use Jupyter Notebook see:

• setup-jupyter-notebook-steps-troubleshooting

• running-jupyter-notebook-as-script

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

8.2. Inference on Inf2 & Trn1/Trn1n (tensorflow-neuronx) 385

https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/tensorflow-neuronx/tfneuronx-roberta-base-tutorial.ipynb

AWS Neuron

8.2.2 API Reference Guide (tensorflow-neuronx)

This document is relevant for: Inf2, Trn1, Trn1n

TensorFlow 2.x (tensorflow-neuronx) Tracing API

The Neuron tracing API enables tracing TensorFlow 2.x models for deployment on trn1 and inf2 AWS machine learning
accelerators.

Method

tensorflow_neuronx.trace

Description

Trace a keras.Model or a Python callable that can be decorated by tf.function, and return an AWS-Neuron-
optimized keras.Model that can execute on trn1 and inf2 AWS machine learning accelerators. Tracing is ideal for
keras.Model that accepts a list of tf.Tensor objects and returns a list of tf.Tensor objects. It is expected that users
will provide example inputs, and the trace function will execute func symbolically and convert it to a keras.Model.

The returned keras.Modelwill support inference only. Attributes or variables held by the original function or keras.
Model will be dropped.

The returned keras.Model can be exported as SavedModel and served using TensorFlow Serving. Please see
tensorflow-serving for more information about exporting to saved model and serving using TensorFlow Serving.

The returned keras.Model has an .on_neuron_ratio attribute which shows the percentage of ops mapped to neuron
hardware. This calculation ignores PlaceholerOp, IdentityOp, ReadVariableOp and NoOp.

Options can be passed to Neuron compiler via the environment variable NEURON_CC_FLAGS. For example, the syntax
env NEURON_CC_FLAGS="--workdir ./artifacts" directs the Neuron compiler to dump artifacts in the artifacts
directory for debugging. See Neuron Compiler CLI Reference Guide (neuronx-cc) for more information about compiler
options.

Arguments

• func: The keras.Model or function to be traced.

• example_inputs: A tf.Tensor or a tuple/list/dict of tf.Tensor objects for tracing the function. When
example_inputs is a tf.Tensor or a list of tf.Tensor objects, we expect func to have calling sig-
nature func(example_inputs). Otherwise, the expectation is that inference on func is done by call-
ing func(*example_inputs) when example_inputs is a tuple, or func(**example_inputs) when
example_inputs is a dict. The case where func accepts mixed positional and keyword arguments is cur-
rently unsupported.

• subgraph_builder_function: (Optional) A callable with signature

subgraph_builder_function(node : NodeDef) -> bool (NodeDef is defined in tensor-
flow/core/framework/node_def.proto)

that is used as a call-back function to determine which part of the tensorflow GraphDef given by tracing func
will be placed on Machine Learning Accelerators.

If subgraph_builder_function is not provided, then trace will automatically place operations on Machine
Learning Accelerators or on CPU to maximize the execution efficiency.

386 Chapter 8. TensorFlow Neuron

AWS Neuron

If it is provided, and subgraph_builder_function(node) returns True, and placing node on Machine Learn-
ing Accelerators will not cause deadlocks during execution, then trace will place node on Machine Learning
Accelerators. If subgraph_builder_function(node) returns False, then trace will place node on CPU.

Special Flags

These are flags that get passed directly to the Neuron tracing API (rather than the Neuron Compiler). The flags are still
passed via the environment variable NEURON_CC_FLAGS.

• workdir: example usage - NEURON_CC_FLAGS='--workdir ./artifacts' will create a folder named arti-
facts in the current directory and save artifacts that can be used for debug.

• dynamic-batch-size: example usage - NEURON_CC_FLAGS='--dynamic-batch-size'A flag to allow Neuron
graphs to consume variable sized batches of data. Dynamic sizing is restricted to the 0th dimension of a tensor.

• extract-weights (Beta): example usage - NEURON_CC_FLAGS='--extract-weights trn1.2xlarge' will
reduce the compiled model’s protobuf size by taking the weights out of the protobuf. Useful for compil-
ing large models that would exceed the 2GB protobuf size limit. This feature is in beta. Model perfor-
mance is not guaranteed and the flag does not work in combination with --neuroncore-pipeline-cores,
--dynamic-batch-size, models with multiple NEFFs, and models that are 16GB or greater. Compiles mod-
els for different neuron instances depending on the instance type passed. Supports all trn1 and inf2 instance types
except for trn1n.

Returns

• An AWS-Neuron-optimized keras.Model.

Example Usage

import tensorflow as tf
import tensorflow_neuronx as tfnx

input0 = tf.keras.layers.Input(3)
dense0 = tf.keras.layers.Dense(3)(input0)
model = tf.keras.Model(inputs=[input0], outputs=[dense0])
example_inputs = tf.random.uniform([1, 3])
model_neuron = tfnx.trace(model, example_inputs) # trace
check to see how much of the model was compiled successfully
print(model_neuron.on_neuron_ratio)

model_dir = './model_neuron'
model_neuron.save(model_dir)
model_neuron_reloaded = tf.keras.models.load_model(model_dir)

8.2. Inference on Inf2 & Trn1/Trn1n (tensorflow-neuronx) 387

AWS Neuron

Example Usage with Manual Device Placement Using subgraph_builder_function

import tensorflow as tf
import tensorflow_neuronx as tfnx

input0 = tf.keras.layers.Input(3)
dense0 = tf.keras.layers.Dense(3)(input0)
reshape0 = tf.keras.layers.Reshape([1, 3])(dense0)
output0 = tf.keras.layers.Dense(2)(reshape0)
model = tf.keras.Model(inputs=[input0], outputs=[output0])
example_inputs = tf.random.uniform([1, 3])

def subgraph_builder_function(node):
return node.op == 'MatMul'

model_neuron = tfnx.trace(
model, example_inputs,
subgraph_builder_function=subgraph_builder_function,

)

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

TensorFlow Neuron (tensorflow-neuronx) Auto Multicore Replication (Beta)

The Neuron auto multicore replication Python API enables modifying TensorFlow 2.x models trace by
`tensorflow_neuronx.trace` so that they can be automatically replicated across multiple cores.

Table of contents

• TensorFlow Neuron TF 2.x (tensorflow-neuron TF2.x) Auto Multicore Replication Python API (Beta)

• TensorFlow Neuron TF2.x (tensorflow-neuronx TF2.x) Auto Multicore Replication CLI (Beta)

388 Chapter 8. TensorFlow Neuron

AWS Neuron

TensorFlow Neuron TF 2.x (tensorflow-neuron TF2.x) Auto Multicore Replication Python API (Beta)

Method

tensorflow.neuron.auto_multicore on models traced by tensorflow_neuronx.trace

Description

Converts an existing AWS-Neuron-optimized keras.Model and returns an auto-replication tagged AWS-Multicore-
Neuron-optimized keras.Model that can execute on AWS Machine Learning Accelerators. Like the traced model, the
returned keras.Model will support inference only. Attributes or variables held by the original function or keras.
Model will be dropped.

The auto model replication feature in TensorFlow-Neuron enables you to create a model once and the model parallel
replication would happen automatically. The desired number of cores can be less than the total available NeuronCores
on an trn1 or inf2 instance but not less than 1. This reduces framework memory usage as you are not loading the same
model multiple times manually. Calls to the returned model will execute the call on each core in a round-robin fashion.

The returned keras.Model can be exported as SavedModel and served using TensorFlow Serving. Please see
tensorflow-serving for more information about exporting to saved model and serving using TensorFlow Serving.

Note that the automatic replication will only work on models compiled with pipeline size 1: via
--neuroncore-pipeline-cores=1. If auto replication is not enabled, the model will default to replicate on
up to 4 cores.

See Neuron Compiler CLI Reference Guide (neuronx-cc) for more information about compiler options.

Arguments

• func: The keras.Model or function to be traced.

• example_inputs: A tf.Tensor or a tuple/list/dict of tf.Tensor objects for tracing the function. When
example_inputs is a tf.Tensor or a list of tf.Tensor objects, we expect func to have calling sig-
nature func(example_inputs). Otherwise, the expectation is that inference on func is done by call-
ing func(*example_inputs) when example_inputs is a tuple, or func(**example_inputs) when
example_inputs is a dict. The case where func accepts mixed positional and keyword arguments is cur-
rently unsupported.

• num_cores: The desired number of cores where the model will be automatically replicated across

Returns

• An AWS-Multicore-Neuron-optimized keras.Model.

8.2. Inference on Inf2 & Trn1/Trn1n (tensorflow-neuronx) 389

AWS Neuron

Example Python API Usage for TF2.x traced models:

import tensorflow as tf
import tensorflow.neuron as tfn
import tensorflow_neuronx as tfnx

input0 = tf.keras.layers.Input(3)
dense0 = tf.keras.layers.Dense(3)(input0)
inputs = [input0]
outputs = [dense0]
model = tf.keras.Model(inputs=inputs, outputs=outputs)
input0_tensor = tf.random.uniform([1, 3])
model_neuron = tfnx.trace(model, input0_tensor)

a trn1.2xlarge has 2 neuron cores
num_cores = 2
multicore_model = tfn.auto_multicore(model_neuron, input0_tensor, num_cores=num_cores)
multicore_model(input0_tensor)

Example Python API Usage for TF2.x saved models:

from tensorflow.python import saved_model

input0_tensor = tf.random.uniform([1, 3])
num_cores = 4
reload_model = saved_model.load(model_dir)
multicore_model = tfn.auto_multicore(reload_model, input0_tensor, num_cores=num_cores)

TensorFlow Neuron TF2.x (tensorflow-neuronx TF2.x) Auto Multicore Replication CLI (Beta)

The Neuron auto multicore replication CLI enables modifying Tensorflow 2.x traced saved models so that they can be
automatically replicated across multiple cores. By performing this call on Tensorflow Saved Models, we can support
Tensorflow-Serving without significant modifications to the code.

Method

tf-neuron-auto-multicore MODEL_DIR --num_cores NUM_CORES --new_model_dir NEW_MODEL_DIR

Arguments

• MODEL_DIR: The directory of a saved AWS-Neuron-optimized keras.Model.

• NUM_CORES: The desired number of cores where the model will be automatically replicated across

• NEW_MODEL_DIR: The directory of where the AWS-Multicore-Neuron-optimized keras.Model will be
saved

390 Chapter 8. TensorFlow Neuron

AWS Neuron

Example CLI Usage for Tensorflow-Serving saved models:

tf-neuron-auto-multicore ./resnet --num_cores 8 --new_model_dir ./modified_resnet

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

TensorFlow 2.x (tensorflow-neuronx) analyze_model API

Method

tensorflow_neuronx.analyze_model

Description

Analyzes a keras.Model or a Python callable that can be decorated by tf.function for it’s compatibility with
Neuron. It displays supported vs. unsupported operators in the model as well as percentages and counts of each
operator and returns a dictionary with operator statistics.

Arguments

• func: The keras.Model or function to be analyzed.

• example_inputs: A tf.Tensor or a tuple/list/dict of tf.Tensor objects for tracing the function. When
example_inputs is a tf.Tensor or a list of tf.Tensor objects, we expect func to have calling sig-
nature func(example_inputs). Otherwise, the expectation is that inference on func is done by call-
ing func(*example_inputs) when example_inputs is a tuple, or func(**example_inputs) when
example_inputs is a dict. The case where func accepts mixed positional and keyword arguments is cur-
rently unsupported.

Returns

• A results dict with these keys: ``’percent_supported’, ‘supported_count’,

‘total_count’, ‘supported_operators’, ‘unsupported_operators’, ‘operators’, ‘operator_count’``.

Example Usage

import tensorflow as tf
import tensorflow_neuron as tfnx

input0 = tf.keras.layers.Input(3)
dense0 = tf.keras.layers.Dense(3)(input0)
model = tf.keras.Model(inputs=[input0], outputs=[dense0])
example_inputs = tf.random.uniform([1, 3])
results = tfnx.analyze_model(model, example_inputs)
print(results)

(continues on next page)

8.2. Inference on Inf2 & Trn1/Trn1n (tensorflow-neuronx) 391

AWS Neuron

(continued from previous page)

expected output
'''
BiasAdd

MatMul
100.00% of all operations (2 of 2) are supported
{'percent_supported': 100.0, 'supported_count': 2, 'total_count': 2,
'supported_operators': {'BiasAdd', 'MatMul'}, 'unsupported_operators': [],
'operators': ['BiasAdd', 'MatMul'], 'operator_count': {'MatMul': 1, 'BiasAdd': 1}}
'''

This document is relevant for: Inf2, Trn1, Trn1n

• TensorFlow 2.x (tensorflow-neuronx) Tracing API

• TensorFlow Neuron (tensorflow-neuronx) Auto Multicore Replication (Beta)

• TensorFlow 2.x (tensorflow-neuronx) analyze_model API

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

8.2.3 Misc (tensorflow-neuronx)

This document is relevant for: Inf2, Trn1, Trn1n

TensorFlow Neuron (tensorflow-neuronx) Release Notes

Table of contents

• tensorflow-neuronx 2.x release [2.1.0]

• tensorflow-neuronx 2.10 release [2.0.0]

• tensorflow-neuronx 2.10 release [1.0.0]

This document lists the release notes for the tensorflow-neuronx 2.x packages.

tensorflow-neuronx 2.x release [2.1.0]

Date: 09/15/2023

• Minor updates

Date: 05/1/2023

• Added support for tracing models larger than 2 GB through the environment variable
NEURON_CC_FLAGS='--extract-weights INSTANCE_TYPE' for all trn1 and inf2 instance types.

• tensorflow-neuronx now supports tensorflow 2.7, 2.8, and 2.9 (In addition to the already supported 2.10).

• Neuron release 2.10 release will be the last release that will include support for tensorflow-neuronx version 2.7.
Future Neuron releases will not include tensorflow-neuronx version 2.7.

392 Chapter 8. TensorFlow Neuron

AWS Neuron

tensorflow-neuronx 2.10 release [2.0.0]

Date: 03/28/2023

The second release of tensorflow-neuronx 2.10 includes the following features:

• Dynamic batching

The following features are not included in this release:

• Support for tracing models larger than 2 GB

tensorflow-neuronx 2.10 release [1.0.0]

Date: 2/24/2023

The initial release of tensorflow-neuronx 2.10 includes the following features:

• Initial support for TensorFlow 2.10 inference on Inf2 and Trn1

• Trace API (tensorflow_neuronx.trace)

• Automatic partitioning of model into CPU vs NeuronCore parts

• Automatic data parallel on multiple NeuronCores (beta)

• Python 3.7, 3.8 and 3.9 support

• HuggingFace Roberta tutorial

The following features are not included in this release:

• Dynamic batching

• Support for tracing models larger than 2 GB

This document is relevant for: Inf2, Trn1, Trn1n

• TensorFlow Neuron (tensorflow-neuronx) Release Notes

This document is relevant for: Inf2, Trn1, Trn1n

Setup (tensorflow-neuronx)

Tutorials (tensorflow-neuronx)

• HuggingFace Roberta-Base [html] [notebook]

• Using NEURON_RT_VISIBLE_CORES with TensorFlow Serving

Note: To use Jupyter Notebook see:

• setup-jupyter-notebook-steps-troubleshooting

• running-jupyter-notebook-as-script

8.2. Inference on Inf2 & Trn1/Trn1n (tensorflow-neuronx) 393

https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/tensorflow-neuronx/tfneuronx-roberta-base-tutorial.ipynb

AWS Neuron

API Reference Guide (tensorflow-neuronx)

• TensorFlow 2.x (tensorflow-neuronx) Tracing API

• TensorFlow Neuron (tensorflow-neuronx) Auto Multicore Replication (Beta)

• TensorFlow 2.x (tensorflow-neuronx) analyze_model API

Misc (tensorflow-neuronx)

• TensorFlow Neuron (tensorflow-neuronx) Release Notes

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf1

8.3 Inference on Inf1 (tensorflow-neuron)

This document is relevant for: Inf1

8.3.1 Tutorials (tensorflow-neuron)

This document is relevant for: Inf1

Computer Vision Tutorials (tensorflow-neuron)

• Tensorflow 1.x - OpenPose tutorial [html] [notebook]

• Tensorflow 1.x - ResNet-50 tutorial [html] [notebook]

• Tensorflow 1.x - YOLOv4 tutorial [html] [notebook]

• Tensorflow 1.x - YOLOv3 tutorial [html] [notebook]

• Tensorflow 1.x - SSD300 tutorial [html]

• Tensorflow 1.x - Keras ResNet-50 optimization tutorial [html] [notebook]

Running OpenPose on Inferentia

Note: this tutorial runs on tensorflow-neuron 1.x only

Introduction:

In this tutorial we will compile and deploy Openpose model for Inferentia. This jupyter notebook should run on an
inf1.6xlarge instance for compilation and inference. The inference part of this tutorial requires inf1.6xlarge and not the
compilation itself. For simplicity we will run this tutorial on a single instance but in real life scenario the compilation
can be done on a compute c5.4xlarge instance and the deployment on the inf1 instance family.

In this tutorial we provide two main sections: 1. Compile the OpenPose model on inf1x6large. 2. Infer the same
compiled model on inf1x6large.

394 Chapter 8. TensorFlow Neuron

https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/openpose_demo/openpose.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/tensorflow_resnet50/resnet50.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/yolo_v4_demo/evaluate.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/yolo_v3_demo/yolo_v3.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/keras_resnet50/keras_resnet50.ipynb

AWS Neuron

Verify that this Jupyter notebook is running the Python kernel environment that was set up according to the Tensorflow
Installation Guide. You can select the Kernel from the “Kernel -> Change Kernel” option on the top of this Jupyter
notebook page.

Acknowledgement:

Many thanks to https://github.com/ildoonet for providing pretrained model as well as the image preprocessing/pose
estimating infrastructure.

Download tensorflow pose net frozen graph.

[]: !wget -c --tries=2 $(wget -q -O - http://www.mediafire.com/file/qlzzr20mpocnpa3/graph_
→˓opt.pb | grep -o 'http*://download[^"]*' | tail -n 1) -O graph_opt.pb

!pip install tensorflow_neuron==1.15.5.2.8.9.0 --extra-index-url=https://pip.repos.
→˓neuron.amazonaws.com/
!pip install neuron_cc==1.13.5.0 --extra-index-url=https://pip.repos.neuron.amazonaws.com

Compile

Compile the pose net frozen graph into AWS Neuron compatible form. Network input image resolution is adjustable
with argument –net_resolution (e. g., –net_resolution=656x368). The compiled model can accept arbitrary batch size
input at runtime.

[]: """
Usage: python convert_graph_opt.py /path/to/graph_opt.pb /path/to/graph_opt_neuron.pb
"""
#import argparse
import numpy as np
import tensorflow as tf
from tensorflow.core.framework.tensor_shape_pb2 import TensorShapeProto
import tensorflow.neuron as tfn

def compile():
#parser = argparse.ArgumentParser()
#parser.add_argument('input_pb_path', help='Input serialized GraphDef protobuf')
#parser.add_argument('output_pb_path', help='Ouput serialized GraphDef protobuf')
#parser.add_argument('--net_resolution', default='656x368', help='Network resolution in␣

→˓WxH format, e. g., --net_resolution=656x368')
#parser.add_argument('--debug_verify', action='store_true')
#args = parser.parse_args()

input_pb_path = './graph_opt.pb'
net_resolution = '656x368'
output_pb_path = './graph_opt_neuron_' + net_resolution + '.pb'

debug_verify = 'store_true'
dim_w, dim_h = net_resolution.split('x')
dim_w = int(dim_w)

(continues on next page)

8.3. Inference on Inf1 (tensorflow-neuron) 395

../../../../frameworks/tensorflow/tensorflow-neuron/setup/tensorflow-install.html#install-neuron-tensorflow
../../../../frameworks/tensorflow/tensorflow-neuron/setup/tensorflow-install.html#install-neuron-tensorflow
https://github.com/ildoonet

AWS Neuron

(continued from previous page)

dim_h = int(dim_h)
graph_def = tf.GraphDef()
with open(input_pb_path, 'rb') as f:

graph_def.ParseFromString(f.read())

if debug_verify:
np.random.seed(0)
feed_dict = {'image:0': np.random.rand(1, dim_h, dim_w, 3)}
output_name = 'Openpose/concat_stage7:0'
with tf.Session(graph=tf.Graph()) as sess:

tf.import_graph_def(graph_def, name='')
result_reference = sess.run(output_name, feed_dict)

preprocessing_ops = {'preprocess_divide', 'preprocess_divide/y', 'preprocess_subtract
→˓', 'preprocess_subtract/y'}

graph_def = nhwc_to_nchw(graph_def, preprocessing_ops)
graph_def = inline_float32_to_float16(graph_def, preprocessing_ops)
with tf.Session(graph=tf.Graph()) as sess:

tf.import_graph_def(graph_def, name='')
no_fuse_ops = preprocessing_ops.union({'Openpose/concat_stage7'})
infer_graph = tfn.graph_util.inference_graph_from_session(

sess, shape_feed_dict={'image:0': [1, dim_h, dim_w, 3]}, output_tensors=[
→˓'Openpose/concat_stage7:0'],

no_fuse_ops=no_fuse_ops, dynamic_batch_size=True,
)

with open(output_pb_path, 'wb') as f:
f.write(infer_graph.as_graph_def().SerializeToString())

if debug_verify:
with tf.Session(graph=infer_graph) as sess:

result_compiled = sess.run(output_name, feed_dict)
np.testing.assert_allclose(result_compiled, result_reference, rtol=1e-2, atol=1e-

→˓3)

def inline_float32_to_float16(graph_def, preprocessing_ops):
float32_enum = tf.float32.as_datatype_enum
float16_enum = tf.float16.as_datatype_enum
graph = tf.Graph()
with graph.as_default():

tf.import_graph_def(graph_def, name='')
graph_def = graph.as_graph_def()
for node in graph_def.node:

if node.name in preprocessing_ops or node.op == 'Placeholder':
cast_input_node_name = node.name
continue

if node.op == 'Const':
if node.attr['dtype'].type == float32_enum:

node.attr['dtype'].type = float16_enum
tensor_def = node.attr['value'].tensor
tensor_def.dtype = float16_enum
if tensor_def.tensor_content:

(continues on next page)

396 Chapter 8. TensorFlow Neuron

AWS Neuron

(continued from previous page)

const_np = np.frombuffer(tensor_def.tensor_content, dtype=np.
→˓float32).astype(np.float16)

tensor_def.tensor_content = const_np.tobytes()
elif len(tensor_def.float_val):

const_np = np.array(tensor_def.float_val).astype(np.float16).view(np.
→˓uint16)

tensor_def.float_val[:] = []
tensor_def.half_val[:] = list(const_np)

else:
raise NotImplementedError

elif 'T' in node.attr and node.attr['T'].type == float32_enum:
node.attr['T'].type = float16_enum

for node in graph_def.node:
if node.name == cast_input_node_name:

node.name = '{}_PreCastFloat32ToFlot16'.format(node.name)
input_node = node
break

cast_input_node = _gen_cast_node_def(cast_input_node_name, tf.float16, input_node)

output_node = graph_def.node[-1]
cast_output_node_name = output_node.name
output_node.name = '{}_PreCastFloat16ToFlot32'.format(output_node.name)
cast_output_node = _gen_cast_node_def(cast_output_node_name, tf.float32, output_node)

preprocessing_ops.add(input_node.name)
new_graph_def = tf.GraphDef()
new_graph_def.node.extend(graph_def.node)
new_graph_def.node.append(cast_input_node)
new_graph_def.node.append(cast_output_node)
graph = tf.Graph()
with graph.as_default():

tf.import_graph_def(new_graph_def, name='')
return graph.as_graph_def()

def nhwc_to_nchw(graph_def, preprocessing_ops):
graph = tf.Graph()
with graph.as_default():

tf.import_graph_def(graph_def, name='')
graph_def = graph.as_graph_def()
node_name_to_node = {node.name: node for node in graph_def.node}
for node in graph_def.node:

if node.name in preprocessing_ops or node.op == 'Placeholder':
transpose_input_node_name = node.name
continue

if node.op == 'Conv2D':
node.attr['data_format'].s = b'NCHW'
strides = node.attr['strides'].list.i
strides[:] = [strides[0], strides[3], strides[1], strides[2]]

elif node.op == 'BiasAdd':
if node.name != 'probs/BiasAdd':

node.attr['data_format'].s = b'NCHW'

(continues on next page)

8.3. Inference on Inf1 (tensorflow-neuron) 397

AWS Neuron

(continued from previous page)

elif node.op == 'MaxPool':
node.attr['data_format'].s = b'NCHW'
ksize = node.attr['ksize'].list.i
ksize[:] = [ksize[0], ksize[3], ksize[1], ksize[2]]
strides = node.attr['strides'].list.i
strides[:] = [strides[0], strides[3], strides[1], strides[2]]

elif node.op in {'Concat', 'ConcatV2'}:
node_axes = node_name_to_node[node.input[-1]]
node_axes.attr['value'].tensor.int_val[:] = [1]

for node in graph_def.node:
if node.name == transpose_input_node_name:

node.name = '{}_PreTransposeNHWC2NCHW'.format(node.name)
input_node = node
break

transpose_input_node, transpose_input_perm_node = _gen_transpose_def(transpose_input_
→˓node_name, [0, 3, 1, 2], input_node)

output_node = graph_def.node[-1]
transpose_output_node_name = output_node.name
output_node.name = '{}_PreTransposeNCHW2NHWC'.format(output_node.name)
transpose_output_node, transpose_output_perm_node = _gen_transpose_def(transpose_

→˓output_node_name, [0, 2, 3, 1], output_node)

preprocessing_ops.add(input_node.name)
preprocessing_ops.add(transpose_input_perm_node.name)
new_graph_def = tf.GraphDef()
new_graph_def.node.extend(graph_def.node)
new_graph_def.node.append(transpose_input_perm_node)
new_graph_def.node.append(transpose_input_node)
new_graph_def.node.append(transpose_output_perm_node)
new_graph_def.node.append(transpose_output_node)
graph = tf.Graph()
with graph.as_default():

tf.import_graph_def(new_graph_def, name='')
return graph.as_graph_def()

def _gen_cast_node_def(name, target_dtype, input_node):
cast_node = tf.NodeDef(name=name, op='Cast')
cast_node.input.append(input_node.name)
cast_node.attr['DstT'].type = target_dtype.as_datatype_enum
cast_node.attr['SrcT'].type = input_node.attr['T'].type
cast_node.attr['Truncate'].b = False
return cast_node

def _gen_transpose_def(name, perm, input_node):
perm_node = tf.NodeDef(name='{}/perm'.format(name), op='Const')
perm_node.attr['dtype'].type = tf.int32.as_datatype_enum
tensor_def = perm_node.attr['value'].tensor
tensor_def.dtype = tf.int32.as_datatype_enum
tensor_def.tensor_shape.dim.append(TensorShapeProto.Dim(size=4))

(continues on next page)

398 Chapter 8. TensorFlow Neuron

AWS Neuron

(continued from previous page)

tensor_def.tensor_content = np.array(perm, dtype=np.int32).tobytes()
transpose_node = tf.NodeDef(name=name, op='Transpose')
transpose_node.input.append(input_node.name)
transpose_node.input.append(perm_node.name)
transpose_node.attr['T'].type = input_node.attr['T'].type
transpose_node.attr['Tperm'].type = tf.int32.as_datatype_enum
return transpose_node, perm_node

[]: compile()

Sample output will look like below:
WARNING:tensorflow:From <ipython-input-3-27d3844cd753>:47: inference_graph_from_
→˓session (from tensorflow_neuron.python.graph_util) is deprecated and will be removed␣
→˓in a future version.
Instructions for updating:
Please refer to AWS documentation on Neuron integrated TensorFlow 2.0.
INFO:tensorflow:Froze 0 variables.
INFO:tensorflow:Converted 0 variables to const ops.
INFO:tensorflow:fusing subgraph {subgraph neuron_op_ed41d2deb8c54255 with input␣
→˓tensors ["<tf.Tensor 'preprocess_subtract0/_0:0' shape=(1, 3, 368, 656) dtype=float16>
→˓"], output tensors ["<tf.Tensor 'Openpose/concat_stage7_PreCastFloat16ToFlot32:0'␣
→˓shape=(1, 46, 82, 57) dtype=float16>"]} with neuron-cc
INFO:tensorflow:Number of operations in TensorFlow session: 474
INFO:tensorflow:Number of operations after tf.neuron optimizations: 474
INFO:tensorflow:Number of operations placed on Neuron runtime: 465

Deploy

Using same instance to deploy the model. In case of different deployment instance, launch a deployment inf1 instance
and copy the AWS Neuron optimized tensorflow frozen graph graph_opt_neuron_656x368.pb to the deployment inf1
instance. The smallest instance type inf1.xlarge is sufficient for this demo.

Your graph_opt_neuron_656x368.pb can now be plugged into https://github.com/ildoonet seemlessly if you have
tensorflow-neuron installed. When it is used at runtime, please ensure that the image resolution is the same as compile-
time image resolution, i. e., 656x368.

Measure performance on the compiled frozen graph using dummy inputs.

[]: """
Copyright (C) 2020, Amazon.com. All Rights Reserved
"""
import os
import atexit
import time
import math
import json
from collections import OrderedDict, Counter
from contextlib import contextmanager, ContextDecorator
from functools import wraps
from tensorflow.python.client import session

(continues on next page)

8.3. Inference on Inf1 (tensorflow-neuron) 399

https://github.com/ildoonet

AWS Neuron

(continued from previous page)

from tensorflow.python.platform import tf_logging as logging

class measure_performance(ContextDecorator):
"""Convenient tool for performance measurements.
Can be apply on tensorflow session.run, tf-serving unary gRPC calls, or a given␣

→˓custom function.
Usage:
To generate performance report for the entire Python or gRPC-client process, insert
the following function call before running inferences:
`tfn.measure_performance()`
Then latency/throughput report will be generated when the process terminates.
Alternatively, it is possible to use `tfn.measure_performance` programmatically
as a context manager. Performance measurement will be done for all inferences
happening under this context. Report will be displayed as INFO level log when exiting
the context. It is also possible to obtain a JSON format report in Python.
For example:
```
with tfn.measure_performance() as perf:

... (run some inferences) ...
report_json = perf.report()
report_full_json = perf.report(verbosity=1)
```
"""

def __init__(self, func=None, window_size=1):
self.perf_tracker = PerformanceTracker(window_size)
atexit.register(self.perf_tracker.report)
self._original_run = session.Session.run
self._original_grpc_call = None
if callable(func):

self.perf_tracker.register_func(self._track_performance(func))
else:

session.Session.run = self._track_performance(session.Session.run)
try:

import grpc
from tensorflow_serving.apis import prediction_service_pb2_grpc
dummy_stub = prediction_service_pb2_grpc.PredictionServiceStub(grpc.

→˓insecure_channel(''))
self._grpc_callable_type = type(dummy_stub.Predict)
self._original_grpc_call = self._grpc_callable_type.__call__

except ImportError:
pass

if callable(self._original_grpc_call):
self._grpc_callable_type.__call__ = self._track_performance(

grpc._channel._UnaryUnaryMultiCallable.__call__
)

def __enter__(self):
return self.perf_tracker

def __exit__(self, *exc):

(continues on next page)

400 Chapter 8. TensorFlow Neuron

AWS Neuron

(continued from previous page)

atexit.unregister(self.perf_tracker.report)
self.perf_tracker.report()
session.Session.run = self._original_run
if self._original_grpc_call is not None:

self._grpc_callable_type.__call__ = self._original_grpc_call
return False

def _track_performance(self, func):
@wraps(func)
def wrapper(*args, **kwargs):

start = time.time()
result = func(*args, **kwargs)
end = time.time()
self.perf_tracker.add_timestamps(start, end)
return result

return wrapper

class PerformanceTracker(ContextDecorator):

description = (
"Latency unit: second. Throughput unit: number of batched inferences per second.

→˓"
"Reported throughput is a lower bound of the actual throughput as inferences "
"spanning across window boundaries are not counted towards any of the windows. "
"'Quiet' periods (i. e., window buckets where the inference function is not␣

→˓called) "
"are not counted towards the reported average throughput."

)

def __init__(self, window_size):
self.window_size = window_size
self.timestamps_list = []
self._func = None

def __call__(self, *args, **kwargs):
return self._func(*args, **kwargs)

def register_func(self, func):
self._func = func

def add_timestamps(self, start, end):
self.timestamps_list.append([start, end])

def report(self, verbosity=0):
if self.timestamps_list:

latency_list = [end - start for start, end in self.timestamps_list]
latency_json = {

'p50': percentile(latency_list, 50),
'p90': percentile(latency_list, 90),
'p99': percentile(latency_list, 99),
'p100': percentile(latency_list, 100),

(continues on next page)

8.3. Inference on Inf1 (tensorflow-neuron) 401

AWS Neuron

(continued from previous page)

}
bucketed_timestamps = [self._get_bucket(start, end) for start, end in self.

→˓timestamps_list]
counted_buckets = Counter(item for item in bucketed_timestamps if item is␣

→˓not None)
bucket_throughputs = [(key, value / self.window_size) for key, value in␣

→˓sorted(counted_buckets.items())]
busy_throughputs = list(OrderedDict((key, value) for key, value in bucket_

→˓throughputs).values())
throughput_json = {

'peak': max(busy_throughputs),
'median': percentile(busy_throughputs, 50),
'average': sum(busy_throughputs) / len(busy_throughputs),

}
if verbosity > 0:

throughput_json['trend'] = busy_throughputs
report_json = {

'pid': os.getpid(),
'throughput': throughput_json,
'latency': latency_json,
'description': PerformanceTracker.description,

}
with _logging_show_info():

logging.info('performance report:\n{}'.format(json.dumps(report_json,␣
→˓indent=4)))

return report_json

def _get_bucket(self, start, end):
bucketed_start = math.floor(start / self.window_size) * self.window_size
bucketed_end = math.ceil(end / self.window_size) * self.window_size
if bucketed_end - bucketed_start == self.window_size:

return bucketed_start
else:

return None

def percentile(number_list, percent):
pos_float = len(number_list) * percent / 100
max_pos = len(number_list) - 1
pos_floor = min(math.floor(pos_float), max_pos)
pos_ceil = min(math.ceil(pos_float), max_pos)
number_list = sorted(number_list)
return number_list[pos_ceil] if pos_float - pos_floor > 0.5 else number_list[pos_

→˓floor]

@contextmanager
def _logging_show_info():

try:
verbosity = logging.get_verbosity()
logging.set_verbosity(logging.INFO)
yield

(continues on next page)

402 Chapter 8. TensorFlow Neuron

AWS Neuron

(continued from previous page)

finally:
logging.set_verbosity(verbosity)

[]: """
Below are the inputs for compiled frozen graph

pb_path is a /path/graph_opt_neuron_656x368.pb
num_thread = 8 (Number of threads that work on each tensorflow session)
batch_size =1 (batch_size)
net_resolution ,default=656x368
num_inferences = 200
"""
import os
from concurrent import futures
import numpy as np
import tensorflow as tf
import tensorflow.neuron as tfn

def run_with_dummy(sess, dummy_feed_dict, num_inferences):
for _ in range(num_inferences):

sess.run('Openpose/concat_stage7:0', dummy_feed_dict)

def main():
NUM_NEURON_CORES = 16
pb_path = './graph_opt_neuron_656x368.pb'
num_thread = 8
batch_size = 1
net_resolution = '656x368'
num_inferences = 200
dim_w, dim_h = net_resolution.split('x')
dim_w = int(dim_w)
dim_h = int(dim_h)
graph_def = tf.GraphDef()
with open(pb_path, 'rb') as f:

graph_def.ParseFromString(f.read())

graph_def = tfn.graph_util.tag_multicore(graph_def, NUM_NEURON_CORES)

with tfn.measure_performance() as perf:
with tf.Session(graph=tf.Graph()) as sess:

tf.import_graph_def(graph_def, name='')
input_name = 'image:0'
input_shape = sess.graph.get_tensor_by_name(input_name).shape.as_list()
input_shape[0] = batch_size
input_shape[1] = dim_h
input_shape[2] = dim_w
dummy_feed_dict = {input_name: np.zeros(input_shape).astype(np.float32)}
with futures.ThreadPoolExecutor(max_workers=num_thread) as executor:

fut_list = [executor.submit(run_with_dummy, sess, dummy_feed_dict, num_
→˓inferences) for _ in range(num_thread)]

res_list = [fut.result() for fut in fut_list]

(continues on next page)

8.3. Inference on Inf1 (tensorflow-neuron) 403

AWS Neuron

(continued from previous page)

main()

Sample output will look like below:
INFO:tensorflow:performance report:
{
"pid": 17713,
"throughput": {
"peak": 66.0,
"median": 64.0,
"average": 61.56521739130435
},
"latency": {
"p50": 0.1106414794921875,
"p90": 0.11212301254272461,
"p99": 0.11337876319885254,
"p100": 7.08282732963562
},
"description": "Latency unit: second. Throughput unit: number of batched inferences␣
→˓per second. Reported throughput is a lower bound of the actual throughput as␣
→˓inferences spanning across window boundaries are not counted towards any of the␣
→˓windows. 'Quiet' periods (i. e., window buckets where the inference function is not␣
→˓called) are not counted towards the reported average throughput."
}

Running ResNet50 on Inferentia

Note: this tutorial runs on tensorflow-neuron 1.x only

Introduction:

In this tutorial we will compile and deploy ResNet50 model for Inferentia. In this tutorial we provide two main sections:
1. Compile the ResNet50 model. 2. Infer the same compiled model.

Verify that this Jupyter notebook is running the Python kernel environment that was set up according to the Tensorflow
Installation Guide. You can select the Kernel from the “Kernel -> Change Kernel” option on the top of this Jupyter
notebook page.

Instructions of how to setup Neuron Tensorflow environment and run the tutorial as a Jupyter notebook are available
in the Tensorflow Quick Setup

[]: !pip install tensorflow_neuron==1.15.5.2.8.9.0 --extra-index-url=https://pip.repos.
→˓neuron.amazonaws.com/
!pip install neuron_cc==1.13.5.0 --extra-index-url=https://pip.repos.neuron.amazonaws.com

404 Chapter 8. TensorFlow Neuron

../../../../frameworks/tensorflow/tensorflow-neuron/setup/tensorflow-install.html#install-neuron-tensorflow
../../../../frameworks/tensorflow/tensorflow-neuron/setup/tensorflow-install.html#install-neuron-tensorflow
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/frameworks/tensorflow/tensorflow-neuron/tutorials/tensorflow-tutorial-setup.html#tensorflow-tutorial-setup

AWS Neuron

Compile for Neuron

A trained model must be compiled to Inferentia target before it can be deployed on Inferentia instances. In this step
we compile the Keras ResNet50 model and export it as a SavedModel which is an interchange format for TensorFlow
models. At the end of compilation, the compiled SavedModel is saved in resnet50_neuron local directory:

[]: import os
import time
import shutil
import tensorflow as tf
import tensorflow.neuron as tfn
import tensorflow.compat.v1.keras as keras
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.applications.resnet50 import preprocess_input

Create a workspace
WORKSPACE = './ws_resnet50'
os.makedirs(WORKSPACE, exist_ok=True)

Prepare export directory (old one removed)
model_dir = os.path.join(WORKSPACE, 'resnet50')
compiled_model_dir = os.path.join(WORKSPACE, 'resnet50_neuron')
shutil.rmtree(model_dir, ignore_errors=True)
shutil.rmtree(compiled_model_dir, ignore_errors=True)

Instantiate Keras ResNet50 model
keras.backend.set_learning_phase(0)
keras.backend.set_image_data_format('channels_last')

model = ResNet50(weights='imagenet')

Export SavedModel
tf.saved_model.simple_save(

session = keras.backend.get_session(),
export_dir = model_dir,
inputs = {'input': model.inputs[0]},
outputs = {'output': model.outputs[0]})

Compile using Neuron
tfn.saved_model.compile(model_dir, compiled_model_dir)

[]: !ls

8.3. Inference on Inf1 (tensorflow-neuron) 405

AWS Neuron

Deploy on Inferentia

Using same instance to deploy the model. In case of different deployment instance, launch a deployment inf1 instance
and copy compiled model to the deployment inf1 instance.

Download the example image, and install pillow module for inference on deployement instance

[]: !curl -O https://raw.githubusercontent.com/awslabs/mxnet-model-server/master/docs/images/
→˓kitten_small.jpg
!pip install pillow # Necessary for loading images

After downloading the example image, run the inference.

[]: import os
import time
import numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications import resnet50

tf.keras.backend.set_image_data_format('channels_last')

Create input from image
img_sgl = image.load_img('kitten_small.jpg', target_size=(224, 224))
img_arr = image.img_to_array(img_sgl)
img_arr2 = np.expand_dims(img_arr, axis=0)
img_arr3 = resnet50.preprocess_input(img_arr2)

Load model
COMPILED_MODEL_DIR = './ws_resnet50/resnet50_neuron/'
predictor_inferentia = tf.contrib.predictor.from_saved_model(COMPILED_MODEL_DIR)

Run inference
model_feed_dict={'input': img_arr3}
infa_rslts = predictor_inferentia(model_feed_dict);

Display results
print(resnet50.decode_predictions(infa_rslts["output"], top=5)[0])

Sample output will look like below:
#[('n02123045', 'tabby', 0.68817204), ('n02127052', 'lynx', 0.12701613), ('n02123159', 'tiger_
→˓cat', 0.08736559), ('n02124075', 'Egyptian_cat', 0.063844085), ('n02128757', 'snow_leopard',␣
→˓0.009240591)]

This document is relevant for: Inf1

406 Chapter 8. TensorFlow Neuron

AWS Neuron

Working with YOLO v4 using AWS Neuron SDK

The /src/examples/tensorflow/yolo_v4_demo/evaluate.ipynb notebook contains an example on how to take an open
source YOLO v4 models, and run it on AWS Inferentia.

Optimizing image pre-processing and post-processing for object detection models

End-to-end object detection pipelines usually contain image pre-post-processing operators that cannot run efficiently
on Inferentia. DecodeJPEG and NonMaxSuppression are typical examples. In practice, we may simply place these
operators on CPU using the AWS Neuron machine learning framework integration. However, Inferentia is such a
high performance machine learning accelerator that, once the model successfully compiles and runs, these simple pre-
post-processing operators can become the new performance bottleneck! In this tutorial, we explain some commonly
used tensorflow techniques for optimizing the performance of these pre-post-processing operators so that we can fully
unleash the potential of Inferentia.

1. Write JPEG decoding and image shifting/scaling as tensorflow operators.

In yolo_v4_coco_saved_model.py, you may find the following code snippet.

import tensorflow as tf
...

def YOLOv4(...
...
x, image_shape = layers.Lambda(lambda t: preprocessor(t, input_shape))(inputs)

cspdarknet53
x = conv2d_unit(x, i32, 3, strides=1, padding='same')

...

def decode_jpeg_resize(input_tensor, image_size):
tensor = tf.image.decode_png(input_tensor, channels=3)
shape = tf.shape(tensor)
tensor = tf.cast(tensor, tf.float32)
tensor = tf.image.resize(tensor, image_size)
tensor /= 255.0
return tf.cast(tensor, tf.float16), shape

def preprocessor(input_tensor, image_size):
with tf.name_scope('Preprocessor'):

tensor = tf.map_fn(
partial(decode_jpeg_resize, image_size=image_size), input_tensor,
dtype=(tf.float16, tf.int32), back_prop=False, parallel_iterations=16)

return tensor

Comparing with the implementation in the original repo, our difference is the use of tf.image.decode_png and
tf.image.resize, along with a small number of scaling/casting operators. After this modification, the generated
tensorflow SavedModel now takes JPEG image raw bytes as input, instead of a float32 array representing the image.
When the image resolution is 608x608, this technique effectively reduces the input image size from 4.4 MB to the
size of a typical JPEG image, which can be as little as hundreds of KB. When the tensorflow SavedModel is deployed
through tensorflow/serving, this technique can very effectively reduce the gRPC transfer overhead of input images.

2. Replace non-max suppression (NMS) operations by tf.image.combined_non_max_suppression.

8.3. Inference on Inf1 (tensorflow-neuron) 407

https://github.com/miemie2013/Keras-YOLOv4/blob/f0a6b379a362dc3f2d1ef5bd0e58933ed6490ff3/model/yolov4.py
https://github.com/tensorflow/serving

AWS Neuron

Another difference of our implementation is the treatment of non-max suppression, a commmonly used op-
eration for removing redundant bounding boxes that overlap with other boxes. In an object detection sce-
nario represented by the COCO dataset where the number of output classes is large, the hand-fused `tf.
image.combined_non_max_suppression <https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/image/
combined_non_max_suppression>`__ operator can parallelize multi-class NMS on CPU in a very efficient manner.
With proper use of this operator, the bounding box post-processing step has a less chance of becoming the performance
bottleneck in the end-to-end object detection pipeline.

The following sample code (from yolo_v4_coco_saved_model.py) demonstrates our method of writing the bound-
ing box post-processing step using efficient tensorflow operations.

...
def filter_boxes(outputs):

boxes_l, boxes_m, boxes_s, box_scores_l, box_scores_m, box_scores_s, image_shape␣
→˓= outputs

boxes_l, box_scores_l = filter_boxes_one_size(boxes_l, box_scores_l)
boxes_m, box_scores_m = filter_boxes_one_size(boxes_m, box_scores_m)
boxes_s, box_scores_s = filter_boxes_one_size(boxes_s, box_scores_s)
boxes = tf.concat([boxes_l, boxes_m, boxes_s], axis=0)
box_scores = tf.concat([box_scores_l, box_scores_m, box_scores_s], axis=0)
image_shape_wh = image_shape[1::-1]
image_shape_whwh = tf.concat([image_shape_wh, image_shape_wh], axis=-1)
image_shape_whwh = tf.cast(image_shape_whwh, tf.float32)
boxes *= image_shape_whwh
boxes = tf.expand_dims(boxes, 0)
box_scores = tf.expand_dims(box_scores, 0)
boxes = tf.expand_dims(boxes, 2)
nms_boxes, nms_scores, nms_classes, valid_detections = tf.image.combined_non_max_

→˓suppression(
boxes,
box_scores,
max_output_size_per_class=nms_top_k,
max_total_size=nms_top_k,
iou_threshold=nms_thresh,
score_threshold=conf_thresh,
pad_per_class=False,
clip_boxes=False,
name='CombinedNonMaxSuppression',

)
return nms_boxes[0], nms_scores[0], nms_classes[0]

def filter_boxes_one_size(boxes, box_scores):
box_class_scores = tf.reduce_max(box_scores, axis=-1)
keep = box_class_scores > conf_thresh
boxes = boxes[keep]
box_scores = box_scores[keep]
return boxes, box_scores

def batch_yolo_out(outputs):
with tf.name_scope('yolo_out'):

b_output_lr, b_output_mr, b_output_sr, b_image_shape = outputs
with tf.name_scope('process_feats'):

b_boxes_l, b_box_scores_l = batch_process_feats(b_output_lr, anchors,␣
→˓masks[0])

(continues on next page)

408 Chapter 8. TensorFlow Neuron

https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/image/combined_non_max_suppression
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/image/combined_non_max_suppression

AWS Neuron

(continued from previous page)

with tf.name_scope('process_feats'):
b_boxes_m, b_box_scores_m = batch_process_feats(b_output_mr, anchors,␣

→˓masks[1])
with tf.name_scope('process_feats'):

b_boxes_s, b_box_scores_s = batch_process_feats(b_output_sr, anchors,␣
→˓masks[2])

with tf.name_scope('filter_boxes'):
b_nms_boxes, b_nms_scores, b_nms_classes = tf.map_fn(

filter_boxes, [b_boxes_l, b_boxes_m, b_boxes_s, b_box_scores_l, b_
→˓box_scores_m, b_box_scores_s, b_image_shape],

dtype=(tf.float32, tf.float32, tf.float32), back_prop=False,␣
→˓parallel_iterations=16)

return b_nms_boxes, b_nms_scores, b_nms_classes

boxes_scores_classes = layers.Lambda(batch_yolo_out)([output_lr, output_mr, output_
→˓sr, image_shape])
...

For other advanced data input/output pipeline optimization techniques, please refer to https://www.tensorflow.org/
guide/data#preprocessing_data.

This document is relevant for: Inf1

[Broken] Evaluate YOLO v3 on Inferentia

Note: this tutorial runs on tensorflow-neuron 1.x only

Introduction

This tutorial walks through compiling and evaluating YOLO v3 model on Inferentia using the AWS Neuron SDK.

In this tutorial we provide two main sections:

1. Download Dataset and Generate Pretrained SavedModel

2. Compile the YOLO v3 model.

3. Deploy the same compiled model.

Verify that this Jupyter notebook is running the Python kernel environment that was set up according to the Tensorflow
Installation Guide. You can select the Kernel from the “Kernel -> Change Kernel” option on the top of this Jupyter
notebook page.

Instructions of how to setup Neuron Tensorflow environment and run the tutorial as a Jupyter notebook are available
in the Tutorial main page Tensorflow-YOLO_v3 Tutorial

8.3. Inference on Inf1 (tensorflow-neuron) 409

https://www.tensorflow.org/guide/data#preprocessing_data
https://www.tensorflow.org/guide/data#preprocessing_data
../../../../frameworks/tensorflow/tensorflow-neuron/setup/tensorflow-install.html#install-neuron-tensorflow
../../../../frameworks/tensorflow/tensorflow-neuron/setup/tensorflow-install.html#install-neuron-tensorflow
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/frameworks/tensorflow/tensorflow-neuron/tutorials/yolo_v3_demo/yolo_v3_demo.html

AWS Neuron

Prerequisites

This demo requires the following pip packages:

pillow matplotlib pycocotools

[]: %pip install tensorflow_neuron==1.15.5.2.8.9.0 neuron_cc==1.13.5.0 requests pillow␣
→˓matplotlib pycocotools==2.0.1 numpy==1.18.2 torch~=1.5.0 --force \

--extra-index-url=https://pip.repos.neuron.amazonaws.com

Part 1: Download Dataset and Generate Pretrained SavedModel

Download COCO 2017 validation dataset

We start by downloading the COCO validation dataset, which we will use to validate our model. The COCO 2017
dataset is widely used for object-detection, segmentation and image captioning.

[]: !curl -LO http://images.cocodataset.org/zips/val2017.zip
!curl -LO http://images.cocodataset.org/annotations/annotations_trainval2017.zip
!unzip -q val2017.zip
!unzip annotations_trainval2017.zip

[]: !ls

Generate YOLO v3 tensorflow SavedModel (pretrained on COCO 2017 dataset)

Script yolo_v3_coco_saved_model.py will generate a tensorflow SavedModel using pretrained weights from https:
//github.com/YunYang1994/tensorflow-yolov3/releases/download/v1.0/yolov3_coco.tar.gz.

[]: %run yolo_v3_coco_saved_model.py ./yolo_v3_coco_saved_model

This tensorflow SavedModel can be loaded as a tensorflow predictor. When a JPEG format image is provided as input,
the output result of the tensorflow predictor contains information for drawing bounding boxes and classification results.

[]: import json
import tensorflow as tf
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib.patches as patches

launch predictor and run inference on an arbitrary image in the validation dataset
yolo_pred_cpu = tf.contrib.predictor.from_saved_model('./yolo_v3_coco_saved_model')
image_path = './val2017/000000581781.jpg'
with open(image_path, 'rb') as f:

feeds = {'image': [f.read()]}
results = yolo_pred_cpu(feeds)

load annotations to decode classification result
with open('./annotations/instances_val2017.json') as f:

annotate_json = json.load(f)
(continues on next page)

410 Chapter 8. TensorFlow Neuron

https://github.com/YunYang1994/tensorflow-yolov3/releases/download/v1.0/yolov3_coco.tar.gz
https://github.com/YunYang1994/tensorflow-yolov3/releases/download/v1.0/yolov3_coco.tar.gz

AWS Neuron

(continued from previous page)

label_info = {idx+1: cat['name'] for idx, cat in enumerate(annotate_json['categories'])}

draw picture and bounding boxes
fig, ax = plt.subplots(figsize=(10, 10))
ax.imshow(Image.open(image_path).convert('RGB'))
wanted = results['scores'][0] > 0.1
for xyxy, label_no_bg in zip(results['boxes'][0][wanted], results['classes'][0][wanted]):

xywh = xyxy[0], xyxy[1], xyxy[2] - xyxy[0], xyxy[3] - xyxy[1]
rect = patches.Rectangle((xywh[0], xywh[1]), xywh[2], xywh[3], linewidth=1,␣

→˓edgecolor='g', facecolor='none')
ax.add_patch(rect)
rx, ry = rect.get_xy()
rx = rx + rect.get_width() / 2.0
ax.annotate(label_info[label_no_bg + 1], (rx, ry), color='w', backgroundcolor='g',␣

→˓fontsize=10,
ha='center', va='center', bbox=dict(boxstyle='square,pad=0.01', fc='g',␣

→˓ec='none', alpha=0.5))
plt.show()

Part 2: Compile the Pretrained SavedModel for Neuron

We make use of the Python compilation API tfn.saved_model.compile that is available in
tensorflow-neuron<2. For the purpose of reducing Neuron runtime overhead, it is necessary to
make use of arguments no_fuse_ops and minimum_segment_size. Compiled model is saved in
./yolo_v3_coco_saved_model_neuron.

[]: import shutil
import tensorflow as tf
import tensorflow.neuron as tfn

def no_fuse_condition(op):
return op.name.startswith('Preprocessor') or op.name.startswith('Postprocessor')

with tf.Session(graph=tf.Graph()) as sess:
tf.saved_model.loader.load(sess, ['serve'], './yolo_v3_coco_saved_model')
no_fuse_ops = [op.name for op in sess.graph.get_operations() if no_fuse_

→˓condition(op)]
shutil.rmtree('./yolo_v3_coco_saved_model_neuron', ignore_errors=True)
result = tfn.saved_model.compile(

'./yolo_v3_coco_saved_model', './yolo_v3_coco_saved_model_neuron',
to enforce trivial compilable subgraphs to run on CPU
no_fuse_ops=no_fuse_ops,
minimum_segment_size=100,
batch_size=2,
dynamic_batch_size=True,

)
print(result)

8.3. Inference on Inf1 (tensorflow-neuron) 411

AWS Neuron

Deploy the model on Inferentia

Part 3:Evaluate Model Quality after Compilation

Define evaluation functions

We first define some handy helper functions for running evaluation on the COCO 2017 dataset.

[]: import os
import json
import time
import numpy as np
import tensorflow as tf
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval

def cocoapi_eval(jsonfile,
style,
coco_gt=None,
anno_file=None,
max_dets=(100, 300, 1000)):

"""
Args:

jsonfile: Evaluation json file, eg: bbox.json, mask.json.
style: COCOeval style, can be `bbox` , `segm` and `proposal`.
coco_gt: Whether to load COCOAPI through anno_file,

eg: coco_gt = COCO(anno_file)
anno_file: COCO annotations file.
max_dets: COCO evaluation maxDets.

"""
assert coco_gt is not None or anno_file is not None

if coco_gt is None:
coco_gt = COCO(anno_file)

print("Start evaluate...")
coco_dt = coco_gt.loadRes(jsonfile)
if style == 'proposal':

coco_eval = COCOeval(coco_gt, coco_dt, 'bbox')
coco_eval.params.useCats = 0
coco_eval.params.maxDets = list(max_dets)

else:
coco_eval = COCOeval(coco_gt, coco_dt, style)

coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
return coco_eval.stats

def bbox_eval(anno_file, bbox_list):
coco_gt = COCO(anno_file)

(continues on next page)

412 Chapter 8. TensorFlow Neuron

AWS Neuron

(continued from previous page)

outfile = 'bbox_detections.json'
print('Generating json file...')
with open(outfile, 'w') as f:

json.dump(bbox_list, f)

map_stats = cocoapi_eval(outfile, 'bbox', coco_gt=coco_gt)
return map_stats

def get_image_as_bytes(images, eval_pre_path):
batch_im_id_list = []
batch_im_name_list = []
batch_img_bytes_list = []
n = len(images)
batch_im_id = []
batch_im_name = []
batch_img_bytes = []
for i, im in enumerate(images):

im_id = im['id']
file_name = im['file_name']
if i % eval_batch_size == 0 and i != 0:

batch_im_id_list.append(batch_im_id)
batch_im_name_list.append(batch_im_name)
batch_img_bytes_list.append(batch_img_bytes)
batch_im_id = []
batch_im_name = []
batch_img_bytes = []

batch_im_id.append(im_id)
batch_im_name.append(file_name)

with open(os.path.join(eval_pre_path, file_name), 'rb') as f:
batch_img_bytes.append(f.read())

return batch_im_id_list, batch_im_name_list, batch_img_bytes_list

def analyze_bbox(results, batch_im_id, _clsid2catid):
bbox_list = []
k = 0
for boxes, scores, classes in zip(results['boxes'], results['scores'], results[

→˓'classes']):
if boxes is not None:

im_id = batch_im_id[k]
n = len(boxes)
for p in range(n):

clsid = classes[p]
score = scores[p]
xmin, ymin, xmax, ymax = boxes[p]
catid = (_clsid2catid[int(clsid)])
w = xmax - xmin + 1
h = ymax - ymin + 1

bbox = [xmin, ymin, w, h]

(continues on next page)

8.3. Inference on Inf1 (tensorflow-neuron) 413

AWS Neuron

(continued from previous page)

Round to the nearest 10th to avoid huge file sizes, as COCO suggests
bbox = [round(float(x) * 10) / 10 for x in bbox]
bbox_res = {

'image_id': im_id,
'category_id': catid,
'bbox': bbox,
'score': float(score),

}
bbox_list.append(bbox_res)

k += 1
return bbox_list

Here is the actual evaluation loop. To fully utilize all four cores on one Inferentia, the optimal setup is to run multi-
threaded inference using a ThreadPoolExecutor. The following cell is a multi-threaded adaptation of the evalua-
tion routine at https://github.com/miemie2013/Keras-YOLOv4/blob/910c4c6f7265f5828fceed0f784496a0b46516bf/
tools/cocotools.py#L97.

[]: from concurrent import futures

def evaluate(yolo_predictor, images, eval_pre_path, anno_file, eval_batch_size, _
→˓clsid2catid):

batch_im_id_list, batch_im_name_list, batch_img_bytes_list = get_image_as_
→˓bytes(images, eval_pre_path)

warm up
yolo_predictor({'image': np.array(batch_img_bytes_list[0], dtype=object)})

with futures.ThreadPoolExecutor(4) as exe:
fut_im_list = []
fut_list = []
start_time = time.time()
for batch_im_id, batch_im_name, batch_img_bytes in zip(batch_im_id_list, batch_

→˓im_name_list, batch_img_bytes_list):
if len(batch_img_bytes) != eval_batch_size:

continue
fut = exe.submit(yolo_predictor, {'image': np.array(batch_img_bytes,␣

→˓dtype=object)})
fut_im_list.append((batch_im_id, batch_im_name))
fut_list.append(fut)

bbox_list = []
count = 0
for (batch_im_id, batch_im_name), fut in zip(fut_im_list, fut_list):

results = fut.result()
bbox_list.extend(analyze_bbox(results, batch_im_id, _clsid2catid))
for _ in batch_im_id:

count += 1
if count % 100 == 0:

print('Test iter {}'.format(count))
print('==================== Performance Measurement ====================')
print('Finished inference on {} images in {} seconds'.format(len(images), time.

→˓time() - start_time))
print('===')

(continues on next page)

414 Chapter 8. TensorFlow Neuron

https://github.com/miemie2013/Keras-YOLOv4/blob/910c4c6f7265f5828fceed0f784496a0b46516bf/tools/cocotools.py#L97
https://github.com/miemie2013/Keras-YOLOv4/blob/910c4c6f7265f5828fceed0f784496a0b46516bf/tools/cocotools.py#L97

AWS Neuron

(continued from previous page)

start evaluation
box_ap_stats = bbox_eval(anno_file, bbox_list)
return box_ap_stats

Evaluate mean average precision (mAP) score

Here is the code to calculate mAP scores of the YOLO v3 model. The expected mAP score is around 0.328 if we use
the pretrained weights.

[]: yolo_pred = tf.contrib.predictor.from_saved_model('./yolo_v3_coco_saved_model_neuron')

val_coco_root = './val2017'
val_annotate = './annotations/instances_val2017.json'
clsid2catid = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 7, 7: 8, 8: 9, 9: 10, 10: 11, 11:␣
→˓13, 12: 14, 13: 15, 14: 16,

15: 17, 16: 18, 17: 19, 18: 20, 19: 21, 20: 22, 21: 23, 22: 24, 23: 25,␣
→˓24: 27, 25: 28, 26: 31,

27: 32, 28: 33, 29: 34, 30: 35, 31: 36, 32: 37, 33: 38, 34: 39, 35: 40,␣
→˓36: 41, 37: 42, 38: 43,

39: 44, 40: 46, 41: 47, 42: 48, 43: 49, 44: 50, 45: 51, 46: 52, 47: 53,␣
→˓48: 54, 49: 55, 50: 56,

51: 57, 52: 58, 53: 59, 54: 60, 55: 61, 56: 62, 57: 63, 58: 64, 59: 65,␣
→˓60: 67, 61: 70, 62: 72,

63: 73, 64: 74, 65: 75, 66: 76, 67: 77, 68: 78, 69: 79, 70: 80, 71: 81,␣
→˓72: 82, 73: 84, 74: 85,

75: 86, 76: 87, 77: 88, 78: 89, 79: 90}
eval_batch_size = 8
with open(val_annotate, 'r', encoding='utf-8') as f2:

for line in f2:
line = line.strip()
dataset = json.loads(line)
images = dataset['images']

box_ap = evaluate(yolo_pred, images, val_coco_root, val_annotate, eval_batch_size,␣
→˓clsid2catid)

This document is relevant for: Inf1

Running SSD300 with AWS Neuron

Update 11/16: The model checkpoint linkhttps://api.ngc.nvidia.com/v2/models/nvidia/ssdpyt_fp32/versions/1/files/
nvidia_ssdpyt_fp32_20190225.ptis currently broken and the AWS Neuron team is working on providing an alternative
source.

This demo shows a Neuron compatible SSD300 implementation that is functionally equivalent to open source SSD300
model. This demo uses TensorFlow-Neuron, PyTorch SSD300 model and checkpoint (https://pytorch.org/hub/nvidia_
deeplearningexamples_ssd/) and also shows the performance achieved by the Inf1 instance.

8.3. Inference on Inf1 (tensorflow-neuron) 415

https://api.ngc.nvidia.com/v2/models/nvidia/ssdpyt_fp32/versions/1/files/nvidia_ssdpyt_fp32_20190225.pt
https://api.ngc.nvidia.com/v2/models/nvidia/ssdpyt_fp32/versions/1/files/nvidia_ssdpyt_fp32_20190225.pt
https://pytorch.org/hub/nvidia_deeplearningexamples_ssd/
https://pytorch.org/hub/nvidia_deeplearningexamples_ssd/

AWS Neuron

Table of Contents

1. Launch EC2 instance and update AWS Neuron SDK software

2. Generating Neuron compatible SSD300 TensorFlow SavedModel

• Convert open source PyTorch SSD300 model and checkpoint into Neuron compatible SSD300 TensorFlow
SavedModel

3. Evaluate the generated SSD300 TensorFlow SavedModel for both accuracy and performance

• Running threaded inference through the COCO 2017 validation dataset

Launch EC2 instances and update tensorflow-neuron and neuron-cc

For this demo, launch one inf1.xlarge EC2 instance. We recommend using the latest Ubuntu 18 Deep Learning AMI
(DLAMI).

Please configure your ubuntu16/ubuntu18/yum repo following the steps in the install-neuron-tensorflow in order to
install tensorflow-model-server-neuron.

Generating Neuron compatible SSD300 TensorFlow SavedModel

First connect to your inf1.xlarge instance

Compile open source PyTorch SSD300 model and checkpoint into Neuron compatible SSD300 Ten-
sorFlow SavedModel

In the same directory ssd300_demo, run the following:

1. Create venv and install dependencies

sudo apt update
sudo apt install g++ python3-dev python3-venv unzip
sudo apt install tensorflow-model-server-neuron
python3 -m venv env
source ./env/bin/activate
pip install pip setuptools --upgrade
pip install -r ./requirements.txt --extra-index-url=https://pip.repos.neuron.amazonaws.
→˓com

2. Clone NVIDIA’s DeepLearningExamples repo that contains PyTorch SSD300.

git clone https://github.com/NVIDIA/DeepLearningExamples.git
cd DeepLearningExamples
git checkout a644350589f9abc91b203f73e686a50f5d6f3e96
cd ..

3. Download PyTorch SSD300 checkpoint file.

curl -LO https://api.ngc.nvidia.com/v2/models/nvidia/ssdpyt_fp32/versions/1/files/nvidia_
→˓ssdpyt_fp32_20190225.pt

4. Download COCO 2017 validation set and annotations.

416 Chapter 8. TensorFlow Neuron

AWS Neuron

curl -LO http://images.cocodataset.org/zips/val2017.zip
unzip ./val2017.zip
curl -LO http://images.cocodataset.org/annotations/annotations_trainval2017.zip
unzip ./annotations_trainval2017.zip

5. Convert PyTorch SSD300 model and checkpoint into a Neuron-compatible TensorFlow SavedModel.

python ssd300_model.py --torch_checkpoint=./nvidia_ssdpyt_fp32_20190225.pt --output_
→˓saved_model=./ssd300_tf_neuron/1

This converts PyTorch SSD300 model and checkpoint to a Neuron-compatible TensorFlow SavedModel using
tensorflow-neuron and neuron-cc. The compilation output is stored in ./ssd300_tf_neuron.

6. Launch the tensorflow-model-server-neuron gRPC server at default port 8500 in the background.

tensorflow_model_server_neuron --model_base_path=$(pwd)/ssd300_tf_neuron &

7. In client, evaluate the Neuron-compatible TensorFlow SavedModel for both accuracy and performance. Note
that this client by default assumes a tensorflow-model-server-neuron listening at localhost:8500. On
inf1.xlarge, the expected throughput is 100 images/second once the server is fully warmed up, and the expected
mean average precision (mAP) is 0.253.

python ssd300_evaluation_client.py --val2017=./val2017 --instances_val2017_json=./
→˓annotations/instances_val2017.json

8. After running the demo, please cleanup resources allocated in Neuron runtime by gracefully killing the
tensorflow_model_server_neuron process, e. g.,

killall tensorflow_model_server_neuron

This document is relevant for: Inf1

Tensorflow ResNet 50 Optimization Tutorial

Note: this tutorial runs on tensorflow-neuron 1.x only

Introduction:

In this tutorial we provide three main sections:

• Take a Resnet 50 model and perform optimizations on it

• Compile the model with different batch sizes and Neuroncore Group sizes (read about Neuroncore
Group sizes here: https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-runtime/
nrt-theory-of-operation.html#neuron-core-group)

• Run inference on our multiple compiled models to see which has the best throughput

Verify that this Jupyter notebook is running the Python kernel environment that was set up according to the Tensorflow
Installation Guide. You can select the Kernel from the “Kernel -> Change Kernel” option on the top of this Jupyter
notebook page.

8.3. Inference on Inf1 (tensorflow-neuron) 417

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-runtime/nrt-theory-of-operation.html#neuron-core-group
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-runtime/nrt-theory-of-operation.html#neuron-core-group
../../../../frameworks/tensorflow/tensorflow-neuron/setup/tensorflow-install.html#install-neuron-tensorflow
../../../../frameworks/tensorflow/tensorflow-neuron/setup/tensorflow-install.html#install-neuron-tensorflow

AWS Neuron

Install Dependencies

[]: !pip install pillow requests # Necessary for loading images
!pip install tensorflow_neuron==1.15.5.2.8.9.0 --extra-index-url=https://pip.repos.
→˓neuron.amazonaws.com/
!pip install neuron_cc==1.13.5.0 --extra-index-url=https://pip.repos.neuron.amazonaws.com

Compile

The following example shows how to compile a FP16 ResNet50 network using various batching parameters to find the
optimal solution. On inf1.6xlarge, run through the following steps to get a optimized Resnet 50 model. First, extract
Keras ResNet50 FP32 (resnet50_fp32_keras.pb will be generated):

[]: import re
import argparse
import tensorflow as tf
import numpy as np

from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions

from google.protobuf import text_format
import tensorflow.python.saved_model

set Keras global configurations
tf.keras.backend.set_learning_phase(0)
tf.keras.backend.set_image_data_format('channels_last')

float_type = 'float32'
float_type2 = 'fp32'
tf.keras.backend.set_floatx(float_type)

load pre-trained model using Keras
model_name = 'resnet50_%s_keras'%float_type2
model = ResNet50(weights='imagenet')

various save files
frozen_file = model_name + '.pb'
opt_file = model_name + '_opt.pb'

obtain parameters
model_input = model.input.name.replace(':0', '')
model_output = model.output.name.replace(':0', '')
batch, height, width, channels = model.input.shape

print ("model, frozen file, optimized file, input size, input node, output node,")
print ("%s, %s, %s, %dx%dx%d, %s, %s" %(model_name, frozen_file, opt_file, width,␣
→˓height, channels, model_input, model_output))

obtain the TF session
(continues on next page)

418 Chapter 8. TensorFlow Neuron

AWS Neuron

(continued from previous page)

sess = tf.compat.v1.keras.backend.get_session()

save checkpoint files for freeze_graph
ckpt_file = '/tmp/' + model_name + '/' + model_name + '.ckpt'
graph_file = '/tmp/' + model_name + '/' + model_name + '.pb'
tf.compat.v1.train.Saver().save(sess, ckpt_file)
tf.io.write_graph(sess.graph.as_graph_def(), logdir='.', name=graph_file, as_text=False)

print(model_output)
with tf.compat.v1.Session(graph=tf.Graph()) as sess:

saver = tf.compat.v1.train.import_meta_graph(ckpt_file + '.meta')
saver.restore(sess, ckpt_file)
output_graph_def = tf.compat.v1.graph_util.convert_variables_to_constants(

sess, tf.compat.v1.get_default_graph().as_graph_def(), [model_output])
output_graph_def = tf.compat.v1.graph_util.remove_training_nodes(

output_graph_def, protected_nodes=[model_output])
with open(frozen_file, 'wb') as f:

f.write(output_graph_def.SerializeToString())

Optimize the extracted Keras ResNet50 FP32 graph for inference before casting (resnet50_fp32_keras_opt.pb will be
generated) with the following transformations to the graph:

• Remove Identity and CheckNumerics nodes

• Fold FusedBatchNorm constants into previous Conv2D weights

• Fold other constants

• Strip unused nodes

• Sort by execution order

[]: import copy
import string

from google.protobuf import text_format
from tensorflow.core.framework import node_def_pb2
from tensorflow.core.framework import attr_value_pb2
from tensorflow.python.framework import tensor_util
from tensorflow.tools.graph_transforms import TransformGraph

def clear_input(node):
for i in range(len(node.input)):
node.input.pop()

def replace_name(node, name):
node.name = name

def replace_input(node, input_name, new_name):
node.input.replace(input_name, new_name)
temp = []
for i in node.input:
temp.extend([new_name if i == input_name else i])

clear_input(node)
for i in temp:

(continues on next page)

8.3. Inference on Inf1 (tensorflow-neuron) 419

AWS Neuron

(continued from previous page)

node.input.extend([i])

def swap_names(node1, node2):
temp = node2.name
node2.name = node1.name
node1.name = temp

def get_const_node(const_node_name, const_by_name):
name = re.sub("/read$", "", const_node_name)
return const_by_name[name]

def get_const_ndarray(const_node_name, const_by_name):
name = re.sub("/read$", "", const_node_name)
node = const_by_name[name]
return tf.make_ndarray(node.attr.get("value").tensor)

def adjust_bias_values(bias_node, fbn_node, const_by_name):
bias_val = get_const_ndarray(bias_node.input[1], const_by_name)
gamma_val = get_const_ndarray(fbn_node.input[1], const_by_name)
mean_val = get_const_ndarray(fbn_node.input[3], const_by_name)
variance_val = get_const_ndarray(fbn_node.input[4], const_by_name)
new_bias = bias_val * gamma_val / np.sqrt(variance_val)
new_tensor = tensor_util.make_tensor_proto(new_bias, new_bias.dtype, new_bias.shape)
bias_const_node = get_const_node(bias_node.input[1], const_by_name)
bias_const_node.attr["value"].CopyFrom(attr_value_pb2.AttrValue(tensor=new_tensor))

def MoveBiasAddAfterFusedBatchNorm(graphdef):
"""fold_batch_norm function of TransformGraph is unable to fold Keras ResNet50
because of BiasAdd between Conv2D and FusedBatchNorm (BiasAdd is not needed
if FusedBatchNorm is used, but it exists in Keras ResNet50). Here, we
move BiasAdd to after FusedBatchNorm, and adjust bias value by gamma/sqrt(variance).
"""
sess = tf.compat.v1.Session(graph=tf.import_graph_def(graphdef))
output_graph_def = tf.compat.v1.GraphDef()
node_by_name = {}
const_by_name = {}
for node in graphdef.node:
Hack: use FusedBatchNormV2 so fold_batch_norm can recognize
if node.op == "FusedBatchNormV3":

node.op = "FusedBatchNorm"
del(node.attr["U"])
#import pdb; pdb.set_trace()

copied_node = node_def_pb2.NodeDef()
copied_node.CopyFrom(node)
node_by_name[node.name] = copied_node
skip_add_node = False
Switch Mul/BiasAdd in Keras RN50 so fold_batch_norm transform would work
if node.op == "Const":

const_by_name[node.name] = copied_node
elif node.op.startswith("FusedBatchNorm"):
inputs = node.input
for i in inputs:

(continues on next page)

420 Chapter 8. TensorFlow Neuron

AWS Neuron

(continued from previous page)

input_node = node_by_name[i]
if input_node.op == "BiasAdd":
output_graph_def.node.remove(input_node)
input_node_input0 = input_node.input[0]
Adjust bias values (multiply by scale/sqrt(variance))
adjust_bias_values(input_node, node, const_by_name)
Hack: swap names to avoid changing input of activation
swap_names(copied_node, input_node)
Fix inputs for these two ops
replace_input(copied_node, i, input_node_input0)
replace_input(input_node, input_node_input0, copied_node.name)
Fix order in node list
output_graph_def.node.extend([copied_node])
output_graph_def.node.extend([input_node])
skip_add_node = True

Add maybe-modified nodes if not already done
if not skip_add_node:
output_graph_def.node.extend([copied_node])

return output_graph_def

def FoldFusedBatchNorm(graph_def):
"""Optimize training graph for inference:
- Remove Identity and CheckNumerics nodes
- Fold FusedBatchNorm constants into previous Conv2D weights
- Fold other constants
- Strip unused nodes
- Sort by execution order

"""
transformed_graph_def = TransformGraph (

graph_def,
['input_1'],
['probs/Softmax'],
[
'add_default_attributes',
'remove_nodes(op=Identity, op=CheckNumerics)',
'fold_constants(ignore_errors=true)',
'fold_batch_norms',
'fold_old_batch_norms',
'strip_unused_nodes',
'sort_by_execution_order',

])
return transformed_graph_def

def load_graph(model_file):
graph_def = tf.compat.v1.GraphDef()

with open(model_file, "rb") as f:
graph_def.ParseFromString(f.read())

return graph_def

graph_orig = load_graph('resnet50_fp32_keras.pb')

(continues on next page)

8.3. Inference on Inf1 (tensorflow-neuron) 421

AWS Neuron

(continued from previous page)

graph_mod = MoveBiasAddAfterFusedBatchNorm(graph_orig)
graph_mod2 = FoldFusedBatchNorm(graph_mod)
with tf.io.gfile.GFile('resnet50_fp32_keras_opt.pb', "wb") as f:

f.write(graph_mod2.SerializeToString())

Convert full graph to FP16 (resnet50_fp16_keras_opt.pb will be generated. This will take about a minute.

[]: from tensorflow.core.framework import graph_pb2
from tensorflow.python.platform import gfile

def ConvertFP32ToOther(graphdef):
"""Converts an FP32 network by casting all constants (weights) to a lower
precision floating point type (FP16) and updating the dtypes
everywhere."""

cast_type = "float16"
sess = tf.Session(graph=tf.import_graph_def(graphdef))
output_graph_def = graph_pb2.GraphDef()
dummy_tensor = sess.run(tf.constant([0.1]))
dummy_tensor_proto = tensor_util.make_tensor_proto(dummy_tensor, \

dtype=cast_type, shape=dummy_tensor.shape)
dummy_tensor32 = sess.run(tf.constant([0.1]))
dummy_tensor_proto32 = tensor_util.make_tensor_proto(dummy_tensor, \

dtype=tf.float32, shape=dummy_tensor.shape)
dt_float_type_attr = attr_value_pb2.AttrValue(type=dummy_tensor_proto32.dtype)
dt_half_type_attr = attr_value_pb2.AttrValue(type=dummy_tensor_proto.dtype)
for node in graphdef.node:
output_node = node_def_pb2.NodeDef()
output_node.CopyFrom(node)
if (node.op == "Const"):
if (node.attr["dtype"] == dt_float_type_attr):
a = tensor_util.MakeNdarray(node.attr["value"].tensor)
a = tf.cast(a, cast_type)
a = sess.run(a)
output_node.attr["dtype"].CopyFrom(dt_half_type_attr)
output_node.attr["value"].CopyFrom(

attr_value_pb2.AttrValue(
tensor=tensor_util.make_tensor_proto(a,\
dtype=cast_type, shape=a.shape)))

else:
if ("T" in node.attr.keys()):
if (output_node.attr["T"] == dt_float_type_attr):

output_node.attr["T"].CopyFrom(dt_half_type_attr)
if ("Tparams" in node.attr.keys()):
if (output_node.attr["Tparams"] == dt_float_type_attr):

output_node.attr["Tparams"].CopyFrom(dt_half_type_attr)
if ("dtype" in node.attr.keys()):
if (node.attr["dtype"] == dt_float_type_attr):
output_node.attr["dtype"].CopyFrom(dt_half_type_attr)

if ("SrcT" in node.attr.keys()):
if (node.attr["SrcT"] == dt_float_type_attr):
output_node.attr["SrcT"].CopyFrom(dt_half_type_attr)

if ("DstT" in node.attr.keys()):
(continues on next page)

422 Chapter 8. TensorFlow Neuron

AWS Neuron

(continued from previous page)

if (node.attr["DstT"] == dt_float_type_attr):
output_node.attr["DstT"].CopyFrom(dt_half_type_attr)

output_graph_def.node.extend([output_node])
return output_graph_def

def load_graph(model_file):
graph_def = tf.GraphDef()

with open(model_file, "rb") as f:
graph_def.ParseFromString(f.read())

return graph_def

graph_f32 = load_graph('resnet50_fp32_keras_opt.pb')
graph_f16 = ConvertFP32ToOther(graph_f32)
output_xformed_graph_name = 'resnet50_fp16_keras_opt.pb'
with gfile.GFile(output_xformed_graph_name, "wb") as f:

f.write(graph_f16.SerializeToString())

Run the compilation script to sweep through various batch sizes up to 5 and several NeuronCore Group sizes up to 16.
The script calls the compilation script pb2sm_compile.py which tries to perform compilation. Some error messages
are expected due to known issues (see Known Issues section in the tutorial). If you run all the configurations it will
take about 45 minutes.

[]: %%bash
#!/usr/bin/env bash

echo "" > full_sweep.log
echo "" > full_sweep_results.txt

results=()
for b in $(seq 1 5); do

for i in 1 2 4 8 12 16; do
python pb2sm_compile.py --batch_size=$b --neuroncore-pipeline-cores=$i | tee -a␣

→˓full_sweep.log;
results[$b]+=", "`tail -1 full_sweep.log`

done
done

head="batch"
for i in 1 2 4 8 12 16; do

head+=", nc${i}"
done
echo $head | tee -a full_sweep_results.txt
for b in $(seq 1 5); do

echo b{results[$b]} | tee -a full_sweep_results.txt
done

You should see some output like this:

INFO: Compilation finished in 95 seconds with 99.5% operations placed on Inferentia
(continues on next page)

8.3. Inference on Inf1 (tensorflow-neuron) 423

AWS Neuron

(continued from previous page)

1

*** Batch size 1, num NeuronCores 2 (input shape: (1, 224, 224, 3), saved model dir:␣
→˓rn50_fp16_compiled_b1_nc2) ***

INFO: Compilation finished in 95 seconds with 99.5% operations placed on Inferentia

1

*** Batch size 1, num NeuronCores 4 (input shape: (1, 224, 224, 3), saved model dir:␣
→˓rn50_fp16_compiled_b1_nc4) ***

INFO: Compilation finished in 95 seconds with 99.5% operations placed on Inferentia

1

... (outputs removed)

*** Batch size 5, num NeuronCores 16 (input shape: (5, 224, 224, 3), saved model dir:␣
→˓rn50_fp16_compiled_b5_nc16) ***

ERROR: Compilation finished in 120 seconds with less than 50% operations placed on␣
→˓Inferentia (0.0%)

INFO: Retry compilation without static weights

ERROR: Retry compilation finished in 137 seconds with less than 50% operations placed on␣
→˓Inferentia (0.0%)

0

The file full_sweep_results.txt shows a summary of the sweep results with latest Neuron␣
→˓1/27/20 release (0 means compilation unsuccessful and 0 ops mapped to Inferentia, 1␣
→˓means most ops mapped to Inferentia and non-static weights, 2 means most ops mapped to␣
→˓Inferentia and using static weights):

batch, nc1, nc2, nc4, nc8, nc12, nc16
1, 1, 1, 1, 2, 2, 2
2, 1, 1, 0, 1, 2, 2
3, 1, 1, 1, 1, 1, 1
4, 1, 1, 0, 1, 1, 1
5, 1, 1, 0, 0, 0, 0

424 Chapter 8. TensorFlow Neuron

AWS Neuron

Inference

Run inference over different batch sizes and Neuroncore groups to obtain throughput and latency results for ResNet50.
To apply dynamic batching, the user batch size is set to 10x the compiled batch size, in order to keep input queue full
and to amortize framework-to-Neuron overhead.

Note: The results are based on the Neuron v1.12.2 (Mar 4th 2021) release. These will continue improve as we increase
Neuron performance.

[]: !cd ~/aws-neuron-sdk/src/examples/tensorflow/keras_resnet50/
!echo "" > batch.log
!for i in $(seq 1 5); do python infer_resnet50_keras_loadtest.py --batch_size=$i --
→˓neuroncore-pipeline-cores=1 | tee -a batch.log; done
!for i in $(seq 1 5); do python infer_resnet50_keras_loadtest.py --batch_size=$i --
→˓neuroncore-pipeline-cores=2 | tee -a batch.log; done
!for i in $(seq 1 5); do python infer_resnet50_keras_loadtest.py --batch_size=$i --
→˓neuroncore-pipeline-cores=4 | tee -a batch.log; done
!for i in $(seq 1 5); do python infer_resnet50_keras_loadtest.py --batch_size=$i --
→˓neuroncore-pipeline-cores=8 | tee -a batch.log; done
!for i in $(seq 1 5); do python infer_resnet50_keras_loadtest.py --batch_size=$i --
→˓neuroncore-pipeline-cores=12 | tee -a batch.log; done
!for i in $(seq 1 5); do python infer_resnet50_keras_loadtest.py --batch_size=$i --
→˓neuroncore-pipeline-cores=16 | tee -a batch.log; done

The file batch.log now contains the results for each batch size. We can look at the throughput values to get an idea of
which models are performing well. The output should look something like this:

The model best model configuration for throughput (if you run on an Inf1.6xlarge as suggested in the tutorial) is batch
size 5 NeuronCore group size 2. Increasing batch size usually helps to increase throughput (up to a certain extent).

*** Compiled batch size 5, user batch size 10, num NeuronCores 2 (input shape: (10, 224,␣
→˓224, 3), saved model dir: ./rn50_fp16_compiled_b5_nc2/1) ***

Instance type inf1.6xlarge with 16 NeuronCores
NEURON_MAX_NUM_INFERS (env): 5
NEURONCORE_GROUP_SIZES (env): 2,2,2,2,2,2,2,2
NUM THREADS: 16
NUM_LOOPS_PER_THREAD: 400
USER_BATCH_SIZE: 10
Throughput values collected:
[10680, 10700, 10660]

(rest of outputs removed)

Known Issues

Unable to compile with batch and num NeuronCores combination

For some combination of batch and number of NeuronCores setting, you may see an internal compiler error as below.
Please see the sweep result above for Neuron 1/27/20 release. Furthermore, if using auto-casting to bfloat16 from FP32
network and batch size is larger than 1 would result in the same error.

8.3. Inference on Inf1 (tensorflow-neuron) 425

AWS Neuron

INFO:tensorflow:fusing subgraph neuron_op_a73aed4b95ca5d5b with neuron-cc; log file is␣
→˓at /home/ubuntu/keras_fp16_benchmarking_db/compiler_workdir/neuron_op_a73aed4b95ca5d5b/
→˓graph_def.neuron-cc.log

WARNING:tensorflow:Failed to fuse subgraph neuron_op_a73aed4b95ca5d5b with '/home/
→˓ubuntu/test_venv/bin/neuron-cc compile /home/ubuntu/keras_fp16_benchmarking_db/
→˓compiler_workdir/neuron_op_a73aed4b95ca5d5b/graph_def.pb --framework TENSORFLOW --
→˓pipeline compile SaveTemps --output /home/ubuntu/keras_fp16_benchmarking_db/compiler_
→˓workdir/neuron_op_a73aed4b95ca5d5b/graph_def.neff --io-config "{\"inputs\": {\"input_
→˓10/_0:0\": [[6, 224, 224, 3], \"float16\"]}, \"outputs\": [\"probs/Softmax:0\"]}" --
→˓batching_en --rematerialization_en --sb_size 120 --spill_dis --enable-replication True'

WARNING:tensorflow:neuron-cc error message:
WARNING:tensorflow:01/23/2020 01:15:40 AM ERROR [neuron-cc]:
01/23/2020 01:15:40 AM ERROR [neuron-cc]:␣

→˓***
01/23/2020 01:15:40 AM ERROR [neuron-cc]: An Internal Compiler Error has occurred
01/23/2020 01:15:40 AM ERROR [neuron-cc]:␣

→˓***
01/23/2020 01:15:40 AM ERROR [neuron-cc]:
01/23/2020 01:15:40 AM ERROR [neuron-cc]: Please contact Customer Support and provide␣

→˓the following details.
01/23/2020 01:15:40 AM ERROR [neuron-cc]:
01/23/2020 01:15:40 AM ERROR [neuron-cc]: Error message: Non-zero exit status (134)␣

→˓for command: /home/ubuntu/test_venv/lib/python3.6/site-packages/neuroncc/starfish/bin/
→˓list_sch --hhir hh-tr-external-move.json --verbose 0 --sb_size 120 --arith_intensity_
→˓target 2300 --sb_watermark_low 0.250000 --sb_watermark_high 0.750000 --sb_size_tol 1 --
→˓alloc simple1 --alloc_opt --depth_diff 0.100000 --verbose_start_cycle 0 --tt_dist --mm_
→˓meet_cnt 1 --load_speed_factor 0.300000 --schir sch_tmp.json --spill_depth_limit 5 --
→˓spill_dis --true_dep --mm_order --batching_en --rematerialization_en

01/23/2020 01:15:40 AM ERROR [neuron-cc]:
01/23/2020 01:15:40 AM ERROR [neuron-cc]: Error class: CompilerInternalError
01/23/2020 01:15:40 AM ERROR [neuron-cc]: Error location: job.Scheduler.3
01/23/2020 01:15:40 AM ERROR [neuron-cc]: Command line: /home/ubuntu/test_venv/bin/

→˓neuron-cc compile /home/ubuntu/keras_fp16_benchmarking_db/compiler_workdir/neuron_op_
→˓a73aed4b95ca5d5b/graph_def.pb --framework TENSORFLOW --pipeline compile SaveTemps --
→˓output /home/ubuntu/keras_fp16_benchmarking_db/compiler_workdir/neuron_op_
→˓a73aed4b95ca5d5b/graph_def.neff --io-config '{"inputs": {"input_10/_0:0": [[6, 224,␣
→˓224, 3], "float16"]}, "outputs": ["probs/Softmax:0"]}' --batching_en --
→˓rematerialization_en --sb_size 120 --spill_dis --enable-replication True

01/23/2020 01:15:40 AM ERROR [neuron-cc]:
01/23/2020 01:15:40 AM ERROR [neuron-cc]: Internal details:
01/23/2020 01:15:40 AM ERROR [neuron-cc]: File "neuroncc/driver/Job.py", line 207,␣

→˓in neuroncc.driver.Job.runSingleInputFn
01/23/2020 01:15:40 AM ERROR [neuron-cc]: File "neuroncc/driver/jobs/Scheduler.py",␣

→˓line 58, in neuroncc.driver.jobs.Scheduler.Scheduler.runSingleInput
01/23/2020 01:15:40 AM ERROR [neuron-cc]: File "neuroncc/driver/Job.py", line 145,␣

→˓in neuroncc.driver.Job.Job.shellCommand
01/23/2020 01:15:40 AM ERROR [neuron-cc]:
01/23/2020 01:15:40 AM ERROR [neuron-cc]: Version information:
01/23/2020 01:15:41 AM ERROR [neuron-cc]: Neuron Compiler version 1.0.6632.

→˓0+6001610955
01/23/2020 01:15:41 AM ERROR [neuron-cc]:
01/23/2020 01:15:41 AM ERROR [neuron-cc]: HWM version 1.0.839.0-6001300654
01/23/2020 01:15:41 AM ERROR [neuron-cc]: NEFF version 0.6

(continues on next page)

426 Chapter 8. TensorFlow Neuron

AWS Neuron

(continued from previous page)

01/23/2020 01:15:41 AM ERROR [neuron-cc]: TVM version 1.0.1589.0+6001610955
01/23/2020 01:15:41 AM ERROR [neuron-cc]: NumPy version 1.16.5
01/23/2020 01:15:41 AM ERROR [neuron-cc]: MXNet not available
01/23/2020 01:15:41 AM ERROR [neuron-cc]: TF version 1.15.0
01/23/2020 01:15:41 AM ERROR [neuron-cc]:

[]:

This document is relevant for: Inf1

This document is relevant for: Inf1

Natural Language Processing (NLP) Tutorials (tensorflow-neuron)

• Tensorflow 1.x - Running TensorFlow BERT-Large with AWS Neuron [html]

• Tensorflow 2.x - HuggingFace DistilBERT with Tensorflow2 Neuron [html] [notebook]

This document is relevant for: Inf1

[Broken] Running TensorFlow BERT-Large with AWS Neuron

This example shows a Neuron compatible BERT-Large implementation that is functionally equivalent to open source
BERT-Large model. This demo uses TensorFlow-Neuron, BERT-Large weights fine tuned for MRPC and also shows
the performance achieved by the Inf1 instance. For users who want to use public BERT SavedModels please also follow
the steps described Using public BERT SavedModels.

Launch EC2 instances

For this demo, launch two EC2 instances :

• a c5.4xlarge instance for compiling the BERT-Large Model and

• an inf1.xlarge instance for running inference

For both of these instances choose the latest Ubuntu 18 Deep Learning AMI (DLAMI).

Compiling Neuron compatible BERT-Large

First connect to a c5.4xlarge instance and update tensorflow-neuron and neuron-cc

Update compilation EC2 instance

Update to the latest neuron software by executing the instructions at install-neuron-tensorflow.

Note: if your tensorflow-neuron version on the inference instance is lower than 1.15.0.1.0.1333.0, you will need to run
this demo on inf1.2xlarge instead of inf1.xlarge.

8.3. Inference on Inf1 (tensorflow-neuron) 427

https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/huggingface_bert/huggingface_bert.ipynb

AWS Neuron

Compile open source BERT-Large saved model using Neuron compatible BERT-Large implementa-
tion

Neuron software works with TensorFlow saved models. Users should bring their own BERT-Large saved model for
this section. This demo will run inference for the MRPC task and the saved model should be fine tuned for MRPC.
Users who need additional help to fine-tune the model for MRPC or to create a saved model can refer to Appendix 1.

In the same environment and directory bert_demo scripts, run the following :

git clone https://github.com/aws/aws-neuron-sdk
cd ~/aws-neuron-sdk/src/examples/tensorflow/bert_demo/
export BERT_LARGE_SAVED_MODEL="/path/to/user/bert-large/savedmodel"
pip install tensorflow_neuron==1.15.5.2.8.9.0 --extra-index-url=https://pip.repos.neuron.
→˓amazonaws.com/
pip install neuron_cc==1.13.5.0 --extra-index-url=https://pip.repos.neuron.amazonaws.com
python bert_model.py --input_saved_model $BERT_LARGE_SAVED_MODEL --output_saved_model ./
→˓bert-saved-model-neuron --batch_size=6 --aggressive_optimizations

This compiles BERT-Large pointed to by $BERT_LARGE_SAVED_MODEL for an input size of 128 and batch size
of 6. The compilation output is stored in bert-saved-model-neuron. Copy this to your Inf1 instance for inferencing.

The bert_model.py script encapsulates all the steps necessary for this process. For details on what is done by
bert_model.py please refer to Appendix 2.

Running the inference demo

Connect to your inf1.xlarge instance and update tensorflow-neuron, aws-neuron-runtime and aws-neuron-tools.

Update inference EC2 instance

Update to the latest neuron software by executing the instructions at install-neuron-tensorflow.

Launching the BERT-Large demo server

Copy the compiled model (bert-saved-model-neuron) from your c5.4xlarge to your inf1.xlarge instance. Place the
model in the same directory as the bert_demo scripts. Then from the same conda environment launch the BERT-Large
demo server :

cd ~/aws-neuron-sdk/src/examples/tensorflow/bert_demo/
pip install tensorflow_neuron==1.15.5.2.8.9.0 --extra-index-url=https://pip.repos.neuron.
→˓amazonaws.com/
python bert_server.py --dir bert-saved-model-neuron --batch 6 --parallel 4

This loads 4 BERT-Large models, one into each of the 4 NeuronCores found in an inf1.xlarge instance. For each of the
4 models, the BERT-Large demo server opportunistically stitches together asynchronous requests into batch 6 requests.
When there are insufficient pending requests, the server creates dummy requests for batching.

Wait for the bert_server to finish loading the BERT-Large models to Inferentia memory. When it is ready to accept
requests it will print the inferences per second once every second. This reflects the number of real inferences only.
Dummy requests created for batching are not credited to inferentia performance. Once the inferences are done you can
send a keyboard interrupt to print out the average throughput of your run.

428 Chapter 8. TensorFlow Neuron

AWS Neuron

Sending requests to server from multiple clients

Wait until the bert demo server is ready to accept requests. Then on the same inf1.xlarge instance, launch a separate
linux terminal. From the bert_demo directory execute the following commands :

source activate aws_neuron_tensorflow_p36
cd ~/aws-neuron-sdk/src/examples/tensorflow/bert_demo/
for i in {1..96}; do python bert_client.py --cycle 128 & done

This spins up 96 clients, each of which sends 128 inference requests.

Printing latency metrics

After all your requests have been sent to your server you can run the following command:

python latency_printer.py

Using public BERT SavedModels

We are now providing a compilation script that has better compatibility with various flavors of BERT SavedModels
generated from https://github.com/google-research/bert. Here are the current limitations:

1. You did not change modeling.py

2. BERT SavedModel is generated using estimator.export_saved_model

3. BERT SavedModel uses fixed sequence length 128 (you may check by saved_model_cli show --dir /
path/to/user/bert/savedmodel --all)

4. neuron-cc version is at least 1.0.12000.0

5. aws-neuron-runtime version is at least 1.0.7000.0

6. The --batch_size argument specified in this script is at most 4

Example usage is shown below:

export BERT_LARGE_SAVED_MODEL="/path/to/user/bert-large/savedmodel"
cd ~/aws-neuron-sdk/src/examples/tensorflow/bert_demo/
python bert_no_model.py --input_saved_model $BERT_LARGE_SAVED_MODEL --output_saved_model␣
→˓./bert-saved-model-neuron --batch_size=1

Appendix 1

Users who need help finetuning BERT-Large for MRPC and creating a saved model may follow the instructions here.

Connect to the c5.4xlarge compilation EC2 instance you started above and download these three items :

1. clone this github repo.

2. download GLUE data as described here. Do not run the finetuning command.

3. download a desired pre-trained BERT-Large checkpoint from here. This is the model we will fine tune.

Next edit run_classifier.py in the cloned bert repo to apply the patch described in the following git diff.

8.3. Inference on Inf1 (tensorflow-neuron) 429

https://github.com/google-research/bert
https://github.com/google-research/bert/blob/master/modeling.py
https://github.com/google-research/bert
https://github.com/google-research/bert#user-content-sentence-and-sentence-pair-classification-tasks
https://github.com/google-research/bert#user-content-pre-trained-models

AWS Neuron

diff --git a/run_classifier.py b/run_classifier.py
index 817b147..c9426bc 100644
--- a/run_classifier.py
+++ b/run_classifier.py
@@ -955,6 +955,18 @@ def main(_):

drop_remainder=predict_drop_remainder)

result = estimator.predict(input_fn=predict_input_fn)
+ features = {
+ "input_ids": tf.placeholder(shape=[None, FLAGS.max_seq_length], dtype=tf.int32,␣
→˓name='input_ids'),
+ "input_mask": tf.placeholder(shape=[None, FLAGS.max_seq_length], dtype=tf.int32,
→˓ name='input_mask'),
+ "segment_ids": tf.placeholder(shape=[None, FLAGS.max_seq_length], dtype=tf.
→˓int32, name='segment_ids'),
+ "label_ids": tf.placeholder(shape=[None], dtype=tf.int32, name='label_ids'),
+ "is_real_example": tf.placeholder(shape=[None], dtype=tf.int32, name='is_real_
→˓example'),
+ }
+ serving_input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn(features)
+ estimator._export_to_tpu = False ## !!important to add this
+ estimator.export_saved_model(
+ export_dir_base='./bert_classifier_saved_model',
+ serving_input_receiver_fn=serving_input_fn)

output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv")
with tf.gfile.GFile(output_predict_file, "w") as writer:

NOTE : Users who are interested may refer to this link for additional background information on the patch but it is not
necessary for running this demo.

Then from the bert_demo directory run the following :

source activate aws_neuron_tensorflow_p36
cd ~/aws-neuron-sdk/src/examples/tensorflow/bert_demo/
export BERT_REPO_DIR="/path/to/cloned/bert/repo/directory"
export GLUE_DIR="/path/to/glue/data/directory"
export BERT_BASE_DIR="/path/to/pre-trained/bert-large/checkpoint/directory"
./tune_save.sh

The a saved model will be created in $BERT_REPO_DIR/bert-saved-model/random_number/. Where, ran-
dom_number is a random number generated for every run. Use this saved model to continue with the rest of the
demo.

430 Chapter 8. TensorFlow Neuron

https://github.com/google-research/bert/issues/146#issuecomment-569138476

AWS Neuron

Appendix 2

For all BERT variants, we currently need to augment the standard Neuron compilation process for performance tuning.
In the future, we intend to automate this tuning process. This would allow users to use the standard Neuron compilation
process, which requires only a one line change in user source code. The standard compilation process is described
/src/examples/mxnet/resnet50/resnet50.ipynb.

The augmented Neuron compilation process is encapsulated by the bert_model.py script, which performs the following
things :

1. Define a Neuron compatible implementation of BERT-Large. For inference, this is functionally equivalent to the
open source BERT-Large. The changes needed to create a Neuron compatible BERT-Large implementation is
described in Appendix 3.

2. Extract BERT-Large weights from the open source saved model pointed to by –input_saved_model and associates
it with the Neuron compatible model

3. Invoke TensorFlow-Neuron to compile the Neuron compatible model for Inferentia using the newly associated
weights

4. Finally, the compiled model is saved into the location given by –output_saved_model

Appendix 3

The Neuron compatible implementation of BERT-Large is functionally equivalent to the open source version when
used for inference. However, the detailed implementation does differ and here are the list of changes :

1. Data Type Casting : If the original BERT-Large an FP32 model, bert_model.py contains manually defined cast
operators to enable mixed-precision. FP16 is used for multi-head attention and fully-connected layers, and fp32
everywhere else. This will be automated in a future release.

2. Remove Unused Operators: A model typically contains training operators that are not used in inference, including
a subset of the reshape operators. Those operators do not affect inference functionality and have been removed.

3. Reimplementation of Selected Operators : A number of operators (mainly mask operators), has been reimple-
mented to bypass a known compiler issue. This will be fixed in a planned future release.

4. Manually Partition Embedding Ops to CPU : The embedding portion of BERT-Large has been partitioned man-
ually to a subgraph that is executed on the host CPU, without noticable performance impact. In near future, we
plan to implement this through compiler auto-partitioning without the need for user intervention.

This document is relevant for: Inf1

Running Huggingface DistilBERT with TensorFlow-Neuron

In this tutorial you will compile and deploy DistilBERT version of HuggingFace Transformers BERT for Inferentia
using TensorFlow-Neuron. The full list of HuggingFace’s pretrained BERT models can be found in the BERT sec-
tion on this page https://huggingface.co/transformers/pretrained_models.html. you can also read about HuggingFace’s
pipeline feature here: https://huggingface.co/transformers/main_classes/pipelines.html

This Jupyter notebook should be run on an instance which is inf1.6xlarge or larger, but in real life scenario the compi-
lation should be done on a compute instance and the deployment on inf1 instance to save costs.

8.3. Inference on Inf1 (tensorflow-neuron) 431

https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/main_classes/pipelines.html

AWS Neuron

Setup

To run this tutorial please follow the instructions for TensorFlow-Neuron Setup and the Jupyter Notebook Quickstart
and set your kernel to “Python (tensorflow-neuron)” .

Next, install some additional dependencies.

[]: %env TOKENIZERS_PARALLELISM=True #Supresses tokenizer warnings making errors easier to␣
→˓detect
!pip install transformers==4.30.2
!pip install ipywidgets

Download From Huggingface and Compile for AWS-Neuron

[]: import tensorflow as tf
import tensorflow_neuron as tfn
from transformers import DistilBertTokenizer, TFDistilBertModel

Create a wrapper for the roberta model that will accept inputs as a list
instead of a dictionary. This will allow the compiled model to be saved
to disk with the model.save() fucntion.
class DistilBertWrapper(tf.keras.Model):

def __init__(self, model):
super().__init__()
self.model = model

def __call__(self, example_inputs):
return self.model({'input_ids' : example_inputs[0], 'attention_mask' : example_

→˓inputs[1]})

tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased-finetuned-sst-2-
→˓english')
model = DistilBertWrapper(TFDistilBertModel.from_pretrained('distilbert-base-uncased-
→˓finetuned-sst-2-english'))

batch_size = 16

create example inputs with a batch size of 16
text = ["Paris is the <mask> of France."] * batch_size
encoded_input = tokenizer(text, return_tensors='tf', padding='max_length', max_length=64)

turn inputs into a list
example_input = [encoded_input['input_ids'], encoded_input['attention_mask']]

#compile
model_neuron = tfn.trace(model, example_input)

print("Running on neuron:", model_neuron(example_input))

save the model to disk to save recompilation time for next usage
model_neuron.save('./distilbert-neuron-b16')

432 Chapter 8. TensorFlow Neuron

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/setup/tensorflow-neuron.html#setup-tensorflow-neuron
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/setup/notebook/setup-jupyter-notebook-steps-troubleshooting.html

AWS Neuron

Run Basic Inference Benchmarking

[]: import numpy as np
import concurrent.futures
import time

reloaded_neuron_model = tf.keras.models.load_model('./distilbert-neuron-b16')
print("Reloaded model running on neuron:", reloaded_neuron_model(example_input))

num_threads = 4
num_inferences = 1000

latency_list = []
def inference_with_latency_calculation(example_input):

global latency_list
start = time.time()
result = reloaded_neuron_model(example_input)
end = time.time()
latency_list.append((end-start) * 1000)
return result

start = time.time()
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:

futures = []
for i in range(num_inferences):

futures.append(executor.submit(inference_with_latency_calculation, example_
→˓input))
for future in concurrent.futures.as_completed(futures):

get_result = future.result()
end = time.time()

total_time = end - start
throughput = (num_inferences * batch_size)/total_time

print(f"Throughput was {throughput} samples per second.")
print(f"Latency p50 was {np.percentile(latency_list, 50)} ms")
print(f"Latency p90 was {np.percentile(latency_list, 90)} ms")
print(f"Latency p95 was {np.percentile(latency_list, 95)} ms")
print(f"Latency p99 was {np.percentile(latency_list, 99)} ms")
assert(throughput >= 1930.0)

[]:

This document is relevant for: Inf1

This document is relevant for: Inf1

8.3. Inference on Inf1 (tensorflow-neuron) 433

AWS Neuron

Utilizing Neuron Capabilities Tutorials (tensorflow-neuron)

• Tensorflow 1.x - Using NEURON_RT_VISIBLE_CORES with TensorFlow Serving [html]

This document is relevant for: Inf1

Computer Vision Tutorials

• Tensorflow 1.x - OpenPose tutorial [html] [notebook]

• Tensorflow 1.x - ResNet-50 tutorial [html] [notebook]

• Tensorflow 1.x - YOLOv4 tutorial [html] [notebook]

• Tensorflow 1.x - YOLOv3 tutorial [html] [notebook]

• Tensorflow 1.x - SSD300 tutorial [html]

• Tensorflow 1.x - Keras ResNet-50 optimization tutorial [html] [notebook]

Natural Language Processing (NLP) Tutorials

• Tensorflow 1.x - Running TensorFlow BERT-Large with AWS Neuron [html]

• Tensorflow 2.x - HuggingFace Pipelines distilBERT with Tensorflow2 Neuron [html] [notebook]

Utilizing Neuron Capabilities Tutorials

• Tensorflow 1.x & 2.x - Using NEURON_RT_VISIBLE_CORES with TensorFlow Serving [html]

Note: To use Jupyter Notebook see:

• setup-jupyter-notebook-steps-troubleshooting

• running-jupyter-notebook-as-script

This document is relevant for: Inf1

This document is relevant for: Inf1

8.3.2 Additional Examples (tensorflow-neuron)

• AWS Neuron Samples GitHub Repository

This document is relevant for: Inf1

This document is relevant for: Inf1

434 Chapter 8. TensorFlow Neuron

https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/openpose_demo/openpose.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/tensorflow_resnet50/resnet50.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/yolo_v4_demo/evaluate.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/yolo_v3_demo/yolo_v3.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/keras_resnet50/keras_resnet50.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/huggingface_bert/huggingface_bert.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/tensorflow-neuron/inference

AWS Neuron

8.3.3 API Reference Guide (tensorflow-neuron)

This document is relevant for: Inf1

TensorFlow 2.x (tensorflow-neuron) Tracing API

The Neuron tracing API enables tracing TensorFlow 2.x models for deployment on AWS Machine Learning Accelera-
tors.

Method

tensorflow.neuron.trace

Description

Trace a keras.Model or a Python callable that can be decorated by tf.function, and return an AWS-Neuron-
optimized keras.Model that can execute on AWS Machine Learning Accelerators. Tracing is ideal for keras.Model
that accepts a list of tf.Tensor objects and returns a list of tf.Tensor objects. It is expected that users will provide
example inputs, and the trace function will execute func symbolically and convert it to a keras.Model.

The returned keras.Modelwill support inference only. Attributes or variables held by the original function or keras.
Model will be dropped.

The returned keras.Model can be exported as SavedModel and served using TensorFlow Serving. Please see
tensorflow-serving for more information about exporting to saved model and serving using TensorFlow Serving.

The returned keras.Model has an .on_neuron_ratio attribute which shows the percentage of ops mapped to neuron
hardware. This calculation ignores PlaceholerOp, IdentityOp, ReadVariableOp and NoOp.

Options can be passed to Neuron compiler via the environment variable NEURON_CC_FLAGS. For example, the syntax
env NEURON_CC_FLAGS="--neuroncore-pipeline-cores=4" directs Neuron compiler to compile each subgraph
to fit in the specified number of NeuronCores. This number can be less than the total available NeuronCores on an Inf1
instance. See Neuron compiler CLI Reference Guide (neuron-cc) for more information about compiler options.

Arguments

• func: The keras.Model or function to be traced.

• example_inputs: A tf.Tensor or a tuple/list/dict of tf.Tensor objects for tracing the function. When
example_inputs is a tf.Tensor or a list of tf.Tensor objects, we expect func to have calling sig-
nature func(example_inputs). Otherwise, the expectation is that inference on func is done by call-
ing func(*example_inputs) when example_inputs is a tuple, or func(**example_inputs) when
example_inputs is a dict. The case where func accepts mixed positional and keyword arguments is cur-
rently unsupported.

• subgraph_builder_function: (Optional) A callable with signature

subgraph_builder_function(node : NodeDef) -> bool (NodeDef is defined in tensor-
flow/core/framework/node_def.proto)

that is used as a call-back function to determine which part of the tensorflow GraphDef given by tracing func
will be placed on Machine Learning Accelerators.

If subgraph_builder_function is not provided, then trace will automatically place operations on Machine
Learning Accelerators or on CPU to maximize the execution efficiency.

8.3. Inference on Inf1 (tensorflow-neuron) 435

AWS Neuron

If it is provided, and subgraph_builder_function(node) returns True, and placing node on Machine Learn-
ing Accelerators will not cause deadlocks during execution, then trace will place node on Machine Learning
Accelerators. If subgraph_builder_function(node) returns False, then trace will place node on CPU.

Special Flags

These are flags that get passed directly to the Neuron tracing API (rather than the Neuron Compiler). The flags are still
passed via the environment variable NEURON_CC_FLAGS.

• workdir: example usage - NEURON_CC_FLAGS='--workdir ./artifacts' will create a folder named arti-
facts in the current directory and save artifacts that can be used for debug.

• dynamic-batch-size: example usage - NEURON_CC_FLAGS='--dynamic-batch-size'A flag to allow Neuron
graphs to consume variable sized batches of data. Dynamic sizing is restricted to the 0th dimension of a tensor.

• extract-weights (Beta): example usage - NEURON_CC_FLAGS='--extract-weights inf1.2xlarge' will
reduce the compiled model’s protobuf size by taking the weights out of the protobuf. Useful for compil-
ing large models that would exceed the 2GB protobuf size limit. This feature is in beta. Model perfor-
mance is not guaranteed and the flag does not work in combination with --neuroncore-pipeline-cores,
--dynamic-batch-size, models with multiple NEFFs, and models that are 4GB or greater. Compiles models
for different neuron instances depending on the instance type passed. Supports all inf1 instance types.

Returns

• An AWS-Neuron-optimized keras.Model.

Example Usage

import tensorflow as tf
import tensorflow.neuron as tfn

input0 = tf.keras.layers.Input(3)
dense0 = tf.keras.layers.Dense(3)(input0)
model = tf.keras.Model(inputs=[input0], outputs=[dense0])
example_inputs = tf.random.uniform([1, 3])
model_neuron = tfn.trace(model, example_inputs) # trace
check to see how much of the model was compiled successfully
print(model_neuron.on_neuron_ratio)

model_dir = './model_neuron'
model_neuron.save(model_dir)
model_neuron_reloaded = tf.keras.models.load_model(model_dir)

436 Chapter 8. TensorFlow Neuron

AWS Neuron

Example Usage with Manual Device Placement Using subgraph_builder_function

import tensorflow as tf
import tensorflow.neuron as tfn

input0 = tf.keras.layers.Input(3)
dense0 = tf.keras.layers.Dense(3)(input0)
reshape0 = tf.keras.layers.Reshape([1, 3])(dense0)
output0 = tf.keras.layers.Dense(2)(reshape0)
model = tf.keras.Model(inputs=[input0], outputs=[output0])
example_inputs = tf.random.uniform([1, 3])

def subgraph_builder_function(node):
return node.op == 'MatMul'

model_neuron = tfn.trace(
model, example_inputs,
subgraph_builder_function=subgraph_builder_function,

)

Important: Although the old API tensorflow.neuron.saved_model.compile is still available under tensorflow-
neuron 2.x, it supports only the limited capabilities of tensorflow.neuron.trace and will be deprecated in future
releases.

This document is relevant for: Inf1

This document is relevant for: Inf1

TensorFlow 2.x (tensorflow-neuron) analyze_model API

Method

tensorflow.neuron.analyze_model

8.3. Inference on Inf1 (tensorflow-neuron) 437

AWS Neuron

Description

Analyzes a keras.Model or a Python callable that can be decorated by tf.function for it’s compatibility with
Neuron. It displays supported vs. unsupported operators in the model as well as percentages and counts of each
operator and returns a dictionary with operator statistics.

Arguments

• func: The keras.Model or function to be analyzed.

• example_inputs: A tf.Tensor or a tuple/list/dict of tf.Tensor objects for tracing the function. When
example_inputs is a tf.Tensor or a list of tf.Tensor objects, we expect func to have calling sig-
nature func(example_inputs). Otherwise, the expectation is that inference on func is done by call-
ing func(*example_inputs) when example_inputs is a tuple, or func(**example_inputs) when
example_inputs is a dict. The case where func accepts mixed positional and keyword arguments is cur-
rently unsupported.

Returns

• A results dict with these keys: ``’percent_supported’, ‘supported_count’,

‘total_count’, ‘supported_operators’, ‘unsupported_operators’, ‘operators’, ‘operator_count’``.

Example Usage

import tensorflow as tf
import tensorflow.neuron as tfn

input0 = tf.keras.layers.Input(3)
dense0 = tf.keras.layers.Dense(3)(input0)
model = tf.keras.Model(inputs=[input0], outputs=[dense0])
example_inputs = tf.random.uniform([1, 3])
results = tfn.analyze_model(model, example_inputs)
print(results)

expected output
'''
BiasAdd

MatMul
100.00% of all operations (2 of 2) are supported
{'percent_supported': 100.0, 'supported_count': 2, 'total_count': 2,
'supported_operators': {'BiasAdd', 'MatMul'}, 'unsupported_operators': [],
'operators': ['BiasAdd', 'MatMul'], 'operator_count': {'MatMul': 1, 'BiasAdd': 1}}
'''

This document is relevant for: Inf1

This document is relevant for: Inf1

438 Chapter 8. TensorFlow Neuron

AWS Neuron

TensorFlow 1.x (tensorflow-neuron) Compilation API

The Neuron compilation API for TensorFlow 1.x enables compilation of saved model to an Inferentia target.

Method

tensorflow.neuron.saved_model.compile

Description

Within the graph or subgraph, the compile method selects and send Neuron-supported operations to Neuron-Compiler
for compilation and saves the compiled artifacts in the graph. Uncompilable operations are kept as original operations
for framework execution.

The compiled graph can be exported to saved model and served using TensorFlow Serving. Please see tensorflow-
serving for more information about exporting to saved model and serving using TensorFlow Serving.

Options can be passed to Neuron compiler via the compile function. For example, the
“--neuroncore-pipeline-cores” option directs Neuron compiler to compile each subgraph to fit in the
specified number of NeuronCores. This number can be less than the total available NeuronCores on an Inf1 instance.
See Neuron compiler CLI Reference Guide (neuron-cc) for more information about compiler options.

Arguments

• model_dir: The path of the original SavedModel.

• new_model_dir: The path to which the Neuron-optimized SavedModel will be stored.

• batch_size: (Optional) Positive integer representing batch size used in inference. The default value is 1.

• model_shape_feed_dict: (Optional) Dictionary {str: list} used for inferring tensor shapes. Keys should match
model input names. Values are lists of positive integers representing model input tensor shapes.

• model_feed_dict: (Optional) Dictionary {str: numpy.array} used for inference. Useful for inferring tensor
shapes. Keys should match model input names. Values are numpy arrays that can be fed as inputs to the
SavedModel.

• tags: (Optional) Iterable of strings to identify the required MetaGraphDef. These should correspond to the tags
used when saving the variables using the SavedModel save() API. Default is to use the first tag_set available
in the SavedModel.

• signature_def_key: (Optional) String specifying the signature_def to use. Default is to use ‘serving_default’
or the first signature_def corresponding to tags.

• minimum_segment_size: (Optional) Integer indicating the minimum number of operations in an NeuronOp.

• no_fuse_ops: (Optional) None or iterable of strings (unordered) representing names of operations that are
forcibly placed on CPU.

• compiler_args: (Optional) List of strings representing neuron-cc compiler arguments. Note that
these arguments apply to all subgraphs generated by whitelist partitioning. For example, use
compiler_args=['--neuroncore-pipeline-cores', '4'] to set number of NeuronCores per subgraph
to 4. See Neuron compiler CLI Reference Guide (neuron-cc) for more information about compiler options.

• compiler_workdir: (Optional) String representing work directory of the neuron-cc compiler.

8.3. Inference on Inf1 (tensorflow-neuron) 439

AWS Neuron

Returns

• Dictionary with operator counts before/after optimization.

• Operator count statistics are displayed to show original count, post-optimization count, and the number placed
on Neuron runtime. For example:

INFO:tensorflow:Number of operations in TensorFlow session: 3978
INFO:tensorflow:Number of operations after tf.neuron optimizations: 555
INFO:tensorflow:Number of operations placed on Neuron runtime: 554

Example Usage

import shutil
import tensorflow.neuron as tfn
saved_model_path = "<saved model path>"
compiled_saved_model_path = "<compiled saved model path>"
shutil.rmtree(compiled_saved_model_path, ignore_errors=True)
tfn.saved_model.compile(saved_model_path, compiled_saved_model_path)

This document is relevant for: Inf1

This document is relevant for: Inf1

TensorFlow Neuron (tensorflow-neuron) Auto Multicore Replication (Beta)

The Neuron auto multicore replication Python API enables modifying TensorFlow 2.x traced models so that they can
be automatically replicated across multiple cores. For Tensorflow-Serving models and TensorFlow 1.x models, see
TensorFlow Neuron TF2.x (tensorflow-neuronx TF2.x) Auto Multicore Replication CLI (Beta)

Table of contents

• TensorFlow Neuron TF 2.x (tensorflow-neuron TF2.x) Auto Multicore Replication Python API (Beta)

• TensorFlow Neuron TF1.x/TF2.x (tensorflow-neuron TF1.x/TF2.x) Auto Multicore Replication CLI
(Beta)

TensorFlow Neuron TF 2.x (tensorflow-neuron TF2.x) Auto Multicore Replication Python API (Beta)

Method

tensorflow.neuron.auto_multicore

440 Chapter 8. TensorFlow Neuron

AWS Neuron

Description

Converts an existing AWS-Neuron-optimized keras.Model and returns an auto-replication tagged AWS-Multicore-
Neuron-optimized keras.Model that can execute on AWS Machine Learning Accelerators. Like the traced model, the
returned keras.Model will support inference only. Attributes or variables held by the original function or keras.
Model will be dropped.

The auto model replication feature in TensorFlow-Neuron enables you to create a model once and the model parallel
replication would happen automatically. The desired number of cores can be less than the total available NeuronCores
on an Inf1 instance but not less than 1. This reduces framework memory usage as you are not loading the same model
multiple times manually. Calls to the returned model will execute the call on each core in a round-robin fashion.

The returned keras.Model can be exported as SavedModel and served using TensorFlow Serving. Please see
tensorflow-serving for more information about exporting to saved model and serving using TensorFlow Serving.

Note that the automatic replication will only work on models compiled with pipeline size 1: via
--neuroncore-pipeline-cores=1. If auto replication is not enabled, the model will default to replicate on
up to 4 cores.

See Neuron compiler CLI Reference Guide (neuron-cc) for more information about compiler options.

Arguments

• func: The keras.Model or function to be traced.

• example_inputs: A tf.Tensor or a tuple/list/dict of tf.Tensor objects for tracing the function. When
example_inputs is a tf.Tensor or a list of tf.Tensor objects, we expect func to have calling sig-
nature func(example_inputs). Otherwise, the expectation is that inference on func is done by call-
ing func(*example_inputs) when example_inputs is a tuple, or func(**example_inputs) when
example_inputs is a dict. The case where func accepts mixed positional and keyword arguments is cur-
rently unsupported.

• num_cores: The desired number of cores where the model will be automatically replicated across

Returns

• An AWS-Multicore-Neuron-optimized keras.Model.

Example Python API Usage for TF2.x traced models:

input0 = tf.keras.layers.Input(3)
dense0 = tf.keras.layers.Dense(3)(input0)
inputs = [input0]
outputs = [dense0]
model = tf.keras.Model(inputs=inputs, outputs=outputs)
input0_tensor = tf.random.uniform([1, 3])
model_neuron = tfn.trace(model, input0_tensor)

num_cores = 4
multicore_model = tfn.auto_multicore(model_neuron, input0_tensor, num_cores=num_cores)
multicore_model(input0_tensor)

8.3. Inference on Inf1 (tensorflow-neuron) 441

AWS Neuron

Example Python API Usage for TF2.x saved models:

from tensorflow.python import saved_model

input0_tensor = tf.random.uniform([1, 3])
num_cores = 4
reload_model = saved_model.load(model_dir)
multicore_model = tfn.auto_multicore(reload_model, input0_tensor, num_cores=num_cores)

TensorFlow Neuron TF1.x/TF2.x (tensorflow-neuron TF1.x/TF2.x) Auto Multicore Replication CLI
(Beta)

The Neuron auto multicore replication CLI enables modifying TensorFlow 1.x and Tensorflow 2.x traced saved models
so that they can be automatically replicated across multiple cores. By performing this call on Tensorflow Saved Models,
we can support both Tensorflow-Serving and Tensorflow 1.x without significant modifications to the code. Note that
the python API does not support Tensorflow 1.x.

Method

tf-neuron-auto-multicore MODEL_DIR --num_cores NUM_CORES --new_model_dir NEW_MODEL_DIR

Arguments

• MODEL_DIR: The directory of a saved AWS-Neuron-optimized keras.Model.

• NUM_CORES: The desired number of cores where the model will be automatically replicated across

• NEW_MODEL_DIR: The directory of where the AWS-Multicore-Neuron-optimized keras.Model will be
saved

Example CLI Usage for TF 1.x and Tensorflow-Serving saved models:

tf-neuron-auto-multicore ./resnet --num_cores 8 --new_model_dir ./modified_resnet

This document is relevant for: Inf1

• TensorFlow 2.x (tensorflow-neuron) Tracing API

• TensorFlow 2.x (tensorflow-neuron) analyze_model API

• TensorFlow 1.x (tensorflow-neuron) Compilation API

• TensorFlow Neuron (tensorflow-neuron) Auto Multicore Replication (Beta)

This document is relevant for: Inf1

This document is relevant for: Inf1

442 Chapter 8. TensorFlow Neuron

AWS Neuron

8.3.4 Misc (tensorflow-neuron)

This document is relevant for: Inf1

TensorFlow Neuron (tensorflow-neuron (TF1.x)) Release Notes

Table of contents

• Known Issues and Limitations - updated 08/12/2021

• tensorflow-neuron 1.x release [2.10.1.0]

• tensorflow-neuron 1.x release [2.9.0.0]

• tensorflow-neuron 1.x release [2.8.9.0]

• tensorflow-neuron 1.x release [2.8.1.0]

• tensorflow-neuron 1.x release [2.7.3.0]

• tensorflow-neuron 1.x release [2.6.5.0]

• tensorflow-neuron 1.x release [2.4.0.0]

• tensorflow-neuron 1.x release [2.3.0.0]

• tensorflow-neuron 1.x release [2.1.14.0]

• tensorflow-neuron 1.x release [2.1.14.0]

• tensorflow-neuron 1.x release [2.1.13.0]

• tensorflow-neuron 1.x release [2.1.6.0]

• tensorflow-neuron 1.x release [2.0.4.0]

• tensorflow-neuron 1.x release [2.0.3.0]

• [1.15.5.1.5.1.0]

• [1.15.5.1.4.0.0]

• [1.15.5.1.3.3.0]

• [1.15.5.1.2.9.0]

• [1.15.5.1.2.8.0]

• [1.15.5.1.2.2.0]

• [1.15.4.1.1.3.0]

• [1.15.4.1.0.2168.0]

• [1.15.3.1.0.2043.0]

• [1.15.3.1.0.1965.0]

• [1.15.3.1.0.1953.0]

• [1.15.3.1.0.1891.0]

• [1.15.2.1.0.1796.0]

• [1.15.2.1.0.1572.0]

8.3. Inference on Inf1 (tensorflow-neuron) 443

AWS Neuron

• [1.15.0.1.0.1333.0]

• [1.15.0.1.0.1240.0]

• [1.15.0.1.0.997.0]

• [1.15.0.1.0.803.0]

• [1.15.0.1.0.749.0]

• [1.15.0.1.0.663.0]

This document lists the release notes for the tensorflow-neuron 1.x package.

Known Issues and Limitations - updated 08/12/2021

• Support on serialized TensorFlow 2.x custom operators is currently limited. Serializing some operators registered
from TensorFlow-text through TensorFlow Hub is going to cause failure in tensorflow.neuron.trace.

• Issue: When compiling large models, user might run out of memory and encounter this fatal error.

terminate called after throwing an instance of 'std::bad_alloc'

Solution: run compilation on a c5.4xlarge instance type or larger.

• Issue: When upgrading tensorflow-neuron with pip install tensorflow-neuron --upgrade, the fol-
lowing error message may appear, which is caused by pip version being too low.

Could not find a version that satisfies the requirement TensorFlow<1.16.0,>=1.15.0 (from␣
→˓tensorflow-neuron)

Solution: run a pip install pip --upgrade before upgrading tensorflow-neuron.

• Issue: Some Keras routines throws the following error:

AttributeError: 'str' object has no attribute 'decode'.

Solution: Please downgrade h5py by pip install ‘h5py<3’. This is caused by https://github.com/TensorFlow/
TensorFlow/issues/44467.

tensorflow-neuron 1.x release [2.10.1.0]

Date: 8/28/2023

• Minor updates

tensorflow-neuron 1.x release [2.9.0.0]

Date: 7/19/2023

• Minor updates

444 Chapter 8. TensorFlow Neuron

https://tfhub.dev/
https://github.com/TensorFlow/TensorFlow/issues/44467
https://github.com/TensorFlow/TensorFlow/issues/44467

AWS Neuron

tensorflow-neuron 1.x release [2.8.9.0]

Date: 6/14/2023

• Minor updates

tensorflow-neuron 1.x release [2.8.1.0]

Date: 5/1/2023

• Minor updates

tensorflow-neuron 1.x release [2.7.3.0]

Date: 3/28/2023

• Minor updates

tensorflow-neuron 1.x release [2.6.5.0]

Date: 2/24/2023

• Added support for TensorFlow versions 2.9 and 2.10

• End-of-support for TensorFlow versions 2.5 and 2.6

tensorflow-neuron 1.x release [2.4.0.0]

Date: 11/23/2022

• Introduce tf-neuron-auto-multicore tool to enable automatic data parallel on multiple NeuronCores.

• Deprecated the NEURONCORE_GROUP_SIZES environment variable.

• Minor bug fixes.

tensorflow-neuron 1.x release [2.3.0.0]

Date: 04/29/2022

• Minor bug fixes.

tensorflow-neuron 1.x release [2.1.14.0]

Date: 03/25/2022

• Minor bug fixes.

8.3. Inference on Inf1 (tensorflow-neuron) 445

AWS Neuron

tensorflow-neuron 1.x release [2.1.14.0]

Date: 02/17/2022

• Minor bug fixes.

tensorflow-neuron 1.x release [2.1.13.0]

Date: 02/16/2022

• Fixed a bug that caused a memory leak. The memory leak was approximately 128b for each inference and exists
in all versions of TensorFlow Neuron versions part of Neuron 1.16.0 to Neuron 1.17.0 releases. see pre-release-
content for exact versions included in each release.

tensorflow-neuron 1.x release [2.1.6.0]

Date: 01/20/2022

• Enhanced auto data parallel (e.g. when using NEURONCORE_GROUP_SIZES=X,Y,Z,W) to support edge
cases.

• Added new operators support. see TensorFlow Neuron (tensorflow-neuron (TF1.x)) Supported operators.

tensorflow-neuron 1.x release [2.0.4.0]

Date: 11/05/2021

• Updated Neuron Runtime (which is integrated within this package) to libnrt 2.2.18.0 to fix a container issue
that was preventing the use of containers when /dev/neuron0 was not present. See details here neuron-runtime-
release-notes.

tensorflow-neuron 1.x release [2.0.3.0]

Date: 10/27/2021

New in this release

• TensorFlow 1.x (tensorflow-neuron) now support Neuron Runtime 2.x (libnrt.so shared library) only.

Important:
– You must update to the latest Neuron Driver (aws-neuron-dkms version 2.1 or newer) for proper

functionality of the new runtime library.

– Read Introducing Neuron Runtime 2.x (libnrt.so) application note that describes why are we mak-
ing this change and how this change will affect the Neuron SDK in detail.

– Read Migrate your application to Neuron Runtime 2.x (libnrt.so) for detailed information of how
to migrate your application.

446 Chapter 8. TensorFlow Neuron

AWS Neuron

Resolved Issues

• Fix neuron-cc argument handling bug when nothing can be compiled.

• Fixing the support of cast operators applied after constants, by Introducing support of constant-folding pass
before Neuron auto-mixed-precision.

[1.15.5.1.5.1.0]

Date: 07/02/2021

New in this release

• Bug fixes regarding scalar inputs/outputs.

• Minor performance improvements when dynamic batch size is turned on or when model is small.

[1.15.5.1.4.0.0]

Date: 05/28/2021

New in this release

• Reduce the amount of input/output data movement during inference.

• Improve parallelism for dynamic batch size inference by adopting a new sharding mechanism.

• Reduce the amount of host memory usage during inference.

• tfn.saved_model.compile now generates correct code when operator Split is used as output.

• tfn.saved_model.compile now properly reads input tensor shape information from SignatureDef proto.

• tfn.saved_model.compile now terminates properly when neuron-cc compiler argument is passed but there is no
successful compilation.

• Fix bug on some wrong internal tensor names when neuron-cc compiler crashes.

• Other minor bug fixes.

[1.15.5.1.3.3.0]

Date: 05/01/2021

8.3. Inference on Inf1 (tensorflow-neuron) 447

AWS Neuron

New in this release

1. Minor enhancements.

[1.15.5.1.2.9.0]

Date: 03/04/2021

New in this release

1. Minor enhancements.

[1.15.5.1.2.8.0]

Date: 02/24/2021

New in this release

1. Fix for CVE-2021-3177.

[1.15.5.1.2.2.0]

Date: 01/30/2021

New in this release

1. Bug fixes and internal refactor.

2. Bump TensorFlow base package version to 1.15.5.

3. Introduced a new argument convert_constants_to_variables to the compilation API tfn.saved_model.
compile. Setting it to True can address the issue of large constants consuming too much memory in the Ten-
sorFlow runtime.

[1.15.4.1.1.3.0]

Date: 12/23/2020

448 Chapter 8. TensorFlow Neuron

AWS Neuron

New in this release

1. Improved logging during tfn.saved_model.compile to display neuron-cc compilation progress.

2. Small performance improvement in some edge cases by optimizing the NeuronCore-executable assignment
mechanism.

[1.15.4.1.0.2168.0]

Date: 11/17/2020

New in this release

1. tensorflow-neuron is now a plugin package that can be used together with TensorFlow~=1.15.0 built with
GLIBCXX_USE_CXX11_ABI=0.

2. Improved logging during tfn.saved_model.compile to display neuron-cc logging file path, which is useful
for tracking neuron-cc compilation progress.

3. Small performance improvement by utilizing shared memory more efficiently.

[1.15.3.1.0.2043.0]

Date: 09/22/2020

New in this release

1. tensorflow-neuron now automatically enables data parallel mode on four cores in one Inferentia. In
TensorFlow-model-server-neuron, most models can now fully utilize four cores automatically. In Python
TensorFlow, running threaded inference using >=4 Python threads in the same TensorFlow Session lead to full
utilization of four cores.

2. tensorflow-neuron now tries to enable dynamic batch size automatically for a limited number of models, such as
ResNet50.

3. Improved logging during tfn.saved_model.compile to display input/output information about subgraphs that
are going to be compiled by neuron-cc.

[1.15.3.1.0.1965.0]

Date: 08/08/2020

8.3. Inference on Inf1 (tensorflow-neuron) 449

AWS Neuron

New in this release

Various minor improvements.

[1.15.3.1.0.1953.0]

Date: 08/05/2020

New in this release

Various minor improvements.

[1.15.3.1.0.1891.0]

Date: 07/16/2020

New in this release

This version contains a few bug fixes and user experience improvements.

Dependency change

1. Bump TensorFlow base package version number to 1.15.3

2. Add TensorFlow >= 1.15.0, < 1.16.0 as an installation dependency so that packages depending on Ten-
sorFlow can be installed together with tensorflow-neuron without error

New Features

1. tensorflow-neuron now displays a summary of model performance when profiling is enable by setting envi-
ronment variable NEURON_PROFILE

Resolved Issues

1. Environment variable NEURON_PROFILE can now be set to a non-existing path which will be automatically cre-
ated

2. Fixed a bug in tfn.saved_model.compile that causes compilation failure when dynamic_batch_size=True
is specified on a SavedModel with unknown rank inputs.

450 Chapter 8. TensorFlow Neuron

AWS Neuron

[1.15.2.1.0.1796.0]

Date 6/11/2020

New in this release

This version contains a few bug fixes.

Major New Features

Resolved Issues

1. Fixed a bug related with device placement. Now models with device information hardcoded to GPU can be
successfully compiled with tfn.saved_model.compile

2. Fixed a bug in tfn.saved_model.compile that causes models containing Reshape operators not functioning
correctly when it is compiled with dynamic_batch_size=True

3. Fixed a bug in tfn.saved_model.compile that causes models containing Table related operators to initialize
incorrectly after compilation.

Known Issues and limitations

[1.15.2.1.0.1572.0]

Date: 5/11/2020

New in this release

This version contains some bug fixes and new features.

Major New Features

• tensorflow-neuron is now built on TensorFlow 1.15.2 instead of TensorFlow 1.15.0

Resolved Issues

• Fixed a bug that caused Neuron runtime resources to not all be released when a tensorflow-neuron process ter-
minated with in-flight inferences

• Inference timeout value set at compile time is now correctly recognized at runtime

8.3. Inference on Inf1 (tensorflow-neuron) 451

AWS Neuron

Known Issues and limitations

[1.15.0.1.0.1333.0]

Date: 3/26/2020

New in this release

Major New Features

• Improved performance between TensorFlow to Neuron runtime.

Resolved Issues

• Fixed a bug in Neuron runtime adaptor operator’s shape function when dynamic batch size inference is enabled

• Framework method (tensorflow.neuron.saved-model.compile) improved handling of compiler timeout termina-
tion by letting it clean up before exiting.

Known Issues and limitations

[1.15.0.1.0.1240.0]

Date: 2/27/2020

New in this release

Major New Features

• Enabled runtime memory optimizations by default to improve inference performance, specifically in cases with
large input/output tensors

• tfn.saved_model.compile now displays warning message instead of “successfully compiled” if less than 30% of
operators are mapped to Inferentia

• Improve error messages. Runtime failure error messages are now more descriptive and also provide instructions
to restart neuron-rtd when necessary.

Resolved Issues

Known Issues and Limitations

• Issue: When compiling a large model, may encounter.

terminate called after throwing an instance of 'std::bad_alloc'

Solution: run compilation on c5.4xlarge instance type or larger.

452 Chapter 8. TensorFlow Neuron

AWS Neuron

Other Notes

[1.15.0.1.0.997.0]

Date: 1/27/2020

New in this release

Major New Features

• Added support for NCHW pooling operators in tfn.saved_model.compile.

Resolved Issues

• Fixed GRPC transient status error issue.

• Fixed a graph partitioner issue with control inputs.

Known Issues and Limitations

• Issue: When compiling a large model, may encounter.

terminate called after throwing an instance of 'std::bad_alloc'

Solution: run compilation on c5.4xlarge instance type or larger.

Other Notes

[1.15.0.1.0.803.0]

Date: 12/20/2019

New in this release

Major New Features

Resolved Issues

• Improved handling of tf.neuron.saved_model.compile arguments

8.3. Inference on Inf1 (tensorflow-neuron) 453

AWS Neuron

Known Issues and Limitations

Other Notes

[1.15.0.1.0.749.0]

Date: 12/1/2019

New in this release

Major New Features

Resolved Issues

• Fix race condition between model load and model unload when the process is killed

• Remove unnecessary GRPC calls when the process is killed

Known Issues and Limitations

• When compiling a large model, may encounter “terminate called after throwing an instance of ‘std::bad_alloc’”.
Solution: run compilation on c5.4xlarge instance type or larger.

• The pip package wrapt may have a conflicting version in some installations. This is seen when this error occurs:

ERROR: Cannot uninstall 'wrapt'. It is a distutils installed project and thus we cannot␣
→˓accurately determine which files belong to it which would lead to only a partial␣
→˓uninstall.

To solve this, you can update wrapt to the newer version:

python3 -m pip install wrapt --ignore-installed
python3 -m pip install tensorflow-neuron

Within a Conda environment:

conda update wrapt
conda update tensorflow-neuron

Other Notes

[1.15.0.1.0.663.0]

Date: 11/25/2019

454 Chapter 8. TensorFlow Neuron

AWS Neuron

New in this release

This version is available only in released DLAMI v26.0 and is based on TensorFlow version 1.15.0. Please update to
latest version.

Major New Features

Resolved Issues

Known Issues and Limits

Models Supported

The following models have successfully run on neuron-inferentia systems

1. BERT_LARGE and BERT_BASE

2. Transformer

3. Resnet50 V1/V2

4. Inception-V2/V3/V4

Other Notes

• Python versions supported:

– 3.5, 3.6, 3.7

• Linux distribution supported:

– Ubuntu 18, Amazon Linux 2

This document is relevant for: Inf1

This document is relevant for: Inf1

TensorFlow Neuron (tensorflow-neuron (TF2.x)) Release Notes

Table of contents

• Known Issues and Limitations - updated 08/12/2021

• tensorflow-neuron 2.x release [2.10.8.0]

• tensorflow-neuron 2.x release [2.10.2.0]

• tensorflow-neuron 2.x release [2.10.1.0]

• tensorflow-neuron 2.x release [2.9.3.0]

• tensorflow-neuron 2.x release [2.8.9.0]

• tensorflow-neuron 2.x release [2.8.1.0]

• tensorflow-neuron 2.x release [2.7.4.0]

8.3. Inference on Inf1 (tensorflow-neuron) 455

AWS Neuron

• tensorflow-neuron 2.x release [2.7.3.0]

• tensorflow-neuron 2.x release [2.6.5.0]

• tensorflow-neuron 2.x release [2.6.0.0]

• tensorflow-neuron 2.x release [2.4.0.0]

• tensorflow-neuron 2.x release [2.3.0.0]

• tensorflow-neuron 2.x release [2.2.0.0]

• tensorflow-neuron 2.x release [2.1.14.0]

• tensorflow-neuron 2.x release [2.1.13.0]

• tensorflow-neuron 2.x release [2.1.6.0]

• tensorflow-neuron 2.x release [2.0.4.0]

• tensorflow-neuron 2.x release [2.0.3.0]

• tensorflow-neuron 2.x release [1.6.8.0]

This document lists the release notes for the tensorflow-neuron 2.x packages.

Known Issues and Limitations - updated 08/12/2021

• Support on serialized TensorFlow 2.x custom operators is currently limited. Serializing some operators registered
from tensorflow-text through TensorFlow Hub is going to cause failure in tensorflow.neuron.trace.

• Memory leak exists on latest releases of TensorFlow Neuron for versions 2.1, 2.2, 2.3, and 2.4.

• Issue: When compiling large models, user might run out of memory and encounter this fatal error.

terminate called after throwing an instance of 'std::bad_alloc'

Solution: run compilation on a c5.4xlarge instance type or larger.

• Issue: When upgrading tensorflow-neuron with pip install tensorflow-neuron --upgrade, the fol-
lowing error message may appear, which is caused by pip version being too low.

Could not find a version that satisfies the requirement tensorflow<1.16.0,>=1.15.0 (from␣
→˓tensorflow-neuron)

Solution: run a pip install pip --upgrade before upgrading tensorflow-neuron.

• Issue: Some Keras routines throws the following error:

AttributeError: 'str' object has no attribute 'decode'.

Solution: Please downgrade h5py by pip install ‘h5py<3’. This is caused by https://github.com/TensorFlow/
TensorFlow/issues/44467.

456 Chapter 8. TensorFlow Neuron

https://tfhub.dev/
https://github.com/TensorFlow/TensorFlow/issues/44467
https://github.com/TensorFlow/TensorFlow/issues/44467

AWS Neuron

tensorflow-neuron 2.x release [2.10.8.0]

Date: 12/21/2023

• Minor updates.

tensorflow-neuron 2.x release [2.10.2.0]

Date: 10/15/2023

• Minor updates.

tensorflow-neuron 2.x release [2.10.1.0]

Date: 09/15/2023

• Minor updates.

tensorflow-neuron 2.x release [2.9.3.0]

Date: 7/19/2023

• Minor updates.

tensorflow-neuron 2.x release [2.8.9.0]

Date: 6/14/2023

• Added Python 3.10 support.

tensorflow-neuron 2.x release [2.8.1.0]

Date: 05/01/2023

• Added support for tracing models larger than 2 GB through the environment variable
NEURON_CC_FLAGS='--extract-weights INSTANCE_TYPE' for all inf1 instance types.

• Neuron release 2.10 release will be the last release that will include support for tensorflow-neuron version 2.7.
Future Neuron releases will not include tensorflow-neuron version 2.7.

tensorflow-neuron 2.x release [2.7.4.0]

Date: 04/19/2023

• Minor updates.

8.3. Inference on Inf1 (tensorflow-neuron) 457

AWS Neuron

tensorflow-neuron 2.x release [2.7.3.0]

Date: 03/28/2023

• Introduce the tfn.analyze_model function that displays information about the supported and unsupported
operators of a traceable model.

• Introduce the on_neuron_ratio attribute of AWS Optimized Neuron Models returned by tfn.trace, which
is the percentage of ops on neuron after compilation.

tensorflow-neuron 2.x release [2.6.5.0]

Date: 02/24/2023

• Minor updates.

tensorflow-neuron 2.x release [2.6.0.0]

Date: 2/24/2023

• Minor bug fixes.

tensorflow-neuron 2.x release [2.4.0.0]

Date: 11/22/2022

• Beta support for tracing models larger than 2 GB through environment variable
NEURON_CC_FLAGS='--extract-weights'.

• Introduce tfn.auto_multicore Python API to enable automatic data parallel on multiple NeuronCores.

• Introduce tf-neuron-auto-multicore tool to enable automatic data parallel on multiple NeuronCores.

• Deprecated the NEURONCORE_GROUP_SIZES environment variable.

• Minor bug fixes.

tensorflow-neuron 2.x release [2.3.0.0]

Date: 04/29/2022

• Added support for Tensorflow 2.8.0.

• Added support for Slice operator

• The graph partitioner now prefers to place less compute intensive operators on CPU if the model already contains
a large amount of compute intensive operators.

• Fixed Github issue #408, the fix solves data type handling bug in tfn.trace when the model contains Conv2D
operators.

458 Chapter 8. TensorFlow Neuron

https://github.com/aws/aws-neuron-sdk/issues/408

AWS Neuron

tensorflow-neuron 2.x release [2.2.0.0]

Date: 03/25/2022

• Updated TensorFlow 2.5 to version 2.5.3.

• Added support for TensorFlow 2.6 and 2.7.

• Added a warning message when calling tfn.saved_model.compile API. In tensorflow-neuron 2.x you should
call tensorflow.neuron.trace. tfn.saved_model.compile API supports only partial functionality of tensor-
flow.neuron.trace and will be deprecated in the future.

tensorflow-neuron 2.x release [2.1.14.0]

Date: 02/17/2022

• Fixed a bug in TensorFlow Neuron versions 2.1, 2.2. 2.3 and 2.4. The fixed bug was causing a memory leak of
128 bytes for each inference.

• Improved warning message when calling deprecated compilation API under tensorflow-neuron 2.x.

tensorflow-neuron 2.x release [2.1.13.0]

Date: 02/16/2022

• Fixed a bug that caused a memory leak. The memory leak was approximately 128b for each inference and exists
in all versions of TensorFlow Neuron versions part of Neuron 1.16.0 to Neuron 1.17.0 releases. see pre-release-
content for exact versions included in each release. This release only addresses the leak in TensorFlow Neuron
2.5. Future release of TensorFlow Neuron will fix the leak in other versions as well (2.1, 2.2, 2.3, 2.4).

tensorflow-neuron 2.x release [2.1.6.0]

Date: 01/20/2022

• Updated TensorFlow 2.5 to version 2.5.2.

• Enhanced auto data parallel (e.g. when using NEURONCORE_GROUP_SIZES=X,Y,Z,W) to support edge
cases.

• Fixed a bug that may cause tensorflow-neuron to generate in some cases scalar gather instruction with incorrect
arguments.

tensorflow-neuron 2.x release [2.0.4.0]

Date: 11/05/2021

• Updated Neuron Runtime (which is integrated within this package) to libnrt 2.2.18.0 to fix a container issue
that was preventing the use of containers when /dev/neuron0 was not present. See details here neuron-runtime-
release-notes.

8.3. Inference on Inf1 (tensorflow-neuron) 459

AWS Neuron

tensorflow-neuron 2.x release [2.0.3.0]

Date: 10/27/2021

New in this release

• TensorFlow 2.x (tensorflow-neuron) now support Neuron Runtime 2.x (libnrt.so shared library) only.

Important:
– You must update to the latest Neuron Driver (aws-neuron-dkms version 2.1 or newer) for proper

functionality of the new runtime library.

– Read Introducing Neuron Runtime 2.x (libnrt.so) application note that describes why are we mak-
ing this change and how this change will affect the Neuron SDK in detail.

– Read Migrate your application to Neuron Runtime 2.x (libnrt.so) for detailed information of how
to migrate your application.

• Updated TensorFlow 2.3.x from TensorFlow 2.3.3 to TensorFlow 2.3.4.

• Updated TensorFlow 2.4.x from TensorFlow 2.4.2 to TensorFlow 2.4.3.

• Updated TensorFlow 2.5.x from TensorFlow 2.5.0 to TensorFlow 2.5.1.

Resolved Issues

• Fix bug that can cause illegal compiler optimizations

• Fix bug that can cause dynamic-shape operators be placed on Neuron

tensorflow-neuron 2.x release [1.6.8.0]

Date: 08/12/2021

New in this release

• First release of TensorFlow 2.x integration, Neuron support now TensorFlow versions 2.1.4, 2.2.3, 2.3.3, 2.4.2,
and 2.5.0.

• New public API tensorflow.neuron.trace: trace a TensorFlow 2.x keras.Model or a Python callable that can be
decorated by tf.function, and return an AWS-Neuron-optimized keras.Model that can execute on AWS Machine
Learning Accelerators.

Please note that TensorFlow 1.x SavedModel compilation API tensorflow.neuron.saved_model.compile is
not supported in tensorflow-neuron 2.x . It continues to function in tensorflow-neuron 1.15.x .

• Included versions:

– tensorflow-neuron-2.5.0.1.6.8.0

– tensorflow-neuron-2.4.2.1.6.8.0

– tensorflow-neuron-2.3.3.1.6.8.0

460 Chapter 8. TensorFlow Neuron

AWS Neuron

– tensorflow-neuron-2.2.3.1.6.8.0

– tensorflow-neuron-2.1.4.1.6.8.0

This document is relevant for: Inf1

This document is relevant for: Inf1

TensorFlow Neuron (tensorflow-neuron (TF2.x)) Accelerated (torch-neuron) Python APIs and
Graph Ops

This page lists TensorFlow 2.x Python APIs and graph operators that are accelerated by AWS Neuron. The lists are not
exhaustive. TensorFlow 2.x Python APIs or graph operators that are not listed here may still be accelerated if they are
composed of accelerated primitives, or they will be executed on CPU without significant acceleration. The TensorFlow
Neuron integration contains an automatic operator-device-placement mechanism that strives to maximize the execution
efficiency of your deep learning models on AWS Machine Learning ASIC instances.

Accelerated Python APIs

Module Accelerated Python API Comments
tf tf.abs

tf.add
tf.add_n
tf.broadcast_static_shape
tf.cast
tf.constant
tf.convert_to_tensor
tf.cumsum axis must be a compile-time con-

stant.
tf.einsum
tf.erf
tf.exp
tf.identity
tf.matmul Uses float16/bfloat16 matmul with

float32 accumulation.
tf.maximum
tf.minimum
tf.multiply
tf.negative
tf.range start, limit and delta argu-

ments must be compile-time con-
stants.

tf.realdiv
tf.reciprocal
tf.reduce_all axis must be a compile-time con-

stant.
tf.reduce_any axis must be a compile-time con-

stant.
tf.reduce_max axis must be a compile-time con-

stant.
continues on next page

8.3. Inference on Inf1 (tensorflow-neuron) 461

AWS Neuron

Table 1 – continued from previous page
Module Accelerated Python API Comments

tf.reduce_min axis must be a compile-time con-
stant.

tf.reduce_prod axis must be a compile-time con-
stant.

tf.reduce_sum axis must be a compile-time con-
stant.

tf.reshape shape argument must be a compile-
time constant.

tf.rsqrt
tf.scalar_mul
tf.shape
tf.shape_n
tf.sigmoid
tf.size
tf.slice size must be a compile-time con-

stant. In addition,
either begin must be a compile-
time constant or
size must be non-negative.

tf.sqrt
tf.square
tf.squared_difference
tf.squeeze
tf.stack
tf.stop_gradient
tf.strided_slice
tf.tanh
tf.tensordot
tf.to_bfloat16
tf.to_float
tf.truediv

tf.layers tf.layers.
batch_normalization
tf.layers.dense
tf.layers.flatten

tf.nn tf.nn.batch_normalization
tf.nn.bias_add
tf.nn.dropout Always treated as tf.identity

during inference.
tf.nn.fused_batch_norm
tf.nn.leaky_relu
tf.nn.relu
tf.nn.relu6
tf.nn.relu_layer
tf.nn.softmax

462 Chapter 8. TensorFlow Neuron

AWS Neuron

Accelerated graph operators

Add
AddN
AddV2
BatchMatMul
BatchMatMulV2
BiasAdd
Cast
Const
Cumsum
Einsum
Erf
Exp
ExpandDims
FusedBatchNorm
FusedBatchNormV2
FusedBatchNormV3
Greater
Identity
LeakyRelu
MatMul
Max
Maximum
Minimum
Mean
Mul
Neg
Pack
RealDiv
Relu
Relu6
Reshape
Rsqrt
Sigmoid
Softmax
Split
SplitV
Sqrt
Square
SquaredDifference
Squeeze
StridedSlice
Sub
Sum
Tanh
Transpose
Unpack

The lists share many commonalities with Available TensorFlow Ops. Portions of this page are modifications based on
work created and shared by Google and used according to terms described in the Creative Commons 4.0 Attribution
License.

This document is relevant for: Inf1

8.3. Inference on Inf1 (tensorflow-neuron) 463

https://cloud.google.com/tpu/docs/tensorflow-ops
https://developers.google.com/terms/site-policies
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

AWS Neuron

This document is relevant for: Inf1

TensorFlow Neuron (tensorflow-neuron (TF1.x)) Supported operators

To see a list of supported operators for TensorFlow 1.x, run the following command:

neuron-cc list-operators --framework TENSORFLOW

Neuron Compiler Release [1.9.1.0]

Date: 01/20/2022

Added

isNan
FusedBatchNormV3

Neuron Compiler Release [1.7.3.0]

Added

ArgMax
ArgMin

Neuron Compiler Release [1.6.13.0]

No changes

Neuron Compiler Release [1.5.5.0]

No changes

Neuron Compiler Release [1.4.0.0]

No changes

Neuron Compiler Release [1.3.0.0]

Added

Abs
Cos
DepthwiseConv2dNative
Erf
Rank
Sin
Size

464 Chapter 8. TensorFlow Neuron

AWS Neuron

Neuron Compiler Release [1.2.7.0]

No changes

Neuron Compiler Release [1.2.2.0]

Added

AdjustContrastv2
AdjustSaturation
BroadcastTo
Cholesky
Conv2DBackpropInput
Conv3D
CropAndResize
FloorDiv
HSVToRGB
InvertPermutation
L2Loss
Log1p
MatrixBandPart
MatrixDiag
MatrixSetDiag
MatrixTriangularSolve
MaxPool3D
MirrorPad
RGBToHSV
Range
SoftmaxCrossEntropyWithLogits
SquaredDifference
StopGradient
Unpack
UnsortedSegmentSum

Neuron Compiler Release [1.0.24045.0]

Added FloorDiv, Softplus, Unstack

Neuron Compiler Release [1.0.18001]

No changes

8.3. Inference on Inf1 (tensorflow-neuron) 465

AWS Neuron

Neuron Compiler Release [1.0.16764]

Added:

LogSoftmax
Neg
ResizeBilinear
ResizeNearestNeighbor

Neuron Compiler Release [1.0.15275]

Added

Neg

Removed

Log

(was inadvertently advertised as supported)

Neuron Compiler Release [1.0.12696]

No changes

Neuron Compiler Release [1.0.9410]

No changes

Neuron Compiler Release [1.0.7878]

No changes

Neuron Compiler Release [1.0.6801]

No changes

Neuron Compiler Release [1.0.5939]

No changes

466 Chapter 8. TensorFlow Neuron

AWS Neuron

Neuron Compiler Release [1.0.5301]

No changes

Neuron Compiler Release [1.0.4680.0]

Add
AddV2
All
AvgPool
BatchMatMul
BatchMatMulV2
BatchToSpaceND
BiasAdd
Cast
Ceil
Concat
ConcatV2
Const
Conv2D
Equal
Exp
ExpandDims
Fill
Floor
FusedBatchNorm
Greater
GreaterEqual
Identity
LRN
LeakyRelu
Less
LessEqual
Log
LogicalAnd
LogicalNot
LogicalOr
MatMul
Max
MaxPool
Maximum
Mean
Min
Minimum
Mul
NoOp
NotEqual
Pack
Pad
PadV2
Placeholder
Pow

(continues on next page)

8.3. Inference on Inf1 (tensorflow-neuron) 467

AWS Neuron

(continued from previous page)

Prod
RandomUniform
RealDiv
Reciprocal
Relu
Relu6
Reshape
ReverseV2
Round
Rsqrt
Select
Shape
Sigmoid
Sign
Slice
Softmax
SpaceToBatchND
Split
SplitV
Sqrt
Square
Squeeze
StridedSlice
Sub
Sum
Tanh
Tile
Transpose
ZerosLike

This document is relevant for: Inf1

• TensorFlow Neuron (tensorflow-neuron (TF1.x)) Release Notes

• TensorFlow Neuron (tensorflow-neuron (TF2.x)) Release Notes

• TensorFlow Neuron (tensorflow-neuron (TF2.x)) Accelerated (torch-neuron) Python APIs and Graph Ops

• TensorFlow Neuron (tensorflow-neuron (TF1.x)) Supported operators

This document is relevant for: Inf1

Setup (tensorflow-neuron)

Tutorials (tensorflow-neuron)

Computer Vision Tutorials

• Tensorflow 1.x - OpenPose tutorial [html] [notebook]

• Tensorflow 1.x - ResNet-50 tutorial [html] [notebook]

• Tensorflow 1.x - YOLOv4 tutorial [html] [notebook]

• Tensorflow 1.x - YOLOv3 tutorial [html] [notebook]

• Tensorflow 1.x - SSD300 tutorial [html]

468 Chapter 8. TensorFlow Neuron

https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/openpose_demo/openpose.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/tensorflow_resnet50/resnet50.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/yolo_v4_demo/evaluate.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/yolo_v3_demo/yolo_v3.ipynb

AWS Neuron

• Tensorflow 1.x - Keras ResNet-50 optimization tutorial [html] [notebook]

Natural Language Processing (NLP) Tutorials

• Tensorflow 1.x - Running TensorFlow BERT-Large with AWS Neuron [html]

• Tensorflow 2.x - HuggingFace Pipelines distilBERT with Tensorflow2 Neuron [html] [notebook]

Utilizing Neuron Capabilities Tutorials

• Tensorflow 1.x & 2.x - Using NEURON_RT_VISIBLE_CORES with TensorFlow Serving [html]

Note: To use Jupyter Notebook see:

• setup-jupyter-notebook-steps-troubleshooting

• running-jupyter-notebook-as-script

Additional Examples (tensorflow-neuron)

• AWS Neuron Samples GitHub Repository

API Reference Guide (tensorflow-neuron)

• TensorFlow 2.x (tensorflow-neuron) Tracing API

• TensorFlow 2.x (tensorflow-neuron) analyze_model API

• TensorFlow 1.x (tensorflow-neuron) Compilation API

• TensorFlow Neuron (tensorflow-neuron) Auto Multicore Replication (Beta)

Misc (tensorflow-neuron)

• TensorFlow Neuron (tensorflow-neuron (TF1.x)) Release Notes

• TensorFlow Neuron (tensorflow-neuron (TF2.x)) Release Notes

• TensorFlow Neuron (tensorflow-neuron (TF2.x)) Accelerated (torch-neuron) Python APIs and Graph Ops

• TensorFlow Neuron (tensorflow-neuron (TF1.x)) Supported operators

This document is relevant for: Inf1

Tensorflow NeuronX for Inference on Inf2 & Trn1 / Trn1n Tensorflow Neuron for Inference on Inf1
This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1

8.3. Inference on Inf1 (tensorflow-neuron) 469

https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/keras_resnet50/keras_resnet50.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/huggingface_bert/huggingface_bert.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/tensorflow-neuron/inference

AWS Neuron

470 Chapter 8. TensorFlow Neuron

CHAPTER

NINE

MXNET NEURON

MXNet Neuron unlocks high-performance and cost-effective deep learning acceleration on AWS Trainium-based and
Inferentia-based Amazon EC2 instances.

MXNet Neuron enables native MXNet models to be accelerated on Neuron devices, so you can use your existing
framework application and get started easily with minimal code changes.

This document is relevant for: Inf1

9.1 MXNet Neuron Setup

MxNet Neuron (mxnet-neuron) Setup for Inf1 Instances This document is relevant for: Inf1

This document is relevant for: Inf1

9.2 Inference (mxnet-neuron)

This document is relevant for: Inf1

9.2.1 Tutorials (mxnet-neuron)

This document is relevant for: Inf1

Computer Vision Tutorials (mxnet-neuron)

• ResNet-50 tutorial [html] [notebook]

• Model Serving tutorial [html]

• Getting started with Gluon tutorial [html] [notebook]

This document is relevant for: Inf1

This document is relevant for: Inf1

471

https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/mxnet/resnet50/resnet50.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/mxnet/mxnet-gluon-tutorial.ipynb

AWS Neuron

Natural Language Processing (NLP) Tutorials (mxnet-neuron)

• MXNet 1.8: Using data parallel mode tutorial [html] [notebook]

This document is relevant for: Inf1

This document is relevant for: Inf1

Utilizing Neuron Capabilities Tutorials (mxnet-neuron)

• NeuronCore Groups tutorial [html] [notebook]

This document is relevant for: Inf1

Computer Vision Tutorials

• ResNet-50 tutorial [html] [notebook]

• Model Serving tutorial [html]

• Getting started with Gluon tutorial [html] [notebook]

Natural Language Processing (NLP) Tutorials

• MXNet 1.8: Using data parallel mode tutorial [html] [notebook]

Utilizing Neuron Capabilities Tutorials

• NeuronCore Groups tutorial [html] [notebook]

Note: To use Jupyter Notebook see:

• setup-jupyter-notebook-steps-troubleshooting

• running-jupyter-notebook-as-script

This document is relevant for: Inf1

This document is relevant for: Inf1

9.2.2 API Reference Guide (mxnet-neuron)

This document is relevant for: Inf1

472 Chapter 9. MXNet Neuron

https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/mxnet/data_parallel/data_parallel_tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/mxnet/resnet50_neuroncore_groups.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/mxnet/resnet50/resnet50.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/mxnet/mxnet-gluon-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/mxnet/data_parallel/data_parallel_tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/mxnet/resnet50_neuroncore_groups.ipynb

AWS Neuron

Neuron Apache MXNet Compilation Python API

The MXNet-Neuron compilation Python API provides a method to compile model graph for execution on Inferentia.

Description

Within the graph or subgraph, the compile method selects and sends Neuron-supported operations to Neuron-Compiler
for compilation and saves the compiled artifacts in the graph. Uncompilable operations are kept as original operations
for framework execution.

The compiled graph can be saved using the MXNet save_checkpoint and served using MXNet Model Serving. Please
see mxnet-neuron-model-serving for more information about exporting to saved model and serving using MXNet
Model Serving.

Options can be passed to Neuron compiler via the compile function. For example, the
“--neuroncore-pipeline-cores” option directs Neuron compiler to compile each subgraph to fit in the
specified number of NeuronCores. This number can be less than the total available NeuronCores on an Inf1 instance.
See Neuron compiler CLI Reference Guide (neuron-cc) for more information about compiler options.

For debugging compilation, use SUBGRAPH_INFO=1 environment setting before calling the compilation script. The
extract subgraphs are preserved as hidden files in the run directory. For more information, see Using Neuron GatherInfo
Tool to collect debug and support information

MXNet 1.5

Method

from mxnet.contrib import neuron
neuron.compile(sym, args, aux, inputs, **compile_args)

Arguments

• sym - Symbol object loaded from symbol.json file

• args - args/params dictionary loaded from params file

• aux - aux/params dictionary loaded from params file

• inputs - a dictionary with key/value mappings for input name to input numpy arrays

• kwargs (optional) - a dictionary with key/value mappings for MXNet-Neuron compilation and Neuron Compiler
options.

– For example, to limit the number of NeuronCores per subgraph, use
compile_args={'--neuroncore-pipeline-cores' : N} where N is an integer representing
the maximum number of NeuronCores per subgraph.

– Additional compiler flags can be passed using 'flags' : [<flags>] where is a comma separated list
of strings. See Using Neuron GatherInfo Tool to collect debug and support information for example of
passing debug flags to compiler.

– Advanced option to exclude node names: compile_args={'excl_node_names' : [<node names>]}
where is a comma separated list of node name strings.

9.2. Inference (mxnet-neuron) 473

AWS Neuron

Returns

• sym - new partitioned symbol

• args - modified args/params

• auxs - modified aux/params

Example Usage: Compilation

The following is an example usage of the compilation, with default compilation arguments:

from mxnet.contrib import neuron
...
neuron.compile(sym, args, aux, inputs={'data' : img})

MXNet 1.8

Method

import mx_neuron as neuron
neuron.compile(obj, args=None, aux=None, inputs=None, **compile_args)

Arguments

• obj - Symbol object loaded from symbol.json file or gluon.HybridBlock object

• args (optional) - args/params dictionary loaded from params file. Only needed in case of Symbol object

• aux (optional) - aux/params dictionary loaded from params file. Only needed in case of Symbol object

• inputs - a dictionary with key/value mappings for input name to input numpy arrays.

• kwargs (optional) - a dictionary with key/value mappings for MXNet-Neuron compilation and Neuron Compiler
options.

– For example, to limit the number of NeuronCores per subgraph, use
compile_args={'--neuroncore-pipeline-cores' : N} where N is an integer representing
the maximum number of NeuronCores per subgraph.

– Additional compiler flags can be passed using 'flags' : [<flags>] where is a comma separated list
of strings. See Using Neuron GatherInfo Tool to collect debug and support information for example of
passing debug flags to compiler.

– Advanced option to exclude node names: compile_args={'excl_node_names' : [<node names>]}
where is a comma separated list of node name strings.

– work_dir: relative or absolute path for storing compiler artifacts (including params and jsons) generated
during compilation when SUBGRAPH_INFO=1.

474 Chapter 9. MXNet Neuron

AWS Neuron

Returns

• (sym, args, auxs) - for symbol object as input. sym, args and auxs are new partitioned symbol, modified
args/params and modified aux/params repectively.

• (obj) - for gluon.HybridBlock object as input. obj is the parititioned and optimized gluon.Hybrid block object
for Neuron backend.

Example Usage: Compilation

The following is an example usage of the compilation, with default compilation arguments for symbol object:

import mx_neuron as neuron
...
neuron.compile(sym, args, aux, inputs={'data' : img})

The following is an example usage of the compilation, with default compilation arguments for gluon.HybridBlock
object (only supported in MXNet-Neuron 1.8):

import mx_neuron as neuron
...
neuron.compile(obj, inputs={'data' : img})

Example Usage: Extract Compilation Statistics

To extract operation counts, insert the following code after compile step (assume csym is the compiled MXNet symbol):

import json

Return list of nodes from MXNet symbol
def sym_nodes(sym):
return json.loads(sym.tojson())['nodes']

Return number of operations in node list
def count_ops(graph_nodes):
return len([x['op'] for x in graph_nodes if x['op'] != 'null'])

Return triplet of compile statistics
- count of operations in symbol database
- number of Neuron subgraphs
- number of operations compiled to Neuron runtime
def get_compile_stats(sym):
cnt = count_ops(sym_nodes(sym))
neuron_subgraph_cnt = 0
neuron_compiled_cnt = 0
for g in sym_nodes(sym):
if g['op'] == '_neuron_subgraph_op':

neuron_subgraph_cnt += 1
for sg in g['subgraphs']:
neuron_compiled_cnt += count_ops(sg['nodes'])

return (cnt, neuron_subgraph_cnt, neuron_compiled_cnt)
(continues on next page)

9.2. Inference (mxnet-neuron) 475

AWS Neuron

(continued from previous page)

original_cnt = count_ops(sym_nodes(sym))
post_compile_cnt, neuron_subgraph_cnt, neuron_compiled_cnt = get_compile_stats(csym)
print("INFO:mxnet: Number of operations in original model: ", original_cnt)
print("INFO:mxnet: Number of operations in compiled model: ", post_compile_cnt)
print("INFO:mxnet: Number of Neuron subgraphs in compiled model: ", neuron_subgraph_cnt)
print("INFO:mxnet: Number of operations placed on Neuron runtime: ", neuron_compiled_cnt)

INFO:mxnet: Number of operations in original model: 67
INFO:mxnet: Number of operations in compiled model: 4
INFO:mxnet: Number of Neuron subgraphs in compiled model: 2
INFO:mxnet: Number of operations placed on Neuron runtime: 65

This document is relevant for: Inf1

• Neuron Apache MXNet Compilation Python API

This document is relevant for: Inf1

This document is relevant for: Inf1

9.2.3 Developer Guide

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

Flexible Execution Group (FlexEG) in Neuron-MXNet

Introduction

Inf1 instances are available with a different number of Inferentia chips, each Inferentia chip is combined of 4 Neuron-
Cores and an Inf1 instance includes 4 to 64 NeuronCores depending on the instance size. With Neuron Runtime 1.x
(neuron-rtd server), NeuronCores could be combined into NeuronCore Groups (NCG), which were basic scheduling
units of compiled neural network in Neuron. Creation of desired sized NCGs was done at the start of the application
and could not be modified afterwards.

Starting with Neuron SDK 1.16.0, and with the introduction of Neuron Runtime 2.x, MXNet Neuron 1.8 introduces
Flexible Execution Groups (FlexEG) feature. With FlexEG, you do not have to create NCGs at the start of the process,
instead you will set the index of the first NeuronCore you want to load models onto, and FlexEG feature will enable
the flexibility of loading models onto any available NeuronCore on the inf1 instance starting from the first NeuronCore
you set. This guide will show you how to efficiently utilize NeuronCores using FlexEG feature in NeuronMXNet.

FlexEG

With the introduction of FlexEG, you don’t need to create NCGs and can load models onto a group of consecutive
NeuronCores by providing the index of the first NeuronCore in the group. Neuron runtime takes care of figuring out
the number of NeuronCores required for the given compiled model and loads the model using the required number of
cores (sequentially starting with the NeuronCore index provided by the user).

For example, assuming that you have an Inf1.6xl machine and there are 4 models A, B, C, D compiled to 2, 4, 3, and 4
NeuronCores respectively, you can map any model to any core by context mx.neuron(neuron_core_index) where
neuron_core_index is the NeuronCore index (0,1,2,3,4 . . .).

476 Chapter 9. MXNet Neuron

AWS Neuron

In the example below, you map model A to mx.neuron(0) context, model B to mx.neuron(2) context, model C to
mx.neuron(6) context and model D to mx.neuron(9) context.

The above configuration is achieved by using application code similar to below:

Load models (MXNet)
loaded into the 2 cores starting with core 0
sym, args, aux = mx.model.load_checkpoint(mx_model0_file, 0)
model0 = sym.bind(ctx=mx.neuron(0), args=args, aux_states=aux, grad_req='null')
loaded into the 4 cores starting with core 2
sym, args, aux = mx.model.load_checkpoint(mx_model1_file, 0)
model1 = sym.bind(ctx=mx.neuron(2), args=args, aux_states=aux, grad_req='null')
loaded into the 3 cores starting with core 6
sym, args, aux = mx.model.load_checkpoint(mx_model2_file, 0)
model2 = sym.bind(ctx=mx.neuron(6), args=args, aux_states=aux, grad_req='null')
loaded into the 4 cores starting with core 9
sym, args, aux = mx.model.load_checkpoint(mx_model3_file, 0)
model3 = sym.bind(ctx=mx.neuron(9), args=args, aux_states=aux, grad_req='null')

run inference by simply calling the loaded model
results0 = model0.forward(data=inputs0)
results1 = model1.forward(data=inputs1)
results2 = model2.forward(data=inputs2)
results3 = model3.forward(data=inputs3)

Since there is no NCG creation at the start of the process, you can load the same four models but in a different configura-
tion by changing the context being used for inference. For example, you could map model C to mx.neuron(0) context,
model A to mx.neuron(3) context, model D to mx.neuron(5) context and model B to mx.neuron(9) context.

9.2. Inference (mxnet-neuron) 477

AWS Neuron

Migration from NeuronCore Groups to FlexEG

NeuronCore Groups are defined by setting the environment variable NEURONCORE_GROUP_SIZES with a comma
separated list of number of cores in each group. In this mode of operation, number of devices (defined in
NEURONCORE_GROUP_SIZES) are grouped together to create a single entity.

NEURONCORE_GROUP_SIZES environment variable is set at runtime:

#!/bin/bash
export NEURONCORE_GROUP_SIZES=2,4,3,4
python your_neuron_application.py

NeuronCore groups are created once at the start of the application and cannot be modified / re-created till the appli-
cation process runs. The above flow creates 4 neuron devices with 2,4,3 and 4 devices each. In order to get the same
configuration as the example from before , you map model A to mx.neuron(0) context, model B to mx.neuron(1)
context, model C to mx.neuron(2) context and model D to mx.neuron(3) context.

This can be achieved programmatically as shown below:

Set Environment
os.environ['NEURONCORE_GROUP_SIZES']='2,4,3,4'

Load models (MXNet)
(continues on next page)

478 Chapter 9. MXNet Neuron

AWS Neuron

(continued from previous page)

loaded into the first group of NC0-NC1
sym, args, aux = mx.model.load_checkpoint(mx_model0_file, 0)
model0 = sym.bind(ctx=mx.neuron(0), args=args, aux_states=aux, grad_req='null')
loaded into the second group of NC2-NC5
sym, args, aux = mx.model.load_checkpoint(mx_model1_file, 0)
model1 = sym.bind(ctx=mx.neuron(1), args=args, aux_states=aux, grad_req='null')
loaded into the third group of NC6-NC8
sym, args, aux = mx.model.load_checkpoint(mx_model2_file, 0)
model2 = sym.bind(ctx=mx.neuron(2), args=args, aux_states=aux, grad_req='null')
loaded into the fourth group of NC9-NC12
sym, args, aux = mx.model.load_checkpoint(mx_model3_file, 0)
model3 = sym.bind(ctx=mx.neuron(3), args=args, aux_states=aux, grad_req='null')

run inference by simply calling the loaded model
results0 = model0.forward(data=inputs0)
results1 = model1.forward(data=inputs1)
results2 = model2.forward(data=inputs2)
results3 = model3.forward(data=inputs3)

So comparing to FlexEG, we see that in case of NCGs neuron context requires the index of the execution group, while
in FlexEG neuron context requires the NeuronCore index of the first NeuronCore on which the model is supposed to
be loaded and executed. For example, with NEURONCORE_GROUP_SIZES='2,4,3,4', ctx=mx.neuron(1) loads the
model on execution group 1 which effectively loads the model on the 2nd NCG group which has 4 NeuronCores.

Best practices when using FlexEG

FlexEG gives the user most flexibility in terms of accessing cores and loading models on specific cores. With this the
users can effortlessly load and execute new models on NeuronCores without closing the application. Here we shall
outline some of the best practices that should be kept in mind while using FlexEG.

Choosing starting core

FlexEG tries to use the required number of cores (based on the input model) starting with the core index provided by
the user. Incase the system, doesnt have the required number of cores after the starting core index, model load will
fail. For example: We have a model X which needs 2 cores and an inf1.xl machine with 4 NeuronCores (NeuronCore
indexes are: 0, 1, 2 and 3). As the model needs at least 2 cores, valid start indexes for this model are: 0, 1, 2. However
if the user gives 3 as the neuron context, then there are no 2 cores available starting from core 3. So it will fail.

Performance vs. Flexibility tradeoff

While using data parallel model of operation (were models are executed in parallel), for optimal performance the user
should make sure that the models are not sharing any cores. That is because NeuronCores can execute one model at
a time, when two or more models are executed on the same core (assuming that they are already loaded), it executes
the first model, stops it, starts the second model and then executes it. This is called model switiching and involves
additional overhead and prevents execution on model in parallel. For example: assuming that you have an Inf1.6xl
machine and there are 4 models A, B, C, D compiled to 2, 4, 3, and 4 NeuronCores respectively. Loading model A to
mx.neuron(0) context, model B to mx.neuron(2) context, model C to mx.neuron(6) context and model D to mx.
neuron(9) context is a good configuration because no two models are sharing NeuronCores and thus can be executed
in parallel. However, Loading model A to mx.neuron(0) context, model B to mx.neuron(2) context, model C to

9.2. Inference (mxnet-neuron) 479

AWS Neuron

mx.neuron(5) context and model D to mx.neuron(9) context is a not a good configuration as models B and C share
NeuronCore 5 and thus cannot be executed in parallel.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

• Flexible Execution Group (FlexEG) in Neuron-MXNet

This document is relevant for: Inf1

This document is relevant for: Inf1

9.2.4 Misc (mxnet-neuron)

This document is relevant for: Inf1

Troubleshooting Guide for Neuron Apache MXNet

Table of Contents

• Inference Runtime Error

– Out-of-memory error when calling Symbol API bind() too many times

– Inference crashed with MXNetError: InferShapeKeyword argument name xyz not found

– Inference crashed at mx.nd.waitall() with MXNetError: Check failed: bin.dtype() == mshadow::kUint8

– Inference crashed with NRTD error 1002

• Multi-Model Server

– Failed to create NEURONCORE Group with GRPC Error. Status Error: 14, Error message: “Connect
Failed”

– Multiple MMS workers die with “Backend worker process die.” message

– MMS throws a “mxnet.base.MXNetError: array::at” error

– MXNet Model Server is not able to clean up Neuron RTD states after model is unloaded

– Pipeline mode is not able to execute inferences requests in parallel

480 Chapter 9. MXNet Neuron

AWS Neuron

– Features only in MXNet-Neuron 1.5

– Features only in MXNet-Neuron 1.8

Inference Runtime Error

Out-of-memory error when calling Symbol API bind() too many times

Important: NEURONCORE_GROUP_SIZES will no longer be supported starting Neuron 1.19.0 release if your applica-
tion is using NEURONCORE_GROUP_SIZES please see Migrate your application to Neuron Runtime 2.x (libnrt.so) and
eol-ncgs-env_2 for more details.

If you see out-of-memory error when using Symbol API’s bind() function, please ensure that the bind() function is called
once for each desired model instance. For example, on inf1.xlarge, use Symbol API to create 4 parallel instances of a
model that was compiled to 1 NeuronCore (–neuroncore-pipeline-cores=1), each is bound to an different mx.neuron(i)
context where i is the NeuronCore Group index ranging from 0 to 3. Then use 4 threads to feed the 4 instances in
parallel. For example:

NUM_PARALLEL = 4
os.environ['NEURONCORE_GROUP_SIZES'] = ','.join('1' for _ in range(NUM_PARALLEL))

data_iter = []
for i in range(NUM_PARALLEL):

data_iter.append(mx.io.ImageRecordIter(
path_imgrec=recfile_base, data_shape=(3, 224, 224), batch_size=1,
prefetch_buffer=1,
num_parts=NUM_PARALLEL, part_index=i))

sym, args, auxs = mx.model.load_checkpoint('resnet-50_compiled', 0)

exec_list = []
for i in range(NUM_PARALLEL):

exec = sym.bind(ctx=mx.neuron(i), args=args, aux_states=auxs, grad_req='null')
exec_list.append(exec)

def single_thread_infer(i):
for batch in data_iter[i]:

img = batch.data[0]
label = batch.label
feed_dict = {'data': img}
exe = exec_list[i]
exe.copy_params_from(feed_dict)
exe.forward()
out = exe.outputs[0]

future_list = []
with futures.ThreadPoolExecutor(max_workers=NUM_PARALLEL) as executor:

for i in range(NUM_PARALLEL):
future_list.append(executor.submit(single_thread_infer, i))

9.2. Inference (mxnet-neuron) 481

AWS Neuron

Inference crashed with MXNetError: InferShapeKeyword argument name xyz not found

If you see MXNetError:

mxnet.base.MXNetError: [11:55:39] src/c_api/c_api_symbolic.cc:508: InferShapeKeyword␣
→˓argument name xyz not found."

This is followed by a list of “Candidate arguments”. This list shows all the input argument names that the model knows
about, and ‘xyz’ is not in the list. To fix this, remove entry xyz from the feed dictionary.

Inference crashed at mx.nd.waitall() with MXNetError: Check failed: bin.dtype() == mshadow::kUint8

When executing Symbol API’s forward function followed by mx.nd.waitall(), where MXNetError exception occurs
with ‘Check failed: bin.dtype() == mshadow::kUint8’.

Inference crashed with NRTD error 1002

During inference, the user may encounter an error with details “[NRTD:infer_wait] error: 1002”:

mxnet.base.MXNetError: [11:26:56] src/operator/subgraph/neuron/./neuron_util.h:1175:␣
→˓Check failed: rsp_wait.status().code() == 0 || rsp_wait.status().code() == 1003: Failed
Infer Wait with Neuron-RTD Error. Neuron-RTD Status Code: 1002, details: "[NRTD:infer_
→˓wait] error: 1002
"

Runtime errors are listed in rtd-return-codes. In particular, 1002 means that some invalid input has been submitted to
infer, e.g. missing some of the input tensors, incorrect input tensor sizes. Please examine /var/log/syslog to see imore
details on the error. For example, you may see:

Oct 30 19:13:39 ip-172-31-93-131 nrtd[1125]: [TDRV:io_queue_prepare_input_nonhugetlb]␣
→˓Unexpected input size, for data00, expected: 2097152, received: 33554432

This means that the input tensor size is larger than what the model was compiled for (i.e. the example input tensor
shapes passed during compilation.

Multi-Model Server

Failed to create NEURONCORE Group with GRPC Error. Status Error: 14, Error message: “Connect
Failed”

NOTE: This error only applies to MXNet 1.5.

If the client is unable to start workers and you get a message that MMS is unable to create NeuronCore Group, please
check that Neuron RTD is running (neuron-rtd process).

{
"code": 500,
"type": "InternalServerException",
"message": "Failed to start workers“
}

482 Chapter 9. MXNet Neuron

AWS Neuron

2019-10-23 19:56:23,187 [INFO] W-9000-squeezenet_v1.1_compiled-stdout com.amazonaws.ml.
→˓mms.wlm.WorkerLifeCycle - [19:56:23] src/operator/subgraph/inferentia/./inferentia_
→˓util.h:218: Check failed: status.ok() Failed to create NeuronCore Group with GRPC␣
→˓Error. Status Error: 14, Error message: "Connect Failed"

Multiple MMS workers die with “Backend worker process die.” message

Important: NEURONCORE_GROUP_SIZES will no longer be supported starting Neuron 1.19.0 release if your applica-
tion is using NEURONCORE_GROUP_SIZES please see Migrate your application to Neuron Runtime 2.x (libnrt.so) and
eol-ncgs-env_2 for more details.

If you run inference with MMS and get multiple messages “Backend worker process die”, please ensure that the number
of workers (“intial_workers”) passed during load model is less than or equal to number of NeuronCores available
divided by number of NeuronCores required by model.

com.amazonaws.ml.mms.wlm.WorkerLifeCycle - Backend worker process die.
com.amazonaws.ml.mms.wlm.WorkerLifeCycle - Traceback (most recent call last):
com.amazonaws.ml.mms.wlm.WorkerLifeCycle - File "/usr/local/lib/python3.6/site-packages/
→˓mxnet/symbol/symbol.py", line 1524, in simple_bind
com.amazonaws.ml.mms.wlm.WorkerLifeCycle - ctypes.byref(exe_handle)))
com.amazonaws.ml.mms.wlm.WorkerLifeCycle - File "/usr/local/lib/python3.6/site-packages/
→˓mxnet/base.py", line 252, in check_call
com.amazonaws.ml.mms.wlm.WorkerLifeCycle - raise MXNetError(py_str(_LIB.
→˓MXGetLastError()))
com.amazonaws.ml.mms.wlm.WorkerLifeCycle - mxnet.base.MXNetError: [00:26:32] src/
→˓operator/subgraph/neuron/./neuron_util.h:221: Check failed: 0 == create_eg_rsp.
→˓status().code() Failed to create NeuronCore Group with KRTD Error. KRTD Status Code: 4,
→˓ details: ""

As indicated in Performance Tuning, for greater flexibility user can use NEURONCORE_GROUP_SIZES to spec-
ify the groupings of NeuronCores into Neuron devices, each device consisting of one or more NeuronCores. Each
worker would take a device. The total number of NeuronCores taken by all the workers should be less than or
equal the total number of NeuronCores visible to neuron-rtd. This situation should be considered at full load (MMS
scales up to max_workers). Additionally, to properly assign model to Neuron device, the environment NEURON-
CORE_GROUP_SIZES must be specified within the model server class (ie. mxnet_model_service.py in the example
above). For example, add the following line within mxnet_model_service.py for model compiled to 1 NeuronCore:

os.environ['NEURONCORE_GROUP_SIZES'] = '1'

More information about max_worker limit setting can be found at MMS Management API Documentation. For exam-
ple, to run up to 4 workers in inf1.xlarge where 4 NeuronCores are available by default to Neuron-RTD, set max_workers
to 4:

curl -v -X PUT "http://localhost:8081/models/squeezenet_v1.1_compiled?min_worker=1?max_
→˓worker=4"

9.2. Inference (mxnet-neuron) 483

https://github.com/awslabs/multi-model-server/blob/master/docs/management_api.md#user-content-scale-workers

AWS Neuron

MMS throws a “mxnet.base.MXNetError: array::at” error

If you see “mxnet.base.MXNetError: array::at” when running MMS please check that NDArray/Gluon API is not used
as they are not supported in MXNet-Neuron. If you would like to use NDArray or Gluon API, please upgrade to MXNet
1.8.

[INFO] W-9000-squeezenet_v1.1_compiled-stdout com.amazonaws.ml.mms.wlm.WorkerLifeCycle -
→˓ array::at
[INFO] W-9000-squeezenet_v1.1_compiled com.amazonaws.ml.mms.wlm.WorkerThread - Backend␣
→˓response time: 30
[INFO] W-9000-squeezenet_v1.1_compiled-stdout com.amazonaws.ml.mms.wlm.WorkerLifeCycle -
→˓ Traceback (most recent call last):
[INFO] W-9000-squeezenet_v1.1_compiled-stdout com.amazonaws.ml.mms.wlm.WorkerLifeCycle -
→˓ File "/tmp/models/6606fa046f68a34df87f15362a7a2d9a49749878/model_handler.py", line␣
→˓82, in handle
[INFO] W-9000-squeezenet_v1.1_compiled-stdout com.amazonaws.ml.mms.wlm.WorkerLifeCycle -
→˓ data = self.inference(data)
[INFO] W-9000-squeezenet_v1.1_compiled-stdout com.amazonaws.ml.mms.wlm.WorkerLifeCycle -
→˓ File "/tmp/models/6606fa046f68a34df87f15362a7a2d9a49749878/mxnet_model_service.py",␣
→˓line 153, in inference
[INFO] W-9000-squeezenet_v1.1_compiled-stdout com.amazonaws.ml.mms.wlm.WorkerLifeCycle -
→˓ d.wait_to_read()
[INFO] W-9000-squeezenet_v1.1_compiled-stdout com.amazonaws.ml.mms.wlm.WorkerLifeCycle -
→˓ File "/home/user/regression_venv_p3.6/lib/python3.6/site-packages/mxnet/ndarray/
→˓ndarray.py", line 1819, in wait_to_read
[INFO] W-9000-squeezenet_v1.1_compiled-stdout com.amazonaws.ml.mms.wlm.WorkerLifeCycle -
→˓ check_call(_LIB.MXNDArrayWaitToRead(self.handle))
[INFO] W-9000-squeezenet_v1.1_compiled-stdout com.amazonaws.ml.mms.wlm.WorkerLifeCycle -
→˓ File "/home/user/regression_venv_p3.6/lib/python3.6/site-packages/mxnet/base.py",␣
→˓line 253, in check_call
[INFO] W-9000-squeezenet_v1.1_compiled-stdout com.amazonaws.ml.mms.wlm.WorkerLifeCycle -
→˓ raise MXNetError(py_str(_LIB.MXGetLastError()))
[INFO] W-9000-squeezenet_v1.1_compiled-stdout com.amazonaws.ml.mms.wlm.WorkerLifeCycle -
→˓ mxnet.base.MXNetError: array::at
[INFO] W-9000-squeezenet_v1.1_compiled-stdout com.amazonaws.ml.mms.wlm.WorkerLifeCycle -
→˓ Invoking custom service failed.

MXNet Model Server is not able to clean up Neuron RTD states after model is unloaded

NOTE: This issue is resolved in version 1.5.1.1.1.88.0 released 11/17/2020 and only applies for MXNet 1.5.

MXNet Model Server is not able to clean up Neuron RTD states after model is unloaded (deleted) from model server.
Restarting the model server may fail with “Failed to create NEURONCORE_GROUP” error:

mxnet.base.MXNetError: [00:26:59] src/operator/subgraph/neuron/./neuron_util.h:348:␣
→˓Check failed: 0 == create_eg_rsp.status().code(): Failed to create NEURONCORE_GROUP␣
→˓with Neuron-RTD Error. Neuron-RTD Status Code: 9, details: ""

The workaround is to run “/opt/aws/neuron/bin/neuron-cli reset“ to clear Neuron RTD states after all models are un-
loaded and server is shut down before restarting the model server.

484 Chapter 9. MXNet Neuron

AWS Neuron

Pipeline mode is not able to execute inferences requests in parallel

If you see that multiple executors in a neuron pipeline setup (one model compiled for more than one neuron-cores using
–neuroncore-pipeline-cores option during compilation) are not running in parallel, please set the following MXNet’s
environment variables before inference to allow mxnet to execute the CPU ops in parallel. Otherwise it will be sequen-
tial and stall the executors.

MXNET_CPU_WORKER_NTHREADS is used to do that. Setting its value to __subgraph_opt_neuroncore__ in the com-
piled model json will ensure that all the executors (threads) can be run in parallel.

Features only in MXNet-Neuron 1.5

• Shared memory for IFMaps transfer to neuron runtime (has higher performance compared to GRPC mode)

• Neuron profiling using MXNet

Features only in MXNet-Neuron 1.8

• Gluon API support

• Library mode neuron runtime

This document is relevant for: Inf1

This document is relevant for: Inf1

Apache MXNet Neuron Release Notes

Table of contents

• Apache MXNet Neuron release [1.8.0.2.4.40.0]

• Apache MXNet Neuron release [1.8.0.2.4.25.0]

• Apache MXNet Neuron release [1.8.0.2.4.10.0]

• Apache MXNet Neuron release [1.8.0.2.4.9.0]

• Apache MXNet Neuron release [1.8.0.2.4.1.0]

• [1.5.1.1.10.39.0]

• Apache MXNet Neuron release [1.8.0.2.2.127.0]

• [1.5.1.1.10.37.0]

• Apache MXNet Neuron release [1.8.0.2.2.43.0]

• [1.5.1.1.10.11.0]

• [1.5.1.1.10.0.0]

• Apache MXNet Neuron release [1.8.0.2.2.2.0]

• [1.5.1.1.9.0.0]

• Apache MXNet Neuron release [1.8.0.2.1.5.0]

• Apache MXNet Neuron release [1.8.0.2.0.276.0]

9.2. Inference (mxnet-neuron) 485

AWS Neuron

• Apache MXNet Neuron release [1.8.0.2.0.271.0]

• [1.5.1.1.7.0.0]

• [1.5.1.1.6.5.0]

• [1.8.0.1.3.4.0]

• [1.5.1.1.6.1.0]

• [1.8.0.1.3.0.0]

• [1.8.0.1.2.1.0]

• [1.8.0.1.1.2.0]

• [1.5.1.1.4.x.x]

• [1.5.1.1.4.4.0]

• [1.5.1.1.3.8.0]

• [1.5.1.1.3.7.0]

• [1.5.1.1.3.2.0]

• [1.5.1.1.2.1.0]

• [1.5.1.1.1.88.0]

• [1.5.1.1.1.52.0]

• [1.5.1.1.1.1.0]

• [1.5.1.1.0.2101.0]

• [1.5.1.1.0.2093.0]

• [1.5.1.1.0.2033.0]

• [1.5.1.1.0.1900.0]

• [1.5.1.1.0.1596.0]

• [1.5.1.1.0.1498.0]

• [1.5.1.1.0.1401.0]

• [1.5.1.1.0.1325.0]

• [1.5.1.1.0.1349.0]

• [1.5.1.1.0.1325.0]

• [1.5.1.1.0.1260.0]

This document lists the release notes for MXNet-Neuron framework.

486 Chapter 9. MXNet Neuron

AWS Neuron

Apache MXNet Neuron release [1.8.0.2.4.40.0]

Date: 12/21/2023

Summary

Minor updates.

Apache MXNet Neuron release [1.8.0.2.4.25.0]

Date: 10/15/2023

Summary

Minor updates.

Apache MXNet Neuron release [1.8.0.2.4.10.0]

Date: 7/19/2023

Summary

Minor bug fixes and enhancements for MXNet 1.8 Neuron.

Apache MXNet Neuron release [1.8.0.2.4.9.0]

Date: 6/14/2023

Summary

Minor bug fixes and enhancements for MXNet 1.8 Neuron.

Apache MXNet Neuron release [1.8.0.2.4.1.0]

Date: 5/1/2023

9.2. Inference (mxnet-neuron) 487

AWS Neuron

New in this release

• Updated Neuron Runtime library to version 2.12

• Added missing LICENSE.txt

Known Issues and Limitations

• Bert-base in 16 NeuronCores pipeline mode has 50% lower performance when running 16 inferences in parallel
with Runtime version 2.12.

[1.5.1.1.10.39.0]

Date: 5/1/2023

Summary

Minor bug fixes and enhancements for MXNet 1.5 Neuron.

This is the last released version. Please use neuron-cc version 1.15.0 only for this mxnet-neuron version. Also, this
version is limited to python 3.9 or below only.

python -m pip install mxnet_neuron==1.5.1.* neuron-cc==1.15.0

Apache MXNet Neuron release [1.8.0.2.2.127.0]

Date: 3/28/2023

Summary

Minor bug fixes and enhancements for MXNet 1.8 Neuron.

[1.5.1.1.10.37.0]

Date: 3/28/2023

Summary

Minor bug fixes and enhancements for MXNet 1.5 Neuron.

488 Chapter 9. MXNet Neuron

AWS Neuron

Apache MXNet Neuron release [1.8.0.2.2.43.0]

Date: 11/23/2022

Summary

Minor bug fixes and enhancements for MXNet 1.8 Neuron.

[1.5.1.1.10.11.0]

Date: 11/23/2022

Summary

Minor bug fixes and enhancements for MXNet 1.5 Neuron.

[1.5.1.1.10.0.0]

Date: 04/28/2022

Summary

Minor bug fixes and enhancements for MXNet 1.5 Neuron.

Apache MXNet Neuron release [1.8.0.2.2.2.0]

Date: 03/25/2022

New in this release

• Added support for unloading models from a NeuronDevice by deleting the model instance in user application.
Users can now call del in Python on an executor and to unload the model from a NeuronDevice (provided
the deleted executor is the last executor pointing to the given model). This requires the latest aws-mx-1.
8 package from https://aws-mx-pypi.s3.us-west-2.amazonaws.com/1.8.0/aws_mx-1.8.0.2-py2.
py3-none-manylinux2014_x86_64.whl.

Bug fixes

• Fixed a memory leak caused by stale unloaded models in NeuronDevice memory. For this fix to take ef-
fect please install aws-mx package from https://aws-mx-pypi.s3.us-west-2.amazonaws.com/1.8.0/aws_mx-1.8.
0.2-py2.py3-none-manylinux2014_x86_64.whl along with the latest mx-neuron package.

9.2. Inference (mxnet-neuron) 489

https://aws-mx-pypi.s3.us-west-2.amazonaws.com/1.8.0/aws_mx-1.8.0.2-py2.py3-none-manylinux2014_x86_64.whl
https://aws-mx-pypi.s3.us-west-2.amazonaws.com/1.8.0/aws_mx-1.8.0.2-py2.py3-none-manylinux2014_x86_64.whl

AWS Neuron

[1.5.1.1.9.0.0]

Date: 03/25/2022

Summary

Minor bug fixes and enhancements for MXNet 1.5 Neuron.

Apache MXNet Neuron release [1.8.0.2.1.5.0]

Date: 01/20/2022

New in this release

• Added support of mx_neuron.__version__ to get the build version of MXNet Neuron plugin

Bug fixes

• Fixed assertion errors when inference was completed with NaNs. The expected behavior is to complete inference
successfully and warn the user that ``NaN``s were seen during the current inference.

• Fixed compile issue when individual output nodes have multiple output nodes. Because the output index was
being dropped, fewer number of output feature maps were being considered and that caused failures during
inference.

Apache MXNet Neuron release [1.8.0.2.0.276.0]

Date: 11/05/2021

• Updated Neuron Runtime (which is integrated within this package) to libnrt 2.2.18.0 to fix a container issue
that was preventing the use of containers when /dev/neuron0 was not present. See details here neuron-runtime-
release-notes.

Apache MXNet Neuron release [1.8.0.2.0.271.0]

Date 10/27/2021

New in this release

• MXNet Neuron 1.8 now support Neuron Runtime 2.x (libnrt.so shared library) only.

Important:
– You must update to the latest Neuron Driver (aws-neuron-dkms version 2.1 or newer) for proper

functionality of the new runtime library.

– Read Introducing Neuron Runtime 2.x (libnrt.so) application note that describes why are we mak-
ing this change and how this change will affect the Neuron SDK in detail.

490 Chapter 9. MXNet Neuron

AWS Neuron

– Read Migrate your application to Neuron Runtime 2.x (libnrt.so) for detailed information of how
to migrate your application.

• Introducing Flexible Execution Groups (FlexEG) feature. See Flexible Execution Group (FlexEG) in Neuron-
MXNet application note.

Resolved Issues

• Fixed a bug that prevented compilation of gluon models with multiple cpu and neuron nodes.

• Added more debug logic to help with profiling of model load timing.

[1.5.1.1.7.0.0]

Date 10/27/2021

New in this release

• MXNet 1.5 enters maintenance mode. Please visit maintenance_mxnet_1_5 for more information.

Resolved Issues

• Minor bug fixes.

[1.5.1.1.6.5.0]

Date 08/12/2021

Summary

Minor bug fixes and enhancements for MXNet 1.5 Neuron.

[1.8.0.1.3.4.0]

Date 08/12/2021

Summary

Minor bug fixes and enhancements for MXNet 1.8 Neuron.

9.2. Inference (mxnet-neuron) 491

AWS Neuron

[1.5.1.1.6.1.0]

Date 07/02/2021

Summary

Minor bug fixes and enhancements for MXNet 1.5 Neuron.

[1.8.0.1.3.0.0]

Date 07/02/2021

Summary

Support for Autoloop, Cpredict API and minor bug fixes and enhancements for MXNet 1.8 Neuron.

Major New Features

• Added support for Autoloop feature for MXNet 1.8 Neuron.

Resolved Issues

• Added support for CPredict API.

[1.8.0.1.2.1.0]

Date 5/28/2021

Summary

Minor bug fixes and enhancements for MXNet 1.8 Neuron

Resolved Issues

• Added support for Neuron profiler

492 Chapter 9. MXNet Neuron

AWS Neuron

[1.8.0.1.1.2.0]

Date 4/30/2021

Summary

Initial release of Apache MXNet 1.8 for Neuron

Major New Features

• Gluon API and Neuron support for NLP BERT models

• Neuron is now a plugin

• Please note new API changes to support plugin mode: Neuron Apache MXNet Compilation Python API

[1.5.1.1.4.x.x]

Date 5/28/2021

Summary

• Minor enhancements.

[1.5.1.1.4.4.0]

Date 4/30/2021

Summary

• Resolve an issue with Neuron profiling.

Resolved Issues

• Issue: when Neuron profiling is enabled in MXNet-Neuron 1.5.1 (using NEURON_PROFILE=<dir>), and Ten-
sorBoard is used to read in the profiled data, user would see an error messsage “panic: runtime error: index out
of range”. This issue is resolved in this release.

9.2. Inference (mxnet-neuron) 493

AWS Neuron

[1.5.1.1.3.8.0]

Date 3/4/2021

Summary

Minor enhancements.

[1.5.1.1.3.7.0]

Date 2/24/2021

Summary

Fix for CVE-2021-3177.

[1.5.1.1.3.2.0]

Date 1/30/2021

Summary

Various minor improvements

[1.5.1.1.2.1.0]

Date 12/23/2020

Summary

Various minor improvements

[1.5.1.1.1.88.0]

Date 11/17/2020

494 Chapter 9. MXNet Neuron

AWS Neuron

Summary

This release includes the bug fix for MXNet Model Server not being able to clean up Neuron RTD states after model
is unloaded (deleted) from model server.

Resolved Issues

• Issue: MXNet Model Server is not able to clean up Neuron RTD states after model is unloaded (deleted) from
model server.

– Workaround for earlier versions: run “/opt/aws/neuron/bin/neuron-cli reset“ to

clear Neuron RTD states after all models are unloaded and server is shut down.

[1.5.1.1.1.52.0]

Date 09/22/2020

Summary

Various minor improvements.

Major New Features

Resolved Issues

• Issue: When first importing MXNet into python process and subprocess call is invoked, user may get an OS-
Error exception “OSError: [Errno 14] Bad address” during subprocess call (see https://github.com/apache/
incubator-mxnet/issues/13875 for more details). This issue is fixed with a mitigation patch from MXNet for
Open-MP fork race conditions.

– Workaround for earlier versions: Export KMP_INIT_AT_FORK=false before running python process.

[1.5.1.1.1.1.0]

Date 08/08/2020

Summary

Various minor improvements.

9.2. Inference (mxnet-neuron) 495

https://github.com/apache/incubator-mxnet/issues/13875
https://github.com/apache/incubator-mxnet/issues/13875

AWS Neuron

Major New Features

Resolved Issues

[1.5.1.1.0.2101.0]

Date 08/05/2020

Summary

Various minor improvements.

Major New Features

Resolved Issues

[1.5.1.1.0.2093.0]

Date 07/16/2020

Summary

This release contains a few bug fixes and user experience improvements.

Major New Features

Resolved Issues

• User can specify NEURONCORE_GROUP_SIZES without brackets (for example, “1,1,1,1”), as can be done in
TensorFlow-Neuron and PyTorch-Neuron.

• Fixed a memory leak when inferring neuron subgraph properties

• Fixed a bug dealing with multi-input subgraphs

[1.5.1.1.0.2033.0]

Date 6/11/2020

496 Chapter 9. MXNet Neuron

AWS Neuron

Summary

• Added support for profiling during inference

Major New Features

• Profiling can now be enabled by specifying the profiling work directory using NEURON_PROFILE environment
variable during inference. For an example of using profiling, see tensorboard-neuron. (Note that graph view of
MXNet graph is not available via TensorBoard).

Resolved Issues

Known Issues and Limitations

Other Notes

[1.5.1.1.0.1900.0]

Date 5/11/2020

Summary

Improved support for shared-memory communication with Neuron-Runtime.

Major New Features

• Added support for the BERT-Base model (base: L-12 H-768 A-12), max sequence length 64 and batch size of 8.

• Improved security for usage of shared-memory for data transfer between framework and Neuron-Runtime

• Improved allocation and cleanup of shared-memory resource

• Improved container support by automatic falling back to GRPC data transfer if shared-memory cannot be allo-
cated by Neuron-Runtime

Resolved Issues

• User is unable to allocate Neuron-Runtime shared-memory resource when using MXNet-Neuron in a container
to communicate with Neuron-Runtime in another container. This is resolved by automatic falling back to GRPC
data transfer if shared-memory cannot be allocated by Neuron-Runtime.

• Fixed issue where some large models could not be loaded on inferentia.

9.2. Inference (mxnet-neuron) 497

AWS Neuron

Known Issues and Limitations

Other Notes

[1.5.1.1.0.1596.0]

Date 3/26/2020

Summary

No major changes or fixes

Major New Features

Resolved Issues

Known Issues and Limitations

Other Notes

[1.5.1.1.0.1498.0]

Date 2/27/2020

Summary

No major changes or fixes.

Major New Features

Resolved Issues

The issue(s) below are resolved:

• Latest pip version 20.0.1 breaks installation of MXNet-Neuron pip wheel which has py2.py3 in the wheel name.

Known Issues and Limitations

• User is unable to allocate Neuron-Runtime shared-memory resource when using MXNet-Neuron in a container
to communicate with Neuron-Runtime in another container. To work-around, please set environment variable
NEURON_RTD_USE_SHM to 0.

498 Chapter 9. MXNet Neuron

AWS Neuron

Other Notes

[1.5.1.1.0.1401.0]

Date 1/27/2020

Summary

No major changes or fixes.

Major New Features

Resolved Issues

• The following issue is resolved when the latest multi-model-server with version >= 1.1.0 is used with MXNet-
Neuron. You would still need to use “/opt/aws/neuron/bin/neuron-cli reset” to clear all Neuron RTD
states after multi-model-server is exited:

– Issue: MXNet Model Server is not able to clean up Neuron RTD states after model is unloaded (deleted)
from model server and previous workaround “/opt/aws/neuron/bin/neuron-cli reset” is unable to
clear all Neuron RTD states.

Known Issues and Limitations

• Latest pip version 20.0.1 breaks installation of MXNet-Neuron pip wheel which has py2.py3 in the wheel name.
This breaks all existing released versions. The error looks like:

Looking in indexes: https://pypi.org/simple, https://pip.repos.neuron.amazonaws.com
ERROR: Could not find a version that satisfies the requirement mxnet-neuron (from␣
→˓versions: none)
ERROR: No matching distribution found for mxnet-neuron

• Work around: install the older version of pip using “pip install pip==19.3.1”.

Other Notes

[1.5.1.1.0.1325.0]

Date 12/1/2019

9.2. Inference (mxnet-neuron) 499

AWS Neuron

Summary

Major New Features

Resolved Issues

• Issue: Compiler flags cannot be passed to compiler during compile call. The fix: compiler flags can be passed
to compiler during compile call using “flags” option followed by a list of flags.

• Issue: Advanced CPU fallback option is a way to attempt to improve the number of operators on Inferentia. The
default is currently set to on, which may cause failures. The fix: This option is now off by default.

Known Issues and Limitations

• Issue: MXNet Model Server is not able to clean up Neuron RTD states after model is unloaded (deleted) from
model server and previous workaround “/opt/aws/neuron/bin/neuron-cli reset” is unable to clear all
Neuron RTD states.

– Workaround: run “sudo systemctl restart neuron-rtd“ to clear Neuron RTD states after all models
are unloaded and server is shut down.

Other Notes

[1.5.1.1.0.1349.0]

Date 12/20/2019

Summary

No major changes or fixes. Released with other Neuron packages.

[1.5.1.1.0.1325.0]

Date 12/1/2019

Summary

Major New Features

Resolved Issues

• Issue: Compiler flags cannot be passed to compiler during compile call. The fix: compiler flags can be passed
to compiler during compile call using “flags” option followed by a list of flags.

• Issue: Advanced CPU fallback option is a way to attempt to improve the number of operators on Inferentia. The
default is currently set to on, which may cause failures. The fix: This option is now off by default.

500 Chapter 9. MXNet Neuron

AWS Neuron

Known Issues and Limitations

• Issue: MXNet Model Server is not able to clean up Neuron RTD states after model is unloaded (deleted) from
model server and previous workaround “/opt/aws/neuron/bin/neuron-cli reset” is unable to clear all
Neuron RTD states.

– Workaround: run “sudo systemctl restart neuron-rtd“ to clear Neuron RTD states after all models
are unloaded and server is shut down.

Other Notes

[1.5.1.1.0.1260.0]

Date: 11/25/2019

Summary

This version is available only in released DLAMI v26.0 and is based on MXNet version 1.5.1. Please dlami-rn-known-
issues to latest version.

Major new features

Resolved issues

Known issues and limitations

• Issue: Compiler flags cannot be passed to compiler during compile call.

• Issue: Advanced CPU fallback option is a way to attempt to improve the number of operators on Inferentia. The
default is currently set to on, which may cause failures.

– Workaround: explicitly turn it off by setting compile option op_by_op_compiler_retry to 0.

• Issue: Temporary files are put in current directory when debug is enabled.

– Workaround: create a separate work directory and run the process from within the work directory

• Issue: MXNet Model Server is not able to clean up Neuron RTD states after model is unloaded (deleted) from
model server.

– Workaround: run “/opt/aws/neuron/bin/neuron-cli reset“ to clear Neuron RTD states after all
models are unloaded and server is shut down.

• Issue: MXNet 1.5.1 may return inconsistent node names for some operators when they are the primary outputs
of a Neuron subgraph. This causes failures during inference.

– Workaround : Use the excl_node_names compilation option to change the partitioning of the graph during
compile so that these nodes are not the primary output of a neuron subgraph. See Neuron Apache MXNet
Compilation Python API

compile_args = { 'excl_node_names': ["node_name_to_exclude"] }

9.2. Inference (mxnet-neuron) 501

AWS Neuron

Models Supported

The following models have successfully run on neuron-inferentia systems

1. Resnet50 V1/V2

2. Inception-V2/V3/V4

3. Parallel-WaveNet

4. Tacotron 2

5. WaveRNN

Other Notes

• Python versions supported:

– 3.5, 3.6, 3.7

• Linux distribution supported:

– Ubuntu 18, Amazon Linux 2

This document is relevant for: Inf1

This document is relevant for: Inf1

Neuron Apache MXNet Supported operators

To see a list of supported operators for MXNet, run the following command:

neuron-cc list-operators --framework MXNET

Neuron Compiler Release [1.6.13.0]

Added

amp_cast
amp_multicast

Neuron Compiler Release [1.4.1.0]

No changes

502 Chapter 9. MXNet Neuron

AWS Neuron

Neuron Compiler Release [1.4.0.0]

No changes

Neuron Compiler Release [1.3.0.0]

No changes

Neuron Compiler Release [1.2.7.0]

No changes

Neuron Compiler Release [1.2.2.0]

No changes

Neuron Compiler Release [1.2.0.0]

Added

Deconvolution
LayerNorm
Pad
SwapAxis
_contrib_arange_like
_contrib_interleaved_matmul_encdec_qk
_contrib_interleaved_matmul_encdec_valatt
_contrib_interleaved_matmul_selfatt_qk
_contrib_interleaved_matmul_selfatt_valatt
arctan
broadcast_like
cos
erf
pad
sin
slice_axis

Neuron Compiler Release [1.0.24045.0]

Added _contrib_div_sqrt_dim, broadcast_axis

9.2. Inference (mxnet-neuron) 503

AWS Neuron

Neuron Compiler Release [1.0.18001.0]

No changes

Neuron Compiler Release [1.0.17937.0]

No changes

Neuron Compiler Release [1.0.16861.0]

Removed log (Was erroneously reported as added in previous release.)

Neuron Compiler Release [1.0.15275]

Added log

Neuron Compiler Release [1.0.12696]

No changes

Neuron Compiler Release [1.0.9410]

No changes

Neuron Compiler Release [1.0.7878]

No changes

Neuron Compiler Release [1.0.6801]

No changes

Neuron Compiler Release [1.0.5939]

no changes

504 Chapter 9. MXNet Neuron

AWS Neuron

Neuron Compiler Release [1.0.5301]

no changes

Neuron Compiler Release [1.0.4680.0]

Activation
BatchNorm
Cast
Concat
Convolution
Convolution_v1
Dropout
Flatten
FullyConnected
LeakyReLU
Pooling
Pooling_v1
RNN
Reshape
SequenceMask
SliceChannel
Softmax
UpSampling
__add_scalar__
__div_scalar__
__mul_scalar__
__pow_scalar__
__rdiv_scalar__
__rpow_scalar__
__rsub_scalar__
__sub_scalar__
_arange
_copy
_div_scalar
_equal_scalar
_full
_greater_equal_scalar
_greater_scalar
_lesser_equal_scalar
_lesser_scalar
_maximum
_maximum_scalar
_minimum
_minimum_scalar
_minus_scalar
_mul_scalar
_not_equal_scalar
_ones
_plus_scalar
_power_scalar
_rdiv_scalar

(continues on next page)

9.2. Inference (mxnet-neuron) 505

AWS Neuron

(continued from previous page)

_rminus_scalar
_rnn_param_concat
_zeros
batch_dot
broadcast_add
broadcast_div
broadcast_equal
broadcast_greater
broadcast_greater_equal
broadcast_lesser
broadcast_lesser_equal
broadcast_maximum
broadcast_minimum
broadcast_mod
broadcast_mul
broadcast_not_equal
broadcast_sub
ceil
clip
concat
elemwise_add
elemwise_div
elemwise_mul
elemwise_sub
exp
expand_dims
flatten
floor
gather_nd
log
log_softmax
max
mean
min
negative
ones_like
relu
repeat
reshape
reshape_like
reverse
rsqrt
sigmoid
slice
slice_like
softmax
split
sqrt
square
squeeze
stack
sum

(continues on next page)

506 Chapter 9. MXNet Neuron

AWS Neuron

(continued from previous page)

tanh
tile
transpose
where
zeros_like

This document is relevant for: Inf1

• Troubleshooting Guide for Neuron Apache MXNet

• What’s New

• Neuron Apache MXNet Supported operators

This document is relevant for: Inf1

Setup (mxnet-neuron)

Tutorials

Computer Vision Tutorials

• ResNet-50 tutorial [html] [notebook]

• Model Serving tutorial [html]

• Getting started with Gluon tutorial [html] [notebook]

Natural Language Processing (NLP) Tutorials

• MXNet 1.8: Using data parallel mode tutorial [html] [notebook]

Utilizing Neuron Capabilities Tutorials

• NeuronCore Groups tutorial [html] [notebook]

Note: To use Jupyter Notebook see:

• setup-jupyter-notebook-steps-troubleshooting

• running-jupyter-notebook-as-script

API Reference Guide

• Neuron Apache MXNet Compilation Python API

9.2. Inference (mxnet-neuron) 507

https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/mxnet/resnet50/resnet50.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/mxnet/mxnet-gluon-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/mxnet/data_parallel/data_parallel_tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/mxnet/resnet50_neuroncore_groups.ipynb

AWS Neuron

Developer Guide

• Flexible Execution Group (FlexEG) in Neuron-MXNet

Misc

• Troubleshooting Guide for Neuron Apache MXNet

• What’s New

• Neuron Apache MXNet Supported operators

This document is relevant for: Inf1

MxNet Neuron(mxnet-neuron) for Inference on Inf1 This document is relevant for: Inf1

This document is relevant for: Inf2, Trn1, Trn1n

508 Chapter 9. MXNet Neuron

CHAPTER

TEN

TRANSFORMERS NEURONX (TRANSFORMERS-NEURONX)

This document is relevant for: Inf2, Trn1, Trn1n

10.1 Transformers NeuronX Setup (transformers-neuronx)

If you already have setup your environment to run PyTorch NeuronX, you just need to install Transformers NeuronX
library using the following instruction.

pip install transformers-neuronx --extra-index-url=https://pip.repos.neuron.amazonaws.com

If you are starting from scratch, Neuron Multi Framework DLAMI is recommended as it comes pre-installed with
Transformers NeuronX virtual environment. You can refer to the instructions to launch a Neuron instance using Multi
Framework DLAMI

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

10.2 Transformers Neuron Developer Guide (transformers-neuronx)

This document is relevant for: Inf2, Trn1, Trn1n

10.2.1 Transformers NeuronX (transformers-neuronx) Developer Guide

Transformers NeuronX for Trn1 and Inf2 is a software package that enables PyTorch users to perform large language
model (LLM) performant inference on second-generation Neuron hardware (See: NeuronCore-v2).The Neuron per-
formance page lists expected inference performance for commonly used Large Language Models.

Introduction

The Transformers NeuronX repository contains the source code of the AWS Neuron Transformers integration project.
As it stands now, it mainly serves the purpose of running transformer decoder inference (autoregressive sampling)
workflows on the Neuron platform.

Note: This project is actively in development. The Neuron team is still heavily modifying the Neuron optimized
module classes. The functionality provided in this repository will not maintain long-term API stability until version
>= 1.0.0. For applications willing to reuse code from this repository, we recommend treating the Neuron optimized
module implementations as samples, and pin the version of the main library package torch-neuronx to avoid breaking
interface changes as new features are developed.

509

https://github.com/aws-neuron/transformers-neuronx

AWS Neuron

Checkpoint compatibility with HuggingFace Transformers

transformers-neuronx is checkpoint-compatible with HuggingFace Transformers. While the Neuron team reimple-
mented some HuggingFace Transformers models from scratch for the purpose of maximizing the execution efficiency
of transformer decoders on Neuron, the implementations are done with maximizing compatibility in mind, meaning
one can train transformer decoder models, say GPT2, using the standard HuggingFace Transformers library, and then
construct an inference-optimized decoder model using transformers-neuronx’s GPT2ForSampling class. If training
was done with other libraries such as MegatronLM, then it is still possible to convert the obtained checkpoint to the
standard HuggingFace Transformers checkpoint format, and then move on to transformers-neuronx’s optimized decoder
implementations.

Neuron optimized transformer decoders implemented in XLA High Level Operations (HLO)

Due to the stateful nature of the autoregressive sampling computation, an efficient implementation of autoregressive
sampling using the Neuron SDK requires rewriting the model forward function into a pure-function computation run-
ning on fixed-shape tensors. Furthermore, we want the pure-function computation be implemented in a compiled
language so that the Neuron compiler can perform extensive code analysis and optimization. We chose XLA High
Level Operations (HLO) as the compiled language for implementing Neuron optimized transformer decoder classes.
The source code of these classes contains Python functions written in a syntax called “PyHLO”, name of a Neuron in-
ternal tool for writing/compiling the HLO language in Python. As an example, a “language model head” implemented
in PyHLO may look like the following.

class LmHeadHlo:

...

def lm_head(self, scribe):
dtype = self.dtype
hidden_size = self.hidden_size
n_active_tokens = self.n_active_tokens
batch_size = self.batch_size
vocab_size = self.vocab_size
hidden = dtype[hidden_size, n_active_tokens, batch_size].Parameter(parameter_

→˓number=0)
weight = dtype[hidden_size, vocab_size].Parameter(parameter_number=1)
rhs_size = n_active_tokens * batch_size
hidden = dtype[hidden_size, rhs_size].Reshape(hidden)
dot_dims = dict(lhs_contracting_dimensions=[0], rhs_contracting_dimensions=[0])
logits = dtype[vocab_size, rhs_size].Dot(weight, hidden, dot_dimension_

→˓numbers=dot_dims)
return dtype[vocab_size, n_active_tokens, batch_size].Reshape(logits)

...

The transformers_neuronx.compiler.compile_py_func function can convert the Python lm_head function
into HloModuleProto, a valid input format for the neuronx-cc compiler.

510 Chapter 10. Transformers NeuronX (transformers-neuronx)

AWS Neuron

Tensor-parallelism support

For transformer decoders used in large language models, tensor-parallelism is necessary as it provides a way to shard
the models’ large weight matrices onto multiple NeuronCores, and having NeuronCores working on the same matrix
multiply operation collaboratively. transformers-neuronx’s tensor-parallelism support makes heavy use of collective
operations such as all-reduce, which is supported natively by the Neuron runtime.

There are some principles for setting tensor-parallelism degree (number of NeuronCores participating in sharded matrix
multiply operations) for Neuron-optimized transformer decoder models.

1. The number of attention heads needs to be divisible by the tensor-parallelism degree.

2. The total data size of model weights and key-value caches needs to be smaller than 16 GB times the tensor-
parallelism degree.

3. Currently, the Neuron runtime supports tensor-parallelism degrees 1, 2, 8, and 32 on Trn1 and supports tensor-
parallelism degrees 1, 2, 4, 8, and 24 on Inf2.

Some examples:

1. facebook/opt-13b has 40 attention heads, and when running at batch size 1 and float16 precision the model
requires ~29 GB memory, therefore a trn1.2xlarge with 32 GB device memory is sufficient.

2. facebook/opt-30b has 56 attention heads, and at batch size 1 and float16 precision the model requires ~66 GB
memory, therefore it can run on 8 NeuronCores on one trn1.32xlarge using 128 GB device memory.

3. gpt2-xl has 25 attention heads and requires ~4 GB memory at bfloat16 precision. It runs without tensor-
parallelism only.

Features

Compile-time Configurations

Transformers Neuron models support a variety of compile-time configurations that can be used to tune model perfor-
mance. All models support the following configurations:

• batch_size: The batch size to compile a model for. Once the batch size has been set, this is the only size that is
supported at inference time. Neuron uses ahead-of-time compilation to achieve high performance which requires
that the compiled artifact shapes must be known at compilation time.

• n_positions: The maximum number of positions (or sequence length) to allow during generation. This pa-
rameter directly controls the width of the KV cache. This parameter should be set to the maximum expected
sequence length for the end application.

• tp_degree: This parameter controls the number of tensor parallel shards to split the model into. Each shard
will execute on a separate NeuronCore. To minimize latency, it is recommended to set the tensor parallelism to
be equal to the number of NeuronCores that are available on an instance.

• amp: This allows a models weights and compute to be cast to a different type. The options are; 'bf16', 'f16', or
'f32'. For models trained in float32, the 16-bit mixed precision options ('bf16', 'f16') generally provide
sufficient accuracy while significantly improving performance.

• context_length_estimate: This parameter controls the maximum sequence length of the prompt/context
handling compute graph. This parameter is not supported in GPTNeoXForSampling and GPTJForSampling.

from transformers_neuronx import NeuronAutoModelForCausalLM

model = NeuronAutoModelForCausalLM.from_pretrained(
'gpt2', # Uses the GPT2 checkpoint from https://huggingface.co/

→˓gpt2 (continues on next page)

10.2. Transformers Neuron Developer Guide (transformers-neuronx) 511

AWS Neuron

(continued from previous page)

batch_size=1, # Allow inference with batch size 1 inputs
n_positions=128, # Allow a maximum size of 128 prompt & output tokens
tp_degree=2, # Shard the model weights & compute across 2 NeuronCores
amp='f16', # Downcast the weights & compute to float16
context_length_estimate=64, # Build an optimized context encoding network for a␣

→˓maximum prompt size of 64
)
model.to_neuron() # Load/compile the model

Checkpoint support and automatic model selection

New in release 2.18

Transformers Neuron now supports a greater variety of checkpoints including older pytorch binary checkpoints and
newer safetensors checkpoints. For improved load speed and reduced host memory consumption, it is recommended to
always use safetensors by default. Both regular and sharded variants of checkpoints are supported. It is no longer
recommended to use the save_pretrained_split function which was used in older Transformers Neuron examples.

In addition to supporting standard checkpoint formats, Transformers Neuron provides an AutoModel class
NeuronAutoModelForCausalLM which can be used to load the correct model without explicitly importing the
architecture-specific class.

from transformers_neuronx import NeuronAutoModelForCausalLM

Loads: https://huggingface.co/bigscience/bloom-560m
bloom = NeuronAutoModelForCausalLM.from_pretrained('bigscience/bloom-560m')
bloom.to_neuron()

Loads: https://huggingface.co/openlm-research/open_llama_3b_v2
llama = NeuronAutoModelForCausalLM.from_pretrained('openlm-research/open_llama_3b_v2')
llama.to_neuron()

This is equivalent to the following:
from transformers_neuronx import BloomForSampling
model = BloomForSampling.from_pretrained('bigscience/bloom-560m')
model.to_neuron()

from transformers_neuronx import LlamaForSampling
llama = LlamaForSampling.from_pretrained('openlm-research/open_llama_3b_v2')
llama.to_neuron()

Note: Advanced features of huggingface hub access are not supported. This includes private repositories which
require access tokens and branches.

In order to support more advanced repository downloads, please download the model to a local directory and load it
from there.

512 Chapter 10. Transformers NeuronX (transformers-neuronx)

https://github.com/huggingface/safetensors

AWS Neuron

Hugging Face generate() API support

Transformers Neuron models support the Hugging Face generate() API via the
HuggingFaceGenerationModelAdapter adapter class. In the following example we demonstrate how to run
sampling with temperature using the GPT2 model:

import torch
from transformers import AutoTokenizer, AutoConfig
from transformers_neuronx import GPT2ForSamplingWithContextBroadcasting,␣
→˓HuggingFaceGenerationModelAdapter

Create and compile the Neuron model
model = GPT2ForSamplingWithContextBroadcasting.from_pretrained('gpt2')
model.to_neuron()

Use the `HuggingFaceGenerationModelAdapter` to access the generate API
config = AutoConfig.from_pretrained('gpt2')
model = HuggingFaceGenerationModelAdapter(config, model)

Get a tokenizer and example input
tokenizer = AutoTokenizer.from_pretrained('gpt2')
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.padding_side = 'left'
text = "Hello, I'm a language model,"
encoded_input = tokenizer(text, return_tensors='pt', padding=True)

Run inference using temperature
with torch.inference_mode():

model.reset_generation()
generated_sequence = model.generate(

input_ids=encoded_input.input_ids,
attention_mask=encoded_input.attention_mask,
do_sample=True,
max_length=256,
temperature=0.7,

)

print([tokenizer.decode(tok) for tok in generated_sequence])

Note: As the Hugging Face generation API can expand the input’s batch dimension based on different generation
configurations, we need to compile the neuron model with different compile batch_size compared to the run
time batch_size (batch dimension of inputs to generation API). - if do_sample=True, compile_batch_size
= runtime_batch_size x num_return_sequences x beam_size - otherwise, compile_batch_size =
runtime_batch_size x num_return_sequences

10.2. Transformers Neuron Developer Guide (transformers-neuronx) 513

https://huggingface.co/docs/transformers/v4.28.1/en/main_classes/text_generation#transformers.GenerationMixin.generate

AWS Neuron

Neuron Persistent Cache

The Neuron Persistent Cache is now enabled for Transformers Neuron by default. Model artifacts which have been
compiled once will be cached and reused on successive runs when possible. Model artifacts will only be reused when
compiling with the same compiler version (neuronx-cc), model configurations, and compiler flags. It also includes
other features (i.e. using an S3 bucket as the cache backend). For more detailed information, see the Persistent cache
documentation

int8 weight storage support

Transformers Neuron supports int8 weight storage for the GPT2 model class. int8 weight storage can be used to reduce
memory bandwidth usage to improve model performance. int8 weight storage support for additional model classes will
be added in an upcoming release. In the following example we demonstrate how to apply int8 weight storage to the
GPT2 model via the QuantizationConfig and NeuronConfig configs:

import torch
from transformers import AutoTokenizer
from transformers_neuronx import GPT2ForSamplingWithContextBroadcasting, NeuronConfig,␣
→˓QuantizationConfig

Set the weight storage config use int8 quantization and bf16 dequantization
neuron_config = NeuronConfig(

quant=QuantizationConfig(quant_dtype='s8', dequant_dtype='bf16'),
)

Create and compile the Neuron model
model = GPT2ForSamplingWithContextBroadcasting.from_pretrained(

'gpt2',
amp='bf16', # NOTE: When using quantization, amp type must match dequant type
neuron_config=neuron_config

)
model.to_neuron()

Get a tokenizer and example input
tokenizer = AutoTokenizer.from_pretrained('gpt2')
text = "Hello, I'm a language model,"
encoded_input = tokenizer(text, return_tensors='pt')

Run inference
with torch.inference_mode():

generated_sequence = model.sample(encoded_input.input_ids, sequence_length=256,␣
→˓start_ids=None)
print([tokenizer.decode(tok) for tok in generated_sequence])

514 Chapter 10. Transformers NeuronX (transformers-neuronx)

AWS Neuron

Parallel Input Prompt Context Encoding

Transformers Neuron supports parallel input prompt context encoding for the GPT2 model class. Parallel context en-
coding can be used to significantly reduce the latency of the input prompt context encoding before the autoregressive
decoder token generation loop. Parallel context encoding support for additional model classes will be added in an
upcoming release.

The GPT2ForSamplingWithContextBroadcasting class has a context_length_estimate variable that deter-
mines the number of input prompt tokens that will be processed in parallel. For optimal results, this should be set to
a power of 2 that is closest to the most frequently seen input prompt length. In the following example we demonstrate
how to apply parallel context encoding to the GPT2 model via the GPT2ForSamplingWithContextBroadcasting
class. In this example, we set the context_length_estimate to be 128, which is the closest power of 2 the length
of the input prompt (97 tokens).

import torch
from transformers import AutoTokenizer
from transformers_neuronx import GPT2ForSamplingWithContextBroadcasting

Create and compile the Neuron model
model = GPT2ForSamplingWithContextBroadcasting.from_pretrained(

'gpt2',
context_length_estimate=256 # Create an optimized network which handles prompts up␣

→˓to 256 tokens
)
model.to_neuron()

Get a tokenizer and example input
tokenizer = AutoTokenizer.from_pretrained('gpt2')
text = "Hello, I'm a generative AI language model. Generative AI is a type of AI that␣
→˓can create new content and ideas, including conversations, stories, images, videos,␣
→˓and music. It is powered by large models that are pre-trained on vast amounts of data␣
→˓and commonly referred to as foundation models (FMs). With generative AI on AWS, you␣
→˓can reinvent your applications, create entirely new customer experiences, drive␣
→˓unprecedented levels of productivity, and transform your business. "
encoded_input = tokenizer(text, return_tensors='pt')

Run inference
with torch.inference_mode():

generated_sequence = model.sample(encoded_input.input_ids, sequence_length=256)
print([tokenizer.decode(tok) for tok in generated_sequence])

The GPT2ForSamplingWithContextBroadcasting class can also process an input prompt that has a different batch
size from the batch size of the autoregressive decoder output. For example, an input prompt with batch size = 1 can
be used to produce an output of batch size = 5 to generate multiple suggestions for the same input prompt. The input
prompt batch size can be specified using the prompt_batch_size argument and the autoregressive decoder output
batch size can be specified using the batch_size argument. In the following example we demonstrate how to apply
parallel context encoding to the GPT2 model to generate 5 outputs for a single input.

import torch
from transformers import AutoTokenizer
from transformers_neuronx import GPT2ForSamplingWithContextBroadcasting

Create and compile the Neuron model
model = GPT2ForSamplingWithContextBroadcasting.from_pretrained(

(continues on next page)

10.2. Transformers Neuron Developer Guide (transformers-neuronx) 515

AWS Neuron

(continued from previous page)

'gpt2',
prompt_batch_size=1, # This allows prompt and output batch to vary
batch_size=5,
context_length_estimate=256

)
model.to_neuron()

Get a tokenizer and example input
tokenizer = AutoTokenizer.from_pretrained('gpt2')
text = "Hello, I'm a generative AI language model. Generative AI is a type of AI that␣
→˓can create new content and ideas, including conversations, stories, images, videos,␣
→˓and music. It is powered by large models that are pre-trained on vast amounts of data␣
→˓and commonly referred to as foundation models (FMs). With generative AI on AWS, you␣
→˓can reinvent your applications, create entirely new customer experiences, drive␣
→˓unprecedented levels of productivity, and transform your business. "
encoded_input = tokenizer(text, return_tensors='pt')

Run inference
with torch.inference_mode():

generated_sequence = model.sample(encoded_input.input_ids, sequence_length=256)

for i, output in enumerate(generated_sequence):
print('-' * 50)
print(f'Batch {i} output:')
print(tokenizer.decode(output))

Serialization support [Beta]

Transformers Neuron supports model serialization (model saving and loading) for all models except the
GPTJForSampling and GPTNeoXForSampling` model classes. In the following example we demonstrate how to
save and load the GPT2 model:

import torch
from transformers import AutoTokenizer
from transformers_neuronx import GPT2ForSamplingWithContextBroadcasting,␣
→˓HuggingFaceGenerationModelAdapter

Create and compile the Neuron model
model = GPT2ForSamplingWithContextBroadcasting.from_pretrained('gpt2')
model.to_neuron()

Save the compiled Neuron model
model.save('gpt2-compiled-artifacts')

Load the Neuron model
model = GPT2ForSamplingWithContextBroadcasting.from_pretrained('gpt2')
Load the compiled Neuron artifacts
model.load('gpt2-compiled-artifacts')
Since prior artifacts are loaded, this skips compilation
model.to_neuron()

(continues on next page)

516 Chapter 10. Transformers NeuronX (transformers-neuronx)

AWS Neuron

(continued from previous page)

Get a tokenizer and example input
tokenizer = AutoTokenizer.from_pretrained('gpt2')
text = "Hello, I'm a language model,"
encoded_input = tokenizer(text, return_tensors='pt')

Run inference
with torch.inference_mode():

generated_sequence = model.sample(encoded_input.input_ids, sequence_length=256,␣
→˓start_ids=None)
print([tokenizer.decode(tok) for tok in generated_sequence])

Grouped-query attention (GQA) support [Beta]

Transformers Neuron supports grouped-query attention (GQA) models for Llama and Mistral model classes. There
are multiple sharding strategies for K/V cache, in order to satisfy different constraints.

• GQA.SHARD_OVER_HEADS distributes K/V caches along head dimension. This can be only used when K/V heads
is multiple of tensor-parallelism degree. This is the default configuration.

• GQA.SHARD_OVER_BATCH distributes K/V caches along batch dimension. This can be only used when batch size
is multiple of tensor-parallelism degree. This can be useful for large-batch inference.

• GQA.REPLICATED_HEADS replicates K/V heads. This can be used when neither batch size nor K/V heads can be
divisible by tensor-parallelism degree. This can be useful for low-latency small-batch inference.

• GQA.ALL_GATHER_HEADS evenly splits the K/V heads across all NeuronCores. This is optimized for large-batch
inference of GQA model without replication.

In the following example we demonstrate how to configure these distributed inference strategies and perform inference
with the Mistral model:

import torch
from transformers import AutoTokenizer
from transformers_neuronx import MistralForSampling, GQA, NeuronConfig

Set sharding strategy for GQA to be shard over heads
neuron_config = NeuronConfig(

group_query_attention=GQA.SHARD_OVER_HEADS
)

Create and compile the Neuron model
model_neuron = MistralForSampling.from_pretrained('mistralai/Mistral-7B-Instruct-v0.2',␣
→˓amp='bf16', neuron_config=neuron_config)
model_neuron.to_neuron()

Get a tokenizer and exaple input
tokenizer = AutoTokenizer.from_pretrained('mistralai/Mistral-7B-Instruct-v0.2')
text = "[INST] What is your favourite condiment? [/INST]"
encoded_input = tokenizer(text, return_tensors='pt')

Run inference
with torch.inference_mode():

(continues on next page)

10.2. Transformers Neuron Developer Guide (transformers-neuronx) 517

AWS Neuron

(continued from previous page)

generated_sequence = model_neuron.sample(encoded_input.input_ids, sequence_
→˓length=256, start_ids=None)
print([tokenizer.decode(tok) for tok in generated_sequence])

Repeated Ngram Filtering

Repeated Ngram Filtering reduces redundant ngram phrases within the generated text. It uses the same API as Hugging-
Face API for NoRepeatedNGram. Set the parameter no_repeat_ngram_size to the size of ngram phrases to be filtered
and pass it to the sampling function as in the example model.sample(inputs_ids, no_repeat_ngram_size=3)

Top-K on-device sampling support [Beta]

Transformers Neuron supports Top-K Sampling on-device for all models except Mixtral models. In the following exam-
ple, we demonstrate how to use on-device Top-K for the Llamamodel via the GenerationConfig and NeuronConfig
configs.

import torch
from transformers_neuronx import LlamaForSampling
from transformers_neuronx.config import NeuronConfig, GenerationConfig
from transformers import AutoTokenizer

neuron_config = NeuronConfig(
on_device_generation=GenerationConfig(max_length=128, top_k=10, do_sample=True)

)

Create and compile the Neuron model
model_neuron = LlamaForSampling.from_pretrained('openlm-research/open_llama_3b', batch_
→˓size=1, tp_degree=8, n_positions=128, neuron_config=neuron_config)
model_neuron.to_neuron()

Get a tokenizer and exaple input
tokenizer = AutoTokenizer.from_pretrained('openlm-research/open_llama_3b')
text = "Hello, I'm a language model,"
encoded_input = tokenizer(text, return_tensors='pt')

Run inference
with torch.inference_mode():

generated_sequence = model_neuron.sample(encoded_input.input_ids, sequence_
→˓length=128, top_k=10)

print([tokenizer.decode(tok) for tok in generated_sequence])

518 Chapter 10. Transformers NeuronX (transformers-neuronx)

AWS Neuron

Running inference with multiple models

Multiple transformers-neuronx models can be loaded at the same time as long as the total number of consumed Neuron-
Cores is less than or equal to the total number of NeuronCores on the instance. For example, three tp-degree=8 models
can be loaded and run in parallel on an inf2.48xlarge which has 24 NeuronCores. The NEURON_RT_NUM_CORES and
NEURON_RT_VISIBLE_CORES environment variables can be used to allocate the necessary number of NeuronCores
to each process to run multiple transformers-neuronx models in parallel. See the NeuronCore Allocation and Model
Placement for Inference (torch-neuronx) section for additional information about how to use these environment vari-
ables.

It is important to notice that when multiple models are used on a single instance, the number of threads should be
reduced to avoid race condition on host side. Assume the neuron instance (i.e. trn1) has 192 CPU cores. If one of
the models keeps all CPU cores busy, there would be significant performance degradation in the rest of models. As a
result, the number of threads for each model should be limited to part of available cores. To do this, OMP_NUM_THREADS
environment variable can be set. For example, if there are 192 CPU cores available and four tp-degree=8 models are
used, one can export OMP_NUM_THREADS=48 to avoid race condition.

Streamer

LLMs generate tokens in auto-regressive loop. A model.sample call waits till the end of full sequence generation before
returning the generated response. It is possible to output an output token as soon as it is generated. To do this, a streamer
object can be used. Streamer is an object which has 2 methods: put and end. There are several predefined streamer in
transformers library such as TextIteratorStreamer. The following example shows how to define a streamer and use it in
transformers-neuronx:

import torch
from transformers import AutoTokenizer
from transformers_neuronx import MistralForSampling, GQA

import transformers
from time import time

Create a custom streamer inherited from transformers.generation.streamers.BaseStreamer
class CustomStreamer(transformers.generation.streamers.BaseStreamer):

def __init__(self) -> None:
self.reset()

def reset(self):
self.token_latencies = []
self.iter = 0
self.now = time()

def put(self, tokens):
now = time()
token_latency = now - self.now
print(f"Iteration {self.iter:4d}: Latency [s] {token_latency:6.3f} -- Token

→˓{tokens}")
self.now = now
self.iter += 1
self.token_latencies.append(token_latency)

def end(self):
(continues on next page)

10.2. Transformers Neuron Developer Guide (transformers-neuronx) 519

AWS Neuron

(continued from previous page)

print("First 10 token latencies:", self.token_latencies[:10])

Create and compile the Neuron model
model_neuron = MistralForSampling.from_pretrained('mistralai/Mistral-7B-Instruct-v0.2',␣
→˓amp='bf16')
model_neuron.to_neuron()

Get a tokenizer and exaple input
tokenizer = AutoTokenizer.from_pretrained('mistralai/Mistral-7B-Instruct-v0.2')
text = "[INST] What is your favourite condiment? [/INST]"
encoded_input = tokenizer(text, return_tensors='pt')

streamer = CustomStreamer()
Run inference
with torch.inference_mode():

generated_sequence = model_neuron.sample(encoded_input.input_ids, sequence_
→˓length=256, start_ids=None, streamer=streamer)

Stopping Criteria

We can define custom stopping criteria to stop autoregressive loop. For example, if we want to limit autoregressive
loop after 0.5s, we can define and use stopping criteria class as follows:

import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from transformers_neuronx import MistralForSampling, GQA, NeuronConfig
from transformers_neuronx.stopping_criteria import StoppingCriteria, StoppingCriteriaList

from time import time
from typing import List, Optional, Callable

class MaxTimeCriteria(StoppingCriteria):
"""
This class can be used to stop generation whenever the full generation exceeds some␣

→˓amount of time. By default, the
time will start being counted when you initialize this function. You can override␣

→˓this by passing an
`initial_time`.

Args:
max_time (`float`):

The maximum allowed time in seconds for the generation.
initial_time (`float`, *optional*, defaults to `time()`):

The start of the generation allowed time.
"""

def __init__(self, max_time: float, initial_timestamp: Optional[float] = None):
self.max_time = max_time

(continues on next page)

520 Chapter 10. Transformers NeuronX (transformers-neuronx)

AWS Neuron

(continued from previous page)

self.initial_timestamp = time() if initial_timestamp is None else initial_
→˓timestamp

def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs)␣
→˓-> bool:

dt = time() - self.initial_timestamp
end_condition = dt > self.max_time
if end_condition:

print("Stopping!")
return end_condition

Create a streamer. This can be a custom streamer too inherited from transformers.
→˓generation.streamers.BaseStreamer
class CustomStreamer(transformers.generation.streamers.BaseStreamer):

def __init__(self) -> None:
self.reset()

def reset(self):
self.token_latencies = []
self.iter = 0
self.now = time()

def put(self, tokens):
now = time()
token_latency = now - self.now
print(f"Iteration {self.iter:4d}: Latency [s] {token_latency:6.3f} -- Token

→˓{tokens}")
self.now = now
self.iter += 1
self.token_latencies.append(token_latency)

def end(self):
pass

Create and compile the Neuron model
model_neuron = MistralForSampling.from_pretrained('mistralai/Mistral-7B-Instruct-v0.2',␣
→˓amp='bf16')
model_neuron.to_neuron()

Get a tokenizer and exaple input
tokenizer = AutoTokenizer.from_pretrained('mistralai/Mistral-7B-Instruct-v0.2')
text = "[INST] What is your favourite condiment? [/INST]"
encoded_input = tokenizer(text, return_tensors='pt')

Add stopping criteria to stop after 0.5 seconds
stopping_criteria_list= StoppingCriteriaList([MaxTimeCriteria(0.5)])
streamer = CustomStreamer()

Run inference
with torch.inference_mode():

model_neuron.sample(input_ids=encoded_input.input_ids, sequence_length=256, stopping_
→˓criteria_list=stopping_criteria_list, streamer=streamer) (continues on next page)

10.2. Transformers Neuron Developer Guide (transformers-neuronx) 521

AWS Neuron

(continued from previous page)

Speculative sampling [Beta]

Transformers Neuron supports speculative sampling for the Llama and GPT2 model classes. In speculative sampling,
we use use a smaller draft model to speculate future tokens. These are then sent to the larger target model, which accepts
or rejects these tokens. For more detailed information, see the original proposal by DeepMind titled Accelerating Large
Language Model Decoding with Speculative Sampling. Speculative sampling is currently supported for batch size 1.

In the following example, we demonstrate how to perform speculative sampling using the Llama model.

import torch
from transformers import LlamaTokenizer
from transformers_neuronx import LlamaForSampling
from transformers_neuronx.speculation import SpeculativeGenerator

Load draft model
draft_neuron_model = LlamaForSampling.from_pretrained('openlm-research/open_llama_3b', n_
→˓positions=256, batch_size=1, tp_degree=8, amp='f32')
Compile the model
draft_neuron_model.to_neuron()

Load target model
target_neuron_model = LlamaForSampling.from_pretrained('openlm-research/open_llama_13b',␣
→˓n_positions=256, batch_size=1, tp_degree=8, amp='f32')
Enable speculative decoder
target_neuron_model.enable_speculative_decoder(4)
Compile the model
target_neuron_model.to_neuron()

Initialize tokenizer and text prompt
tokenizer = LlamaTokenizer.from_pretrained("openlm-research/open_llama_13b")
prompt = "Hello, I'm a generative AI language model."
input_ids = tokenizer(prompt, return_tensors="pt").input_ids

Create SpeculativeGenerator
spec_gen = SpeculativeGenerator(draft_neuron_model, target_neuron_model, 4)

Call speculative sampling on given input
response = spec_gen.sample(

input_ids=input_ids,
sequence_length=30,

)

Decode the response
generated_text = tokenizer.decode(response[0])
print(f"\nDecoded tokens: {generated_text}")

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

522 Chapter 10. Transformers NeuronX (transformers-neuronx)

AWS Neuron

10.2.2 Transformers NeuronX (transformers-neuronx) Developer Guide For Contin-
uous Batching

The continuous batching feature has been enabled with Transformers NeuronX. Transformers NeuronX for Trn1 and
Inf2 is a software package that enables PyTorch users to perform large language model (LLM) performant inference
on second-generation Neuron hardware (See: NeuronCore-v2). The Neuron performance page lists expected inference
performance for commonly used Large Language Models.

Overview of continuous batching API and vLLM support

Transformers NeuronX supports continuous batching for LLaMA model class.

The basic flow for continuous batching support includes the following operations performed automatically by Trans-
formers NeuronX:

1. Fill multiple prompts with context encoding by using virtual dynamic batching.

2. Decode each sequence until one of the sequences generates an EOS token.

3. Evict the finished sequence and insert a new prompt encoding.

4. Resume the decoding proces, repeating steps 2-3 until all of the sequences are decoded.

Installing vLLM and running a simple offline script

Once neuronx-cc and transformers-neuronx packages are installed, we will be able to install vLLM from source as
follows:

git clone https://github.com/vllm-project/vllm.git
cd vllm
git checkout -b v0.3.3 v0.3.3
touch ./vllm/model_executor/models/neuron/__init__.py
pip install -U -r requirements-neuron.txt
pip install .

If Neuron packages are detected correctly in the installation process, vllm-0.3.3+neuron213 will be installed.

In the following example we demonstrate how to perform continuous batching with the LLaMA model.

from vllm import LLM, SamplingParams

Sample prompts.
prompts = [

"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",

]
Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

Create an LLM.
llm = LLM(

model="openlm-research/open_llama_3b",
max_num_seqs=8,

(continues on next page)

10.2. Transformers Neuron Developer Guide (transformers-neuronx) 523

AWS Neuron

(continued from previous page)

The max_model_len and block_size arguments are required to be same as max sequence␣
→˓length,
when targeting neuron device. Currently, this is a known limitation in continuous␣

→˓batching
support in transformers-neuronx.
max_model_len=128,
block_size=128,
The device can be automatically detected when AWS Neuron SDK is installed.
The device argument can be either unspecified for automated detection, or␣

→˓explicitly assigned.
device="neuron")

Generate texts from the prompts. The output is a list of RequestOutput objects
that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
Print the outputs.
for output in outputs:

prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

Known issues and FAQs

How to fix ModuleNotFoundError: No module named ‘vllm.model_executor.models.neuron’ ?
Github issue: https://github.com/vllm-project/vllm/issues/3284

pip install process may not copy neuron/llama.py into the site-packages directory. This is due to the missing
__init__.py in the neuron directory. The error looks like:

ModuleNotFoundError: No module named ‘vllm.model_executor.models.neuron’

Besides, we need to add __init__.py file in the neuron directory BEFORE pip install, so that the directory would
be copied in the pip install process. This is done using the touch Linux utility as shown in the installation steps above.

Are other models than Llama supported?
Currently, only LLaMA model support is upstreamed to vLLM. Support for other models like Mistral will be added in
a future Neuron release.

Is PagedAttention supported with vLLM integration?
No, PagedAttention is not currently supported. It will be supported in a future Neuron release.

This document is relevant for: Inf2, Trn1, Trn1n

• Transformers NeuronX (transformers-neuronx) Developer Guide

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

524 Chapter 10. Transformers NeuronX (transformers-neuronx)

https://github.com/vllm-project/vllm/issues/3284

AWS Neuron

10.3 Transformers NeuronX Tutorials

• Hugging Face meta-llama/Llama-2-13b autoregressive sampling on Inf2 & Trn1

• Hugging Face facebook/opt-13b autoregressive sampling on Inf2 & Trn1

• Hugging Face facebook/opt-30b autoregressive sampling on Inf2 & Trn1

• Hugging Face facebook/opt-66b autoregressive sampling on Inf2

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

10.4 Misc (transformers-neuronx)

This document is relevant for: Inf2, Trn1, Trn1n

10.4.1 Transformers Neuron (transformers-neuronx) release notes

Table of Contents

• Model classes status

• Model features

• Release [0.10.0.332]

• Release [0.10.0.21]

• Release [0.9.474]

• Release [0.8.268]

• Release [0.7.84]

• Release [0.6.106]

• Release [0.5.58]

• Release [0.4.0]

• Release [0.3.0]

Transformers Neuron for Trn1/Inf2 is a software package that enables PyTorch users to perform large language model
(LLM) inference on second-generation Neuron hardware (See: NeuronCore-v2).

10.3. Transformers NeuronX Tutorials 525

https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/meta-llama-2-13b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/facebook-opt-13b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/facebook-opt-30b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/facebook-opt-66b-sampling.ipynb

AWS Neuron

Model classes status

• BLOOM: [Beta]

• GPT2: [Beta]

• GPT-J: [Beta]

• GPT-Neox: [Beta]

• LLaMA: [Beta]

• LLaMA 2: [Beta]

• Mistral: [Beta]

Model features

Model Flexible Tensor Parallelism Prompt Estimate Support Serialization Support
BLOOM Yes Yes Yes
GPT2 Yes Partial Yes
GPT-J No No No
GPT-NeoX No No No
LLaMA Yes Yes Yes
LLaMA 2 Yes Yes Yes
Mistral Yes Yes Yes

Release [0.10.0.332]

Date: 04/10/2024

Summary

What’s new in this release

• [Beta] Added support for continuous batching and a reference integration with vLLM (LLaMA models only)

Known Issues and Limitations

• There is a known compiler issue for inference of some configurations of LLaMA-2 70B that can cause accuracy
degredation. Customers are advised to use the --enable-mixed-precision-accumulation compiler flag if
LLaMA-2 70B accuracy issues occur.

• There is a known compiler issue for inference of some configurations of LLaMA-2 13B that can
cause accuracy degredation. Customers are advised to use the --enable-saturate-infinity
--enable-mixed-precision-accumulation compiler flags if LLaMA-2 13B accuracy issues occur.

• There is a known compiler issue for inference of some configurations of GPT-2 that can cause
accuracy degredation. Customers are advised to use the --enable-saturate-infinity
--enable-mixed-precision-accumulation compiler flags if GPT-2 accuracy issues occur.

• GPT-NeoX is sensitive to fp16 and customers are advised to use only amp="f32" for GPT-NeoX.

526 Chapter 10. Transformers NeuronX (transformers-neuronx)

https://huggingface.co/docs/transformers/model_doc/bloom
https://huggingface.co/docs/transformers/model_doc/gpt2
https://huggingface.co/docs/transformers/model_doc/gptj
https://huggingface.co/docs/transformers/model_doc/gpt_neox
https://huggingface.co/docs/transformers/main/model_doc/llama
https://huggingface.co/docs/transformers/main/model_doc/llama2
https://huggingface.co/docs/transformers/main/model_doc/mistral

AWS Neuron

• Using cache_layout=constants.LAYOUT_BSH in NeuronConfig has known limitations with compilation.
Customers are advised to use constants.LAYOUT_SBH instead.

Release [0.10.0.21]

Date: 04/01/2024

Summary

What’s new in this release

• Added support for on device log-softmax and on device sampling for TopK

• Added support for on device embedding for all models.

• Added support for Speculative Decoding

• [Beta] Added support for Mixtral-8x7b MoE

• [Beta] Added support for mistralai/Mistral-7B-Instruct-v0.2 with no sliding window

• Added faster checkpoint loading support for both sharded and whole checkpoints

• Added the ability to download checkpoints directly from huggingface hub repositories

• Added NeuronAutoModelForCausalLM class which automatically loads architecture-specific classes

• Added a warmup to all kernels to avoid unexpected initialization latency spikes

Resolved Issues

• Users no longer need a copy of the original checkpoint and can use safetensor checkpoints for optimal speed.

Known Issues and Limitations

• There is a known compiler issue for inference of some configurations of LLaMA-2 70B that can cause accuracy
degredation. Customers are advised to use the --enable-mixed-precision-accumulation compiler flag if
LLaMA-2 70B accuracy issues occur.

• There is a known compiler issue for inference of some configurations of LLaMA-2 13B that can
cause accuracy degredation. Customers are advised to use the --enable-saturate-infinity
--enable-mixed-precision-accumulation compiler flags if LLaMA-2 13B accuracy issues occur.

• There is a known compiler issue for inference of some configurations of GPT-2 that can cause
accuracy degredation. Customers are advised to use the --enable-saturate-infinity
--enable-mixed-precision-accumulation compiler flags if GPT-2 accuracy issues occur.

• GPT-NeoX is sensitive to fp16 and customers are advised to use only amp="f32" for GPT-NeoX.

10.4. Misc (transformers-neuronx) 527

AWS Neuron

Release [0.9.474]

Date: 12/21/2023

Summary

What’s new in this release

• [LLaMA] [Beta] Added support for LLaMA-2 70B.

• [Mistral] [Beta] Added support for Mistral 7B.

• [Beta] Added support for PyTorch 2.1.

• [Beta] Added support for Grouped Query Attention (GQA).

• [Beta] Added support for safetensors serialization.

• [LLaMA] [Beta] Added support for early stopping in the sample_llama function.

• [GPT2] [Beta] Added sparse attention support.

• [Stable] Added support for BatchNorm.

• Use the --auto-cast=none compiler flag by default for all models. This flag improves accuracy for float32
operations.

Resolved Issues

• Resolved an issue in top_p in the sample_llama function so that it now selects the same number of tokens that
the Hugging Face top_p implementation selects.

Known Issues and Limitations

• There is a known compiler issue for inference of some configurations of LLaMA-2 70B that can cause accuracy
degredation. Customers are advised to use the --enable-mixed-precision-accumulation compiler flag if
LLaMA-2 70B accuracy issues occur.

• There are known compiler issues impacting inference accuracy of certain model configurations of Llama-2-13b
when amp = fp16 is used. If this issue is observed, amp=fp32 should be used as a work around. This issue will
be addressed in future Neuron releases.

Release [0.8.268]

Date: 10/26/2023

528 Chapter 10. Transformers NeuronX (transformers-neuronx)

AWS Neuron

Summary

What’s new in this release

• [LLaMA] [Beta] Added support for int8 quantization for LLaMA.

• [BLOOM] [Beta] Added multi bucket context encoding support for BLOOM.

• [Beta] Added model Serialization for all supported models (except GPT-J and GPT-NeoX).

• [Beta] Added the ability to return output logit scores during sampling.

• [Stable] Added support for SOLU activation and GroupNorm.

Resolved Issues

• [GPT2] Fixed an issue in GPT2ForSamplingWithContextBroadcasting where the input prompt would get
truncated if it was longer than the context_length_estimate.

Known Issues and Limitations

Release [0.7.84]

Date: 09/15/2023

Summary

What’s new in this release

• Use the --model-type=transformer compiler flag by default for all models. This flag improves performance
and compilation time for all models. This flag replaces the --model-type=transformer-inference flag,
which is now depracated.

Resolved Issues

• Fixed an issue where the HuggingFaceGenerationModelAdapter class falls back to serial context en-
coding for models that have parallel context encoding (GPT2ForSamplingWithContextBroadcasting,
LlamaForSampling, etc.)

• [GPT2 / OPT] Fixed an issue in the parallel context encoding network where incorrect results could be generated
due to incorrect masking logic.

10.4. Misc (transformers-neuronx) 529

AWS Neuron

Known Issues and Limitations

• Some configurations of LLaMA and LLaMA-2 inference models fail compilation with the error IndirectLoad/
Save requires contiguous indirect access per partition. This is fixed in the compiler version
2.10.0.35 (Neuron SDK 2.14.1).

• Some configurations of LLaMA and LLaMA-2 inference model fail compilation with the error Too many
instructions after unroll for function sg0000. To mitigate this, please try with -O1 compiler op-
tion (or --optlevel 1) by adding os.environ["NEURON_CC_FLAGS"] = "-O1" to your script or set in the
environment. A complete fix will be coming in the future release which will not require this option. Note: Using
-O1 in the LLaMA-2 13B tutorial results in about 50% increase in latency compared to Neuron SDK 2.13.2. If
this is not acceptable, please use compiler version from Neuron SDK 2.13.2.

Release [0.6.106]

Date: 08/28/2023

Summary

What’s new in this release

• Added support for LLaMA 2 (excluding grouped/multi-query versions, such as LLaMA 2 70B) [Beta]

• Improved the performance of BLOOM and LLaMA models [Beta]

• Reduced execution latency of token generation in tensor parallel models by improving thread synchronization.
(supported in LLaMA only)

• Added an optimized vector implementation of RoPE positional embedding. (supported in LLaMA only)

• Added support for faster context encoding on sequences of varying lengths. This is implemented by allowing
multiple buckets for parallel context encoding. During inference the best fit bucket is chosen. (supported in
LLaMA/GPT-2 only)

• Added the Neuron Persistent Cache for compilation to automatically load pre-compiled model artifacts. (sup-
ported by all models)

• Improved compilation time by compiling models used for different sequence length buckets in parallel. (not
supported in GPT-NeoX/GPT-J)

Resolved Issues

• [LLaMA] Fixed an issue in the parallel context encoding network where incorrect results could be generated if
the context length is shorter than the context length estimate

• [GPT2 / OPT] Fixed an issue in the parallel context encoding network where incorrect results could be generated

530 Chapter 10. Transformers NeuronX (transformers-neuronx)

AWS Neuron

Known Issues and Limitations

• The HuggingFaceGenerationModelAdapter class currently falls back to serial context encoding for mod-
els that have parallel context encoding (GPT2ForSamplingWithContextBroadcasting, LlamaForSampling,
etc.)

• Beam search can introduce memory issues for large models

• There can be accuracy issues for the GPT-J model for certain use-cases

Release [0.5.58]

Date: 7/21/2023

Summary

What’s new in this release

• Added support for GPT-NeoX models [Beta].

• Added support for BLOOM models [Beta].

• Added support for LLaMA models [Alpha].

• Added support for more flexible tensor-parallel configurations to GPT2, OPT, and BLOOM. The attention
heads doesn’t need to be evenly divisible by tp_degree anymore. (Note: The tp_degree still needs to sat-
isfy the runtime topologies constraint for collective communication (i.e Allreduce). For more details on
supported topologies, see: Tensor-parallelism-support and https://awsdocs-neuron.readthedocs-hosted.com/en/
latest/general/arch/neuron-features/collective-communication.html.)

• Added multi-query / multi-group attention support for GPT2.

Resolved Issues

• Fixed NaN issues for GPT2 model.

• Fixed OPT/GPT-NeoX gibberish output.

• Resolved an issue where NaN values could be produced when the context_length argument was used in
GPT2/OPT.

Known Issues and Limitations

• Missing cache reorder support for beam search.

• For more info, please see features-support.

10.4. Misc (transformers-neuronx) 531

https://github.com/aws-neuron/transformers-neuronx/blob/main/README.md#tensor-parallelism-support
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/arch/neuron-features/collective-communication.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/arch/neuron-features/collective-communication.html
https://github.com/aws-neuron/transformers-neuronx/blob/main/README.md#Currently-supported-models-and-features

AWS Neuron

Release [0.4.0]

Date: 6/14/2023

Summary

What’s new in this release

• Added int8 weight storage for GPT2 models.

• Improved prompt context encoding performance for GPT2 models.

• Improved collective communications performance for tp-degrees 4, 8, and 24 on Inf2.

• Improved collective communications performance for tp-degrees 8 and 32 on Trn1.

• Support for the --model-type=transformer-inference compiler flag for optimized decoder-only LLM in-
ference.

Resolved Issues

Incorrect GPT-J linear layer sharding

Added padding to the GPT-J linear layer to correctly handle odd vocabulary sizes.

Incorrect output with HuggingFace beam_search()

Issues where the HuggingFace generate() method produces incorrect results when beam_search() is used have
been resolved.

Release [0.3.0]

Date: 05/01/2023

Summary

What’s new in this release

• Added transformers-neuronx artifacts to PyPI repository.

• Added support for the HuggingFace generate().

• Added model serialization support for GPT2 models, including model saving, loading, and weight swapping.

• Added support for caching compiled artifacts.

• Improved performance by removing unnecessary KV-cache tensor resetting.

• Improved prompt context encoding performance (OPT, GPT2).

532 Chapter 10. Transformers NeuronX (transformers-neuronx)

https://huggingface.co/docs/transformers/model_doc/gpt2
https://huggingface.co/docs/transformers/model_doc/gpt2
https://huggingface.co/docs/transformers/model_doc/gptj
https://huggingface.co/docs/transformers/model_doc/opt
https://huggingface.co/docs/transformers/model_doc/gpt2

AWS Neuron

Resolved Issues

Incorrect GPT-J amp_callback import

Fixed the GPT-J demo to import the correct amp_callback function.

Known Issues and Limitations

Incorrect output with HuggingFace beam_search()

When the HuggingFace generate() method is configured to use beam_search(), this can produce incorrect
results for certain configurations. It is recommended to use other generation methods such as sample() or
greedy_search(). This will be fixed in a future Neuron release.

This document is relevant for: Inf2, Trn1, Trn1n

• Transformers Neuron (transformers-neuronx) release notes

This document is relevant for: Inf2, Trn1, Trn1n

Setup (transformers-neuronx)

If you already have setup your environment to run PyTorch NeuronX, you just need to install Transformers NeuronX
library using the following instruction.

pip install transformers-neuronx --extra-index-url=https://pip.repos.neuron.amazonaws.com

If you are starting from scratch, Neuron Multi Framework DLAMI is recommended as it comes pre-installed with
Transformers NeuronX virtual environment. You can refer to the instructions to launch a Neuron instance using Multi
Framework DLAMI

Developer Guide (transformers-neuronx)

• Transformers NeuronX (transformers-neuronx) Developer Guide

Tutorials (transformers-neuronx)

• Hugging Face meta-llama/Llama-2-13b autoregressive sampling on Inf2 & Trn1

• Hugging Face facebook/opt-13b autoregressive sampling on Inf2 & Trn1

• Hugging Face facebook/opt-30b autoregressive sampling on Inf2 & Trn1

• Hugging Face facebook/opt-66b autoregressive sampling on Inf2

10.4. Misc (transformers-neuronx) 533

https://huggingface.co/docs/transformers/model_doc/gptj
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/meta-llama-2-13b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/facebook-opt-13b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/facebook-opt-30b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/facebook-opt-66b-sampling.ipynb

AWS Neuron

Misc (transformers-neuronx)

• Transformers Neuron (transformers-neuronx) release notes

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

534 Chapter 10. Transformers NeuronX (transformers-neuronx)

CHAPTER

ELEVEN

NEURONX DISTRIBUTED

NeuronX Distributed is a package for supporting different distributed training/inference mechanism for Neuron devices.
It would provide xla friendly implementations of some of the more popular distributed training/inference techniques.
As the size of the model scales, fitting these models on a single device becomes impossible and hence we have to make
use of model sharding techniques to partition the model across multiple devices. As part of this library, we enable
support for Tensor Parallel sharding technique with other distributed library supported to be added in future.

This document is relevant for: Inf2, Trn1, Trn1n

11.1 NeuronX Distributed Setup

Install PyTorch Neuron on Trn1 to create a pytorch environment. It is recommended to work out of python virtual env
so as to avoid package installation issues.

You can install the neuronx-distributed package using the following command:

python -m pip install neuronx_distributed --extra-index-url https://pip.repos.neuron.
→˓amazonaws.com

Make sure the transformers version is set to 4.26.0

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

11.2 App Notes (neuronx-distributed)

This document is relevant for: Inf2, Trn1, Trn1n

11.2.1 Tensor Parallelism Overview

Tensor Parallelism is a technique in which a tensor is split into N chunks along a particular dimension such that each
device only holds 1/N chunk of the tensor. Computation is performed using this partial chunk so as to get partial output.
These partial outputs are collected from all devices ensuring the correctness of the computation is maintained.

Taking a general matrix multiplication as an example, let’s say we have C = AB. We can split B along the column
dimension into [B0 B1 B2 . . . Bn] and each device holds a column. We then multiply A with each column in B on each
device, we will get [AB0 AB1 AB2 . . . ABn]. At this moment, each device still holds partial results, e.g. device rank 0
holds AB0. To make sure the result is correct, we need to all-gather the partial result and concatenate the tensor along
the column dimension. In this way, we are able to distribute the tensor over devices while making sure the computation
flow remains correct.

535

AWS Neuron

Fig and TP explanation is borrowed from https://colossalai.org/docs/concepts/paradigms_of_parallelism/
#tensor-parallel

Similarly we can perform the partition along the row dimensions and create a RowParallel Linear layer. In RowPar-
allelLinear layer, we partition the weight matrix along the row dimension. Let’s say we have C = AB. We can split B
along the row dimension into [B0 B1 B2 . . . Bn] and each device holds a row. We then multiply each column of A
on each device, we will get [A0B0 A1B1 A2B2 . . . AnBn]. At this moment, each device still holds partial results,
e.g. device rank 0 holds A0B0. To make sure the result is correct, we need to all-reduce sum the partial result from all
devices to produce the final output.

Using this principle of sharded linear layers, we can construct MLPs of arbitrary depth until the need to operate on the
whole output tensor, in which case we would have to construct the output but gathering it from all devices.

536 Chapter 11. NeuronX Distributed

https://colossalai.org/docs/concepts/paradigms_of_parallelism/#tensor-parallel
https://colossalai.org/docs/concepts/paradigms_of_parallelism/#tensor-parallel

AWS Neuron

Here is an illustration from the Megatron-LM paper In the above case, as you can see two linear layers are implemented
using Column Parallel and Row Parallel linear layers, wherein the ColumnParallel Linear shards along the columns
and then it is followed by RowParallel Linear layer which takes in parallel inputs (sharded outputs from ColumnPar-
allelLinear). Consider the example shown in the above diagram, Z = (XA)B. In this case we split the first matrix
multiplication over column dimension such that each device after first matrix multiplication holds partial result of
Y0=XA0,Y1=XA1 and so on. For the second matrix multiplication, we partition the weight matrix over row dimen-
sion and since the inputs are already columns sharded and we can multiply them to produce partial outputs. These
outputs finally requires an all-reduce sum, since we want to sum up the single column*row result.

Tensor Parallelism for Transformers:

A transformer block

11.2. App Notes (neuronx-distributed) 537

AWS Neuron

Fig: Taken from Megatron-LM paper.

As seen from the figure above, a simple self attention block has the QKV linear layer followed by MLP. Using the
same Column and Row Parallel linear layers, we can partition the self-attention block across devices thereby reducing
the memory footprint on each device, since each device now only holds partial parameters. This weight distribution
strategy allows us to scale large model training across devices.

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

11.2.2 Pipeline Parallelism Overview

Pipeline parallelism is a technique used in deep learning model training to improve efficiency and reduce the training
time of large neural networks. Currently NeuronxDistributed’s pipeline parallelism is built specially for transformer
based models, where each Neuron core will be assigned with a subset of transformer layers. Pipelining is a technique
to achieve true parallelization in pipeline parallelism, by having the Neuron cores compute simultaneously on different
data samples, and to overcome the performance loss due to sequential computation. When you use pipeline parallelism,
training job is executed in a pipelined fashion over microbatches to maximize device usage.

Model partitioning

In NeuronxDistributed, we use Pytorch’s FX to trace the model and do partition on the FX IR. User simply needs to
specify where to cut the pipeline stages, and our algorithm will cut the pipeline stages and assign the corresponding
modules to each Neuron core automatically. Currently we require user to provide model partition decision but auto-
partition will be supported in the future. Here is an example of simple partition with 5 linear layers

original NN module
class MyModule(torch.nn.Module):
def __init__(self):

super().__init__()
self.linears = torch.nn.ModuleList([torch.nn.Linear(4, 4) for _ in range(5)])

def forward(self, x):
for lin in self.linears:

x = lin(x)
return x

m = MyModule()
gm = torch.fx.symbolic_trace(m)
print(gm)
"""
GraphModule(
(linears): Module(
(0): Linear(in_features=4, out_features=4, bias=True)
(1): Linear(in_features=4, out_features=4, bias=True)
(2): Linear(in_features=4, out_features=4, bias=True)
(3): Linear(in_features=4, out_features=4, bias=True)
(4): Linear(in_features=4, out_features=4, bias=True)

)
)

def forward(self, x):
(continues on next page)

538 Chapter 11. NeuronX Distributed

https://pytorch.org/docs/stable/fx.html

AWS Neuron

(continued from previous page)

linears_0 = getattr(self.linears, "0")(x); x = None
linears_1 = getattr(self.linears, "1")(linears_0); linears_0 = None
linears_2 = getattr(self.linears, "2")(linears_1); linears_1 = None
linears_3 = getattr(self.linears, "3")(linears_2); linears_2 = None
linears_4 = getattr(self.linears, "4")(linears_3); linears_3 = None
return linears_4

"""

If user decide to cut the pipeline stage at the 3nd linear call, after partition there will be 2 submodules, where submod_0
contains first 3 linear layers and submod_1 contains last 2 linear layers.

After Split module
GraphModule(
(submod_0): GraphModule(

(linears_0): Linear(in_features=4, out_features=4, bias=True)
(linears_1): Linear(in_features=4, out_features=4, bias=True)
(linears_2): Linear(in_features=4, out_features=4, bias=True)

)
(submod_1): GraphModule(

(linears_3): Linear(in_features=4, out_features=4, bias=True)
(linears_4): Linear(in_features=4, out_features=4, bias=True)

)
)

def forward(self, x):
submod_0 = self.submod_0(x); x = None
submod_1 = self.submod_1(submod_0); submod_0 = None
return submod_1

Pipeline Execution Schedule

Pipelining is based on splitting a mini-batch into microbatches, which are fed into the training pipeline one-by-one
and follow an execution schedule defined by the library runtime. A microbatch is a smaller subset of a given training
mini-batch. The pipeline schedule determines which microbatch is executed by which device for every time slot.

For example, depending on the pipeline schedule and the model partition, Neuron core i might perform (forward or
backward) computation on microbatch b while Neuron core i+1 performs computation on microbatch b+1, thereby
keeping both Neuron cores active at the same time. An example taken from Megatron paper is showed as below

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

11.2. App Notes (neuronx-distributed) 539

AWS Neuron

11.2.3 Activation Memory Reduction

There are three major contributors to high device memory utilization: Parameters, Optimizer states and Activation
Memory. To reduce the size of parameter/optimizer states memory, one can use parallelism techniques like Tensor-
parallelism, Pipeline-paralleism or Zero1. However, as the hidden size and sequence length increases, the size of the
activation memory keeps growing linearly with hidden size and quadraticly with sequence length.

The total activation memory without any parallelism comes to about:

Activations memory per layer = sbh
(︂
34 +

5𝑎𝑠

ℎ

)︂
where,

• a: Number of attention heads

• b: microbatch size

• h: hidden dimension size

• s: sequence length

When we use tensor-parallelism, it not only helps to reduce the parameter and optimizer states size on each device, but
it also helps to reduce the activation memory. For a transformer model, where we apply the tensor-parallel sharding on
the attention block (more info here), the activation memory within the attention block also drops by a factor of tensor-
parallel degree (t). However, since the layernorms and dropouts (which are outside these attention blocks) are not
parallelised and they are replicated on each device. These layernorms and dropouts are computationally inexpensive,
however, they increase the overall activation memory on each device. Moreover, since we only parallelize within the
attention block or within the MLP block (h -> 4h projection), the inputs to the QKV multiplies and the MLP are still
unsharded. This overall adds to about 10sbh of total activation memory. To reduce this activation memory, one can
use 2 methods:

• Sequence-Parallelism

• Activation Recomputation

11.2.4 Sequence Parallelism

Sequence-Parallelism was proposed by Shenggui and et.al . The authors propose to parallelize the compute along
all the sequence dimension in an attempt the reduce increasing the memory pressure due to high sequence-lengths.
Sequence-parallelism can be combined with tensor-parallelism to reduce the activation memory pressure due to in-
creasing sequence-lengths.

Tensor-parallelism parallelizes the parts of the transformer which are computationally heavy, however, it leaves the
layer-norms, dropouts and some MLP block intact. The activation memory for this block adds up to a factor of 10sbh.
Vijay Korthikanti et.al noticed that the compute in the non-tensor parallel region is independent in the sequence di-
mension. This property can be leveraged to shard the compute along the sequence dimension. The main advantage of
sharding these non-tensor parallel block is reducing the activation memory. We can use the same tensor-parallel degree
to partition, thereby reducing the overall activation memory by a factor of t. However, this partitioning comes at a cost.
Since we are partitionining the non-tensor parallel region along sequence dimnesion, we have to collect the activations
before we feed to the tensor-parallel block. This requires an introduction of all-gather collecive operation which would
gather the activations along the sequence dimension. Similarly, after the tensor-parallel block, since we would have to
split the activations along the sequence dimension and distribute among the devices. Since, the tensor-parallel block
in the transformer module already uses an all-reduce (Row-parallel linear layer used for MLP), we can replace the
all-reduce operation with a reduce-scatter operation.

540 Chapter 11. NeuronX Distributed

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/libraries/neuronx-distributed/tensor_parallelism_overview.html#tensor-parallelism-overview
https://arxiv.org/abs/2105.13120
https://arxiv.org/abs/1604.06174
https://arxiv.org/pdf/2105.13120.pdf
https://browse.arxiv.org/pdf/2205.05198.pdf
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html#allgather
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html#reducescatter

AWS Neuron

Ref: Reducing Activation Recomputation in Large Transformer Models

In the figure, g is all-gather operation and g¯ is the reduce-scatter operation. g and g¯ are conjugates and in the backward
pass, g¯ becomes an all-gather operation and g becomes the reduce-scatter operation. At first glance, it appears that
sequence-parallelism when combined with tensor-parallelism introduces an extra communication operation, however,
in a ring all-reduce, the op is broken down into all-gather and reduce-scatter. Hence, the bandwidth required for
sequence-parallelism is same as tensor-parallelism only. Hence, we are not losing out on compute but end up saving
the activation memory per device. The final activation memory when sequence-parallelism is combined with tensor-
parallelism:

Activations memory per layer = sbh
(︂
10

𝑡
+

24

𝑡
+

5𝑎𝑠

ℎ𝑡

)︂
=

sbh
𝑡

(︂
34 +

5𝑎𝑠

ℎ

)︂

11.2.5 Activation Recomputation

The total required memory in the above equation can still be high as we increase the sequence length and hidden
size. We would have to keep increasing the tensor-parallel degree to accommodate this requirement. Increasing the
tensor-parallel degree might soon start producing diminishing returns as the model would start becoming bandwidth
bottlenecked because of the extra collective communication operations. Activation recomputation can help to alleviate
this problem. In this method, we recompute a part of the forward pass during the backward pass, thereby avoiding
the need to save the activations during the forward pass. Activation recomputation is a trade-off between duplicate
computation vs memory. It allows you to save on memory at the cost of extra recompute. This trade-off becomes
valuable when we can fit larger models at the expense of recomputing forward pass activations.

Ideally one can recompute the entire forward pass, there by resulting in an activation memory of 2sbh per transformer
layer. This method is called Full-activation checkpointing. This memory can further go down by a factor of t if we use
tensor-parallelism. In the activation memory equation, we have a quadratic term of 5abs^2. As the sequence length,
this term will grow at a much faster rate. This quadratic term comes from the softmax computation. Vijay Korthikanti
et.al propose Selective activation checkpointing where they only recompute the softmax and attention computation and
thereby avoid saving the activations coming from softmax and attention computation. This completely gets rid of the
quadratic term and brings down the activation memory per layer to 34sbh/t. The LLama-7B example in this tutorial
used selective activation checkpointing.

This document is relevant for: Inf2, Trn1, Trn1n

• Tensor Parallelism Overview

• Pipeline Parallelism Overview

• Activation Memory Reduction

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

11.2. App Notes (neuronx-distributed) 541

https://browse.arxiv.org/pdf/2205.05198.pdf
https://arxiv.org/abs/1604.06174
https://browse.arxiv.org/pdf/2205.05198.pdf
https://browse.arxiv.org/pdf/2205.05198.pdf
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/libraries/neuronx-distributed/tutorials/training_llama2_7b.html#llama2-7b-tp-zero1-tutorial

AWS Neuron

11.3 App Reference Guide (neuronx-distributed)

This document is relevant for: Inf2, Trn1, Trn1n

11.3.1 API Reference Guide (neuronx-distributed)

NeuronX Distributed (NxD) is XLA based library for distributed training and inference on Neuron devices. As part
of this library, we support 3D parallelism: Tensor-Parallelism, Pipeline-Parallelism and Data-Parallelism. We also
support Zero1 optimizer to shard the optimizer weights. To support tensor-parallelism on Neuron, we adopted the
Apex Library built for CUDA devices. We modified the implementations to work with XLA. This document enlist the
different APIs and modules provided by the library

Parallel Model State:

Initialize Model Parallelism:

def neuronx_distributed.parallel_state.initialize_model_parallel(
tensor_model_parallel_size=1,
pipeline_model_parallel_size=1,

)

This module would initialize the distributed model training and allows users to set the number of tensor_parallel world
size.

Parameters:

• tensor_model_parallel_size : This should set the number of tensor parallel workers. Note the default value
is set to 1

• pipeline_model_parallel_size : This should set the number of pipeline parallel workers. Note the default
value is set to 1

Other helper APIs:

• neuronx_distributed.parallel_state.get_data_parallel_size() : Returns the data parallel world
size depending on the number of global workers and tensor parallel workers.

• neuronx_distributed.parallel_state.get_tensor_model_parallel_size() : Returns the tensor
parallel world size.

• neuronx_distributed.parallel_state.get_tensor_model_parallel_rank() : Returns the rank of
the worker within the tensor parallel group

• neuronx_distributed.parallel_state.get_pipeline_model_parallel_size() : Returns the
pipeline parallel world size.

• neuronx_distributed.parallel_state.get_pipeline_model_parallel_rank() : Returns the rank of
the worker within the pipeline parallel group

• neuronx_distributed.parallel_state.get_data_parallel_rank() : Returns the rank of the worker
in the data parallel group.

• neuronx_distributed.parallel_state.get_data_parallel_group(as_list=False) : Returns the
data parallel group after taking into account the tensor parallel size and the global world size. as_list argument
when set to True, would return the group as a List[List] otherwise it would return a torch.distributed.group.

542 Chapter 11. NeuronX Distributed

AWS Neuron

• neuronx_distributed.parallel_state.get_tensor_model_parallel_group(as_list=False)
: Returns the tensor parallel group after taking into account the tensor parallel size and the global world
size. as_list argument when set to True, would return the group as a List[List] otherwise it would return a
torch.distributed.group.

• neuronx_distributed.parallel_state.get_pipeline_model_parallel_group(as_list=False) :
Returns the pipeline parallel group after taking into account the pipeline parallel size and the global world
size. as_list argument when set to True, would return the group as a List[List] otherwise it would return a
torch.distributed.group.

• move_model_to_device(model, device): This api moves the model to device by preserving tensor parallel
attributes.

Parallel Layers:

Majority of parameters within the transformer based model reside in the Embedding and Linear layers. Hence, to
reduce the number of parameters on a single device because of these layers, we provided sharded Embedding and
Linear layers.

Parallel Embedding:

class neuronx_distributed.parallel_layers.ParallelEmbedding(
num_embeddings, embedding_dim, init_method=init.normal_,
dtype=torch.float32, device=None)

This module is intended to replace torch.nn.Embedding . In cases where the vocab size is too large, we can shard the
Embedding table across workers. Note: The embedding table would be sharded across all the tensor-parallel workers.

Parameters:

• num_embeddings (int) : size of the dictionary of embeddings

• embedding_dim (int) : the size of each embedding vector

• init_method: (torch.nn.init) : Initialization function for the embedding weights.

• dtype: (dtype) : Datatype for the weights

• device: (torch.device) : Device to initialize the weights on. By default, the weights would be initialized
on CPU

ColumnParallel Linear Layer:

class neuronx_distributed.parallel_layers.ColumnParallelLinear(
input_size, output_size, bias=True, gather_output=True,
sequence_parallel_enabled=False, dtype=torch.float32, device=None)

This module would perform a Column wise partition of the weight matrix. Linear layer is defined as Y = XA + b
, here A is parallelized along second dimension as A = [A_1, A_2 A_p] . Note: This layer is designed to
operate on 3-dimensional inputs.

Parameters:

• input_size: (int) : First dimension of the weight matrix

• output_size: (int) : Second dimension of the weight matrix

11.3. App Reference Guide (neuronx-distributed) 543

AWS Neuron

• bias: (bool): If set to True, bias would be added

• gather_output: (bool) : If true, call all-gather on output and make Y available to all Neuron devices, oth-
erwise, every Neuron device will have its output which is Y_i = XA_i

• sequence_parallel_enabled: (bool) [When sequence-parallel is enabled, it would] gather the inputs
from the sequence parallel region and perform the forward and backward passes

• dtype: (dtype) : Datatype for the weights

• device: (torch.device) : Device to initialize the weights on. By default, the weights would be initialized
on CPU

RowParallel Linear Layer:

class neuronx_distributed.parallel_layers.RowParallelLinear(
input_size, output_size, bias=True, input_is_parallel=False,
sequence_parallel_enabled=False, dtype=torch.float32, device=False

)

The linear layer is defined as Y = XA + b. A is parallelized along its first dimension and X along its second. Note:
This layer is designed to operate on 3-dimensional inputs.

Parameters:

• input_size: (int) : First dimension of the weight matrix

• output_size: (int) : Second dimension of the weight matrix

• bias: (bool) : If set to True, bias would be added

• input_is_parallel: (bool) : If true, we assume that the input is already split across the Neuron devices
and we do not split again. This is useful when we have a ColumnParallel Layer just before the Row Parallel layer

• sequence_parallel_enabled: (bool) : When sequence-parallel is enabled, it would gather the inputs from
the sequence parallel region and perform the forward and backward passes

• dtype: (dtype) : Datatype for the weights

• device: (torch.device) : Device to initialize the weights on. By default, the weights would be initialized
on CPU

Padding Tensor-Parallel Layers

def neuronx_distributed.parallel_layers.pad.pad_model(
model, tp_degree, n_heads, wrapped_classes=(), pad_hook_fn=None)

Pads a generic model to function to a desired tensor parallelism degree by padding the number of attention heads.
Returns the original model modified with padding. Uses 1-axis padding strategy: pads the sharded dim of the Paral-
lelLinear layers to the size it would have been for the padded number of heads.

Parameters:

• model (torch.nn.Module) : model to be padded

• tp_degree (int) : tensor parallel degree

• n_heads (int) [the number of heads the given model to be padded has. This can] typically be found in the
config

544 Chapter 11. NeuronX Distributed

AWS Neuron

• wrapped_classes (Tuple[any], *optional*, defaults to `()`) [tuple of classes] (and their sub-
modules) which should be padded

• pad_hook_fn (Callable[any, float], *optional*, defaults to `None`) [a hook] function that is
called whenever encountering a class to pad. Receives an instance of the class to pad and the tgt_src_ratio
(num_heads_padded / num_heads)as its argument

Usage: When modifying the Attention layer, typically you must divide by TP degree like so:

self.num_heads = neuronx_dist_utils.divide(self.num_heads, get_tensor_model_
→˓parallel_size())

This line must be modified like so:

self.num_heads = neuronx_dist_utils.divide(
self.num_heads + get_number_of_extra_heads(self.num_heads, get_tensor_model_

→˓parallel_size()),
get_tensor_model_parallel_size())

Then, after initializing the model, you must call this wrapper:

model = get_model(config=desired_config)
model = pad_model(model, tp_degree=32, desired_config.num_heads) # Use the model␣
→˓as desired after this point

You can specify a specific layer or class for your model to pad, so you aren’t unnecessarily padding. Typically,
this layer will be your Attention layer

model = pad_model(model, tp_degree=32, desired_config.num_heads, wrapped_
→˓classes=[MyAttention])

You can also specify a pad_hook_fn, to be called whenever encountering an instance of wrapped_class, passing
in said instance as a parameter, along with the tgt_src_ratio (num_heads_padded / num_heads).

def my_hook(attention_to_pad, tgt_src_ratio):
attention_to_pad.split_size = int(model.split_size * tgt_src_ratio)
model = pad_model(

model,
tp_degree=32,
desired_config.num_heads,
wrapped_classes=[MyAttention],
pad_hook_fn=my_hook

)

Loss functions:

When you shard the final MLP layer using tensor-parallelism, instead of recollecting all the outputs from each TP
rank, we can use the ParallelCrossEntropy loss function. This function would take the parallel logits produced by final
parallel MLP and produce a loss by taking into account that the logits are sharded across multiple workers.

def neuronx_distributed.parallel_layers.loss_functions.parallel_cross_entropy(
parallel_logits, labels, label_smoothing=0.0)

Parameters:

11.3. App Reference Guide (neuronx-distributed) 545

AWS Neuron

• parallel_logits (Tensor) : Sharded logits from the previous MLP

• labels (Tensor) : Label for each token. Labels should not be sharded, and the parallel_cross_entropy would
take care of sharding the labels internally

• label_smoothing (float) : A float in [0.0, 1.0]. Specifies the amount of smoothing when computing the
loss, where 0.0 means no smoothing

Pipeline parallelism:

Neuron Distributed Pipeline Model

class NxDPPModel(module: torch.nn.Module,
transformer_layer_cls: Optional[Any] = None,
num_microbatches: int = 1,
output_loss_value_spec: Optional[Union[Dict, Tuple]] = None,
return_mb_loss: bool = False,
broadcast_and_average_loss: bool = False,
pipeline_cuts: Optional[List[str]] = None,
input_names: Optional[List[str]] = None,
leaf_module_cls: Optional[List[Any]] = None,
autowrap_functions: Optional[Tuple[ModuleType]] = None,
autowrap_modules: Optional[Tuple[Callable, ...]] = None,
tracer_cls: Optional[Union[str, Any]] = None,
param_init_fn: Optional[Any] = None,
trace_file_path: Optional[str] = None,
use_zero1_optimizer: bool = False,
auto_partition: Optional[bool] = False,

)

Parameters:

• module: Module to be distributed with pipeline parallelism

• transformer_layer_cls: The module class of transformer layers

• num_microbatches: Number of pipeline microbatchs

• output_loss_value_spec: The output_loss_value_spec value can be specified to disambiguate which
value in the output of forward is the loss value on which NxDPPModel should apply backprop-
agation. For example, if your forward returns a tuple (loss, model_out), you can spec-
ify output_loss_value_spec=(True, False). Or, if your forward returns a dict {'loss':
loss_value, 'model_out': model_out}, you can specify output_loss_value_spec={'loss':
True, 'model_out': False} referred from this

• return_mb_loss: Whether return a list of loss for all microbatchs

• broadcast_and_average_loss:Whether to broadcast loss to all PP ranks and average across dp ranks, when
set to True return_mb_loss must be False

• pipeline_cuts: A list of layer names that will be used to annotate pipeline stage boundaries

• input_names:The input names that will be used for tracing, which will be the same as the model inputs during
runtime.

• leaf_module_cls:A list of module classes that should be treated as leaf nodes during tracing. Note transformer
layer class will be by default treat as leaf nodes.

546 Chapter 11. NeuronX Distributed

https://github.com/pytorch/PiPPy/blob/main/pippy/IR.py#L697

AWS Neuron

• autowrap_modules: (symbolic tracing only) Python modules whose functions should be wrapped automati-
cally without needing to use fx.wrap(). reference here

• autowrap_functions: (symbolic tracing only) Python functions that should be wrapped automatically with-
out needing to use fx.wrap(). reference here

• tracer_cls:User provided tracer class for symbolic tracing. It can be “hf”, “torch” or any tracer class user
created.

• param_init_fn: Function used to initialize parameters. This is useful if user wants to use meta device to do
delayed parameter initialization. param_init_fn should take a module as input and initialize the parameters
that belongs to this module only (not for submodules).

• use_zero1_optimizer: Whether to use the zero1 optimizer. When setting to True the gradient average will
be handed over.

• auto_partition: Boolean to indicate whether to use auto_partition for the model. When set to True, the
pipeline cuts used as the pipeline stage boundaries to partition the model are automatically determined.
When set to True, the pipeline_cuts parameter should not be set. The pipeline_cuts are chosen on the basis
of the transformer layer names.

Common used APIs

NxDPPModel.run_train(**kwargs)

Train the model with PP schedule, which will run both forward and backward in a PP manner. The kwargs should
be the same as the input_names provided to the trace function. Will output the loss that provided by user from out-
put_loss_value_spec.

NxDPPModel.run_eval(**kwargs)

Eval the model with PP schedule, which will run forward only. The kwargs should be the same as the input_names
provided to the trace function. Will output the loss that provided by user from output_loss_value_spec.

NxDPPModel.local_named_parameters(**kwargs)

The parameters that are local to this PP rank. This must be called after the model is partitioned.

NxDPPModel.local_named_modules(**kwargs)

The graph modules that are local to this PP rank. This must be called after the model is partitioned.

Checkpointing:

These are set of APIs for saving and loading the checkpoint. These APIs take care of saving and loading the shard
depending the tensor parallel rank of the worker.

11.3. App Reference Guide (neuronx-distributed) 547

https://github.com/pytorch/pytorch/blob/main/torch/fx/_symbolic_trace.py#L241
https://github.com/pytorch/pytorch/blob/main/torch/fx/_symbolic_trace.py#L241

AWS Neuron

Save Checkpoint:

def neuronx_distributed.parallel_layers.save(state_dict, save_dir, save_serially=True,␣
→˓save_xser: bool=False, down_cast_bf16=False)

Note: This method will be deprecated, use neuronx_distributed.trainer.save_checkpoint instead.

This API will save the model from each tensor-parallel rank in the save_dir . Only workers with data parallel rank
equal to 0 would be saving the checkpoints. Each tensor parallel rank would be creating a tp_rank_ii_pp_rank_ii
folder inside save_dir and each ones saves its shard in the tp_rank_ii_pp_rank_ii folder. If save_xser is
enabled, the folder name would be tp_rank_ii_pp_rank_ii.tensors and there will be a ref data file named as
tp_rank_ii_pp_rank_ii in save_dir for each rank.

Parameters:

• state_dict: (dict) : Model state dict. Its the same dict that you would save using torch.save

• save_dir: (str) : Model save directory.

• save_serially: (bool): This flag would save checkpoints one model-parallel rank at a time. This is partic-
ularly useful when we are checkpointing large models.

• save_xser: (bool): This flag would save the model with torch xla serialization. This could significantly
reduce checkpoint saving time when checkpointing large model, so it’s recommended to enable xser when the
model is large. Note that if a checkpoint is saved with save_xser, it needs to be loaded with load_xser, vice
versa.

• down_cast_bf16: (bool): This flag would downcast the state_dict to bf16 before saving.

Load Checkpoint

def neuronx_distributed.parallel_layers.load(
load_dir, model_or_optimizer=None, model_key='model', load_xser=False, sharded=True)

Note: This method will be deprecated, use neuronx_distributed.trainer.load_checkpoint instead.

This API will automatically load checkpoint depending on the tensor parallel rank. For large models, one should pass
the model object to the load API to load the weights directly into the model. This could avoid host OOM, as the load
API would load the checkpoints for one tensor parallel rank at a time.

Parameters:

• load_dir: (str) : Directory where the checkpoint is saved.

• model_or_optimizer: (torch.nn.Module or torch.optim.Optimizer): Model or Optimizer object.

• model: (torch.nn.Module or torch.optim.Optimizer): Model or Optimizer object, equivilant to
model_or_optimizer

• model_key: (str) : The model key used when saving the model in the state_dict.

• load_xser: (bool) : Load model with torch xla serialization. Note that if a checkpoint is saved with
save_xser, it needs to be loaded with load_xser, vice versa.

548 Chapter 11. NeuronX Distributed

AWS Neuron

• sharded: (bool) : If the checkpoint is not sharded, pass False. This is useful (especially during inference)
when the model is trained using a different strategy and you end up saving a single unsharded checkpoint. You
can then load this unsharded checkpoint onto the sharded model. When this attribute is set to False , it is
necessary to pass the model object. Note: The keys in the state-dict should have the same name as in the model
object, else it would raise an error.

Gradient Clipping:

With tensor parallelism, we need to handle the gradient clipping as we have to accumulate the total norm from all the
tensor parallel ranks. This should be handled by the following API

def neuronx_distributed.parallel_layers.clip_grad_norm(
parameters, max_norm, norm_type=2)

Parameters:

• parameters (Iterable[Tensor] or Tensor) : an iterable of Tensors or a single Tensor that will have
gradients normalized

• max_norm (float or int) :max norm of the gradients

• norm_type (float or int) : type of the used p-norm. Can be ‘inf’ for infinity norm.

Neuron Zero1 Optimizer:

In Neuronx-Distributed, we built a wrapper on the Zero1-Optimizer present in torch-xla.

class NeuronZero1Optimizer(Zero1Optimizer)

This wrapper takes into account the tensor-parallel degree and computes the grad-norm accordingly. It also provides
two APIs: save_sharded_state_dict and load_sharded_state_dict. As the size of the model grows, saving the optimizer
state from a single rank can result in OOMs. Hence, the api to save_sharded_state_dict can allow saving states from
each data-parallel rank. To load this sharded optimizer state, there is a corresponding load_sharded_state_dict that
allows each rank to pick its corresponding shard from the checkpoint directory.

optimizer_grouped_parameters = [
{

"params": [
p for n, p in param_optimizer if not any(nd in n for nd in no_decay)

],
"weight_decay": 0.01,

},
{

"params": [
p for n, p in param_optimizer if any(nd in n for nd in no_decay)

],
"weight_decay": 0.0,

},
]

optimizer = NeuronZero1Optimizer(
optimizer_grouped_parameters,
AdamW,

(continues on next page)

11.3. App Reference Guide (neuronx-distributed) 549

AWS Neuron

(continued from previous page)

lr=flags.lr,
pin_layout=False,
sharding_groups=parallel_state.get_data_parallel_group(as_list=True),
grad_norm_groups=parallel_state.get_tensor_model_parallel_group(as_list=True),

)

The interface is same as Zero1Optimizer in torch-xla

save_sharded_state_dict(output_dir, save_serially = True)

Note: This method will be deprecated, use neuronx_distributed.trainer.save_checkpoint instead.

Parameters:

• output_dir (str) : Checkpoint directory where the sharded optimizer states need to be saved

• save_serially (bool) [Whether to save the states one data-parallel rank at a time. This is] especially useful
when we want to checkpoint large models.

load_sharded_state_dict(output_dir, num_workers_per_step = 8)

Note: This method will be deprecated, use neuronx_distributed.trainer.load_checkpoint instead.

Parameters:

• output_dir (str) : Checkpoint directory where the sharded optimizer states are saved

• num_workers_per_step (int) : This argument controls how many workers are doing model load in parallel.

Neuronx-Distributed Training APIs:

In Neuronx-Distributed, we provide a series of APIs under neuronx_distributed directly that helps user to apply opti-
mizations in NxD easily. These APIs cover configuration, model/optimizer initialization and saving/loading checkpoint.

Initialize NxD config:

def neuronx_distributed.trainer.neuronx_distributed_config(
tensor_parallel_size=1,
pipeline_parallel_size=1,
pipeline_config=None,
optimizer_config=None,
activation_checkpoint_config=None,
pad_model=False,
sequence_parallel=False,
model_init_config=None,

)

This method initialize NxD training config and initialize model parallel. This config maintains all optimization options
of the distributed training, and it’s a global config (the same for all processes).

Parameters:

550 Chapter 11. NeuronX Distributed

AWS Neuron

• tensor_parallel_size (int) : Tensor model parallel size. Default: 1.

• pipeline_parallel_size (int) : Pipeline model parallel size. Default: 1.

• pipeline_config (dict) : Pipeline parallel config. For details please refer to pipeline parallel guidance.
Default: None.

• optimizer_config (dict) : Optimizer config. Default: {"zero_one_enabled": False,
"grad_clipping": True, "max_grad_norm": 1.0}.

– Enable ZeRO-1 by setting zero_one_enabled to True.

– Enable grad clipping by setting grad_clipping to True.

– Change maximum grad norm value by setting max_grad_norm.

• activation_checkpoint_config (str of torch.nn.Module) : Activation checkpoint config, accept
value: "full", None, or any torch.nn.Module. When set to full, regular activation checkpoint enabled
(every transformer layer will be re-computed). When set to None, activation checkpoint disabled. When set
to any torch.nn.Module, selective activation checkpoint enabled, any provided module will be re-computed.
Default: None.

• pad_model (bool) : Whether to pad attention heads of model. Default: False.

• sequence_parallel (bool) : Whether to enable sequence parallel. Default: False.

• model_init_config (dict) : Model initialization config. Default: {"sequential_move_factor": 11,
"meta_device_init": False, "param_init_fn": None}.

– sequential_move_factor: num of processes instantiating model on host at the same time. This is done
to avoid the host OOM. Range: 1-32.

– meta_device_init: whether to initialize model on meta device.

– param_init_fn: method that initialize parameters of modules, should be provided when param_init_fn
is True.

Initialize NxD Model Wrapper:

def neuronx_distributed.trainer.initialize_parallel_model(nxd_config, model_fn, *model_
→˓args, **model_kwargs)

This method initialize NxD model wrapper, return a wrapped model that can be used as a regular torch.nn.Module,
while has all the model optimizations in config applied. This wrapper is designed to hide the complexity of optimiza-
tions such as pipeline model parallel, so that users can simply use the wrapped model as the unwrapped version.

Parameters:

• nxd_config (dict): config generated by neuronx_distributed_config.

• model_fn (callable): user provided function to get the model for training.

• model_args and model_kwargs: arguments that will be passed to model_fn.

Model wrapper class and its methods:

class neuronx_distributed.trainer.model.NxDModel(torch.nn.Module):
def local_module(self):

return the unwrapped local module

def run_train(self, *args, **kwargs):
(continues on next page)

11.3. App Reference Guide (neuronx-distributed) 551

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/libraries/neuronx-distributed/pp_developer_guide.html

AWS Neuron

(continued from previous page)

method to run one iteration, when pipeline parallel enabled,
user have to use this instead of forward+backward

def named_parameters(self, *args, **kwargs):
only return parameters on local rank.
same for `parameters`, `named_buffers`, `buffers`

def named_modules(self, *args, **kwargs):
only return modules on local rank.
same for `modules`, `named_children`, `children`

P.S.: as a short cut, users can call model.config or model.dtype from wrapped model if original model is hugging
face transformers pre-trained model.

Initialize NxD Optimizer Wrapper:

def neuronx_distributed.trainer.initialize_parallel_optimizer(nxd_config, optimizer_
→˓class, parameters, **defaults)

This method initialize NxD optimizer wrapper, return a wrapped optimizer that can be used as a regular torch.optim.
Optimizer, while has all the optimizer optimizations in config applied.

This optimizer wrapper is inherited from toch.optim.Optimizer. It takes in the nxd_config and configures the
optimizer to work with different distributed training regime.

The step method of the wrapped optimizer contains necessary all-reduce operations and grad clipping. Other methods
and variables work the same as the unwrapped optimizer.

Parameters:

• nxd_config (dict): config generated by neuronx_distributed_config.

• optimizer_class (Type[torch.optim.Optimizer]): optimizer class to create the optimizer.

• parameters (iterable): parameters passed to the optimizer.

• defaults: optimizer options that will be passed to the optimizer.

Save Checkpoint:

Method to save checkpoint, return None.

This method saves checkpoints for model, optimizer, scheduler and user contents sequentially. Model states are saved
on data parallel rank-0 only. When ZeRO-1 optimizer is not turned on, optimizer states are also saved like this; while
when ZeRO-1 optimizer is turned on, states are saved on all ranks. Scheduler and user contents are saved on master rank
only. Besides, users can use use_xser=True to boost saving performance and avoid host OOM. It’s achieved by saving
tensors one by one simultaneously and keeping the original data structure. However, the resulted checkpoint cannot be
loaded using load api of PyTorch. Users can also use async_save=True to further boost saving performance. It’s
achieved by saving tensors in separate processes along with computation. Setting async_save to true will result in
more host memory being used, therefore increase the risk of application crash due to system ran out of memory.

def neuronx_distributed.trainer.save_checkpoint(
path,
tag="",

(continues on next page)

552 Chapter 11. NeuronX Distributed

AWS Neuron

(continued from previous page)

model=None,
optimizer=None,
scheduler=None,
user_content=None,
num_workers=8,
use_xser=False,
num_kept_ckpts=None,
async_save=False

)

Parameters:

• path (str): path to save the checkpoints.

• tag (str): tag to save the checkpoints.

• model (torch.nn.Module): model to save, optional.

• optimizer (torch.optim.Optimizer): optimizer to save, optional.

• scheduler: scheduler to save, optional.

• user_content: user contents to save, optional.

• num_workers (int): num of processes saving data on host at the same time. This is done to avoid the host
OOM, range: 1-32.

• use_xser (bool): whether to use torch-xla serialization. When enabled, num_workers will be ignored and
maximum num of workers will be used. Default: False.

• num_kept_ckpts (int): number of checkpoints to keep on disk, optional. Default: None.

• async_save (bool): whether to use asynchronous saving method. Default: False.

Load Checkpoint:

Method to load checkpoint saved by save_checkpoint, return user contents if exists otherwise None. If tag not
provided, will try to use the newest tag tracked by save_checkpoint.

Note that the checkpoint to be loaded must have the same model parallel degrees as in current use, and if ZeRO-1
optimizer is used, must use the same data parallel degrees.

def neuronx_distributed.trainer.load_checkpoint(
path,
tag=None,
model=None,
optimizer=None,
scheduler=None,
num_workers=8,
strict=True,

)

Parameters:

• path (str): path to load the checkpoints.

• tag (str): tag to load the checkpoints.

• model (torch.nn.Module): model to load, optional.

11.3. App Reference Guide (neuronx-distributed) 553

AWS Neuron

• optimizer (torch.optim.Optimizer): optimizer to load, optional.

• scheduler: scheduler to load, optional.

• num_workers (int): num of processes loading data on host at the same time. This is done to avoid the host
OOM, range: 1-32.

• strict (bool): whether to use strict mode when loading model checkpoint. Default: True.

Sample usage:

import neuronx_distributed as nxd

create config
nxd_config = nxd.neuronx_distributed_config(

tensor_parallel_size=8,
optimizer_config={"zero_one_enabled": True, "grad_clipping": True, "max_grad_norm":␣

→˓1.0},
)

wrap model
model = nxd.initialize_parallel_model(nxd_config, get_model)

wrap optimizer
optimizer = nxd.initialize_parallel_optimizer(nxd_config, AdamW, model.parameters(),␣
→˓lr=1e-3)

...
(training loop):

loss = model.run_train(inputs)
optimizer.step()

...
loading checkpoint (auto-resume)
user_content = nxd.load_checkpoint(

"ckpts",
model=model,
optimizer=optimizer,
scheduler=scheduler,

)
...
saving checkpoint
nxd.save_checkpoint(

"ckpts",
nxd_config=nxd_config,
model=model,
optimizer=optimizer,
scheduler=scheduler,
user_content={"total_steps": total_steps},

)

554 Chapter 11. NeuronX Distributed

AWS Neuron

Modules:

GQA-QKV Linear Module:

class neuronx_distributed.modules.qkv_linear.GQAQKVColumnParallelLinear(
input_size, output_size, bias=True, gather_output=True,
sequence_parallel_enabled=False, dtype=torch.float32, device=None, kv_size_

→˓multiplier=1)

This module parallelizes the Q,K,V linear projections using ColumnParallelLinear layers. Instead of using 3 differ-
ent linear layers, we can replace it with a single QKV module. In case of GQA module, the number of Q attention
heads are N times more than the number of K and V attention heads. The K and V attention heads are replicated
after projection to match the number of Q attention heads. This helps to reduce the K and V weights and is useful
especially during inference. However, in case of training these modules, it restricts the tensor-parallel degree that can
be used, since the attention heads should be divisible by tensor-parallel degree. Hence, to mitigate this bottleneck,
the GQAQKVColumnParallelLinear takes in a kv_size_multiplier argument. The module would replicate the K and
V weights kv_size_multiplier times thereby allowing you to use higher tensor-parallel degree. Note: here instead of
replicating the projection N/tp_degree times, we end of replicating the weights kv_size_multiplier times. This would
produce the same result, allow you to use higher tp_degree degree, however, it would result in extra memory getting
consumed.

Parameters:

• input_size: (int) : First dimension of the weight matrix

• output_sizes: (List[int]) : A list of second dimension of the Q and K/V weight matrix

• bias: (bool): If set to True, bias would be added

• gather_output: (bool) : If true, call all-gather on output and make Y available to all Neuron devices, oth-
erwise, every Neuron device will have its output which is Y_i = XA_i

• sequence_parallel_enabled: (bool) [When sequence-parallel is enabled, it would] gather the inputs
from the sequence parallel region and perform the forward and backward passes

• init_method: (torch.nn.init) : Initialization function for the Q and K/V weights.

• dtype: (dtype) : Datatype for the weights

• device: (torch.device) : Device to initialize the weights on. By default, the weights would be initialized
on CPU

• kv_size_multiplier: (int): Factor by which the K and V weights would be replicated along the first di-
mension

Model Trace:

We can use the tensor parallel layers to perform large model inference too. For performing inference, we can re-use
the Parallel model built above for training and then use the trace APIs provided by the neuronx_distributed package to
trace it for inference. One can use the following set of APIs for running distributed inference:

def neuronx_distributed.trace.parallel_model_trace(func, example_inputs, compiler_
→˓workdir=None, compiler_args=None, inline_weights_to_neff=True, bucket_config=None, tp_
→˓degree=1, max_parallel_compilations=None)

This API would launch tensor parallel workers, where each worker would trace its own model. These traced models
would be wrapped with a single TensorParallelModel module which can then be used like any other traced model.

11.3. App Reference Guide (neuronx-distributed) 555

AWS Neuron

Parameters:

• func : Callable: This is a function that returns a Model object and a dictionary of states. The
parallel_model_trace API would call this function inside each worker and run trace against them. Note:
This differs from the torch_neuronx.trace where the torch_neuronx.trace requires a model object to be
passed.

• example_inputs: (torch.Tensor like) : The inputs that needs to be passed to the model. If you are
using bucket_config, then this must be a list of inputs for each bucket model. This configuration is similar to
torch_neuronx.bucket_model_trace()

• compiler_workdir: Optional[str,pathlib.Path] : Work directory used by neuronx-cc. This can be
useful for debugging and inspecting intermediary neuronx-cc outputs.

• compiler_args: Optional[Union[List[str],str]] : List of strings representing neuronx-cc compiler
arguments. See Neuron Compiler CLI Reference Guide (neuronx-cc) for more information about compiler op-
tions.

• inline_weights_to_neff: bool : A boolean indicating whether the weights should be inlined to the NEFF.
If set to False, weights will be separated from the NEFF. The default is True.

• bucket_config: torch_neuronx.BucketModelConfig : The config object that defines bucket selection
behavior. See torch_neuronx.BucketModelConfig() for more details.

• tp_degree: (int) : How many devices to be used when performing tensor parallel sharding

• max_parallel_compilations: Optional[int] : If specified, this function will only trace these numbers
of models in parallel, which can be necessary to prevent OOMs while tracing. The default is None, which means
the number of parallel compilations is equal to the tp_degree.

Trace Model Save/Load:

Save:

def neuronx_distributed.trace.parallel_model_save(model, save_dir)

This API should save the traced model in save_dir . Each shard would be saved in its respective directory inside the
save_dir. Parameters:

• model: (TensorParallelModel) : Traced model produced using the parallel_model_trace api.

• save_dir: (str) : The directory where the model would be saved

Load:

def neuronx_distributed.trace.parallel_model_load(load_dir)

This API will load the sharded traced model into TensorParallelModel for inference.

556 Chapter 11. NeuronX Distributed

AWS Neuron

Parameters:

• load_dir: (str) : Directory which contains the traced model.

Neuron PyTorch-Lightning

Neuron PyTorch-Lightning is currently based on Lightning version 2.1.0, and will eventually be upstreamed Lightning-
AI code base

Neuron Lightning Module

Inherited from LightningModule

class neuronx_distributed.lightning.NeuronLTModule(
model_fn: Callable,
nxd_config: Dict,
opt_cls: Callable,
scheduler_cls: Callable,
model_args: Tuple = (),
model_kwargs: Dict = {},
opt_args: Tuple = (),
opt_kwargs: Dict = {},
scheduler_args: Tuple = (),
scheduler_kwargs: Dict = {},
grad_accum_steps: int = 1,
log_rank0: bool = False,
manual_opt: bool = True,

)

Parameters:

• model_fn: Model function to create the actual model

• nxd_config: Neuronx Distributed Config, output of neuronx_distributed.neuronx_distributed_config

• opt_cls: Callable to create optimizer

• scheduler_cls: Callable to create scheduler

• model_args: Tuple of args fed to model callable

• model_kwargs: Dict of keyworded args fed to model callable

• opt_args: Tuple of args fed to optimizer callable

• opt_kwargs: Dict of keyword args fed to optimizer callable

• scheduler_args: Tuple of args fed to scheduler callable

• scheduler_args: Dict of keyworded args fed to scheduler callable

• grad_accum_steps: Grad accumulation steps

• log_rank0: Log at rank 0 (by default it will log at the last PP rank). Note that setting this to True will introduce
extra communication per step hence causing performance drop

• manual_opt: Whether to do manual optimization, note that currently NeuronLTModule doesn’t support auto
optimization so this should always set to True

11.3. App Reference Guide (neuronx-distributed) 557

https://lightning.ai/docs/pytorch/stable/common/lightning_module.html

AWS Neuron

Neuron XLA Strategy

Inherited from XLAStrategy

class neuronx_distributed.lightning.NeuronXLAStrategy(
nxd_config: Dict = None,
tensor_parallel_size: int = 1,
pipeline_parallel_size: int = 1,
save_load_xser: bool = True,

)

Parameters:

• nxd_config: Neuronx Distributed Config, output of neuronx_distributed.neuronx_distributed_config

• tensor_parallel_size: Tensor parallel degree, only needed when nxd_config is not specified

• pipeline_parallel_size: Pipeline parallel degree, only needed when nxd_config is not specified (Note that
for now we only support TP with Neuron-PT-Lightning)

• save_load_xser: Set to True will enable save/load with xla serialization, for more context check Save Check-
point

Neuron XLA Precision Plugin

Inherited from XLAPrecisionPlugin

class neuronx_distributed.lightning.NeuronXLAPrecisionPlugin

Neuron TQDM Progress Bar

Inherited from TQDMProgressBar

class neuronx_distributed.lightning.NeuronTQDMProgressBar

Neuron TensorBoard Logger

Inherited from TensorBoardLogger

class neuronx_distributed.lightning.NeuronTensorBoardLogger(save_dir)

Parameters:

• save_dir: Directory to save the log files

This document is relevant for: Inf2, Trn1, Trn1n

• API Reference Guide (neuronx-distributed)

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

558 Chapter 11. NeuronX Distributed

https://lightning.ai/docs/pytorch/stable/api/lightning.pytorch.strategies.XLAStrategy.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/libraries/neuronx-distributed/api_guide.html#save-checkpoint
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/libraries/neuronx-distributed/api_guide.html#save-checkpoint
https://github.com/Lightning-AI/lightning/blob/2.1.0/src/lightning/pytorch/plugins/precision/xla.py
https://lightning.ai/docs/pytorch/stable/api/lightning.pytorch.callbacks.TQDMProgressBar.html
https://lightning.ai/docs/pytorch/stable/extensions/generated/lightning.pytorch.loggers.TensorBoardLogger.html

AWS Neuron

11.4 Developer Guide (neuronx-distributed)

This document is relevant for: Inf2, Trn1, Trn1n

11.4.1 Developer guide for Tensor Parallelism (neuronx-distributed)

Training

For training models with tensor-parallelism, one would have to make few changes to their model/training script. Below
we walk through the different changes one would have to make to shard the models across devices.

Creating DataLoader:

When we shard the model across devices using tensor parallelism, all the tensor parallel workers are operating on
the same batch of data. Hence, to ensure that each tensor parallel worker is getting the same data, we make use of
DistributedSampler as shown in the snippet below

def create_pretraining_dataset(
input_file, max_pred_length, mini_batch_size, worker_init

):
train_data = pretraining_dataset(

input_file=input_file, max_pred_length=max_pred_length
)
To distribute the data across different workers in the world,
we use the DistributedSampler. The num_replicas should be equal
to the data_parallel_world_size. Note: data_parallel_rank=0 can have
multiple tensor parallel ranks and each of these should get the same
data.
train_sampler = DistributedSampler(

train_data,
num_replicas=parallel_state.get_data_parallel_world_size(),
rank=parallel_state.get_data_parallel_rank(),

)
train_dataloader = DataLoader(

train_data,
sampler=train_sampler,
batch_size=mini_batch_size,
num_workers=0,
worker_init_fn=worker_init,
drop_last=True,
pin_memory=True,

)
return train_dataloader

11.4. Developer Guide (neuronx-distributed) 559

AWS Neuron

Creating Model:

One can create models by replacing the large linear layers with ColumnParallel and RowParallel Linear layers. In
case of transformers, we have a good structure where the Attention block usually have linear projections for QKV and
this is followed by a fully connected layer. Let’s take a look at the example for the BERT model. We make the attention
module of BERT model to use tensor parallel layers, thereby adding the ability to shard the model across devices.

class ParallelSelfAttention(transformers.models.bert.modeling_bert.BertSelfAttention):
def __init__(self, config, position_embedding_type=None):

super().__init__(config, position_embedding_type)

self.query = ColumnParallelLinear(config.hidden_size,
self.all_head_size,
gather_output=False)

self.key = ColumnParallelLinear(config.hidden_size,
self.all_head_size,
gather_output=False)

self.value = ColumnParallelLinear(config.hidden_size,
self.all_head_size,
gather_output=False)

Since we shard the number of attention heads across tensor parallel
ranks, each rank would have a subset of heads, hence, we update
the num_attention_heads here.
tp_size = parallel_state.get_tensor_parallel_size()
self.num_attention_heads = self.num_attention_heads // tp_size
self.all_head_size = self.all_head_size // tp_size

As seen we just had to swap out the linear layers with ColumnParallel Linear layers and the rest of the forward method of
the attention layer can work as is. Note: In the above ColumnParallelLinear layer we are not gathering output from each
rank, in other words, each ranks is working on its own shard. We can make gather_output=True and that would gather
output and you would get a full dim output. However, gathering output from all ranks would introduce an all-gather
operation which can be expensive depending on the size of the tensor. In the case of attention module, we know that
the SelfAttention block is followed by MLP block. Hence, we replace the linear layer there with a RowParallelLinear
as shown below:

class ParallelSelfOutput(transformers.models.bert.modeling_bert.BertSelfOutput):
def __init__(self, config):

super().__init__(config)
self.dense = RowParallelLinear(config.hidden_size,

config.hidden_size,
input_is_parallel=True)

As seen we just had to replace the dense layer here, and pass the input_is_parallel argument. This way, the
RowParallelLinear should operator on partitions and get a collective result.

Making just the above two changes can help you partition good chunk of your model across multiple workers, thereby
allowing models of larger size to be trained on a single instance. Note: Majority of the parameters of a transformer
model are in these linear layers and hence partitioning these layers can help you scale.

560 Chapter 11. NeuronX Distributed

AWS Neuron

Final Training script:

Once the dataloader and model changes are done, we are ready to build the training script. Good news, you can use the
same training loop as before for data-parallel training, and would need just the minor tweaks to get it all started.

from neuronx_distributed.parallel_layers import parallel_state, clip_grad_norm

neuronx_distributed.parallel_state.initialize_model_parallel(tensor_model_parallel_
→˓size=2)
dataloader = create_pretraining_dataset(
input_file, max_pred_length, mini_batch_size, worker_init)

model = YourNewlyBuiltParallelModel(config)
We have to move the model to device using this API, because when
we move model to device using .to(device), the model parameter's
attributes aren't preserved. This causes some of the tensor parallel
attributes to be lost. Hence, this API takes care of preserving the
tensor parallel attributes.
parallel_layers.move_model_to_device(model, device)

for inputs, labels in dataloader:
output = model(*inputs)
loss = loss_fn(output, labels)
loss.backward()
Here we use clip_grad_norm from neuronx_distributed as that
can handle tensor parallel ranks
clip_grad_norm(model.parameters(), max_norm)
For the optimzer step, we have to pass the data_parallel group
xm.optimizer_step(

optimzer,
groups=parallel_state.get_data_parallel_group(as_list=True)

)
optimizer.zero_grad()
scheduler.step()

Few things to take note of in the above code snippet: 1. We are initializing the model parallel with tensor parallel
size of 2. This will shard the model across 2 devices. 2. We use the move_model_to_device API to move model to
device. This is equivalent to doing model.to(device). We need to explicity call this API since some of the tensor-
parallel attributes do not get copied over when we move the model to device using model.to(device). 3. We are
calling the clip_grad_norm from parallel_layers. This clip_grad_norm should take care of accumulating the
max_norm from the tensor_parallel ranks and producing the correct output. 4. We pass the data_parallel_group
to the optimizer_step. If we don’t pass the group, default would be all the workers in the world.

Saving Model:

Once training is done, we want to save the model. This can be done easily by calling the save api from
neuronx_distributed.parallel_layers . Here is an example:

neuronx_distributed.parallel_layers.save({
'epoch': epoch,
'model': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),

(continues on next page)

11.4. Developer Guide (neuronx-distributed) 561

AWS Neuron

(continued from previous page)

'loss': loss,
...
}, PATH)

Note the model key used here, we need to provide the same key during model load.

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

11.4.2 Developer guide for Pipeline Parallelism (neuronx-distributed)

Training

For training models with pipeline-parallelism, user needs to make few changes to their model/training script. In the
below steps, we walk through different changes user has to make to use pipeline parallelism. For general changes please
refer to tensor parallel guidance.

Creating Model

To train with pipeline parallel, user needs to wrap their torch module with NeuronxDistributed’s Pipeline Parallel model
wrapper, i.e. NxDPPModel Let’s take a look at our Llama example:

Create torch model
config.return_dict = False
model = transformers.LlamaForCausalLM(config)
Create pipeline cuts
pipeline_cuts = create_partition(config, args)
Apply model wrapper
model = NxDPPModel(

model,
transformer_layer_cls=LlamaDecoderLayer,
num_microbatches=args.num_microbatches,
output_loss_value_spec=(True, False),
input_names=["input_ids", "attention_mask", "labels"],
pipeline_cuts=pipeline_cuts,
trace_file_path=args.trace_file_path,
leaf_module_cls=[LlamaRMSNorm.__name__],
autowrap_modules=[mappings],
use_zero1_optimizer=args.use_zero1_optimizer,

)
model.move_model_to_device()

We first create the model from the Hugging Face model config. If tensor parallel needs to be applied to model it must
be done here before applying the pipeline parallel model wrapper. The next step is to create the partitions. Here is an
example to evenly partition the layers for all stages:

def create_partition(config, args):
"""
Evenly split the transformer layers between the PP ranks
"""

(continues on next page)

562 Chapter 11. NeuronX Distributed

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/libraries/neuronx-distributed/tp_developer_guide.html

AWS Neuron

(continued from previous page)

assert config.num_hidden_layers % args.pipeline_parallel_size == 0
num_layer_per_partition = config.num_hidden_layers // args.pipeline_parallel_size
pipeline_cuts = []
current_cut = num_layer_per_partition - 1
for i in range(args.pipeline_parallel_size-1):

pipeline_cuts.append(f"model.layers.{current_cut}")
current_cut += num_layer_per_partition

if torch.distributed.get_rank() == 0:
print(f"pipeline_cuts {pipeline_cuts}")

return pipeline_cuts

Note that the pipeline cuts should be at the transformer layer module name, which in Llama model is indicated as model.
layers.i where i is the layer index. Users have the option to either provide the pipeline cuts, or set auto_partition
to True to automatically determine the pipeline cuts to use. After pipeline cuts are decided, pipeline model wrapper is
applied. Let’s take a deeper look into each input of the model wrapper

• model: The original Pytorch module, could be TPfied.

• transformer_layer_cls=LlamaDecoderLayer: The transformer layer class, we will use it for partition

• num_microbatches=args.num_microbatches: The number of microbatches we used for pipeline execution.

• output_loss_value_spec=(True, False): This tells NxDPPModel how to get the loss from the model out-
put. In this case output is a tuple, where first value is loss and second value is something else. NxDPPModel will
use loss to run backward and return loss as the output.

• input_names=["input_ids", "attention_mask", "labels"]: The model input names that we will use
to run training. As our partition uses FX symbolic trace to trace the model, we will use these input names to
create concrete_args. Usually this will be the same input as you will feed into model for the execution. For
details please check https://pytorch.org/docs/stable/fx.html#torch.fx.symbolic_trace

• pipeline_cuts=pipeline_cuts: The pipeline cuts to decide the stages

• leaf_module_cls=[LlamaRMSNorm.__name__]: We can add some pytorch modules as leaf module so that
FX symbolic trace won’t trace it through. Here we mark the LlamaRMSNorm as one leaf module. If you hit any
issue about tracing you can skip tracing that part by add the module as a leaf module here. The transformer layer
module will be a leaf module by default.

• autowrap_modules: This serves as the same functionality to simplify FX tracing. User can provide a python
module here and all the methods from this python module will not be traced.

• use_zero1_optimizer: When zero-1 optimizer is used, set this to True, so the PP model will understand that
zero-1 optimizer will handle data parallel gradient averaging.

After applying model wrapper, NxDPPModel will partition the model based on the pipeline cuts. If the original model
is not yet moved to device, we can call model.move_model_to_device() so that NxDPPModel will only move the
local module to device.

11.4. Developer Guide (neuronx-distributed) 563

https://pytorch.org/docs/stable/fx.html#torch.fx.symbolic_trace

AWS Neuron

Runtime execution:

To use pipeline runtime, user simply needs to replace their original model call with NxDPPModel.run_train, rest
will remain unchanged. Please note that the pipeline runtime will take care of both forward and backward call, so user
will not need to explicitly make backward calls. The NxDPPModel.run_train call will return the loss that is achieved
from output_loss_value_spec.

Mixed precision training

We support the torch autocast to do mixed precision, simply apply the context manager for the NxDPPModel.
run_train call. Here is an example:

replace loss, _ = model(input_ids, attention_mask, labels) with below
with torch.autocast(enabled=args.use_amp > 0, dtype=torch.bfloat16, device_type="cuda"):

loss = model.run_train(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels,

)

Things that require user attention:

Model initialization

When the model is large, it is easy to cause host OOM when full model is created on every Neuron core. We recommend
2 ways to deal with this situation:

Using torchdistx’s deferred initialization

Pytorch’s torchdistx package (https://github.com/pytorch/torchdistx/tree/main) provides easy way to do deferred ini-
tialization. If you have torchdistx installed, using deferred initialization is simple as below

from torchdistx import deferred_init
Instead of model = LlamaForCausalLM(config)
model = deferred_init.deferred_init(LlamaForCausalLM, config)

The model weights will be initialized in fake tensor mode which will not consume memory. After applying the
NxDPPModel model wrapper we will only materialize the weights that belong to the local module. Please be aware that
the torchdistx package is not actively maintained by Meta, please use at your own risk.

564 Chapter 11. NeuronX Distributed

https://github.com/pytorch/torchdistx/tree/main

AWS Neuron

Using meta device for initialization

NeuronxDistributed also supports also offer a way to first create the model on meta device, then reinitialize it to host
device with only the local modules. To create the model on meta device, follow the below example:

from neuronx_distributed.utils.model_utils import init_on_device
with init_on_device(torch.device("meta")):

model = LlamaForCausalLM(config)

With init_on_device(torch.device("meta")) context manager, all model weights will be create to meta device,
which will not consume host memory. Then during applying the PP model wrapper, user can pass the param_init_fn
kwargs which can define how to reinit the parameter. Here is an example:

def init_weights(module):
from neuronx_distributed.parallel_layers import ColumnParallelLinear,␣

→˓RowParallelLinear, ParallelEmbedding
if isinstance(module, (nn.Linear, Conv1D)):

module.weight.data.normal_(mean=0.0, std=model_config.initializer_range)
if module.bias is not None:

module.bias.data.zero_()
elif isinstance(module, nn.Embedding):

module.weight.data.normal_(mean=0.0, std=model_config.initializer_range)
if module.padding_idx:

module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):

module.bias.data.zero_()
module.weight.data.fill_(1.0)

elif isinstance(module, (ParallelEmbedding, RowParallelLinear,␣
→˓ColumnParallelLinear)):

module.init_weight_cpu()
if hasattr(module, "bias") and module.bias is not None:

module.bias.data.zero_()

model = NxDPPModel(...,param_init_fn=init_weights,...)

param_init_fn should take a module as input and initialize how the weight of that module should be initialized.

Moving model to device

When user create the model it is usually either created on CPU, or using meta device/torchdistx for delayed parameter
initialization. It is important to understand when the delayed parameter will be materialized and how/when to move
model to device.

Once the NxDPPModel wrapper is applied with the model together with the partition information, tracing and partition
will happen immediately. After partition we will materialize the local module if torchdistx is used or param_init_fn
is passed. So the returned model of NxDPPModel wrapper will have local parameters on host device.

After model is wrapped with NxDPPModel user can do things that are recommended to run on CPU, e.g. loading
shareded checkpoint. It is important to make sure to call model.move_model_to_device() before creating the
optimizer, so that the optimizer can take the weights that are on the device. When using zero-1 optimizer, it is also
required to use model.local_parameters() to create parameter groups so the optimizer can infer the right device
information from parameter groups.

11.4. Developer Guide (neuronx-distributed) 565

AWS Neuron

Gradient checkpointing

Gradient checkpointing (or activation checkpointing) is a common method used in deep learning to reduce memory
footprint by doing recomputation of forward computation. The common way to apply the gradient checkpointing on
XLA device is to use the torch_xla’s gradient checkpointing wrapper, which will apply an autograd function. However
FX’s symbolic tracing does not understand autograd function, and as a result the checkpointing information will be
ignored if the checkpoint wrapper is traced during partition. To handle this case, user can manually re-apply gradient
checkpoint after partition. Here we provide an example to checkpoint every transformer layer after partition.

from typing import Any, Dict, Iterator, Tuple
import torch.nn as nn

import torch
from torch_xla.utils.checkpoint import checkpoint as torch_checkpoint
from neuronx_distributed.parallel_layers.parallel_state import rmsg
from neuronx_distributed.utils.logger import get_logger
from torch.distributed.utils import _replace_by_prefix

logger = get_logger()

_CHECKPOINT_WRAPPED_MODULE = "mod"
_CHECKPOINT_PREFIX = _CHECKPOINT_WRAPPED_MODULE + "."

class CheckPointWrapper(torch.nn.Module):
def __init__(self, mod) -> None:

super().__init__()
self.mod = mod
state_dict post hook to remove prefix to allow loading into a
non-checkpoint wrapped module.
self._register_state_dict_hook(self._post_state_dict_hook)
load_state_dict pre-hook to allow loading back into
checkpoint-wrapped module.
self._register_load_state_dict_pre_hook(

self._pre_load_state_dict_hook, with_module=True
)

def forward(self, *args, **kwargs):
ordered_args = list(args)
for value in kwargs.values():

ordered_args += [value]

Note: checkpoint cannot accept kwargs
return torch_checkpoint(self.mod, *ordered_args, use_reentrant=True)

def named_parameters(
self,
*args,
**kwargs,

) -> Iterator[Tuple[str, torch.nn.Parameter]]:
"""
Overrides :meth:`named_parameters()` to intercept parameter names and
remove all occurrences of ``_CHECKPOINT_PREFIX``.

(continues on next page)

566 Chapter 11. NeuronX Distributed

https://github.com/pytorch/xla/blob/master/torch_xla/utils/checkpoint.py#L129

AWS Neuron

(continued from previous page)

"""
for param_name, param in super().named_parameters(*args, **kwargs):

updated_name = param_name.replace(_CHECKPOINT_PREFIX, "")
yield updated_name, param

def named_modules(self,*args,**kwargs):
for module_name, module in super().named_modules(*args, **kwargs):

updated_name = module_name.replace(_CHECKPOINT_PREFIX, "")
yield updated_name, module

@staticmethod
def _post_state_dict_hook(

module: nn.Module,
state_dict: Dict[str, Any],
prefix: str,
*args: Any,

) -> Dict[str, Any]:
"""
_post_state_dict_hook() is called after the state_dict() of this
FSDP module is executed. For ``checkpoint_wrapper``, it will strip
checkpoint-wrapped module prefix so that this module can be loaded into
non-checkpointed modules. It would still be able to be loaded into
checkpoint-wrapped modules as this class adds the prefix back before
loading the state_dict.
"""
_replace_by_prefix(state_dict, f"{prefix}{_CHECKPOINT_PREFIX}", prefix)
return state_dict

@staticmethod
def _pre_load_state_dict_hook(

module: nn.Module,
state_dict: Dict[str, Any],
prefix: str,
*args: Any,

) -> None:
"""
``_pre_state_dict_hook` is called before ``self._load_from_state_dict()``
is called. For ``checkpoint_wrapper``, it will add back the module
prefix so that non-checkpointed modules can be loaded into
checkpoint_wrapper modules properly.
"""
_replace_by_prefix(state_dict, prefix, prefix + f"{_CHECKPOINT_PREFIX}")

def apply_checkpoint(dist_model, layers_to_checkpoint=None):
checkpoint_wrapper_added = False
if layers_to_checkpoint is not None and len(layers_to_checkpoint) == 0:

raise RuntimeError(
rmsg(f"invalid input layers_to_checkpoint {layers_to_checkpoint}, can't be␣

→˓empty")
)

for name, module in dist_model.local_module.named_children():
checkpoint layers that are provided in input

(continues on next page)

11.4. Developer Guide (neuronx-distributed) 567

AWS Neuron

(continued from previous page)

if layers not provide in input, then checkpoint if it is transformer layer
if (layers_to_checkpoint and name in layers_to_checkpoint) or (

not layers_to_checkpoint and type(module) == dist_model.transformer_layer_cls
):

add_module replaces old module with our own custom module.
https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html

→˓#Module.add_module
dist_model.local_module.add_module(name, CheckPointWrapper(module))
checkpoint_wrapper_added = True

if layers_to_checkpoint is not None and not checkpoint_wrapper_added:
logger.warning(

rmsg(f"layers_to_checkpoint {layers_to_checkpoint} do not exist in the graph
→˓")

)
elif layers_to_checkpoint is None and not checkpoint_wrapper_added:

logger.warning(
rmsg(

f"During applying activation checkpointing, transformer_layer_cls {dist_
→˓model.transformer_layer_cls.__name__} can not be found in stage {dist_model.pipeline_
→˓parallel_rank}, skipping..."

)
)

model = NxDPPModel(...)
Will checkpoint every transformer layer
apply_checkpoint(model)

apply_checkpoint function will try to apply gradient checkpointing to every transformer layer. Please note we have
plan to add this functionality into NxDPPModel in the future releases.

Model tracing

It is important to understand that the model cannot be partitioned without tracing. The model tracing is currently done
with FX’s symbolic trace. There are certain limitations for FX’s symbolic trace. So in order to avoid any tracing issue,
we would like to trace as less operations as possible, which means that we only want to trace the structure of the model,
and cut the pipeline stages on the transformer layers, we do not care how exactly the computations are in the model.
By default, we will mark all transformer layers as leaf nodes, so that the tracer will not trace inside these layers. If you
have some module that might cause tracing problem, you can try to mark them as leaf nodes as well. Our previous
example also marks the LlamaRMSNorm as leaf module for Llama model.

Special treatment for Hugging Face models

Hugging Face offers FX support for many of its models. We will detect if user is using a Hugging Face model (by
checking if the model class is transformers.PreTrainedModel), and if so we will use the Huggingface’s FX tracer to do
the symbolic trace. The Hugging Face’s tracer has implementation of many functionalities to help tracing, for details
please refer to here. However, please be aware that Hugging Face’s tracer will check if the model class name belongs
to one of the Hugging Face models. So if you create your model class based on some Huggingface model class, it is
important to maintain the same class name. Below is an example:

568 Chapter 11. NeuronX Distributed

https://pytorch.org/docs/stable/fx.html#limitations-of-symbolic-tracing
https://github.com/huggingface/transformers/blob/main/src/transformers/utils/fx.py

AWS Neuron

from transformers.models.llama.modeling_llama import LlamaForCausalLM as␣
→˓LlamaForCausalLMHF

Keep the same class name as original one
class LlamaForCausalLM(LlamaForCausalLMHF):

...

Auto partition

Setting the auto_partition parameter to True means that the transformer layers are automatically partitioned by
evenly splitting the transformer layers between the PP ranks. If the transformer layers are not evenly divisible by the
PP ranks, the remaining layers are distributed to the latter pipeline ranks. The partitions are created on the basis of
the transformer layer names. The transformer layer names are determined by recursively traversing the original torch
module to find the layer names of modules that are of the transformer_layer_cls type in the model. If the user
does not want to partition the model in this way, they can set the partitions to use by specifying the pipeline_cuts.
Note that the pipeline cuts should be at the transformer layer module name, which in the Llama model is given by
model.layers.i where i is the layer index.

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

11.4.3 Developer guide for Activation Memory reduction (neuronx-distributed)

Sequence Parallelism

To combine sequence parallelism with tensor-parallelism, one needs to follow the steps below:

Model changes for Tensor-Parallel block:

For tensor-parallelism, we replace the linear layers with ColumnParallel and RowParallel Linear layers as mentioned
here. To enable sequence-parallel, we need to pass the sequence_parallel_enabled for the ColumnParallel and RowPar-
allel linear layers. Setting this argument to true, the ColumnParallel and RowParallel Linear layers will introduce the
all-gather and reduce-scatter operations for gathering and distributing the activations along the sequence dimension.

from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXAttention

class class GPTNeoXAttentionNxD(GPTNeoXAttention):
def __init__(self, config):

super().__init__(config)
....
self.query_key_value = ColumnParallelLinear(

config.hidden_size,
3 * config.hidden_size,
stride=3,
gather_output=False,
init_method=init_method,
sequence_parallel_enabled=self.config.sequence_parallel_

→˓enabled,
)

(continues on next page)

11.4. Developer Guide (neuronx-distributed) 569

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/libraries/neuronx-distributed/tp_developer_guide.html#creating-model

AWS Neuron

(continued from previous page)

self.dense = RowParallelLinear(
config.hidden_size,
config.hidden_size,
input_is_parallel=True,
init_method=init_method,
sequence_parallel_enabled=self.config.sequence_parallel_enabled,

)
....

Model changes for Non-Tensor-Parallel block:

In a transformer module, the non-tensor parallel block contains mainly the Layer-Norm modules. Since we par-
tition the computation along the sequence dimension for the layer-norm, we need to sum up the gradients along
the sequence dimension for the Layer-norm. To help us do that, we use the Layer-norm provided from neuronx-
distributed.parallel_layers.layer_norm. The Layer-norm in neuronx-distributed should uses the same forward and
backward as torch.nn.LayerNorm, however, it just marks the weights as sequence-parallel weights. This tagging al-
lows us to look for weights with sequence-parallel tagging and reduce those gradients along the tensor-parallel degree.
Hence we need to add the following two changes:

from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXLayer
from neuronx_distributed.parallel_layers import layer_norm

class GPTNeoXLayerNxD(GPTNeoXLayer):
def __init__(self, config):

super().__init__(config)
...
self.input_layernorm = layer_norm.LayerNorm(

config.hidden_size,
eps=config.layer_norm_eps,
sequence_parallel_enabled=config.sequence_parallel_

→˓enabled
)

self.post_attention_layernorm = layer_norm.LayerNorm(
config.hidden_size,
eps=config.layer_norm_eps,
sequence_parallel_enabled=config.sequence_

→˓parallel_enabled
)

Once we replace the layernorm with neuronx-distributed’s layernorm, it will mark the weights as sequence-parallel
weights. Note: If your model is using RMSNorm or any other layer that parallelizes in the sequence-dimension, you
can mark the weights as sequence-parallel weights by using the following code:

setattr(param, "sequence_parallel_enabled", sequence_parallel_enabled)

Once marked, we then use this attribute when we compute gradients for layer-norm. We need to add the following code
before our optimizer.step:

def allreduce_sequence_parallel_gradients(optimizer):
""" All-reduce layernorm parameters across model parallel nodes when sequence␣

→˓parallelism is used.
(continues on next page)

570 Chapter 11. NeuronX Distributed

https://github.com/aws-neuron/neuronx-distributed/blob/main/src/neuronx_distributed/parallel_layers/layer_norm.py#L32

AWS Neuron

(continued from previous page)

Modified from megatron-lm:
https://gitlab-master.nvidia.com/ADLR/megatron-lm/-/blob/

→˓3f91f09bb2ab32f9904b47f46f19d2fc3f518ed8/megatron/training.py#L425
"""
from neuronx_distributed.parallel_layers.mappings import reduce_from_tensor_model_

→˓parallel_region
grads = []
for param_group in optimizer.__getstate__()['param_groups']:

for group, params in param_group.items():
if group == 'params':

for p in params:
if isinstance(p, torch.Tensor) and p.grad is not None:

sequence_parallel_param = getattr(p, 'sequence_parallel_enabled',
→˓ False)

if sequence_parallel_param:
grads.append(p.grad.data)

for grad in grads:
reduce_from_tensor_model_parallel_region(grad)

As seen in the above code, we reduce the gradients from all tensor parallel devices. This is because the compute is
divided along the sequence dimension across all the devices participating in the tensor parallel group. For reference
implementation, check the GPTNeoX-20B modeling code .

Transposing the activations:

Sequence-parallelism implementation requires the sequence dimension to be the 0th dimension whereas the tensor-
parallel region requires the sequence dimension to be the first dimension. All our model implementation keeps the
sequence dimension as 1st dimension and batch dimension as 0th dimension. Hence, to accommodate sequence paral-
lelism, we need to insert a few transpose operations at the following places:

1. Before we start looping through all the layers, we need to transpose the sequence and batch dimension. We also need
to partition the inputs along the sequence dimensions such that each tp-rank gets a part. This can be done as:

form neuronx_distributed.parallel_layers.mappings import scatter_to_sequence_parallel_
→˓region
NxD code change: sequence parallel uses seq_len as the 0-th dim
if self.config.sequence_parallel_enabled:

hidden_states = hidden_states.transpose(0, 1).contiguous()
hidden_states = scatter_to_sequence_parallel_region(hidden_states)

2. Since the attention block requires the sequence dimension to be 1st dimension, we transpose the output of QKV
projection and then transpose it back before the final MLP of the attention block.

Within the attention module
qkv = self.query_key_value(hidden_states)

if config.sequence_parallel_enabled:
qkv = qkv.transpose(0,1)

...

attn_output = attn_output.transpose(0,1)
attn_output = self.dense(attn_output)

11.4. Developer Guide (neuronx-distributed) 571

https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_20b_hf_pretrain/tp_dp_gpt_neox_20b_hf_pretrain.py#L273C1-L289C55

AWS Neuron

3. Finally before returning the final output, we need to put all the partial activations along the sequence dimension back
together. This can be done as follows:

form neuronx_distributed.parallel_layers.mappings import gather_from_sequence_parallel_
→˓region
if self.config.sequence_parallel_enabled:

hidden_states = gather_from_sequence_parallel_region(hidden_states, to_model_
→˓parallel=False)

hidden_states = hidden_states.transpose(0, 1).contiguous()

return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_attentions,

)

These are the only major changes required to add sequence-parallelism on top of tensor-parallelism. Note: Sequence-
parallelism uses the same tensor-parallel group. For reference implementation, follow GPTNeoX-20B model script.

Activation Recomputation

As seen in the App notes on Activation Memory Recomputation we can reduce the activation memory by recomput-
ing few operations from the forward pass during the backward run. To replay some of the compute, we can use the
torch.utils.checkpoint.checkpoint. To use this API, we need to put the compute, we want to replay, inside a function
which can be passed to the checkpoint API. This API takes care of maintaining the RNG seed, not saving the activations
and also inserting the forward recompute during the gradient computation.

To enable selective activation checkpointing for the attention block, we can simply pass the attention block to the
checkpoint api as follows:

if config.selective_activation_checkpointing_is_enabled:
attn_output = torch.utils.checkpoint.checkpoint(self._attn, query, key, value,␣

→˓attention_mask, head_mask)
else:

attn_output = self._attn(query, key, value, attention_mask, head_mask)

Note: To use torch.utils.checkpoint, it is mandatory to use -O1 compiler flag. If this is not enabled, the Neuron compiler
would eliminate the duplicate recompute as an optimization and hence you would not see any memory gains.

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

11.4.4 Developer guide for Neuron-PT-Lightning (neuronx-distributed)

Training

For training models with Neuron-PT-Lightning, user needs to make few changes to their model/training script. In this
document we explain how we can train a model using Tensor Parallelism (TP), Data Parallelism (DP) and Zero-1.

First, let’s start with the model changes. Please follow the guidelines here (tensor parallel guidance) for building the
model with tensor-parallelism enabled and setting up training dataset.

Next, let’s walkthrough how we can build the training loop with Neuron-PT-Lightning APIs

572 Chapter 11. NeuronX Distributed

https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_20b_hf_pretrain/modeling_gpt_neox_nxd.py
https://pytorch.org/docs/stable/checkpoint.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/compiler/neuronx-cc/api-reference-guide/neuron-compiler-cli-reference-guide.html?highlight=--O1#cmdoption-neuronx-cc-arg-0
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/libraries/neuronx-distributed/tp_developer_guide.html

AWS Neuron

Configure NeuronLTModule

NeuronxDistributed overrides LightningModule with built-in support for Neuron device. User needs to inherit from
NeuronLTModule

class NeuronLlamaLTModule(NeuronLTModule):
def training_step(self, batch, batch_idx):

...
...

Within LTModule, user needs to override the following methods training_step At this moment NeuronLTModule
only support manual optimization, so user needs to define forward, backward and optimization steps

def training_step(self, batch, batch_idx):
xm.mark_step() # Isolate forward+backward graph
for logger in self.trainer.loggers:

logger.print_step = -1
self.should_print = False
outputs = self.model(

input_ids=batch["input_ids"],
attention_mask=batch["attention_mask"],
labels=batch["labels"],

)
loss = outputs.loss / self.grad_accum_steps
loss.backward()
self.averaged_loss += loss.detach()
xm.mark_step() # Isolate forward+backward graph
if not self.automatic_optimization and (batch_idx +1) % self.grad_accum_steps == 0:

self.should_print = True
loss_div = self.averaged_loss / self.trainer.strategy.data_parallel_size
loss_reduced = xm.all_reduce(

xm.REDUCE_SUM,
loss_div,
groups=parallel_state.get_data_parallel_group(as_list=True),

)
loss_reduced_detached = loss_reduced.detach()
self.averaged_loss.zero_()
optimizer = self.optimizers()
scheduler = self.lr_schedulers()
optimizer.step()
optimizer.zero_grad()
scheduler.step()
xm.mark_step() # Isolate Optimization step graph

Setup items for logging
self.loss = loss_reduced_detached

return loss

configure_optimizers Configure optimizer and lr_scheduler

def configure_optimizers(self):
param_groups = self.get_param_groups_by_weight_decay()
optimizer = initialize_parallel_optimizer(

(continues on next page)

11.4. Developer Guide (neuronx-distributed) 573

https://lightning.ai/docs/pytorch/stable/common/lightning_module.html
https://lightning.ai/docs/pytorch/stable/model/manual_optimization.html

AWS Neuron

(continued from previous page)

self.nxd_config, self.opt_cls, param_groups, **self.opt_kwargs
)
optimizer.zero_grad()
scheduler = self.scheduler_cls(optimizer, *self.scheduler_args, **self.scheduler_

→˓kwargs)
return (

[optimizer],
[

{
"scheduler": scheduler,

}
],

)

on_train_batch_end Customized behaviour at the end of each training batch, like logging

def on_train_batch_end(self, *args, **kwargs):
if self.should_print:

if not self.automatic_optimization:
self.log(

"loss",
self.loss.detach().cpu().item() if self.loss is not None else torch.

→˓zeros(1, device="cpu", requires_grad=False),
prog_bar=True,

)
self.log(

"global_step",
self.global_step,
prog_bar=True,
on_step=True,
on_epoch=True,

)
for logger in self.trainer.loggers:

logger.print_step = self.global_step

Note that NeuronLTModule has a built-in function of get_param_groups_by_weight_decay for common use case
as shown in snippet below, users can also override with their own param_groups generation.

def get_param_groups_by_weight_decay(self):
"""Get param groups. Customers can override this to have their own way of weight_

→˓decay"""
param_optimizer = list(self.model.named_parameters())
no_decay = ["bias", "LayerNorm"] # gamma/beta are in LayerNorm.weight

optimizer_grouped_parameters = [
{

"params": [p for n, p in param_optimizer if not any(nd in n for nd in no_
→˓decay)],

"weight_decay": 0.01,
},
{

"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
(continues on next page)

574 Chapter 11. NeuronX Distributed

AWS Neuron

(continued from previous page)

"weight_decay": 0.0,
},

]
return optimizer_grouped_parameters

Configure DataModule

Create a LightningDataModule for data loading/sampling

class NeuronLightningDataModule(LightningDataModule):
def __init__(

self,
dataloader_fn: Callable,
data_dir: str,
batch_size: int,
data_args: Tuple = (),
data_kwargs: Dict = {},

):
super().__init__()
self.dataloader_fn = dataloader_fn
self.data_dir = data_dir
self.batch_size = batch_size
self.data_args = data_args,
self.data_kwargs = data_kwargs

def setup(self, stage: str):
pass

def train_dataloader(self):
return self.dataloader_fn(

self.data_dir,
self.batch_size,
self.trainer.strategy.data_parallel_size,
self.trainer.strategy.data_parallel_rank,
*self.data_args,
**self.data_kwargs

)

11.4. Developer Guide (neuronx-distributed) 575

AWS Neuron

Update Training Script

For detailed introduction to each api/class, check api guide

Create NeuronLTModule and DataModule

model = NeuronLlamaLTModule(
model_fn = LlamaForCausalLM,
nxd_config = nxd_config,
model_args = (model_config,),
opt_cls = optimizer_cls,
scheduler_cls = configure_scheduler,
opt_kwargs = {

"lr": flags.lr,
},
scheduler_args = (flags.warmup_steps, flags.max_steps),
grad_accum_steps = flags.grad_accum_usteps,
manual_opt = True,

)

dm = NeuronLightningDataModule(
create_llama_pretraining_dataset,
flags.data_dir,
flags.batch_size,
data_args = (flags.seed,),

)

Add Strategy, Plugins, Callbacks

strategy = NeuronXLAStrategy(
nxd_config = nxd_config

)
plugins = []
plugins.append(NeuronXLAPrecisionPlugin())
callbacks = []
callbacks.append(NeuronTQDMProgressBar())

Create Trainer and Start Training

trainer = Trainer(
strategy = strategy,
max_steps = flags.steps_this_run,
plugins = plugins,
enable_checkpointing = flags.save_checkpoint,
logger = NeuronTensorBoardLogger(save_dir=flags.log_dir),
log_every_n_steps = 1,
callbacks = callbacks,

(continues on next page)

576 Chapter 11. NeuronX Distributed

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/libraries/neuronx-distributed/api_guide.html

AWS Neuron

(continued from previous page)

)
trainer.fit(model=model, datamodule=dm)

Checkpointing

To enable checkpoint saving, add ModelCheckpoint to the callbacks

callbacks.append(
ModelCheckpoint(

save_top_k = flags.num_kept_checkpoint,
monitor="global_step",
mode="max",
every_n_train_steps = flags.checkpoint_freq,
dirpath = flags.checkpoint_dir,

)
)

To load from specific checkpoint, add ckpt_path=ckpt_path to trainer.fit

trainer.fit(model=model, datamodule=dm, ckpt_path=ckpt_path)

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

11.4.5 Developer guide for model and optimizer wrapper (neuronx-distributed)

Model and optimizer wrapper are useful tools to wrap original model and optimizer while keep the API unchanged. We
recommend to always use model and optimizer wrappers, it’s helpful to apply optimizations and hide the complexity
from the optimizations. Users need to care about the implementation details of the optimization, just use the wrappers
as you normally use torch.nn.Module and torch.optim.Optimizer.

For a complete api guide, refer to API GUIDE.

Create training config:

To use model and optimizer wrapper, we need to create neuronx_distributed config firstly.

A sample config use tensor parallel, pipeline parallel, ZeRO-1 optimizer, sequence parallel and activation checkpoint-
ing:

nxd_config = nxd.neuronx_distributed_config(
tensor_parallel_size=args.tensor_parallel_size,
pipeline_parallel_size=args.pipeline_parallel_size,
pipeline_config={

"transformer_layer_cls": LlamaDecoderLayer,
"num_microbatches": args.num_microbatches,
"output_loss_value_spec": (True, False),
"input_names": ["input_ids", "attention_mask", "labels"],
"pipeline_cuts": pipeline_cuts,
"trace_file_path": args.trace_file_path,

(continues on next page)

11.4. Developer Guide (neuronx-distributed) 577

https://lightning.ai/docs/pytorch/stable/api/lightning.pytorch.callbacks.ModelCheckpoint.html

AWS Neuron

(continued from previous page)

"param_init_fn": None,
"leaf_module_cls": [LlamaRMSNorm.__name__],
"autowrap_modules": [mappings],
"use_zero1_optimizer": args.use_zero1_optimizer > 0,
"use_optimizer_wrapper": True,

},
optimizer_config={

"zero_one_enabled": args.use_zero1_optimizer > 0,
"grad_clipping": True,
"max_grad_norm": 1.0,

},
sequence_parallel=args.use_sequence_parallel,
activation_checkpoint_config=CoreAttention if args.use_selective_checkpoint > 0 else

→˓"full",
model_init_config=model_init_config,

)

Use model wrapper:

When we wrap a model with model wrapper, we need to implement a model getter function. The model getter function
will be called to initialize model on CPU and then model will be moved to XLA device serially. Then, let’s pass
nxd_config, model getter function and its inputs to method initialize_parallel_model:

model = nxd.initialize_parallel_model(nxd_config, get_model, config)

If pipeline parallel is enabled, to run a training iteration, user must use run_train, it handles pipeline partitioned
forward and backward in it:

loss = model.run_train(*inputs)

Otherwise, users can use either run_train or:

loss = model(*inputs)
loss.backward()

To access the wrapped model:

model.local_module()

Model wrapper also has short cuts to access some common fields of hugging face transformers model;

model.dtype # get model's dtype
model.config # get model's config
model.name_or_path # get model's name or path

578 Chapter 11. NeuronX Distributed

AWS Neuron

Use optimizer wrapper:

When we wrap an optimizer with optimizer wrapper, we need nxd_config, original optimizer class and its inputs
(parameters and optimizer arguments):

optimizer = nxd.initialize_parallel_optimizer(
nxd_config, torch.optim.AdamW, param_groups, lr=args.lr, betas=(args.beta1, args.

→˓beta2), weight_decay=args.weight_decay
)

One useful feature is that user can access grad norm value from wrapped optimizer directly:

It's a XLA tensor
optimizer.grad_norm

Note that if optimizer has not been executed or grad_clipping is disable, access grad_norm will get None.

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

11.4.6 Developer guide for save/load checkpoint (neuronx-distributed)

This document will introduce how to use nxd.save_checkpoint and nxd.load_checkpoint to save and load checkpoint
for distributed model training. This two methods handle all checkpoint in a single method: model, optimize, learning
rate scheduler and any user contents.

For a complete api guide, refer to API GUIDE.

Save checkpoint:

A sample usage:

nxd.save_checkpoint(
args.checkpoint_dir, # checkpoint path
tag=f"step_{total_steps}", # tag, sub-directory under checkpoint path
model=model,
optimizer=optimizer,
scheduler=lr_scheduler,
user_content={"total_steps": total_steps, "batch_idx": batch_idx, "cli_args": args.__

→˓dict__},
use_xser=True,
async_save=True,

)

Users can choose to not save every thing. For example, model states only:

nxd.save_checkpoint(
args.checkpoint_dir, # checkpoint path
tag=f"step_{total_steps}", # tag, sub-directory under checkpoint path
model=model,
use_xser=True,
async_save=True,

)

11.4. Developer Guide (neuronx-distributed) 579

AWS Neuron

To only keep several checkpoints (e.g. 5), just use num_kept_ckpts=5.

Load checkpoint:

A sample usage, note that if no user contents detected, it will return None:

user_content = nxd.load_checkpoint(
args.checkpoint_dir, # checkpoint path
tag=f"step_{args.loading_step}", # tag
model=model,
optimizer=optimizer,
scheduler=lr_scheduler,

)

Leave tag not provided, this loading method will try to automatically resume from the latest checkpoint.

user_content = nxd.load_checkpoint(
args.checkpoint_dir, # checkpoint path
model=model,
optimizer=optimizer,
scheduler=lr_scheduler,

)

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

11.4.7 Developer guide for Neuronx-Distributed Inference (neuronx-distributed)

Overview

Neuronx-Distributed started with mostly targeting distributed device training workloads. Now, Neuronx-Distributed
is now quickly expanding to support distributed device inference workloads. Currently, Tensor Parallelism (TP) is the
only supported form of parallelism for Neuronx-Distributed, with other forms such as Pipeline Parallelism coming
in future releases. Beyond this, Neuronx-Distributed inference also supports weight separation amongst TP shards,
as well as autobucketing support for TP models. These will be covered in this Developer Guide using BERT, and in
the end, there will be two samples (T5 3B and Llama-v2 7B) that showcase Neuronx-Distributed inference for larger
models.

For training workflows, check out the other written Developer Guides for Neuronx-Distributed.

Pre-Requisites

Before we start, let’s install transformers.

pip install transformers==4.26.0

For this guide we’ll use BERT. Before we run the inference, let’s get a checkpoint that we can use.

Let’s run the below block of code:

580 Chapter 11. NeuronX Distributed

AWS Neuron

import torch
import torch_neuronx
import transformers
from transformers import AutoTokenizer, AutoModelForSequenceClassification

name = "bert-base-cased-finetuned-mrpc"

model = AutoModelForSequenceClassification.from_pretrained(name, torchscript=True)
torch.save({"model":model.state_dict()}, "bert.pt")

Creating a Tensor Parallel (TP) Model

TP models are created by introducing layers that are built to utilize TP, such as RowParallelLinear and
ColumnParallelLinear. To see how these layers work, please see the Tensor Parallel Developer Guide.

Below is an example using BERT:

import os
import torch
import torch_neuronx
import transformers
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers.models.bert.modeling_bert import BertSelfAttention, BertSelfOutput

import neuronx_distributed
from neuronx_distributed.parallel_layers import layers, parallel_state

def encode(tokenizer, *inputs, max_length=128, batch_size=1):
tokens = tokenizer.encode_plus(

*inputs,
max_length=max_length,
padding='max_length',
truncation=True,
return_tensors="pt"

)
return (

torch.repeat_interleave(tokens['input_ids'], batch_size, 0),
torch.repeat_interleave(tokens['attention_mask'], batch_size, 0),
torch.repeat_interleave(tokens['token_type_ids'], batch_size, 0),

)

Create the tokenizer and model
name = "bert-base-cased-finetuned-mrpc"
tokenizer = AutoTokenizer.from_pretrained(name)

Set up some example inputs
sequence_0 = "The company HuggingFace is based in New York City"
sequence_1 = "Apples are especially bad for your health"
sequence_2 = "HuggingFace's headquarters are situated in Manhattan"

(continues on next page)

11.4. Developer Guide (neuronx-distributed) 581

AWS Neuron

(continued from previous page)

paraphrase = encode(tokenizer, sequence_1, sequence_2)
not_paraphrase = encode(tokenizer, sequence_1, sequence_1)

def get_model():
model = AutoModelForSequenceClassification.from_pretrained(name, torchscript=True)
Here we build a model with tensor-parallel layers.
Note: If you already have a Model class that does this, we can use that directly
and load the checkpoint in it.
class ParallelSelfAttention(BertSelfAttention):

def __init__(self, config, position_embedding_type=None):
super().__init__(config, position_embedding_type)
self.query = layers.ColumnParallelLinear(config.hidden_size, self.all_head_

→˓size, gather_output=False)
self.key = layers.ColumnParallelLinear(config.hidden_size, self.all_head_

→˓size, gather_output=False)
self.value = layers.ColumnParallelLinear(config.hidden_size, self.all_head_

→˓size, gather_output=False)
self.num_attention_heads = self.num_attention_heads // parallel_state.get_

→˓tensor_model_parallel_size()
self.all_head_size = self.all_head_size // parallel_state.get_tensor_model_

→˓parallel_size()

class ParallelSelfOutput(BertSelfOutput):
def __init__(self, config):

super().__init__(config)
self.dense = layers.RowParallelLinear(config.hidden_size,

config.hidden_size,
input_is_parallel=True)

for layer in model.bert.encoder.layer:
layer.attention.self = ParallelSelfAttention(model.config)
layer.attention.output = ParallelSelfOutput(model.config)

Here we created a checkpoint as mentioned above. We pass sharded=False, since the␣
→˓checkpoint
we obtained is unsharded. In case you are using the checkpoint from the tensor-

→˓parallel training,
you can set the sharded=True, as that checkpoint will contain shards from each tp␣

→˓rank.
neuronx_distributed.parallel_layers.load("bert.pt", model, sharded=False)

These io aliases would enable us to mark certain input tensors as state tensors.␣
→˓These
state tensors are going to be device tensors.
io_aliases = {}
return model, io_aliases

Notice that the get_model() function returns not only the model, but also io_aliases. This is a dictionary containing
model tensors that are marked as containing state. This is necessary for models that have dynamic tensors during each
inference pass. One such use case is for models with KV-Caching, which can be seen in the T5 and Llama-v2 samples
linked at the bottom of the guide. In this example, we don’t have such tensors, so we return an empty dictionary.

582 Chapter 11. NeuronX Distributed

AWS Neuron

Tracing the Tensor Parallel (TP) Model

After introducing these layers to the model, we need to trace the model for inference. This is done by the
parallel_model_trace API. This will produce model shards per tp degree, and is saved and loaded by custom
Neuronx-Distributed APIs: parallel_model_load and parallel_model_save.

parallel_model_trace has a few distinctions from torch_neuronx.trace. First, instead of passing in a model
directly, we pass in a function that returns the model and a dictionary of states. This is done for serialization purposes
when tracing using XLA multiprocessing as is done in parallel_model_trace. Another difference is the keyword
arguments unique to parallel_model_trace. The most important one is the tp_degree, which determines the
number of model shards to produce in a TP scheme.

Below code shows the earlier written get_model() function used in parallel_model_trace, as well as saving and
loading the traced tp model:

if __name__ == "__main__":

Note how we are passing a function that returns a model object, which needs to be␣
→˓traced.
This is mainly done, since the model initialization needs to happen within the␣

→˓processes
that get launched internally within the parallel_model_trace.
model = neuronx_distributed.trace.parallel_model_trace(get_model, paraphrase, tp_

→˓degree=2)

Once traced, we now save the trace model for future inference. This API takes care
of saving the checkpoint from each tensor parallel worker
neuronx_distributed.trace.parallel_model_save(model, "tp_models")

We now load the saved model and will run inference against it
model = neuronx_distributed.trace.parallel_model_load("tp_models")
cpu_model = AutoModelForSequenceClassification.from_pretrained(name,␣

→˓torchscript=True)
assert torch.argmax(model(*paraphrase)[0]) == torch.argmax(cpu_model(*paraphrase)[0])

Weight separation

One more difference to note is the inline_weights_to_neff keyword argument. While this also exists in
torch_neuronx.trace it’s important to note that since parallel_model_trace produces many NEFFs, this means
that this keyword argument enables weight separation, which is done by separating out common weights between the
shards from the NEFFs. Benefits that can come from weight separation is lower memory usage, as well as faster neff
loading times.

Note: It might be confusing to enable weight separation by disabling a flag. This is because the original way that
Neuron models handle weights is by having the weights embedded/inlined into the NEFF, making it impossible to
replace. To preserve default behavior, the flag is set to True by default. When the flag is set to False, weights are no
longer inlined into the neff and are now separate, which enables new workflows.

To enable weight separation, set inline_weights_to_neff=False in parallel_model_trace:

model = neuronx_distributed.trace.parallel_model_trace(get_model, paraphrase, tp_
→˓degree=2, inline_weights_to_neff=False)

11.4. Developer Guide (neuronx-distributed) 583

AWS Neuron

The full API reference for all trace related functions can be found here.

Autobucketing

Autobucketing is a feature that enables you to use multiple bucket models. Each bucket model accepts a static input
shape and a bucket kernel function. The models are then packaged into a single traced PyTorch model that can accept
multiple different input shapes.

This gives you increased flexibility for inputs into Neuron models without the need to manage multiple Neuron models.
The applications of this are extensive, from optimal model selection based on image resolution, to efficient sampling
for token generation in language models. For more information, see the torch_neuronx section on Autobucketing, and
this developer guide.

neuronx_distributed supports autobucketing via the bucket_config parameter. The following example shows
how to use this with BERT to bucket it on sequence length:

def sequence_length_bucket_kernel(tensor_list: List[torch.Tensor]):
x = tensor_list[0]
bucket_dim = 1
x_shape = x.shape
tensor_sequence_length = x_shape[bucket_dim]
batch_size = x_shape[bucket_dim - 1]
buckets = [128, 512]
idx = 0
num_inputs = 3
bucket = buckets[0]
reshaped_tensors: List[torch.Tensor] = []
bucket_idx = 0
for idx, bucket in enumerate(buckets):

if tensor_sequence_length <= bucket:
bucket_idx = idx
for tensor in tensor_list:

if num_inputs == 0:
break

delta = bucket - tensor_sequence_length
padding_shape: List[int] = [batch_size, delta]
zeros = torch.zeros(padding_shape, dtype=x.dtype)
reshaped_tensors.append(torch.cat([tensor, zeros], dim=bucket_dim))
num_inputs -= 1

break
return reshaped_tensors, torch.tensor([bucket_idx])

def get_bucket_kernel(*_):
bk = torch.jit.script(sequence_length_bucket_kernel)
return bk

same encode function
paraphrase = encode(tokenizer, sequence_1, sequence_2)
paraphrase_long = encode(tokenizer, sequence_1, sequence_2,max_length=512)

if __name__ == '__main__':
#same as original main function

bucket_config = torch_neuronx.BucketModelConfig(get_bucket_kernel)
(continues on next page)

584 Chapter 11. NeuronX Distributed

AWS Neuron

(continued from previous page)

note: inline_weights_to_neff must be set to False, otherwise a ValueError is raised
model = neuronx_distributed.trace.parallel_model_trace(get_model, [paraphrase,␣

→˓paraphrase_long], inline_weights_to_neff=False, bucket_config=bucket_config, tp_
→˓degree=2)

#rest is the same

With the above example, we can supply inputs of sequence length from 1-512 without pre-padding, as the bucket kernel
takes care of that. Autobucketing is useful for latency sensitive applications where using smaller and large inputs on
small and large models respectively.

Note: We do not yet have autobucketing integrated with our NxD Llama2 example, and will be done so in an upcoming
release.

Conclusion

Neuronx-Distributed inference is quickly expanding to support more features, and this guide will be updated to reflect
these features. However, Neuronx-Distributed inference already supports some large models such as T5 3B and Llama-
v2 7B. The samples for each can be found:

1. T5 3B inference tutorial [html] [notebook]

2. Llama-v2 7B tutorial [html] [notebook]

This document is relevant for: Inf2, Trn1, Trn1n

• Developer guide for Tensor Parallelism (neuronx-distributed)

• Developer guide for Pipeline Parallelism (neuronx-distributed)

• Developer guide for Activation Memory reduction (neuronx-distributed)

• Developer guide for Neuron-PT-Lightning (neuronx-distributed)

• Developer guide for model and optimizer wrapper (neuronx-distributed)

• Developer guide for save/load checkpoint (neuronx-distributed)

• Developer guide for Neuronx-Distributed Inference (neuronx-distributed)

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

11.5 Tutorials for NeuronX Distributed (neuronx-distributed)

This document is relevant for: Inf2, Trn1, Trn1n

11.5. Tutorials for NeuronX Distributed (neuronx-distributed) 585

https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/neuronx_distributed/t5-inference/t5-inference-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/neuronx_distributed/llama/llama2_inference.ipynb

AWS Neuron

11.5.1 Training with Tensor Parallelism (neuronx-distributed)

Keeping the above changes made in Developer guide, let’s now run an end-to-end training with tensor-parallelism.
This section is adopted from BERT pretraining tutorial which used data-parallel training to scale the throughput. In
this section we modify that tutorial to showcase the use of tensor-parallelism which should enable us to scale the size
of the model.

Setting up environment:

For this experiment, we will use a trn1-32xl machine with the storage set to 512GB at least. Follow the instructions
mentioned here: Install PyTorch Neuron on Trn1. It is recommended to work out of python virtual env so as to avoid
package installation issues.

We also have to install the neuronx-distributed package using the following command:

python -m pip install neuronx_distributed --extra-index-url https://pip.repos.neuron.
→˓amazonaws.com

Make sure the transformers version is set to 4.26.0

Let’s download the scripts and datasets for pretraining.

mkdir -p ~/examples/tp_dp_bert_hf_pretrain
cd ~/examples/tp_dp_bert_hf_pretrain
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/tp_dp_bert_hf_pretrain/tp_dp_bert_large_hf_pretrain_hdf5.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/tp_dp_bert_hf_pretrain/requirements.txt
python3 -m pip install -r requirements.txt

Next let’s download the tokenizer and the sharded datasets:

mkdir -p ~/examples_datasets/
pushd ~/examples_datasets/
aws s3 cp s3://neuron-s3/training_datasets/bert_pretrain_wikicorpus_tokenized_hdf5/bert_
→˓pretrain_wikicorpus_tokenized_hdf5_seqlen128.tar . --no-sign-request
tar -xf bert_pretrain_wikicorpus_tokenized_hdf5_seqlen128.tar
rm bert_pretrain_wikicorpus_tokenized_hdf5_seqlen128.tar
popd

At this point, you are all set to start training

Running training

We first pre-compile the graphs using the neuron_parallel_compile. This process is similar to one discussed in
the BERT pretraining tutorial . Let’s run the command below:

cd ~/examples/tp_dp_bert_hf_pretrain
neuron_parallel_compile XLA_DOWNCAST_BF16=1 torchrun --nproc_per_node=32 \
tp_dp_bert_large_hf_pretrain_hdf5.py \
--tensor_parallel_size 8 \
--steps_this_run 10 \
--batch_size 64 \
--grad_accum_usteps 64 |& tee compile_log.txt

This script uses a tensor-parallel size of 8. This will automatically set the data-parallel degree to 4 (32 workers /
tensor_parallel_size). Once the graphs are compiled we can now run training and observe our loss go down. To run
the training, we just the above command but without neuron_parallel_compile.

586 Chapter 11. NeuronX Distributed

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/frameworks/torch/torch-neuronx/tutorials/training/bert.html#hf-bert-pretraining-tutorial
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/frameworks/torch/torch-neuronx/tutorials/training/bert.html#hf-bert-pretraining-tutorial

AWS Neuron

XLA_DOWNCAST_BF16=1 torchrun --nproc_per_node=32 \
tp_dp_bert_large_hf_pretrain_hdf5.py \
--tensor_parallel_size 8 \
--steps_this_run 10 \
--batch_size 64 \
--grad_accum_usteps 64 |& tee training_log.txt

You would notice that the throughput is lower when you run the dp_bert_large_hf_pretrain_hdf5.py. This
is expected as the number of data-parallel workers have gone down (from 32 to 4). However, if you open
neuron-top in another terminal, you should see the memory utilization per core for this script is lower than the
dp_bert_large_hf_pretrain_hdf5.py. Since the memory requirement has gone down, you can scale the size of
model either by increasing the number of layers/attention heads/hidden sizes.

The loss curve should match to the loss curve we would get from the data_parallel counterpart.

Known Issues:

1. Currently the checkpoints dumped during training are sharded and users would have to write a script to combine
the checkpoints themselves. This should be fixed in the future release

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

11.5.2 Training GPT-NeoX 6.9B with Tensor Parallelism and ZeRO-1 Optimizer
(neuronx-distributed)

In this section, we showcase to pretrain a GPT-NeoX 6.9B model by using tensor parallelism and zero-1 optimizer in
the neuronx-distributed package. Please refer to the Neuron Samples repository to view the files in this tutorial.

Setting up environment:
For this experiment, we will use a ParallelCluster with at least four trn1-32xl compute nodes. Train your model on
ParallelCluster introduces how to setup and use a ParallelCluster. We need first to create and activate a python virtual
env on the head node of the ParallelCluster. Next follow the instructions mentioned here: Install PyTorch Neuron on
Trn1 to install neuron python packages.

We also need to install the neuronx-distributed package using the following command:

python -m pip install neuronx_distributed --extra-index-url https://pip.repos.neuron.
→˓amazonaws.com

Let’s download the scripts for pretraining.

mkdir -p ~/examples/tp_dp_gpt_neox_hf_pretrain
cd ~/examples/tp_dp_gpt_neox_hf_pretrain
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_6.9b_hf_pretrain/tp_dp_gpt_neox_6.
→˓9b_hf_pretrain.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_6.9b_hf_pretrain/tp_dp_gpt_neox_6.
→˓9b_hf_pretrain.sh
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_20b_hf_pretrain/modeling_gpt_neox_
→˓nxd.py

(continues on next page)

11.5. Tutorials for NeuronX Distributed (neuronx-distributed) 587

https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_6.9b_hf_pretrain
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/devflows/training/parallelcluster/parallelcluster-training.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/devflows/training/parallelcluster/parallelcluster-training.html

AWS Neuron

(continued from previous page)

wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_20b_hf_pretrain/utils.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/tp_dp_gpt_neox_hf_pretrain/common/adamw_fp32_optim_params.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/tp_dp_gpt_neox_hf_pretrain/common/get_dataset.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/tp_dp_gpt_neox_hf_pretrain/common/requirements.txt
python3 -m pip install -r requirements.txt

Next let’s download and pre-process the dataset:

cd ~/examples/tp_dp_gpt_neox_hf_pretrain
python3 get_dataset.py

At this point, you are all set to start training.

Running training
We first pre-compile the graphs using the neuron_parallel_compile. Suppose the cluster queue name is
compute1-dy-training-0 and we are using node 1-4, let’s run the command below:

sbatch --exclusive \
--nodelist=compute1-dy-training-0-[1-4] \
--wrap="srun neuron_parallel_compile bash $(pwd)/tp_dp_gpt_neox_6.9b_hf_pretrain.sh"

This script uses a tensor-parallel size of 8. This will automatically set the zero-1 sharding degree to 16 (4 * 32 workers
/ tensor_parallel_size). Once the graphs are compiled we can now run training and observe our loss goes down. To run
the training, we just the above command but without neuron_parallel_compile.

sbatch --exclusive \
--nodelist=compute1-dy-training-0-[1-4] \
--wrap="srun bash $(pwd)/tp_dp_gpt_neox_6.9b_hf_pretrain.sh"

ZeRO-1 Optimizer
The training script uses ZeRO-1 optimizer, where the optimizer states are partitioned across the ranks so that each rank
updates only its partition. Below shows the code snippet of using ZeRO-1 optimizer in training script:

from neuronx_distributed.optimizer import NeuronZero1Optimizer

optimizer = NeuronZero1Optimizer(
optimizer_grouped_parameters,
AdamW_FP32OptimParams,
lr=flags.lr,
pin_layout=False,
sharding_groups=parallel_state.get_data_parallel_group(as_list=True),
grad_norm_groups=parallel_state.get_tensor_model_parallel_group(as_list=True),

)

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

588 Chapter 11. NeuronX Distributed

AWS Neuron

11.5.3 Training GPT-NeoX 20B with Tensor Parallelism and ZeRO-1 Optimizer
(neuronx-distributed)

In this section, we showcase to pretrain a GPT-NeoX 20B model by using the sequence parallel optimization of tensor
parallelism in the neuronx-distributed package. Please refer to the Neuron Samples repository to view the files in
this tutorial.

This GPT-NeoX 20B tutorial differs from the GPT-NeoX 6.9B tutorial in the following ways:

• sequence parallel optimization has been applied

• parallel cross entropy has been applied

• the model size has been increased from 6.9B to 20B

• the TP degree has been increased from 8 to 32

Setting up environment is same as the GPT-NeoX 6.9B tutorial.

Let’s download the scripts for pretraining:

mkdir -p ~/examples/tp_dp_gpt_neox_hf_pretrain
cd ~/examples/tp_dp_gpt_neox_hf_pretrain
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_20b_hf_pretrain/tp_dp_gpt_neox_20b_
→˓hf_pretrain.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_20b_hf_pretrain/tp_dp_gpt_neox_20b_
→˓hf_pretrain.sh
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_20b_hf_pretrain/modeling_gpt_neox_
→˓nxd.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_20b_hf_pretrain/utils.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/tp_dp_gpt_neox_hf_pretrain/common/adamw_fp32_optim_params.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/tp_dp_gpt_neox_hf_pretrain/common/get_dataset.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/tp_dp_gpt_neox_hf_pretrain/common/requirements.txt
python3 -m pip install -r requirements.txt

Next let’s download and pre-process the dataset:

cd ~/examples/tp_dp_gpt_neox_hf_pretrain
python3 get_dataset.py

At this point, you are all set to start training.

Running training
We first pre-compile the graphs using the neuron_parallel_compile. Suppose the cluster queue name is
compute1-dy-training-0 and we are using node 1-4, let’s run the command below:

sbatch --exclusive \
--nodelist=compute1-dy-training-0-[1-4] \
--cpus-per-task 128 \
--wrap="srun neuron_parallel_compile bash $(pwd)/tp_dp_gpt_neox_20b_hf_pretrain.sh"

11.5. Tutorials for NeuronX Distributed (neuronx-distributed) 589

https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_20b_hf_pretrain

AWS Neuron

This script uses a tensor-parallel size of 32. This will automatically set the zero-1 sharding degree to 4 (4 * 32 workers
/ tensor_parallel_size). Once the graphs are compiled we can now run training and observe our loss goes down. To run
the training, we just the above command but without neuron_parallel_compile.

sbatch --exclusive \
--nodelist=compute1-dy-training-0-[1-4] \
--cpus-per-task 128 \
--wrap="srun bash $(pwd)/tp_dp_gpt_neox_20b_hf_pretrain.sh"

Sequence Parallel
We made the following model level modifications to enable sequence parallel:

• turn on sequence_parallel_enabled of ColumnParallelLinear and RowParallelLinear in
GPTNeoXAttention and GPTNeoXMLP;

• replace torch LayerNorm in GPTNeoXLayer and GPTNeoXModel with neuronx-distributed LayerNorm with
sequence_parallel_enabled turned on;

• dimension transposition of intermediate states in the forward function of GPTNeoXAttention.

• dimension transposition and collective communication of intermediate states in the forward function of
GPTNeoXModel.

In the training training script level, we enable:

• all-reduce sequence parallel gradients at the gradient accumulation boundary.

Please check modeling_gpt_neox_nxd.py and tp_dp_gpt_neox_20b_hf_pretrain.py for details.

Parallel Cross Entropy
To enable parallel cross entropy, we made the following model level modeifincations:

• replace the CrossEntropyLoss with neuronx-distributed parallel_cross_entropy in the forward function
of GPTNeoXForCausalLM.

• use ColumnParallelLinear for the embed_out layer in GPTNeoXForCausalLM.

Please check modeling_gpt_neox_nxd.py for details.

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

11.5.4 Training Llama2 7B with Tensor Parallelism and ZeRO-1 Optimizer
(neuronx-distributed)

In this section, we showcase how to pre-train a Llama2 7B model on four Trn1.32xlarge instances using the Neuron
Distributed library. We will use AWS ParallelCluster to orchestrate the training jobs. To train the LLama 7B model in
this example, we will apply the following optimizations using the Neuron Distributed library:

1. Tensor Parallelism

2. Sequence Parallel

3. Selective checkpointing

4. ZeRO-1

590 Chapter 11. NeuronX Distributed

https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_20b_hf_pretrain/modeling_gpt_neox_nxd.py
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_20b_hf_pretrain/tp_dp_gpt_neox_20b_hf_pretrain.py

AWS Neuron

Setting up environment:

For this experiment, we will use AWS ParallelCluster with at least four Trn1.32xlarge compute nodes. Train your
model on ParallelCluster introduces how to setup and use a ParallelCluster. To setup the packages on the headnode of
the ParallelCluster, follow the instructions mentioned here: Install PyTorch Neuron on Trn1.

We also need to install the neuronx-distributed package inside the virtual env using the following command:

python -m pip install neuronx_distributed --extra-index-url https://pip.repos.neuron.
→˓amazonaws.com

Let’s download the scripts for pretraining:

1. Creating a directory to hold our experiments

mkdir -p ~/examples/tp_zero1_llama2_7b_hf_pretrain
cd ~/examples/tp_zero1_llama2_7b_hf_pretrain

2. Downloading training scripts for our experiments

wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/llama2/tp_zero1_llama2_7b_hf_pretrain/tp_zero1_llama2_7b_hf_pretrain.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/llama2/tp_zero1_llama2_7b_hf_pretrain/logger.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/llama2/tp_zero1_llama2_7b_hf_pretrain/tp_zero1_llama2_7b_hf_pretrain.sh
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/llama2/training_utils.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/llama2/modeling_llama_nxd.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/llama2/get_dataset.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/llama2/requirements.txt
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/llama2/tp_zero1_llama2_7b_hf_pretrain/config.json

3. Installing the additional requirements and giving the right permissions to our shell script

python3 -m pip install -r requirements.txt
chmod +x tp_zero1_llama2_7b_hf_pretrain.sh

Next, we tokenize our dataset. Note:` To tokenize the data, we must request the tokenizer from HuggingFace and Meta
by following the instructions at the following link: HuggingFace Llama 2 7B Model . Use of the Llama 2 model is
governed by the Meta license. In order to download the model weights and tokenizer, please visit the above website
and accept their License before requesting access. After access has been granted, you may use the download scripts
provided by Meta to download the model weights and tokenizer to your cluster.

Once you have downloaded the tokenizer and model weights, you can copy the tokenizer.model to the ~/examples/
tp_zero1_llama2_7b_hf_pretrain directory.

Next let’s download and pre-process the dataset:

cd ~/examples/tp_zero1_llama2_7b_hf_pretrain
python3 get_dataset.py

11.5. Tutorials for NeuronX Distributed (neuronx-distributed) 591

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/devflows/training/parallelcluster/parallelcluster-training.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/devflows/training/parallelcluster/parallelcluster-training.html
https://huggingface.co/meta-llama/Llama-2-7b

AWS Neuron

Note: In case you see an error of the following form when downloading data: huggingface_hub.utils.
_validators.HFValidationError: Repo id must be in the form 'repo_name' or 'namespace/
repo_name': '/home/ubuntu/examples/tp_zero1_llama2_7b_hf_pretrain'. Use `repo_type`
argument if needed. This could be because of a stale cache. Try deleting the cache using:

sudo rm -rf /home/ubuntu/.cache/

At this point, you are all set to start training.

Running training

By this step, the ParallelCluster is all setup for running experiments. Before we run training, we first pre-compile the
graphs using the neuron_parallel_compile. Let’s run the command below:

sbatch --exclusive \
--nodes 4 \
--cpus-per-task 128 \
--wrap="srun neuron_parallel_compile bash $(pwd)/tp_zero1_llama2_7b_hf_pretrain.sh"

This script uses a tensor-parallel size of 8. This will automatically set the zero-1 sharding degree to 16 (4 * 32 workers
/ tensor_parallel_size).

Note: You can use any number of nodes in this case, would just need to adjust the number of nodes in the above slurm
command accordingly. Also, the number of nodes used in parallel_compile command should be same as the actual
training run. This is because, as the number of nodes change, the data-parallel degree would change too. This would
result in more workers participating in operations like gradient all-reduce which would result in new graphs getting
created.

Once the graphs are compiled we can now run training and observe our loss goes down. To run the training, we just
run the above command but without neuron_parallel_compile.

sbatch --exclusive \
--nodes 4 \
--cpus-per-task 128 \
--wrap="srun bash $(pwd)/tp_zero1_llama2_7b_hf_pretrain.sh"

Performance:

To achieve better performance, the script applies few techniques:

Sequence Parallelism and Selective Activation Checkpointing

As explained in the Activation Memory Recomputation Doc, both Sequence Parallelism and Selective activation check-
pointing can help with activation memory reduction thereby allowing us to fit bigger models with less number of de-
vices. Please refer to Activation Memory Reduction Developer Guide on how to enable sequence parallel and selective
activation checkpointing.

Coalescing Q, K, V layers:

We coalesced parallel matrix multiply to improve throughput:

• We coalesced query, key and value into one matrix multiply

• We coalesced gate_proj and up_proj into one matrix multiply

Please check modeling_llama2_nxd.py and tp_dp_gpt_neox_20b_hf_pretrain.py for details. Note: Because
we coalesced the layers above, the pretrained checkpoint provided here cannot be loaded out of the box for fine-tuning,

592 Chapter 11. NeuronX Distributed

https://huggingface.co/meta-llama/Llama-2-7b

AWS Neuron

and would require preprocessing. The Q,K,V layers and the gate_proj and up_proj layers need to be coalesced in the
checkpoint before loading.

Logging:

Currently for better performance we log loss values every 10 steps. Logging frequently will result in frequent syncs
between device and CPU which are expensive. Hence, it is recommended to do less frequent logging if possible.

Checkpointing:

Currently by default, the checkpoint is saved at the end of training. You can modify that behaviour by saving the
checkpoint after every N steps inside the training loop:

from neuronx_distributed.parallel_layers import checkpointing
if global_step % every_n_steps_checkpoint == 0:

state_dict = {
"model": model.state_dict(),
"global_step": global_step,
"epoch": epoch,
"scheduler": scheduler.state_dict()

}
checkpointing.save(state_dict, flags.output_dir)
optimizer.save_sharded_state_dict(flags.output_dir)

Here we have to save the model state_dict using the checkpointing.save API and the optimizer state_dict using the
optimizer.save_sharded_state_dict. This is because, currently, checkpointing.save API only saves on data-parallel rank
0, while in case of Zero1 Optimizer, the optimizer states are distributed across all data-parallel ranks. Hence, we use
Zero1 Optimizer’s save API to save the optimizer states.

Time to save a checkpoint:

Checkpoint save time can vary depending on what location the checkpoint is saved. If the checkpoint is saved in the
home directory, the checkpointing time can be higher. The same time can be reduce by 4x if the checkpoint is dumped
to FSX file system.

By default, checkpoint.save API allows one tensor-parallel rank at a time to save the checkpoint. This is done in order
to avoid HOST OOM. When all tensor-parallel ranks try to save at the same time, they would end up copying weights
to CPU at the same time. This can result in HOST OOM. Note: Since, we use XLA_DOWNCAST_BF16 flag for BF16
training, even though the weights on device are on bf16, the weights on CPU are copied in FP32 format. In case, you
want to avoid this typecasting from BF16 to FP32 when copying weights from device to CPU for checkpoint saving,
you can pass down_cast_bf16=True to the checkpointing.save API as follows:

from neuronx_distributed.parallel_layers import checkpointing
if global_step % every_n_steps_checkpoint == 0:

state_dict = {
"model": model.state_dict(),
"global_step": global_step,
"epoch": epoch,
"scheduler": scheduler.state_dict()

}
checkpointing.save(state_dict, flags.output_dir, down_cast_bf16=True)

This should not only reduce the HOST memory pressure when saving weights, but at the same time reduce model
checkpointing time by half. Note: We are saving checkpoint in sharded format, wherein each tensor-parallel rank is
saving one shard. To deploy these pretrained models, one would have to combine these shards by loading them and

11.5. Tutorials for NeuronX Distributed (neuronx-distributed) 593

AWS Neuron

concatenating the tensor-parallel layers together. (We are working on a checkpoint conversion script that combines the
shards into a single checkpoint)

In addition to the above method, if we want to speed up checkpoint saving for the model further, we can do so by:

from neuronx_distributed.parallel_layers import checkpointing
if global_step % every_n_steps_checkpoint == 0:

state_dict = {
"model": model.state_dict(),
"global_step": global_step,
"epoch": epoch,
"scheduler": scheduler.state_dict()

}
checkpointing.save(state_dict, flags.output_dir, down_cast_bf16=True, save_xser=True)

The save_xser uses torch-xla’s xser.save to save the tensors serially. This API will copy one tensor at a time to the
disk. This will allow all the ranks to save the checkpoint at the same time. This speeds up checkpoint saving especially
for large models as all ranks are saving at the same time. Moreover, the risk of HOST OOM is completely eliminated
because only one tensor is copied to CPU at a time.

Note: If we use save_xser to save the checkpoint, we would have to pass load_xser to the checkpoint.load API. Also,
if you use save_xser, the checkpoint folder would contain a .pt file for each tensor instead of a single .pt for the entire
state_dict. To read this checkpoint in your checkpoint conversion script, you would have to use xser.load API instead
of torch.load to load the checkpoint. The xser.load should load the serialized checkpoint and return the full state_dict.

Finally, to speed up optimizer saving time, you can increase the number of workers saving at the same time. This can
be done as follows:

if global_step % every_n_steps_checkpoint == 0:
...
optimizer.save_sharded_state_dict(flags.output_dir, num_workers_per_step=32)

By default, num_workers_per_step is set to 8.

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

11.5.5 Training Llama-2-13B/70B with Tensor Parallelism and Pipeline Parallelism
(neuronx-distributed)

In this section, we showcase to pretrain a Llama2 13B and 70B model by using the tensor parallel, pipeline parallel,
sequence parallel, activation checkpoint as well as constant mask optimization in the neuronx-distributed package.

Setting up environment:

For this experiment, we will use a ParallelCluster with at least 32 trn1-32xl compute nodes. Train your model on
ParallelCluster introduces how to setup and use a ParallelCluster.

We also need to install the neuronx-distributed package using the following command:

python -m pip install neuronx_distributed --extra-index-url https://pip.repos.neuron.
→˓amazonaws.com

Let’s download the scripts for pretraining:

594 Chapter 11. NeuronX Distributed

https://pytorch.org/xla/release/2.1/index.html#saving-and-loading-xla-tensors
https://pytorch.org/xla/release/2.1/index.html#saving-and-loading-xla-tensors
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/devflows/training/parallelcluster/parallelcluster-training.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/devflows/training/parallelcluster/parallelcluster-training.html

AWS Neuron

mkdir -p ~/examples/tp_pp_llama2_hf_pretrain
cd ~/examples/tp_pp_llama2_hf_pretrain
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/llama2/tp_pp_llama2_hf_pretrain/activation_checkpoint.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/llama2/tp_pp_llama2_hf_pretrain/logger.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/llama2/lr.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/llama2/tp_pp_llama2_hf_pretrain/run_llama_nxd.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/llama2/training_utils.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/llama2/convert_checkpoints.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/llama2/get_dataset.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/llama2/modeling_llama_nxd.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/llama2/requirements.txt

If you want to pre-train Llama 70B, you would need to run the following steps -

wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/llama2/tp_pp_llama2_hf_pretrain/run_llama_70b_tp_pp.sh
chmod +x run_llama_70b_tp_pp.sh
mkdir 70B_config && cd 70B_config
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/llama2/tp_pp_llama2_hf_pretrain/70B_config/config.json
cd .. && cp 70B_config/config.json .

If you want to pre-train Llama 13B, you would need to run the following steps -

wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/llama2/tp_pp_llama2_hf_pretrain/run_llama_13B_tp_pp.sh
chmod +x run_llama_13B_tp_pp.sh
mkdir 13B_config && cd 13B_config
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/llama2/tp_pp_llama2_hf_pretrain/13B_config/config.json
cd .. && cp 13B_config/config.json .

The below tutorial uses Llama70B as an example. To run 13B, simply change the script from run_llama_70b_tp_pp.
sh to run_llama_13B_tp_pp.sh.

First, let’s get all the needed dependencies

python3 -m pip install -r requirements.txt

To tokenize the data, we must request the tokenizer from hugging face and meta by following the instructions at the
following link: HuggingFace Llama 2 7B Model .

Use of the Llama 2 model is governed by the Meta license. In order to download the model weights and tokenizer,
please visit the above website and accept their License before requesting access. After access has been granted, you
may use the download scripts provided by Meta to download the model weights and tokenizer to your cluster.

11.5. Tutorials for NeuronX Distributed (neuronx-distributed) 595

https://huggingface.co/meta-llama/Llama-2-7b

AWS Neuron

Once you have downloaded the tokenizer and model weights, you can copy the tokenizer.model to the ~/examples/
tp_pp_llama2_hf_pretrain directory.

Next let’s download and pre-process the dataset:

cd ~/examples/tp_pp_llama2_hf_pretrain
python3 get_dataset.py

In case you see an error of the following form when downloading data: huggingface_hub.utils._validators.
HFValidationError: Repo id must be in the form 'repo_name' or 'namespace/repo_name':
'/home/ubuntu/examples/tp_pp_llama2_hf_pretrain'. Use `repo_type` argument if needed. This
could be because of a stale cache. Try deleting the cache using:

sudo rm -rf /home/ubuntu/.cache/

In case you see an error of the following form when downloading data: `NotImplementedError: Loading a
dataset cached in a LocalFileSystem is not supported.` Try upgrading pip:

pip install -U datasets

At this point, you are all set to start training.

Running training

We first pre-compile the graphs using the neuron_parallel_compile. Let’s run the command below:

sbatch --exclusive \
--nodes 32 \
--cpus-per-task 128 \
--wrap="srun neuron_parallel_compile bash $(pwd)/run_llama_70b_tp_pp.sh"

This script uses a tensor-parallel size of 8, pipeline-parallel size of 8 To run the training, we just use the above command
but without neuron_parallel_compile.

sbatch --exclusive \
--nodes 32 \
--cpus-per-task 128 \
--wrap="srun bash $(pwd)/run_llama_70b_tp_pp.sh"

To achieve better performance, the script applies few techniques:

Sequence Parallelism and Selective Activation Checkpointing

As explained in the Activation Memory Recomputation Doc, both Sequence Parallelism and Selective activation check-
pointing can help with activation memory reduction thereby allowing us to fit bigger models with less number of de-
vices. Please refer to Activation Memory Reduction Developer Guide on how to enable sequence parallel and selective
activation checkpointing.

GQAQKVColumnParallelLinear Layer:

In LLama 70B GQA module, the K and V attention heads are 8 whereas Q has 64 attentions heads. Since the number
of attention heads should be divisible by tensor_parallel_degree, we would end up using a tp_degree of 8. Hence to fit
a 70B model, we would have to use a higher pipeline-parallel degree. Using higher pipeline-parallel degree works well
when the global batch size is very high, however, as the data-parallel degree increases at higher cluster size, the batch
size per node decreases. This would result in higher pipeline bubble thereby reducing performance. To mitigate this
issue, one can use the GQAQKVColumnParallelLinear layer with the kv_size_multiplier set to 4. This would repeat
the KV heads and make them 32. This would allow doing tensor-parallelism using tp_degree of 32. This reduces the
activation memory per device and thereby eventually allows using a pipeline parallel degree of 4. This can be enabled
by passing the argument:

596 Chapter 11. NeuronX Distributed

https://developer.nvidia.com/blog/scaling-language-model-training-to-a-trillion-parameters-using-megatron/

AWS Neuron

torchrun $DISTRIBUTED_ARGS run_llama_nxd.py \
... \
--qkv_linear 1 \
--kv_replicator 4 \
--tb_dir $tb_dir |& tee $LOG_PATH/log

The above changes are already included in the run_llama_70b_tp_pp.sh. For Llama13B model we only do 8-way tensor
parallelism so we do not need this change.

Save/Load Checkpoint (refer to API GUIDE for more context about checkpoint APIs):

To enable checkpoint saving, add the following flags to run_llama_70b_tp_pp.sh:

• --checkpoint_freq Number of steps to save a checkpoint, set to -1 to disable saving checkpoint, should set as
-1 when pre-compling graph

• --checkpoint_dir Direction to save the checkpoint

• --num_kept_checkpoint Number of checkpoints to save, older checkpoint will be deleted manually, set to -1
to keep all saved checkpoints.

• --save_load_xser Save with torch xla serialization to reduce time saving, it’s recommended to enable xser
for significantly faster save/load

• --async_checkpoint_saving Whether to use asynchronous checkpoint saving to reduce saving time.

To enable checkpoint loading, add the following flags to run_llama_70b_tp_pp.sh:

• --loading_step Step to retrieve checkpoint from, set to -1 to disable checkpoint loading. Set to
latest_if_exists to load the latest checkpoint under checkpoint_dir.

• --checkpoint_dir Direction to load the checkpoint from

• --save_load_xser load with torch xla serialization to reduce time saving, it’s recommended to enable xser for
significantly faster save/load. Note that if the chekpoint is saved with xser, it can only be loaded with xser, vice
versa.

Load pretrained model:

We also provide option to load from pretrained HF model. Before loading, convert the full model to sharded model
with convert_checkpoints.py:

python3 convert_checkpoints.py --tp_size <tp_size> --pp_size <pp_size> --n_layers
→˓<number_of_layers> --input_dir <path_to_full_model> --output_dir <sharded_model_path>
→˓ --convert_from_full_model

And add --pretrained_weight_dir <sharded_model_path> flag to run_llama_70b_tp_pp.sh

Convert sharded model to full model with convert_checkpoints.py:

python3 convert_checkpoints.py --tp_size <tp_size> --pp_size <pp_size> --n_layers
→˓<number_of_layers> --input_dir <sharded_model_dir> --output_dir <full_model_dir> --
→˓convert_to_full_model --kv_size_multiplier <kv_size_multiplier> --config config.json

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

11.5. Tutorials for NeuronX Distributed (neuronx-distributed) 597

AWS Neuron

11.5.6 Training Llama-2-7B/13B/70B using Tensor Parallelism and Pipeline Paral-
lelism with Neuron PyTorch-Lightning (neuronx-distributed)

In this section, we showcase to pretrain a Llama2 7B/13B/70B with Tensor Parallelism and Pipeline Parallel using Neu-
ron PyTorch-Lightning APIs, please refer to Llama2 7B Tutorial, Llama2 13B/70B Tutorial and Neuron PT-Lightning
Developer Guide for more context.

Setting up environment:

For this experiment, we will use AWS ParallelCluster with at least four trn1.32xlarge compute nodes(at least 32 nodes
are needed for 13B/70B model size). Train your model on ParallelCluster introduces how to setup and use a Parallel-
Cluster. To setup the packages on the headnode of the ParallelCluster, follow the instructions mentioned here: Install
PyTorch Neuron on Trn1.

We also need to install the neuronx-distributed package inside the virtual env using the following command:

python -m pip install neuronx_distributed --extra-index-url https://pip.repos.neuron.
→˓amazonaws.com

Let’s download the scripts for pretraining:

1. Creating a directory to hold our experiments

mkdir -p ~/examples/llama2_lightning
cd ~/examples/llama2_lightning

2. Downloading training scripts for our experiments

wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/main/examples/
→˓training/llama2/lightning/data_module.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/main/examples/
→˓training/llama2/lightning/module_llama.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/main/examples/
→˓training/llama2/lightning/run_llama_nxd_ptl.py

wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/main/examples/
→˓training/llama2/get_dataset.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/main/examples/
→˓training/llama2/lr.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/main/examples/
→˓training/llama2/modeling_llama_nxd.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/main/examples/
→˓training/llama2/requirements.txt
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/main/examples/
→˓training/llama2/requirements_ptl.txt
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/main/examples/
→˓training/llama2/training_utils.py

If you want to pre-train Llama 7B, you would need to run the following steps -

wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/main/examples/
→˓training/llama2/lightning/run_llama_7b_tp_ptl.sh
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/main/examples/
→˓training/llama2/tp_zero1_llama2_7b_hf_pretrain/config.json
chmod +x run_llama_7b_tp_ptl.sh

598 Chapter 11. NeuronX Distributed

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/devflows/training/parallelcluster/parallelcluster-training.html

AWS Neuron

If you want to pre-train Llama 13B, you would need to run the following steps -

mkdir -p ~/examples/llama2_lightning/13B_config
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/main/examples/
→˓training/llama2/lightning/run_llama_13b_tp_pp_ptl.sh
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/main/examples/
→˓training/llama2/tp_pp_llama2_hf_pretrain/13B_config/config.json -P 13B_config/
chmod +x run_llama_13b_tp_pp_ptl.sh

If you want to pre-train Llama 70B, you would need to run the following steps -

mkdir -p ~/examples/llama2_lightning/70B_config
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/main/examples/
→˓training/llama2/lightning/run_llama_70b_tp_pp_ptl.sh
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/main/examples/
→˓training/llama2/tp_pp_llama2_hf_pretrain/70B_config/config.json -P 70B_config/
chmod +x run_llama_70b_tp_pp_ptl.sh

3. Installing the additional requirements and giving the right permissions to our shell script

python3 -m pip install -r requirements.txt
python3 -m pip install -r requirements_ptl.txt # Currently we're supporting Lightning␣
→˓version 2.1.0

Next, we tokenize our dataset. Note:` To tokenize the data, we must request the tokenizer from HuggingFace and Meta
by following the instructions at the following link: HuggingFace Llama 2 7B Model . Use of the Llama 2 model is
governed by the Meta license. In order to download the model weights and tokenizer, please visit the above website
and accept their License before requesting access. After access has been granted, you may use the download scripts
provided by Meta to download the model weights and tokenizer to your cluster.

Once you have downloaded the tokenizer and model weights, you can copy the tokenizer.model to the ~/examples/
llama2_lightning directory.

Next let’s download and pre-process the dataset:

cd ~/examples/llama2_lightning
python3 get_dataset.py

Note: In case you see an error of the following form when downloading data: huggingface_hub.utils.
_validators.HFValidationError: Repo id must be in the form 'repo_name' or 'namespace/
repo_name': '/home/ubuntu/examples/llama2_lightning'. Use `repo_type` argument if needed.
This could be because of a stale cache. Try deleting the cache using:

sudo rm -rf /home/ubuntu/.cache/

At this point, you are all set to start training.

11.5. Tutorials for NeuronX Distributed (neuronx-distributed) 599

https://huggingface.co/meta-llama/Llama-2-7b

AWS Neuron

Training Llama2-7B with Tensor Parallelism

By this step, the ParallelCluster is all setup for running experiments. Before we run training, we first pre-compile the
graphs using the neuron_parallel_compile. Let’s run the command below:

sbatch --exclusive \
--nodes 4 \
--cpus-per-task 128 \
--wrap="srun neuron_parallel_compile bash $(pwd)/run_llama_7b_tp_ptl.sh"

This script uses a tensor-parallel size of 8. This will automatically set the zero-1 sharding degree to 16 (4 * 32 workers
/ tensor_parallel_size).

Note: You can use any number of nodes in this case, would just need to adjust the number of nodes in the above slurm
command accordingly. Also, the number of nodes used in parallel_compile command should be same as the actual
training run. This is because, as the number of nodes change, the data-parallel degree would change too. This would
result in more workers participating in operations like gradient all-reduce which would result in new graphs getting
created.

Once the graphs are compiled we can now run training and observe our loss goes down. To run the training, we just
run the above command but without neuron_parallel_compile.

sbatch --exclusive \
--nodes 4 \
--cpus-per-task 128 \
--wrap="srun bash $(pwd)/run_llama_7b_tp_ptl.sh"

Training Llama2-13B/70B with Tensor Parallelism and Pipeline Parallelism

Here we use Llama70B as an example. To run 13B, simply change the script from run_llama_70b_tp_pp.
sh to run_llama_13B_tp_pp.sh Before we run training, we first pre-compile the graphs using the neu-
ron_parallel_compile. Let’s run the command below:

Pre-compiling

sbatch --exclusive \
--nodes 32 \
--cpus-per-task 128 \
--wrap="srun neuron_parallel_compile bash $(pwd)/run_llama_70b_tp_pp_ptl.sh"

This script uses a tensor-parallel size of 8, pipeline-parallel size of 8 To run the training, we just use the above command
but without neuron_parallel_compile.

sbatch --exclusive \
--nodes 32 \
--cpus-per-task 128 \
--wrap="srun bash $(pwd)/run_llama_70b_tp_pp_ptl.sh"

600 Chapter 11. NeuronX Distributed

AWS Neuron

Checkpointing:

To enable checkpoint saving, add following flags to run_llama_7b_tp_ptl.sh/ run_llama_13b_tp_pp.
sh / run_llama_70B_tp_pp.sh: * --save_checkpoint Add this flag to enable checkpoint saving *
--checkpoint_freq Number of steps to save a checkpoint * --checkpoint_dir Direction to save the checkpoint *
--num_kept_checkpoint Number of checkpoints to save, older checkpoint will be deleted manually, set to -1 to keep
all saved checkpoints * --save_load_xser load with torch xla serialization to reduce time saving, it’s recommended
to enable xser for significantly faster save/load. Note that if the chekpoint is saved with xser, it can only be loaded with
xser, vice versa.

To enable checkpoint loading, add following flags to run_llama_7b_tp_ptl.sh/ run_llama_13b_tp_pp.
sh / run_llama_70B_tp_pp.sh: * --resume_ckpt * --load_step Step to retrieve checkpoint from *
--checkpoint_dir Direction to load the checkpoint from * --save_load_xser load with torch xla serialization
to reduce time saving, it’s recommended to enable xser for significantly faster save/load. Note that if the chekpoint is
saved with xser, it can only be loaded with xser, vice versa.

This document is relevant for: Inf2, Trn1, Trn1n

11.5.7 T5 inference with Tensor Parallelism

This is an extension to the t5 inference tutorial. Here we will use NeuronxDistributed to improve the inference perfor-
mance using tensor parallelism.

This tutorial has the following main sections:

1. Install dependencies

2. Plug in NeuronxDistributed layers into T5

3. Compile the T5 model

4. Run distributed inference with beam search

This Jupyter notebook should be run on a Inf2 instance (inf2.24xlarge) or Trn1 isntance (trn1.32xlarge)

The tutorial works for t5 and flan-t5 models. In this notebook we will run distributed inference with flan-
t5-xl.

Install dependencies

The code in this tutorial is written for Jupyter Notebooks. To use Jupyter Notebook on the Neuron instance, you can
use this guide.

Run the notebook by cloning aws-neuron-sdk

git clone https://github.com/aws-neuron/aws-neuron-sdk.git
cd aws-neuron-sdk/src/examples/pytorch/neuronx_distributed/t5-inference/

Once done execute t5-inference-tutorial.ipynb

It is recommended to go through the t5 inference tutorial before you start this tutorial. In addition to the dependencies
in the t5 inference tutorial, we need to install neuronx-distributed.

This tutorial requires the following pip packages:

• torch-neuronx

• neuronx-cc

• transformers

11.5. Tutorials for NeuronX Distributed (neuronx-distributed) 601

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/pytorch/torch-neuronx/t5-inference-tutorial.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/setup/notebook/setup-jupyter-notebook-steps-troubleshooting.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/pytorch/torch-neuronx/t5-inference-tutorial.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/pytorch/torch-neuronx/t5-inference-tutorial.html

AWS Neuron

• optimum-neuron

• neuronx-distributed

Most of these packages will be installed when configuring your environment using the Trn1/Inf2 setup guide. The
additional dependencies must be installed here:

[]: ! pip install --upgrade transformers==4.33.1 optimum-neuron==0.0.12 neuronx_distributed

[]: # Pull the latest version of the compiler
! pip install --upgrade neuronx-cc>=2.11 --no-deps

[]: # Lets update numpy to a newer version
! pip install --upgrade numpy>=1.22.2 --no-deps

Plug in NeuronxDistributed layers into T5

We extend the huggingface’s T5 model to use the NeuronxDistributed parallel layers. To do so, we
simply swap linear layers in T5LayerSelfAttention, T5LayerCrossAttention, and T5LayerFF definitions
with ColumnParallelLinear and RowParallelLinear. We also need to swap the Embedding layer with
ParallelEmbedding.

Let us take the example of T5Attention. The attention block has q, k, v, and o linear layers. The multi-head attention
block uses q, k and v to compute the attention scores. The attention scores are then passed through o to compute the at-
tention block output. So let us swap q, k and v layers with ColumnParallelLinear and o with RowParallelLinear.
Having RowParallelLinear following a ColumnParallelLinear is a performance optimization. The attention
scores computed with q, k and v are already split across Neuron devices. The row parallel layer can use this shared
output directly. The embedding layer is simply swapped with the ParallelEmbedding.

class ParallelAttention(T5Attention):
def __init__(self, config: T5Config, has_relative_attention_bias=False):

super().__init__(config, has_relative_attention_bias)
Per attention head and per partition values
world_size = parallel_state.get_tensor_model_parallel_size()
self.num_attention_heads_per_partition = divide(self.n_heads, world_size)
self.hidden_size_per_partition = self.num_attention_heads_per_partition * self.

→˓key_value_proj_dim

Mesh TensorFlow initialization to avoid scaling before softmax
self.q = ColumnParallelLinear(self.d_model,

self.inner_dim,
bias=False,
gather_output=False)

self.k = ColumnParallelLinear(self.d_model,
self.inner_dim,
bias=False,
gather_output=False)

self.v = ColumnParallelLinear(self.d_model,
self.inner_dim,
bias=False,
gather_output=False)

self.o = RowParallelLinear(self.inner_dim,
self.d_model,

(continues on next page)

602 Chapter 11. NeuronX Distributed

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/setup/neuron-setup/pytorch/neuronx/ubuntu/torch-neuronx-ubuntu20.html#setup-torch-neuronx-ubuntu20
https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py#L363-L366

AWS Neuron

(continued from previous page)

bias=False,
input_is_parallel=True)

if self.has_relative_attention_bias:
self.relative_attention_bias = ParallelEmbedding(self.relative_attention_num_

→˓buckets, self.n_heads)
self.n_heads = self.num_attention_heads_per_partition

...

You can find the all modified T5 layers defined in t5_model_layers.py.

Once we have the modified T5 layers, we can plug in the T5Attention and T5LayerFF into the pretrained model. Here
is how you do that.

def load_pretrained_with_parallel_attn(model_name):

model = T5ForConditionalGeneration.from_pretrained(model_name, torch_dtype="auto")

Parallel implementation of Attention modules.
from t5_model_layers import ParallelSelfAttention, ParallelFF, ParallelCrossAttention

for index, block in enumerate(model.decoder.block):
if index == 0:

block.layer[0] = ParallelSelfAttention(model.config,
has_relative_attention_bias=True)

else:
block.layer[0] = ParallelSelfAttention(model.config)

block.layer[1] = ParallelCrossAttention(model.config)
block.layer[2] = ParallelFF(model.config)

Load the weights into the parallel layers
neuronx_distributed.parallel_layers.load(model_name + ".pt", model, sharded=False)

return model

Compile the parallel T5 model

Let us set some model parameters.

[]: model_name = "google/flan-t5-xl"
max_length = 128
num_beams = 4
tp_degree = 8 # tensor parallelism degree

Download and save the model that we want to trace.

[]: import torch
from transformers import T5ForConditionalGeneration

model = T5ForConditionalGeneration.from_pretrained(model_name, torch_dtype="auto")
torch.save({"model":model.state_dict()}, model_name.split("/")[-1] + ".pt")
model.config.use_cache = True

11.5. Tutorials for NeuronX Distributed (neuronx-distributed) 603

https://github.com/aws-neuron/aws-neuron-sdk/tree/master/src/examples/pytorch/neuronx_distributed/t5-inference/t5_model_layers.py

AWS Neuron

To run HuggingFace T5 models on Neuron, we need to make a couple of changes. Let us reuse the code from the t5
inference tutorial which makes T5 compatible with Neuron. For your convenience, the code copied into wrapper.py
and t5_models.py. This notebook will import these files.

The only change made to this code is that we use neuronx_distributed.trace instead of torch_neuronx.trace.

Let us trace the encoder and decoder.

[]: import t5_models
import neuronx_distributed
import time

This can take up to 20 minutes
encoder_compile_start_time = time.time()
traced_encoder = t5_models.parallel_trace_encoder(model_name, max_length, num_beams, tp_
→˓degree)
print("Encoder compilation time {}".format(time.time() - encoder_compile_start_time))

neuronx_distributed.trace.parallel_model_save(traced_encoder, "TracedParallelEncoder.pt")

[]: # This can take up to 15 minutes
decoder_compile_start_time = time.time()
traced_decoder = t5_models.parallel_trace_decoder(model, model_name, num_beams, max_
→˓length, tp_degree)
print("Decoder compilation time {}".format(time.time() - decoder_compile_start_time))

neuronx_distributed.trace.parallel_model_save(traced_decoder, "TracedParallelDecoder.pt")

Inference with the traced parallel T5 model

With the traced model, let us try using beam search for inference.

[]: import neuronx_distributed
from wrapper import T5Wrapper
from transformers import T5Tokenizer

num_return_sequences = 4

traced_encoder = neuronx_distributed.trace.parallel_model_load("TracedParallelEncoder.pt
→˓")
traced_decoder = neuronx_distributed.trace.parallel_model_load("TracedParallelDecoder.pt
→˓")

tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5Wrapper.from_pretrained(model_name)

model.encoder = traced_encoder
model.decoder = traced_decoder
setattr(model.encoder, 'main_input_name', 'input_ids') # Attribute required by beam␣
→˓search

output = model.parallel_infer(tokenizer=tokenizer,
(continues on next page)

604 Chapter 11. NeuronX Distributed

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/pytorch/torch-neuronx/t5-inference-tutorial.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/pytorch/torch-neuronx/t5-inference-tutorial.html
https://github.com/aws-neuron/aws-neuron-sdk/tree/master/src/examples/pytorch/neuronx_distributed/t5-inference/wrapper.py
https://github.com/aws-neuron/aws-neuron-sdk/tree/master/src/examples/pytorch/neuronx_distributed/t5-inference/t5_models.py

AWS Neuron

(continued from previous page)

prompt="translate English to German: Lets eat good food.",
max_length=max_length,
num_beams=num_beams,
num_return_sequences=num_return_sequences,
device="xla")

results = [tokenizer.decode(t, skip_special_tokens=True) for t in output]

print('Results:')
for i, summary in enumerate(results):

print(i + 1, summary)

Results:
1 Lassen Sie uns gutes Essen essen.
2 Lassen Sie uns gut essen.
3 Lassen Sie uns gutes Essen zu essen.
4 Lassen Sie uns gutes Essen zu sich nehmen.

Benchmarking

Let us benchmark the per token decoder latency

[]: # Let us install NeuronPerf. We will use it to measure the performance.
! pip install neuronperf --extra-index-url=https://pip.repos.neuron.amazonaws.com

[]: import os
import neuronperf as npf

d_model = model.config.d_model
model_dir = "TracedParallelDecoder.pt"
decoder_run_count = 128

def load_fn(model_path, **kwargs):
return neuronx_distributed.trace.parallel_model_load(model_path)

NeuronPerf can't see tp_degree at the moment, so just expose all cores
def env_setup_fn(*_):

del os.environ["NEURON_RT_VISIBLE_CORES"]

def benchmark():

Create some sample inputs for the decoder
decoder_input_ids = torch.ones((num_beams, 1), dtype=torch.int64)
decoder_attention_mask = torch.ones((num_beams, max_length), dtype=torch.int32)
encoder_attention_mask = torch.ones((num_beams, max_length), dtype=torch.int64)
encoder_hidden_states = torch.ones((num_beams, max_length, d_model), dtype=torch.

→˓float32)
beam_idx = torch.arange(0, num_beams, dtype=torch.int64)
beam_scores = torch.zeros((num_beams,), dtype=torch.float)

(continues on next page)

11.5. Tutorials for NeuronX Distributed (neuronx-distributed) 605

AWS Neuron

(continued from previous page)

inputs = (decoder_input_ids,
decoder_attention_mask,
encoder_hidden_states,
encoder_attention_mask,
beam_idx,
beam_scores)

reports = npf.benchmark(
load_fn,
model_dir,
[inputs],
batch_sizes=1,
n_models=1,
max_infers=decoder_run_count,
workers_per_model=1, # no bottleneck on model inputs, so 1 is fine
env_setup_fn=env_setup_fn,
multiprocess=False,

)

report = reports[0]

let's update throughput to be tokens / second and add a new recor
latency_in_s = report["latency_ms_avg"] / 1000
tokens_per_s = decoder_run_count / latency_in_s
report["throughput_avg"] = tokens_per_s

display and save results
npf.print_reports(reports, cols=["throughput_avg", "latency_ms_p50", "latency_ms_p99

→˓"])
print(f"Results saved to: {npf.write_json(reports[0])}")

benchmark()

Now lets benchmark inference as a whole including sampling.

[]: import os
import torch
import neuronx_distributed
import neuronperf as npf

from transformers import T5Tokenizer
from wrapper import T5Wrapper

tokenizer = T5Tokenizer.from_pretrained(model_name)

generated_token_count = 0

class Wrapper(torch.nn.Module):
def __init__(self,

traced_encoder,
traced_decoder):

super().__init__()
(continues on next page)

606 Chapter 11. NeuronX Distributed

AWS Neuron

(continued from previous page)

self.model = T5Wrapper.from_pretrained(model_name)
self.model.encoder = traced_encoder
self.model.decoder = traced_decoder
setattr(self.model.encoder, 'main_input_name', 'input_ids') # Attribute␣

→˓required by beam search

def forward(self, *inputs):
input_ids = inputs[0]['input_ids']
attention_mask = inputs[0]['attention_mask']
return self.model.parallel_infer(input_ids=input_ids,

attention_mask=attention_mask,
max_length=max_length,
num_beams=num_beams,
num_return_sequences=num_return_sequences)

def load_fn(filename, **kwargs):
traced_encoder = neuronx_distributed.trace.parallel_model_load(filename +

→˓"TracedParallelEncoder.pt")
traced_decoder = neuronx_distributed.trace.parallel_model_load(filename +

→˓"TracedParallelDecoder.pt")
return Wrapper(traced_encoder, traced_decoder)

NeuronPerf can't see tp_degree at the moment, so just expose all cores
def env_setup_fn(*_):

del os.environ["NEURON_RT_VISIBLE_CORES"]

def preprocess_fn(inputs):

encoding = []
for text in inputs:

batch_encoding = tokenizer(text,
max_length=max_length,
truncation=True,
padding='max_length',
return_tensors="pt")

input_ids = batch_encoding['input_ids']
attention_mask = batch_encoding['attention_mask']
encoding.append({"input_ids": input_ids,

"attention_mask": attention_mask})
return encoding

def postprocess_fn(outputs):
output = [tokenizer.decode(seq) for seq in outputs]
global generated_token_count
generated_token_count = len(outputs[0])
return output

def benchmark():
inputs = ["summarize: The Inflation Reduction Act lowers prescription drug costs,␣

→˓health care costs, and energy costs. It's the most aggressive action on tackling the␣
→˓climate crisis in American history, which will lift up American workers and create␣
→˓good-paying, union jobs across the country. It'll lower the deficit and ask the ultra-
→˓wealthy and corporations to pay their fair share. And no one making under $400,000 per␣
→˓year will pay a penny more in taxes."]

(continues on next page)

11.5. Tutorials for NeuronX Distributed (neuronx-distributed) 607

AWS Neuron

(continued from previous page)

reports = npf.benchmark(
load_fn,
"", # Model dir
[inputs],
batch_sizes=1,
n_models=1,
max_infers=5,
max_duration=0, # sampling can take a while, so let's not timeout
workers_per_model=1,
env_setup_fn=env_setup_fn,
preprocess_fn=preprocess_fn,
postprocess_fn=postprocess_fn,
multiprocess=False,

)

report = reports[0]

report["throughput_avg"] = round(generated_token_count / (report["latency_ms_avg"] /␣
→˓1000), 2)

report["latency_per_token_ms_p50"] = round((report["latency_ms_p50"])/generated_
→˓token_count, 2)

report["latency_per_token_ms_p99"] = round((report["latency_ms_p99"])/generated_
→˓token_count, 2)

display and save results
npf.print_reports(reports, cols=["throughput_avg", "latency_per_token_ms_p50",

→˓"latency_per_token_ms_p99"])
print(f"Results saved to: {npf.write_json(report)}")

benchmark()

11.5.8 Llama-2-7b Inference

In this example we compile and deploy the Hugging Face meta-llama/Llama-2-7b-chat-hf model for tensor parallel
inference on Neuron using the Neuronx-Distributed package.

Note: This model is not currently optimized for performance on neuronx-distributed. For optimized llama-
2 inference use transformers-neuronx.

The example has the following main sections:

1. Set up the Jupyter Notebook

2. Install dependencies

3. Download the model

4. Trace the model

5. Perform greedy sampling

6. Benchmark sampling

This Jupyter Notebook can be run on a Trn1 instance (trn1.32xlarge).

608 Chapter 11. NeuronX Distributed

https://huggingface.co/meta-llama/Llama-2-7b-chat-hf

AWS Neuron

Set up the Jupyter Notebook

The following steps set up Jupyter Notebook and launch this tutorial: 1. Clone the Neuronx-Distributed repo to your
instance using

git clone https://github.com/aws-neuron/neuronx-distributed.git

2. Navigate to the examples/inference samples folder

cd neuronx-distributed/example/inference/

3. Copy the tutorial notebook llama2_inference.ipynb to the example/inference/ directory.

wget https://raw.githubusercontent.com/aws-neuron/aws-neuron-sdk/master/src/examples/
→˓pytorch/neuronx_distributed/llama/llama2_inference.ipynb

4. Follow the instructions in Jupyter Notebook QuickStart to run Jupyter Notebook on your instance.

Install Dependencies

This tutorial requires the following pip packages:

• torch-neuronx

• neuronx-cc

• sentencepiece

• transformers

• neuronx-distributed

You can install neuronx-distributed using the setup guide. Most of other packages will be installed when config-
uring your environment using the torch-neuronx inference setup guide. The additional dependencies must be installed
here:

[]: ! pip install transformers==4.35.2 sentencepiece

Download the model

Use of this model is governed by the Meta license. In order to download the model weights and tokenizer follow the
instructions in meta-llama/Llama-2-7b-chat-hf.

Once granted access, you can download the model. For the purposes of this sample we assume you have saved the
Llama-2-7b model in a directory called models/Llama-2-7b-chat-hf with the following format:

Llama-2-7b-chat-hf
LICENSE.txt
README.md
USE_POLICY.md
config.json
generation_config.json
model-00001-of-00002.safetensors
model-00002-of-00002.safetensors
model.safetensors.index.json
pytorch_model-00001-of-00002.bin

(continues on next page)

11.5. Tutorials for NeuronX Distributed (neuronx-distributed) 609

https://github.com/aws-neuron/neuronx-distributed.git
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/setup/notebook/setup-jupyter-notebook-steps-troubleshooting.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/libraries/neuronx-distributed/index.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/setup/torch-neuronx.html#setup-torch-neuronx
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf

AWS Neuron

(continued from previous page)

pytorch_model-00002-of-00002.bin
pytorch_model.bin.index.json
special_tokens_map.json
tokenizer.json
tokenizer.model
tokenizer_config.json

[]: model_path = "/home/ubuntu/models/Llama-2-7b-chat-hf"
traced_model_path = "/home/ubuntu/models/llama-2-7b-chat-hf-trace"

Trace the model

Now we can trace the model using the LlamaRunner script. This saves the model to the traced_model_path. Tracing
the 7b model can take up to 70 minutes.

In this sample we use tensor parallelism degree 32 to optimize performance on trn1.32xlarge.

[]: from llama2.llama2_runner import LlamaRunner

max_context_length = 128
max_new_tokens = 384
batch_size = 2
tp_degree = 32

runner = LlamaRunner(model_path=model_path,
tokenizer_path=model_path)

runner.trace(traced_model_path=traced_model_path,
tp_degree=tp_degree,
batch_size=batch_size,
max_context_length=max_context_length,
max_new_tokens=max_new_tokens)

Inference

Now lets load the traced model to perform autoregressive sampling.

[]: generate_ids, outputs = runner.generate_on_neuron(prompt=["I believe the meaning of life␣
→˓is", "The color of the sky is"],

traced_model_path=traced_model_path)

for idx, output in enumerate(outputs):
print(f"output {idx}: {output}")

610 Chapter 11. NeuronX Distributed

AWS Neuron

Benchmarking

Here we benchmark the per token latency for greedy sampling.

[]: results = runner.benchmark_sampling(traced_model_path)

This document is relevant for: Inf2, Trn1, Trn1n

11.5.9 Inference with Tensor Parallelism (neuronx-distributed) [Beta]

Before we start, let’s install transformers.

pip install transformers==4.26.0

For running model inference, we would need to trace the distributed model. Before we run the inference, let’s get a
checkpoint that we can use. Let’s run the below block of code:

import torch
import torch_neuronx
import transformers
from transformers import AutoTokenizer, AutoModelForSequenceClassification

name = "bert-base-cased-finetuned-mrpc"

model = AutoModelForSequenceClassification.from_pretrained(name, torchscript=True)
torch.save({"model":model.state_dict()}, "bert.pt")

If you already have a checkpoint from the tensor parallel training tutorial or by running training from another source,
feel free to skip the above step.

Once we have the checkpoint we are ready to trace the model and run inference against it. Let’s look at the example
below:

import os
import torch
import torch_neuronx
import transformers
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers.models.bert.modeling_bert import BertSelfAttention, BertSelfOutput

import neuronx_distributed
from neuronx_distributed.parallel_layers import layers, parallel_state

def encode(tokenizer, *inputs, max_length=128, batch_size=1):
tokens = tokenizer.encode_plus(

*inputs,
max_length=max_length,
padding='max_length',
truncation=True,
return_tensors="pt"

)
return (

torch.repeat_interleave(tokens['input_ids'], batch_size, 0),
(continues on next page)

11.5. Tutorials for NeuronX Distributed (neuronx-distributed) 611

AWS Neuron

(continued from previous page)

torch.repeat_interleave(tokens['attention_mask'], batch_size, 0),
torch.repeat_interleave(tokens['token_type_ids'], batch_size, 0),

)

Create the tokenizer and model
name = "bert-base-cased-finetuned-mrpc"
tokenizer = AutoTokenizer.from_pretrained(name)

Set up some example inputs
sequence_0 = "The company HuggingFace is based in New York City"
sequence_1 = "Apples are especially bad for your health"
sequence_2 = "HuggingFace's headquarters are situated in Manhattan"

paraphrase = encode(tokenizer, sequence_1, sequence_2)
not_paraphrase = encode(tokenizer, sequence_1, sequence_1)

def get_model():
model = AutoModelForSequenceClassification.from_pretrained(name, torchscript=True)
Here we build a model with tensor-parallel layers.
Note: If you already have a Model class that does this, we can use that directly
and load the checkpoint in it.
class ParallelSelfAttention(BertSelfAttention):

def __init__(self, config, position_embedding_type=None):
super().__init__(config, position_embedding_type)
self.query = layers.ColumnParallelLinear(config.hidden_size, self.all_head_

→˓size, gather_output=False)
self.key = layers.ColumnParallelLinear(config.hidden_size, self.all_head_

→˓size, gather_output=False)
self.value = layers.ColumnParallelLinear(config.hidden_size, self.all_head_

→˓size, gather_output=False)
self.num_attention_heads = self.num_attention_heads // parallel_state.get_

→˓tensor_model_parallel_size()
self.all_head_size = self.all_head_size // parallel_state.get_tensor_model_

→˓parallel_size()

class ParallelSelfOutput(BertSelfOutput):
def __init__(self, config):

super().__init__(config)
self.dense = layers.RowParallelLinear(config.hidden_size,

config.hidden_size,
input_is_parallel=True)

for layer in model.bert.encoder.layer:
layer.attention.self = ParallelSelfAttention(model.config)
layer.attention.output = ParallelSelfOutput(model.config)

Here we created a checkpoint as mentioned above. We pass sharded=False, since the␣
→˓checkpoint
we obtained is unsharded. In case you are using the checkpoint from the tensor-

→˓parallel training,

(continues on next page)

612 Chapter 11. NeuronX Distributed

AWS Neuron

(continued from previous page)

you can set the sharded=True, as that checkpoint will contain shards from each tp␣
→˓rank.

neuronx_distributed.parallel_layers.load("bert.pt", model, sharded=False)

These io aliases would enable us to mark certain input tensors as state tensors.␣
→˓These
state tensors are going to be device tensors.
io_aliases = {}
return model, io_aliases

if __name__ == "__main__":

Note how we are passing a function that returns a model object, which needs to be␣
→˓traced.
This is mainly done, since the model initialization needs to happen within the␣

→˓processes
that get launched internally within the parallel_model_trace.
model = neuronx_distributed.trace.parallel_model_trace(get_model, paraphrase, tp_

→˓degree=2)

Once traced, we now save the trace model for future inference. This API takes care
of saving the checkpoint from each tensor parallel worker
neuronx_distributed.trace.parallel_model_save(model, "tp_models")

We now load the saved model and will run inference against it
model = neuronx_distributed.trace.parallel_model_load("tp_models")
cpu_model = AutoModelForSequenceClassification.from_pretrained(name,␣

→˓torchscript=True)
assert torch.argmax(model(*paraphrase)[0]) == torch.argmax(cpu_model(*paraphrase)[0])

This document is relevant for: Inf2, Trn1, Trn1n

• Training with Tensor Parallelism (neuronx-distributed)

• Training GPT-NeoX 6.9B with Tensor Parallelism and ZeRO-1 Optimizer (neuronx-distributed)

• Training GPT-NeoX 20B with Tensor Parallelism and ZeRO-1 Optimizer (neuronx-distributed)

• Training Llama2 7B with Tensor Parallelism and ZeRO-1 Optimizer (neuronx-distributed)

• Training Llama-2-13B/70B with Tensor Parallelism and Pipeline Parallelism (neuronx-distributed)

• Training Llama-2-7B/13B/70B using Tensor Parallelism and Pipeline Parallelism with Neuron PyTorch-
Lightning (neuronx-distributed)

• llama2_7b_tp_zero1_ptl_finetune_tutorial

• T5 inference tutorial [html] [notebook]

• Llama inference tutorial [html] [notebook]

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

11.5. Tutorials for NeuronX Distributed (neuronx-distributed) 613

https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/neuronx_distributed/t5-inference/t5-inference-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/neuronx_distributed/llama/llama2_inference.ipynb

AWS Neuron

11.6 Misc (neuronx-distributed)

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

11.6.1 Neuron Distributed Release Notes (neuronx-distributed)

Table of contents

• Neuron Distributed [0.7.0]

• Neuron Distributed [0.6.0]

• Neuron Distributed [0.5.0]

• Neuron Distributed [0.4.0]

• Neuron Distributed [0.3.0]

• Neuron Distributed [0.2.0]

This document lists the release notes for Neuronx-Distributed library.

Neuron Distributed [0.7.0]

Date: 04/01/2024

New in this release

• Added support for Pipeline-parallelism training using PyTorch-lightning

• Added support for fine-tuning a model and running evaluation on the fine-tuned model using optimum-neuron

• Added support for auto-partitioning the pipeline parallel stages for training large models

• Added support for async checkpointing, optimizing the checkpoint saving time.

• Added support for auto-resume from a checkpoint, in case training job crashes.

• Added support for sequence length autobucketing in inference

• Added support for inference with bfloat16

• Improved performance for Llama-2-7b inference example.

Known Issues and Limitations

• Currently the model checkpointing saves a sharded checkpoint, and users have to write a script to combine the
shards.

614 Chapter 11. NeuronX Distributed

AWS Neuron

Neuron Distributed [0.6.0]

Date: 12/21/2023

New in this release

• Added support for Model/Optimizer wrapper that handles the parallelization in both model and optimizer.

• Added support for PyTorch-lightning. This allows users to train models using Tensor-parallelism and Data-
parallelism.

• Added new checkpoint save/load APIs that handles the parallelization and dumps/loads the checkpoint.

• Added a new QKV module which has the ability to replicate the KV heads and produce the query, key and value
states.

• Reduced the model initialization time when pipeline-parallel distributed strategy is used.

• Added support for limiting max parallel compilations in parallel_model_trace. This resolves many out of memory
errors by reducing the host memory usage.

• Added example for Llama-2-7b inference. This is still early in development and is not well-optimized. The
current recommendation is to use transformers-neuronx for optimal performance of llama inference.

Known Issues and Limitations

• Currently the model checkpointing saves a sharded checkpoint, and users have to write a script to combine the
shards.

• Pipeline-parallelism is not supported as part of PyTorch-lightning integration.

Neuron Distributed [0.5.0]

Date: 10/26/2023

New in this release

• Added support for pipeline-parallelism for distributed training.

• Added support for serialized checkpoint saving/loading, resulting in better checkpoint saving/loading time.

• Added support for mixed precision training using torch.autocast.

• Fixed an issue with Zero1 checkpoint saving/loading.

11.6. Misc (neuronx-distributed) 615

AWS Neuron

Known Issues and Limitations

• Currently the model checkpointing saves a sharded checkpoint, and users have to write a script to combine the
shards.

Neuron Distributed [0.4.0]

Date: 9/15/2023

New in this release

• Added API for padding attention heads when they are not divisible by tensor-parallel degree

• Added a constant threadpool for distributed inference

• Fixed a bug with padding_idx in ParallelEmbedding layer

• Fixed an issue with checkpoint loading to take into account the stride parameter in tensor parallel layers

Known Issues and Limitations

• Currently the model checkpointing saves a sharded checkpoint, and users have to write a script to combine the
shards.

Neuron Distributed [0.3.0]

Date: 8/28/2023

New in this release

• Added Zero1 Optimizer support that works with tensor-parallelism

• Added support for sequence-parallel that works with tensor-parallelism

• Added IO aliasing feature in parallel_trace api, which can allow marking certains tensors as state tensors

• Fixed hangs when tracing models using parallel_trace for higher TP degree

Known Issues and Limitations

• Currently the model checkpointing saves a sharded checkpoint, and users have to write a script to combine the
shards.

616 Chapter 11. NeuronX Distributed

AWS Neuron

Neuron Distributed [0.2.0]

Date: 7/19/2023

New in this release

• Added parallel cross entropy loss function.

Known Issues and Limitations

• Currently the model checkpointing saves a sharded checkpoint, and users have to write a script to combine the
shards.

Date: 6/14/2023

New in this release

• Releasing the Neuron Distributed (neuronx-distributed) library for enabling large language model train-
ing/inference.

• Added support for tensor-parallelism training/inference.

Known Issues and Limitations

• Currently the model checkpointing saves a sharded checkpoint, and users have to write a script to combine the
shards.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

• Neuron Distributed Release Notes (neuronx-distributed)

This document is relevant for: Inf2, Trn1, Trn1n

Setup (neuronx-distributed)

Install PyTorch Neuron on Trn1 to create a pytorch environment. It is recommended to work out of python virtual env
so as to avoid package installation issues.

You can install the neuronx-distributed package using the following command:

python -m pip install neuronx_distributed --extra-index-url https://pip.repos.neuron.
→˓amazonaws.com

Make sure the transformers version is set to 4.26.0

11.6. Misc (neuronx-distributed) 617

AWS Neuron

App Notes (neuronx-distributed)

• Tensor Parallelism Overview

• Pipeline Parallelism Overview

• Activation Memory Reduction

API Reference Guide (neuronx-distributed)

• API Reference Guide (neuronx-distributed)

Developer Guide (neuronx-distributed)

• Developer guide for Tensor Parallelism (neuronx-distributed)

• Developer guide for Pipeline Parallelism (neuronx-distributed)

• Developer guide for Activation Memory reduction (neuronx-distributed)

• Developer guide for Neuron-PT-Lightning (neuronx-distributed)

• Developer guide for model and optimizer wrapper (neuronx-distributed)

• Developer guide for save/load checkpoint (neuronx-distributed)

• Developer guide for Neuronx-Distributed Inference (neuronx-distributed)

Tutorials (neuronx-distributed)

• Training with Tensor Parallelism (neuronx-distributed)

• Training GPT-NeoX 6.9B with Tensor Parallelism and ZeRO-1 Optimizer (neuronx-distributed)

• Training GPT-NeoX 20B with Tensor Parallelism and ZeRO-1 Optimizer (neuronx-distributed)

• Training Llama2 7B with Tensor Parallelism and ZeRO-1 Optimizer (neuronx-distributed)

• Training Llama-2-13B/70B with Tensor Parallelism and Pipeline Parallelism (neuronx-distributed)

• Training Llama-2-7B/13B/70B using Tensor Parallelism and Pipeline Parallelism with Neuron PyTorch-
Lightning (neuronx-distributed)

• llama2_7b_tp_zero1_ptl_finetune_tutorial

• T5 inference tutorial [html] [notebook]

• Llama inference tutorial [html] [notebook]

Misc (neuronx-distributed)

• Neuron Distributed Release Notes (neuronx-distributed)

This document is relevant for: Inf2, Trn1, Trn1n

618 Chapter 11. NeuronX Distributed

https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/neuronx_distributed/t5-inference/t5-inference-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/neuronx_distributed/llama/llama2_inference.ipynb

CHAPTER

TWELVE

AWS NEURON REFERENCE FOR NEMO MEGATRON

AWS Neuron Reference for NeMo Megatron is a library that includes modified versions of the open-source packages
NeMo and Apex that have been adapted for use with AWS Neuron and AWS EC2 Trn1 instances. The library supports
Tensor Parallel, Pipeline parallel and Data Parallel configurations for distributed training of large language models
like GPT-3 175B. The APIs have been optimized for XLA based computation and high performance communication
over Trainium instances. The library uses various techniques to improve memory utilization such as sequence paral-
lelism which reduces activation memory footprint, selective or full activation checkpointing which allows larger model
configurations to fit. SPMD optimizations are also used whenever possible to reduce the number of graphs obtained.

Setup (neuronx-nemo-megatron)

The library can be installed from neuronx-nemo-megatron github repo

Tutorials (neuronx-nemo-megatron)

• Launch a GPT-3 pretraining job using neuronx-nemo-megatron

• Launch a Llama 2 pretraining job using neuronx-nemo-megatron

12.1 Important Tips for Training with Neuron NeMo Megatron

12.1.1 Do Not Create the Attention Mask

If you are using your own data pipeline, do not create an attention mask for each record. Neuron NeMo Megatron is
optimized to create an attention mask on Neuron Cores directly before use. Creating an attention mask per sample
consumes excess CPU memory and often causes out of memory errors on CPU.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

619

https://github.com/NVIDIA/NeMo
https://github.com/NVIDIA/apex
https://github.com/aws-neuron/neuronx-nemo-megatron
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-gpt-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-llamav2-job.md

AWS Neuron

620 Chapter 12. AWS Neuron Reference for NeMo Megatron

CHAPTER

THIRTEEN

NEURONX RUNTIME

NeuronX runtime consists of kernel driver and C/C++ libraries which provides APIs to access Inferentia and Trainium
Neuron devices. The Neuron ML frameworks plugins for TensorFlow, PyTorch and Apache MXNet use the Neuron
runtime to load and run models on the NeuronCores. Neuron runtime loads compiled deep learning models, also
referred to as Neuron Executable File Format (NEFF) to the Neuron devices and is optimized for high-throughput and
low-latency.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

13.1 API Reference Guide

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

13.1.1 Developer’s Guide - NeuronX Runtime

Table of contents

• Introduction

• Required Software

• Brief Introduction to Neuron Hardware

– Neuron Device

– NeuronCore

• The Neuron Runtime Architecture

– Application Interface Layer (The libnrt API)

– Monitoring and Profiling

– The NEFF format and NEFF Parser

– Graph Walker and CPU Node Executor

– User Mode Driver

∗ Memory Management

• Building the first Neuron application

– Prerequisites

621

AWS Neuron

– Getting a NEFF file

– The Code

– Code Breakdown

∗ Initialization and cleanup

∗ Loading the NEFF

∗ Creating input/output tensors

∗ Iterating through tensors in an nrt_tensor_set_t

∗ Deallocating input/output tensors

∗ Executing the NEFF

• The LIBNRT API

– API Return Codes

– Initialization, configuration and teardown

∗ Environment variables used to configure the Runtime Library

– The Model API

∗ Environment variables used to configure a model being loaded

– The Tensor API

∗ The Tensorset API

– The Execution API

– The Profiling API

– Other APIs

Introduction

This guide is intended to support a deeper understanding of the Neuron Runtime and how ML applications are built
using the Runtime APIs directly. Most customers will not need this level of detail as the interactions with the Neuron
Runtime are already taken care by popular ML Frameworks with built-in Neuron support such as torch-neuron and
tensorflow-neuron. This guide is focused on the information you need to know when building custom frameworks that
will call libnrt APIs directly from C/C++ apps.

Note: The next few paragraphs provide a brief introduction to the Neuron hardware and the Neuron Runtime archi-
tecture. Customers who’d rather skip this and jump straight to building their first ML application which runs without
the aid of an ML framework, should go to Building the first Neuron application.

The Neuron Runtime Library (libnrt) is the intermediate layer between Application + Framework and Neuron Driver
+ Neuron Device. It provides a C API for initializing the Neuron hardware, staging models and input data, executing
inferences and training iterations on the staged models, and retrieving output data. The vast majority of ML applications
running on Neuron will follow one of the following 3 architectural templates:

622 Chapter 13. NeuronX Runtime

AWS Neuron

Fig. 1: Individual processes executing models on one or more Neuron Devices

Fig. 2: Processes working together on executing models within the same instance - libnccom (The Neuron Collective
Communication Library) handles inter-worker communication

13.1. API Reference Guide 623

AWS Neuron

Fig. 3: Processes working together on executing models across multiple instances - libnccom, libfabric and the EFA
driver handle communication

Required Software

A more comprehensive guide to installing Neuron software can be found in the torch_quick_start guide.

The Neuron Runtime requires the Neuron Driver, which is provided by the aws-neuron-dkms package:

AL2:

sudo yum install aws-neuronx-dkms

Ubuntu:

sudo apt-get install aws-neuronx-dkms

The Runtime Library consists of the libnrt.so and header files. These artifacts are version controlled and installed via
the aws-neuronx-runtime-lib package. After installing the package, the binary (libnrt.so) is found in /opt/
aws/neuron/lib and the needed header files are found in /opt/aws/neuron/include:

AL2:

sudo yum install aws-neuronx-runtime-lib

Ubuntu:

sudo apt-get install aws-neuronx-runtime-lib

For applications that use distributed training or distributed inferences, the Neuron Collective Communication Library
is required:

AL2:

sudo yum install aws-neuronx-collectives

Ubuntu:

sudo apt-get install aws-neuronx-collectives

624 Chapter 13. NeuronX Runtime

AWS Neuron

In case of multi-instance training, the EFA driver and the Libfabric library - provided by the EFA installer - need to be
installed as well:

AL2 & Ubuntu:

curl -O https://efa-installer.amazonaws.com/aws-efa-installer-latest.tar.gz
wget https://efa-installer.amazonaws.com/aws-efa-installer.key && gpg --import aws-efa-
→˓installer.key
cat aws-efa-installer.key | gpg --fingerprint
wget https://efa-installer.amazonaws.com/aws-efa-installer-latest.tar.gz.sig && gpg --
→˓verify ./aws-efa-installer-latest.tar.gz.sig

tar -xvf aws-efa-installer-latest.tar.gz
cd aws-efa-installer && sudo bash efa_installer.sh --yes
cd
sudo rm -rf aws-efa-installer-latest.tar.gz aws-efa-installer

Brief Introduction to Neuron Hardware

Neuron Machine Learning Accelerators (or Neuron Devices) are custom accelerators designed to efficiently execute
Machine Learning workloads such as executing inference on a given model or running a distributed training job. De-
pending on the type of workload and its size, customers can opt for the following Neuron-equipped EC2 instances:

Workload type Neuron Device
Name

Instance type(s) Devices Per
Instance

Availability

Inference Inferentia II (v3) inf2.xlarge,
inf2.8xlarge

1 Available Now!

Inference Inferentia II (v3) inf2.24xlarge 6 Available Now!
Inference Inferentia II (v3) inf2.48xlarge 12 Available Now!
Inference Inferentia (v1) inf1.xlarge,

inf1.2xlarge
1 Available Now!

Inference Inferentia (v1) inf1.6xlarge 4 Available Now!
Inference Inferentia (v1) inf1.24xlarge 16 Available Now!
Training Trainium (v2) trn1.2xlarge 1 Available Now!
Training Trainium (v2) trn1.32xlarge 16 Available Now!

Neuron Device

Each Neuron Device consists of multiple execution units - called NeuronCores, a high throughput device memory, PCIe
interfaces to the host CPU and to the other Neuron Devices and other components, depending on the Neuron Device
version.

To get the number of NeuronCores per Neuron Device, the amount of Neuron Device memory and the way devices are
directly connected, use the neuron-ls tool:

neuron-ls --topology
instance-type: trn1.32xlarge
instance-id: i-0633517e496256bf8
+--------+--------+--------+---------------+---------+
| NEURON | NEURON | NEURON | CONNECTED | PCI |
| DEVICE | CORES | MEMORY | DEVICES | BDF |
+--------+--------+--------+---------------+---------+

(continues on next page)

13.1. API Reference Guide 625

AWS Neuron

(continued from previous page)

0	2	32 GB	12, 3, 4, 1	10:1c.0
1	2	32 GB	13, 0, 5, 2	10:1d.0
2	2	32 GB	14, 1, 6, 3	a0:1c.0
3	2	32 GB	15, 2, 7, 0	a0:1d.0
4	2	32 GB	0, 7, 8, 5	20:1b.0
5	2	32 GB	1, 4, 9, 6	20:1c.0
6	2	32 GB	2, 5, 10, 7	90:1b.0
7	2	32 GB	3, 6, 11, 4	90:1c.0
8	2	32 GB	4, 11, 12, 9	20:1d.0
9	2	32 GB	5, 8, 13, 10	20:1e.0
10	2	32 GB	6, 9, 14, 11	90:1d.0
11	2	32 GB	7, 10, 15, 8	90:1e.0
12	2	32 GB	8, 15, 0, 13	10:1e.0
13	2	32 GB	9, 12, 1, 14	10:1b.0
14	2	32 GB	10, 13, 2, 15	a0:1e.0
15	2	32 GB	11, 14, 3, 12	a0:1b.0
+--------+--------+--------+---------------+---------+
Neuron Device Topology

* * * *

––[0]––[1]––[2]––[3]––

––[4]––[5]––[6]––[7]––

––[8]––[9]––[10]––[11]––

––[12]––[13]––[14]––[15]––

* * * *

626 Chapter 13. NeuronX Runtime

AWS Neuron

NeuronCore

The NeuronCore is the primary execution unit within the accelerator. Each NeuronCore contains several execution
engines (for different types of compute operations such as tensor-based, vector and scalar), DMA engines, and a local
cache. A NeuronCore can operate independently or together with other NeuronCores, depending on the nature of the
workload and the way a model is compiled and loaded to the NeuronCores in the accelerator. Each execution engine
can access the cache and DRAM attached to the accelerator device. The primary form of data movement between the
host CPU and the accelerator device, as well as between the device DRAM and NeuronCores, is Direct Memory Access
(DMA). The use of DMA enables more efficient data movement.

The Neuron Runtime Architecture

13.1. API Reference Guide 627

AWS Neuron

Application Interface Layer (The libnrt API)

The Application Interface Layer allows applications and frameworks to use the available Neuron Devices to run infer-
ence or training workloads. A complete reference of the C interface can be found in The LIBNRT API .

Monitoring and Profiling

The Neuron Runtime is able to capture key execution metrics which can be read in real-time using neuron-monitor
and neuron-top. neuron-monitor allows forwarding those metrics to CloudWatch or a Prometheus server, enabling
fleet-wide monitoring - for more on that please refer to the neuron-monitor usage guide Neuron Monitor User Guide.
Profiling an execution is another feature of the Neuron Runtime - which provides an API for starting and stopping
profiling, as well as saving the profile data to a file, which can be used by tools such as the Neuron Tensorboard. This
API is documented in The Profiling API section.

The NEFF format and NEFF Parser

A NEFF (*N*euron *E*xecutable *F*ile *F*ormat) is a single file container for all the artifacts needed to execute a
model on one or more NeuronCores. A NEFF is the output of the Neuron Compiler (neuron-cc). It contains Neuron
machine instructions, pseudo instructions (compiler-generated instructions which are parsed and replaced with Neuron
instructions by the Neuron Runtime when the model loads), tensor information, model parameters and other compo-
nents that support the model’s execution on one or more NeuronCores. Operators that are not supported by Neuron can
be compiled into CPU-executable binary and included into the NEFF as well.

The contents of a NEFF can be shown by using neuron-packager tool (which will be released soon).

Usually there is only one subgraph (which is executed on a single NeuronCore) in a NEFF:

NEFF Nodes:
NODE Executor Name Variable Size Type Format ␣

→˓Shape DataType TimeSeries
1 Neuron Core sg00

image:0 3259008 IN NHWC [1 3 552␣
→˓984]

net_output:0 1323972 OUT NHWC [1 78 69␣
→˓123] false

In this example, there is a single subgraph, one input and one output:

Some NEFFs can have multiple subgraphs (which will be deployed by the runtime on separate NeuronCores) and
multiple CPU operators, as exemplified below:

NEFF Nodes:
NODE Executor Name Variable Size ␣

→˓ Type Format Shape DataType TimeSeries
1 Neuron Core sg00

(continues on next page)

628 Chapter 13. NeuronX Runtime

AWS Neuron

(continued from previous page)

input:0 2 ␣
→˓ IN NHWC [1 1 1 1]

nn/relu1:0 2 ␣
→˓ OUT NHWC [1 1 1 1] false

1 Neuron Core sg01
nn/relu1:0 2 ␣

→˓ IN NHWC [1 1 1 1]
nn/relu2:0 2 ␣

→˓ OUT NHWC [1 1 1 1] false
2 CPU fused_3_layout_transform

layout_transform0:0 0 ␣
→˓ OUT []

4 CPU fused_2_nn_conv2d_nn_relu
constant0 2 ␣

→˓ IN [1 1 1 1] float16
nn.relu0:0 0 ␣

→˓ OUT []
5 CPU fused_1_layout_transform_copy

nn/relu3:0 0 ␣
→˓ OUT []

6 Neuron Core sg02
nn/relu3:0 2 ␣

→˓ IN NHWC [1 1 1 1]
nn/relu4:0 2 ␣

→˓ OUT NHWC [1 1 1 1] false
6 Neuron Core sg03

nn/relu4:0 2 ␣
→˓ IN NHWC [1 1 1 1]

nn/output:0 2 ␣
→˓ OUT NHWC [1 1 1 1] false

The output above can be summarized by the graph below:

The nodes marked with dark blue are intermediate tensors that are handled internally by the Neuron Runtime. The
other blue nodes are inputs/outputs. The green colored box indicates the operator is executed on the NeuronCore while
the red color box indicates the execution is done on the CPU.

The NEFF layer in Neuron Runtime is responsible for parsing a NEFF, validating it, and translating pseudo instructions
into hardware specific instructions and DMA descriptors.

13.1. API Reference Guide 629

AWS Neuron

Graph Walker and CPU Node Executor

As shown in the previous section, a NEFF can contain one or more nodes. During execution, the Neuron Runtime
Graph Walker executes each node one by one and handles copying input and output between each of them. If a node
needs to be executed by the CPU, then a corresponding library function, found in a .so file in the NEFF, is dynamically
loaded using dlopen() during model load and executed during model execution. Since this library function is executed
in the calling thread’s context, the workload can be efficiently parallelized using a multi-threaded approach.

In the example below, each invocation of nrt_execute() would take 23ms: the first CPU node takes 1ms, the Neu-
ronCore execution takes 20ms and the second CPU node takes 2 ms, so the total latency is 23ms and the throughput is
43 calls per second (1000/23).

If multiple threads are used, subsequent executions would be pipelined inside the runtime, hence increasing the through-
put in this case to ~50 (1000/20).

630 Chapter 13. NeuronX Runtime

AWS Neuron

User Mode Driver

This is the lowest level component of the Neuron Runtime and handles programming the engines, managing memory,
creating DMA descriptors to move data from host and device, handling notifications etc.

Memory Management

The Neuron Runtime is responsible with managing Neuron Device and host memory for the running models. The ap-
plication is responsibile with deallocating every loaded model and allocated tensor so the proper deallocation method
needs to be called. For more details, refer to The LIBNRT API documentation. Tools such as neuron-top and
neuron-monitor can be used to determine the amount of memory being used at any given time.

Building the first Neuron application

The simple application presented here will load a NEFF file, use the provided binary files’ contents as input tensors
(if a file wasn’t provided for an input tensor, that input tensor will be zero-filled), and save the output tensors as binary
files.

Prerequisites

Building the application requires:

• a recent version of GCC

• installing the aws-neuronx-runtime-lib package as described in Required Software

Running the built application requires:

• a Neuron-equipped instance as shown in Brief Introduction to Neuron Hardware

• installing the aws-neuronx-runtime-lib and the aws-neuronx-dkms package as described in Required Soft-
ware

• a NEFF file

Getting a NEFF file

When running any workload through a Neuron framework, the compiled NEFFs will be placed in /var/tmp/
neuron-compile-cache. Additionally, setting the NEURON_FRAMEWORK_DEBUG environment variable to 1 before
running the workload will enable the compiled NEFFs to be written to the current directory.

The Code

#include <stdbool.h>
#include <nrt/nrt.h>
#include <nrt/nrt_experimental.h>

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>

(continues on next page)

13.1. API Reference Guide 631

AWS Neuron

(continued from previous page)

#include <errno.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <pthread.h>
#include <fcntl.h>
#include <stdint.h>
#include <unistd.h>

// Function to mmap a file in the application's memory space,
// it will return a pointer to the mmapped memory and the size
// of the mmapped data will be written to *size
void *mmap_file(const char *filepath, size_t *size) {

struct stat sb;
int fd = open(filepath, O_RDONLY);
if (fd < 0 || fstat(fd, &sb) != 0) {

fprintf(stderr, "Unable to open %s: %s\n", filepath, strerror(errno));
return MAP_FAILED;

}
*size = sb.st_size;
return mmap(NULL, sb.st_size, PROT_READ, MAP_PRIVATE, fd, 0);

}

#define P_ERR(...) fprintf(stderr, __VA_ARGS__)

#define CHECK_RESULT(res, expected, ...) \
if (res != expected) { \

fprintf(stderr, __VA_ARGS__); \
exit(-1); \

}

// struct used to load input tensors from files
typedef struct {

char *name;
size_t size;
void *data;

} input_tensor_info_t;

// simple container for input_tensor_info_t
typedef struct {

input_tensor_info_t *entries;
int entry_count;

} input_tensor_info_array_t;

// Allocate tensorsets and tensors based on the info_array and returns a valid tensorset␣
→˓in out_tset
// containing all the newly allocated tensors
NRT_STATUS allocate_tensors(nrt_tensor_info_array_t *info_array, nrt_tensor_usage_t␣
→˓usage_type, nrt_tensor_set_t **out_tset) {

NRT_STATUS result;
int tensor_idx;
nrt_tensor_info_t *tensor_info = NULL;
nrt_tensor_t *tensor = NULL;

(continues on next page)

632 Chapter 13. NeuronX Runtime

AWS Neuron

(continued from previous page)

// We allocate a nrt_tensor_set which acts as a containers for nrt_tensors
result = nrt_allocate_tensor_set(out_tset);
if (result != NRT_SUCCESS) {

P_ERR("Couldn't allocate %s tensorset\n", usage_type == NRT_TENSOR_USAGE_INPUT ?
→˓"input" : "output");

}

for (tensor_idx = 0; tensor_idx < info_array->tensor_count; tensor_idx++) {
tensor_info = &info_array->tensor_array[tensor_idx];
if (tensor_info->usage != usage_type) {

continue;
}
// Allocate the tensor with the name and size found in tensor_info_array
result = nrt_tensor_allocate(NRT_TENSOR_PLACEMENT_DEVICE, 0, tensor_info->size,

tensor_info->name, &tensor);
if (result != NRT_SUCCESS) {

P_ERR("Couldn't allocate tensor %s\n", tensor_info->name);
return result;

}
// Finally add the tensors to the newly allocated tensor set
result = nrt_add_tensor_to_tensor_set(*out_tset, tensor_info->name, tensor);
if (result != NRT_SUCCESS) {

P_ERR("Couldn't add tensor %s to tensorset\n", tensor_info->name);
return result;

}
}
return NRT_SUCCESS;

}

// Tensor iterator handler - returns false if the iteration needs to stop
typedef bool (*tensor_handler)(nrt_tensor_t *, nrt_tensor_info_t *, NRT_STATUS *, void␣
→˓*);

// Iterates through all the tensors in the given tensorset, based on the data in info_
→˓array for the given usage_type
// and calls the handler function with the provided args pointer
// Will return the first error returned by a handler
NRT_STATUS iterate_tensors(nrt_tensor_set_t *tset, nrt_tensor_info_array_t *info_array,␣
→˓nrt_tensor_usage_t usage_type,

tensor_handler handler, void *args) {
NRT_STATUS result = NRT_SUCCESS;
NRT_STATUS final_result = NRT_SUCCESS;
int tensor_idx;
nrt_tensor_info_t *tensor_info = NULL;
nrt_tensor_t *tensor = NULL;

for (tensor_idx = 0; tensor_idx < info_array->tensor_count; tensor_idx++) {
tensor_info = &info_array->tensor_array[tensor_idx];
if (tensor_info->usage != usage_type) {

continue;
}

(continues on next page)

13.1. API Reference Guide 633

AWS Neuron

(continued from previous page)

result = nrt_get_tensor_from_tensor_set(tset, tensor_info->name, &tensor);
if (result != NRT_SUCCESS) {

P_ERR("Tensor %s not found in tensor set\n", tensor_info->name);
continue;

}
result = NRT_SUCCESS;
if ((*handler)(tensor, tensor_info, &result, args) == false) {

return result;
}
if (final_result == NRT_SUCCESS && result != final_result) {

final_result = result;
}

}
return final_result;

}

// Tensor iteration handler that checks if a tensor has an input file associated with it
// based on the CLI args
bool handler_load_inputs(nrt_tensor_t *tensor, nrt_tensor_info_t *tensor_info, NRT_
→˓STATUS *result, void* args) {

NRT_STATUS res;
int idx;
input_tensor_info_array_t *info_array = (input_tensor_info_array_t *)args;
bool input_found = false;

for (idx = 0; idx < info_array->entry_count; idx++) {
if (strcmp(info_array->entries[idx].name, tensor_info->name) != 0) {

continue;
}
if (info_array->entries[idx].size != tensor_info->size) {

P_ERR("Input file for tensor %s has incorrect size %lu, expected %lu\n",
tensor_info->name, info_array->entries[idx].size, tensor_info->size);

break;
}
res = nrt_tensor_write(tensor, info_array->entries[idx].data, 0, tensor_info->

→˓size);
if (res != NRT_SUCCESS) {

P_ERR("Unable to write content to input tensor %s\n", tensor_info->name);
} else {

input_found = true;
}

}
if (!input_found) {

fprintf(stderr, "Input tensor %s will be zero-filled\n", tensor_info->name);
}
*result = NRT_SUCCESS;
return true;

}

// Tensor iteration handler that saves outputs
bool handler_save_outputs(nrt_tensor_t *tensor, nrt_tensor_info_t *tensor_info, NRT_
→˓STATUS *result, void* args) {

(continues on next page)

634 Chapter 13. NeuronX Runtime

AWS Neuron

(continued from previous page)

static char filename[280];

int fd;
// Allocating a buffer large enough to read the entire tensor
void *tensor_data = malloc(tensor_info->size);

*result = NRT_SUCCESS;
if (tensor_data == NULL) {

fprintf(stderr, "Unable to allocate memory for saving output tensor %s\n",␣
→˓tensor_info->name);

*result = NRT_FAILURE;
return true;

}
// Reading the tensor to the newly allocated buffer
*result = nrt_tensor_read(tensor, tensor_data, 0, tensor_info->size);
if (*result != NRT_SUCCESS) {

fprintf(stderr, "Unable to read tensor %s\n", tensor_info->name);
free(tensor_data);
return true;

}

// Saving the tensor to a file
snprintf(filename, 280, "%s.out", tensor_info->name);
fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0644);
if (fd < 0) {

fprintf(stderr, "Unable to open %s for writing\n", filename);
free(tensor_data);
*result = NRT_FAILURE;
return true;

}
if (write(fd, tensor_data, tensor_info->size) != tensor_info->size) {

*result = NRT_FAILURE;
fprintf(stderr, "Unable to write tensor %s contents to file %s\n", tensor_info->

→˓name, filename);
}
close(fd);

free(tensor_data);
return true;

}

// Tensor iteration handler that deallocates tensors
bool handler_free_tensor(nrt_tensor_t *tensor, nrt_tensor_info_t *tensor_info, NRT_
→˓STATUS *result, void* args) {

*result = NRT_SUCCESS;
nrt_tensor_free(&tensor);
return true;

}

int main(int argc, char *argv[]) {
NRT_STATUS result;
int idx = 0;

(continues on next page)

13.1. API Reference Guide 635

AWS Neuron

(continued from previous page)

int tensor_idx = 0;
void *neff_data = NULL;
size_t neff_size = 0;
void *input_data = NULL;

input_tensor_info_array_t input_tensor_info_array = {0};
input_tensor_info_t *current_input = NULL;

nrt_model_t *model = NULL;
nrt_tensor_set_t *inputs = NULL;
nrt_tensor_set_t *outputs = NULL;

nrt_tensor_t *tensor = NULL;
nrt_tensor_info_array_t *tensor_info_array = NULL;

if (argc < 2) {
fprintf(stderr, "Incorrect number of args, usage: exec_test file.neff [input_1_

→˓name] [input_1_file] ...\n");
exit(-1);

}

// Try mmapping the NEFF file first, so we can fail fast if not found or
// mmap fails
neff_data = mmap_file(argv[1], &neff_size);
if (neff_data == MAP_FAILED) {

fprintf(stderr, "Unable to map file %s\n", argv[1]);
exit(-1);

}

// mmap input tensor files (if any provided) and fill the input_tensor_info array
if (argc > 3) {

input_tensor_info_array.entries = malloc((argc - 2 / 2) * sizeof(input_tensor_
→˓info_t));

for (idx = 2; idx < argc; idx += 2) {
if (idx + 1 >= argc) {

break;
}
current_input = &input_tensor_info_array.entries[input_tensor_info_array.

→˓entry_count];
input_data = mmap_file(argv[idx + 1], ¤t_input->size);
if (input_data == MAP_FAILED) {

fprintf(stderr, "Unable to mmap inputs file %s\n", argv[idx + 1]);
continue;

}
current_input->name = argv[idx];
current_input->data = input_data;
input_tensor_info_array.entry_count++;

}
}

// Before calling any nrt API, nrt_init must be called
// Since this is not running as part of a framework, the correct parameter for

→˓'framework' is (continues on next page)

636 Chapter 13. NeuronX Runtime

AWS Neuron

(continued from previous page)

// NRT_FRAMEWORK_TYPE_NO_FW and the others can be empty strings
result = nrt_init(NRT_FRAMEWORK_TYPE_NO_FW, "", "");
CHECK_RESULT(result, NRT_SUCCESS, "NRTLIB could not be initialized, error: %d\n",␣

→˓(int)result);

// Loading the NEFF
printf("Loading NEFF\n");
result = nrt_load(neff_data, neff_size, -1, -1, &model);
CHECK_RESULT(result, NRT_SUCCESS, "Unable to load NEFF\n");

// In order to allocate tensors, first we need to call nrt_get_model_tensor_info␣
→˓which
// will give us the model tensors' names and sizes in tensor_info_array
printf("Getting IO tensor information\n");
result = nrt_get_model_tensor_info(model, &tensor_info_array);
CHECK_RESULT(result, NRT_SUCCESS, "Unable to get model tensor information\n");

// Allocating tensors
printf("Creating I/O data (%ld tensors)\n", tensor_info_array->tensor_count);
result = allocate_tensors(tensor_info_array, NRT_TENSOR_USAGE_INPUT, &inputs);
CHECK_RESULT(result, NRT_SUCCESS, "Error allocating input tensors\n");
result = allocate_tensors(tensor_info_array, NRT_TENSOR_USAGE_OUTPUT, &outputs);
CHECK_RESULT(result, NRT_SUCCESS, "Error allocating input tensors\n");

// Loading input files (if provided)
iterate_tensors(inputs, tensor_info_array, NRT_TENSOR_USAGE_INPUT, handler_load_

→˓inputs,
(void*) &input_tensor_info_array);

// Executing model using the tensors in the inputs tensorset and writing the outputs␣
→˓to the tensors
// in the outputs tensorset
result = nrt_execute(model, inputs, outputs);
CHECK_RESULT(result, NRT_SUCCESS, "Error during model execution: %d\n", result);

// Saving outputs to files
result = iterate_tensors(outputs, tensor_info_array, NRT_TENSOR_USAGE_OUTPUT,␣

→˓handler_save_outputs, NULL);
if (result != NRT_SUCCESS) {

P_ERR("Error saving outputs to files\n");
}

// Unloading the model
result = nrt_unload(model);
if (result != NRT_SUCCESS) {

P_ERR("Unable to unload NEFF\n");
}

printf("Freeing tensors\n");
iterate_tensors(inputs, tensor_info_array, NRT_TENSOR_USAGE_INPUT, handler_free_

→˓tensor, NULL);
iterate_tensors(outputs, tensor_info_array, NRT_TENSOR_USAGE_OUTPUT, handler_free_

→˓tensor, NULL); (continues on next page)

13.1. API Reference Guide 637

AWS Neuron

(continued from previous page)

nrt_destroy_tensor_set(&inputs);
nrt_destroy_tensor_set(&outputs);

printf("Deallocating model tensor info\n");
// We are done with the tensor_info_array, we can dispose of it
nrt_free_model_tensor_info(tensor_info_array);

printf("Deallocating inputs tensor info\n");
// Unmapping the input files
for (tensor_idx = 0; tensor_idx < input_tensor_info_array.entry_count; tensor_idx++)

→˓{
munmap(input_tensor_info_array.entries[tensor_idx].data, input_tensor_info_array.

→˓entries[tensor_idx].size);
}
if (input_tensor_info_array.entries) {

free(input_tensor_info_array.entries);
}

// Clean-up the runtime
printf("Cleaning up the runtime\n");
nrt_close();

printf("DONE\n");
}

Building the example:

gcc run_neff.c -o run_neff -lnrt -pthread -I/opt/aws/neuron/include -L/opt/aws/neuron/lib

Running the example:

./run_neff my.neff [input_1] [input_1.bin] [input_2] [input_2.bin] ...

Code Breakdown

Initialization and cleanup

// ...
result = nrt_init(NRT_FRAMEWORK_TYPE_NO_FW, "", "");
// ...
nrt_close();

The Neuron Runtime is initialized by calling nrt_init and all applications should call nrt_close once they’re done
using it. For more details on these functions, go to the Initialization, configuration and teardown section.

638 Chapter 13. NeuronX Runtime

AWS Neuron

Loading the NEFF

Once the contents of a NEFF file have been mapped to virtual memory using mmap . . .

// ...
void *mmap_file(const char *filepath, size_t *size) {

struct stat sb;
int fd = open(filepath, O_RDONLY);
if (fd < 0 || fstat(fd, &sb) != 0) {

fprintf(stderr, "Unable to open %s: %s\n", filepath, strerror(errno));
return MAP_FAILED;

}
*size = sb.st_size;
return mmap(NULL, sb.st_size, PROT_READ, MAP_PRIVATE, fd, 0);

}
// ...
neff_data = mmap_file(argv[1], &neff_size);

. . . the NEFF is loaded using nrt_load. The runtime will decide the optimal placement for the model - it will choose
the best NeuronCore on which to deploy the model:

// ...
result = nrt_load(neff_data, neff_size, -1, -1, &model);
// ...

The call will return a valid model handle in nrt_model_t* which will subsequently be used for other calls to the
Runtime API (such as nrt_execute).

For more details on the model API (including nrt_load), go to the The Model API section.

Creating input/output tensors

The main container for tensors is the nrt_tensor_set_t*. Tensors (nrt_tensor_t*) are not passed di-
rectly to the NEFF execution function, nrt_execute, they have to be wrapped in a nrt_tensor_set_t*.
The allocate_tensors function will allocate the tensorset and the tensors for the requested usage type
(NRT_TENSOR_USAGE_INPUT or NRT_TENSOR_USAGE_OUTPUT) and return the tensorset containing the allocated ten-
sors in out_tset.

NRT_STATUS allocate_tensors(nrt_tensor_info_array_t *info_array, nrt_tensor_usage_t␣
→˓usage_type, nrt_tensor_set_t **out_tset) {
// ...
// We allocate a nrt_tensor_set which acts as a containers for nrt_tensors
result = nrt_allocate_tensor_set(out_tset);
// ...

for (tensor_idx = 0; tensor_idx < info_array->tensor_count; tensor_idx++) {
tensor_info = &info_array->tensor_array[tensor_idx];
if (tensor_info->usage != usage_type) {

continue;
}
// ...
// Allocate the tensor with the name and size found in tensor_info_array
result = nrt_tensor_allocate(NRT_TENSOR_PLACEMENT_DEVICE, 0, tensor_info->size,

(continues on next page)

13.1. API Reference Guide 639

AWS Neuron

(continued from previous page)

tensor_info->name, &tensor);
// ...
// Finally add the tensors to the newly allocated tensor set
result = nrt_add_tensor_to_tensor_set(*out_tset, tensor_info->name, tensor);
// ...

}
// ...

}

Iterating through tensors in an nrt_tensor_set_t

A helper function, iterate_tensors is used to iterate through the nrt_tensor_t in a tensorset and call the function
handler for each of them. If the handler function returns false iteration ends. iterate_tensors returns the first
error reported by the handler function.

// Tensor iterator handler - returns false if the iteration needs to stop
typedef bool (*tensor_handler)(nrt_tensor_t *, nrt_tensor_info_t *, NRT_STATUS *, void␣
→˓*);

NRT_STATUS iterate_tensors(nrt_tensor_set_t *tset, nrt_tensor_info_array_t *info_array,␣
→˓nrt_tensor_usage_t usage_type,

tensor_handler handler, void *args) {
// ...
for (tensor_idx = 0; tensor_idx < info_array->tensor_count; tensor_idx++) {

// ...
result = nrt_get_tensor_from_tensor_set(tset, tensor_info->name, &tensor);
// ...
if ((*handler)(tensor, tensor_info, &result, args) == false) {

return result;
}
// ...

}

Deallocating input/output tensors

After the execution is complete, the tensors are deallocated using iterate_tensors and the tensorsets are deallocated
using nrt_destroy_tensor_set:

iterate_tensors(inputs, tensor_info_array, NRT_TENSOR_USAGE_INPUT, handler_free_tensor,␣
→˓NULL);
iterate_tensors(outputs, tensor_info_array, NRT_TENSOR_USAGE_OUTPUT, handler_free_tensor,
→˓ NULL);

nrt_destroy_tensor_set(&inputs);
nrt_destroy_tensor_set(&outputs);

The handler_free_tensor function simply deallocates the given tensor:

640 Chapter 13. NeuronX Runtime

AWS Neuron

bool handler_free_tensor(nrt_tensor_t *tensor, nrt_tensor_info_t *tensor_info, NRT_
→˓STATUS *result, void* args) {
// ...
nrt_tensor_free(&tensor);
// ...

}

For more details on the tensor API, check out the The Tensor API and the The Tensorset API sections.

Executing the NEFF

The NEFF is executed using a call to nrt_execute. If nrt_execute completes successfully, the output tensors are
read and saved to files (one binary file per output tensor) using iterate_tensors:

// Executing model using the tensors in the inputs tensorset and writing the outputs to␣
→˓the tensors
// in the outputs tensorset
result = nrt_execute(model, inputs, outputs);
// ...
// Saving outputs to files
result = iterate_tensors(outputs, tensor_info_array, NRT_TENSOR_USAGE_OUTPUT, handler_
→˓save_outputs, NULL);

The iteration handler reads the tensor data and writes it to a file with the same name as the tensor:

bool handler_save_outputs(nrt_tensor_t *tensor, nrt_tensor_info_t *tensor_info, NRT_
→˓STATUS *result, void* args) {
// ...
void *tensor_data = malloc(tensor_info->size);
// ...
// Reading the tensor to the newly allocated buffer
*result = nrt_tensor_read(tensor, tensor_data, 0, tensor_info->size);
// ...

// Saving the tensor to a file
snprintf(filename, 280, "%s.out", tensor_info->name);
fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0644);
// ...
if (write(fd, tensor_data, tensor_info->size) != tensor_info->size) {

// ...
}
close(fd);

For more details on the execution API, go to the The Execution API section.

13.1. API Reference Guide 641

AWS Neuron

The LIBNRT API

API Return Codes

All API calls will return an NRT_STATUS value representing the return status of the call. In case of an error, an error
message will also be logged (based on the logging settings, more on that in the next section). The table below contains
all the possible error codes. Please note that some error codes only apply to certain API calls.

Name Re-
turn
Code

Error

NRT_SUCCESS0 Call was successful
NRT_FAILURE1 Generic failure
NRT_INVALID2 Invalid NEFF, bad instruction, bad DMA descriptor, input tensor name/size does not match

the model, etc.
NRT_INVALID_HANDLE3 Invalid handle (e.g. an invalid model handle)
NRT_RESOURCE4 Failed to allocate a resource for the requested operation
NRT_TIMEOUT5 Operation timed out
NRT_HW_ERROR6 Hardware failure
NRT_QUEUE_FULL7 Too many pending nrt_execute() requests. The runtime request queue is full. Cannot

enqueue more nrt_execute() requests
NRT_LOAD_NOT_ENOUGH_NC9 The number of available NeuronCores is insufficient for the requested operation
NRT_UNSUPPORTED_NEFF_VERSION10 NEFF version unsupported
NRT_UNINITIALIZED13 Returned when attempting an API call when the library is not initialized
NRT_CLOSED 14 Returned when attempting an API call after nrt_close() was called
NRT_EXEC_BAD_INPUT1002 Invalid input has been submitted to nrt_execute()
NRT_EXEC_COMPLETED_WITH_NUM_ERR1003 Execution completed with numerical errors (produced NaN)
NRT_EXEC_COMPLETED_WITH_ERR1004 Execution was completed with other errors, either logical (event double clear), or hardware

(parity error)
NRT_EXEC_NC_BUSY1005 The neuron core is locked (in use) by another model/thread
NRT_OOB 1006 One or more indirect memcopies and/or embedding updates are out of bound due to input

corruptions
NRT_EXEC_HW_ERR_COLLECTIVES1200 Suspected hang in collectives operation due to hardware errors on this or other workers.
NRT_EXEC_HW_ERR_HBM_UE1201 An HBM suffered from an uncorrectable error and produced incorrect results

Initialization, configuration and teardown

NRT_STATUS nrt_init(nrt_framework_type_t framework, const char *fw_version, const char *fal_version)
Initializes the Neuron Runtime’s internal state and the Neuron hardware’s state. This should be called be-
fore any other nrt_* call is attempted - although a small set of functions are exempt from this rule (for ex-
ample nrt_get_total_nc_count and get_nrt_version). Any call to the NRT library API will return
NRT_FAILURE if nrt_init has not been called beforehand and that API call requires it.

The runtime can be configured by setting the appropriate environment variable before this API call. The list of
available environment variables is found in the Environment variables used to configure the Runtime Library
section.

Parameters
• framework – Can be one of:

NRT_FRAMEWORK_TYPE_INVALID, // Invalid framework
NRT_FRAMEWORK_TYPE_NO_FW, // No framework NRT_FRAMEWORK_TYPE_TENSORFLOW,

642 Chapter 13. NeuronX Runtime

AWS Neuron

// Tensorflow NRT_FRAMEWORK_TYPE_PYTORCH, // Pytorch
NRT_FRAMEWORK_TYPE_MXNET // Mxnet

This argument is used by our Neuron Tools to determine the type of application running, it
has no other impact on the functioning of the runtime. Application using a custom framework
or calling the Neuron Runtime directly should use NRT_FRAMEWORK_TYPE_NO_FW.

• *fw_version (const char) – version of the framework on top of which this runtime is
running

• *fal_version (const char) – version of the framework adapter on top of which this run-
time is running

Applications using NRT_FRAMEWORK_TYPE_NO_FW for the first argument should use two empty strings for
the versions.

Environment variables used to configure the Runtime Library

NEURON_RT_LOG_LOCATION=<CONSOLE/SYSLOG>, default=CONSOLE Chooses the output target for the Neuron
Runtime logs (either console or syslog).

NEURON_RT_LOG_LEVEL=<ERROR/WARN/INFO/DEBUG/TRACE>, default=ERROR Specifies the logging verbosity
for the Neuron Runtime library, from ERROR (least verbose), to TRACE (most verbose).

NEURON_RT_NUM_CORES=<n> Specifies how many NeuronCores are needed for the application. During nrt_init the
requested number of NeuronCores are exclusively associated with the calling processes and become unavailable
to any other process attempting to use them. If there aren’t enough NeuronCores available, nrt_init will return
an error. Once the owner process has called nrt_close or exited, the NeuronCores are released and become
available to be associated with another process. By default, all NeuronCores present on the instance will be made
available to the caller.

NEURON_RT_VISIBLE_CORES=<m,n,p-q> Similarly to the previous, it allows the calling process to get ex-
clusive access to a set of NeuronCores, but it allows explicitly specifying which NeuronCores are
available for the application based on their zero-based indices. This variable can be a list of Neu-
ronCores, for example: NEURON_RT_VISIBLE_CORES=3,4,5,6, a range of NeuronCores, for example:
NEURON_RT_VISIBLE_CORES=3-6, or a combination of both: NEURON_RT_VISIBLE_CORES=3-5,6. The re-
sulting range must be contiguous, for example this is not valid: NEURON_RT_VISIBLE_CORES=3,5,6 because 4
is missing from the list, and indices need to be provided in consecutive increasing order.

Note: If both NEURON_RT_VISIBLE_CORES are NEURON_RT_NUM_CORES are defined,
NEURON_RT_VISIBLE_CORES will be used.

NEURON_RT_ROOT_COMM_ID=<ip_address:port> Mandatory for applications that run workloads containing Col-
lective Communication operators, allows specifying the IP address and assign a port for the rank 0 worker in the
Collective Compute worker pool. For example: NEURON_RT_ROOT_COMM_ID=10.0.1.2:46820.

NEURON_RT_STOCHASTIC_ROUNDING_SEED=<value> Allows setting a value for the stochastic rounding seed. Has
no effect on inf1.

NEURON_RT_DEBUG_MEMLOG_MAX_SIZE=<value>, default=1024*1024 Allows changing the number of entries
in the memory allocations log. This log contains an entry for every allocation and deallocation and will be
dumped to a file in case of a memory allocation failure in CSV format.

NRT_STATUS nrt_close()
Closes all the devices used by the application (as defined by NEURON_RT_NUM_CORES/NEURON_RT_VISIBLE_CORES)
and cleans up the runtime state. Note that once nrt_close has been called, most nrt_* API calls will fail if
attempted.

13.1. API Reference Guide 643

AWS Neuron

The Model API

NRT_STATUS nrt_load(const void *neff_bytes, size_t size, int32_t start_nc, int32_t nc_count, nrt_model_t
**model)

Loads a NEFF file whose content is found in neff_bytes, with the given size, placing it on nc_count Neuron-
Cores starting with NeuronCore index start_nc. If either nc_count or start_nc are -1, an optimal value for
each will be determined automatically. The model can be configured using a list of environment variables read
inside this API call which can be found in the Environment variables used to configure a model being loaded
section. It returns a handle to the loaded model in the nrt_model_t* pointer if the call succeeds. The re-
turned handle represents the loaded model and can be used with calls that operate on an nrt_model_t* (such
as nrt_execute).

Parameters
• neff_bytes – Pointer to existing NEFF file data

• size – Size of data in neff_bytes

• start_nc – Index of the NeuronCore on which to stage the model. The first NeuronCore
owned by the application will always have the index 0 - for example, even if when setting
NEURON_RT_VISIBLE_CORES=3,4, the two NeuronCores will be referred to as 0 and 1. If
-1, an optimal index will be automatically determined (based on current NeuronCore usage).

• nc_count – Number of NeuronCores on which to stage the model. If its value is a multiple
of the amount of NeuronCores needed by the model, the model will be replicated on the
number of NeuronCores specified in the argument. This feature is called TBD and it will be
explained in detail in a separate section. If its value is -1, the model will be staged a single
time, using the number of cores needed by a single instance of the model.

• model – Model handle returned by the call which can be passed to other functions that operate
on models (such as nrt_execute).

Environment variables used to configure a model being loaded

NEURON_RT_EXEC_TIMEOUT=<n>, default=30 (inf1), default=600(trn1,inf2) Maximum of time, in sec-
onds, allowed for one execution before timing out - which will cause the call to nrt_execute to fail and return
NRT_TIMEOUT.

NEURON_RT_VALIDATE_HASH=<true/false>, default=false Verify the integrity of NEFF data being loaded by
checking against a checksum found in the header.

NEURON_RT_STOCHASTIC_ROUNDING_EN=<true/false>, default=false Enable stochastic rounding.

NRT_STATUS nrt_load_collectives(const void *neff_bytes, size_t size, int32_t start_nc, int32_t nc_count,
uint32_t g_device_id, uint32_t g_device_count, nrt_model_t **model)

Same as nrt_load (same environment variables can be used to configure the model), but must be used when
loading NEFFs containing Collective Communication operators. Uses the same arguments as nrt_load, but adds
2 extra ones.

Parameters
• neff_bytes – Pointer to existing NEFF file data

• size – Size of data in neff_bytes

• start_nc – Index of NeuronCore on which to stage the model. If -1, an optimal index will
be automatically determined (based on current NeuronCore usage).

644 Chapter 13. NeuronX Runtime

AWS Neuron

• nc_count – Number of NeuronCores on which to stage the model. If its value is a multiple
of the amount of NeuronCores needed by the model, the model will be replicated on the
number of NeuronCores specified in the argument. This feature is called TBD and it will be
explained in detail in a separate section. If its value is -1, the model will be staged a single
time, using the number of cores needed by a single instance of the model.

• g_device_id – Globally unique ID within the Collective Communication world associated
with this model instance.

• g_device_count – Size of the Collective Communication world (total number of partici-
pating unique IDs).

• model – Model handle returned by the call which can be passed to other functions that operate
on models (such as nrt_execute).

NRT_STATUS nrt_unload(nrt_model_t *model)
Unloads the given model and frees up device and host resources.

Parameters
• model – Pointer to model to unload. All data associated with the model is deleted, do not

reuse the pointer or try to deallocate it afterwards. Do not call nrt_unload again on the
same nrt_model_t* pointer (think of it as a call to free()).

NRT_STATUS nrt_get_model_nc_count(const nrt_model_t *model, uint32_t *nc_count)
Gets the number of NeuronCores used by the model and writes that value at the address pointed by nc_count.

Parameters
• model – Valid pointer to an nrt_model_t.

• nc_count – If the call completes successfully, the pointed address will contain the number
of NeuronCores used by the model.

NRT_STATUS nrt_get_model_tensor_info(nrt_model_t *model, nrt_tensor_info_array_t **tensor_info)
Gets input/output tensor information for a given loaded model.

Parameters
• model – Valid pointer to an nrt_model_t.

• tensor_info – Pointer to a nrt_tensor_info_array_t* which will contain the
tensor information data. The function allocates memory for the structure internally
which can only be correctly freed by calling nrt_free_model_tensor_info. The
nrt_tensor_info_array_t struct and its dependencies are defined as follows:

typedef struct nrt_tensor_info_array {
uint64_t tensor_count; // Total number of input/

→˓output tensors used by the model
nrt_tensor_info_t tensor_array[]; // Array of tensor info␣

→˓representing those tensors
} nrt_tensor_info_array_t;

typedef struct nrt_tensor_info {
char name[NRT_TENSOR_NAME_MAX]; // Name of the tensor
nrt_tensor_usage_t usage; // Type of the tensor
size_t size; // Tensor size in bytes
nrt_dtype_t dtype; // Data type
uint32_t *shape; // An array representing␣

→˓data shape
(continues on next page)

13.1. API Reference Guide 645

AWS Neuron

(continued from previous page)

uint32_t ndim; // The number of dimensions␣
→˓(number of elements in the shape array)
} nrt_tensor_info_t;

// Usage type definitions for tensors
typedef enum nrt_tensor_usage {

NRT_TENSOR_USAGE_INPUT = 0, // Tensor is used for input
NRT_TENSOR_USAGE_OUTPUT, // Tensor is used for output

} nrt_tensor_usage_t;

// Data type definitions for tensors
typedef enum nrt_dtype {

NRT_DTYPE_UNKNOWN = 0,
NRT_DTYPE_FLOAT32,
NRT_DTYPE_FLOAT16,
NRT_DTYPE_BFLOAT16,
NRT_DTYPE_INT8,
NRT_DTYPE_UINT8,
NRT_DTYPE_INT16,
NRT_DTYPE_UINT16,
NRT_DTYPE_INT32,
NRT_DTYPE_UINT32,
NRT_DTYPE_INT64,
NRT_DTYPE_UINT64

} nrt_dtype_t;

NRT_STATUS nrt_free_model_tensor_info(nrt_tensor_info_array_t *tensor_info)
Frees a nrt_tensor_info_array_t allocated by a call to nrt_get_model_tensor_info. As with all deal-
location functions, don’t call it more than once on the same pointer.

Parameters
• tensor_info – nrt_tensor_info_array_t to deallocate.

NRT_STATUS nrt_get_model_instance_count(nrt_model_t *model, uint32_t *instance_count)
Returns the number of times this nrt_model_t `is currently staged on the NeuronDevice(s) by writing it to the
address pointed by ``instance_count`. It will always be >= 1. This value can be used to determine the number
of threads that can optimally call nrt_execute on this nrt_model_t.

Parameters
• model – Valid pointer to an nrt_model_t.

• instance_count – If the call completes successfully, the address will contain the instance
count for this model

646 Chapter 13. NeuronX Runtime

AWS Neuron

The Tensor API

NRT_STATUS nrt_tensor_allocate(nrt_tensor_placement_t tensor_placement, int logical_nc_id, size_t size,
const char *name, nrt_tensor_t **tensor)

Allocates a new tensor, placing it in either host virtual memory or device memory (based on the
tensor_placement argument), on the specified NeuronCore index, of a given size, and attaches the given name
to it - the name is only used for log messages. For applications running on Inferentia, tensor_placement should
always be NRT_TENSOR_PLACEMENT_VIRTUAL. For all other cases, NRT_TENSOR_PLACEMENT_DEVICE should
be used. If successful, the tensor address will contain a valid pointer to the newly allocated nrt_tensor_t.
(depricated) tensor_placement set to NRT_TENSOR_PLACEMENT_HOST will allocate tensors in physical host
memory. Tensors allocated with NRT_TENSOR_PLACEMENT_HOST cannot be larger than 4MB, the Kernel phys-
ical page size limit. We restrict tensors to a single page of host memory to simplify the generation of DMA
descriptors during pre-execution setup.

Parameters
• tensor_placement – Controls where the tensor will be placed, the definition of the
nrt_tensor_placement_t enum is as follows:

typedef enum {
NRT_TENSOR_PLACEMENT_DEVICE, // the tensor is allocated␣

→˓directly in device memory
NRT_TENSOR_PLACEMENT_HOST, // (depricated) the tensor is␣

→˓allocated in DMAable host memory (only for sizes < 4MB)
NRT_TENSOR_PLACEMENT_VIRTUAL // the tensor is allocated in␣

→˓host memory
} nrt_tensor_placement_t;

• logical_nc_id (int) – Zero-based NeuronCore index on which to allocate the tensor (if
tensor_placement is NRT_TENSOR_PLACEMENT_DEVICE) or to which associate the tensor
for all other cases.

• size – Size for the new tensor.

• name – Name for the new tensor.

• tensor – If the call completes successfully, the address will contain a valid nrt_tensor_t*
pointer.

void nrt_tensor_free(nrt_tensor_t **tensor)
Frees a tensor allocated by a call to nrt_tensor_allocate and sets the nrt_tensor_t* pointer at address tensor
to NULL.

Parameters
• tensor – Pointer to a pointer to a previously allocated nrt_model_t. After the call returns,

the nrt_model_t* pointer will be NULL.

NRT_STATUS nrt_tensor_read(const nrt_tensor_t *tensor, void *buf, size_t offset, size_t size)
Reads size bytes of data from a given tensor, starting at offset, to buf starting at offset 0. buf needs to be
allocated with a size of at least size bytes.

Parameters
• tensor – Valid pointer to an nrt_tensor_t.

• buf – Buffer where to write read data, it needs to be at least size bytes in size.

• offset – Offset within the tensor from which to begin reading.

13.1. API Reference Guide 647

AWS Neuron

• size – Size to read.

NRT_STATUS nrt_tensor_write(nrt_tensor_t *tensor, const void *buf, size_t offset, size_t size)
Writes size bytes of data to a given tensor, starting at offset, from buf (starting at offset 0).

Parameters
• tensor – Valid pointer to an nrt_tensor_t.

• buf – Buffer containing size bytes of data to write to the tensor.

• offset – Offset within the tensor from which to begin writing.

• size – Size to write.

size_t nrt_tensor_get_size(const nrt_tensor_t *tensor)
Returns the size, in bytes, of the given tensor.

Parameters
• tensor – Valid pointer to an nrt_tensor_t.

Returns Size in bytes of the given tensor.

NRT_STATUS nrt_tensor_allocate_empty(const char *name, nrt_tensor_t **tensor)
Allocates an empty tensor, i.e. the tensor structure w/o any attached storage.

Parameters
• name – Name for the new tensor.

• tensor – If the call completes successfully, the address will contain a valid nrt_tensor_t*
pointer.

NRT_STATUS nrt_tensor_attach_buffer(nrt_tensor_t *tensor, void *buffer, size_t size)
Attaches a caller-supplied buffer to a tensor. Any storage previously attached to the tensor is detached and freed
if was owned by the tensor. The attached buffer is managed by the caller and must persist through the entire
lifetime of the tensor - calling nrt_tensor_free will not deallocate it. This changes the memory placement of the
nrt_tensor_t to NRT_TENSOR_PLACEMENT_VIRTUAL regardless of the initial memory placement type.

Parameters
• tensor – Valid pointer to an nrt_tensor_t.

• buffer – Buffer of size bytes to attach to the tensor.

• size – Size of attached buffer.

NRT_STATUS nrt_tensor_allocate_slice(const nrt_tensor_t *tensor_source, size_t offset, size_t size, const
char *name, nrt_tensor_t **tensor_slice)

Allocates a new nrt_tensor_t that doesn’t have its own backing storage - instead, it will use a part (slice)
of tensor_source’s storage, starting at offset with the given size. The shared backing storage is reference
counted and it will not be deallocated until the last tensor using it is deallocated.

Parameters
• tensor_source – Valid pointer to a nrt_tensor_t whose storage will be used by the new

tensor.

• offset – Offset within the tensor_source used as origin for the ‘slice’.

• size – Size of storage to be used by the new tensor.

• name – Name for the new tensor.

648 Chapter 13. NeuronX Runtime

AWS Neuron

• tensor_slice – If the call completes successfully, the address will contain a valid, newly
allocated, nrt_tensor_t* pointer.

void *nrt_tensor_get_va(const nrt_tensor_t *tensor)
Returns the virtual address for an allocated tensor.

Parameters
• tensor – Valid pointer to an nrt_tensor_t.

Returns Pointer to host memory used by the tensor.

The Tensorset API

Tensorsets are containers for tensors.

NRT_STATUS nrt_allocate_tensor_set(nrt_tensor_set_t **result)
Allocates an empty nrt_tensor_set_t and places its address in result.

Parameters
• result – If the call completes successfully, this address will contain a pointer to a valid,

newly allocated nrt_tensor_set_t.

void nrt_destroy_tensor_set(nrt_tensor_set_t **tensor_set)
Frees a tensor set allocated by a call to nrt_allocate_tensor_set and sets the nrt_tensor_set_t* pointer
at address tensor_set to NULL.

Parameters
• tensor_set – Pointer to a pointer to a previously allocated nrt_tensor_set_t. After the

call returns, the nrt_tensor_set_t* pointer will be NULL.

NRT_STATUS nrt_add_tensor_to_tensor_set(nrt_tensor_set_t *tensor_set, const char *tensor_name,
nrt_tensor_t *tensor)

Adds an nrt_tensor to a tensor_set under a given name. That name can be later used to retrieve the tensor.

Parameters
• tensor_set – Pointer to a valid Tensorset where to add the tensor.

• tensor_name – Name that will be used to access the added tensor in the container. Does
not need to be the same as the nrt_tensor_t’s name.

• tensor – Pointer to a valid nrt_tensor_t to ad to the Tensorset.

NRT_STATUS nrt_get_tensor_from_tensor_set(nrt_tensor_set_t *tensor_set, const char *tensor_name,
nrt_tensor_t **tensor)

Gets an nrt_tensor from the tensor set based on the name used when it was added by
nrt_add_tensor_to_tensor_set and places its address at the address pointed by tensor. If the ten-
sor is not found, NRT_FAILURE is returned and nothing gets written at the address pointed by tensor.

Parameters
• tensor_set – Pointer to a valid Tensorset containing the tensor.

• tensor_name – Name associated with the searched nrt_tensor_t when it was added to
this Tensorset. Might be different from the nrt_tensor_t’s internal name.

• tensor – Address where the address of the found nrt_tensor_t will be placed.

13.1. API Reference Guide 649

AWS Neuron

The Execution API

NRT_STATUS nrt_execute(nrt_model_t *model, const nrt_tensor_set_t *input_set, nrt_tensor_set_t *output_set)
Runs one execution of the given nrt_model_t using the provided input tensor set and writing the results to the
provided output tensor set.

Parameters
• model – Valid pointer to a nrt_model_t on which to run the execution.

• input_set – Tensorset containing input data.

• input_set – Tensor set where the output data will be written to.

NRT_STATUS nrt_execute_repeat(nrt_model_t *model, const nrt_tensor_set_t *input_set, nrt_tensor_set_t
*output_set, int repeat_count)

Same as nrt_execute but it will repeat the execution repeat_count times using the outputs from the n - 1th
iteration as inputs for the nth iteration. This requires a specially compiled NEFF and it’s not a commonly used
call.

Parameters
• model – Valid pointer to a nrt_model_t on which to run the execution.

• input_set – Tensorset containing input data.

• input_set – Tensor set where the output data will be written to.

• repeat_count – Number of times to repeat this execution.

The Profiling API

NRT_STATUS nrt_profile_start(nrt_model_t *model, const char *filename)
Begins profiling of the execution of the given model. The profile data will be written to the file specified by the
path in filename. The file will be truncated if it exists.

Parameters
• model – Valid pointer to a nrt_model_t which will be profiled by the Neuron Runtime during

execution.

• filename – Path to a file where the profile will be written. If the file already exists, it will
be truncated.

NRT_STATUS nrt_profile_stop(const char *filename)
Ends profiling of the execution of a model and writes profile data to filename. filename needs to be the same
path as the one used for nrt_profile_start.

Parameters
• filename – Path to a file where the profile will be written. If the file already exists, it will

be truncated.

650 Chapter 13. NeuronX Runtime

AWS Neuron

Other APIs

NRT_STATUS nrt_get_version(nrt_version_t *ver, size_t size)
Fills a nrt_version_t struct with the provided size with version info. The size argument allows for backwards
compatibility. if the struct changes in future releases.

Parameters
• *ver – Pointer to a nrt_version_t structure which is currently defined as:

typedef struct nrt_version {
uint64_t rt_major; // major version number
uint64_t rt_minor; // minor version number
uint64_t rt_patch; // patch version number
uint64_t rt_maintenance; // maintainance version number
char rt_detail[RT_VERSION_DETAIL_LEN]; // runtime version␣

→˓description string
char git_hash[GIT_HASH_LEN]; // runtime git hash

} nrt_version_t;

• size (size_t) – Size of the nrt_version_t structure, should always be
sizeof(nrt_version_t)

NRT_STATUS nrt_get_total_nc_count(uint32_t *nc_count)
Gets the total number of NeuronCores present on the current instance. The result is not affected by the values in
NEURON_RT_NUM_CORES or NEURON_RT_VISIBLE_CORES and, in fact, this function can be called before calling
nrt_init.

Parameters
• nc_count – If the call completes successfully, the address will contain the total number of

NeuronCores present on the instance.

NRT_STATUS nrt_get_visible_nc_count(uint32_t *nc_count)
Gets the total number of NeuronCores available to the application after nrt_init has parsed the configuration
environment variables NEURON_RT_NUM_CORES and NEURON_RT_VISIBLE_CORES (if provided).

Parameters
• nc_count – If the call completes successfully, the address will contain the total number of

NeuronCores available to the application.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

13.2 Configuration Guide

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

13.2. Configuration Guide 651

AWS Neuron

13.2.1 NeuronX Runtime Configuration

NeuronX Runtime is responsible for executing ML models on Neuron Devices. NeuronX Runtime determines which
NeuronCore will execute which model and how to execute it. Configuration of the NeuronX Runtime is controlled
through the use of Environment variables at the process level. By default, Neuron framework extensions will take care
of NeuronX Runtime configuration on the user’s behalf. Explicit configurations are also possible when attempting to
achieve a desired behavior.

This guide provides an overview of the different environment variables available to configure NeuronX Runtime be-
havior.

Table 1: Environment Variables
Name Description Type Expected Values De-

fault
Value

RT Version

NEURON_RT_VISIBLE_CORESRange of specific Neuron-
Cores needed by the process

Integer
range
(like
1-3)

Any value or range be-
tween 0 to Max Neu-
ronCore in the system.

None 2.0+

NEURON_RT_NUM_CORESNumber of NeuronCores re-
quired by the process.

Integer A value from 1 to Max
NeuronCore in the sys-
tem.

0,
which
is
inter-
preted
as “all”

2.0+

NEURON_RT_LOG_LOCATIONRuntime log location string console or syslog con-
sole

2.0+

NEURON_RT_LOG_LEVELRuntime log verbose level string ERROR, WARN-
ING, INFO, DEBUG,
TRACE

ER-
ROR

2.0+

NEURON_RT_EXEC_TIMEOUTTimeout for execution in
seconds

Integer 0 to INT_MAX 30 on
inf1,
600 on
trn1/inf2

2.0+

NEURON_RT_VALIDATE_HASHValidate NEFF contents be-
fore loading into accelerator

Boolean TRUE or FALSE FALSE 2.0+

NEURON_RT_MULTI_INSTANCE_SHARED_WEIGHTSShare weights when loading
multiple instance versions of
the same model on different
NeuronCores

Boolean TRUE or FALSE FALSE 2.11+

NEURON_RT_ASYNC_EXEC_MAX_INFLIGHT_REQUESTSControls number of asyn-
chronous execution requests
to be supported.

Integer 0 to INT_MAX; 0 is
disabled.

0 2.15+

652 Chapter 13. NeuronX Runtime

AWS Neuron

NeuronCore Allocation

Important: NEURONCORE_GROUP_SIZES is being deprecated, if your application is using
NEURONCORE_GROUP_SIZES please see Migrate your application to Neuron Runtime 2.x (libnrt.so) for more
details.

By default, NeuronX Runtime initializes all the cores present in the system and reserves them for the current process.

Note: Once a NeuronCore is reserved for a process, it cannot be used by another process at all, until the process
reserving that NeuronCore is terminated.

Using NEURON_RT_VISIBLE_CORES

For parallel processing, NEURON_RT_VISIBLE_CORES can be used to control which NeuronCores each process would
reserve. This variable is specified with a single NeuronCore index or an inclusive range value.

For example, if a process (myapp.py) requires one NeuronCore, then it can be started with
NEURON_RT_VISIBLE_CORES=0 to limit the process to NeuronCore 0. For parallel processing, multiple pro-
cess can be started (without any change to myapp.py code) with different NEURON_RT_VISIBLE_CORES values. Here
is an example that runs myapp.py on inf1.xlarge in parallel across the four different NeuronCores available in the
inf1.xlarge.

NEURON_RT_VISIBLE_CORES=0 myapp.py &
NEURON_RT_VISIBLE_CORES=1 myapp.py &
NEURON_RT_VISIBLE_CORES=2 myapp.py &
NEURON_RT_VISIBLE_CORES=3 myapp.py &

If myapp.py required 3 NeuronCores and was running on a inf1.6xlarge (16 NeuronCores maximum), the first instance
of myapp.py could use NeuronCores 0-2, the next instance could use 3-5 and so on:

NEURON_RT_VISIBLE_CORES=0-2 myapp.py &
NEURON_RT_VISIBLE_CORES=3-5 myapp.py &
NEURON_RT_VISIBLE_CORES=6-8 myapp.py &
NEURON_RT_VISIBLE_CORES=9-11 myapp.py &
NEURON_RT_VISIBLE_CORES=12-14 myapp.py &

Using NEURON_RT_NUM_CORES

If NEURON_RT_NUM_CORES is set to a value between 1 and the maximum number of NeuronCores in the instance,
Neuron Runtime will attempt to automatically reserve the number of free NeuronCores specified for the process. The
difference between NEURON_RT_VISIBLE_CORES and NEURON_RT_NUM_CORES is that, NEURON_RT_VISIBLE_CORES
specifies exact NeuronCores to allocate where as NEURON_RT_NUM_CORES specifies the number of NeuronCores needed
and Neuron Runtime selects free NeuronCores.

Using the same example earlier where myapp.py needed 3 cores, but _which_ 3 cores was of no concern, the same
application could be executed in parallel up to 5 times on an inf1.6xlarge (16 NeuronCore max):

NEURON_RT_NUM_CORES=3 myapp.py &
NEURON_RT_NUM_CORES=3 myapp.py &

(continues on next page)

13.2. Configuration Guide 653

AWS Neuron

(continued from previous page)

NEURON_RT_NUM_CORES=3 myapp.py &
NEURON_RT_NUM_CORES=3 myapp.py &
NEURON_RT_NUM_CORES=3 myapp.py &

Executing a 6th NEURON_RT_NUM_CORES=3 myapp.py & in the above example would fail as there is only a single
NeuronCore still free.

Notes

1. Number of NeuronCores in a inferentia device is 4

2. Number of inferentia is depends on the instance size.

3. The NeuronCore index in NEURON_RT_VISIBLE_CORES starts from 0 and ends at (number of NeuronDe-
vices * number of NeuronCores) - 1.

4. By default, NEURON_RT_NUM_CORES is set to 0, which indicates to RT that all cores are to be used.

5. NEURON_RT_VISIBLE_CORES takes precedence over NEURON_RT_NUM_CORES. If specified, all cores
within the range will be assigned to the owning process.

Logging and debug-ability

By default, NeuronX Runtime logs to syslog with verbose level of INFO and only ERROR s are logged in console. The
following code snippet shows ways to increase/decrease the log level.

NEURON_RT_LOG_LEVEL=INFO myapp.py # Sets the log level for syslog and console to␣
→˓INFO
NEURON_RT_LOG_LOCATION=console NEURON_RT_LOG_LEVEL=QUIET myapp.py # Completely␣
→˓disables console logging.

By default, NeuronX Runtime expects the NeuronCore to complete execution of any model with in 2 seconds. If
NeuronCore didn’t complete the execution within 2 seconds then runtime would fail the execution with timeout er-
ror. Most of the models takes few milliseconds to complete so 2 seconds(2000 milliseconds) is more than ade-
quate. However if your model is expected to run more than 2 seconds then you can increase the timeout with NEU-
RON_RT_EXEC_TIMEOUT.

NEURON_RT_EXEC_TIMEOUT=5 myapp.py # increases the timeout to 5 seconds

Additional Logging Controls

NeuronX Runtime enables detailed control over logging behaviors, including the ability to set separate log levels and
log locations for individual components. When NEURON_RT_LOG_LEVEL is set globally, NeuronX Runtime combines
the logs from all modules into a single stream. For instance, the logs from the modules TDRV and NMGR would appear
in the same stream as shown in the example below

:: 2023-Jan-09 20:27:41.0593 15042:15042 ERROR TDRV:exec_consume_infer_status_notifications (FATAL-RT-
UNDEFINED-STATE) inference timeout (600000 ms) on Neuron Device 0 NC 0, waiting for execution com-
pletion notification 2023-Jan-09 20:27:41.0600 15042:15042 ERROR NMGR:dlr_infer

However, it is possible to adjust the log level for individual components to capture more or less detail as required for
specific debugging contexts. These individual components are - TDRV: the low level driver library - KMGR: the higher

654 Chapter 13. NeuronX Runtime

AWS Neuron

level manager library bridging the driver and runtime - NRT: the Neuron Runtime library responsible for loading and
executing models that is exposed to end users and frameworks

To adjust the log level for individual components, use the environment variable
NEURON_RT_LOG_LEVEL_<component>, where <component> is the identifier of the component (either TDRV,
NMGR, or NRT). This allows for precise control over the verbosity of logs generated by each component, facilitating
more targeted debugging. For example, the following sets different log levels for the TDRV and NMGR components.

:: export NEURON_RT_LOG_LEVEL_TDRV=DEBUG export NEURON_RT_LOG_LEVEL_NMGR=ERROR

Similarly, to specify separate log locations for individual components, use the environment variable
NEURON_RT_LOG_LOCATION_<component>, following the same naming convention as for log levels. This fea-
ture enables logs from different components to be directed to separate files or destinations, making it easier to organize
and analyze the log output. For example, the following sets different log locations for the TDRV and NMGR components.

:: export NEURON_RT_LOG_LOCATION_TDRV=tdrv.log export NEURON_RT_LOG_LOCATION_NMGR=nmgr.log

Checksum

To execute a model(NEFF), NeuronX Runtime needs to load the NEFF file into NeuronCore and run. Neuron Runtime
provides a way to do checksum validation on each NEFF file while loading to validate the file is not corrupted. This
option is off by default to avoid performance penalty during model load time(~50%).

NEURON_RT_VALIDATE_HASH=true myapp1.py # enables model checksum validation while␣
→˓loading
NEURON_RT_VALIDATE_HASH=false myapp2.py # disables(default) model checksum validation␣
→˓while loading

Shared Weights (NEURON_RT_MULTI_INSTANCE_SHARED_WEIGHTS)

By default, NeuronX Runtime will make copies of model weights when loading the same instance of a model to multiple
NeuronCores. Changing this default to a weight sharing mechanism is possible with NeuronX Runtime 2.11 or higher
by setting NEURON_RT_MULTI_INSTANCE_SHARED_WEIGHTS=TRUE. Use of this flag will allow for more models to be
loaded by reducing the memory requirements, but will potentially come at a cost of throughput by forcing the execution
across cores to compete for memory bandwidth.

Note: the use of this flag requires the model to be loaded with the multi-instance feature (see PyTorch Neuron (torch-
neuron) Core Placement API [Beta]).

See the [BERT tutorial with shared weights notebook] for an example of how this is used in Torch-Neuron.

NEURON_RT_MULTI_INSTANCE_SHARED_WEIGHTS=TRUE myapp1.py # enables model weight sharing
NEURON_RT_MULTI_INSTANCE_SHARED_WEIGHTS=FALSE myapp2.py # disables(default) model␣
→˓weight sharing

13.2. Configuration Guide 655

https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/bert_tutorial/tutorial_pretrained_bert_shared_weights.ipynb

AWS Neuron

Aynchronous Execution (NEURON_RT_ASYNC_EXEC_MAX_INFLIGHT_REQUESTS)

A beta asynchronous execution feature which can reduce latency by roughly 12% for training workloads. Starting in
Neuron Runtime version 2.15, the feature is available, but disabled. To enable the feature for possible improvement,
recommendation is to set NEURON_RT_ASYNC_EXEC_MAX_INFLIGHT_REQUESTS to 3. Setting the number of
inflight requests above 3 may lead to Out-Of-Memory (OOM) errors during execution. For developers using libnrt.so
directly, please use nrt_register_async_exec_callback to register a callback for the nrt execution thread to post the
execution status to. A default callback will be registered if one is not set by the developer.

NEURON_RT_ASYNC_EXEC_MAX_INFLIGHT_REQUESTS=3 myapp.py # Up to 3 async exec requests␣
→˓at once.
NEURON_RT_ASYNC_EXEC_MAX_INFLIGHT_REQUESTS=0 myapp.py # disables async execution␣
→˓(default behavior)

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

13.3 Misc (NeuronX Runtime)

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

13.3.1 Neuron Runtime Troubleshooting on Inf1, Inf2 and Trn1

This document aims to provide more information on how to fix issues you might encounter while using the Neuron
Runtime 2.x or above. For each issue we will provide an explanation of what happened and what can potentially correct
the issue.

If your issue is not listed below or you have a more nuanced problem, contact us via issues posted to this repo, the AWS
Neuron developer forum, or through AWS support.

Table of contents

• Generic Errors

– Neuron Driver installation fails

– Application fails to start

– This Neuron Runtime (compatibility id: X) is not compatible with the installed aws-neuron-dkms package

– Neuron Core is in use

– Unsupported NEFF Version

– Unsupported Hardware Operator Code

– Insufficient Memory

– Insufficient number of NeuronCores

– Numerical Error

– RuntimeError: module compiled against API version 0xf but this version of numpy is 0xe

656 Chapter 13. NeuronX Runtime

https://github.com/aws/aws-neuron-sdk/issues
https://forums.aws.amazon.com/forum.jspa?forumID=355
https://forums.aws.amazon.com/forum.jspa?forumID=355

AWS Neuron

– Failure to initialize Neuron

– An application is trying to use more cores that are available on the instance

• Hardware Errors

• EFA and Collective Communication Errors

– Missing aws-neuronx-collectives package

– Missing efa installer package.

– EFA is not enabled in trn1.32xlarge

– Communication timeout

– Communication errors.

– EFA Kernel messages (dmesg) after process termination.

– Failure to find bootstrap interface

– Name resolution failure

• Usage of Neuron Custom C++ Operators

– Neuron Runtime timeout or GPSIMD exception

– FI_EFA_FORK_SAFE

Generic Errors

Neuron Driver installation fails

aws-neuron-dkms is a driver package which needs to be compiled during installation. The compilation requires kernel
headers for the instance’s kernel. uname -r can be used to find kernel version in the instance. In some cases, the
installed kernel headers might be newer than the instance’s kernel itself.

Please look at the aws-neuron-dkms installation log for message like the following:

Building for 4.14.193-149.317.amzn2.x86_64
Module build for kernel 4.14.193-149.317.amzn2.x86_64 was skipped since the
kernel headers for this kernel does not seem to be installed.

If installation log is not available, check whether the module is loaded.

$ lsmod | grep neuron

If the above has no output then that means aws-neuron-dkms installation is failed.

13.3. Misc (NeuronX Runtime) 657

AWS Neuron

Solution

1. Stop all applications using the NeuronCores.

2. Uninstall aws-neuron-dkms sudo apt remove aws-neuron-dkms or sudo yum remove
aws-neuron-dkms

3. Install kernel headers for the current kernel sudo apt install -y linux-headers-$(uname -r) or sudo
yum install -y kernel-devel-$(uname -r) kernel-headers-$(uname -r)

4. Install aws-neuron-dkms sudo apt install aws-neuron-dkms or sudo yum install
aws-neuron-dkms

Application fails to start

Neuron Runtime requires Neuron Driver(aws-neuron-dkms package) to access Neuron devices. If the driver is not
installed then Neuron Runtime wont able to access the Neuron devices and will fail with an error message in console
and syslog.

If aws-neuron-dkms is not installed then the error message will be like the following:

2021-Aug-11 18:38:27.0917 13713:13713 ERROR NRT:nrt_init Unable to determine␣
→˓Neuron Driver version. Please check aws-neuron-dkms package is installed.

If aws-neuron-dkms is installed but does not support the latest runtime then the error message will be like the fol-
lowing:

2021-Aug-11 19:18:21.0661 24616:24616 ERROR NRT:nrt_init This runtime requires␣
→˓Neuron Driver version 2.0 or greater. Please upgrade aws-neuron-dkms package.

When using any supported framework from Neuron SDK version 2.5.0 and Neuron Driver (aws-neuron-dkms) versions
2.4 or older, Neuron Runtime will return the following error message:

2022-Dec-01 09:34:12.0559 138:138 ERROR HAL:aws_hal_tpb_pooling_write_profile ␣
→˓ failed programming the engine

Solution

Please follow the installation steps in Setup Guide to install aws-neuronx-dkms.

This Neuron Runtime (compatibility id: X) is not compatible with the installed aws-neuron-dkms
package

This error is caused by incompatibility between the Neuron Driver (dkms package) and the Runtime Library (runtime-
lib package). The driver remains backwards compatible with older versions of Neuron Runtime, but newer versions of
the Runtime might rely on the functionality that is only provided by a newer driver. In that case, an update to the newer
driver is required.

658 Chapter 13. NeuronX Runtime

AWS Neuron

In some cases the compatibility error persists even after the driver has been updated. That happens when the update
process fails to reload the driver at the end of the update. Note that $ modinfo neuron will misleadingly show the
new version because modinfo reads the version information for neuron.ko file that’s been successfully replaced.

Reload failure happens because one of the processes is still using Neuron Devices and thus the driver cannot be reloaded.

Solution

Check for any process that is still using the Neuron driver by running lsmod:

ubuntu@ip-10-1-200-50:~$ lsmod | grep neuron
neuron 237568 0
ubuntu@ip-10-1-200-50:~$

“Used by” counter, the second number, should be 0. If it is not, there is still a running process that is using Neuron.
Terminate that process and either:

$ sudo rmmod neuron
$ sudo modprobe neuron

Or simply rerun the installation one more time. The driver logs its version in dmesg:

$ sudo dmesg
...
[21531.105295] Neuron Driver Started with Version:2.9.4.0-
→˓8a6fdf292607dccc3b7059ebbe2fb24c60dfc7c4

A common culprit is a Jupyter process. If you are using Jupyter on the instance, make sure to terminate Jupyter process
before updating the driver.

Neuron Core is in use

A Neuron Core cant be shared between two applications. If an application started using a Neuron Core all other
applications trying to use the NeuronCore would fail during runtime initialization with the following message in the
console and in syslog:

2021-Aug-27 23:22:12.0323 28078:28078 ERROR NRT:nrt_allocate_neuron_cores ␣
→˓ NeuronCore(s) not available - Requested:nc1-nc1 Available:0

Solution

Terminate any other processes that are using NeuronCore devices and then try launching the application again. If you
are using Jupyter, ensure that you only have a single Jupyter kernel attempting to access the NeuronCores by restarting
or shutting-down any other kernels, which will release any NeuronCores that might be in use.

13.3. Misc (NeuronX Runtime) 659

AWS Neuron

Unsupported NEFF Version

While loading a model(NEFF), Neuron Runtime checks the version compatibility. If the version the NEFF is incom-
patible with Runtime then it would fail the model load with following error message:

NEFF version mismatch supported: 1.1 received: 2.0

Solution

Use compatible versions of Neuron Compiler and Runtime. Updating to the latest version of both Neuron Compiler
and Neuron Runtime is the simplest solution. If updating one of the two is not an option, please refer to the neuron-
runtime-release-notes of the Neuron Runtime to determine NEFF version support.

Unsupported Hardware Operator Code

While loading a model(NEFF), Neuron Runtime checks whether the hardware operators are supported or not. If un-
supported, Neuron Runtime will display the following error messages:

2023-Jul-28 22:23:13.0357 101413:101422 ERROR TDRV:translate_one_pseudo_instr_v2 ␣
→˓ Unsupported hardware operator code 214 found in neff.
2023-Jul-28 22:23:13.0357 101413:101422 ERROR TDRV:translate_one_pseudo_instr_v2 ␣
→˓ Please make sure to upgrade to latest aws-neuronx-runtime-lib and aws-neuronx-
→˓collective; for detailed installation instructions visit Neuron documentation.

Solution

Upgrade to latest Neuron Runtime and Neuron Collectives.

Insufficient Memory

While loading a model(NEFF), Neuron Runtime reserves both device and host memory for storing weights, ifmap and
ofmap of the Model. The memory consumption of each model is different. If Neuron Runtime is unable to allocate
memory then the model load would fail with the following message in syslog

kernel: [XXXXX] neuron:mc_alloc: device mempool [0:0] total 1073741568 occupied␣
→˓960539030 needed 1272 available 768

660 Chapter 13. NeuronX Runtime

AWS Neuron

Solution

As the error is contextual to what’s going on with your instance, the exact next step is unclear. Try unloading some of
the loaded models which will free up device DRAM space. If this is still a problem, moving to a larger Inf1 instance
size with additional NeuronCores may help.

Insufficient number of NeuronCores

The NEFF requires more NeuronCores than available on the instance.

Check for error messages in syslog similar to:

NRT: 26638:26638 ERROR TDRV:db_vtpb_get_mla_and_tpb Could not find VNC␣
→˓id n
NRT: 26638:26638 ERROR NMGR:dlr_kelf_stage Failed to create␣
→˓shared io
NRT: 26638:26638 ERROR NMGR:stage_kelf_models Failed to stage␣
→˓graph: kelf-a.json to NeuronCore
NRT: 26638:26638 ERROR NMGR:kmgr_load_nn_post_metrics Failed to load NN:␣
→˓xxxxxxx, err: 2

Solution

The NeuronCores may be in use by models you are not actively using. Ensure you’ve unloaded models you’re not using
and terminated unused applications. If this is still a problem, moving to a larger Inf1 instance size with additional
NeuronCores may help.

Numerical Error

Neuron Devices will detect any NaN generated during execution and report it. If Neuron Runtime sees NaNs are
generated then it would fail the execution request with Numerical Error with the following message:

nrtd[nnnnn]: Error notifications found on NC INFER_ERROR_SUBTYPE_NUMERICAL

Solution

This usually an indication of either error in the model or error in the input.

Report issue to Neuron by posting the relevant details on GitHub issues.

13.3. Misc (NeuronX Runtime) 661

https://github.com/aws/aws-neuron-sdk/issues

AWS Neuron

RuntimeError: module compiled against API version 0xf but this version of numpy is 0xe

This usually means that the numpy version used during compilation is different than the one used when executing the
model. As of Neuron SDK release 2.15, numpy versions supported in Neuron SDK are following: numpy<=1.25.2,
>=1.22.2. Check and confirm the right numpy version is installed and re-compile/execute the model.

Failure to initialize Neuron

nd0 nc0 Timestamp program stop timeout (1000 ms)
nd0 nc0 Error while waiting for timestamp program to end on TPB eng 0
nd0 nc0 Failed to stop neuron core
nd0 nc0 Failed to end timestamp sync programs
TDRV not initialized
Failed to initialize devices, error:5

Previously executed application left Neuron devices in running state. Reset Neuron devices but reloading Neuron
Driver. Note, this is a temporary workaround, future versions of Neuron will reset running devices automatically.

sudo rmmod neuron; sudo modprobe neuron

An application is trying to use more cores that are available on the instance

Could not open the nd1

Use properly sized instance. trn1.32xlarge has 32 Neuron Cores, trn1.2xlarge has 2 Neuron Cores.

662 Chapter 13. NeuronX Runtime

AWS Neuron

Hardware Errors

For Trn and Inf instances, the following hardware errors are monitored by Neuron Runtime:

13.3. Misc (NeuronX Runtime) 663

AWS Neuron

Er-
ror
Types

De-
scrip-
tion

Behaviors Recommended Ac-
tions

SRAM
Un-
cor-
rectable

An on-
chip
SRAM
en-
coun-
tered a
parity
error
and
pro-
duced
incor-
rect
re-
sults.

1. Instance Retirement Notice: You will receive an EC2 instance retire-
ment notice within 15 minutes of experiencing this message. EKS, EC2
Auto Scaling Groups, and AWS ParallelCluster will react to these retire-
ment notices according to their configured policies, but you can also au-
tomate responses to these notices yourself with EventBridge rules.
2. Neuron Runtime Behavior: Neuron Runtime will exit with
NRT_EXEC_COMPLETED_WITH_ERR (1004) return code.

1. Replace the EC2
instance by terminat-
ing it or stopping then
starting it.
2. Utilize Neu-
ron Sysfs and
Neuron Moni-
tor to monitor the
sram_ecc_uncorrected
error counts.

HBM
Un-
cor-
rectable

An
HBM
en-
coun-
tered
an
uncor-
rectable
error
and
pro-
duced
incor-
rect
re-
sults.

1. Instance Retirement Notice: You will receive an EC2 instance retire-
ment notice within 15 minutes of experiencing this message. EKS, EC2
Auto Scaling Groups, and AWS ParallelCluster will react to these retire-
ment notices according to their configured policies, but you can also au-
tomate responses to these notices yourself with EventBridge rules.
2. Neuron Runtime Behavior: Neuron Runtime will timeout and exit with
NRT_TIMEOUT (5) return code. You will see the following error message
in runtime logs from stdout console: (FATAL-RT-UNDEFINED-STATE)
encountered uncorrectable memory error on Neuron
Device 0. Execution results may be invalid. Please
terminate or start/stop this instance to recover from
bad hardware.

1. Replace the EC2
instance by terminat-
ing it or stopping then
starting it.
2. Utilize Neu-
ron Sysfs and
Neuron Moni-
tor to monitor the
mem_ecc_uncorrected
error counts.

DMA
Aborts

A
DMA
engine
en-
coun-
tered
an un-
recov-
erable
error.

Neuron Runtime Behavior: Neuron Runtime will timeout and exit
with NRT_TIMEOUT (5) return code. You will see the following error
messages in runtime logs from stdout console: [MLA 0][NC 0] DMA
TX engine 0 is in an abort state or [MLA 0][NC 0] DMA RX
engine 0 is in an abort state

Replace the EC2 in-
stance by terminating
it or stopping then
starting it.

Hang
on
Col-
lec-
tives

Pos-
sibly
caused
by a
hard-
ware
error
on an-
other
worker.

Neuron Runtime Behavior: Neuron Runtime will timeout and
exit with NRT_TIMEOUT (5) return code. You will see the fol-
lowing error messages in runtime logs from stdout console:
(FATAL-RT-UNDEFINED-STATE) missing collectives status
on Neuron Device 0 NC 0, model 0 - suspected hang in
collectives operation 0 out of 100

Search for SRAM
Uncorrectable, HBM
Uncorrectable, DMA
Aborts, and Hang on
Compute errors on
the other workers,
and implement the
recommended ac-
tions on the affected
worker. Afterward,
restart your workload
and attempt again.

Hang
on
Com-
pute

Unex-
pected
soft-
ware
or
hard-
ware
issue.

Neuron Runtime Behavior: Neuron Runtime will timeout and
exit with NRT_TIMEOUT (5) return code. You will see the fol-
lowing error messages in runtime logs from stdout console:
(FATAL-RT-UNDEFINED-STATE) execution timeout (30000
ms) on Neuron Device 0 NC 0, model xxx.neff, waiting
for execution completion notification

Replace the EC2 in-
stance by terminating
it or stopping then
starting it.

664 Chapter 13. NeuronX Runtime

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-retirement.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-retirement.html
https://repost.aws/knowledge-center/eventbridge-notification-scheduled-events
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Stop_Start.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Stop_Start.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/tools/neuron-sys-tools/neuron-sysfs-user-guide.html#description-for-each-metric
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/tools/neuron-sys-tools/neuron-sysfs-user-guide.html#description-for-each-metric
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/tools/neuron-sys-tools/neuron-monitor-user-guide.html#system-level-metric-groups
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/tools/neuron-sys-tools/neuron-monitor-user-guide.html#system-level-metric-groups
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-retirement.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-retirement.html
https://repost.aws/knowledge-center/eventbridge-notification-scheduled-events
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Stop_Start.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Stop_Start.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/tools/neuron-sys-tools/neuron-sysfs-user-guide.html#description-for-each-metric
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/tools/neuron-sys-tools/neuron-sysfs-user-guide.html#description-for-each-metric
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/tools/neuron-sys-tools/neuron-monitor-user-guide.html#system-level-metric-groups
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/tools/neuron-sys-tools/neuron-monitor-user-guide.html#system-level-metric-groups
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Stop_Start.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Stop_Start.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Stop_Start.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Stop_Start.html

AWS Neuron

Upon any hardware errors, you should also expect to see the error message like the following
in dmesg: NEURON_HW_ERR=SRAM_UNCORRECTABLE_ERROR instance-id=i-0592464924bd45322
hostname=ip-172-31-61-252 nd-id=0 nc-id=0 serial-num=19fcda00f5ff6eb9
action=TERMINATE_INSTANCE

EFA and Collective Communication Errors

Missing aws-neuronx-collectives package

aws-neuronx-collectives package is required to execute Collective Communication on a single instance and across
multiple instances.

NCCL init error: Error opening libnccom.so, cannot use collective operations! Please set␣
→˓LD_LIBRARY_PATH to library location. Error: libnccom.so: cannot open shared object
file: No such file or directory
Please make sure to install correct version of aws-neuronx-collectives; for detailed␣
→˓installation instructions visit Neuron documentation

Install aws-neuornx-collectives package. If the installation used non-default destination set LD_LIBRARY_PATH.

Missing efa installer package.

efa-installer package is required to execute Collective Communication across multiple instances.

Unable to run multi-instance workload. Ofi plugin is not installed or EFA is not enabled

Follow the directions to install efa-installer package. Make sure to add the path to to libfabric library to
LD_LIBRARY_PATH

EFA is not enabled in trn1.32xlarge

EFA is used as a transport for Collective Communication among multiple instances. EFA must be enabled on the
instances used for multi-node training.

OFI plugin initNet() failed is EFA enabled?

Confirm that EFA is enabled by running lspci command and making sure there are eight EFA devices. For example:

[ec2-user@ip-10-0-13-247 ~]$ lspci -tv
-+-[0000:a0]-+-00.0 Amazon.com, Inc. Elastic Network Adapter (ENA)
| +-01.0 Amazon.com, Inc. Elastic Network Adapter (ENA)
| +-19.0 Amazon.com, Inc. Elastic Fabric Adapter (EFA)
| +-1a.0 Amazon.com, Inc. Elastic Fabric Adapter (EFA)
| +-1b.0 Amazon.com, Inc. NeuronDevice
| +-1c.0 Amazon.com, Inc. NeuronDevice
| +-1d.0 Amazon.com, Inc. NeuronDevice
| +-1e.0 Amazon.com, Inc. NeuronDevice
| \-1f.0 Amazon.com, Inc. NVMe SSD Controller
+-[0000:90]-+-00.0 Amazon.com, Inc. Elastic Network Adapter (ENA)
| +-01.0 Amazon.com, Inc. Elastic Network Adapter (ENA)
| +-19.0 Amazon.com, Inc. Elastic Fabric Adapter (EFA)

(continues on next page)

13.3. Misc (NeuronX Runtime) 665

AWS Neuron

(continued from previous page)

| +-1a.0 Amazon.com, Inc. Elastic Fabric Adapter (EFA)
| +-1b.0 Amazon.com, Inc. NeuronDevice
| +-1c.0 Amazon.com, Inc. NeuronDevice
| +-1d.0 Amazon.com, Inc. NeuronDevice
| +-1e.0 Amazon.com, Inc. NeuronDevice
| \-1f.0 Amazon.com, Inc. NVMe SSD Controller
+-[0000:20]-+-00.0 Amazon.com, Inc. Elastic Network Adapter (ENA)
| +-01.0 Amazon.com, Inc. Elastic Network Adapter (ENA)
| +-19.0 Amazon.com, Inc. Elastic Fabric Adapter (EFA)
| +-1a.0 Amazon.com, Inc. Elastic Fabric Adapter (EFA)
| +-1b.0 Amazon.com, Inc. NeuronDevice
| +-1c.0 Amazon.com, Inc. NeuronDevice
| +-1d.0 Amazon.com, Inc. NeuronDevice
| +-1e.0 Amazon.com, Inc. NeuronDevice
| \-1f.0 Amazon.com, Inc. NVMe SSD Controller
+-[0000:10]-+-00.0 Amazon.com, Inc. Elastic Network Adapter (ENA)
| +-01.0 Amazon.com, Inc. Elastic Network Adapter (ENA)
| +-19.0 Amazon.com, Inc. Elastic Fabric Adapter (EFA)
| +-1a.0 Amazon.com, Inc. Elastic Fabric Adapter (EFA)
| +-1b.0 Amazon.com, Inc. NeuronDevice
| +-1c.0 Amazon.com, Inc. NeuronDevice
| +-1d.0 Amazon.com, Inc. NeuronDevice
| +-1e.0 Amazon.com, Inc. NeuronDevice
| \-1f.0 Amazon.com, Inc. NVMe SSD Controller
\-[0000:00]-+-00.0 Intel Corporation 440FX - 82441FX PMC [Natoma]

+-01.0 Intel Corporation 82371SB PIIX3 ISA [Natoma/Triton II]
+-01.3 Intel Corporation 82371AB/EB/MB PIIX4 ACPI
+-03.0 Amazon.com, Inc. Device 1111
+-04.0 Amazon.com, Inc. NVMe EBS Controller
\-1f.0 Amazon.com, Inc. NVMe EBS Controller

Launch instances with EFA enabled and try again. If not planning to use the instances for multi-node training or running
on trn1.2xlarge, this error message can be ignored.

Communication timeout

Ranks exchange information during NEFF loading and before the start of the execution. The loading/execution cannot
move forward until all ranks are ready.

Timeout waiting for RX (waited 120 sec) - retrying

Timeout waiting for incoming connection (waited 120 sec) - retrying

Connect to localhost:33666 failed - retrying

The communication timeouts are not fatal. The ranks will continue waiting forever. In most case the timeouts are
caused by one of the ranks getting delayed, usually be recompilation of a graph. The execution is resumed after the
graph is compiled (might take significant amount of time). It is possible to determine if compilation is in progress by
checking the logs on all nodes.

Communication timeouts might also indicate that one of the nodes or ranks is hang. If that is the case, terminate the
run and restart from the last known good check point.

666 Chapter 13. NeuronX Runtime

AWS Neuron

Communication errors.

RX, connection closed by remote peer

There could be other similar messages indicating that ranks failed to communicate.

One of the ranks or nodes encountered a problem and terminated. Terminate the run and restart from the last known
check point.

EFA Kernel messages (dmesg) after process termination.

[298850.502143] neuron:npid_detach: neuron:npid_detach: pid=90193, slot=0
[298850.919248] efa 0000:a0:1a.0 rdmap160s26: Failed to process command DEREG_MR (opcode␣
→˓8) comp_status 7 err -22

When a process that executed Collective Communication terminates it deregisters buffers that were registered with the
networking stack. There is a race condition because the Neuron driver deregisters buffers owned by terminating process
as part of the memory cleanup. The error is benign and will be removed in the future releases.

Failure to find bootstrap interface

No interface found in the same subnet as remote address fe80::1461:22ff:fe33:b471<45015>
No usable listening interface found

Bootstrap code incorrectly trying to use link-local IPv6 address for communication. This error will be fixed in the next
Neuron release. In the meantime, as a workaround, disable IPv6 on the instances.

sudo sysctl -w net.ipv6.conf.all.disable_ipv6=1
sudo sysctl -w net.ipv6.conf.default.disable_ipv6=1

Name resolution failure

WARN Invalid NCCL_COMM_ID [compute1-st-kaena-training-0-1.pcluster-trn1-24-pdx80-2n.
→˓pcluster:41211], please use format: <ipv4>:<port> or [<ipv6>]:<port>

Verify that the name can be resolved by DNS by using nslookup or dig. Currently released version fails to resolve
FQDN longer than 63 characters. This error will be fixed in the upcoming Neuron release. In the mean time use
shorter names to ensure that FQDN length does not exceed the maximum of 63 characters.

Usage of Neuron Custom C++ Operators

Neuron Runtime timeout or GPSIMD exception

At this point, reset of Neuron Runtime is required after running a model which invoked a Neuron Custom C++ operator.
Otherwise, a Neuron Runtime timeout or GPSIMD exception may occur.

Example Neuron Runtime timeout:

13.3. Misc (NeuronX Runtime) 667

AWS Neuron

2023-Jan-09 20:27:41.0593 15042:15042 ERROR TDRV:exec_consume_tpb_status_notifications ␣
→˓ Missing infer_status notification: (end:1)
2023-Jan-09 20:27:41.0593 15042:15042 ERROR TDRV:exec_consume_tpb_status_notifications ␣
→˓ Missing infer_status notification: (end:2)
2023-Jan-09 20:27:41.0593 15042:15042 ERROR TDRV:exec_consume_tpb_status_notifications ␣
→˓ Missing infer_status notification: (end:3)
2023-Jan-09 20:27:41.0593 15042:15042 ERROR TDRV:exec_consume_tpb_status_notifications ␣
→˓ Missing infer_status notification: (end:4)
2023-Jan-09 20:27:41.0593 15042:15042 ERROR TDRV:exec_consume_tpb_status_notifications ␣
→˓ Missing infer_status notification: (end:0)
2023-Jan-09 20:27:41.0593 15042:15042 ERROR TDRV:exec_consume_infer_status_
→˓notifications (FATAL-RT-UNDEFINED-STATE) inference timeout (600000 ms) on Neuron␣
→˓Device 0 NC 0, waiting for execution completion notification
2023-Jan-09 20:27:41.0600 15042:15042 ERROR NMGR:dlr_infer ␣
→˓ Inference completed with err: 5

Example GPSIMD exception:

2023-Jan-06 22:28:01.0845 137472:137472 ERROR TDRV:pool_stdio_queue_consume_all_entries ␣
→˓Printing stderr from GPSIMD:
GPSIMD EXCEPTION OCCURRED: ILLEGAL INSTRUCTION
Subtype/Type/Cause: 0x201
Exception PC: 0x840001E8

Solution

If either of the above errors are seen, and NEURON_RT_RESET_CORES is set to 0, either unset it or set it to 1. This will
enable the default runtime behaviour of resetting NeuronCores when initializing applications. See NeuronX Runtime
Configuration for more information.

Also note that the timeout period can be changed by setting NEURON_RT_EXEC_TIMEOUT. See NeuronX Runtime Con-
figuration for more information.

FI_EFA_FORK_SAFE

Older Linux (<5.15) kernels require environment variable FI_EFA_FORK_SAFE to be set to 1 for the libfabric to
operate correctly. Specifically Amazon Linux 2 uses 5.10 kernel and requires the variable to be set.

When the variable is not set multi-node collective communication will be disabled. Intra-node collective commu-
nication is still possible. The following error message will be logged the first time a model containing collective
communication is loaded:

Linux kernel 5.10 requires setting FI_EFA_FORK_SAFE=1 environment variable. Multi-node␣
→˓support will be disabled.
Please restart with FI_EFA_FORK_SAFE=1 set."

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

668 Chapter 13. NeuronX Runtime

AWS Neuron

13.3.2 NeuronX runtime FAQ

Table of Contents

• Where can I find information about Neuron Runtime 2.x (libnrt.so)

• What will happen if I will upgrade Neuron Framework without upgrading latest kernel mode driver?

• Do I need to recompile my model to use the Runtime Library?

• Do I need to change my application launch command?

• How do I restart/start/stop the NeuronX Runtime?

• How do I know which runtimes are associated with which Neuron Device(s)?

• What about RedHat or other versions of Linux and Windows?

• How can I take advantage of multiple NeuronCores to run multiple inferences in parallel?

Where can I find information about Neuron Runtime 2.x (libnrt.so)

See Introducing Neuron Runtime 2.x (libnrt.so) for detailed information about Neuron Runtime 2.x (libnrt.so).

What will happen if I will upgrade Neuron Framework without upgrading latest kernel mode driver?

Application start would fail with the following error message: .. code:: bash

2021-Aug-11 19:18:21.0661 24616:24616 ERROR NRT:nrt_init This runtime requires Neuron Driver ver-
sion 2.0 or greater. Please upgrade aws-neuron-dkms package.

Do I need to recompile my model to use the Runtime Library?

No. Runtime 2.x supports all the models compiled with Neuron Compiler 1.x.

Do I need to change my application launch command?

No.

How do I restart/start/stop the NeuronX Runtime?

Since Neuron Runtime is a library, starting/stopping application would result in starting/stopping the Neuron Runtime.

13.3. Misc (NeuronX Runtime) 669

AWS Neuron

How do I know which runtimes are associated with which Neuron Device(s)?

neuron-ls and neuron-top can be used to find out applications using Neuron Devices.

What about RedHat or other versions of Linux and Windows?

We don’t officially support it yet.

How can I take advantage of multiple NeuronCores to run multiple inferences in parallel?

Examples of this for TensorFlow and MXNet are found here and here.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

13.3.3 Neuron Runtime Release Notes

Neuron Runtime consists of a kernel mode driver and C/C++ libraries which provides APIs to access Neuron Devices.
The runtime itself (libnrt.so) is integrated into the ML frameworks for simplicity of deployment. The Neuron Runtime
supports training models and executing inference on the Neuron Cores.

Table of contents

• Known issues

• NEFF Support Table:

• Neuron Runtime Library [PATCH 2.20.22.0]

• Neuron Runtime Library [2.20.11.0]

• Neuron Runtime Library [2.19.5.0]

• Neuron Runtime Library [2.18.15.0]

• Neuron Runtime Library [2.18.14.0]

• Neuron Runtime Library [2.17.7.0]

• Neuron Runtime Library [2.16.14.0]

• Neuron Runtime Library [2.16.8.0]

• Neuron Runtime Library [2.15.14.0]

• Neuron Runtime Library [2.15.11.0]

• Neuron Runtime Library [2.14.8.0]

• Neuron Runtime Library [2.13.6.0]

• Neuron Runtime Library [2.12.23.0]

• Neuron Runtime Library [2.12.14.0]

• Neuron Runtime Library [2.11.43.0]

• Neuron Runtime Library [2.10.18.0]

670 Chapter 13. NeuronX Runtime

AWS Neuron

• Neuron Runtime Library [2.10.15.0]

• Neuron Runtime Library [2.9.64.0]

• Neuron Runtime 2.x (libnrt.so) release [2.2.51.0]

• Neuron Runtime 2.x (libnrt.so) release [2.2.31.0]

• Neuron Runtime 2.x (libnrt.so) release [2.2.18.0]

• Neuron Runtime 2.x (libnrt.so) release [2.2.15.0]

Known issues

Updated : 04/29/2022

• In rare cases of multi-process applications running under heavy stress a model load failure my occur. This may
require reloading of the Neuron Driver as a workaround.

NEFF Support Table:

Use this table to determine the version of Runtime that will support the version of NEFF you are using. NEFF version
is determined by the version of the Neuron Compiler.

NEFF Version Runtime Version Range Notes
0.6 * All versions of RT support NEFF 0.6
1.0 >= 1.0.6905.0 Starting support for 1.0 NEFFs
2.0 >= 1.6.5.0 Starting support for 2.0 NEFFs

Neuron Runtime Library [PATCH 2.20.22.0]

Date: 04/01/2024

Bug fixes

• Fixed a bug where setting NEURON_SCRATCHPAD_PAGE_SIZE to a non-power of two value could lead to
unnecessary Neuron memory allocations.

• Fixed messaging so that logs of benign numerical errors do not include a full dump of runtime state.

• Fixed a bug that was causing Neuron Collectives to consume excessive amount of Neuron memory, causing out
of memory errors during model load.

• Fixed a bug where the Runtime would fail to report a hardware error while the status API reported instance
retirement.

• Fixed a hang in Neuron Collectives that could occur when subgraphs running on different workers had a different
number of replicas.

13.3. Misc (NeuronX Runtime) 671

AWS Neuron

Neuron Runtime Library [2.20.11.0]

Date: 02/13/2024

New in this release

• Improved performance of collective communication operators (CC ops) by up to 30% for problem sizes smaller
than 16MB. This is a typical size of CC ops when executing LLM inference.

• Added support for inter-node alltoall which is a MoE use case.

• Added NRT version check across all ranks to make sure all ranks are using the same runtime.

• Improved logging on collectives timeout during model execution.
– “(FATAL-RT-UNDEFINED-STATE) missing collectives status on Neuron Device 0 NC 0, model

model.neff - suspected hang in collectives operation 0 out of 32”

• Log HBM uncorrectable errors on timeout if any occurred during model execution.
– “(FATAL-RT-UNDEFINED-STATE) encountered uncorrectable memory error on Neuron Device 0,

execution results may be invalid. Please terminate or start/stop this instance to recover from bad hard-
ware.”

Bug fixes

• Fixed bug where metrics were undercounting the amount of memory used for a loaded model.

• Fixed bug which prevented the runtime from reporting more than 32 loaded models to metrics.

• Fixed replica group signature calculation check.

Neuron Runtime Library [2.19.5.0]

Date: 12/21/2023

New in this release

• Added Out-of-bound error detection logic for Gather/Scatter operations
– Out-of-bound error message “failed to run scatter/gather (indirect memory copy), due to out-of-bound

access” will be displayed on an OOB error

– The runtime execution will return an “Out of Bound” error return code in the case an OOB error occurs

∗ NRT_EXEC_OOB = 1006

• Improved Neff not supported error message to list out runtime supported features vs features used by the Neff

– Example output: “NEFF version 2.0 uses unsupported features: [0x100000]. Neuron Runtime NEFF
supported features map: [0x1ff]. Please update the aws-neuronx-runtime-lib package”

• Increased limit of multicore custom ops functions
– Total number of CustomOps in a model has been increased to 10.

672 Chapter 13. NeuronX Runtime

AWS Neuron

– Note: these 10 ops have to reside in one .so, as a result, they either have to be all single core op or all
multicore op.

Neuron Runtime Library [2.18.15.0]

Date: 11/09/2023

Bug fixes

• Removed unnecessary data collection during execution logging which could impact performance.

Neuron Runtime Library [2.18.14.0]

Date: 10/26/2023

New in this release

• Add beta Collectives barrier API (nrt_barrier) to nrt_experimental.h

• Improved error handling and logging for NaNs produced by intermediate calculations that do not affect output.

• Improved logging by surfacing model id on load and execution errors.

• Output a better error message when Neff fails to load due to JSON size issues, e.g. “File sg00/def.json size
(8589934592) exceeds json parser maximum (4294967295)”

Bug fixes

• Fixed logging error message to specify Neuron Cores instead of Neuron Devices when loading unsupported
collectives topology.

• Fixed segfault on error path when Neuron Device fails to initialize.

Neuron Runtime Library [2.17.7.0]

Date: 9/14/2023

New in this release

• Improved logging by printing out NEFF name in debug logs of nrt_execute

13.3. Misc (NeuronX Runtime) 673

AWS Neuron

Bug fixes

• Fixed hang that would occur when running a NEFF which contains embedding update instructions in multiple
functions.

• Fixed issue where the Neuron Runtime registered the same memory multiple times to an EFA device causing
applications to exceed the number of physical pages that could be registered.

• Fixed assert (void tvm::runtime::GraphRuntime::PatchDltDataPtr(DLTensor*,
uint32_t*, size_t): Assertion `tensor_get_mem_type(grt->io_tensor) ==
NRT_TENSOR_MEM_TYPE_MALLOC' failed.) that occured on INF1 caused by an uninitialized pointer.

• Fixed potential hang that can occur when partial replica groups for collectives are present in a NEFF.

Neuron Runtime Library [2.16.14.0]

Date: 9/01/2023

Bug fixes

• Fixed a segfault on failure to complete Neuron Device initialization. New behavior will avoid the failure and
escalate a fixed Neuron Runtime error code (NERR_FAIL, code 0x1)

• Improved error messages around Neuron Device initialization failures.

Neuron Runtime Library [2.16.8.0]

Date: 8/09/2023

New in this release

• Add runtime version and capture time to NTFF

• Improved Neuron Device copy times for all instance types via async DMA copies

• Improved error messages for unsupported topologies (example below)

global comm ([COMM ID]) has less channels than this replica group ([REPLICA GROUP ID]) :

likely not enough EFA devices found if running on multiple nodes or CC not permitted on this group
[[TOPOLOGY]]

• Improved logging message for collectives timeouts by adding rank id to trace logs (example below)

[gid: [RANK ID]] exchange proxy tokens

• Improved error messages when loading NEFFs with unsupported instructions (example below)

Unsupported hardware operator code [OPCODE] found in neff.

Please make sure to upgrade to latest aws-neuronx-runtime-lib and aws-neuronx-collective; for de-
tailed installation instructions visit Neuron documentation.

674 Chapter 13. NeuronX Runtime

AWS Neuron

Bug fixes

• Fixed “failed to get neighbor input/output addr” error when loading collectives NEFF compiled with callgraph
flow and NEFF without callgraph flow.

Neuron Runtime Library [2.15.14.0]

Date: 8/09/2023

New in this release

• Reduced the contiguous memory size requirement for initializing Neuron Runtime on trn1/inf2 instance families
by shrinking some of the notification buffers. A particularly large decrease was the reduction of a 4MB error
notification buffer down to 64K. Expectation is that under memory constrained or highly fragmented memory
systems, the Neuron Runtime would come up more reliably than previous versions.

Neuron Runtime Library [2.15.11.0]

Date: 7/19/2023

New in this release

• Added beta asynchronous execution feature which can reduce latency by roughly 12% for training workloads.
See Runtime Configuration guide for details on how to use the feature.

• AllReduce with All-to-all communication pattern enabled for 16 ranks on TRN1/TRN1N within the instance
(intranode); choice of 16 ranks is limited to NeuronCores 0-15 or 16-31.

• Minor improvement in end-to-end execution latency after reducing the processing time required for benign error
notifications.

• Reduced notification overhead by using descriptor packing improving DMA performance for memory bound
workloads by up to 25%.

• Improved load speed by removing extraneous checks that were previously being performed during loads.

• Minor performance boost to CC Ops by removing the need to sort execution end notifications.

• Bumped profiling NTFF version to version 2 to remove duplicate information which may result in hitting protobuf
limits, and avoid crashing when using an older version of Neuron tools to postprocess the profile. Please upgrade
to Neuron tools 2.12 or above to view profiles captured using this version of the Neuron runtime.

Neuron Runtime Library [2.14.8.0]

Date: 6/14/2023

13.3. Misc (NeuronX Runtime) 675

AWS Neuron

New in this release

• Added All-to-All All-Reduce support for Neuron Collective operations, which is expected to improve All-Reduce
performance by 3-7x in most cases.

• Added more descriptive NEURON_SCRATCHPAD_PAGE_SIZE to eventually replace NEU-
RON_RT_ONE_TMPBUF_PAGE_SIZE_MB

• Neuron Runtime is now getting the device BDF from Neuron Driver for internal use.

Bug fixes

• Fixed rare race condition caused by DMA memory barrier not being set for certain data transfers leading to
non-determinism in outputs

• Fixed NeuronCore latency not being counted properly in Neuron metrics

• Removed stack allocation of error notifications buffer when parsing error notifications, which may lead to stack
overflows on smaller stack sizes.

Neuron Runtime Library [2.13.6.0]

Date: 05/01/2023

New in this release

• Added support for internal Neuron Compiler change, Queue Set Instances, which leads to reduced NEFF foot-
prints on Neuron Devices. In some cases, the reduction is as much as 60% smaller DMA ring size.

Bug fixes

• Fixed a rare fabric deadlock scenario (hang) in NeuronCore v2 related to notification events.

• Ensure tensor store writes are complete before synchronization event is set.

Neuron Runtime Library [2.12.23.0]

Date: 04/19/2023

Bug fixes

• Minor internal bug fixes.

676 Chapter 13. NeuronX Runtime

AWS Neuron

Neuron Runtime Library [2.12.14.0]

Date: 03/28/2023

New in this release

• Added support for 16 channels and 16 EFA devices, which is required for enabling EC2 TRN1N instances with
Neuron.

• Added support for hierarchical All-Reduce and Reduce-Scatter. These implementations are now used by default
and provides up to 75% reduction in latency for 2MB buffers across 256 ranks.

• Added support for loading more than one Neuron Custom Operator library.

• Added support for loading multicore Neuron Custom Operators.

• Updated INF2 to support rank 1 topology.

• Minor improvement in model load time for small models (below 100MB).

Neuron Runtime Library [2.11.43.0]

Date: 02/08/2023

New in this release

• Added support for Neuron Custom C++ operators as a beta feature. As of this release, usage of Custom C++
operators requires a reset of the Neuron Runtime after running a model which invoked a Neuron Custom C++
operator.

• Added support for a counter that enable measuring FLOPS on neuron-top and neuron-monitor.

• Added support for LRU cache for DMA rings.

Bug fixes

• Fixed load failures due to memory bounds checking for Neuron Collective Compute operations in Runtime during
model load.

• Fixed an internal bug that was preventing Neuron Runtime metrics from posting.

• Fixed a bug that caused segfaults as a result of double frees and stack overflows.

Neuron Runtime Library [2.10.18.0]

Date: 11/07/2022

13.3. Misc (NeuronX Runtime) 677

AWS Neuron

New in this release

• Minor bug fixes and enhancements.

Neuron Runtime Library [2.10.15.0]

Date: 10/26/2022

New in this release

• Changed default runtime behavior to reset NeuronCores when initializing applications. With this change, the
reseting of the Neuron Driver after application crash is no longer necessary. The new reset functionality is
controled by setting environment variable: NEURON_RT_RESET_CORES, see NeuronX Runtime Configuration for
more information.

Bug fixes

• Fixed a bug where Stochastic Rounding was not being set for collective communication operators

• Fixed an issue with triggering DMA for large tensors

• Increased default execution timeout to 30 seconds

• Fixed IOQ resetting queue to incorrect ring id value

• Updated the Neuron driver for more reliable behavior of driver device reset. Driver no longer busy waits on reset
or gets stuck waiting on reset, which caused kernel taints or caused driver unload attempts to fail.

• Fixed a bug the prevented collective communication over tensors larger than 2GB

• Fixed a bug that caused intermittent memory corruption when unloading a model

• Fixed a bug that caused the exhausting of EFA memory registration pool after multiple model reloads.

Neuron Runtime Library [2.9.64.0]

Date: 10/10/2022

This release specifically adds support for training workloads on one or more EC2 TRN1 instances.

Required Neuron Driver Version: 2.5 or newer

New in this release

• Broke out runtime into a separate package called aws-neuronx-runtime-lib.

• Added RUNPATH for discovery of libnrt.so, can be overridden with LD_LIBRARY_PATH.

• Added support for multiple collective compute operations, e.g. All-Reduce, Reduce-Scatter, All-Gather.

• Added Send/Recv operation support

• Added support for using multiple DMA engines with single pseudo embedding update instruction.

• Changed instruction buffer alignment to 32K.

• Reduced memory required during NEFF swapping.

678 Chapter 13. NeuronX Runtime

AWS Neuron

• Enabled notifications for send/recv collectives operations.

• Added trace apis in support of execution profiling.

• Added support for TPB reset (default: off).

• Added version checking for libnccom (aws-neuronx-collectives).

• Added new runtime version API.

• Added 8-channel support for Trn1.

• Improved debug outputs.

• Added support for write combining on BAR4.

• Increased default execution timeout from 2 seconds to 30 seconds.

• Improved handling of zero-sized tensors

Neuron Runtime 2.x (libnrt.so) release [2.2.51.0]

Date: 03/25/2022

• Fixed an invalid memory access that could occur when unloading models.

• Reduced severity of logging for numerical errors from ERROR to WARN.

• Improved handling of models with numerous CPU operations to avoid inference failure due to memory exhaus-
tion.

Neuron Runtime 2.x (libnrt.so) release [2.2.31.0]

Date: 01/20/2022

New in the release

• Changed error notifications from WARN to ERROR in cases when the causing problem is non-recoverable.

• Changed handling of inference timeouts (NERR_TIMEOUT) to avoid failure when the timeout is related to a soft-
ware thread scheduling conflict.

Bug fixes

• Increased the number of data queues in Neuron Runtime 2.x to match what was previously used in Neuron
Runtime 1.x. The use of fewer number of data queues in Neuron Runtime 2.x was leading to crashes in a limited
number of models.

• Fixed the way Neuron Runtime 2.x updates the inference end timestamp. Previously, Neuron Runtime 2.x update
of the inference end timestamp would have lead to a negative latency statistics in neuron-monitor with certain
models.

13.3. Misc (NeuronX Runtime) 679

AWS Neuron

Neuron Runtime 2.x (libnrt.so) release [2.2.18.0]

Date: 11/05/2021

• Resolved an issue that affect the use of Neuron within container. In previous Neuron Runtime release (lib-
nrt.so.2.2.15.0), when /dev/neuron0 was not used by the application, Neuron Runtime attempted and failed
to initialize /dev/neuron0 because user didn’t pass /dev/neuron0 to the container. this Neuron Runtime re-
lease (libnrt.so.2.2.18.0) allows customers to launch containers with specific NeuronDevices other than
/dev/neuron0.

Neuron Runtime 2.x (libnrt.so) release [2.2.15.0]

Date: 10/27/2021

New in this release

• First release of Neuron Runtime 2.x - In this release we are introducing Neuron Runtime 2.x which is a shared li-
brary named (libnrt.so) and replacing Neuron Runtime 1.x server (neruon-rtd) . Upgrading to libnrt.so
improves throughput and latency, simplifies Neuron installation and upgrade process, introduces new capabili-
ties for allocating NeuronCores to applications, streamlines container creation, and deprecates tools that are no
longer needed. The new library-based runtime (libnrt.so) is integrated into Neuron’s ML Frameworks (with
the exception of MXNet 1.5) and Neuron Tools packages directly - users no longer need to install/deploy the
aws-neuron-runtimepackage.

Important:
– You must update to the latest Neuron Driver (aws-neuron-dkms version 2.1 or newer) for proper func-

tionality of the new runtime library.

– Read Introducing Neuron Runtime 2.x (libnrt.so) application note that describes why are we making this
change and how this change will affect the Neuron SDK in detail.

– Read Migrate your application to Neuron Runtime 2.x (libnrt.so) for detailed information of how to migrate
your application.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

13.3.4 Neuron Driver Release Notes

Table of contents

• Known issues

• Neuron Driver release [2.16.7.0]

• Neuron Driver release [2.15.9.0]

• Neuron Driver release [2.14.5.0]

• Neuron Driver release [2.13.4.0]

• Neuron Driver release [2.12.18.0]

680 Chapter 13. NeuronX Runtime

AWS Neuron

• Neuron Driver release [2.12.11.0]

• Neuron Driver release [2.11.9.0]

• Neuron Driver release [2.10.11.0]

• Neuron Driver release [2.9.4.0]

• Neuron Driver release [2.8.4.0]

• Neuron Driver release [2.7.33.0]

• Neuron Driver release [2.7.15.0]

• Neuron Driver release [2.6.26.0]

• Neuron Driver release [2.5.38.0]

• Neuron Driver release [2.3.26.0]

• Neuron Driver release [2.3.11.0]

• Neuron Driver release [2.3.3.0]

• Neuron Driver release [2.2.14.0]

• Neuron Driver release [2.2.13.0]

• Neuron Driver release [2.2.6.0]

• Neuron Driver release [2.1]

Known issues

Updated : 04/29/2022

• In rare cases of multi-process applications running under heavy stress a model load failure my occur. This may
require reloading of the Neuron Driver as a workaround.

Neuron Driver release [2.16.7.0]

Date: 04/01/2024

Bug Fixes

• Fixed installation issues caused by API changes in Linux 6.3 and 6.4 kernel distributions.

• Fixed an installation build failure when fault-injection is enabled in the kernel.

• Fixed an issue where sysfs total peak memory usage metrics can underflow

• Removed usage of sysfs_emit which is not supported on Linux kernels <= v5.10-rc1

13.3. Misc (NeuronX Runtime) 681

AWS Neuron

Neuron Driver release [2.15.9.0]

Date: 12/21/2023

Bug Fixes

• Release PCIe BAR4 on driver startup failure

• Fix container BDF indexing issues to support relative device ordering used by containers

• Remove incorrect error message in neuron_p2p_unregister_va and harden P2P error checking

Neuron Driver release [2.14.5.0]

Date: 10/26/2023

New in this release

• Show uncorrectable SRAM and HBM ECC errors on TRN1 and INF2

• Fixed double free on error path during driver startup

Neuron Driver release [2.13.4.0]

Date: 9/14/2023

New in this release

• Added sysfs support for showing connected devices on trn1.32xl, inf2.24xl, and inf2.48xl instances.

Neuron Driver release [2.12.18.0]

Date: 9/01/2023

Bug Fixes

• Added fixes required by Neuron K8 components for improving reliability of pod failures (see Neuron K8 release
notes for more details).

• Added fixes required by Neuron K8 components to support zero-based indexing of Neuron Devices in Kubernetes
deployments.

682 Chapter 13. NeuronX Runtime

AWS Neuron

Neuron Driver release [2.12.11.0]

Date: 8/28/2023

New in this release

• Added FLOP count to sysfs (flop_count)

• Added connected Neuron Device ids to sysfs (connected_devices)

• Added async DMA copy support

• Suppressed benign timeout/retry messages

Bug Fixes

• Allocated CC-Core to correct NeuronCore; splitting CC-Cores evenly between NeuronCores.

Neuron Driver release [2.11.9.0]

Date: 7/19/2023

New in this release

• Added support for creating batch DMA queues.

Bug Fixes

• Error message, “ncdev is not NULL”, was being printed unnecessarily. Fixed.

• Fix DMA timeouts during NeuronCore reset of neighboring core caused by incorrect nc_id (NeuronCore ID)
assigned to reserved memory

Neuron Driver release [2.10.11.0]

Date: 6/14/2023

New in this release

• Added memory usage breakdown by category to the Neuron Sysfs nodes. New categories are code, misc, tensors,
constants, and scratchpad. Please see the Sysfs page under Neuron Tools for more detailed description of each.

• Improved NeuronCore initialization (nrt_init) performance by approximately 1 second.

13.3. Misc (NeuronX Runtime) 683

AWS Neuron

Bug Fixes

• Fixed small timing window during NeuronCore resets, which previously would timeout during memcpy

• Removed potential double free of memory when terminating the Neuron Driver.

• Fixed sysfs race condition, which was leading to Neuron Driver crash during termination.

Neuron Driver release [2.9.4.0]

Date: 05/01/2023

New in this release

• Added dma_buf support, which is needed for future EFA implementations in the Linux kernel.

• Added new IOCTL to get Neuron Device BDF (used by Neuron Runtime)

• Added optional support for sysfs notify (off by default). See Neuron Sysfs documentation (under Neuron System
Tools) for more details.

Bug Fixes

• Fixed max DMA queue size constant to be the correct size - previous incorrect sizing had potential to lead to
DMA aborts (execution timeout).

Neuron Driver release [2.8.4.0]

Date: 03/28/2023

New in this release

• Supports both Trn1n and Inf2 instance types.

• Renamed NEURON_ARCH_INFERENTIA=>NEURON_ARCH_V1 and NEU-
RON_ARCH_TRN=>NEURON_ARCH_V2

• Under sysfs nodes, the following changes were made:

– Changed “infer” metrics to “execute” metrics

– Added peak memory usage metric

– Removed empty dynamic metrics directory

– Removed refresh rate metric

– Fixed arch type names in sysfs

684 Chapter 13. NeuronX Runtime

AWS Neuron

Bug Fixes

• Fixed minor memory leak when closing the Neuron Runtime.

• Fixed memory leaks on error paths in Neuron Driver.

• Added a workaround to resolve hangs when NeuronCore reset is ran while another core is performing DMA
operations.

Neuron Driver release [2.7.33.0]

Date: 02/24/2023

Bug Fixes

• Added a retry mechanism to mitigate possible data copy failures during reset of a NeuronCore. An info log
message will be emitted when this occurs indicating that the retry was attempted. An example:

kernel: [726415.485022] neuron:ndma_memcpy_wait_for_completion: DMA completion␣
→˓timeout for UDMA_ENG_33 q0
kernel: [726415.491744] neuron:ndma_memcpy_offset_move: Failed to copy memory␣
→˓during a NeuronCore reset: nd 0, src 0x100154480000, dst 0x100154500000, size␣
→˓523264. Retrying the copy.

Neuron Driver release [2.7.15.0]

Date: 02/08/2023

New in this release

• Added Neuron sysfs metrics under /sys/devices/virtual/neuron_device/neuron{0,1, ...}/
metrics/

Neuron Driver release [2.6.26.0]

Date: 11/07/2022

New in this release

• Minor bug fixes and improvements.

13.3. Misc (NeuronX Runtime) 685

AWS Neuron

Neuron Driver release [2.5.38.0]

Neuron Driver now supports INF1 and TRN1 EC2 instance types. Name of the driver package changed from aws-
neuron-dkms to aws-neuronx-dkms. Please remove the older driver package before installing the newest one.

Date: 10/10/2022

New in this release

• Support added for EC2 Trn1 instance types and ML training workloads.

• Added missing GPL2 LICENSE file.

• Changed package name to aws-neuronx-dkms (was previously minus the ‘x’).

• Security Update – blocked user space access to control registers and DMA control queues intended to be used
by the Neuron Driver only.

• Added support for DMA Aborts to avoid hangs.

• Added support for TPB Reset.

• Added sysfs entries for triggering resets and reading core counts.

• Added write combining on BAR4.

• Added PCI Device ID update as part of install.

• Added handling for known duplicate device id error.

Bug Fixes

• Fixed a null pointer free scenario.

• Fixed installation issue related to install without internet connectivity.

Neuron Driver release [2.3.26.0]

Date: 08/02/2022

Bug Fixes

• Security Update: Blocked user space access to control registers and DMA control queues intended to be used by
the Neuron Driver only. Recommending upgrade to all customers.

Neuron Driver release [2.3.11.0]

Date: 05/27/2022

686 Chapter 13. NeuronX Runtime

AWS Neuron

New in this release

• This driver is required to support future releases of the Neuron Runtime. Included in the release is both a bug fix
to avoid a kernel crash scenario and an increased compatibility range to ensure compatibility with future versions
of Neuron Runtime.

Bug Fixes

• Correction to huge aligned memory allocation/freeing logic that was previously susceptible to crashes in the
kernel. The crash would bring down the OS. Recommending upgrade to all customers.

Neuron Driver release [2.3.3.0]

Date: 04/29/2022

New in this release

• Minor performance improvements on inference and loading of models.

Bug Fixes

• Reduced Host CPU usage when reading hw_counters metric from neuron-monitor

• Minor bug fixes.

Neuron Driver release [2.2.14.0]

Date: 03/25/2022

New in this release

• Minor updates

Neuron Driver release [2.2.13.0]

Date: 01/20/2022

New in this release

• Minor updates

13.3. Misc (NeuronX Runtime) 687

AWS Neuron

Neuron Driver release [2.2.6.0]

Date: 10/27/2021

New in this release

• Memory improvements made to ensure all allocations are made with 4K alignments.

Resolved issues

• No longer delays 1s per NeuronDevice when closing Neuron Tools applications.

• Fixes a Ubuntu 20 build issue

Neuron Driver release [2.1]

• Support is added for Neuron Runtime 2.x (libnrt.so).

• Support for previous releases of Neuron Runtime 1.x is continued with Driver 2.x releases.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

13.3.5 Neuron Collectives Release Notes

Neuron Collectives refers to a set of libraries used to support collective compute operations within the Neuron SDK.
The collectives support is delivered via the aws-neuronx-collectives package and includes a pre-built version of the
OFI plugin required for use of collectives with Elastic Fabric Adapter (EFA).

Table of contents

• Neuron Collectives [2.20.22.0]

• Neuron Collectives [2.20.11.0]

• Neuron Collectives [2.19.7.0]

• Neuron Collectives [2.18.18.0]

• Neuron Collectives [2.17.9.0]

• Neuron Collectives [2.16.16.0]

• Neuron Collectives [2.16.8.0]

• Neuron Collectives [2.15.16.0]

• Neuron Collectives [2.15.13.0]

• Neuron Collectives [2.14.9.0]

• Neuron Collectives [2.13.7.0]

• Neuron Collectives [2.12.35.0]

• Neuron Collectives [2.12.22.0]

688 Chapter 13. NeuronX Runtime

AWS Neuron

• Neuron Collectives [2.11.47.0]

• Neuron Collectives [2.10.20.0]

• Neuron Collectives [2.9.86.0]

Neuron Collectives [2.20.22.0]

Date: 04/01/2024

New in this release: * minor bug fixes and enhancements

Neuron Collectives [2.20.11.0]

Date: 02/13/2024

Bug Fixes

• Require “libatomic” for rpm installs

Neuron Collectives [2.19.7.0]

Date: 12/21/2023

New in this release

• Improve collectives barrier latency from 500us to 40us

Bug Fixes

• Fix bug where proxy thread blocks the runtime from adding ops leading to an execution hang

Neuron Collectives [2.18.18.0]

Date: 10/26/2023

New in this release: * Bumpped compatibility version to 17 to align with struct change in the nec.h header

Neuron Collectives [2.17.9.0]

Date: 9/14/2023

New in this release: * minor bug fixes and enhancements

13.3. Misc (NeuronX Runtime) 689

AWS Neuron

Neuron Collectives [2.16.16.0]

Date: 9/01/2023

New in this release: * minor bug fixes and enhancements

Neuron Collectives [2.16.8.0]

Date: 8/28/2023

New in this release:

• Improved error messages for unsupported topologies

• Improved timeout error messages for bootstrapInit

Bug Fixes: * Fix bug where Linux kernel version check for SAFE_FORK env variable was incorrectly requiring
SAFE_FORK to be set on kernel versions greater than 5

Neuron Collectives [2.15.16.0]

Date: 8/09/2023

New in this release:

• minor bug fixes and enhancements

Neuron Collectives [2.15.13.0]

Date: 7/19/2023

New in this release:

• AllReduce with All-to-all communication pattern enabled for 16 ranks on TRN1/TRN1N within the instance
(intranode); choice of 16 ranks is limited to NeuronCores 0-15 or 16-31.

Bug Fixes:

• Fix incorrect mask calculation for 16 ranks when using NeuronCores 16-31

• Fix channels for 16 ranks to avoid failures in the runtime; restrict participating ranks to 0-15 or 16-31

Neuron Collectives [2.14.9.0]

Date: 6/14/2023

New in this release

• Added check for FI_EFA_FORK_SAFE environment variable; now forcing the flag to be set to 1 for multinode
runs executing on Linux kernels older than 5.15.

690 Chapter 13. NeuronX Runtime

AWS Neuron

Neuron Collectives [2.13.7.0]

Date: 05/01/2023

New in this release

• Added support for dma_buf - required for future EFA and Linux kernel updates.

• Reduced benign reporting of timeouts. Previous implementations reported “Timeout waiting for incoming con-
nection” too frequently (log spam).

Neuron Collectives [2.12.35.0]

Date: 04/19/2023

Bug Fixes

• Fixed support for SOCKET_IFNAME config that was affecting EKS users at scale on large training jobs.

Neuron Collectives [2.12.22.0]

Date: 03/28/2023

New in this release

• Added support for TRN1N.

• Added support for 16 channels and 16 EFA devices, which is required for enabling EC2 TRN1N instances with
Neuron.

• Added support for hierarchical All-Reduce and Reduce-Scatter. These implementations are now used by default
and provides up to 75% reduction in latency for 2MB buffers across 256 ranks.

Neuron Collectives [2.11.47.0]

Date: 02/08/2023

New in this release

• Added support for Inf2.

Neuron Collectives [2.10.20.0]

Date: 10/10/2022

New in this release

• Improved logging to appear similar in style to Neuron Runtime

Bug Fixes

• Fixed memory registration to support 2GB+ sizes

• Fixed association of network devices to channels (removes previous hard-coding).

13.3. Misc (NeuronX Runtime) 691

AWS Neuron

Neuron Collectives [2.9.86.0]

Date: 10/10/2022

New in this release

• Added support for All-Reduce, Reduce-Scatter, All-Gather, and Send/Recv operations.

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

API Reference Guide

• Runtime API

Configuration Guide

• Runtime Configuration

Misc

• Troubleshooting on Inf1 and Trn1

• FAQ

• Neuron Runtime Release Notes

• Neuron Driver Release Notes

• Neuron Collectives Release Notes

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

692 Chapter 13. NeuronX Runtime

CHAPTER

FOURTEEN

NEURON COMPILER

The Neuron Compiler accepts Machine Learning models in various formats (TensorFlow, MXNet, PyTorch, XLA
HLO) and optimizes them to run on Neuron devices.

The Neuron compiler is invoked within the ML framework, where ML models are sent to the compiler by the Neuron
Framework plugin. The resulting compiler artifact is called a NEFF file (Neuron Executable File Format) that in turn
is loaded by the Neuron runtime to the Neuron device.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

14.1 NeuronX Compiler for Trn1 & Inf2

This document is relevant for: Inf2, Trn1, Trn1n

14.1.1 API Reference Guide

This document is relevant for: Inf2, Trn1, Trn1n

Neuron Compiler CLI Reference Guide (neuronx-cc)

This document describes the command line interface of the Neuron Compiler.

This reference is not relevant for applications that run the Neuron Compiler from within a machine learning framework
(PyTorch-Neuron for example) since these options are passed from the framework directly to the compiler. Using the
compiler command line may be desirable for applications that do not use a framework or customize existing frameworks.
It is also possible to specify compiler options within the framework which will forward these options to the compiler
using NEURON_CC_FLAGS.

Usage

Optional parameters are shown in square brackets.

693

AWS Neuron

Neuron Compiler Command-Line Interface

neuronx-cc <command> [parameters]

Common parameters for the Neuron CLI:

• --verbose: Specify the level of output produced by the compiler. (Default: warning)

Valid values:

– info: Informational messages regarding the progress of model compilation (written to stdout).

– warning: Diagnostic messages that report model code that is not inherently erroneous but may be risky or
suggest there may have been an error (written to stderr).

– error: The compiler detected a condition causing it not complete the compilation successfully (written to
stderr).

– critical: The compiler encountered an unrecoverable error terminates immediately (written to stderr).

– debug: Extensive information regarding the compiler’s internal execution phases (written to stdout).

• --help: Display a usage message of compiler options. Use neuronx-cc <command> --help for informa-
tion on a specific command.

Available Commands:

• compile

• list-operators

neuronx-cc compile [parameters]

Compile a model for use on the AWS Machine Learning Accelerator.

neuronx-cc compile <model_files>
--framework <framework_name>
--target <instance_family>
[--model-type <model>]
[--auto-cast <cast_mode>]
[--auto-cast-type <data_type>]
[--distribution-strategy <distribution_type>]
[--optlevel <opt-level>], or [-O <opt-level>]
[--enable-mixed-precision-accumulation]
[--enable-saturate-infinity]
[--enable-fast-context-switch>]
[--enable-fast-loading-neuron-binaries]
[--logfile <filename>]
[--output <filename>]

Compile Parameters:

• <model_files>: Input containing model specification. The number of arguments required varies be-
tween frameworks:

– XLA: A local filename of a HLO file (hlo.pb) generated via XLA. See hlo.proto for the .proto
description and inspect-compiled-programs for more information on how to generate such files.

• --framework: Framework used to generate training model.

Valid values:

694 Chapter 14. Neuron Compiler

https://docs.python.org/3/using/cmdline.html#cmdoption-help
https://github.com/tensorflow/tensorflow/blob/73c8e20101ae93e9f5ff0b58f68be0b70eca44c5/tensorflow/compiler/xla/service/hlo.proto
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/xla/g3doc/index.md#user-content-inspect-compiled-programs

AWS Neuron

– XLA

• --target: Name of the Neuron instance family on which the compiled model will be run.

Valid values:

– inf2

– trn1

– trn1n

• --model-type: Permit the compiler to attempt model-specific optimizations based upon type of model
being compiled. (Default: generic)

Valid values:

– generic: Perform optimizations applicable to all types of inference and training models.

– transformer: Perform optimizations specific to Transformer models.

– unet-inference: Perform optimizations specific to certain U-Net model architectures when per-
forming inference. U-Net models often have certain structures that result in excessive performance-
impacting data transfers; this option allows the compiler to apply additional memory optimizations to
prevent these data transfers and also allows the compiler to map larger normalization operators which
would otherwise not successfully execute.

• --auto-cast: Controls how the compiler makes tradeoffs between performance and accuracy for FP32
operations. (Default: matmult)

Valid values:

– matmult: Only cast FP32 operations that use the Neuron matrix-multiplication engine.

– all: Cast all FP32 operations to achieve highest performance. This option can potentially lower
precision/accuracy.

– none: Leave all data types as defined in the model. Do not apply auto-casting data type optimizations.

A more complete discussion on how to use this option and its arguments is in Mixed Precision and
Performance-accuracy Tuning for Training.

Note: If the --auto-cast option is specified, the --auto-cast-type compiler flag can be optionally
set to define which lower-precision data type the compiler should use.

• --auto-cast-type: When auto-cast mode is enabled, cast the FP32 operators to the lower-precision data
type specified by this option. (Default: bf16)

Valid values:

– bf16: Cast the FP32 operations selected via the --auto-cast option to BF16 to achieve highest
performance and preserve dynamic range.

– fp16: Cast the FP32 operations selected via the --auto-cast option to FP16 to achieve improved
performance relative to FP32 and increased precision relative to BF16.

– tf32: Cast the FP32 operations selected via the --auto-cast option to TensorFloat-32.

– fp8_e4m3: Cast the FP32 operations selected via the --auto-cast option to a signed 8-bit floating
point represented as a 4-bit exponent and 3-bit mantissa.

14.1. NeuronX Compiler for Trn1 & Inf2 695

https://en.wikipedia.org/wiki/Transformer_(machine_learning_model)
https://en.wikipedia.org/wiki/U-Net

AWS Neuron

Note: If multiple competing options are specified then the option right-most on the command line will
supercede previous options.

• --distribution-strategy: Permit the compiler to attempt model-specific optimizations based upon
type of model being compiled. (Default: generic)

Valid values:

– llm-training: Enable the compiler to perform optimizations applicable to large language model
(LLMS) training runs that shard parameters, gradients, and optimizer states across data-parallel work-
ers. This is equivalent to the previously documented option argument value of NEMO, which will be
deprecated in a future release.

• --optlevel: Specify the level of optimization the compiler should perform. Possible numeric values are
{1, 2, 3}. (Default: 2)

Valid values:

– 1: enables the core performance optimizations in the compiler, while also minimizing compile time.

– 2: [default] provides the best balance between model performance and compile time.

– 3: may provide additional model execution performance but may incur longer compile times and higher
host memory usage during model compilation.

Note: This option supercedes, and deprecates, the —enable-experimental-O1 option introduced in an
earlier release.

• --enable-mixed-precision-accumulation: Perform intermediate calculations of accumulation op-
erators (such as softmax and layernorm) in FP32 and cast the result to the model-designated datatype. This
improves the operator’s resulting accuracy.

• --enable-saturate-infinity: Convert +/- infinity values to MAX/MIN_FLOAT for compiler-
introduced matrix-multiply transpose computations that have a high risk of generating Not-a-Number (NaN)
values. There is a potential performance impact during model execution when this conversion is enabled.

• --enable-fast-context-switch: Optimize for faster model switching rather than execution latency.
This option will defer loading some weight constants until the start of model execution. This results
in overall faster system performance when your application switches between models frequently on
the same Neuron Core (or set of cores).

• --enable-fast-loading-neuron-binaries: Save the compilation output file in an uncompressed format.
This creates executable files which are larger in size but faster for the Neuron Runtime to load into
memory during model execution.

• --logfile: Filename where compiler writes log messages. (Default: “log-neuron-cc.txt”).

• --output: Filename where compilation output (NEFF archive) will be recorded. (Default: “file.neff”)

Example: Compiling an XLA HLO:

neuronx-cc compile bert-model.hlo —-framework XLA -—target trn1 —-model-type␣
→˓transformer —-output bert.neff

neuronx-cc list-operators [parameters]

Returns a newline (‘\n’) separated list of operators supported by the Neuron Compiler.

696 Chapter 14. Neuron Compiler

AWS Neuron

neuronx-cc list-operators
--framework <value>

List-Operators Parameters:

• --framework: Framework in which the operators were registered.

Valid values:

– XLA: Operator names will be formatted according to the value used by XLA compiler in XlaBuilder.

Example:

neuronx-cc list-operators —framework XLA
...

Exit Statuses:

• 0: Compilation succeeded

• <>0: An error occurred during compilation.

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

14.1.2 Developer Guide

This document is relevant for: Inf2, Trn1, Trn1n

Mixed Precision and Performance-accuracy Tuning (neuronx-cc)

Table of contents

• Overview

• Neuron Hardware

• Performance-accuracy tradeoffs

• What is the difference between Data Types?

• Should I downcast operations to smaller Data Types?

Overview

The Neuron Compiler supports machine learning models with FP32, TF32, FP16 and BF16 (Bfloat16) tensors and
operators. The Neuron hardware supports a mix of 32, 16, and 8 bit datatypes. This guide explains how to apply the
available auto-cast methods and their performance / accuracy trade-offs when compiling a model with Neuron.

Note: Neuron Compiler support for INT8 is planned for a future Neuron SDK release. See Neuron Compiler: Enable
Neuron INT8 support for details.

14.1. NeuronX Compiler for Trn1 & Inf2 697

https://github.com/aws/aws-neuron-sdk/issues/36
https://github.com/aws/aws-neuron-sdk/issues/36

AWS Neuron

Neuron Hardware

The Neuron v2 hardware supports matrix multiplication using FP16, BF16, TF32, and FP32 on its matrix multiply
(“matmult”) engine, and accumulations using FP32. Operators such as activations or vector operations are supported
using FP32, TF32, FP16, and BF16. Supporting FP16 and BF16 allows Neuron to have significantly higher perfor-
mance than executing everything as FP32.

Performance-accuracy tradeoffs

By default, the Neuron Compiler will automatically cast FP32 matrix multiplication operations to BF16. The
remaining operations are performed in the data type specified by the model. The Neuron Compiler provides CLI options
that direct the compiler to cast to other data types, thereby giving the ability to choose an accuracy-to-performance
tradeoff in model execution. Deciding what CLI settings to use will be application specific and may require some
experimentation. See Neuron Compiler CLI Reference Guide for details.

What is the difference between Data Types?

The NeuronCore v2 support multiple data types (see NeuronCore v2 Data Types). Each data type provides benefits and
drawbacks due to its dynamic range and numeric precision.

Type Mini-
mum

Maxi-
mum

Strength Weakness

FP16 -65504 65504 Numeric Precision, High granularity, Mid-
range numbers

Low range, medium precision

BF16 -
3.40E+38

3.40E+38 Dynamic Range, Extremely small/large
numbers

Low precision

TF32 -
3.40E+38

3.40E+38 Dynamic Range, Extremely small/large
numbers

Medium precision

FP32 -
3.40E+38

3.40E+38 N/A Larger model size, potentially slower
computation

• FP16 provides a high density of representable values that are neither extremely small or extremely large. The
density of representable values within the range is approximately an order of magnitude greater than BF16.

– Conversion from FP32 to FP16 will perform well when values are relatively small but non-extreme (either
very small or very large).

– Conversion from FP32 to FP16 will perform badly if the original FP32 values are outside of the range of
FP16. This will produce inf/-inf values and may result in NaN depending on the operation.

• BF16 provides a wider range of representable values which includes both very small and very large values.
However, the overall density of representable values is usually lower than FP16 for more non-extreme values.
The range is nearly identical to the range of FP32 but because the number of bits is halved, this means the
individual values are sparse.

– Conversion from FP32 to BF16 will perform well when the values are well-distributed throughout the
range. Since BF16 covers the entire FP32 range, this means each original value can map to a relatively
close downcast value.

– Conversion from FP32 to BF16 will perform badly when fine granularity is needed. Since BF16 granularity
is sacrificed for greater range it will almost always map worse to values that are within the FP16 range.

698 Chapter 14. Neuron Compiler

AWS Neuron

Should I downcast operations to smaller Data Types?

This choice here is driven entirely by accuracy vs performance tradeoff. Casting operations to smaller 16-bit data types
will provide a significant performance benefit but may end up sacrificing accuracy.

The compiler uses BF16 casting by default for matrix multiplication operations. The speedup from casting operations
gives a significant performance boost and the range of representable values in BF16 allows for more safety compared
to FP16 when the possible numeric range of input values is unknown.

The Neuron Compiler’s --auto-cast and --auto-cast-typeCLI options are used to direct the compiler to perform
alternate casting operations. See the detailed list of the options in Neuron v2 Compiler CLI Reference Guide.

It is recommended that you start with compiling the model to achieve high performance (default), you can then test the
accuracy of the application and, if needed, try the next higher precision casting option until the desired accuracy and
performance are achieved.

The option combinations to consider in a typical flow are:

Compiler autocast Options Effect Performance Accuracy
--auto-cast all
--auto-cast-type bf16

Best performance at the expense
of precision

Performance decreases
as you move down the
table

Accuracy increases
as you move down
the table--auto-cast matmult

--auto-cast-type bf16
(default)
--auto-cast all
—-auto-cast-type fp16

Best performance at the expense
of dynamic range

--auto-cast matmult
--auto-cast-type fp16
--auto-cast all
—-auto-cast-type tf32

Balance of performance, dy-
namic range, and precision

--auto-cast matmult
--auto-cast-type tf32
--auto-cast none Disables all auto-casting, using

the data types defined within the
model

Note that compiler has to preserve the input/output (i/o) tensor types requested by Framework, therefore no casting is
done on the i/o tensors. Additional speedup can be obtained by casting them in the Framework prior to compilation.

To learn how to configure the compiler options from within your application’s framework, please see:

• Developer Guide for Training with PyTorch Neuron

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

14.1. NeuronX Compiler for Trn1 & Inf2 699

AWS Neuron

14.1.3 Misc (neuronx-cc)

This document is relevant for: Inf2, Trn1, Trn1n

Neuron Compiler FAQ (neuronx-cc)

Table of contents

• Where can I compile to Neuron?

• What is the difference between neuron-cc and neuronx-cc?

• Should I use neuron-cc or neuronx-cc?

• My current neural network is based on FP32, how can I use it with Neuron?

• Which operators does Neuron support?

• Any operators that Neuron Compiler doesn’t support?

• Will I need to recompile again if I updated runtime/driver version?

• I have a NEFF binary, how can I tell which compiler version generated it?

• How long does it take to compile?

• Why is my model producing different results compared to CPU/GPU?

• Do you support model <insert model type>?

Where can I compile to Neuron?

The one-time compilation step from the standard framework-level model to NEFF binary may be performed on any
EC2 instance or even on-premises.

We recommend using a high-performance compute server of choice (C5 or z1d instance types), for the fastest compile
times and ease of use with a prebuilt DLAMI. Developers can also install Neuron in their own environments; this
approach may work well for example when building a large fleet for inference, allowing the model creation, training
and compilation to be done in the training fleet, with the NEFF files being distributed by a configuration management
application to the inference fleet.

What is the difference between neuron-cc and neuronx-cc?

• neuron-cc is the Neuron Compiler with TVM front-end, neuron-cc supports only neuroncores-v1-arch.

• neuronx-cc is the Neuron Compiler with XLA fron-end, neuronx-cc currently supports neuroncores-v2-arch,
neuronx-cc support of neuroncores-v1-arch is currently a Roadmap Item.

700 Chapter 14. Neuron Compiler

https://aws.amazon.com/machine-learning/amis/

AWS Neuron

Should I use neuron-cc or neuronx-cc?

See What is the difference between neuron-cc and neuronx-cc?

My current neural network is based on FP32, how can I use it with Neuron?

Developers who want to train their models in FP32 for best accuracy can compile and deploy them with Neuron. The
Neuron compiler automatically converts FP32 to internally supported datatypes, such as FP16 or BF16. You can find
more details about FP32 data type support and performance and accuracy tuning in Mixed Precision and Performance-
accuracy Tuning (neuronx-cc) or Mixed precision and performance-accuracy tuning (neuron-cc). The Neuron compiler
preserves the application interface - FP32 inputs and outputs. Transferring such large tensors may become a bottleneck
for your application. Therefore, you can improve execution time by casting the inputs and outputs to FP16 or BF16 in
the ML framework prior to compilation.

Which operators does Neuron support?

You can use the neuronx-cc list-operators command on the cli to list the operators. See Neuron Compiler CLI
Reference Guide (neuronx-cc).

To request support for new operators, open an issue on our GitHub forum.

Any operators that Neuron Compiler doesn’t support?

Models with control-flow and dynamic shapes are not supported now. You will need to partition the model using the
framework prior to compilation.

Note: Starting with neuroncores-v2-arch Neuron supports control-flow and dynamic shapes.

Stay tuned and follow the Neuron Roadmap.

Will I need to recompile again if I updated runtime/driver version?

The compiler and runtime are committed to maintaining compatibility for major version releases with each other. The
versioning is defined as major.minor, with compatibility for all versions with the same major number. If the versions
mismatch, an error notification is logged and the load will fail. This will then require the model to be recompiled.

I have a NEFF binary, how can I tell which compiler version generated it?

** We will bring a utility out to help with this soon.

14.1. NeuronX Compiler for Trn1 & Inf2 701

https://github.com/aws/aws-neuron-sdk/issues/new

AWS Neuron

How long does it take to compile?

It depends on the model and its size and complexity, but this generally takes a few minutes.

Why is my model producing different results compared to CPU/GPU?

neuroncores-v2-arch supports multiple casting modes for floating point numbers, each with associated implications
for performance and accuracy. The default casting mode is a pragmatic balance between performance and accuracy,
however on some models it may result in loss of precision.

See the --auto-cast and --auto-cast-type options in Neuron Compiler CLI Reference Guide (neuronx-cc) for
details on how to adjust the casting mode.

Do you support model <insert model type>?

neuronx-cc has explicit support for select model families using the --model-type option, though many other model
types are supported. You can also inspect supported operators using the list-operators sub-command. See th
Neuron Compiler CLI Reference Guide (neuronx-cc) for details. More generally, support for new operators and models
is continually being added. See our Roadmap for details.

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

Neuron Compiler (neuronx-cc) release notes

Neuron Compiler [2.13.68.0]

Date: 04/10/2024

• This release fixes hang issues related to Triton Inference Server.

Neuron Compiler [2.13.66.0]

Date: 04/01/2024

• This release introduces a new --enable-mixed-precision-accumulation compiler option. This option
instructs the compiler to perform intermediate calculations of reduction operators (such as the dot or reduce
operators) in FP32 regardless of the operation’s defined datatype. The final result of the operator will be cast from
FP32 to the model-designated datatype (e.g., BF16). This helps to improve the operator’s resulting acccuracy.

Neuron Compiler [2.12.68.0]

Date: 01/18/2024

• Patch release with bug fixes.

702 Chapter 14. Neuron Compiler

AWS Neuron

Neuron Compiler [2.12.54.0]

Date: 12/21/2023

• The compiler now generates instructions to check if a model references an embedding table with an illegal in-
dex. The check is made at model execution time. If an attempted invalid table index is encountered, the model
execution will continue and the user will see an error similar to:

WARNING: Received notification generated at runtime: failed to run scatter/gather (indirect memory
copy with branch_label_id = xx), due to out-of-bound access.

When this occurs, users are encouraged to review the model’s gather/scatter input values to determine if there is a
coding error.

Neuron Compiler [2.11.0.35]

Date: 11/17/2023

• This release addresses performance related issues when training through neuronx-nemo-megatron library.

Neuron Compiler [2.11.0.34]

Date: 10/26/2023

• This release introduces the option-argument llm-training to the existing --distribution_strategy com-
piler option. This option-argument allows the compiler to make specific optimizations related to training dis-
tributed models. This new option-argument is equivalent to the previously introduced nemo option-argument,
which will be deprecated in a future release.

Neuron Compiler [2.10.0.35]

Date: 09/26/2023

• This release addresses a compilation regression for certain configurations of Llama and Llama-2 inference models
when it fails compilation with this error “IndirectLoad/Save requires contiguous indirect access per partition” .

There is still a known issue for some configurations of the model with the error “Too many instructions after unroll
for function sg0000” . To mitigate this, recompile using the --optlevel 1 (-O1) option. A complete fix will be
coming in the future release which will not require this option

Neuron Compiler [2.10.0.34]

Date: 09/15/2023

• This release introduces a new --optlevel (-O) compiler option. This option allows the user to balance be-
tween compile-time and optimizations performed. Three levels are supported. Level --optlevel 1 (-O1)
aims to minimize compile-time and allow for a more rapid model development cycle. Model execution time may
be reduced. Level --optlevel 3 (-O3) performs whole-model optimization. This level will deliver the best
performance however there will be longer compile-times and the compiler will use more host DRAM, potentially
requiring a larger instance to compile the model. The default is --optlevel 2 (-O2)which provides a balance
between model performance and compile time.

The previous —enable-experimental-O1 flag introduced in the 02/08/2023 Neuron Compiler [2.4.0.21] re-
lease is now deprecated. Using this flag will generate a message similar to:

14.1. NeuronX Compiler for Trn1 & Inf2 703

AWS Neuron

WARNING: Option —enable-experimental-O1 is deprecated and will be removed in a future release.”
Use --optlevel 1 (-O1) instead.

Neuron Compiler [2.9.0.16]

Date: 08/28/2023

• This release fixes an issue where any initial seed passed into the Random Number Generator operator was not
honored. The RngBitGenerator operator now correctly accepts and uses setting the seed. Note that the current
RNG implementation only supports 32-bit seeds.

Neuron Compiler [2.8.0.25]

Date: 07/19/2023

• This release introduces a new optional --distribution_strategy compiler option. This option informs the
compiler what type of distributed APIs are used to shard the model and allows the compiler to make API-specific
optimizations. Currently following option-arguments are supported: nemo.

Neuron Compiler [2.7.0.40]

Date: 06/14/2023

• This release introduces a new --enable-saturate-infinity compiler option. A computation that can gen-
erate +/- infinity is at a high risk of generating Not-a-Number (NaN) values when the infinity value is used in
subsequent computations. This option helps avoid this by converting +Inf/-Inf values to MAX/MIN_FLOAT
before operations that could produce NaN values for +Inf/-Inf inputs on the target architecture. While this option
helps to avoid NaN values, there is a potential performance degradation that occurs during model execution when
this conversion is enabled.

Neuron Compiler [2.6.0.19]

Date: 05/01/2023

• This release introduces a new model-type option argument: unet-inference. This option instructs the com-
piler to perform model-specific optimizations that produce executable models with improved performance on the
specified target instance.

• Added support for the HLO operator BitcastConvertType and also added support for TopK (sampling mode)
operator.

Neuron Compiler [2.5.0.28]

Date: 03/28/2023

• This release introduces the trn1n option argument to the compiler target option to specify that it should
generate code for a trn1n instance type. Example usage: neuronx-cc compile --target=trn1n ...

• The compiler’s usage message now includes the inf2 option argument.

• A new 8-bit floating point data type, fp8_e4m3, is now supported and can be specificed using the
auto-cast-type option. This instructs the compiler to convert the FP32 operations selected via the

704 Chapter 14. Neuron Compiler

AWS Neuron

--auto-cast option to a signed FP8 size with 4-bit exponent and 3-bit mantissa. Care must be taken to ensure
that the down-casted values are representable within the 8-bit data range.

Neuron Compiler [2.4.0.21]

Date: 02/24/2023

• This release introduces the inf2 option argument to the compiler target option to specify that it should generate
code for an inf2 instance type. Example usage: neuronx-cc compile --target=inf2 ... The inf2 option
argument does not appear in the compiler’s usage message. It will be added in the next release.

Neuron Compiler [2.4.0.21]

Date: 02/08/2023

• Added support for the following HLO operators: SelectAndScatter.

• Beta: --enable-experimental-O1 flag: This option reduces the compile-time with a neglible impact
on model execution performance. It allows the compiler to execute compiler passes in parallel to per-
form the compilation. By default the compiler uses 8 processes. This can be changed via the CLI option
--num-parallel-jobs. This option is expected to become the default in a future SDK release.

Neuron Compiler [2.3.0.4]

Date: 12/09/2022

• Added support for the following HLO operators: rev (reverse).

• The pow() function can now handle both integer and floating-point exponents.

• Optimization enhancements and bug fixes to improve model execution performance.

Neuron Compiler [2.2.0.73]

Date: 10/27/2022

• Adding support for the following HLO operators: LogicalNot, atan2 and DynamicUpdateSlice (for constant
index).

Neuron Compiler [2.1.0.76]

Date: 10/5/2022

The Neuron Compiler is an Ahead-of-Time compiler that accelerates models for execution on NeuronCores. This
release supports compiling models for training on a Trn1 instance using Pytorch Neuron. Users typically access the
compiler via the Framework to perform model compilation, although it can also be run as a command line tool (neuronx-
cc).

The Neuron Compiler supports compiling models for mixed precision calculations. The trn1 hardware supports ma-
trix multiplication using FP16, BF16, and FP32 on its Matrix Multiplication Engine, and accumulations using FP32.
Operators such as activations or vector operations are supported using FP16, BF16, and FP32. Tensor transpose can be
accomplished in FP16, BF16, FP32, or TF32 datatypes. By default, scalar and vector operations on FP32 values will
be done in FP32, while matrix multiplications are cast to BF16 and transpose operations are cast to FP32. This default
casting will generate the highest performance for a FP32 trained model.

14.1. NeuronX Compiler for Trn1 & Inf2 705

AWS Neuron

By default, the compiler will target maximum performance by automatically casting the model to mixed precision.
It also provides an option (--auto-cast) that allows the user to make tradeoffs between higher performance and
optimal accuracy. The decision on what option argument to use with the --auto-cast option will be application
specific. Compiler CLI options can be passed to the compiler via the framework.

Known issues

• The Random Number Generator operation can be passed an initial seed value, however setting the seed is not
supported in this release.

• The exponent value of the pow() function must be a compile-time integer constant.

• The compiler treats INT64 datatypes as INT32 by truncating the high-order bits. If possible, cast these values to
32 bits .

• Model compilation time is proportional to the model size and operators used. For some larger NLP models it
may be upwards of 30 minutes.

Supported Operators

The following XLA operators are supported by the Neuron Compiler. Future releases will broaden model support by
providing additional XLA operators defined in https://www.tensorflow.org/xla/operation_semantics.

The list of supported operators can also be retrieved from the command line using neuronx-cc list-operators.

Supported XLA Operators Notes
Abs
Add
Allgather
Allreduce
Atan2
Batchnorm
Batchnormgrad
Batchnorminference
BitcastConvertType
Broadcast
BroadcastInDim
Ceil
Clamp
Compare
Concatenate
Constant
ConstantLiteral
ConvertElementType
Cos
Customcall
Div
Dot
DotGeneral
DynamicUpdateSlice Supports only for constant index
Eq
Exp

continues on next page

706 Chapter 14. Neuron Compiler

https://www.tensorflow.org/xla/operation_semantics

AWS Neuron

Table 1 – continued from previous page
Supported XLA Operators Notes
Floor
Gather Supports only disjoint start_index_map and remapped_offset_dims
Ge
GetTupleElement
Gt
Iota
Le
Log
LogicalAnd
LogicalNot
Lt
Max
Min
Mul
Ne
Neg
Pad
Pow Exponent argument must be a compile-time integer constant
Reduce Min, Max, Add and Mul are the only supported computations. Init_values must be constant
Reshape
Rev (reverse)
RngBitGenerator Ignores user seed
RngUniform
Rsqrt
Scatter
Select
SelectAndScatter
ShiftRightLogical
Sign
Sin
Slice
Sqrt
Sub
Tanh
Transpose
Tuple

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

14.1. NeuronX Compiler for Trn1 & Inf2 707

AWS Neuron

14.2 Neuron Compiler for Inf1

This document is relevant for: Inf1

14.2.1 API Reference Guide

This document is relevant for: Inf1

Neuron compiler CLI Reference Guide (neuron-cc)

This document describes the command line interface of the Neuron compiler. This reference is not relevant for appli-
cations that run neuron-cc from within a machine learning framework (TensorFlow-Neuron for example) since these
options are passed from the framework directly to neuron-cc.

Using neuron-cc on the command line may be desirable for applications that do not use a framework, or customize
existing frameworks. It is also possible to supply CLI commands to the framework as options to be passed through to
the compiler.

Usage

Optional parameters are shown in square brackets. See the individual framework guides for the correct syntax.

Neuron Compiler CLI

neuron-cc [options] <command> [parameters]

Common options for the Neuron CLI:

• --verbose (string) default=“WARN”:

Valid values:

– DEBUG

– INFO

– WARN

– ERROR

Use neuron-cc <command> --help for information on a specific command.

Available Commands:

• compile

• list-operators

neuron-cc compile [parameters]

Compile a model for use on the AWS Inferentia Machine Learning Accelerator.

neuron-cc compile <file names> --framework <value> --io-config <value> [--
→˓neuroncore-pipeline-cores <value>] [--enable-saturate-infinity] [--enable-fast-
→˓loading-neuron-binaries] [--enable-fast-context-switch] [--fp32-cast cast-method]␣
→˓[--fast-math cast-method] [--output <value>] (continues on next page)

708 Chapter 14. Neuron Compiler

AWS Neuron

(continued from previous page)

Compile Parameters:
• <file names>: Input containing model specification. The number of arguments required varies between

frameworks:

– TENSORFLOW: A local filename or URI of a TensorFlow Frozen GraphDef (.pb); or the name of a
local directory containing a TensorFlow SavedModel.

See https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/graph.proto
for the associated .proto schema for TensorFlow Frozen GraphDefs. See https://www.tensorflow.org/
guide/saved_model for more information on the SavedModel format.

– MXNET: List of local filenames or URIs where input architecture .json file and parameter .param
file are stored. These contains information related to the architecture of your graph and associated
parameters, respectively.

• --framework (string): Framework in which the model was trained.

Valid values:

– TENSORFLOW

– MXNET

– XLA

• --neuroncore-pipeline-cores (int) (default=1): Number of neuron cores to be used in “NeuronCore
Pipeline” mode. This is different from data parallel deployment (same model on multiple neuron cores).
Refer to Runtime/Framework documentation for data parallel deployment options.

Compile for the given number of neuron cores so as to leverage NeuronCore Pipeline mode.

Note: This is not used to define the number of Neuron Cores to be used in a data parallel deployment (ie
the same model on multiple Neuron Cores). That is a runtime/framework configuration choice.

• --output (string) (default=“out.neff”): Filename where compilation output (NEFF archive) will be
recorded.

• --io-config (string): Configuration containing the names and shapes of input and output tensors.

The io-config can be specified as a local filename, a URI, or a string containing the io-config itself.

The io-config must be formatted as a JSON object with two members “inputs” and “outputs”. “inputs” is
an object mapping input tensor names to an array of shape and data type. “outputs” is an array of output
tensor names. Consider the following example:

{
"inputs": {
"input0:0": [[1,100,100,3], "float16"],
"input1:0": [[1,100,100,3], "float16"]

},
"outputs": ["output:0"]

}

• --enable-saturate-infinity : Convert +/- infinity values to MAX/MIN_FLOAT for certain compu-
tations that have a high risk of generating Not-a-Number (NaN) values. There is a potential performance
impact during model execution when this conversion is enabled.

14.2. Neuron Compiler for Inf1 709

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/graph.proto
https://www.tensorflow.org/guide/saved_model
https://www.tensorflow.org/guide/saved_model

AWS Neuron

• --enable-fast-loading-neuron-binaries : Write the compilation output (NEFF archive) in uncom-
pressed format which results in faster loading of the archive during inference.

• --enable-fast-context-switch : Optimize for faster model switching rather than inference latency.
This results in overall faster system performance when your application switches between models frequently
on the same neuron core (or set of cores). The optimization triggered by this option for example defers
loading some weight constants until the start of inference.

• --fast-math : Controls tradeoff between performance and accuracy for fp32 operators. See more sug-
gestions on how to use this option with the below arguments in Mixed precision and performance-accuracy
tuning (neuron-cc).

– all (Default): enables all optimizations that improve performance. This option can poten-
tially lower precision/accuracy.

– none : Disables all optimizations that improve performance. This option will provide best
precision/accuracy.

– Tensor transpose options

∗ fast-relayout: Only enables fast relayout optimization to improve performance by using
the matrix multiplier for tensor transpose. The data type used for the transpose is either
FP16 or BF16, which is controlled by the fp32-cast-xxx keyword.

∗ no-fast-relayout: Disables fast relayout optimization which ensures that tensor trans-
pose is bit-accurate (lossless) but slightly slower.

– Casting options

∗ fp32-cast-all (Default): Cast all FP32 operators to BF16 to achieve highest perfor-
mance and preserve dynamic range. Same as setting --fp32-cast all.

∗ fp32-cast-all-fp16: Cast all FP32 operators to FP16 to achieve speed up and increase
precision versus BF16. Same setting as --fp32-cast all-fp16.

∗ fp32-cast-matmult: Only cast FP32 operators that use Neuron Matmult engine to BF16
while using FP16 for matmult-based transpose to get better accuracy. Same as setting
--fp32-cast matmult.

∗ fp32-cast-matmult-bf16: Cast only FP32 operators that use Neuron Matmult engine
(including matmult-based transpose) to BF16 to preserve dynamic range. Same as setting
--fp32-cast matmult-bf16.

∗ fp32-cast-matmult-fp16: Cast only FP32 operators that use Neuron Matmult engine
(including matmult-based transpose) to fp16 to better preserve precision. Same as setting
--fp32-cast matmult-fp16.

Important:
– all and none are mutually exclusive

– all is equivalent to using fp32-cast-all fast-relayout (best performance)

– none is equivalent to using fp32-cast-matmult-bf16 no-fast-relayout (best accu-
racy)

– fp32-cast-* options are mutually exclusive

– fast-relayout and no-fast-relayout are mutually exclusive

– The fp32-cast-* and *-fast-relayout options will overwrite the default behavior in all
and none.

710 Chapter 14. Neuron Compiler

AWS Neuron

– For backward compatibility, the --fp32-cast option has higher priority over --fast-math.
It will overwrite the FP32 casting options in any of the --fast-math options if
--fp32-cast option is present explicitly.

• --fp32-cast : Refine the automatic casting of fp32 tensors. This is being replaced by a newer –fast-math.

Important:
– --fp32-cast option is being deprecated and --fast-math will replace it in future releases.

– --fast-math is introducing the no-fast-relayout option to enable lossless transpose
operation.

The --fp32-cast is an interface for controlling the performance and accuracy tradeoffs. Many
of the --fast-math values invoke (override) it.

– all (default): Cast all FP32 operators to BF16 to achieve speed up and preserve dynamic
range.

– matmult: Cast only FP32 operators that use Neuron Matmult engine to BF16 while using
fp16 for matmult-based transpose to get better accuracy.

– matmult-fp16: Cast only FP32 operators that use Neuron Matmult engine (including
matmult-based transpose) to fp16 to better preserve precision.

– matmult-bf16: Cast only FP32 operators that use Neuron Matmult engine (including
matmult-based transpose) to BF16 to preserve dynamic range.

– all-fp16: Cast all FP32 operators to FP16 to achieve speed up and better preserve precision.

Log Levels:
Logs at levels “trace”, “debug”, and “info” will be written to STDOUT.

Logs at levels “warn”, “error”, and “fatal” will be written to STDERR.

Exit Status
0 - Compilation succeeded

>0 - An error occurred during compilation.

Examples
Compiling a saved TensorFlow model:

neuron-cc compile test_graph_tfmatmul.pb --framework TENSORFLOW --io-config␣
→˓test_graph_tfmatmul.config

Compiling a MXNet model:

neuron-cc compile lenet-symbol.json lenet-0001.params --framework MXNET --
→˓neuroncore-pipeline-cores 2 --output file.neff

Compiling an XLA HLO:

neuron-cc compile bert-model.hlo --framework XLA --output file.neff

14.2. Neuron Compiler for Inf1 711

AWS Neuron

neuron-cc list-operators [parameters]

Returns a newline (‘n’) separated list of operators supported by the NeuronCore.

• TENSORFLOW: Operators will be formatted according to the value passed to the associated
REGISTER_OP(“OperatorName”) macro.

See https://www.tensorflow.org/guide/create_op#define_the_op_interface for more information
regarding operator registration in TensorFlow.

• MXNET: Operator names will be formatted according to the value passed to the associated
NNVM_REGISTER_OP(operator_name) macro.

• XLA: Operator names will be formatted according to the value used by XLA compiler in
XlaBuilder.

See https://www.tensorflow.org/xla/operation_semantics for more information regarding XLA
operator semantics in XLA interface.

neuron-cc list-operators --framework <value>

• --framework (string): Framework in which the operators were registered.

Valid values:

– TENSORFLOW

– MXNET

– XLA

Exit Status
0 - Call succeeded

>0 - An error occurred

Example

$ neuron-cc list-operators --framework TENSORFLOW
AddN
AdjustContrastv2
CheckNumbers
...

This document is relevant for: Inf1

This document is relevant for: Inf1

This document is relevant for: Inf1

712 Chapter 14. Neuron Compiler

https://www.tensorflow.org/guide/create_op#define_the_op_interface
https://www.tensorflow.org/xla/operation_semantics

AWS Neuron

14.2.2 Developer Guide

This document is relevant for: Inf1

Mixed precision and performance-accuracy tuning (neuron-cc)

Table of contents

• Neuron Hardware

• Performance-accuracy tradeoffs for models trained in FP32

• Compiler casting options

– --fast-math option

The Neuron Compiler supports machine learning models with FP32, FP16 and BF16 (Bfloat16) tensors and operators.
The Neuron hardware supports a mix of 32 and 16 bit datatypes. The available auto-cast methods and their performance
/ accuracy trade-offs are explained in this document.

Neuron Hardware

The Neuron hardware supports matrix multiplication using FP16 or BF16 on its Matmult Engine, and accumulations
using FP32. Similarly, operators such as activations or vector operations are supported using FP16, BF16 and FP32.
Neuron supports tensor transpose in two ways - by fast matrix multiplication in FP16/BF16 or by slower byte-by-byte
data movements.

Performance-accuracy tradeoffs for models trained in FP32

Models that are trained using FP32 data types can be deployed on Neuron through ahead of time compilation using the
Neuron Compiler.

By default, the Neuron Compiler will cast all FP32 tensors, weights and operations to BF16. Only partial sums are
left in FP32. The default, casting will generate the highest performance for a FP32 trained model.

Using the --fast-mathCLI option, you can choose the right tradeoff between performance and accuracy. The tradeoff
usually is between achieving high performance or optimal accuracy, and decision what settings to use will be application
specific.

It is recommended that the you start with compiling the model to achieve the high performance (default), you can then
test the accuracy of the application and, if needed, try the next higher precision casting option until the desired accuracy
and performance are achieved. A typical flow can be:

1. You can compile without options (default) or with --fast-math all which will optimize for performance.

2. If accuracy is not sufficient you can try --fast-math fp32-cast-matmult

3. If accuracy is not sufficient you can try --fast-math fp32-cast-matmult no-fast-relayout

4. If accuracy is not sufficient you can try --fast-math none which will optimize for accuracy .

Between step 2 and step 3, and between step 3 and step 4 you have additional options that can provide different level
of accuracy and which are explained in the below section.

Note that compiler has to preserve the input/output (i/o) tensor types requested by Framework, therefore no casting is
done on the i/o tensors. Additional speedup can be obtained by casting them in the Framework prior compilation.

14.2. Neuron Compiler for Inf1 713

AWS Neuron

To learn how to use compiler command line interface (CLI) options with your application’s framework, please
see PyTorch-Neuron trace python API , TensorFlow 1.x (tensorflow-neuron) Compilation API and TensorFlow 2.x
(tensorflow-neuron) Tracing API .

Compiler casting options

--fast-math option

The --fast-math option is intended to replace the --fp32-cast option. It is recommended to to start using or migrat-
ing to --fast-math option. The --fast-math option provides the same level of functionality as the --fp32-cast
option in addition to the following:

• The --fast-math option introduces the no-fast-relayout option to enable lossless transpose operation.
This was not possible with the --fp32-cast option.

• The --fast-math option provides finer control than the --fp32-cast option. The transpose operation and the
cast operation are controlled independently:

– no-fast-relayout and fast-relayout provide control for the transpose operation.

– fp32-cast-* provide control for casting.

See the detailed list of the options in Neuron compiler CLI Reference Guide (neuron-cc).

This document is relevant for: Inf1

This document is relevant for: Inf1

This document is relevant for: Inf1

14.2.3 Misc (neuron-cc)

This document is relevant for: Inf1

Neuron Compiler FAQ (neuron-cc)

Table of contents

• Where can I compile to Neuron?

• My current Neural Network is based on FP32, how can I use it with Neuron?

• What are some of the important compiler defaults I should be aware of?

• Which operators does Neuron support?

• Any operators that Neuron doesn’t support?

• Will I need to recompile again if I updated runtime/driver version?

• I have a NEFF binary, how can I tell which compiler version

• How long does it take to compile?

714 Chapter 14. Neuron Compiler

AWS Neuron

Where can I compile to Neuron?

The one-time compilation step from the standard framework-level model to NEFF binary may be performed on any
EC2 instance or even on-premises.

We recommend using a high-performance compute server of choice (C5 or z1d instance types), for the fastest compile
times and ease of use with a prebuilt DLAMI. Developers can also install Neuron in their own environments; this
approach may work well for example when building a large fleet for inference, allowing the model creation, training
and compilation to be done in the training fleet, with the NEFF files being distributed by a configuration management
application to the inference fleet.

My current Neural Network is based on FP32, how can I use it with Neuron?

Developers who want to train their models in FP32 for best accuracy can compile and deploy them with Neuron. The
Neuron compiler automatically converts FP32 to internally supported datatypes, such as FP16 or BF16. You can find
more details about FP32 data type support and performance and accuracy tuning in Mixed precision and performance-
accuracy tuning (neuron-cc). The Neuron compiler preserves the application interface - FP32 inputs and outputs.
Transferring such large tensors may become a bottleneck for your application. Therefore, you can improve execution
time by casting the inputs and outputs to FP16 or BF16 in the ML framework prior to compilation for Inferentia.

What are some of the important compiler defaults I should be aware of?

The compiler compiles the input graph for a single NeuronCore by default. Using the
--neuroncore-pipeline-cores option directs the compiler to partition so as to run on a specified number
of NeuronCores. This number can be less than the total available NeuronCores on an instance. See Inferentia
Architecture for more information on NeuronCores.

Which operators does Neuron support?

see Neuron Supported operators.

You can also use the “neuron-cc list-operators” command on the cli to list the operators. See neuron-cc-list-operators

If your model contains operators missing from the above list, and you can’t reach your performance goals, please post
a message on the Neuron developer forum or open a github issue to let us know.

Any operators that Neuron doesn’t support?

Models with control-flow and dynamic shapes are not supported. You will need to partition the model using the
framework prior to compilation. See the neuron-cc.

14.2. Neuron Compiler for Inf1 715

https://aws.amazon.com/machine-learning/amis/

AWS Neuron

Will I need to recompile again if I updated runtime/driver version?

The compiler and runtime are committed to maintaining compatibility for major version releases with each other. The
versioning is defined as major.minor, with compatibility for all versions with the same major number. If the versions
mismatch, an error notification is logged and the load will fail. This will then require the model to be recompiled.

I have a NEFF binary, how can I tell which compiler version

generated it?** We will bring a utility out to help with this soon.

How long does it take to compile?

It depends on the model and its size and complexity, but this generally takes a few minutes.

This document is relevant for: Inf1

This document is relevant for: Inf1

Neuron Compiler (neuron-cc) for Inf1 Release Notes

Table of contents

• Introduction

• Known issues and limitations - updated 11/23/2022

• Neuron Compiler release [1.21.0.0]]

• Neuron Compiler release [1.20.3.0]]

• Neuron Compiler release [1.19.0.0]]

• Neuron Compiler release [1.17.0.0]]

• Neuron Compiler release [1.16.2.0]

• Neuron Compiler release [1.15.0.0]

• Neuron Compiler release [1.14.3.0]

• Neuron Compiler release [1.13.3.0]

• Neuron Compiler release [1.11.7.0]

• Neuron Compiler release [1.11.4.0]

• Neuron Compiler release [1.10.3.0]

• Neuron Compiler release [1.9.1.0]

• Neuron Compiler release [1.8.5.0]

• Neuron Compiler release [1.8.2.0]

• Neuron Compiler release [1.7.3.0]

• [1.6.13.0]

• [1.5.5.0]

716 Chapter 14. Neuron Compiler

AWS Neuron

• [1.4.0.0]

• [1.3.0.0]

• [1.2.7.0]

• [1.2.2.0]

• [1.1.7.0]

• [1.0.24045.0]

• [1.0.20600.0]

• [1.0.18001.0]

• [1.0.17937.0]

• [1.0.16861.0]

• [1.0.15275.0]

• [1.0.12696.0]

• [1.0.9410.0]

• [1.0.7878.0]

• [1.0.6801.0]

• [1.0.5939.0]

• [1.0.5301.0]

• [1.0.4680.0]

Introduction

This document lists the release notes for AWS Neuron compiler. The Neuron Compiler is an ahead-of-time compiler
that ensures Neuron will optimally utilize the Inferentia chips.

Operator-support for each input format is provided directly from the compiler.

neuron-cc list-operators --framework {TENSORFLOW | MXNET | XLA}

The supported operators are also listed here:

Tensorflow: TensorFlow Neuron (tensorflow-neuron (TF1.x)) Supported operators

Pytorch: PyTorch Neuron (torch-neuron) Supported operators

XLA: neuron-cc-ops-xla

Apache MXNet: Neuron Apache MXNet Supported operators

14.2. Neuron Compiler for Inf1 717

AWS Neuron

Known issues and limitations - updated 11/23/2022

• There is a known issue of increased latency and lower throughput when MLM head is compiled along with BERT
model. The workaround is to compile them separately and feed the raw Bert into the head.

• TensorFlow 2.x - In this release supported operators are limited to BERT-like models, specifically no conv2d or
reduce-window operators are available.

• Control flow Neuron only supports control flow operators which are static at compile time. For example static
length RNN, top-k, sort.

• Data layout The Neuron compiler supports multiple data layout format (NCHW, NHWC, . . .). Non-CNHW
input/output data-layouts will require Neuron to insert additional transpose operations, causing a degradation in
performance.

• Primary inputs in NeuronCore Pipeline mode When a neural network is executed in NeuronCore Pipeline mode,
only the first operator in a neural network can receive primary inputs from the host.

• Reduce data type INT8 data type is not currently supported by the Neuron compiler.

• NeuronCore Pipeline: NeuronCorePipeline mode provides low-latency and high-throughput for small batch
sizes. We recommend to start testing with batch=1 and gradually increase batch size to fine tune your model
throughput and latency performance.

• Large input tensors support varies by model. On some models the large input tensors (eg 1024x1024) may
result in lower performance or exceeding hardware or compile-time limits, especially on models where the large
input tensor is used by many downstream operators. Workarounds may include use of smaller batch, see Neuron
Batching

• Conv2d operator is mapped to Inferentia except for specific cases of extremely large tensors and specific param-
eters.

• Conv3d operator performance is limited when the operator has small number of input channels (< 64).

• FP64 and INT64 input and output tensors are not supported. Please cast to FP32/INT32 in the machine learning
framework, prior compiling for Neuron.

Neuron Compiler release [1.21.0.0]]

Date: 12/21/2023

• Minor bug fixes.

Neuron Compiler release [1.20.3.0]]

Date: 10/26/2023

• Minor bug fixes.

718 Chapter 14. Neuron Compiler

AWS Neuron

Neuron Compiler release [1.19.0.0]]

Date: 09/15/2023

• Minor bug fixes.

Neuron Compiler release [1.17.0.0]]

Date: 7/19/2023

New in this release

• This release introduces a new --enable-saturate-infinity compiler option. A computation that can gen-
erate +/- infinity is at a high risk of generating Not-a-Number (NaN) values when the infinity value is used in
subsequent computations. This option helps avoid this by converting +Inf/-Inf values to MAX/MIN_FLOAT
before operations that could produce NaN values for +Inf/-Inf inputs on the target architecture. While this option
helps to avoid NaN values, there is a potential performance degradation that occurs during model execution when
this conversion is enabled.

• Minor bug fixes.

Neuron Compiler release [1.16.2.0]

Date: 6/14/2023

• Minor bug fixes.

Neuron Compiler release [1.15.0.0]

Date: 05/01/2023

• Minor bug fixes.

Neuron Compiler release [1.14.3.0]

Date: 04/19/2023

• Minor bug fixes.

Neuron Compiler release [1.13.3.0]

Date: 11/23/2022

• Resolved long compile-times when compiling the YOLOv5 and YOLOv6 models. [GitHub · aws-neuron-sdk ·
#434]

• Improved the layout algorithm to resolve an issue compiling a transformer-based text recognition model. [GitHub
· aws-neuron-sdk · #410]

• Support was added for additional XLA operators

14.2. Neuron Compiler for Inf1 719

AWS Neuron

Neuron Compiler release [1.11.7.0]

Date: 08/02/2022

• Fixed a bug for correct handling of mxnet dropout instruction when mode is set as ‘training’ while performing
inference.

Neuron Compiler release [1.11.4.0]

Date: 04/29/2022

• Solved an issue that caused a “false positive” reporting of a data race that may occur due to address overlap.

• Minor bug fixes.

Neuron Compiler release [1.10.3.0]

Date: 03/25/2022

• Minor bug fixes.

Neuron Compiler release [1.9.1.0]

Date: 01/20/2022

• Fixed an issue with frontend compiler for fused operators that was reported in github #362.

Neuron Compiler release [1.8.5.0]

Date: 01/05/2022

New in this release

• Minor bug fixes.

Neuron Compiler release [1.8.2.0]

Date: 12/15/2021

New in this release

• Performance enhancements as a result of improved layout and DMA optimizations.

• Minor bug fixes.

720 Chapter 14. Neuron Compiler

https://github.com/aws/aws-neuron-sdk/issues/362

AWS Neuron

Neuron Compiler release [1.7.3.0]

Date: 10/27/2021

New in this release

• The compiler’s list-operators command can now display the supported TensorFlow 2.x operators.

• Support added for new operators in TensorFlow 1.x - ArgMax and ArgMin.

• Introducing the –-fast-math option for better fine-tuning of accuracy/performance. See Mixed precision and
performance-accuracy tuning (neuron-cc)

[1.6.13.0]

Date 08/12/2021

New in this release

• TensorFlow 2.x - First support of TensorFlow 2.x. The support is limited to operators in BERT-like models and
was tested with Huggingface BERT small, base, large and DistillBert.

Resolved issues

• Fixed compiler backend issue in Tensor_tensor argument distance, github #269

[1.5.5.0]

Date 07/02/2021

Summary

• Robustness and performance improvements.

New in this release

• Added --enable-fast-context-switch option to optimize for faster model switching rather than inference
latency.

• Deprecated support for ONNX

• Improved robustness of Conv3d

• Corrected compilation error “too many instructions” in DLRM model

14.2. Neuron Compiler for Inf1 721

https://github.com/aws/aws-neuron-sdk/issues/269

AWS Neuron

[1.4.0.0]

Date 5/28/2021

Summary

• Performance improvements, and usability improvements.

New in this release

• Added uncompressed NEFF format for faster loading models prior inference. Enable it by –enable-fast-loading-
neuron-binaries. Some cases of large models may be detrminentally impacted as it will not be compressed but
many cases will benefit.

• Corrected compilation error in specific arguments of ResizeBilinear operator

[1.3.0.0]

Date 4/30/2021

Summary

• Performance improvements, new operators, and usability improvements.

New in this release

• Improved performance of batched CNN models like resnet50 with the default compiler options by 10%.

• Improved performance of bert base sequence 128 batch 6 by upto 16%

• Added support for group and depth wise convolution (with limited performance when the number of input chan-
nels is small).

• Added more detailed debug names to support for tensorboard.

Resolved Issues

• Corrected potential race condition in overwriting tiles of output tensors.

• Fixed various issues in pipelined inference by enabling fine grain partitioning by default.

722 Chapter 14. Neuron Compiler

AWS Neuron

[1.2.7.0]

Date 2/24/2021

Summary

Fix for CVE-2021-3177.

[1.2.2.0]

Date 1/30/2021

Summary

Added suport for multiple new operators (see operators list) for Tensoflow and MXNET. Improved inference perfor-
mance of language, object recognition models on single as well as multiple pipelined cores using neuroncore-pipeline.

New in this release

• The following models are now supported: Resnext 224x224, specific BERT variations applied to natural language
processing and translation.

• A number of new operators is now supported on Inferentia, see the full lists TensorFlow Neuron (tensorflow-
neuron (TF1.x)) Supported operators

and Neuron Apache MXNet Supported operators

• Improved inference performance on yolov4 BERT base sequence 64 (on 16 pipelined cores) and openpose 184.

Resolved Issues

• Corrected a random failure to compile Resnet50 batch 5

• Corrected numerical inaccuracy in RSQRT and related operators for tensors with very large values (> 1e20)

[1.1.7.0]

Date 12/23/2020

Summary

Added suport for PyTorch Yolo V4, a new Framework-visible progress bar and improved inference performance. We
continue to streamline the compiler usability by removing the need for options passed to control behavior. We are
aiming to remove the need for such options entirely. Some tutorials have been updated to reflect this, but Resnet50
remains in need of these options to achieve maximum performance. Other useability improvements have been added,
such as the compiler progress bar. As always, please let us know if there are other areas that we can improve.

14.2. Neuron Compiler for Inf1 723

AWS Neuron

New in this release

• Pytorch Yolo V4 is now supported.

• Added a compiler progress bar when compilation is invoked from the Framework. This allows the user to see
that progress continues as compilation proceeds, which is useful when compilation takes several minutes. A dot
is printed every 20 seconds.

• Improved inference performance of Tensorflow BERT base seq 256 batch 3 by 10% .

Resolved Issues

• Resolved issue with depthwise convolution that manifests as a type check error

[1.0.24045.0]

Date 11/17/2020

Summary

Improved performance for pipelined execution (NeuronCore Pipeline).

New in this release

• NeuronCore Pipeline: improved partitioning to enable better static weights loading to cache.

Resolved Issues

• –static-weights : No longer needed. As this is shown in some examples, please remove the option since the
compiler now performs this auto-detection by default.

• –num-neuroncores renamed to –neuroncore-pipeline-cores. The prior option form is still functional (backwards
compatible) and will be removed in future releases.

• –batching_en: Resolved compilation failure of ResNet50 FP32 batch 1 on Ubuntu16 when “–batching_en” was
used.

[1.0.20600.0]

Date 9/22/2020

724 Chapter 14. Neuron Compiler

AWS Neuron

Summary

Various performance improvements - both compilation time and inference speed of object recognition models.

• Compiler optimization ‘-O2’ option is now enabled by default.

New in this release

• Improved inference performance of YOLO v3, YOLO v4, VGG16, SSD300. BERT models were improved by
an additional 10%.

• Modifed such that -O2 is now the default behavior and does not need to be specified. Note: some tutorials still
explicitly specify “-O2”. These will be modified in forthcoming updates.

Resolved Issues

• Sped up compilation of large models that were taking hours to sub-40 minute.

[1.0.18001.0]

Date 8/08/2020

Summary

Various performance improvements.

New in this release

Improved performance of BERT base with -O2

Resolved Issues

• n/a

[1.0.17937.0]

Date 8/05/2020

14.2. Neuron Compiler for Inf1 725

AWS Neuron

Summary

Various improvements.

[1.0.16861.0]

Date 7/16/2020

Summary

This release has some bug fixes and some functional and performance improvements to support compilation of several
neural networks.

New in this release

This release

• Supports compilation of PoseNet, tested for images of specific resolutions upto 736.

• Update the -O2 with a new memory allocator to reduce spilling to DRAM

• Improved performance of the ‘-O2’ on BERT base, and openpose pose network.

Resolved Issues

• Resolved compilation error in Vgg16 batch 1

Other Notes

• Some versions of Inception network may fail to compile in Tensorflow on Ubuntu 16 in conda environment. The
symptom is neuron-cc backend data race error. As a workaround use Ubuntu 18, Amazon Linux 2, or virtual
env, or use neuron-cc with flag -O2.

Warning: Starting with Neuron 1.14.0, Ubuntu 16 is no longer supported

[1.0.15275.0]

Date 6/11/2020

726 Chapter 14. Neuron Compiler

AWS Neuron

Summary

This release has some bug fixes and some functional and performance improvements to support compilation of several
neural networks.

New in this release

This release

• Supports compilation of PoseNet for images of specific resolutions upto 400x400.

• Improves performance of resnet152.

• Supports a new command line option ‘-O2’ that can help with handling of large tensor inputs for certain models.

• increase NEFF versions to 1.0. This means new NEFFs compiled from this release forward are not compati-
ble with older versions of Neuron Runtime prior to May, 2020 (1.0.6905.0) release. Please update the Neuron
Runtime when using NEFF version 1.0.

Resolved Issues

• Compilation issues on prosotron encoder, decoder neural networks.

Other Notes

Dependencies

• This version creates NEFF 1.0 thus may require update of neuron-rtd if older than May 2020 release.

dmlc_nnvm==1.0.2574.0 dmlc_topi==1.0.2574.0 dmlc_tvm==1.0.2574.0 inferentia_hwm==1.0.1362.0
islpy==2018.2

[1.0.12696.0]

Date 5/11/2020

Summary

Bug fixes and some functional and performance improvements to several neural networks.

New in this release

• This version supports compilation of unmodified Tensorflow BERT with batch size 1, 4, 6 for input sequence
128.

• Improved Tensorflow BERT batch 4 sequence 128 performance to 45% of the accelerator peak (from 34%).

• Support for MXNET BERT base batch 8 compilation

• Support for TF Resnet152 batch 2 compilation

• Most compiler messages are migrated from cout to logging mechanisms with verbosity control

14.2. Neuron Compiler for Inf1 727

AWS Neuron

Resolved Issues

• Fixed failure to compile unmodified Tensorflow BERT model for small batches

• Fixed run-to-run-variability in OneHot operator implementation

• Robustness improvements for ParallelWavenet and transformer decoder networks

Other Notes

Dependencies

dmlc_nnvm==1.0.2356.0
dmlc_topi==1.0.2356.0
dmlc_tvm==1.0.2356.0
inferentia_hwm==1.0.1294.0
islpy==2018.2

[1.0.9410.0]

Date 3/26/2020

Summary

Bug fixes and some functional and performance improvements to several neural networks.

New in this release

• Support compilation of modified SSD-300 (Running SSD300 with AWS Neuron)

• Improved inference performance in natural language processing networks (such as prosotron encoder) by 45%

Resolved Issues

• Eliminated redundant fp32 to bfloat16 cast on input and output tensors

Known issues and limitations

• See previous releases.

728 Chapter 14. Neuron Compiler

AWS Neuron

Other Notes

• Added support for faster iteration on recurrent networks (aka auto-loop)

Dependencies

dmlc_nnvm==1.0.2049.0
dmlc_topi==1.0.2049.0
pip install --upgrade dmlc_tvm==1.0.2049.0
inferentia_hwm==1.0.897.0
islpy==2018.2

[1.0.7878.0]

Date 2/27/2020

Summary

Bug fixes and minor performance improvements.

New in this release

None

Resolved Issues

• Corrected image resize operator functionallity

• Compiler internal enhancements made that will benefit models such as BERT

Known issues and limitations

• See previous releases.

Other Notes

Dependencies

dmlc_nnvm-1.0.1826.0
dmlc_topi-1.0.1826.0
dmlc_tvm-1.0.1826.0
inferentia_hwm-1.0.897.0
islpy-2018.2

14.2. Neuron Compiler for Inf1 729

AWS Neuron

[1.0.6801.0]

Date 1/27/2020

Summary

Bug fixes and some performance enhancement related to data movement for BERT-type neural networks.

New in this release

None

Resolved Issues

• Improved throughput for operators processed in the Neuron Runtime CPU. As an example: execution of 4 single
NeuronCore NEFF models of ResNet50 v2 float16 batch = 5 in parallel on an inf1.1xlarge sped up by 30%.

• Corrected shape handling in Gather(TensorFlow)/Take(MXNet) operators that are processed by the Neuron Run-
time in the Neuron Runtime vCPU, which resolves a possible crash in Neuron Compiler when compiling models
with these operators with some shapes.

• Added support for TensorFlow OneHot operator (as a Neuron Runtime CPU operator).

• Added more internal checking for compiler correctness with newly defined error messages for this case.

“Internal ERROR: Data race between Op1 'Name1(...) [...]' and Op2 'Name2(...) [...]'”

• Fixed out-of-memory issue introduced in 1.0.5939.0 such that some large models (BERT) compiled on instances
with insufficient host memory would cause the runtime to crash with an invalid NEFF. This is actually a compiler
error, but due to additional script layers wrapping this in the [Broken] Running TensorFlow BERT-Large with
AWS Neuron, this would have likely been seen as a runtime error like this:

2020-01-09 13:40:26.002594: E tensorflow/core/framework/op_segment.cc:54] Create kernel␣
→˓failed: Invalid argument: neff is invalid
2020-01-09 13:40:26.002637: E tensorflow/core/common_runtime/executor.cc:642] Executor␣
→˓failed to create kernel. Invalid argument: neff is invalid
[[{{node bert/NeuronOp}}]]

Known issues and limitations

See previous release notes. Some tutorials show use of specific compiler options and flags, these are needed to help
provide guidance to the compiler to achieve best performance in specific cases. Please do not use in cases other than
as shown in the specific tutorial as results may not be defined. These options should be considered beta and will be
removed over time.

730 Chapter 14. Neuron Compiler

AWS Neuron

Other Notes

Dependencies

dmlc_nnvm-1.0.1619.0
dmlc_topi-1.0.1619.0
dmlc_tvm-1.0.1619.0
inferentia_hwm-1.0.839.0
islpy-2018.2

[1.0.5939.0]

Date 12/20/2019

Summary

Bug fixes and some performance enhancement for NeuronCore Pipeline.

New in this release

Resolved Issues

• Fixed pipeline execution on more than 10 NeuronCores

• Improved NeuronCores Pipeline execution by improving data exchange efficiency between NeuronCores

• Added warning for unaligned memory access

• Fixed handling of cast on input FP32 tensor

• Improved handling of data layouts and transpose

• Improved dead-code elimination

• Improved efficiency of compute engine synchronization

• Improved efficiency of data transfers within the Neuron code

Known issues and limitations

See previous release notes. Some tutorials show use of specific compiler options and flags, these are needed to help
provide guidance to the compiler to achieve best performance in specific cases. Please do not use in cases other than
as shown in the specific tutorial as results may not be defined. These options should be considered beta and will be
removed over time.

14.2. Neuron Compiler for Inf1 731

AWS Neuron

Other Notes

Dependencies

• dmlc_nnvm-1.0.1416.0

• dmlc_topi-1.0.1416.0

• dmlc_tvm-1.0.1416.0

• inferentia_hwm-1.0.720.0

• islpy-2018.2

[1.0.5301.0]

Date 12/1/2019

Summary

New in this release

Resolved Issues

• Added warning for unsupported operators and convolution sizes

• Added warning for unsupported layout / upsampling

• Added support for Relu6, AddV2, BatchMatmulV2 operators

• Added support for default MXNet outputs in –io-config

• Improved performance of batched inference for convolutional networks

• Fixed MatMult column size 1

• Fixed bf16 constant loading

• Fixed Conv2D tile accumulation

Known Issues and Limitations

See previous release notes. Resolved issues are shown in Resolved Issues.

Other Notes

Please install g++ on AMIs without g++ pre-installed (i.e. server AMIs):

Ubuntu
sudo apt-get install -y g++

Amazon Linux
sudo yum nstall -y gcc-c++

732 Chapter 14. Neuron Compiler

AWS Neuron

Supported Python versions:

• 3.5, 3.6, 3.7

Supported Linux distributions:

• Ubuntu 16, Ubuntu 18, Amazon Linux 2

Dependencies

• dmlc_nnvm-1.0.1328.0

• dmlc_topi-1.0.1328.0

• dmlc_tvm-1.0.1328.0

• inferentia_hwm-1.0.674.0

• islpy-2018.2

[1.0.4680.0]

Date: 11/25/2019

New in this release

N/A, this is the first release.

Resolved issues

N/A, this is the first release.

Known issues and limitations

1. Control flow Inferentia has a limited support for control flow. In general, Neuron can only support control flow
operators which are static at compile time, i.e. static length RNN, top-k, sort, . . .

2. Size of neural network The size of neural network is influenced by a) type of neural network (CNN, LSTM,
MLP) , b) number of layers, c) sizes of input (dimension of the tensors, batch size, . . .). The current Neuron
compiler release has a limitation in terms of the size of neural network it could effectively optimize. As a result,
we limit CNN models (e.g. ResNet) to have an input size of up to 480x480 FP16, batch size of 4; LSTM models
(e.g. GNMT) are limited to a time step limit of up to 900; MLP models (like BERT) are limited up to sequence-
length equal 128, batch=8.

3. Data layout The Neuron compiler supports multiple data layout formats (NCHW, NHWC, . . .). Non-CNHW
input/output data-layouts will require Neuron to insert additional transpose operations, causing a degradation in
performance.

4. Object detection models Computer-vision object detection and segmentation models are not supported by the
current release.

5. Reduce data type INT8 data type is not currently supported by the Neuron compiler.

14.2. Neuron Compiler for Inf1 733

AWS Neuron

6. Tensor residency When a sub-graph that is executed on the host is communicating with a sub-graph that is
executing on Neuron cores, tensors are copied via the communication queues between the host and Inferentia
memory for each inference, which may result in end-to-end performance degradation.

7. Primary inputs in NeuronCore Pipeline mode When a neural network is executed in NeuronCore Pipeline
mode, only the first operator in a neural network can receive primary inputs from the host.

Other Notes

Dependencies

• nnvm: dmlc_nnvm-1.0.1219.0

• topi: dmlc_topi-1.0.1219.0

• tvm: dmlc_tvm-1.0.1219.0

• hwm: inferentia_hwm-1.0.602.0

• islpy: islpy-2018.2+aws2018.x.73.0

This document is relevant for: Inf1

This document is relevant for: Inf1

Neuron Supported operators

This document is relevant for: Inf1

This document is relevant for: Inf1

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

Neuron Compiler for Trn1 & Inf2

API Reference Guide

• Neuron Compiler CLI Reference Guide

Developer Guide

• Mixed Precision and Performance-accuracy Tuning (neuronx-cc)

Misc

• FAQ

• What’s New

734 Chapter 14. Neuron Compiler

AWS Neuron

Neuron Compiler for Inf1

API Reference Guide

• Neuron compiler CLI Reference Guide (neuron-cc)

Developer Guide

• Mixed precision and performance-accuracy tuning (neuron-cc)

Misc

• FAQ

• What’s New

• Neuron Supported operators

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

14.2. Neuron Compiler for Inf1 735

AWS Neuron

736 Chapter 14. Neuron Compiler

CHAPTER

FIFTEEN

NEURON CUSTOM C++ OPERATORS [BETA]

Neuron Custom C++ Operators enable developers to write C++ Custom Operators (“CustomOps”) that run on Neu-
ronCores. This enables developers to extend operator support beyond what is officially supported by Neuron.

Developers can use standard PyTorch custom operators programming interfaces to leverage Neuron Custom C++ Op-
erators feature. This makes it easy to migrate CPU Custom Operators to Neuron, and implement new beta operators,
all without any intimate knowledge of the NeuronCore hardware.

Note: Neuron Custom C++ Operators feature is available only starting from second generation of NeuronCore
(NeuronCore-v2)

This document is relevant for: Inf2, Trn1, Trn1n

15.1 API Reference Guide

This document is relevant for: Inf2, Trn1, Trn1n

15.1.1 Custom Operators API Reference Guide [Beta]

This page provides the documentation for the C++ API available to creators of Neuron custom C++ operators (see
Neuron Custom C++ Operators [Beta]).

Table of contents

• Tensor Library

• Tensor Accessors

• Streaming Accessors

• TCM Accessor

• Writing Directly to Output Tensor

• Using multiple GPSIMD cores

• printf()

• Library Limitations

737

AWS Neuron

Tensor Library

The tensor library used for Neuron custom C++ operators is based upon the PyTorch ATen tensor library. This includes
the core Tensor class as well as select operations defined below. Users need to include the <torch/torch.h> header
to access the tensor library. A small example of using the tensor library looks as follows.

#include <torch/torch.h>
...
torch::Tensor a = torch::zeros({32, 32, 3}, torch::kFloat);

Tensor Factory Functions

The tensor factory functions provide different means for creating new tensors.

They each take in a size argument that specifies the size of each dimension of the tensor created (with the exception
of eye, which takes in two int64’s and creates a strictly 2-dimensional identity matrix.)

c10::TensorOptions allows the specification of optional properties for the tensor being created. Currently, only the
dtype property has an effect on tensor construction, and it must be specified. Other properties, such as layout may
be supported in the future. The example above shows a common way to use factory functions.

The following dtypes are supported:

• torch::kFloat

• torch::kBFloat16

• torch::kHalf

• torch::kInt

• torch::kChar

• torch::kLong

• torch::kShort

• torch::kByte

torch::Tensor empty(torch::IntArrayRef size, c10::TensorOptions options)
Creates a tensor filled with uninitialized data, with the specified size and options. Slightly faster than other
factory functions since it skips writing data to the tensor.

torch::Tensor full(torch::IntArrayRef size, const Scalar &fill_value, c10::TensorOptions options)
Creates a tensor filled with the specified fill_value, with the specified size and options.

torch::Tensor zeros(torch::IntArrayRef size, c10::TensorOptions options)
Creates a tensor filled with zeros, with the specified size and options.

torch::Tensor ones(torch::IntArrayRef size, c10::TensorOptions options)
Creates a tensor filled with ones, with the specified size and options.

torch::Tensor eye(int64_t n, int64_t m, c10::TensorOptions options)
Creates a 2-D tensor with ones on the diagonal and zeros elsewhere.

738 Chapter 15. Neuron Custom C++ Operators [Beta]

AWS Neuron

Tensor Operation Functions

The tensor library provides commonly used operations defined below. The tensor operation functions do not support
broadcasting; the shape of the operands must match if applicable.

The library provides two styles of functions for each tensor operation. For functions ending with _out, a tensor with
the proper size must be provided to which the output is written. This is illustrated in the example below.

torch::exp_out(t_out, t_in);

Alternatively, for functions that do not end in _out, a new tensor that contains the results of the operation is allocated
and returned as seen in the example below.

torch::Tensor t_out = torch::exp(t_in);

Warning: Only operations that are documented below are supported.

torch::Tensor &abs_out(torch::Tensor &result, torch::Tensor &self)

torch::Tensor abs(torch::Tensor &self)
Computes the absolute value of each element in self.

torch::Tensor &ceil_out(torch::Tensor &result, torch::Tensor &self)

torch::Tensor ceil(torch::Tensor &self)
Computes the ceiling of the elements of self, the smallest integer greater than or equal to each element.

torch::Tensor &floor_out(torch::Tensor &result, torch::Tensor &self)

torch::Tensor floor(torch::Tensor &self)
Computes the floor of the elements of self, the largest integer less than or equal to each element.

torch::Tensor &sin_out(torch::Tensor &result, torch::Tensor &self)

torch::Tensor sin(torch::Tensor &self)
Computes the sine value of the elements of self.

torch::Tensor &cos_out(torch::Tensor &result, torch::Tensor &self)

torch::Tensor cos(torch::Tensor &self)
Computes the cosine value of the elements of self.

torch::Tensor &tan_out(torch::Tensor &result, torch::Tensor &self)

torch::Tensor tan(torch::Tensor &self)
Computes the tangent value of the elements of self.

torch::Tensor &log_out(torch::Tensor &result, torch::Tensor &self)

torch::Tensor log(torch::Tensor &self)
Computes the natural logarithm of the elements of self.

torch::Tensor &log2_out(torch::Tensor &result, torch::Tensor &self)

torch::Tensor log2(torch::Tensor &self)
Computes the base-2 logarithm of the elements of self.

15.1. API Reference Guide 739

AWS Neuron

torch::Tensor &log10_out(torch::Tensor &result, torch::Tensor &self)

torch::Tensor log10(torch::Tensor &self)
Computes the base-10 logarithm of the elements of self.

torch::Tensor &exp_out(torch::Tensor &result, torch::Tensor &self)

torch::Tensor exp(torch::Tensor &self)
Computes the exponential of the elements of self.

torch::Tensor &pow_out(torch::Tensor &result, const torch::Tensor &self, const torch::Scalar &exponent)

torch::Tensor &pow_out(torch::Tensor &result, const torch::Scalar &self, const torch::Tensor &exponent)

torch::Tensor &pow_out(torch::Tensor &result, const torch::Tensor &self, const torch::Tensor &exponent)

torch::Tensor pow(const torch::Tensor &self, const torch::Scalar &exponent)

torch::Tensor pow(const torch::Scalar &self, const torch::Tensor &exponent)

torch::Tensor pow(const torch::Tensor &self, const torch::Tensor &exponent)
Takes the power of each element in self with exponent.

torch::Tensor &clamp_out(torch::Tensor &result, const torch::Tensor &self, const torch::Scalar &minval, const
torch::Scalar &maxval)

torch::Tensor clamp(const torch::Tensor &self, const torch::Scalar &minval, const torch::Scalar &maxval)
Clamps all elements in self into the range [minval, maxval].

torch::Tensor &add_out(torch::Tensor &result, const torch::Tensor &self, const torch::Scalar &other, const
torch::Scalar &alpha = 1)

torch::Tensor &add_out(torch::Tensor &result, const torch::Tensor &self, const torch::Tensor &other, const
torch::Scalar &alpha = 1)

torch::Tensor add(const torch::Tensor &self, const torch::Scalar &other, const torch::Scalar &alpha = 1)

torch::Tensor add(const torch::Tensor &self, const torch::Tensor &other, const torch::Scalar &alpha = 1)
Adds other, scaled by alpha, to input,

𝑜𝑢𝑡 = 𝑠𝑒𝑙𝑓 + 𝑎𝑙𝑝ℎ𝑎× 𝑜𝑡ℎ𝑒𝑟.

torch::Tensor &sub_out(torch::Tensor &result, const torch::Tensor &self, const torch::Scalar &other, const
torch::Scalar &alpha = 1)

torch::Tensor &sub_out(torch::Tensor &result, const torch::Tensor &self, const torch::Tensor &other, const
torch::Scalar &alpha = 1)

torch::Tensor sub(const torch::Tensor &self, const torch::Tensor &other, const torch::Scalar &alpha = 1)

torch::Tensor sub(const torch::Tensor &self, const torch::Scalar &other, const torch::Scalar &alpha = 1)
Subtracts other, scaled by alpha, to input,

𝑜𝑢𝑡 = 𝑠𝑒𝑙𝑓 − 𝑎𝑙𝑝ℎ𝑎× 𝑜𝑡ℎ𝑒𝑟.

740 Chapter 15. Neuron Custom C++ Operators [Beta]

AWS Neuron

torch::Tensor &mul_out(torch::Tensor &result, const torch::Tensor &self, const torch::Scalar &other)

torch::Tensor &mul_out(torch::Tensor &result, const torch::Tensor &self, const torch::Tensor &other)

torch::Tensor mul(const torch::Tensor &self, const torch::Scalar &other)

torch::Tensor mul(const torch::Tensor &self, const torch::Tensor &other)
Multiplies self by other.

torch::Tensor &div_out(torch::Tensor &result, const torch::Tensor &self, const torch::Scalar &other)

torch::Tensor &div_out(torch::Tensor &result, const torch::Tensor &self, const torch::Tensor &other)

torch::Tensor div(const torch::Tensor &self, const torch::Scalar &other)

torch::Tensor div(const torch::Tensor &self, const torch::Tensor &other)
Divides self by other.

Note: For tensor-tensor bitwise operations, all the bitwise operations are elementwise between two tensors. For scalar-
tensor bitwise operations, the scalar is casted to the datatype of the tensor before computing the bitwise operation.

torch::Tensor &bitwise_and_out(torch::Tensor &result, const torch::Tensor &self, const torch::Tensor &other)

torch::Tensor &bitwise_and_out(torch::Tensor &result, const torch::Tensor &self, const torch::Scalar &other)

torch::Tensor &bitwise_and_out(torch::Tensor &result, const torch::Scalar &self, const torch::Tensor &other)

torch::Tensor bitwise_and(const torch::Tensor &self, const torch::Tensor &other)

torch::Tensor bitwise_and(const torch::Tensor &self, const torch::Scalar &other)

torch::Tensor bitwise_and(const torch::Scalar &self, const torch::Tensor &other)
Computes the bitwise AND of self and other. The input tensors must be of integral types.

torch::Tensor &bitwise_or_out(torch::Tensor &result, const torch::Tensor &self, const torch::Tensor &other)

torch::Tensor &bitwise_or_out(torch::Tensor &result, const torch::Tensor &self, const torch::Scalar &other)

torch::Tensor &bitwise_or_out(torch::Tensor &result, const torch::Scalar &self, const torch::Tensor &other)

torch::Tensor bitwise_or(const torch::Tensor &self, const torch::Tensor &other)

torch::Tensor bitwise_or(const torch::Tensor &self, const torch::Scalar &other)

torch::Tensor bitwise_or(const torch::Scalar &self, const torch::Tensor &other)
Computes the bitwise OR of self and other. The input tensors must be of integral types.

torch::Tensor &bitwise_not_out(torch::Tensor &result, const torch::Tensor &self)

torch::Tensor bitwise_not(torch::Tensor &result, const torch::Tensor &self)
Computes the bitwise NOT of self. The input tensor must be of integral types.

15.1. API Reference Guide 741

AWS Neuron

Class torch::Tensor

Constructors

Users should not call the Tensor constructor directly but instead use one of the Tensor factory functions.

Member Functions

template<typename T, size_t N>
TensorAccessor<T , N , true> accessor() const &

Return a TensorAccessor for element-wise random access of a Tensor’s elements. Scalar type and dimension
template parameters must be specified. This const-qualified overload returns a read-only TensorAccessor,
preventing the user from writing to Tensor elements. See the Tensor Accessors section below for more details.

template<typename T, size_t N>
TensorAccessor<T , N , false> accessor() &

Return a TensorAccessor for element-wise random access of a Tensor’s elements. Scalar type and dimension
template parameters must be specified. This non-const-qualified overload returns a TensorAccessor that can
be used to both read and write to Tensor elements. See the Tensor Accessors section below for more details.

template<typename T>
TensorReadStreamAccessor<T> read_stream_accessor() const &

Opens a streaming accessor for read on a tensor. Template parameter T is the scalar type of the tensor data. See
Streaming Accessors section below for more details.

template<typename T>
TensorWriteStreamAccessor<T> write_stream_accessor() &

Opens a streaming accessor for write on a tensor. Template parameter T is the scalar type of the tensor data. See
Streaming Accessors section below for more details.

CoherencyEnforcer::Policy get_accessor_coherence_policy() const
Get the Tensor accessor coherence policy. See Coherence section below for more details.

void set_accessor_coherence_policy(CoherencyEnforcer::Policy policy) const
Set the Tensor accessor coherence policy. See Coherence section below for more details.

TensorTcmAccessor<true> tcm_accessor() const &
Opens a TCM accessor on a tensor. This const-qualified overload returns a read-only TensorTcmAccessor,
preventing the user from writing to Tensor elements. See TCM Accessor section below for more details.

TensorTcmAccessor<false> tcm_accessor() &
Opens a TCM accessor on a tensor. This non-const-qualified overload returns a TensorTcmAccessor that can
be used to both read and write to Tensor elements. See TCM Accessor section below for more details.

torch::Tensor &fill_(const torch::Scalar &value) const
Fill a tensor with the specified value.

742 Chapter 15. Neuron Custom C++ Operators [Beta]

AWS Neuron

Tensor Operators

Tensor &operator=(const Tensor &x) &

Tensor &operator=(Tensor &&x) &
Assignment operators

Tensor Accessors

The standard tensor accessor provides element-wise random access to Tensor elements. They can be created by calling
Tensor::accessor(). It can be used similarly to the Pytorch ATen version (see https://pytorch.org/cppdocs/notes/
tensor_basics.html#cpu-accessors). However, it is not as fast as other methods of accessing a Tensor, such as the
streaming accessor or TCM accessor.

Warning: The standard tensor accessors can only be used in single core mode. Using standard tensor accessors
in multicore mode is undefined behaviour and is going to cause race condition, yielding incorrect result.

Example Usage

Element-wise add of two 1D tensors using TensorAccessor.

torch::Tensor tensor_add_compute(const torch::Tensor& t1, const torch::Tensor& t2) {
size_t num_elem = t1.numel();
assert(t1.sizes() == t2.sizes());
torch::Tensor t_out = torch::empty({num_elem}, torch::kFloat);

auto t1_acc = t1.accessor<float, 1>();
auto t2_acc = t2.accessor<float, 1>();
auto t_out_acc = t_out.accessor<float, 1>();
for (size_t i = 0; i < num_elem; i++) {

t_out_acc[i] = t1_acc[i] + t2_acc[i];
}
return t_out;

}

Memory Architecture

Tensor data is stored in NeuronCore memory. The various types of accessors enable users to access tensor data from
their custom C++ operator code running on the GPSIMD engine.

15.1. API Reference Guide 743

https://pytorch.org/cppdocs/notes/tensor_basics.html#cpu-accessors
https://pytorch.org/cppdocs/notes/tensor_basics.html#cpu-accessors

AWS Neuron

Streaming Accessors

Streaming accessors provide the user the ability to access Tensor elements in sequential order, faster than the standard
tensor accessor. There are two stream accessor classes, one for reading and one for writing. Users should not construct
stream accessors directly, but should get them from a Tensor using Tensor::read_stream_accessor and Tensor:
:write_stream_accessor().

An active stream accessor is defined as a stream accessor that has been instantiated and not yet closed (via the close()
method or by going out-of-scope).

The user is responsible for managing stream accessors concurrently accessing the same Tensor. For safest usage,
no stream accessor should be active while there is an active TensorWriteStreamAccessor on the same Tensor.
The user may either have multiple TensorReadStreamAccessors active on the same Tensor, or only have a sin-
gle TensorWriteStreamAccessor active on that Tensor. Stream accessors should not be used concurrently with
standard tensor accessors on the same Tensor.

744 Chapter 15. Neuron Custom C++ Operators [Beta]

AWS Neuron

An unlimited number of active stream accessors (in total, across all Tensors) are functionally supported, but only up
to 4 active stream accessors will be performant. Additional stream accessors beyond the 4th will have performance
similar to that of a standard tensor accessor.

Warning: Streaming Accessors can only be used in single core mode. Using streaming accessors in multicore
mode is undefined behaviour and is going to cause race condition, yielding incorrect result.

Example Usage

Element-wise add of two tensors using TensorWriteStreamAccessor and TensorWriteStreamAccessor.

torch::Tensor tensor_add_compute(const torch::Tensor& t1, const torch::Tensor& t2) {
assert(t1.sizes() == t2.sizes());
torch::Tensor t_out = torch::empty(t1.sizes(), torch::kFloat);

auto t1_rd_stm_acc = t1.read_stream_accessor<float>();
auto t2_rd_stm_acc = t2.read_stream_accessor<float>();
auto t_out_wr_stm_acc = t_out.write_stream_accessor<float>();
for (int i = 0; i < t1.numel(); i++) {

auto sum = t1_rd_stm_acc.read() + t2_rd_stm_acc.read();
t_out_wr_stm_acc.write(sum);

}
return t_out;

}

Class torch::TensorWriteStreamAccessor

template<typename T> class TensorReadStreamAccessor

The class template parameter T is the scalar type of the tensor data.

Member Functions

T read()
Reads from next element in the stream. User is responsible for knowing when to stop reading from
TensorReadStreamAccessor. Reading past the end of the stream or on a closed stream results in undefined
behaviour.

int close()
Closes stream. Do not read from the stream after calling close().

15.1. API Reference Guide 745

AWS Neuron

Class torch::TensorWriteStreamAccessor

template<typename T> class torch::TensorWriteStreamAccessor

The class template parameter T is the scalar type of the tensor data.

Member Functions

void write(T value)
Writes to next element in the stream. Written value is not guaranteed to be written back to the Tensor’s mem-
ory until the TensorWriteStreamAccessor goes out of scope, or the user explicitly calls close(). User is
responsible for knowing when to stop writing to a stream accessor. Writing past the end of the stream or on a
closed stream results in undefined behaviour.

int close()
Closes stream. Flushes write data to the Tensor’s memory. Do not write to the stream after calling close().

Coherence

Stream accessors cache Tensor data in GPSIMD tightly-coupled memory (TCM), but do not ensure their caches remain
coherent. When exactly they read from or write back to NeuronCore memory is opaque to the user (except for close()
which forces a write back).

The safest way to use them is to ensure that no stream accessor is active (instantiated and not yet closed) while there is
an active write stream accessor on the same Tensor. The user should either have multiple read stream accessors active
on the same Tensor, or only have a single write stream accessor active on that Tensor.

The standard tensor accessors read/write NeuronCore memory directly. Therefore, tensor accessors can safely concur-
rently access the same Tensor, but it is safest not to use them concurrently with stream accessors since NeuronCore
memory isn’t guaranteed to be coherent with the stream accessor caches.

These coarse-grained guidelines are best practices, but it is possible to ignore them with careful usage of the accessors
(making sure elements are read before they are written to, elements written to are written back before being read again,
etc).

The coherence policy of a Tensor determines what to do when there is potentially incoherent access by an accessor
of that Tensor. It can either cause an error, or allow it but print a warning, or do nothing. In the case of the latter
two options, it is the user’s responsibility to ensure they carefully use accessors coherently. Coherence policy for
Tensors is torch::CoherencyEnforcer::Policy::COHERENT by default, but can be changed using Tensor::
set_accessor_coherence_policy().

// class torch::CoherencyEnforcer
enum Policy {

// Enforce a resource is acquired in a way that guarantees coherence
// Causes an error if it encounters potentially incoherent access
COHERENT,

// Allows potentially incoherent access, but will print a warning
INCOHERENT_VERBOSE,

// Allows potentially incoherent access, no error or warnings
INCOHERENT_QUIET

};

746 Chapter 15. Neuron Custom C++ Operators [Beta]

AWS Neuron

TCM Accessor

TCM accessors provide the fastest read and write performance. TCM accessors allow the user to manually man-
age copying data between larger, but slower-access NeuronCore memory to faster GPSIMD tightly-coupled memory
(TCM). It may be beneficial to see the diagram under Memory Architecture. Create a TensorTcmAccessor from a
Tensor by calling Tensor::tcm_accessor(). Users can allocate and free TCM memory using tcm_malloc() and
tcm_free(). Users have access to a 16KB pool of TCM memory. Note the streaming accessors also allocate from
this pool (4KB each). TCM accessors do not do any coherence checks.

Note: See Neuron Custom C++ Operators Performance Optimization for a tutorial on how to use TCM accessors.

Example Usage

Element-wise negate of a tensor using TensorTcmAccessor.

torch::Tensor tensor_negate_compute(const torch::Tensor& t_in) {
size_t num_elem = t_in.numel();
torch::Tensor t_out = torch::empty(t_in.sizes(), torch::kFloat);

static constexpr size_t buffer_size = 1024;
float *tcm_buffer = (float *)torch::neuron::tcm_malloc(sizeof(float) * buffer_size);

if (tcm_buffer != nullptr) {
// tcm_malloc allocated successfully, use TensorTcmAccessor
auto t_in_tcm_acc = t_in.tcm_accessor();
auto t_out_tcm_acc = t_out.tcm_accessor();
for (size_t i = 0; i < num_elem; i += buffer_size) {

size_t remaining_elem = num_elem - i;
size_t copy_size = (remaining_elem > buffer_size) ? buffer_size : remaining_

→˓elem;

t_in_tcm_acc.tensor_to_tcm<float>(tcm_buffer, i, copy_size);
for (size_t j = 0; j < copy_size; j++) {

tcm_buffer[j] *= -1;
}
t_out_tcm_acc.tcm_to_tensor<float>(tcm_buffer, i, copy_size);

}

torch::neuron::tcm_free(tcm_buffer);
} else {

// Handle not enough memory...
}

return t_out;
}

15.1. API Reference Guide 747

AWS Neuron

TCM Management Functions

void *torch::neuron::tcm_malloc(size_t nbytes)
Allocate nbytes bytes of memory from TCM and return pointer to this memory. Upon failure, returns null.

void torch::neuron::tcm_free(void *ptr)
Free memory that was allocated by tcm_malloc(). Undefined behaviour if ptrwas not returned from a previous
call to tcm_malloc().

Class torch::TensorTcmAccessor

template<bool read_only> class torch::TensorTcmAccessor

The read_only template parameter controls whether or not you can write to the accessor’s Tensor. A const
Tensor will return a read-only TensorTcmAccessor from Tensor::tcm_accessor().

Member Functions

template<typename T>
void tensor_to_tcm(T *tcm_ptr, size_t tensor_offset, size_t num_elem)

Copy num_elem elements from the accessor’s Tensor starting at the index tensor_offset to a TCM buffer
starting at tcm_ptr. Tensor indexing is performed as if the tensor was flattened. Template parameter T is the
scalar type of the tensor data. The TCM buffer’s size should be at least sizeof(T) * num_elem bytes.

template<typename T>
void tcm_to_tensor(T *tcm_ptr, size_t tensor_offset, size_t num_elem)

Copy num_elem elements from a TCM buffer starting at tcm_ptr to the accessor’s Tensor starting at the index
tensor_offset. Tensor indexing is performed as if the tensor was flattened. The TCM buffer’s size should be
at least sizeof(T) * num_elem bytes.

Writing Directly to Output Tensor

torch::Tensor get_dst_tensor()
Returns a reference to the Custom C++ operator output tensor (return value). If this method is called, it is
assumed that data will be written to this output tensor, and the tensor returned from the C++ operator will be
ignored. Using this method will improve performance by avoiding additional copying of the return value. See
example below for function usage.

// Example of write to get_dst_tensor()
torch::Tensor example_kernel(const torch::Tensor& t_in) {

size_t num_elem = t_in.numel();
torch::Tensor t_out = get_dst_tensor();
auto t_out_tcm_acc = t_out.tcm_accessor();

float *tcm_buffer = (float *)torch::neuron::tcm_malloc(sizeof(float) * buffer_
→˓size);

// Populate tcm_buffer with results
...
// Write to t_out throught tcm_accessor
t_out_acc.tcm_to_tensor<float>(tcm_buffer, offset, copy_size);

(continues on next page)

748 Chapter 15. Neuron Custom C++ Operators [Beta]

AWS Neuron

(continued from previous page)

...
}

Using multiple GPSIMD cores

Note: See Neuron Custom C++ Operators Performance Optimization for a tutorial on how to use multiple GPSIMD
cores to execute the Custom C++ Operator

By default, Custom C++ operators target a single core of the GPSIMD-Engine. Performance of Custom C++ operators
can be improved by targeting multiple cores. To enable usage of multiple GPSIMD cores, multicore=True should
be passed to custom_op.load().

custom_op.load(
name=name,
compute_srcs=compute_srcs,
shape_srcs=shape_srcs,
build_directory=os.getcwd(),
multicore=True

)

Each GPSIMD core executes the same kernel function. The user can control the execution on each core by conditioning
the Custom C++ operator logic on the core id (obtained via get_cpu_id() API). This is illustrated in the example
below.

Warning: In multicore mode, tensors can only be accessed through TCM accessors. Using regular tensor accessors
and streaming accessors are going to yield incorrect result.

The following functions are defined in neuron/neuron-utils.hpp

uint32_t get_cpu_id()
Return the id of the core that the Custom C++ operator is executing on, id is in range [0, get_cpu_count())

uint32_t get_cpu_count()
Return the total number of available GPSIMD cores.

torch::Tensor example_kernel(const torch::Tensor& t_in) {
size_t num_elem = t_in.numel();
torch::Tensor t_out = get_dst_tensor();

uint32_t cpu_id = get_cpu_id();
uint32_t cpu_count = get_cpu_count();

uint32_t partition = num_elem / cpu_count;

float *tcm_buffer = (float *)torch::neuron::tcm_malloc(sizeof(float) * buffer_size);
// Populate tcm_buffer with desired results
...

(continues on next page)

15.1. API Reference Guide 749

AWS Neuron

(continued from previous page)

// Write to t_out with a offset computed from cpu_id and cpu_count
t_out_tcm_acc.tcm_to_tensor<float>(tcm_buffer, partition*cpu_id, copy_size);

...
}

Return Value Handling

When using multiple GPSIMD cores, the get_dst_tensor() API must be used to write the return value of the
Custom C++ operators. Data not written to the tensor reference returned by get_dst_tensor(), or not invoking
get_dst_tensor() will result in undefined behavior. The user is responsible for writing the appropriate portion of
the output reference tensor from a given GPSIMD core. Since there is no synchronization between GPSIMD cores, it
is advised that each GPSIMD core writes to a mutually exclusive partition of the output reference tensor.

printf()

Custom C++ operators support the use of C++’s printf() to send information to the host’s terminal. Using printf()
is the recommended approach to functional debug. With it, the programmer can check the value of inputs, outputs,
intermediate values, and control flow within their operator.

Usage

To use printf() within a Custom C++ operator, the programmer must set the following environment variables before
running their model in order to receive the messages printed by their operator:

Table 1: Environment Variables
Name Description TypeValue to Enable printf Default Value
NEURON_RT_LOG_LEVELRuntime log verbose level StringAt least INFO See (NeuronX Runtime Configu-

ration) for more options.
NEURON_RT_GPSIMD_STDOUT_QUEUE_SIZE_BYTESSize of the printf output buffer,

in bytes
In-
te-
ger

Any power of two that is equal
to or less than 131072 (128KB)

Recommend setting a value of
131072 to maximize the size of
printf’s buffer. Setting a value of
0 disables printf.

Within a Custom C++ operator, printf() can be used as normal from within a C++ program. For more information,
consult a reference such as (https://cplusplus.com/reference/cstdio/printf/)

Example

#include <torch/torch.h>
#include <stdio.h> // Contains printf()

torch::Tensor tensor_negate_compute(const torch::Tensor& t_in) {
size_t num_elem = t_in.numel();
torch::Tensor t_out = torch::zeros({num_elem}, torch::kFloat);

auto t_in_acc = t_in.accessor<float, 1>();
(continues on next page)

750 Chapter 15. Neuron Custom C++ Operators [Beta]

https://cplusplus.com/reference/cstdio/printf/

AWS Neuron

(continued from previous page)

auto t_out_acc = t_out.accessor<float, 1>();
for (size_t i = 0; i < num_elem; i++) {

float tmp = -1 * t_in_acc[i];
printf("Assigning element %d to a value of %f\n", i, tmp);
t_out_acc[i] = tmp;

}
return t_out;

}

Print statements then appear on the host’s terminal with a header message prepended:

2023-Jan-26 00:25:02.0183 4057:4131 INFO TDRV:pool_stdio_queue_consume_all_entries ␣
→˓ Printing stdout from GPSIMD:
Assigning element 0 to a value of -1.000000
Assigning element 1 to a value of -2.000000
Assigning element 2 to a value of -3.000000
Assigning element 3 to a value of -4.000000
Assigning element 4 to a value of -5.000000
Assigning element 5 to a value of -6.000000
Assigning element 6 to a value of -7.000000
Assigning element 7 to a value of -8.000000

Limitations

• Performance: using printf() significantly degrades the operator’s performance.

– The programmer can disable it by unsetting NEURON_RT_GPSIMD_STDOUT_QUEUE_SIZE_BYTES or setting
it to 0.

∗ We recommend that you disable printf() if you are running the model in a performance-sensitive
context.

– To maximize performance, remove calls to printf() from within the operator.

∗ Even if printf() is disabled, calling the function incurs overhead.

• Buffer size: output from printf() is buffered during model execution and read by the Neuron runtime after
execution.

– The model can still execute successfully if you overflow the buffer.

– Overflowing the buffer causes the oldest data in the buffer to be overwritten.

• Print statements are processed and printed to the host’s terminal at the end of model execution, not in real time.

• printf() is only supported in single core mode, or on GPSIMD core 0 only when using multiple GPSIMD
cores.

15.1. API Reference Guide 751

AWS Neuron

Library Limitations

• Tensors passed into and returned from CustomOp functions can either have up to 8 dimensions where the max-
imum size of each dimension is 65535, or up to 4 dimensions where the maximum size of each dimension is
4294967295.

• When using multiple GPSIMD cores, only TensorTcmAccessor is supported. Usage of other accessors results
in undefined behaviour.

• Each model can only have one CustomOp library, and the library can have 10 functions registered. For more
information on function registration in PyTorch, see Implementing an operator in C++ in the Neuron Custom
C++ Operators Developer Guide [Beta].

– However, models using torch.sort cannot have any CustomOps.

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

15.2 Developer Guide

This document is relevant for: Inf2, Trn1, Trn1n

15.2.1 Neuron Custom C++ Operators Developer Guide [Beta]

This document gives an overview of the Neuron Custom C++ Operator feature and APIs . Currently, CustomOp support
is limited to the PyTorch framework.

Please refer to the following documents for further information regarding Neuron Custom C++ Operators:

• Neuron Custom C++ Operators in MLP Training

• Neuron Custom C++ Operators Performance Optimization

• Custom Operators API Reference Guide [Beta]

Table of contents

• Setup & Installation

• Implementing an operator in C++

• Building and executing operators

• Performance Guidance

• Functional Debug

752 Chapter 15. Neuron Custom C++ Operators [Beta]

AWS Neuron

Setup & Installation

Note: The name of aws-neuronx-gpsimd-customop has been changed to aws-neuronx-gpsimd-customop-lib
as of the neuron 2.10 release.

We provide tooling and library packages (RPM and DEB) that can be installed on TRN1 and INF2 instances:

aws-neuronx-gpsimd-tools-0.3
aws-neuronx-gpsimd-customop-lib-0.3

For AL2023 only, the following packages need be installed as dependencies:

sudo yum install libnsl
sudo yum install libxcrypt-compat

On AL2 and AL2023, they can be installed with the following commands:

sudo yum remove python3-devel -y
sudo yum remove aws-neuronx-gpsimd-tools-0.* -y
sudo yum remove aws-neuronx-gpsimd-customop-lib-0.* -y

sudo yum install python3-devel -y
sudo yum install aws-neuronx-gpsimd-tools-0.* -y
sudo yum install aws-neuronx-gpsimd-customop-lib-0.* -y

On Ubuntu, they can be installed with the following commands:

sudo apt-get remove python3-dev -y
sudo apt-get remove aws-neuronx-gpsimd-tools=0.* -y
sudo apt-get remove aws-neuronx-gpsimd-customop-lib=0.* -y

sudo apt-get install python3-dev -y
sudo apt-get install aws-neuronx-gpsimd-tools=0.* -y
sudo apt-get install aws-neuronx-gpsimd-customop-lib=0.* -y

Implementing an operator in C++

Custom operators require a function that defines the custom computation. We define this as the kernel function.
Neuron Custom C++ Operators also contain a shape function separate from the normal compute code. This shape
function defines the shapes of output tensors for a given set of inputs to the operator. This is needed because PyTorch
Neuron (torch-neuronx) is based on the PyTorch/XLA software package and uses a Just-In-Time (JIT) compilation
strategy. At runtime the operators in the model will be compiled into a binary to be executed on the NeuronCore.
During compilation the shapes of the input and output tensors to operators are computed. The shape function is
executed on the host, whereas the kernel function is executed on the NeuronCore.

15.2. Developer Guide 753

AWS Neuron

Kernel Function

The kernel function contains the C++ implementation of the CustomOp, as shown in the example below. By including
torch.h in the source, the developer has access to a NeuronCore-ported subset of the torch C++ api (https://pytorch.
org/cppdocs/). The port contains everything required for CustomOp development and model integration, specifically
Tensor and Scalar classes in c10, and a subset of aTen operators.

#include <stdint.h>
#include <stdlib.h>
#include <torch/torch.h>

torch::Tensor tensor_negate_compute(const torch::Tensor& t_in) {
size_t num_elem = t_in.numel();
torch::Tensor t_out = torch::zeros({num_elem}, torch::kFloat);

auto t_in_acc = t_in.accessor<float, 1>();
auto t_out_acc = t_out.accessor<float, 1>();
for (size_t i = 0; i < num_elem; i++) {

t_out_acc[i] = -1 * t_in_acc[i];
}
return t_out;

}

The kernel function is the main computational code for the operator. We support a subset of the input types usable
by regular PyTorch Custom Operators: torch::Tensor, torch::Scalar, double, and int64_t. However we do
not support std::vector or std::tuple of these types at this time. Note that similar to regular PyTorch Custom
Operators, only double and not float, and only int64_t and not other integral types such as int, short or long
are supported. The return value must be a torch::Tensor.

Warning: Tensors passed into and returned from CustomOp functions can either have up to 8 dimensions where
the maximum size of each dimension is 65535, or up to 4 dimensions where the maximum size of each dimension
is 4294967295.

The body of the kernel function may exercise C/C++ libraries, torch::Tensor classes, and select aTen operators, as
is customary for Torch programming. For high performance, feature offerings provide faster memory access, via new
Tensor Accessor classes and stack management compiler flags. Additionally, higher performance can be obtained by
parallelizing execution of the kernel over multiple GPSIMD cores. See the Custom Operators API Reference Guide
[Beta] for more details.

Finally, because the kernel is specially compiled for and run by the NeuronCore target, its tooling, libraries, and en-
vironment differ from the host pytorch installation. For example, while the host may run Pytorch 1.13 and a C++17
compatible compiler in a linux environment, the NeuronCore may run a port of Pytorch 1.12 (c10) and LLVM’s libc++
C++14 version 10.0.1 without linux. Developers must develop for the compiler, torch version, and environment of their
targeted NeuronCore. See the Custom Operators API Reference Guide [Beta] for more details.

754 Chapter 15. Neuron Custom C++ Operators [Beta]

https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/

AWS Neuron

Shape Function

The shape function has the same function signature as the kernel function, but does not perform any computations.
Rather, it only defines the shape of the output tensor but not the actual values.

#include <stdint.h>
#include <stdlib.h>
#include <torch/torch.h>

torch::Tensor tensor_negate_shape(torch::Tensor t1) {
size_t num_elem = t1.numel();
torch::Tensor t_out = torch::zeros({num_elem}, torch::kFloat);

return t_out;
}

The body of the shape function may exercise C/C++ libraries or torch::Tensor classes. The body may not access
the data of input tensors since these are XLA Tensors and do not have any data storage allocated yet. However, any of
the functions that access shape information such as numel (to get the number of elements) may be used.

Building and executing operators

Once you have the kernel and shape functions for your operators you can build them into a library to use them from
PyTorch in your model. Just like regular PyTorch Custom Operators, Neuron Custom C++ Operators use a registration
macro to associate the kernel and shape functions with the name of the operator that will be called from Python.

Similar to PyTorch, Neuron Custom C++ Operators are grouped into libraries defined within the
NEURON_LIBRARY(<lib_name>, m) scope, where lib_name is the name of your library of custom operators.
Within this scope, calls to m.def(<op_name>, <shape_fcn>, <kernel_fcn>) define each operator in your
library. The op_name is the name to call the operator with in the model (i.e. torch.ops.lib_name.op_name()).
The shape_fcn is a function pointer to the shape function to call during compilation. Finally the kernel_fcn is the
name of the function to be executed on the NeuronCore at runtime.

#include <stdint.h>
#include <stdlib.h>
#include <torch/torch.h>
#include "torchneuron/register.h"

torch::Tensor tensor_negate_shape(torch::Tensor t1) {
size_t num_elem = t1.numel();
torch::Tensor t_out = torch::zeros({num_elem}, torch::kFloat);

return t_out;
}

NEURON_LIBRARY(my_ops, m) {
m.def("tensor_negate", &tensor_negate_shape, "tensor_negate_compute");

}

Notice that the NEURON_LIBRARY macro is used in the same C++ file as the shape function. This is because the
registration is loaded on the host.

15.2. Developer Guide 755

AWS Neuron

Warning: Each model can only have one CustomOp library, and the library can have 10 functions registered.
However, models using torch.sort cannot have any CustomOps.

The custom op library is built by calling the load API in Python like:

import torch_neuronx
from torch_neuronx.xla_impl import custom_op

custom_op.load(
name='my_ops',
compute_srcs=['kernel.cpp'],
shape_srcs=['shape.cpp'],
multicore=False

)

In the example above, name refers to the name of the library file to be created (i.e. libmy_ops.so) and the
compute_srcs and shape_srcs are lists of files to be compiled. After the load API completes, the library will
have been compiled and loaded into the current PyTorch process.

Warning: The library file name should not be “builtin” as it is a reserved keyword.

CustomOp also supports multicore execution mode. If you want to the library to run in multicore mode, pass the flag
multicore=True into the loadAPI. Notice that the execution mode is specified at the library level, so all the functions
in the library run in the same mode. For more details of multicore CustomOp, please refer to Using multiple GPSIMD
cores section in Custom Operators API Reference Guide [Beta].

Similar to PyTorch, the Neuron custom op will be available at torch.ops.<lib_name>.<op_name>where lib_name
is defined in the NEURON_LIBRARY macro, and op_name is defined in the call to m.def.

import torch

out_tensor = torch.ops.my_ops.tensor_negate(in_tensor)

Loading a previously built library

The library can also be built ahead of time or in a separate process and loaded later. In the load API, specify the
build_directory argument and the library will be written to that location on disk.

import torch_neuronx
from torch_neuronx.xla_impl import custom_op

custom_op.load(
name='my_ops',
compute_srcs=['kernel.cpp'],
shape_srcs=['shape.cpp'],
build_directory*=*os.getcwd(),

)

Then, later, this library can be loaded by calling the load_library API and using the ops in the exact same way.

756 Chapter 15. Neuron Custom C++ Operators [Beta]

AWS Neuron

import torch
import torch_neuronx
from torch_neuronx.xla_impl import custom_op

custom_op.load_library('/home/user/libmy_ops.so')

out_tensor = torch.ops.my_ops.tensor_negate(in_tensor)

Note: The load_library API does not need to be called in the same process where the library is built with the load
API. Similar to regular PyTorch Custom Operators, Neuron Custom C++ Operators are built and loaded at the same
time when the load API is called.

Performance Guidance

When possible, it is recommended that operators supported by the designated framework with supported compilation
onto Neuron devices are used. These operators have been have been highly optimized for the Neuron architecture.
However, for other scenarios where Custom C++ operators are the required solution, the following recommendations
can be followed to improve performance:

• Use the provided memory management accessors (streaming and tcm accessor). Both of these accessors improve
data fetch overhead. See the Custom Operators API Reference Guide [Beta] for more information.

• You can optionally specify the estimated amount of stack space (in bytes) used in your Custom C++ operator via
the extra_cflags argument in the call to custom_op.load(). For instance, if you anticipate your operator
using ~20KB of stack space, include the argument extra_cflags=['-DSTACK_SIZE=20000'] in the call to
custom_op.load(). This is necessary only if you anticipate the stack to grow beyond ~8KB. This flag is used
to decide whether to place the stack in faster local memory, which significantly improves performance, or if we
will need to place the stack in larger NeuronCore memory with longer access latency. If you do not specify this
flag, or the estimate you provide is small enough (less than ~8KB), the stack will go in local memory. Note, when
placed in local memory, the stack space will not be restricted by your estimate, but if your stack grows beyond
~8KB, there’s a risk of a stack overflow, and you will be notified with an error message from GPSIMD should
such a case occur. If you do specify a stack size, the maximum supported stack size is 400KB.

• Use multiple GPSIMD cores when possible to parallelize (and hence improve performance) of Custom C++
operator, refer to Using multiple GPSIMD cores section in Custom Operators API Reference Guide [Beta] for
more information.

Functional Debug

Custom C++ operators support the use of the C++ language’s printf(). For functional debug, the recommended
approach is using printf() to print input, intermediate, and final values. Consult the Custom Operators API Reference
Guide [Beta] for more information.

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

15.2. Developer Guide 757

AWS Neuron

15.3 Tutorials

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

15.4 Misc (Neuron Custom C++ Operators)

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

15.4.1 Neuron Custom C++ Tools Release Notes

aws-neuronx-gpsimd-tools [0.1]

Date: 02/08/2023

• First release of aws-neuronx-gpsimd-tools. This release provides the required tools to support the building of
Neuron Custom C++ operators.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

15.4.2 Neuron Custom C++ Library Release Notes

aws-neuronx-gpsimd-customop-lib [0.3]

Date: 04/28/2023

• Add initial support for using Multiple GPSIMD Cores for Custom C++ Operators

• Package name was changed to aws-neuronx-gpsimd-customop-lib

aws-neuronx-gpsimd-customop [0.1]

Date: 02/08/2023

• First release of aws-neuronx-gpsimd-customop. This release provides tensor library support required for building
Neuron Custom C++ operators.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

758 Chapter 15. Neuron Custom C++ Operators [Beta]

AWS Neuron

API Reference Guide

• Custom Operators API Reference Guide [Beta]

Developer Guide

• Neuron Custom C++ Operators Developer Guide [Beta]

Tutorials

• Neuron Custom C++ Operators in MLP Training

• Neuron Custom C++ Operators Performance Optimization

Misc

• Neuron Custom C++ Tools Release Notes

• Neuron Custom C++ Library Release Notes

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

15.4. Misc (Neuron Custom C++ Operators) 759

AWS Neuron

760 Chapter 15. Neuron Custom C++ Operators [Beta]

CHAPTER

SIXTEEN

NEURON TOOLS

Neuron provides debugging and profiling tools with the visualization support of the TensorBoard plugin. The Neuron
helper tools assist in best practices for model onboarding and performance optimizations. The debugging and profiling
tools provide monitoring of runtime and performance metrics insights.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

16.1 System Tools

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

16.1.1 Neuron Monitor User Guide

Table of contents

• Overview

• Using neuron-monitor

– Configuration file example

– Neuron applications tagging

– JSON objects and fields in the configuration file

– Neuron Runtime-level metric groups

– System-wide metric groups

• Execution model

• The JSON output format

• Neuron application level metric groups

– neuroncore_counters

– execution_stats

– memory_used

– neuron_runtime_vcpu_usage

• System level metric groups

– neuron_hw_counters

761

AWS Neuron

– vcpu_usage

– memory_info

• Companion scripts

– neuron-monitor-cloudwatch.py

– neuron-monitor-prometheus.py

Overview

neuron-monitor collects metrics and stats from the Neuron Applications running on the system and streams the col-
lected data to stdout in JSON format. It is provided as part of the aws-neuron-tools package.

These metrics and stats are organized into metric groups which can be configured by providing a configuration file as
described in Using neuron-monitor

When running, neuron-monitor will:

• Collect the data for the metric groups which, based on the elapsed time since their last update, need to be updated

• Take the newly collected data and consolidate it into a large report

• Serialize that report to JSON and stream it to stdout from where it can be consumed by other tools - such as the
sample neuron-monitor-cloudwatch.py and neuron-monitor-prometheus.py scripts.

• Wait until at least one metric group needs to be collected and repeat this flow

Note: neuron-monitor fully supports the newly launched inf2 instances.

Using neuron-monitor

neuron-monitor CLI

neuron-monitor [parameters]

neuron-monitor accepts the following optional parameters:

• --verbose (int) default=0: Can be 0 to 4, and controls the amount of debugging and verbose information
sent to stderr; 0: no output, 4: maximum verbosity

• -c, --config-file (string): Allows specifying a valid path to a neuron-monitor JSON configuration file

Example:

neuron-monitor -c monitor.conf

Not specifying any configuration file will enable collecting all the metric groups with a period of 5 seconds for all
currently running Neuron applications.

762 Chapter 16. Neuron Tools

AWS Neuron

Configuration file example

Example of a configuration file which enables all available metric groups for every running Neuron application, with
a global update period of 1 second and sets an update period of 2 seconds for the "neuron_hw_counters" metric
group:

{
"period": "1s",
"neuron_runtimes": [
{
"tag_filter": ".*",
"metrics": [
{
"type": "neuroncore_counters"

},
{
"type": "memory_used"

},
{
"type": "neuron_runtime_vcpu_usage"

},
{
"type": "execution_stats"

}
]

}
],
"system_metrics": [
{
"type": "vcpu_usage"

},
{
"type": "memory_info"

},
{

"period": "2s",
"type": "neuron_hw_counters"

}
]

}

Neuron applications tagging

In order to make application monitoring easier, Neuron applications can be tagged with a 255 character string which
identifies that app. Tagging is done using the NEURON_PROCESS_TAG environment variable.

For example: NEURON_PROCESS_TAG=my_app_1 python training.py will associate the my_app_1 tag with that
Python application. If NEURON_PROCESS_TAG is not specified, the application’s PID will be used as a TAG.

This tag will be used by neuron-monitor to filter Neuron applications.

16.1. System Tools 763

AWS Neuron

JSON objects and fields in the configuration file

• "neuron_runtimes" - array of objects specifying which Neuron Applications to monitor and what metric
groups are enabled for each of them

– "tag_filter" - a regex which will be used to filter Neuron applications tags in order to determine if they
will be monitored (optional)

– "metrics" - array of objects specifying which metric groups to capture for this Neuron application

∗ "type" - type of metric group

• "period" - this field applies to metric group objects and sets the amount of time between two updates for that
metric group

– if can be specified as part of the root and/or neuron_runtime objects where it applies to all their children,
and/or as part of a metric group object

– if there’s no period specified, a default value of 5 seconds will be used

• "system_metrics" - array of objects specifying which system level metric groups are enabled

Neuron Runtime-level metric groups

• neuroncore_counters - NeuronCore related metrics

• memory_used - data on the amount of memory used by the Neuron application

• vcpu_usage - Neuron application vCPU utilization data

• execution_stats - Neuron application execution stats, including error count and latency

System-wide metric groups

• vcpu_usage - system-wide vCPU usage

• memory_info - system-wide memory usage

• neuron_hw_counters - counters for correctable and uncorrectable memory ecc events

764 Chapter 16. Neuron Tools

AWS Neuron

Execution model

neuron-monitor waits for one or more metric groups to be up for update, then collects the corresponding data, consol-
idates it into a report which is streamed to stdout as a JSON and goes back to waiting.

The JSON output format

Whenever the report gets updated, a complete JSON is written to stdout. This is its structure:

{
"neuron_runtime_data": [
{
"pid": 0,
"address": "",
"neuron_runtime_tag", "my_app_1",
"error": "",
"report": {
"neuroncore_counters": {

[...]
},
"execution_stats": {

[...]
},
"memory_used": {

[...]
},
"neuron_runtime_vcpu_usage": {

[...]
}

}
(continues on next page)

16.1. System Tools 765

AWS Neuron

(continued from previous page)

}
],
"system_data": {
"neuron_hw_counters": {

[...]
},
"vcpu_usage": {

[...]
},
"memory_info": {

[...]
}

},
"instance_info": {

[...]
},
"neuron_hardware_info": {

[...]
}

}

• "neuron_runtime_data" is an array containing one entry per each Neuron application which passes the filter
specified in the settings file

– "pid" is the pid of this Neuron application

– "neuron_runtime_tag" is the configured tag for the Neuron application

– "error" specifies any error that occurred when collecting data from this Neuron application

– "report" will contain the results for the Neuron application-level metric groups; their formats are de-
scribed below

• "system_data" has a similar structure to "neuron_runtime_data"‘s "report" but only contains system-
level metric groups (not associated to any Neuron application)

Regardless of the configuration, the following two JSON objects are always present in the output:

instance_info Contains information about the instance on which neuron-monitor is running.

"instance_info": {
"instance_name": "My_Instance",
"instance_id": "i-0011223344556677a",
"instance_type": "inf1.xlarge",
"instance_availability_zone": "us-west-2b",
"instance_availability_zone_id": "usw2-az2",
"instance_region": "us-west-2",
"ami_id": "ami-0011223344556677b",
"subnet_id": "subnet-112233ee",
"error": ""

}

Depending on when the instance was launched, the following fields might not be available:

• instance_availability_zone_id : available only for instances launched in 2020-08-24 and later

• instance_region : available only for instances launched on 2020-08-24 and later

766 Chapter 16. Neuron Tools

AWS Neuron

• instance_name : available only if instance_region is set and aws-cli tools are installed

error will contain an error string if getting one of the fields, except those mentioned above, resulted in an error.

neuron_hardware_info Contains basic information about the Neuron hardware.

"neuron_hardware_info": {
"neuron_device_version": "v2",
"neuroncore_version": "v2",
"neuron_device_count": 16,
"neuroncore_per_device_count": 4,
"error": ""

}

• neuron_device_version: version of the Neuron Devices on the instance,

• neuroncore_version: version of the NeuronCores on the instance,

• neuron_device_count : number of available Neuron Devices

• neuroncore_per_device_count : number of NeuronCores present on each Neuron Device

• error : will contain an error string if any occurred when getting this information (usually due to the Neuron
Driver not being installed or not running).

Each metric group requested in the settings file will get an entry in the resulting output. The general format for such
an entry is:

"metric_group": {
"period": 1.015, // Actual captured period, in seconds
"error": "", // Error, if any occurred, otherwise an empty string
[...] // Metric group specific data

}

Neuron application level metric groups

neuroncore_counters

"neuroncore_counters": {
"period": 1.000113182,
"neuroncores_in_use": {
"0": {
"neuroncore_utilization": 42.01,
"flops": 1234567891011

},
"1": {
"neuroncore_utilization": 42.02,
"flops": 1234567891021

},
"2": {
"neuroncore_utilization": 42.03,
"flops": 1234567891031

},
"3": {
"neuroncore_utilization": 42.04,

(continues on next page)

16.1. System Tools 767

AWS Neuron

(continued from previous page)

"flops": 1234567891041
}

},
"error": ""

}

• "neuroncores_in_use" is an object containing data for all the NeuronCores that were active when the data
was captured, indexed by NeuronCore index: "neuroncore_index": { neuroncore_data }

– "neuroncore_utilization" - NeuronCore utilization, in percent, during the captured period

– "flops" - number of floating point operations per second during the captured period

• "error" - string containing any error that occurred when collecting the data

execution_stats

"execution_stats": {
"period": 1.030613214,
"error_summary": {
"generic": 0,
"numerical": 0,
"transient": 0,
"model": 0,
"runtime": 0,
"hardware": 0

},
"execution_summary": {
"completed": 123,
"completed_with_err": 0,
"completed_with_num_err": 0,
"timed_out": 0,
"incorrect_input": 0,
"failed_to_queue": 0

},
"latency_stats": {
"total_latency": {
"p0": 0.01100001,
"p1": 0.01100002,
"p25": 0.01100004,
"p50": 0.01100008,
"p75": 0.01100010,
"p99": 0.01100012,
"p100": 0.01100013

},
"device_latency": {
"p0": 0.01000001,
"p1": 0.01000002,
"p25": 0.01000004,
"p50": 0.01000008,
"p75": 0.01000010,
"p99": 0.01000012,

(continues on next page)

768 Chapter 16. Neuron Tools

AWS Neuron

(continued from previous page)

"p100": 0.01000013
}

},
"error": ""

},

• "error_summary" is an object containing the error counts for the captured period indexed by their type

– "generic" - generic execution errors

– "numeric" - NAN errors encountered during execution

– "transient" - recoverable errors, such as ECC corrections

– "model" - model-related errors

– "runtime" - Neuron Runtime errors

– "hardware" - hardware errors such as uncorrectable ECC issues

• "execution_summary" is an object containing all execution outcome counts for the captured period indexed
by their type

– "completed" - executions completed successfully

– "completed_with_err" - executions that ended in an error other than a numeric error

– "completed_with_num_err" - executions that ended in a numeric error

– "timed_out" - executions that took longer than the Neuron Runtime configured timeout value

– "incorrect_input" - executions that failed to start due to incorrect input being provided

– "failed_to_queue" - execution requests that were rejected due to Neuron Runtime not being able to
queue them

• "latency_stats" contains two objects containing latency percentiles, in seconds, for the data captured for the
model executed during the captured period. If there are no models being executed during this time, the two
objects will be null (i.e. "total_latency": null)

– "total_latency" - percentiles, in seconds, representing

latency for an execution as measured by the Neuron Runtime - "device_latency" - percentiles, in seconds,
representing execution time exclusively on the Neuron Device

• "error" - string containing any error that occurred when collecting the data

memory_used

"memory_used": {
"period": 1.00001,
"neuron_runtime_used_bytes": {
"host": 6997643264,
"neuron_device": 12519788544,
"usage_breakdown": {
"host": {
"application_memory": 6996594688,
"constants": 0,
"dma_buffers": 1048576,

(continues on next page)

16.1. System Tools 769

AWS Neuron

(continued from previous page)

"tensors": 0
},
"neuroncore_memory_usage": {
"0": {
"constants": 193986816,
"model_code": 176285056,
"model_shared_scratchpad": 0,
"runtime_memory": 0,
"tensors": 20971520

},
"1": {
"constants": 193986816,
"model_code": 176285056,
"model_shared_scratchpad": 0,
"runtime_memory": 0,
"tensors": 20971520

},
...

}
}
"loaded_models": [
{
"name": "neff",
"uuid": "91f2f66e83ea419dace1da07617ad39f",
"model_id": 10005,
"is_running": false,
"subgraphs": {
"sg_00": {
"memory_used_bytes": {
"host": 20480,
"neuron_device": 21001024,
"usage_breakdown": {
"host": {
"application_memory": 20480,
"constants": 0,
"dma_buffers": 0,
"tensors": 0

},
"neuron_device": {
"constants": 20971520,
"model_code": 29504,
"runtime_memory": 0,
"tensors": 0

}
}

},
"neuroncore_index": 0,
"neuron_device_index": 12

}
}

},
...

(continues on next page)

770 Chapter 16. Neuron Tools

AWS Neuron

(continued from previous page)

],
"error": ""

}

• "memory_used" summarizes the amount of memory used by the Neuron application

– "neuron_runtime_used_bytes" - current amount of memory used by the Neuron application

∗ "host" - total host DRAM usage in bytes

∗ "neuron_device" - total Neuron device memory usage in bytes

∗ "usage_breakdown" - a breakdown of the total memory usage in the other two fields

· "host" - breakdown of the host memory usage

· "application_memory" - amount of host memory used by the application - this includes all
allocations that are not included in the next categories

· "constants" - amount of host memory used for constants during training (or weights during
inference)

· "dma_buffers" - amount of host memory used for DMA transfers

· "tensors" - amount of host memory used for tensors

· "neuroncore_memory_usage" - a breakdown of memory allocated on the Neuron Devices and
the NeuronCores for which it was allocated

"0" - "32" (for trn1-32xlarge) - NeuronCores for which the memory was allocated

"constants" - amount of device memory used for constants during training (or weights
during inference)

"model_code" - amount of device memory used for models’ executable code

"model_shared_scratchpad" - amount of device memory used for the scratchpad
shared by the models - a memory region reserved for the models’

internal variables and auxiliary buffers - "runtime_memory" - amount of device memory
used by the Neuron Runtime - "tensors" - amount of device memory used for tensors

• "loaded_models" - array containing objects representing loaded models

– "name" - name of the model

– "uuid" - unique id for the model

– "model_id" - Neuron application-assigned ID for this model

– "is_running" - true if this model is currently started, false otherwise

– “subgraphs" - object containing all the subgraphs for the model, indexed by their name:
"subgraph_name": { subgraph_data }

∗ "memory_used_bytes" - memory usage for this subgraph

· "host" - total host DRAM usage in bytes

· "neuron_device" - total Neuron device DRAM usage in bytes

· "usage_breakdown" - a breakdown of memory allocated at load time for this model

· "host" - breakdown of host memory allocated for this model

16.1. System Tools 771

AWS Neuron

· "application_memory" - amount of host memory allocated for this model by the Neuron
Runtime which doesn’t fall in any of the next categories

· "constants" - amount of host memory used for constants during training (or weights during
inference)

· "dma_buffers" - host memory allocated for DMA transfers for this model

· "tensors" - amount of device memory used for tensors at model load time

· "neuron_device" - a breakdown of device memory allocated for this model

· "constants" - amount of device memory used for constants during training (or weights dur-
ing inference)

· "model_code" - amount of device memory used for the model’s executable code

· "runtime_memory" - amount of device memory used by the Neuron Runtime for this model

· "tensors" - amount of device memory allocated for tensors at this model’s load time

∗ "neuroncore_index" - NeuronCore index on which the subgraph is loaded

∗ "neuron_device_index" - Neuron device index on which the subgraph is loaded

• "error" - string containing any error that occurred when collecting the data

neuron_runtime_vcpu_usage

"neuron_runtime_vcpu_usage": {
"period": 1.030604818,
"vcpu_usage": {
"user": 42.01,
"system": 12.34

},
"error": ""

}

• "vcpu_usage" - object showing vCPU usage in percentages for the Neuron application during the captured
period

– "user" - percentage of time spent in user code by this Neuron Application

– "system" - percentage of time spent in kernel code by this Neuron application

• "error" - string containing any error that occurred when collecting the data

System level metric groups

neuron_hw_counters

"neuron_hw_counters": {
"period": 1.030359284,
"neuron_devices": [
{
"neuron_device_index": 0,
"mem_ecc_corrected": 0,

(continues on next page)

772 Chapter 16. Neuron Tools

AWS Neuron

(continued from previous page)

"mem_ecc_uncorrected": 0,
"sram_ecc_uncorrected": 0,
"sram_ecc_corrected": 0

}
],
"error": ""

},

• "neuron_devices" - array containing ECC data for all Neuron devices

– "neuron_device_index" - Neuron device index

– "mem_ecc_corrected" - number of corrected ECC events in the Neuron device’s DRAM

– "mem_ecc_uncorrected" - number of uncorrected ECC events in the Neuron device’s DRAM

– "sram_ecc_uncorrected" - number of uncorrected ECC events in the Neuron device’s SRAM

– "sram_ecc_corrected" - number of corrected ECC events in the Neuron device’s SRAM

• "error" - string containing any error that occurred when collecting the data

vcpu_usage

"vcpu_usage": {
"period": 0.999974868,
"average_usage": {
"user": 32.77,
"nice": 0,
"system": 22.87,
"idle": 39.36,
"io_wait": 0,
"irq": 0,
"soft_irq": 0

},
"usage_data": {
"0": {
"user": 34.41,
"nice": 0,
"system": 27.96,
"idle": 37.63,
"io_wait": 0,
"irq": 0,
"soft_irq": 0

},
"1": {
"user": 56.84,
"nice": 0,
"system": 28.42,
"idle": 14.74,
"io_wait": 0,
"irq": 0,
"soft_irq": 0

},
(continues on next page)

16.1. System Tools 773

AWS Neuron

(continued from previous page)

[...]
},
"context_switch_count": 123456,
"error": ""

}

• each vCPU usage object contains the following fields:

– "user" - percentage of time spent in user code

– "nice" - percentage of time spent executing niced user code

– "system" - percentage of time spent executing kernel code

– "idle" - percentage of time spent idle

– "io_wait" - percentage of time spent waiting for IO operations

– "irq" - percentage of time spent servicing hardware interrupts

– "soft_irq" - percentage of time spent servicing software interrupts

• "average_usage" - contains the average usage across all vCPUs during the captured period

• "usage_data" - contains per vCPU usage during the captured period

• "context_switch_count" - contains the number of vCPU context switches during the captured period

• "error" - string containing any error that occurred when collecting the data

memory_info

"memory_info": {
"period": 5.346411129,
"memory_total_bytes": 49345835008,
"memory_used_bytes": 16042344448,
"swap_total_bytes": 0,
"swap_used_bytes": 0,
"error": ""

}

• "memory_total_bytes" - total size of the host memory, in bytes

• "memory_used_bytes" - amount of host memory in use, in bytes

• "swap_total_bytes" - total size of the host swap file, in bytes

• "swap_used_bytes" - amount of swap memory in use, in bytes

774 Chapter 16. Neuron Tools

AWS Neuron

Companion scripts

neuron-monitor is installed with two example Python companion script: neuron-monitor-cloudwatch.py and neuron-
monitor-prometheus.py.

neuron-monitor-cloudwatch.py

It requires Python3 and the boto3 Python module. It is installed to: /opt/aws/neuron/bin/
neuron-monitor-cloudwatch.py.

Using neuron-monitor-cloudwatch.py

neuron-monitor | neuron-monitor-cloudwatch.py --namespace <namespace> --region <region>

For example:

neuron-monitor | neuron-monitor-cloudwatch.py --namespace neuron_monitor_test --region␣
→˓us-west-2

neuron-monitor-prometheus.py

It requires Python3 and the Prometheus client Python module. It is installed to: /opt/aws/neuron/bin/
neuron-monitor-prometheus.py.

Using neuron-monitor-prometheus.py

neuron-monitor | neuron-monitor-prometheus.py --port <port>

For example:

neuron-monitor | neuron-monitor-prometheus.py --port 8008

The default value for --port is 8000.

If your data visualization framework is Grafana, we provided a Grafana dashboardwhich integrates with Prometheus
and this script.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

16.1. System Tools 775

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html#quickstart
https://github.com/prometheus/client_python

AWS Neuron

16.1.2 Neuron Top User Guide

Table of contents

• Overview

• Using neuron-top

– Command line arguments

– User interface

Overview

neuron-top provides useful information about NeuronCore and vCPU utilization, memory usage, loaded models, and
Neuron applications.

Note: neuron-top fully supports the newly launched inf2 instances.

Note: If you are parsing neuron-top output in your automation environment, you can now replace it with
neuron-monitor (Neuron Monitor User Guide) which outputs data in a standardized, easier to parse JSON format.

Using neuron-top

Command line arguments

Launch neuron-top by simply typing its name in the shell: neuron-top.

User interface

The title section of the user interface shows the application’s version number, EC2 instance ID, and the instance type
on which it is running:

The rest of the user interface is divided in 4 sections. The data shown in these sections applies to the currently selected
tab - which can be the ‘all’ tab, which aggregates data from all running Neuron processes, or a tab representing a single
Neuron process:

776 Chapter 16. Neuron Tools

AWS Neuron

• The NeuronCore <vers> Utilization section shows the NeuronCore utilization for the currently selected
tab. <vers> is the version of the NeuronCores on the instance (for example, v2 for trn1 instances and inf2
instances).

Pressing the ‘F’ key will toggle between displaying utilization percentages - as seen in the previous image - and
teraflops (trillion floating point operations per second), as seen in the image below:

• The VCPU Utilization section shows:

– System vCPU usage - the two percentages are user% and system%

– Runtime vCPU usage - same breakdown

• The Memory Usage Summary section provides a breakdown of the total memory usage on the Neuron Device
as well as on the host:

– Host Used Memory - amount of host memory used by the selected application (or an aggregate of all
applications if ‘All’ is selected)

∗ Total - total amount of host memory used

∗ Tensors - amount of host memory used for tensors

16.1. System Tools 777

AWS Neuron

∗ Constants - amount of host memory used for constants (for applications running training) or
weights (for applications running inferences)

∗ DMA Buffers - amount of host memory used for DMA transfers

∗ App. Memory - amount of host memory used by the application that doesn’t fall in any of the pre-
vious categories

– Device Used Memory - amount of device memory used by the selected application (or an aggregate of
all applications if ‘All’ is selected)

∗ Total - total amount of device memory used

∗ Tensors - amount of device memory used for tensors

∗ Constants - amount of device memory used for constants (for applications running training) or
weights (for applications running inferences)

∗ Model Code - amount of device memory used for storing model executable code

∗ Runtime Memory - amount of device memory used by the Neuron Runtime (outside of the previous
categories)

∗ Model Scratchpad - amount of device memory used for the shared model scratchpad, a shared
buffer used for internal model variables and other auxiliary buffers

• Memory Usage Details contains memory usage data organized as a tree which can be expanded/collapsed.
The columns are:

– Model ID - the Neuron Runtime identifier for this model instance

– Host Memory - amount of host memory used

– Device Memory - amount of device memory used

The tree view shows the amount of memory used for the same categories shown in the Memory Usage Summary but
in this section they are attached to either a model (if the memory has been allocated at model load time for that model),
or to a NeuronCore (if the memory can’t be associated with a model, but has been allocated for that NeuronCore). The
‘parent’ shows the total amount of memory used - the sum of its children.

Note: The up/down/left/right keys can be used to navigate the tree view. The ‘x’ key expands/collapses the entire tree.

The bottom bar shows which Neuron process’ data is currently displayed by highlighting its tag using a green font
and marking it using a pair of ‘>’, ‘<’ characters. The ‘all’ tab shows an aggregated view of all the Neuron processes
currently running on the instance.

Note: The ‘1’-‘9’ keys select the current tab. ‘a’/’d’ selects the previous/next tab on the bar.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

778 Chapter 16. Neuron Tools

AWS Neuron

16.1.3 Neuron LS User Guide

To identify number of Neuron Devices in a given instance use the neuron-ls command. neuron-ls will also show
which processes are using each Device, including the command used to launch each of those processes.

neuron-ls CLI

neuron-ls [options]

Available options:
• --wide, -w: Displays the table in a wider format.
• --show-all-procs, -a: Show all processes using the Neuron Devices, including processes that aren’t

using Neuron Runtime 2.x such as neuron-monitor or neuron-ls itself.
• --topology, -t: Display topology information about the system’s Neuron Devices.

Note: neuron-ls fully supports the newly launched inf2 instances.

Examples

First we will show the output of neuron-ls on an Inf1.6xlarge instance.

$ neuron-ls
+--------+--------+--------+-----------+--------------+-------+--------------------------
→˓----------------+---------+
| NEURON | NEURON | NEURON | CONNECTED | PCI | PID | COMMAND ␣
→˓ | RUNTIME |
| DEVICE | CORES | MEMORY | DEVICES | BDF | | ␣
→˓ | VERSION |
+--------+--------+--------+-----------+--------------+-------+--------------------------
→˓----------------+---------+
| 0 | 4 | 8 GB | 1 | 0000:00:1c.0 | 23518 | neuron-app01 infer --
→˓input-data-direc... | 2.0.0 |
| | | | | | 23531 | neuron-app02 infer --
→˓input-data-direc... | 2.0.0 |
+--------+--------+--------+-----------+--------------+-------+--------------------------
→˓----------------+---------+
| 1 | 4 | 8 GB | 2, 0 | 0000:00:1d.0 | 23595 | neuron-app01 infer --
→˓input-data-direc... | 2.0.0 |
+--------+--------+--------+-----------+--------------+-------+--------------------------
→˓----------------+---------+
| 2 | 4 | 8 GB | 3, 1 | 0000:00:1e.0 | 23608 | neuron-app02 infer --
→˓input-data-direc... | 2.0.0 |
+--------+--------+--------+-----------+--------------+-------+--------------------------
→˓----------------+---------+
| 3 | 4 | 8 GB | 2 | 0000:00:1f.0 | NA | NA ␣
→˓ | NA |
+--------+--------+--------+-----------+--------------+-------+--------------------------
→˓----------------+---------+

$ neuron-ls --wide
+--------+--------+--------+-----------+--------------+-------+--------------------------
→˓--+---------+

(continues on next page)

16.1. System Tools 779

AWS Neuron

(continued from previous page)

| NEURON | NEURON | NEURON | CONNECTED | PCI | PID | ␣
→˓ COMMAND | RUNTIME |
| DEVICE | CORES | MEMORY | DEVICES | BDF | | ␣
→˓ | VERSION |
+--------+--------+--------+-----------+--------------+-------+--------------------------
→˓--+---------+
| 0 | 4 | 8 GB | 1 | 0000:00:1c.0 | 23518 | neuron-app01 infer --
→˓input-data-directory ~/my_input_data --inference-count 5... | 2.0.0 |
| | | | | | 23531 | neuron-app02 infer --
→˓input-data-directory ~/my_input_data --inference-count 5... | 2.0.0 |
+--------+--------+--------+-----------+--------------+-------+--------------------------
→˓--+---------+
| 1 | 4 | 8 GB | 2, 0 | 0000:00:1d.0 | 23595 | neuron-app01 infer --
→˓input-data-directory ~/my_input_data --inference-count 5... | 2.0.0 |
+--------+--------+--------+-----------+--------------+-------+--------------------------
→˓--+---------+
| 2 | 4 | 8 GB | 3, 1 | 0000:00:1e.0 | 23608 | neuron-app02 infer --
→˓input-data-directory ~/my_input_data --inference-count 5... | 2.0.0 |
+--------+--------+--------+-----------+--------------+-------+--------------------------
→˓--+---------+
| 3 | 4 | 8 GB | 2 | 0000:00:1f.0 | NA | NA ␣
→˓ | NA |
+--------+--------+--------+-----------+--------------+-------+--------------------------
→˓--+---------+

$ neuron-ls --show-all-procs
+--------+--------+--------+-----------+--------------+-------+--------------------------
→˓----------------+---------+
| NEURON | NEURON | NEURON | CONNECTED | PCI | PID | COMMAND ␣
→˓ | RUNTIME |
| DEVICE | CORES | MEMORY | DEVICES | BDF | | ␣
→˓ | VERSION |
+--------+--------+--------+-----------+--------------+-------+--------------------------
→˓----------------+---------+
| 0 | 4 | 8 GB | 1 | 0000:00:1c.0 | 23518 | neuron-app01 infer --
→˓input-data-direc... | 2.0.0 |
| | | | | | 23531 | neuron-app02 infer --
→˓input-data-direc... | 2.0.0 |
| | | | | | 23764 | neuron-monitor ␣
→˓ | NA |
| | | | | | 23829 | neuron-ls --show-all-
→˓procs | NA |
+--------+--------+--------+-----------+--------------+-------+--------------------------
→˓----------------+---------+
| 1 | 4 | 8 GB | 2, 0 | 0000:00:1d.0 | 23595 | neuron-app01 infer --
→˓input-data-direc... | 2.0.0 |
| | | | | | 23764 | neuron-monitor ␣
→˓ | NA |
| | | | | | 23829 | neuron-ls --show-all-
→˓procs | NA |
+--------+--------+--------+-----------+--------------+-------+--------------------------
→˓----------------+---------+

(continues on next page)

780 Chapter 16. Neuron Tools

AWS Neuron

(continued from previous page)

| 2 | 4 | 8 GB | 3, 1 | 0000:00:1e.0 | 23608 | neuron-app02 infer --
→˓input-data-direc... | 2.0.0 |
| | | | | | 23764 | neuron-monitor ␣
→˓ | NA |
| | | | | | 23829 | neuron-ls --show-all-
→˓procs | NA |
+--------+--------+--------+-----------+--------------+-------+--------------------------
→˓----------------+---------+
| 3 | 4 | 8 GB | 2 | 0000:00:1f.0 | 23764 | neuron-monitor ␣
→˓ | NA |
| | | | | | 23829 | neuron-ls --show-all-
→˓procs | NA |
+--------+--------+--------+-----------+--------------+-------+--------------------------
→˓----------------+---------+

$ neuron-ls --topology
+--------+--------+--------+-----------+---------+
| NEURON | NEURON | NEURON | CONNECTED | PCI |
| DEVICE | CORES | MEMORY | DEVICES | BDF |
+--------+--------+--------+-----------+---------+
0	4	8 GB	1	00:1c.0
1	4	8 GB	2, 0	00:1d.0
2	4	8 GB	3, 1	00:1e.0
3	4	8 GB	2	00:1f.0
+--------+--------+--------+-----------+---------+

Neuron Device Topology

[0]––[1]––[2]––[3]

On Trn1 and Inf2 instances neuron-ls works similarly. Below is an example displaying the topology for a
Trn1.32xlarge instance.

$ neuron-ls --topology
+--------+--------+--------+---------------+---------+
| NEURON | NEURON | NEURON | CONNECTED | PCI |
| DEVICE | CORES | MEMORY | DEVICES | BDF |
+--------+--------+--------+---------------+---------+
0	2	32 GB	12, 3, 4, 1	00:04.0
1	2	32 GB	13, 0, 5, 2	00:05.0
2	2	32 GB	14, 1, 6, 3	00:06.0
3	2	32 GB	15, 2, 7, 0	00:07.0
4	2	32 GB	0, 7, 8, 5	00:08.0
5	2	32 GB	1, 4, 9, 6	00:09.0
6	2	32 GB	2, 5, 10, 7	00:0a.0
7	2	32 GB	3, 6, 11, 4	00:0b.0
8	2	32 GB	4, 11, 12, 9	00:0c.0
9	2	32 GB	5, 8, 13, 10	00:0d.0
10	2	32 GB	6, 9, 14, 11	00:0e.0
11	2	32 GB	7, 10, 15, 8	00:0f.0
12	2	32 GB	8, 15, 0, 13	00:10.0
13	2	32 GB	9, 12, 1, 14	00:11.0

(continues on next page)

16.1. System Tools 781

AWS Neuron

(continued from previous page)

| 14 | 2 | 32 GB | 10, 13, 2, 15 | 00:12.0 |
| 15 | 2 | 32 GB | 11, 14, 3, 12 | 00:13.0 |
+--------+--------+--------+---------------+---------+
Neuron Device Topology

* * * *

––[0]––[1]––[2]––[3]––

––[4]––[5]––[6]––[7]––

––[8]––[9]––[10]––[11]––

––[12]––[13]––[14]––[15]––

* * * *

• NEURON DEVICE: Logical ID assigned to the Neuron Device.

• NEURON CORES: Number of NeuronCores present in the Neuron Device.

• NEURON MEMORY: Amount DRAM memory in Neuron Device.

• CONNECTED DEVICES: Logical ID of Neuron Devices connected to this Neuron Device.

• PCI BDF: PCI Bus Device Function (BDF) ID of the device.

• PID: ID of the process using this NeuronDevice.

• COMMAND: Command used to launch the process using this Neuron Device.

• RUNTIME VERSION: Version of Neuron Runtime (if applicable) for the application using this Neuron Device.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

16.1.4 Neuron Profile User Guide

Table of contents

• Overview

• Installation

– Ubuntu

– AL2

• Capturing a profile

782 Chapter 16. Neuron Tools

AWS Neuron

• Capturing profiles for multi-worker jobs

– Capturing profiles for multi-node jobs

• Processing and viewing the profile results

– Viewing a single profile

– Viewing profiles for multi-worker jobs

– Viewing multiple profiles

– Accessing the profiles

• Understanding a Neuron profile

– Timeline

– Features

• CLI reference

• Troubleshooting

– InfluxDB not installed

– Too many open files

– When viewing UI “FATAL - Failed metadata query”

Overview

neuron-profile is a tool to profile and analyze performance of a ML model compiled with the Neuron compiler and
run on NeuronDevices.

Note: Please use the aws-neuronx-tools package from Neuron SDK 2.11 or higher.

neuron-profile helps developers identify performance bottlenecks and optimize their workloads for NeuronDevices.
neuron-profile provides insights into NeuronDevice activity including the instructions executed on each compute en-
gine (ex. Tensor engine, Vector engine, etc.), DMA data movement activity, and performance metrics such as engine
utilization, DMA throughput, memory usage, and more. NeuronDevice activity is collected by the neuron-profile
capture command which runs the model with tracing enabled. Profiling typically has near zero overhead because
NeuronDevices have dedicated on-chip hardware profiling.

Installation

neuron-profile comes as part of the aws-neuronx-tools package, and will be installed to /opt/aws/neuron/
bin.

The Neuron web profile viewer utilizes InfluxDB OSS 2.x to store time series data for the profiled workloads after post
processing. Please follow the instructions provided at https://portal.influxdata.com/downloads/ for the correct OS. A
sample installation of Neuron Profile and InfluxDB is provided below.

16.1. System Tools 783

https://portal.influxdata.com/downloads/

AWS Neuron

Ubuntu

Install Neuron Profile
. /etc/os-release
sudo tee /etc/apt/sources.list.d/neuron.list > /dev/null <<EOF
deb https://apt.repos.neuron.amazonaws.com ${VERSION_CODENAME} main
EOF

wget -qO - https://apt.repos.neuron.amazonaws.com/GPG-PUB-KEY-AMAZON-AWS-NEURON.PUB |␣
→˓sudo apt-key add -
sudo apt-get update -y
sudo apt-get install aws-neuronx-runtime-lib aws-neuronx-dkms -y
sudo apt-get install aws-neuronx-tools -y

Install InfluxDB
wget -q https://repos.influxdata.com/influxdata-archive_compat.key
echo '393e8779c89ac8d958f81f942f9ad7fb82a25e133faddaf92e15b16e6ac9ce4c influxdata-
→˓archive_compat.key' | sha256sum -c && cat influxdata-archive_compat.key | gpg --
→˓dearmor | sudo tee /etc/apt/trusted.gpg.d/influxdata-archive_compat.gpg > /dev/null
echo 'deb [signed-by=/etc/apt/trusted.gpg.d/influxdata-archive_compat.gpg] https://repos.
→˓influxdata.com/debian stable main' | sudo tee /etc/apt/sources.list.d/influxdata.list

sudo apt-get update && sudo apt-get install influxdb2 influxdb2-cli -y
sudo systemctl start influxdb
influx setup
Fill in the information to finish the setup

AL2

Install Neuron Profile
sudo tee /etc/yum.repos.d/neuron.repo > /dev/null <<EOF
[neuron]
name=Neuron YUM Repository
baseurl=https://yum.repos.neuron.amazonaws.com
enabled=1
metadata_expire=0
EOF

sudo rpm --import https://yum.repos.neuron.amazonaws.com/GPG-PUB-KEY-AMAZON-AWS-NEURON.
→˓PUB
sudo yum install aws-neuronx-runtime-lib aws-neuronx-dkms -y
sudo yum install aws-neuronx-tools -y

Install InfluxDB
cat <<EOF | sudo tee /etc/yum.repos.d/influxdata.repo
[influxdata]
name = InfluxData Repository - Stable
baseurl = https://repos.influxdata.com/stable/\$basearch/main
enabled = 1
gpgcheck = 1
gpgkey = https://repos.influxdata.com/influxdata-archive_compat.key

(continues on next page)

784 Chapter 16. Neuron Tools

AWS Neuron

(continued from previous page)

EOF

sudo yum install influxdb2 influxdb2-cli -y
sudo systemctl start influxdb
influx setup
Fill in the information to finish the setup

Capturing a profile

The neuron-profile tool can both capture and post-process profiling information. neuron-profile takes a com-
piled model (a NEFF), executes it, and saves the profile results to a NTFF (profile.ntff by default). For this example,
we assume a NEFF is already available as file.neff

$ neuron-profile capture -n file.neff -s profile.ntff

Capturing profiles for multi-worker jobs

neuron-profile can capture profiles for collectives-enabled NEFFs running across multiple NeuronCores, Neuron-
Devices, or even nodes. This is useful for understanding performance and communication overheads when deploying
larger distributed models.

The following example, performs a distributed run across all NeuronDevices and NeuronCores on an inf2.24xlarge
instances, capturing profiles for all 12 workers (one for each NeuronCore).

$ neuron-profile capture -n file.neff --collectives-workers-per-node 12 -s output/
→˓profile.ntff

A profile is saved for each worker in the output directory.

$ ls output
profile_rank_0.ntff profile_rank_2.ntff profile_rank_6.ntff profile_rank_1.ntff ␣
→˓profile_rank_3.ntff profile_rank_7.ntff
profile_rank_10.ntff profile_rank_4.ntff profile_rank_8.ntff profile_rank_11.ntff ␣
→˓profile_rank_5.ntff profile_rank_9.ntff

You can see a summary of each profile using the command neuron-profile view --output-format
summary-text -n file.neff -s output/profile_rank_<i>.ntff. This output includes summary metrics
and fields for the NeuronCore (nc_idx) and NeuronDevice (nd_idx) on which the worker was run. For example,
the following shows worker 5 used core 1 on device 3 and took 0.017 seconds (17 ms) to run the model.

$ neuron-profile view --output-format summary-text -n file.neff -s output/profile_rank_5.
→˓ntff | grep -e "nd_idx" -e "nc_idx" -e "total_time"
nc_idx 1
nd_idx 2
total_time 0.017

You can also view the profile summary and all post-processed profiler events as json. To do that, use the
--output-format json option.

16.1. System Tools 785

AWS Neuron

$ neuron-profile view --output-format json --output-file profile.json -n file.neff -s␣
→˓output/profile_rank_5.ntff
$ cat profile.json
{
"summary": [

{
"total_time": 0.017,
"event_count": 11215
[...]

}
"instruction": [

{
"timestamp": 10261883214,
"duration": 148,
"label": "TensorMatrix",
"hlo_name": "%add.1 = add(%dot, %custom-call.44)",
"opcode": "MATMUL",
"operands": "S[5] (Tensor)++@complete acc_flags=3 row_grp=q0␣

→˓src=fp16@0x5600[1,0,0][3,1,1] dst=0x2000000[1,0,0][3,1,1] 3*128 "
},

[...]
}

It is also possible to run a distributed job while only capturing a profile for a specific worker instead of all workers. To
do that, use the --collectives-profile-id option.

$ neuron-profile capture -n file.neff --collectives-profile-id 5 --collectives-workers-
→˓per-node 12 -s output/profile.ntff
$ ls output
profile_rank_5.ntff

Capturing profiles for multi-node jobs

For multi-node jobs, neuron-profile must be invoked on each node using the collectives-worker-start-id
to specify the global index of the first worker on the given node. For example, for a two node job with a total of four
workers and two workers per node, the following commands are run on each node.

on node 0
$ neuron-profile capture -n file.neff --collectives-worker-start-id 0 --collectives-
→˓workers-per-node 2 --collectives-worker-count 4
on node 1
$ neuron-profile capture -n file.neff --collectives-worker-start-id 2 --collectives-
→˓workers-per-node 2 --collectives-worker-count 4

neuron-profile saves the profile for a worker on the node where that worker was launched. So in the case
above, profile_rank_0.ntff and profile_rank_1.ntff are saved to node 0, and profile_rank_2.ntff and
profile_rank_3.ntff are saved to node 1.

786 Chapter 16. Neuron Tools

AWS Neuron

Processing and viewing the profile results

The view subcommand of neuron-profile will handle post-processing the profiling data and starting up an HTTP
server that users can navigate to in order to see profiling results.

Viewing a single profile

The first way to invoke neuron-profile view is to pass both the NEFF and the NTFF to this command. It will
post-process these artifacts and print out a direct link to the profile view.

$ neuron-profile view -n file.neff -s profile.ntff
View profile at http://localhost:3001/profile/n_fdc71a0b582ee3009711a96e59958af921243921
ctrl-c to exit

Viewing profiles for multi-worker jobs

Profiles from multi-worker jobs (i.e. more than one NeuronCore) can either be viewed individually or in a combined
collectives view. Since profile data is often similar between workers and processing profile data for all workers can be
time-consuming, it is recommended to first explore the profile for a single worker or small subset of workers. Viewing
the profile for a specific worker is the same as for single-worker profiles.

$ neuron-profile view -n file.neff -s output/profile_rank_5.ntff
View profile at http://localhost:3001/profile/n_fdc71a0b582ee3009711a96e59958af921243921

To view the profile for multiple workers, pass the directory containing all worker profiles to neuron-profile.

$ neuron-profile view -n file.neff -d output
View profile at http://localhost:3001/profile_cc/p_
→˓9a69d907e1350100c9b03745eaa67aa7422842ed

16.1. System Tools 787

AWS Neuron

When viewing profiles with the combined collectives view you can easily switch between the timelines of different
workers by clicking the “Rank <x>” tabs.

Note: the “CC Aggregated View” currently shows no data. This will be populated in an upcoming release.

Viewing multiple profiles

Alternatively, when post-processing multiple profiles, it may be desirable to have a persistent server running while
processing results in the background. In this case, we can skip passing arguments to the command, which will direct
users to the main page listing all available profiles.

$ neuron-profile view
View a list of profiles at http://localhost:3001/

In a separate window, we can kick off the post-processing without launching another server by passing the
--ingest-only flag.

$ neuron-profile view -n file.neff -s profile.ntff --ingest-only
Profile "n_47cf9972d42798d236caa68952d0d29a76d8bd66" is ready to view

n_47cf9972d42798d236caa68952d0d29a76d8bd66 is the bucket where the data is stored. We can find this profile
at localhost:3001/profile/<bucket>.

788 Chapter 16. Neuron Tools

AWS Neuron

Accessing the profiles

If neuron-profile view is run on a remote instance, you may need to use port forwarding to access the profiles.

From the local machine, SSH to the remote instance and forward ports 3001 (the default neuron-profile HTTP
server port) and 8086 (the default InfluxDB port). Then in the browser, go to localhost:3001 to view the profiles.

$ ssh <user>@<ip> -L 3001:localhost:3001 -L 8086:localhost:8086

Understanding a Neuron profile

The section provides a quick overview on what features and information are available through the Neuron web profile
viewer.

For more information on terms used, please check out the Neuron Glossary.

Timeline

The execution timeline is plotted based on the elapsed nanoseconds since the start of execution.

Starting from the bottom, the TensorMatrix Utilization shows the efficiency of the TensorEngine, and the
Pending DMA Count and DMA Throughput rows show the DMA activity. In general, we want these to be as high as
possible, and in some cases may help give clues as to whether the workload is memory or compute bound.

Next are the individual NeuronCore engine executions. These rows show the start and end times for instructions exe-
cuted by each engine, and clicking on one of these bars will show more detailed information, as well as any dependen-
cies that were found. For models involving collective compute operations, you will additionally see rows labeled with
CC-core, which are used to synchronize the CC operations.

Towards the top is the DMA activity. These can include the transfers of input and output tensors, intermediate tensors,
and any additional spilling or loading to and from the on-chip SRAM memory.

16.1. System Tools 789

AWS Neuron

Features

The following are some useful features that may help with navigating a profile:

• Dragging your cursor across a portion of the timeline will zoom in to the selected window, providing a more in
depth view of the execution during that time period.

• Hovering over a point will reveal a subset of information associated with it.

• Clicking a point will open a text box below the timeline with all the information associated with it.

• Right-clicking a point will drop a marker at a certain location. This marker will persist when zooming in and
out.

– All marker information can be found by clicking the Annotations button.

– Markers can be saved and loaded by using a provided name for the marker set.

– Individual markers can be renamed or deleted in this menu as well.

• Click on the “Box Select” button in the top-right corner of the timeline and then click and drag on any region
of the plot to select all events in that region and get summary statistics such as total duration and breakdowns of
opcodes, transfer_sizes, and more.

• The Edit view settings can be used to further customize the timeline view. For example, changing the
Instruction Grouping dropdown option to “Layer” will re-color the timeline based on the associated frame-
work layer name.

Additionally, there are various summary buttons that can be clicked to provide more information on the model/NEFF,
such as the input and output tensors, number of FLOPs, and the start and end of a framework layer.

Furthermore, neuron-profile will automatically highlight some potential performance issues with warning annota-
tions. For example if tensor has been loaded more than 2 times a warning annotation (seen below as an orange box)
will be drawn on encircling the dma instructions where the tensor was loaded many times. Hover on annotation to see
more details about loading the tensor. Another kind of warning annotation will highlight areas of high throttling. This
provides the user a potential reason for slow down (thermal protection) and specific throttling details are shown when
hovering the annotation.

790 Chapter 16. Neuron Tools

AWS Neuron

CLI reference

neuron-profile capture

neuron-profile capture [parameters] [inputs...]

Takes a given compiled NEFF, executes it, and collects the profile results. When no inputs are provided, all-zero
inputs are used, which may result in inf or NaNs. It is recommended to use --ignore-inference

• -n,--neff (string): the compiled NEFF to profile
• -s,--session-file (string): the file to store profile session information in
• --ignore-exec-errors: ignore errors during execution
• inputs (positional args): list of inputs in the form of <NAME> <FILE_PATH> separated by space. Eg

IN1 x.npy IN2 y.npy
The following neuron-profile capture arguments are only relevant for multi-worker jobs

• --collectives-profile-id (string): worker id which will be profiled. Passing all profiles all workers.
(default: all)

• -r,--collectives-workers-per-node (int): the number of workers on the current node. The global
worker id (rank) of worker n on current node is collectives-worker-start-id+n

• --collectives-worker-count (int): total number of Neuron workers across all nodes for this collec-
tives run.

• --collectives-worker-start-id (int): The rank offset for the first worker on the current node. For
example, if node 0 has workers 0,1 and node 1 has workers 2,3 then collectives-worker-start-id
for node 0 and 1 will be 0 and 2, respectively. (default: 0)

neuron-profile view [parameters]

• -n,--neff-path (string): the compiled NEFF file location
• -s,--session-file (string): the profile results NTFF file location
• -d,--session-dir (string): directory containing profile files for multi-worker runs
• --db-endpoint (string): the endpoint of InfluxDB (default: http://localhost:8086)
• --db-org (string): the org name of InfluxDB
• --db-bucket (string): name of the InfluxDB bucket where ingested profile data is stored. Also used in

the URL for viewing the profile (Optional)
• --port (int): the port number of the http server (default: 3001)
• --force: force overwrite an existing profile in the database

Troubleshooting

InfluxDB not installed

$ neuron-profile view -n file.neff -s profile.ntff
ERRO[0001] To install influxdb, go to https://portal.influxdata.com/downloads/ and␣
→˓follow the instructions there
influxdb not setup correctly: exec: "influx": executable file not found in $PATH

$ neuron-profile view -n file.neff -s profile.ntff
ERRO[0000]
influxdb token not setup correctly: exit status 1
Try executing "systemctl start influxdb" and "influx setup"

Running neuron-profile view without InfluxDB installed will result in an error and a pointer to the InfluxDB
installation instructions. Please follow the provided instructions and retry.

16.1. System Tools 791

AWS Neuron

Too many open files

influxdb2client E! Write error: internal error: unexpected error writing points to␣
→˓database: [shard 10677] open /home/ubuntu/.influxdbv2/engine/data/7caae65aaa48380d/
→˓autogen/10677/index/0/MANIFEST: too many open files

InfluxDB will encounter “too many open files” and out of memory errors after a few hundred buckets have been created.
Two ways to solve this are to delete unused buckets or increase the system file descriptor limit.

To increase the file descriptor limit, add the following lines to /etc/security/limits.d/efa.conf and /etc/
security/limits.conf:

* soft nofile 1048576
* hard nofile 1048576

Add the following lines to /etc/sysctl.conf

fs.file-max = 197341270
vm.max_map_count=1048576

Commit changes by running sudo sysctl -p.

When viewing UI “FATAL - Failed metadata query”

If you are SSH port forwarding the web UI from a remote machine to your local desktop you will need to port forward
both the web UI (3001) and the database (8086) like so:

ssh -L 3001:localhost:3001 -L 8086:localhost:8086 remote_machine

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

16.1.5 Neuron Sysfs User Guide

Table of contents

• Introduction

• Neuron Sysfs Filesystem Structure

– High Level Overview

– Description for Each Metric

– Read and Write to Metrics

– Note

• How to Troubleshoot via Sysfs

792 Chapter 16. Neuron Tools

AWS Neuron

Introduction

The kernel provides a few ways in which userspace programs can get system information from the kernel space. Sysfs
is one common way to do so. It is a virtual filesystem typically mounted on the /sys directory and contains information
about hardware devices attached to the system and about drivers handling those devices. By navigating the hierarchical
structure of the sysfs filesystem and viewing the information provided by its files and directories, you can gather valuable
information that can help diagnose and resolve a wide range of hardware and system issues.

Thus a sysfs filesystem is set up per Neuron Device under /sys/devices/virtual/neuron_device to give you an
insight into the Neuron Driver and Runtime at system level. By performing several simple CLIs such as reading or
writing to a sysfs file, you can get information such as Runtime status, memory usage, Driver info etc. You can even
create your own shell scripts to query Runtime and Driver statistics from sysfs and generate customized reports.

This user guide will first explain the Neuron sysfs structure and then introduce many ways where you can perform
diagnostic works with Neuron sysfs.

Neuron Sysfs Filesystem Structure

High Level Overview

Here is the high level structure of the Neuron sysfs filesystem, where the total and present counters are not shown:

/sys/devices/virtual/neuron_device/
neuron0/

subsystem
uevent
connected_devices
core_count
reset
power/

async
control
runtime_active_time
runtime_active_kids
...

info/
notify_delay
serial_number
architecture/

arch_type
device_name
instance_type

stats
hardware

mem_ecc_uncorrected
sram_ecc_uncorrected

memory_usage
host_mem

application_memory
constants
dma_buffers
tensors

neuron_core0/
(continues on next page)

16.1. System Tools 793

AWS Neuron

(continued from previous page)

info/
architecture/

arch_type
stats/

status/
exec_bad_input
hw_error
infer_failed_to_queue
resource_nc_error
unsupported_neff_version
failure
infer_completed_with_error
invalid_error
success
generic_error
infer_completed_with_num_error
resource_error
timeout

memory_usage/
device_mem/

constants
model_code
model_shared_scratchpad
runtime_memory
tensors

host_mem
other_info/

flop_count
inference_count
model_load_count
reset_count

...
neuron_core1/

info/
...

stats/
...

...
neuron1
neuron2
neuron3
...

Each Neuron Device is represented as a directory under /sys/devices/virtual/neuron_device/, where
neuron0/ represents the Neuron Device 0, neuron1/ represents the Neuron Device 1, etc. Each NeuronCore is
represented as a directory under a Neuron Device directory, represented as neuron_core{0,1,2,...}. Metrics such
as Runtime and Driver info and statistics are collected as per NeuronCore in two directories under the NeuronCore
directory, i.e. info/ and stats/.

Most of the metrics belong to a category called “counter.” Each counter is represented as a directory, which holds two
numerical values as two files: total and present. Each memory usage counter has an additional value called peak. The
total value starts accumulating metrics when the Driver is loaded. The present value records the last changed metric
value. The peak value records the max value so far. Each counter has the same filesystem structure like this:

794 Chapter 16. Neuron Tools

AWS Neuron

/sys/devices/virtual/neuron_device/neuron0/neuron_core0/status/
exec_bad_input/

total
present

hw_error/
total
present

infer_failed_to_queue/
total
present

...

Description for Each Metric

info/: This directory stores general information about hardware and software. None of them are counter types.

• notify_delay: The delay between notifications from the Neuron Device. Current settings are on (0) or off
(-1). Off by default.

• serial_number: The unique device identifier.

• architecture/: This directory stores hardware architecture information.

– arch_type: The architecture type of the Neuron Device. Sample architecture types are v1, v2, and v3.
You can only read the value. You cannot change it.

– instance_type: The instance type of the Neuron Device. Sample instance types are Inf1, Inf2, and Trn1.
You can only read the value. You cannot change it.

– device_type: The Neuron Device type. Sample Neuron Device types are Inferentia, Inferentia2, and
Trainium1. You can only read the value. You cannot change it.

stats/: This directory stores Neuron Runtime and Driver statistics. It contains three subdirectories: status/,
memory_usage/, and other_info/.

• status/: This directory stores the number of each return status of API calls. As explained in The LIBNRT
API Return Codes, every API call returns an NRT_STATUS value, which represents the return status of that
API call. Our sysfs filesystem stores all NRT_STATUS as subdirectories under the status/ directory. They all
have the counter structure. Thus each NRT_STATUS subdirectory holds two values (total and present) and records
the number of times you receive a certain NRT_STATUS. The following is description for each NRT_STATUS
subdirectory. You should see the description align with what is described in The LIBNRT API Return Codes.

• memory_usage/: This directory contains memory usage statistics for both device and host, represented as coun-
ters. In this directory, the total counters indicate the current memory usage, present counters represent the
memory allocation or deallocation amount in the previous operation, and peak counters indicate the maximum
memory usage observed. Additionally, this directory provides detailed breakdown statistics for device and host
memory usage. These memory breakdown details correspond to the Memory Usage Summary section displayed
on in Neuron Monitor.

– device_mem/: The amount of memory that Neuron Runtime uses for weights, instructions and DMA
rings.

∗ This device memory per NeuronCore is further categorized into five types: constants/,
model_code/, model_shared_scratchpad/, runtime_memory/, and tensors/. Definitions
for these categories can be found in the Device Used Memory section. Each of these categories has
total, present, and peak.

– host_mem/: The amount of memory that Neuron Runtime uses for input and output tensors.

16.1. System Tools 795

AWS Neuron

∗ The host memory per Neuron Device is further categorized into four types: application_memory/
, constants/, dma_buffers/, and tensors/. Definitions for these categories can be found in the
Host Used Memory section. Each of these categories has total, present, and peak

– hardware/: Hardware statistics.

∗ mem_ecc_uncorrected: The number of uncorrected ECC events in the Neuron device’s DRAM.

∗ sram_ecc_uncorrected: The number of uncorrected ECC events in the Neuron device’s SRAM.

• other_info/: This directory contains statistics that are not included by status/ and memory_usage/. None
of them are counter types.

– flop_count: The number of flops. You can use it to calculate the TFLOP/s by flop_count / time interval

– inference_count: The number of successful inferences

– model_load_count: The number of successful model loads

– reset_count: The number of successful device resets

Other metrics:

• connected_devices: The list of connected devices’ ids. You should see the same output as neuron-ls’s CON-
NECTED DEVICES.

Read and Write to Metrics

Reading a sysfs file gives the value for the corresponding metric. You can use the cat command to view the contents
of the sysfs files.:

ubuntu@ip-xxx-xx-xx-xxx:~$ sudo cat /sys/devices/virtual/neuron_device/neuron0/neuron_
→˓core0/stats/status/failure/total
0
ubuntu@ip-xxx-xx-xx-xxx:~$ sudo cat /sys/devices/virtual/neuron_device/neuron0/neuron_
→˓core0/info/architecture/arch_type
NCv2

Sysfs metrics of counter type are write to clear. You can write any value to the file, and the metric will be set to 0:

ubuntu@ip-xxx-xx-xx-xxx:~$ echo 1 | sudo tee /sys/devices/virtual/neuron_device/neuron0/
→˓neuron_core0/stats/status/failure/total
1

Note

All files under /sys/devices/virtual/neuron_device/neuron0/power such as runtime_active_kids or
runtime_status are related to generic device power management. They are not created or controlled by our sysfs
metrics. The word runtime in these files does not refer to Neuron Runtime.

796 Chapter 16. Neuron Tools

AWS Neuron

How to Troubleshoot via Sysfs

You can perform simple and easy tasks to troubleshoot your ML jobs with one or a few CLIs to read or write the sysfs
filesystem. You can do aggregations across all the NeuronCores and all the Neuron Device to get a summarized view
using your scripts.

You can also use the Sysfs notification feature to wait passively (without wasting CPU cycles) for changes to the values of
Sysfs files. To use this feature, you need to implement a user-space program that calls the poll() function on the Sysfs
file that you want to wait on. The poll() function has the following signature: unsigned int (*poll) (struct
file *, struct poll_table_struct *). By default, the Sysfs notification feature is turned off when the driver
is loaded. To enable notifications, you can set the value of /sys/devices/virtual/neuron_device/neuron0/
info/notify_delay to 0. To disable notifications, you can set it to -1. Please note that enabling this feature can
impact performance.

Here is a sample user space program using poll():

#include <fcntl.h>
#include <poll.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char * argv[])
{

char readbuf[128];
int attr_fd = -1;
struct pollfd pfd;
int retval = 0;
ssize_t read_bytes;

if (argc < 2) {
fprintf(stderr, "Error: Please specify sysfs file path\n");
exit(1);

}
attr_fd = open(argv[1], O_RDONLY, 0);
if (attr_fd < 0) {

perror(argv[1]);
exit(2);

}

read_bytes = read(attr_fd, readbuf, sizeof(readbuf));
if (read_bytes < 0) {

perror(argv[1]);
exit(3);

}
printf("%.*s", (int)read_bytes, readbuf);

pfd.fd = attr_fd;
pfd.events = POLLERR | POLLPRI;
pfd.revents = 0;
while ((retval = poll(&pfd, 1, 100)) >= 0) {

if (pfd.revents & (POLLERR | POLLPRI)) {
pfd.revents = 0;

(continues on next page)

16.1. System Tools 797

AWS Neuron

(continued from previous page)

lseek(attr_fd, 0, SEEK_SET);
read_bytes = read(attr_fd, readbuf, sizeof(readbuf));
if (read_bytes < 0) {

perror(argv[1]);
exit(4);

}
printf("%.*s", (int)read_bytes, readbuf);

}
}
return 0;

}

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

16.1.6 Neuron Distributed Event Tracing (NDET) User Guide

Table of contents

• Overview

• Using neuron-det

– CLI arguments

– Example usage

– Example output

Overview

The Neuron Distributed Event Tracing (NDET) tool neuron-det aggregates Neuron execution trace logs and visualizes
events leading up to a failure. It is intended to help diagnose errors when running multi-node workloads by surfacing
known software or hardware issues.

Note: neuron-det requires aws-neuronx-runtime-lib and aws-neuronx-tools from Neuron SDK 2.16 or
above.

Note: Enabling the tracing will impact performance. It is recommended to enable this for debug purposes only.

798 Chapter 16. Neuron Tools

AWS Neuron

Using neuron-det

When the execution tracing is enabled, running a workload will generate additional logs at an interval, which can later
be post-processed by neuron-det.

Logging is controlled via the following environment variables:

Argument Default
value

Description

NEURON_RT_DBG_NDET_FLUSH_USEC0 Contols the frequency at which these logs are flushed. Setting this to a non-
zero value will enable the logging.

NEURON_RT_DBG_NDET_LOG_LOCATION/tmp Path to an existing directory where logs will be written.
NEURON_RT_DBG_NDET_NUM_ENTRIES20000 The number of events to keep in the buffer for context.

These are generated on a per-process basis, ie. two processes will generate two separate log files. With the default
settings, each log will be up to 20MB.

After collecting the logs, running neuron-det will attempt to determine the underlying issue (if any).

If the model executed to completion without errors, running neuron-det would show no errors detected X.

Otherwise, when an error is detected, a message would be printed to the console with extra information, for exam-
ple numerical_error (X) NC 0 @ 11762897.0 - 11906423.0: {'nd': 0, 'nc': 0, 'exec_id': 0}. *
numerical_error is to the type of event. * X is a “complete” event (see for details). Non complete events likely
indicate a hang. * NC 0 is the NeuronCore which the model is being executed on. * 11762897.0 - 11906423.0 are
the start and end timestamps of the event. * {'nd': 0, 'nc': 0, 'exec_id': 0} are the extra details associated
with this event.

neuron-detwill also generate a JSON file which can be loaded and viewed as a chrome-trace by navigating to chrome:
//tracing in the Chrome browser.

CLI arguments

Argu-
ment

Default value Description

--log-prefixN/A, required argu-
ment

The directory or prefix where the NDET logs are stored

-o,
--output-file

trace.json Output file location of the chrome-trace JSON

--ranks N/A Filtering based on the rank number for Collective Communication
--show-dependenciesfalse Draw arrows between certain events in the chrome-trace for easier backtrack-

ing

Example usage

export NEURON_RT_DBG_NDET_FLUSH_USEC=5000000
export NEURON_RT_DBG_NDET_LOG_LOCATION=ndet
mkdir -p $NEURON_RT_DBG_NDET_LOG_LOCATION
python app.py
neuron-det --log-prefix $NEURON_RT_DBG_NDET_LOG_LOCATION -o trace.json

16.1. System Tools 799

AWS Neuron

Example output

The following is collected from running the on two nodes with NDET enabled.

After executing this model, there will be a few ndet_* files present in the directory specified earlier. From here, we can
execute neuron-det --log-prefix $NEURON_RT_DBG_NDET_LOG_LOCATION/ndet -o trace.json.

In this example, since we used two nodes, we would see two separate processes in the chrome trace. Each would process
has the corresponding file name that the data comes from, which includes the date and time when the tracing started,
the instance ID, and the replica group IDs (GIDs) used for collective communication.

Generally the application will either complete successfully, or stop after encountering an error. Thus it would be a good
idea to start by inspecting the tail end of the trace.

800 Chapter 16. Neuron Tools

AWS Neuron

On the left, each number label corresponds with the NeuronCore index. Each core would show the activities be executed
at a point in time, such as loading a model, or more commonly executions. The nc_exec events show the duration of
execution on the NeuronCores, whereas the nrt_execute events shows the duration of the execution request, including
any runtime overhead. The sync_exec event has information on the NEFF that is being executed, with different NEFFs
color-coded.

Any NEFFs that include collective communication operations (CC Ops) will have additional information, namely the
cc_exec_barrier and cc_op_exec events. In this example, the last execution (where sync_exec is blue) contains
CC Ops. However, before CC Ops can begin, we need to synchonize between all the workers participating (the replica
group), which is the cc_exec_barrier. After this barrier, execution can continue. As part of the hardware execution
(nested directly under the nc_exec), each CC Op will have a corresponding cc_op_exec event (in pink). When an
execution times out (due to hardware failure, issues with the compiled NEFF, etc.), this information may be useful
when determining whether the problem lies in the collective communcation or elsewhere.

Any error event detected will be displayed in red, with ret would be set according to The LIBNRT API in the details
when clicked.

16.1. System Tools 801

AWS Neuron

In this case, a 1003 correlates to a numerical error (NaN) which may be an issue with the inputs or the compiled model.

For additional troubleshooting, please open a ticket on the Neuron Github page and include the instance IDs, version
information, NDET logs, and any other debug information as necessary.

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

16.1.7 NCCOM-TEST User Guide

Table of contents

• Overview

• Using nccom-test

– Output description

– CLI arguments

– Examples

802 Chapter 16. Neuron Tools

AWS Neuron

Overview

nccom-test is a benchmarking tool for quickly evaluating the performance of Collective Communication operations on
one or more Neuron instances (it is compatible with both trn1 and inf2 instance types) or just for a fast sanity check of
the environment before attempting to run a more complex workload.

Note: On inf2 instances, only single-instance benchmarking is supported. Running a multi-node nccom-test bench-
mark will result in an error.

Using nccom-test

Here is a simple example which will run a 2 worker (ranks) all-reduce with a total size of 32MB:

nccom-test -r 2 allr
size(B) count(elems) type time(us) algbw(GB/s) busbw(GB/s)

33554432 33554432 uint8 768 40.69 40.69
Avg bus bandwidth: 40.6901GB/s

Output description

The command will output a table containing several columns containing performance metrics. There will be a line for
every requested data size (by default the data size is 32MB as seen in the previous example).

Column
name

Description

size(B) Size in bytes for the data involved in this operation
count(elems) Number of elements in the data involved in this operation. For example, if size(B) is 4 and type is

fp32, then count will be 1 since one single fp32 element has been processed.
type Data type for the processed data. Can be: uint8, int8, uint16, int16, fp16, bf16, int32, uint32,

fp32
time(us) Time in microseconds representing the P50 of all durations for the Collective Communication op-

erations executed during the benchmark.
al-
gbw(GB/s)

Algorithm bandwidth in gibibytes (1GiB = 1,073,741,824 bytes) per second which is calculated as
size(B) / time(us)

busbw(GB/s) Bus bandwidth - bandwidth per data line in gibibytes per second - it provides a bandwidth number
that is independent from the number of ranks (unlike algbw). For a more in-depth explanation on
bus Bandwidth, please refer to NVIDIA’s nccl-tests documentation.

Avg bus
bandwidth

Average of the values in the busbw column

16.1. System Tools 803

https://github.com/NVIDIA/nccl-tests/blob/master/doc/PERFORMANCE.md

AWS Neuron

CLI arguments

Argu-
ment

Default value Description

<cc oper-
ation>

N/A, required argu-
ment

The type of Collective Communication operation to execute for this bench-
mark. Supported types:

• all_reduce / allr: All-Reduce

• all_gather / allg: All-Gather

• reduce_scatter / redsct: Reduce-Scatter

• sendrecv: Send-Receive

• alltoall: All-to-All

-r,
--nworkers

N/A, required argu-
ment

Total number of workers (ranks) to use

-N,
--nnodes

1 Total number of nodes (instances) to use. The number of workers will be di-
vided equally across all nodes. If this argument is greater than 1, the NEU-
RON_RT_ROOT_COMM_ID environment variable needs to be set to the
host address of the instance nccom-test is ran on, and a free port number (for
example: NEURON_RT_ROOT_COMM_ID=10.0.0.1:44444). Additionally, ei-
ther -s, --hosts needs to be provided or a ~/hosts file needs to exist - for
more details refer to the -s,--hosts description below.

-b,
--minbytes

32M The starting size for the benchmark

-e,
--maxbytes

32M The end size for the benchmark. nccom-test will run benchmarks for all sizes
between -b, --minbytes and -e, --maxbytes, increasing the size by ei-
ther -i, --stepbytes or --f, --stepfactor with every run.

-i,
--stepbytes

(--maxbytes -
--minbytes) / 10

Amount of bytes with which to increase the benchmark’s size on every sub-
sequent run. For example, for this combination of arguments: -b 8 -e 16
-i 4, the benchmark will be ran for the following sizes: 8 bytes, 12 bytes, 16
bytes.

-f,
--stepfactor

N/A Factor with which to increase the benchmark’s size on every subsequent run.
For example, for this combination of argument values: -b 8 -e 32 -f 2,
the benchmark will be ran for the following sizes: 8 bytes, 16 bytes, 32 bytes.

-n,
--iters

20 Number of Collective Communication operations to execute during the bench-
mark.

-w,
--warmup_iters

5 Number of Collective Communication operations to execute as warmup during
the benchmark (which won’t be counted towards the result).

-d,
--datatype

uint8 Data type for the data used by the benchmark. Supported types: uint8, int8,
uint16, int16, fp16, bf16, uint32, int32, fp32. Input data will be zero
filled, unless --check is provided (currently, only available for --datatype
fp32) in which case it will be filled by a repetead value of the requested type.

-c,
--check

false If provided, the corectness of the operations will be checked. This will not
impact results (time, algbw and busbw) but will slightly increase the overall
execution time.

-s,
--hosts

N/A Hosts on which to run execution. Checks ~/hosts if not specified.

--non-interactivefalse Do not display any animation or progress indicator.

Note: All arguments that take a size in bytes will also accept larger size units, for example: -f 2048 can be written

804 Chapter 16. Neuron Tools

AWS Neuron

as -f 2kb or -f 1048576 can be written as -f 1MB.

Examples

Note: Performance data shown in these examples should not be considered up-to-date. For the latest performance
data, please refer to the performance section.

Single Instance Examples

• Quick environment validation

nccom-test -r 2 allr
size(B) count(elems) type time(us) algbw(GB/s) ␣

→˓busbw(GB/s)
33554432 33554432 uint8 768 40.69 ␣

→˓40.69
Avg bus bandwidth: 40.6901GB/s

If a problem was found, it can be reported in two possible ways:

– Immediately:

nccom-test -r 2 allr
Neuron DKMS Driver is not running! Read the troubleshooting␣
→˓guide at: https://awsdocs-neuron.readthedocs-hosted.com/
→˓en/latest/neuron-runtime/nrt-troubleshoot.html#neuron-
→˓driver-installation-fails

– After a benchmark attempt:

nccom-test -r 2 allr
size(B) count(elems) type time(us) ␣

→˓algbw(GB/s) busbw(GB/s)
33554432 Failure running neuron-bench - log file /

→˓tmp/nccom_test_log_7pqpdfjf.log
1 errors found - test failed

In this case, further information about the error can be found in the
neuron-bench log file.

• 2 rank all-reduce on a single instance for sizes ranging from 1MiB to 1GiB with a step of 4x

nccom-test -r 2 --minbytes 1kb --maxbytes 1gb --stepfactor 4 --datatype␣
→˓fp32 allr

size(B) count(elems) type time(us) algbw(GB/s) ␣
→˓busbw(GB/s)

1024 256 fp32 58 0.02 ␣
→˓ 0.02

4096 1024 fp32 58 0.07 ␣
→˓ 0.07

(continues on next page)

16.1. System Tools 805

AWS Neuron

(continued from previous page)

16384 4096 fp32 58 0.26 ␣
→˓ 0.26

65536 16384 fp32 58 1.05 ␣
→˓ 1.05

262144 65536 fp32 60 4.07 ␣
→˓ 4.07

1048576 262144 fp32 68 14.36 ␣
→˓14.36

4194304 1048576 fp32 107 36.51 ␣
→˓36.51

16777216 4194304 fp32 332 47.06 ␣
→˓47.06

67108864 16777216 fp32 1214 51.48 ␣
→˓51.48

268435456 67108864 fp32 4750 52.63 ␣
→˓52.63

1073741824 268435456 fp32 18930 52.83 ␣
→˓52.83
Avg bus bandwidth: 23.6671GB/s

• 32 rank all-gather on a single instance for sizes ranging from 1KiB to 1MiB with a step of 8x, with correctness
checking

nccom-test -r 32 --minbytes 1kb --maxbytes 1mb --stepfactor 8 --datatype fp32 --
→˓check allg

size(B) count(elems) type time(us) algbw(GB/s) busbw(GB/s)
1024 256 fp32 151 0.01 0.01
8192 2048 fp32 149 0.05 0.05
65536 16384 fp32 150 0.41 0.39
524288 131072 fp32 179 2.73 2.64

Avg bus bandwidth: 0.7731GB/s

Multiple Instances Example

• 64 rank all-reduce on two instances for sizes ranging from 8 bytes to 1GiB with a step of 2x, running 50 ops

NEURON_RT_ROOT_COMM_ID=10.1.4.145:45654 nccom-test -r 64 -N 2 -b 8 -e 1GB -
→˓f 2 -n 50 -w 5 -d fp32 allr --hosts 127.0.0.1 10.1.4.138

size(B) count(elems) type time(us) algbw(GB/s) ␣
→˓busbw(GB/s)

8 2 fp32 520 0.00 ␣
→˓ 0.00

16 4 fp32 520 0.00 ␣
→˓ 0.00

32 8 fp32 523 0.00 ␣
→˓ 0.00

64 16 fp32 525 0.00 ␣
→˓ 0.00

128 32 fp32 553 0.00 ␣
→˓ 0.00

256 64 fp32 709 0.00 ␣
→˓ 0.00 (continues on next page)

806 Chapter 16. Neuron Tools

AWS Neuron

(continued from previous page)

512 128 fp32 782 0.00 ␣
→˓ 0.00

1024 256 fp32 840 0.00 ␣
→˓ 0.00

2048 512 fp32 881 0.00 ␣
→˓ 0.00

4096 1024 fp32 916 0.00 ␣
→˓ 0.01

8192 2048 fp32 1013 0.01 ␣
→˓ 0.01

16384 4096 fp32 1031 0.01 ␣
→˓ 0.03

32768 8192 fp32 1174 0.03 ␣
→˓ 0.05

65536 16384 fp32 1315 0.05 ␣
→˓ 0.09

131072 32768 fp32 1315 0.09 ␣
→˓ 0.18

262144 65536 fp32 1311 0.19 ␣
→˓ 0.37

524288 131072 fp32 1312 0.37 ␣
→˓ 0.73

1048576 262144 fp32 1328 0.74 ␣
→˓ 1.45

2097152 524288 fp32 1329 1.47 ␣
→˓ 2.89

4194304 1048576 fp32 1378 2.83 ␣
→˓ 5.58

8388608 2097152 fp32 1419 5.51 ␣
→˓10.84

16777216 4194304 fp32 2138 7.31 ␣
→˓14.39

33554432 8388608 fp32 2711 11.53 ␣
→˓22.69

67108864 16777216 fp32 3963 15.77 ␣
→˓31.05

134217728 33554432 fp32 6279 19.91 ␣
→˓39.19

268435456 67108864 fp32 11954 20.91 ␣
→˓41.17

536870912 134217728 fp32 21803 22.93 ␣
→˓45.15

1073741824 268435456 fp32 41806 23.92 ␣
→˓47.09
Avg bus bandwidth: 9.3924GB/s

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

16.1. System Tools 807

AWS Neuron

16.1.8 Neuron System Tools

Table of Contents

• Neuron Tools [2.17.1.0]

– Bug fixes

• Neuron Tools [2.17.0.0]

– New in the release

– Bug fixes

• Neuron Tools [2.16.1.0]

– New in the release

– Bug fixes

– Known issues

• Neuron Tools [2.15.4.0]

• Neuron Tools [2.14.6.0]

• Neuron Tools [2.13.4.0]

• Neuron Tools [2.12.2.0]

• Neuron Tools [2.11.10.0]

• Neuron Tools [2.10.1.0]

• Neuron Tools [2.9.5.0]

• Neuron Tools [2.8.2.0]

• Neuron Tools [2.7.2.0]

• Neuron Tools [2.6.0.0]

• Neuron Tools [2.5.19.0]

• Neuron Tools [2.5.16.0]

• Neuron Tools [2.4.6.0]

• Neuron Tools [2.1.4.0]

• Neuron Tools [2.0.790.0]

• Neuron Tools [2.0.623.0]

• Neuron Tools [2.0.494.0]

• Neuron Tools [2.0.327.0]

• Neuron Tools [2.0.277.0]

808 Chapter 16. Neuron Tools

AWS Neuron

Neuron Tools [2.17.1.0]

Date: 04/01/2024

Bug fixes

• Fixed potential hang during synchronization step in nccom-test.

Neuron Tools [2.17.0.0]

Date: 02/13/2024

New in the release

• Added support to neuron-profile for collective communication operator improvements in Neuron SDK 2.17.
See Neuron Runtime Release Notes for more info.

• Optimized count query for sampling in neuron-profile UI for up to 3x faster load performance.

• Introduced warning annotations in neuron-profileUI to automatically highlight potential performance issues.
See the Neuron Profile User Guide for more info.

Bug fixes

• Resolved issue of inaccurate execution time reported by neuron-profile as mentioned in Neuron Tools 2.16.1.0
release notes.

• Fixed NaN display errors in the neuron-profile UI.

• Fixed file naming issue when capturing collectives profiles with neuron-profile.

Neuron Tools [2.16.1.0]

Date: 12/21/2023

New in the release

• First release of the Neuron Distributed Event Tracing tool neuron-det to visualize execution for multi-node
workloads. Get started with the Neuron Distributed Event Tracing (NDET) User Guide.

• neuron-profile now has the ability to capture multi-worker jobs. See the Neuron Profile User Guide for more
info.

• Added terminology descriptions to neuron-profile summary statistics. To view through the CLI, use
neuron-profile view --terminology To view in the UI, hover over the key in the summary.

• Added optional flags to neuron-profile view to change the InfluxDB bucket name (--db-bucket <bucket
name>) and profile display name (--display-name <name>).

16.1. System Tools 809

AWS Neuron

Bug fixes

• Fixed bug where GPSimd summary values were missing in the profile summary.

• Fixed issue in nccom-test to no longer expect Neuron Device 0 in a container environemnt.

• Fixed issue in nccom-test to no longer require the instance launching nccom-test to be participating in the
workload.

Known issues

• Execution time reported in neuron-profile is sometimes in-accurate due to a bug in how the time is captured.
The bug will be address in upcoming Neuron releases.

Neuron Tools [2.15.4.0]

Date: 10/26/2023

New in the release:

• Fixed bug in neuron-profile that may result in a crash when using the NeuronCore Pipeline feature on Inf1.

• Improved visibility of summary stats in the profiler UI with added groupings.

• Added support for alltoall CC operation in nccom-test.

Neuron Tools [2.14.6.0]

Date: 09/15/2023

New in the release:

• Added legend in neuron-ls to clarify wrap around edges for topology view.

• Improved error messaging when passing invalid arguments to neuron-profile view.

• Fixed bug in neuron-profile that incorrectly calculated buffer utilization for more recently compiled NEFFs.

• Fixed bug in neuron-profile where the profile would sometimes include additional idle time while waiting
for execution to start.

• Profiler output now includes HLO name in addition to framework layer names.

• neuron-profile view now has --output-format json option which will write to a file specified by
--output-file <name> (default is ntff.json) instead of writing data to InfluxDB.

Neuron Tools [2.13.4.0]

Date: 08/28/2023

New in the release:

• --check option of nccom-test now supports more data types (fp16, bf16, (u)int8, (u)int16, and
(u)int32 are now supported in addition to fp32)

• Fixed bug in nccom-test that would wait indefinitely for execution to end when running on multiple instances
(-N 2 and higher).

• Fixed bug in neuron-profile to prevent a crash during utilization calculation

810 Chapter 16. Neuron Tools

AWS Neuron

Neuron Tools [2.12.2.0]

Date: 7/19/2023

New in the release:

• Bumped the max supported profiling NTFF version to version 2 to resolve crashes when postprocessing NTFFs
captured with newer versions of the Neuron Runtime Library. When viewing profiles captured using Neuron
Runtime Library 2.15 or above, please upgrade tools to 2.12. This version of Neuron tools remains compatible
with NTFF version 1.

• Bug fixes for neuron-profile related to the calculation of some summary stats.

Neuron Tools [2.11.10.0]

Date: 6/14/2023

New in the release:

• nccom-test can now show multiple latency stats in the results table, such as average or percentiles, by specifying
the -s option (for example: -s p10 p99 avg p50).

• First public support for neuron-profile as a standalone tool that can be used to profile executions on Neuron
Devices. Visit the Neuron Tools documentation page for more details on how to use the Neuron Profiler.

Neuron Tools [2.10.1.0]

Date: 05/01/2023

New in the release:

• Added new Neuron Collectives benchmarking tool, nccom-test, to enable benchmarking sweeps on various
Neuron Collective Communication operations. See new nccom-test documentation under System Tools for more
details.

• Expanded support for Neuron profiling to include runtime setup/teardown times and collapsed execution of Neu-
ronCore engines and DMA. See Tensorboard release notes and tutorial for more details.

Neuron Tools [2.9.5.0]

Date: 03/28/2023

New in the release:

• Updated neuron-top to show effective FLOPs across all NeuronCores.

Neuron Tools [2.8.2.0]

Date: 02/24/2023

New in the release:

• Updated neuron-top to show aggregated utilization/FLOPs across all NeuronCores.

16.1. System Tools 811

AWS Neuron

Neuron Tools [2.7.2.0]

Date: 02/08/2023

New in the release:

• Added support for model FLOPS metrics in both neuron-monitor and neuron-top. More details can be found in
the Neuron Tools documentation.

Neuron Tools [2.6.0.0]

Date: 12/09/2022

This release adds support for profiling with the Neuron Plugin for TensorBoard on TRN1. Please check out the docu-
mentation Neuron Plugin for TensorBoard (Trn1).

New in the release:

• Updated profile post-processing for workloads executed on TRN1

Neuron Tools [2.5.19.0]

Date: 11/07/2022

New in the release:

• Minor bug fixes and improvements.

Neuron Tools [2.5.16.0]

Date: 10/26/2022

New in the release:

• New neuron-monitor and neuron-top feature: memory utilization breakdown. This new feature provides
more details on how memory is being currently used on the Neuron Devices as well as on the host instance.

• neuron-top’s UI layout has been updated to accommodate the new memory utilization breakdown feature.

• neuron-monitor’s inference_stats metric group was renamed to execution_stats. While the previ-
ous release still supported inference_stats, starting this release the name inference_stats is considered
deprecated and can’t be used anymore.

Note: For more details on the new memory utilization breakdown feature in neuron-monitor and neuron-top
check out the full user guides: Neuron Monitor User Guide and Neuron Top User Guide.

Bug Fixes:

• Fix a rare crash in neuron-top when the instance is under heavy CPU load.

• Fix process names on the bottom tab bar of neuron-top sometimes disappearing for smaller terminal window
sizes.

812 Chapter 16. Neuron Tools

AWS Neuron

Neuron Tools [2.4.6.0]

Date: 10/10/2022

This release adds support for both EC2 INF1 and TRN1 platforms. Name of the package changed from aws-neuron-
tools to aws-neuronx-tools. Please remove the old package before installing the new one.

New in the release:

• Added support for ECC counters on Trn1

• Added version number output to neuron-top

• Expanded support for longer process tags in neuron-monitor.

• Removed hardware counters from the default neuron-monitor config to avoid sending repeated errors - will add
back in future release.

• neuron-ls - Added option neuron-ls --topology with ASCII graphics output showing the connectivity
between Neuron Devices on an instance. This feature aims to help in understanding pathways between Neuron
Devices and in exploiting code or data locality.

Bug Fixes:

• Fix neuron-monitor and neuron-top to show the correct Neuron Device when running in a container where not
all devices are present.

Neuron Tools [2.1.4.0]

Date: 04/29/2022

• Minor updates

Neuron Tools [2.0.790.0]

Date: 03/25/2022

• neuron-monitor: fixed a floating point error when calculating CPU utilization.

Neuron Tools [2.0.623.0]

Date: 01/20/2022

New in the release:

• neuron-top - Added “all” tab that aggregates all aggregate all running Neuron processes into a single view.

• neuron-top - Improved startup time to approximately 1.5 seconds in most cases.

• neuron-ls - Removed header message about updating tools from neuron-ls output

Bug fixes:

• neuron-top - Reduced single CPU core usage down to 0.7% from 80% on inf1.xlarge when running
neuron-top by switching to an event-driven approach for screen updates.

16.1. System Tools 813

AWS Neuron

Neuron Tools [2.0.494.0]

Date: 12/27/2021

• Security related updates related to log4j vulnerabilities.

Neuron Tools [2.0.327.0]

Date: 11/05/2021

• Updated Neuron Runtime (which is integrated within this package) to libnrt 2.2.18.0 to fix a container issue
that was preventing the use of containers when /dev/neuron0 was not present. See details here neuron-runtime-
release-notes.

Neuron Tools [2.0.277.0]

Date: 10/27/2021

New in this release:

• Tools now support applications built with Neuron Runtime 2.x (libnrt.so).

Important:
– You must update to the latest Neuron Driver (aws-neuron-dkms version 2.1 or newer) for proper func-

tionality of the new runtime library.

– Read Introducing Neuron Runtime 2.x (libnrt.so) application note that describes why are we making this
change and how this change will affect the Neuron SDK in detail.

– Read Migrate your application to Neuron Runtime 2.x (libnrt.so) for detailed information of how to migrate
your application.

• Updates have been made to neuron-ls and neuron-top to significantly improve the interface and utility of
information provided.

• Expands neuron-monitor to include additional information when used to monitor latest Frameworks released
with Neuron 1.16.0.

neuron_hardware_info Contains basic information about the Neuron hardware.

"neuron_hardware_info": {
"neuron_device_count": 16,
"neuroncore_per_device_count": 4,
"error": ""

}

– neuron_device_count : number of available Neuron Devices

– neuroncore_per_device_count : number of NeuronCores present on each Neuron Device

– error : will contain an error string if any occurred when getting this information (usually
due to the Neuron Driver not being installed or not running).

• neuron-cli entering maintenance mode as it’s use is no longer relevant when using ML Frameworks with an
integrated Neuron Runtime (libnrt.so). see maintenance_mxnet_1_5 for more information.

• For more information visit Neuron Tools

814 Chapter 16. Neuron Tools

AWS Neuron

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

System Tools

• Neuron Monitor User Guide

• Neuron Top User Guide

• Neuron LS User Guide

• Neuron Sysfs User Guide

• NCCOM-TEST User Guide

• What’s New

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

16.2 TensorBoard

16.2.1 TensorBoard for Trn1

This document is relevant for: Inf2, Trn1, Trn1n

Track Training Progress in TensorBoard using PyTorch Neuron

Table of Contents

• Multi-layer perceptron MNIST model

• Output TensorBoard logs

• View loss in TensorBoard

This tutorial explains how to track training progress in TensorBoard while running a multi-layer perceptron MNIST
model on Trainium using PyTorch Neuron.

Multi-layer perceptron MNIST model

This tutorial is based on the MNIST example for PyTorch Neuron on Trainium. For the full tutorial, please see Multi-
Layer Perceptron Training Tutorial.

16.2. TensorBoard 815

AWS Neuron

Output TensorBoard logs

To generate TensorBoard logs, we first modify the training script to use the SummaryWriter:

from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter('./output')

In the training loop, we can then use the add_scalar API to log the loss per step.

writer.add_scalar("step loss", loss, idx)

At the end of the script, add writer.flush() to ensure all logs are written.

Save the following code as train_tb.py and run it as python3 train_tb.py on a Trn1 instance. The generated
logs can be found in the ./output directory that was passed to SummaryWriter.

import os
import time
import torch
import torch.nn as nn
import torch.nn.functional as F

from torchvision.datasets import mnist
from torch.optim import SGD
from torch.utils.data import DataLoader
from torchvision.transforms import ToTensor

XLA imports
import torch_xla.core.xla_model as xm

from torch.utils.tensorboard import SummaryWriter

Declare 3-layer MLP for MNIST dataset
class MLP(nn.Module):
def __init__(self, input_size = 28 * 28, output_size = 10, layers = [120, 84]):

super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, layers[0])
self.fc2 = nn.Linear(layers[0], layers[1])
self.fc3 = nn.Linear(layers[1], output_size)

def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return F.log_softmax(x, dim=1)

Load MNIST train dataset
train_dataset = mnist.MNIST(root='./MNIST_DATA_train', \

train=True, download=True, transform=ToTensor())

def main():
Prepare data loader
train_loader = DataLoader(train_dataset, batch_size=32)

(continues on next page)

816 Chapter 16. Neuron Tools

AWS Neuron

(continued from previous page)

Fix the random number generator seeds for reproducibility
torch.manual_seed(0)

XLA: Specify XLA device (defaults to a NeuronCore on Trn1 instance)
device = 'xla'

Move model to device and declare optimizer and loss function
model = MLP().to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
loss_fn = torch.nn.NLLLoss()

Use SummaryWriter to generate logs for TensorBoard
writer = SummaryWriter('./output')

Run the training loop
print('----------Training ---------------')
model.train()
start = time.time()
for idx, (train_x, train_label) in enumerate(train_loader):

optimizer.zero_grad()
train_x = train_x.view(train_x.size(0), -1)
train_x = train_x.to(device)
train_label = train_label.to(device)
output = model(train_x)
loss = loss_fn(output, train_label)
writer.add_scalar("step loss", loss, idx) # add the step loss to the TensorBoard␣

→˓logs
loss.backward()
optimizer.step()
xm.mark_step() # XLA: collect ops and run them in XLA runtime
if idx < 2: # skip warmup iterations

start = time.time()

Compute statistics
interval = idx - 2 # skip warmup iterations
throughput = interval / (time.time() - start)
print("Train throughput (iter/sec): {}".format(throughput))
print("Final loss is {:0.4f}".format(loss.detach().to('cpu')))

Ensure TensorBoard logs are all written
writer.flush()

Save checkpoint for evaluation
os.makedirs("checkpoints", exist_ok=True)
checkpoint = {'state_dict': model.state_dict()}
XLA: use xm.save instead of torch.save to ensure states are moved back to cpu
This can prevent "XRT memory handle not found" at end of test.py execution
xm.save(checkpoint,'checkpoints/checkpoint.pt')

print('----------End Training ---------------')

if __name__ == '__main__':

(continues on next page)

16.2. TensorBoard 817

AWS Neuron

(continued from previous page)

main()

View loss in TensorBoard

In order to view your training metrics, install TensorBoard in your Python environment:

pip install tensorboard

Then, launch TensorBoard with the ./output directory

tensorboard --logdir ./output

Once running, open a new SSH connection to the instance and port-forward TCP port 6006 (ex: -L
6006:127.0.0.1:6006). Once the tunnel is established, TensorBoard can then be accessed via web browser at the fol-
lowing URL: http://localhost:6006. Please note that you will not be able to access TensorBoard if you disconnect your
port-forwarding SSH session to the Trainium instance.

In TensorBoard, you can now see the loss per step plotted. When capturing loss for multiple runs, you can plot them
together on the same graph to compare runs. Be sure to change the output directory for different runs, for example
./output/run1 for the first, ./output/run2 for the second, etc.

This document is relevant for: Inf2, Trn1, Trn1n

818 Chapter 16. Neuron Tools

http://localhost:6006/

AWS Neuron

This document is relevant for: Inf2, Trn1, Trn1n

Neuron Plugin for TensorBoard (Trn1)

Table of Contents

• Overview

• Enable profiling on Trn1

• Launch TensorBoard

• View results in TensorBoard

• Neuron Trace View

• Neuron Operator View

• Neuron Operator Timeline View

• Troubleshooting

– TensorBoard launch fails

Overview

This guide is for developers who want to better understand how their model is executed using Neuron SDK through
TensorBoard.

The Neuron plugin for TensorBoard provides metrics to the performance of machine learning tasks accelerated using
the Neuron SDK. It is compatible with TensorBoard versions 1.15 and higher. It provides visualizations and profiling
results for graphs executed on NeuronCores.

Note: The following information is compatible with Neuron SDK for Trn1. For a walkthrough on Inf1, please check
out the guide Neuron Plugin for TensorBoard (Inf1).

Enable profiling on Trn1

Note: Profiling is currently only supported with PyTorch Neuron (torch-neuronx).

Please refer to the following guides:

• PyTorch-Neuron
– torch-neuronx-profiling-with-tb

16.2. TensorBoard 819

AWS Neuron

Launch TensorBoard

In this step, we will process the Neuron profile data and launch TensorBoard.

1. Install the Neuron plugin for Tensorboard on your EC2 instance.

python -m pip config set global.extra-index-url "https://pip.repos.neuron.amazonaws.com"

pip install tensorboard-plugin-neuronx

Note: If using TensorBoard >= 2.5, please use the --load_fast=false option when launching. tensorboard
--logdir results --load_fast=false

2. After you see the following message, TensorBoard is ready to use. By default, TensorBoard will be launched at
localhost:6006.

...
Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_
→˓all
TensorBoard 2.4.1 at http://localhost:6006/ (Press CTRL+C to quit)

View results in TensorBoard

In this step, we will view the Neuron plugin for TensorBoard from a browser on your local development machine.

1. Connect to the EC2 instance where TensorBoard is running while enabling port forwarding. In this example, we
assume TensorBoard has been launched using the default address localhost:6006.

if Ubuntu-based AMI
ssh -i <PEM key file> ubuntu@<instance DNS> -L 6006:localhost:6006

if AL2-based AMI
ssh -i <PEM key file> ec2-user@<instance DNS> -L 6006:localhost:6006

2. In a browser, visit .

3. In the top navigation bar, switch from Graphs to Neuron. If it does not show up, please wait a while and refresh
the page while the plugin loads. If the issue persists, check the Inactive dropdown list on the right and check for
Neuron.

820 Chapter 16. Neuron Tools

AWS Neuron

4. If TensorBoard failed to find the generated logs, you will see the following message:

In this case, please make sure the version of the aws-neuronx-tools package and the Neuron framework package is
from Neuron release 2.6 or newer.

Neuron Trace View

The trace view gives a high level timeline of execution by aligning Neuron events, such as Neuron Device execution,
data transfers, and Collective Compute synchronization (if applicable), with other events from the XLA profiler.

Use this view to better understand bottlenecks during the run, and potentially experiment with how execution changes
by moving the mark_step() call which will execute the graph.

16.2. TensorBoard 821

AWS Neuron

Neuron Operator View

The operator view can show timing information for both the framework operators and HLO operators by selecting the
operator-framework and operator-hlo tools respectively. The pie charts show breakdowns of the time taken by
device, as well as per operator on a single device. The table below lists out the operators and can be sorted by clicking
on the columnn headers. For fused operations, hover over the ? to see which operators are being executed.

For a quick glance at the most time consuming operators, click the Time % column in the table to sort by the relative
time spent on this type of operation compared to the rest of the model.

822 Chapter 16. Neuron Tools

AWS Neuron

Neuron Operator Timeline View

The operator timeline view is a detailed look into a single execution with Neuron. A high level overview at the top
breaks down the execution into categories, including Neuron Runtime setup time, as well as NeuronCore compute
engine and DMA engine busyness. Activity on the compute and DMA engines are further categorized as compute,
control, and data transfer intervals which are shown as separate processes, with each showing a hierarchical view of
the framework operators and their corresponding HLO operation. The fused operations can be a result of compiler
optimizations or are operations that are running in parallel on the device. Each bar can be clicked to show information
regarding which operators are overlapped.

This view can give better insight into how operators translate to Neuron, as well as how certain Neuron compiler options
may improve performance.

Troubleshooting

TensorBoard launch fails

ImportError: cannot import name 'Mapping' from 'collections'

This is an issue with Python 3.10 and a dependency of an old tensorboard version. To workaround this error, please
run pip install --upgrade tensorboard. For more information, see https://github.com/tensorflow/tensorboard/
pull/5490.

This document is relevant for: Inf2, Trn1, Trn1n

16.2. TensorBoard 823

https://github.com/tensorflow/tensorboard/pull/5490
https://github.com/tensorflow/tensorboard/pull/5490

AWS Neuron

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

Neuron Plugin for TensorBoard Release Notes

Table of Contents

• Known Issues and Limitations - Updated 11/29/2022

• Neuron Plugin for TensorBoard release [2.6.7.0]

• Neuron Plugin for TensorBoard release [2.6.1.0]

• Neuron Plugin for TensorBoard release [2.5.39.0]

• Neuron Plugin for TensorBoard release [2.5.37.0]

• Neuron Plugin for TensorBoard release [2.5.26.0]

• Neuron Plugin for TensorBoard release [2.5.25.0]

• Neuron Plugin for TensorBoard release [2.5.0.0]

• Neuron Plugin for TensorBoard release [2.4.0.0]

• Neuron Plugin for TensorBoard release [2.3.0.0]

• Neuron Plugin for TensorBoard release [2.2.0.0]

• [2.1.2.0]

• [2.1.0.0]

• [2.0.29.0]

• [1.15.0.1.2.6.0]

• [1.15.0.1.1.1.0]

• [1.15.0.1.0.615.0]

• [1.15.0.1.0.600.0]

• [1.15.0.1.0.570.0]

• [1.15.0.1.0.513.0]

• [1.15.0.1.0.491.0]

• [1.15.0.1.0.466.0]

• [1.15.0.1.0.392.0]

• [1.15.0.1.0.366.0]

• [1.15.0.1.0.315.0]

• [1.15.0.1.0.306.0]

• [1.15.0.1.0.280.0]

824 Chapter 16. Neuron Tools

AWS Neuron

Known Issues and Limitations - Updated 11/29/2022

The following are not limitations in the Neuron plugin, but may affect your ability to use TensorBoard.

• The Neuron plugin for Trn1 (tensorboard-plugin-neuronx) is not compatible with the Neuron plugin for
Inf1 (tensorboard-plugin-neuron). Please ensure you only have only the correct package installed.

Neuron Plugin for TensorBoard release [2.6.7.0]

Date: 04/01/2024

Summary

• Minor updates.

Neuron Plugin for TensorBoard release [2.6.1.0]

Date: 12/21/2023

Summary

• Now uses local third-party dependencies instead of relying on a CDN.

Neuron Plugin for TensorBoard release [2.5.39.0]

Date: 7/19/2023

Summary

• Minor updates.

Neuron Plugin for TensorBoard release [2.5.37.0]

Date: 6/14/2023

Summary

• Minor updates.

16.2. TensorBoard 825

AWS Neuron

Neuron Plugin for TensorBoard release [2.5.26.0]

Date: 05/01/2023

Summary

• Neuron operator timeline view now includes Neuron Runtime setup/teardown time and a collapsed execution of
NC engines and DMA - see Tensorboard tutorial for updated views.

• Improved execution categorization to include “control” instructions

Neuron Plugin for TensorBoard release [2.5.25.0]

Date: 03/28/2023

Summary

• Supports INF2 and TRN1.

Neuron Plugin for TensorBoard release [2.5.0.0]

Date: 12/09/2022

Summary

• Added support for PyTorch Neuron on Trn1 (torch-neuronx) with new views! Includes a trace view, an op-
erator view, and an operator timeline view. For more info, check out the documentation Neuron Plugin for
TensorBoard (Trn1).

Important:
– You must update to the latest Neuron Tools (aws-neuronx-tools version 2.6 or newer) and install
tensorboard-plugin-neuronx for proper functionality of the Neuron plugin on Trn1.

– For Inf1, please continue to use tensorboard-plugin-neuron. Refer to the getting started guide on
Inf1 Neuron Plugin for TensorBoard (Inf1).

Neuron Plugin for TensorBoard release [2.4.0.0]

Date: 04/29/2022

826 Chapter 16. Neuron Tools

AWS Neuron

Summary

• Minor updates.

Neuron Plugin for TensorBoard release [2.3.0.0]

Date: 03/25/2022

Summary

• Minor updates.

Neuron Plugin for TensorBoard release [2.2.0.0]

Date: 10/27/2021

New in this release

• Neuron Plugin for TensorBoard now support applications built with Neuron Runtime 2.x (libnrt.so).

Important:
– You must update to the latest Neuron Driver (aws-neuron-dkms version 2.1 or newer) for proper func-

tionality of the new runtime library.

– Read Introducing Neuron Runtime 2.x (libnrt.so) application note that describes why are we making this
change and how this change will affect the Neuron SDK in detail.

– Read Migrate your application to Neuron Runtime 2.x (libnrt.so) for detailed information of how to migrate
your application.

[2.1.2.0]

Date: 8/12/2021

Summary

• Adds support for Neuron Tensorflow 2.5+

16.2. TensorBoard 827

AWS Neuron

[2.1.0.0]

Date: 5/28/2021

Summary

• No major changes or fixes. Released with other Neuron packages.

[2.0.29.0]

Date: 4/30/2021

Summary

• First release Neuron plugin for TensorBoard. Check out it out here: Neuron Plugin for TensorBoard (Inf1).

– The Neuron plugin is now compatible with TensorBoard 2.0 and higher, in addition to TensorBoard 1.15

– Provides a centralized place to better understand execution using Neuron SDK.

– Continues support visualization for TensorFlow graphs, with support for PyTorch and MXNet coming in
future releases.

• Neuron plugin for TensorBoard is supported for Neuron tools >= 1.5, which is first introduced in Neuron v1.13.0
release

• TensorBoard-Neuron is deprecated, and only supported for Neuron tools <= 1.4.12.0. The final version, 1.4.12.0
is part of Neuron v1.12.2 release.

[1.15.0.1.2.6.0]

Date: 2/24/2021

Summary

• Fix for CVE-2021-3177.

[1.15.0.1.1.1.0]

Date: 12/23/2020

828 Chapter 16. Neuron Tools

AWS Neuron

Summary

• Minor internal improvements.

[1.15.0.1.0.615.0]

Date: 11/17/2020

Summary

• Fix issue with viewing chrome trace in Neuron profile plugin in Chrome 80+.

Resolved Issues

• Updated dependencies to polyfill missing APIs used by chrome trace in newer browser versions.

[1.15.0.1.0.600.0]

Date: 09/22/2020

Summary

• Minor internal improvements.

[1.15.0.1.0.570.0]

Date: 08/08/2020

Summary

• Minor internal improvements.

[1.15.0.1.0.513.0]

Date: 07/16/2020

16.2. TensorBoard 829

AWS Neuron

Summary

• Minor internal improvements.

[1.15.0.1.0.491.0]

Date 6/11/2020

Summary

Fix issue where utilization was missing in the op-profile view.

Resolved Issues

• The op-profile view in the Neuron Profile plugin now correctly shows the overall NeuronCore utilization.

[1.15.0.1.0.466.0]

Date 5/11/2020

Summary

Fix potential installation issue when installing both tensorboard and tensorboard-neuron.

Resolved Issues

• Added tensorboard as a dependency in tensorboard-neuron. This prevents the issue of overwriting tensorboard-
neuron features when tensorboard is installed after tensorboard-neuron.

Other Notes

[1.15.0.1.0.392.0]

Date 3/26/2020

Summary

Added ability to view CPU node latency in the Graphs plugin and the Neuron Profile plugins.

830 Chapter 16. Neuron Tools

AWS Neuron

Major New Features

• Added an aggregate view in addition to the current Neuron subgraph view for both the Graphs plugin and the
Neuron Profile plugin.

• When visualizing a graph executed on a Neuron device, CPU node latencies are available when coloring the
graph by “Compute time” using the “neuron_profile” tag.

• The Neuron Profile plugin now has an overview page to compare time spent on Neuron device versus on CPU.

Other Notes

• Requires Neuron-RTD config option “enable_node_profiling” to be set to “true”

[1.15.0.1.0.366.0]

Date 02/27/2020

Summary

Reduced load times and fixed crashes when loading large models for visualization.

Resolved Issues

• Enable large attribute filtering by default

• Reduced load time for graphs with attributes larger than 1 KB

• Fixed a fail to load graphs with many large attributes totaling more than 1 GB in size

[1.15.0.1.0.315.0]

Date 12/20/2019

Summary

No major chages or fixes. Released with other Neuron packages.

[1.15.0.1.0.306.0]

Date 12/1/2019

16.2. TensorBoard 831

AWS Neuron

Summary

Major New Features

Resolved Issues

Known Issues & Limits

Same as prior release

Other Notes

[1.15.0.1.0.280.0]

Date 11/29/2019

Summary

Initial release packaged with DLAMI.

Major New Features

N/A, initial release.

See user guide here: https://github.com/aws/aws-neuron-sdk/blob/master/docs/neuron-tools/
getting-started-tensorboard-neuron.md

Resolved Issues

N/A - first release

Known Issues & Limits

• Must install TensorBoard-Neuron by itself, or after regular TensorBoard is installed. If regular Tensorboard is
installed after TensorBoard-Neuron, it may overwrite some needed files.

• Utilization missing in Op Profile due to missing FLOPs calculation (see overview page instead)

• Neuron Profile plugin may not immediately show up on launch (try reloading the page)

• Graphs with NeuronOps may take a long time to load due to attribute size

• Instructions that cannot be matched to a framework layer/operator name show as “” (blank)

• CPU Usage section in chrome-trace is not applicable

• Debugger currently supports TensorFlow only

• Visualization requires a TensorFlow-compatible graph

832 Chapter 16. Neuron Tools

https://github.com/aws/aws-neuron-sdk/blob/master/docs/neuron-tools/getting-started-tensorboard-neuron.md
https://github.com/aws/aws-neuron-sdk/blob/master/docs/neuron-tools/getting-started-tensorboard-neuron.md

AWS Neuron

Other Notes

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

16.2.2 TensorBoard for Inf1

This document is relevant for: Inf1

Neuron Plugin for TensorBoard (Inf1)

Table of Contents

• Overview

• Compile the neural network

• Enable profiling

• Launch TensorBoard

• View results in TensorBoard

• Visualize graphs executed on Neuron

– Show how the graph was partition to run on NeuronCores

– Inspect which operators consumes the most time

– Check out Neuron support operators for each framework

– Filter view by device

– Expand/collapse subgraphs and view operator details

• Viewing the Neuron profile data

– See performance summary

– Get a breakdown of time spent per NeuronCore

– Get a breakdown of time spent per operator

Overview

This guide is for developers who want to better understand how their model is executed using Neuron SDK through
TensorBoard.

The Neuron plugin for TensorBoard provides metrics to the performance of machine learning tasks accelerated using
the Neuron SDK. It is compatible with TensorBoard versions 1.15 and higher. It provides visualizations and profiling
results for graphs executed on NeuronCores.

Note: The following information is compatible with Neuron SDK for Inf1. For a walkthrough on the latest version,
please check out the guide Neuron Plugin for TensorBoard (Trn1).

16.2. TensorBoard 833

AWS Neuron

Note: Graph visualization is currently only supported for TensorFlow-Neuron. Support for MXNet-Neuron and
PyTorch-Neuron visualization will be added in a future release.

Compile the neural network

3. Refer to the following guides on how to compile a graph using Neuron SDK.

• TensorFlow-Neuron
– Running ResNet50 on Inferentia

• PyTorch-Neuron:
– “Compile model for Neuron” in PyTorch-Neuron Resnet50 Tutorial

• MXNet-Neuron:
– /src/examples/mxnet/resnet50/resnet50.ipynb

Enable profiling

In this step, we enable Neuron profile data collection and collect results from executing an inference.

4.1. To start profiling the neural network and collect inference traces, create a directory where profile data will be
dumped and set the NEURON_PROFILE environment variable. In this example, we will assume this directory is $HOME/
profile

mkdir -p $HOME/profile
export NEURON_PROFILE=$HOME/profile

4.2. Ensure Neuron Tools are executable by setting the PATH environment variable.

export PATH=/opt/aws/neuron/bin:$PATH

4.3. Execute inference!

Note: Please run the inference script outside of Jupyter notebook. Profiling in Jupyter notebook is not supported at
this time.

Note: Please ensure the inference script executes only one inference, as profiling results are currently only supported
for a single inference.

For more info on how to execute inference, refer to the following guides:

• TensorFlow-Neuron
– Running ResNet50 on Inferentia

• PyTorch-Neuron
– “Run inference on Single Core” in /src/examples/pytorch/resnet50.ipynb

• MXNet-Neuron

834 Chapter 16. Neuron Tools

AWS Neuron

– /src/examples/mxnet/resnet50/resnet50.ipynb

4.4. Check if profiling results were successfully saved. In the directory pointed to by NEURON_PROFILE environment
variable set in Step 4.1, there should be at least two files, one with the .neff extension and one with the .ntff
extension. For TensorFlow-Neuron users, the graph file (.pb) will also be in this directory.

ls $NEURON_PROFILE

Launch TensorBoard

In this step, we will process the Neuron profile data and launch TensorBoard.

5.1. Install the Neuron plugin for Tensorboard.

If you are using the DLAMI TensorFlow-Neuron Conda environment, please run the following to update TensorBoard
before installing the Neuron plugin.

pip install "tensorboard<=2.4.0" --force-reinstall

Modify Pip repository configurations to point to the Neuron repository:

tee $VIRTUAL_ENV/pip.conf > /dev/null <<EOF
[global]
extra-index-url = https://pip.repos.neuron.amazonaws.com
EOF

pip install tensorboard-plugin-neuron

5.2. After collecting the raw profile data, we need to post-process it to create the log files used by the Neuron plu-
gin. This can be done when launching TensorBoard by passing an extra flag --run_neuron_profiler. Using this
flag will create the directory specified by --logdir and populate it with Neuron plugin data. Please note that the
NEURON_PROFILE environment variable set in Step 4.1 must still point to the same directory as before.

tensorboard --logdir results --run_neuron_profiler

Note: If using TensorBoard >= 2.5, please use the --load_fast=false option when launching. tensorboard
--logdir results --run_neuron_profiler --load_fast=false

5.3. After you see the following message, TensorBoard is ready to use. By default, TensorBoard will be launched at
localhost:6006 on the Deployment Instance.

...
Running neuron-profile
Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_
→˓all
TensorBoard 2.4.1 at http://localhost:6006/ (Press CTRL+C to quit)

16.2. TensorBoard 835

AWS Neuron

View results in TensorBoard

In this step, we will view the Neuron plugin for TensorBoard from a browser on your local development machine.

6.1. Connect to the Deployment Instance while enabling port forwarding. In this example, we assume TensorBoard
has been launched using the default address localhost:6006 on the Deployment Instance.

if Ubuntu-based AMI
ssh -i <PEM key file> ubuntu@<instance DNS> -L 6006:localhost:6006

if AL2-based AMI
ssh -i <PEM key file> ec2-user@<instance DNS> -L 6006:localhost:6006

6.2. In a browser, visit .

6.3. In the top navigation bar, switch from Graphs to Neuron. If it does not show up, please wait a while and refresh
the page while the plugin loads. If the issue persists, check the Inactive dropdown list on the right and check for
Neuron.

6.4. If TensorBoard failed to find the generated logs, you will see the following message:

836 Chapter 16. Neuron Tools

AWS Neuron

In this case, please check the console output on the Deployment Instance where TensorBoard was launched for any
warnings or error messages, and make sure the version of the aws-neuron-tools package is compatible.

Visualize graphs executed on Neuron

Show how the graph was partition to run on NeuronCores

To view how the graph was partitioned to run on NeuronCores, select “Device” under “Graph Color Schemes” in the
left navigation bar.

Each operator will be colored according to the device used. In this example, light blue indicates an operator was
executed on CPU, and orange indicates the operator was executed on NeuronCores. Operators that are white may have
been optimized by the Neuron compiler and fused into another operation.

16.2. TensorBoard 837

AWS Neuron

Inspect which operators consumes the most time

You can also view how long each operator took by changing to the “Compute time” color scheme.

This view will show time taken by each layer and will be colored according to how much relative time the layer took
to compute. A lighter shade of red means that a relatively small portion of compute time was spent in this layer, while
a darker red shows that more compute time was used.

Check out Neuron support operators for each framework

The “Compatibility” color scheme allows you to better understand what operators are currently supported by the Neuron
compiler - green for compatible ops, red for incompatible ops, and yellow for subgraphs that contain both compatible
and incompatible ops.

838 Chapter 16. Neuron Tools

AWS Neuron

Filter view by device

Additionally, you can choose to filter by CPU and NeuronCores, which will only color ops that match the selected
device(s).

Expand/collapse subgraphs and view operator details

Each rectangular node in the graph represents a subgraph that can be expanded or collapse by clicking on the name.
Operators will be represented by ellipses, and can be clicked to reveal more information on that operator, such as inputs
and execution device.

The Expand All and Collapse All buttons can be used to expand or collapse every subgraph. When using these
features, the positioning of the graph may change when redrawing the new graph. Try using Reset Position button
and zoom out by scrolling if the graph appears to be missing.

16.2. TensorBoard 839

AWS Neuron

Viewing the Neuron profile data

On the right side of the Neuron plugin, information on the profiled inference will be displayed.

See performance summary

First is the “Neuron Performance Summary,” which gives a quick overview on how Neuron executed the graph, includ-
ing information on the number of NeuronCores and both on-NeuronCore time and on-CPU time.

Get a breakdown of time spent per NeuronCore

Next, the “Neuron Execution” will give more details on how a graph was partitioned for Neuron. Each entry in the
table will show the order it was executed in, what type of device was used, the compute time (in microseconds), and
the percentage of total time spent. To dive deeper into subgraphs, you can check the “Show Details” box to display the
breakdown per NeuronCore.

840 Chapter 16. Neuron Tools

AWS Neuron

Get a breakdown of time spent per operator

The “Op Time Table” section shows the cycle count per operator, much like the “Compute time” coloring for graph
visualization. This table can be sorted by clicking the column names, and searched using the provided text box in the
top right corner. Due to Neuron compiler optimizations, some of the compute may not be associated with any specific
operator and will be categorized as unknown. Additionally, time spent moving data to and from NeuronCores will fall
under (ND_ENGINE_LOAD).

This document is relevant for: Inf1

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

16.2. TensorBoard 841

AWS Neuron

TensorBoard Plugin for Neuron

• Neuron Plugin for TensorBoard (Trn1)

• Neuron Plugin for TensorBoard (Inf1)

• What’s New

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

16.3 Helper Tools

This document is relevant for: Inf1

16.3.1 Neuron Check Model

Overview

Neuron Check Model tool provides user with basic information about the compiled and uncompiled model’s opera-
tions without the use of TensorBoard-Neuron. For additional visibility into the models, please see Neuron Plugin for
TensorBoard (Inf1).

Neuron Check Model tool scans the user’s uncompiled model and provides a table of the operations within the uncom-
piled model. By default, the table shows each operation type and number of instances of that type within model, and
whether the type is supported in Neuron. If –show_names option is specified, the table shows each operation by name
and whether the type of that operation is supported in Neuron.

If the model is already compiled, the tool also provides the table of operations as for uncompiled model. The table
include the Neuron subgraph type and number of instances of that type, along with operations that have not been com-
piled to Neuron. Additionally, the tool displays a message showing the minimum number of NeuronCores required
to run the model, followed by another table which shows the list of Neuron subgraphs by name and the number of
pipelined NeuronCores used by each subgraph. More information about NeuronCore pipeline can be found in Neu-
ronCore Pipeline. If –expand_subgraph option is specified, the operations within each subgraph are printed below the
subgraph information.

Neuron Check Model tool is currently available for TensorFlow and MXNet. To check PT model,
please use torch.neuron.analyze_model function as shown in PyTorch-Neuron Getting Started tutorial
/src/examples/pytorch/resnet50.ipynb

TensorFlow-Neuron Check Model

The following example shows how to run TensorFlow-Neuron Check Model tool with TensorFlow ResNet50 tutorial.

1. Start with the TensorFlow ResNet50 tutorial at Running ResNet50 on Inferentia and do the first three steps of the
tutorial. Please stay in the Python environment that you setup during the tutorial.

2. Install needed tensorflow_hub package and download the tool:

pip install tensorflow_hub
wget https://raw.githubusercontent.com/aws/aws-neuron-sdk/master/src/neuron-gatherinfo/
→˓tf_neuron_check_model.py
python tf_neuron_check_model.py -h

842 Chapter 16. Neuron Tools

AWS Neuron

usage: tf_neuron_check_model.py [-h] [--show_names] [--expand_subgraph]
model_path

positional arguments:
model_path a TensorFlow SavedModel directory (currently supporting

TensorFlow v1 SaveModel only).

optional arguments:
-h, --help show this help message and exit
--show_names list operation by name instead of summarizing by type

(caution: this option will generate many lines of output
for a large model).

--expand_subgraph show subgraph operations.

3. After step 3 of the TensorFlow ResNet50 tutorial, you can check the uncompiled model to see Neuron supported
operations (currently supporting TensorFlow v1 SaveModel only):

$ python tf_neuron_check_model.py ws_resnet50/resnet50/

* The following table shows the supported and unsupported operations within this␣
→˓uncompiled model.
* Each line shows an operation type, the number of instances of that type within model,
* and whether the type is supported in Neuron.
* Some operation types are excluded from table because they are no-operations or␣
→˓training-related operations:
['Placeholder', 'PlaceholderWithDefault', 'NoOp', 'Const', 'Identity', 'IdentityN',
→˓'VarHandleOp',
'VarIsInitializedOp', 'AssignVariableOp', 'ReadVariableOp', 'StringJoin',
→˓'ShardedFilename', 'SaveV2',
'MergeV2Checkpoints', 'RestoreV2']

Op Type Num Instances Neuron Supported ?
------- ------------- ------------------
Pad 2 Yes
RandomUniform 54 Yes
Sub 54 Yes
Mul 54 Yes
Add 54 Yes
Conv2D 53 Yes
BiasAdd 54 Yes
FusedBatchNormV3 53 Yes
Relu 49 Yes
MaxPool 1 Yes
AddV2 16 Yes
Fill 56 Yes
Mean 1 Yes
MatMul 1 Yes
Softmax 1 Yes
Pack 1 Yes

* Total inference operations: 504
* Total Neuron supported inference operations: 504
* Percent of total inference operations supported by Neuron: 100.0

16.3. Helper Tools 843

AWS Neuron

4. You can also check the compiled model to see the number of pipeline NeuronCores for each subgraph:

$ python tf_neuron_check_model.py ws_resnet50/resnet50_neuron/

* Found 1 Neuron subgraph(s) (NeuronOp(s)) in this compiled model.
* Use this tool on the original uncompiled model to see Neuron supported operations.
* The following table shows all operations, including Neuron subgraphs.
* Each line shows an operation type, the number of instances of that type within model,
* and whether the type is supported in Neuron.
* Some operation types are excluded from table because they are no-operations or␣
→˓training-related operations:
['Placeholder', 'PlaceholderWithDefault', 'NoOp', 'Const', 'Identity', 'IdentityN',
→˓'VarHandleOp',
'VarIsInitializedOp', 'AssignVariableOp', 'ReadVariableOp', 'StringJoin',
→˓'ShardedFilename', 'SaveV2',
'MergeV2Checkpoints', 'RestoreV2']

Op Type Num Instances Neuron Supported ?
------- ------------- ------------------
NeuronOp 1 Yes

* Please run this model on Inf1 instance with at least 1 NeuronCore(s).
* The following list show each Neuron subgraph with number of pipelined NeuronCores used␣
→˓by subgraph
* (and subgraph operations if --expand_subgraph is used):

Subgraph Name Num␣
→˓Pipelined NeuronCores
------------- -----------
→˓--------------
conv5_block3_3_bn/FusedBatchNormV3/ReadVariableOp/neuron_op_d6f098c01c780733 1

5. When showing subgraph information, you can use –expand_subgraph to show operation types in each subgraph:

$ python tf_neuron_check_model.py ws_resnet50/resnet50_neuron/ --expand_subgraph

(output truncated to show subgraph information only)

Subgraph Name Num␣
→˓Pipelined NeuronCores
------------- -----------
→˓--------------
conv5_block3_3_bn/FusedBatchNormV3/ReadVariableOp/neuron_op_d6f098c01c780733 1

Op Type Num Instances
------- -------------
MatMul 1
Relu 49
Add 16
FusedBatchNorm 53
BiasAdd 54
Conv2D 53
Pad 2
Mean 1
MaxPool 1

(continues on next page)

844 Chapter 16. Neuron Tools

AWS Neuron

(continued from previous page)

Softmax 1

6. Use –show_names to see full operation names (caution: this option will generate many lines of output for a large
model):

$ python tf_neuron_check_model.py ws_resnet50/resnet50_neuron/ --show_names

* Found 1 Neuron subgraph(s) (NeuronOp(s)) in this compiled model.
* Use this tool on the original uncompiled model to see Neuron supported operations.
* The following table shows all operations, including Neuron subgraphs.
* Each line shows an operation name and whether the type of that operation is supported␣
→˓in Neuron.
* Some operation types are excluded from table because they are no-operations or␣
→˓training-related operations:
['Placeholder', 'PlaceholderWithDefault', 'NoOp', 'Const', 'Identity', 'IdentityN',
→˓'VarHandleOp',
'VarIsInitializedOp', 'AssignVariableOp', 'ReadVariableOp', 'StringJoin',
→˓'ShardedFilename', 'SaveV2',
'MergeV2Checkpoints', 'RestoreV2']

Op Name Op Type ␣
→˓Neuron Supported ?
------- ------- -
→˓-----------------
conv5_block3_3_bn/FusedBatchNormV3/ReadVariableOp/neuron_op_d6f098c01c780733 NeuronOp ␣
→˓Yes

* Please run this model on Inf1 instance with at least 1 NeuronCore(s).
* The following list show each Neuron subgraph with number of pipelined NeuronCores used␣
→˓by subgraph
* (and subgraph operations if --expand_subgraph is used):

Subgraph Name Num␣
→˓Pipelined NeuronCores
------------- -----------
→˓--------------
conv5_block3_3_bn/FusedBatchNormV3/ReadVariableOp/neuron_op_d6f098c01c780733 1

MXNet-Neuron Check Model

The following example shows how to run MXNet-Neuron Check Model tool with MXNet ResNet50 tutorial.

1. Start with the MXNet ResNet50 tutorial at /src/examples/mxnet/resnet50/resnet50.ipynb and do the first three steps
of the tutorial. Please stay in the Python environment that you setup during the tutorial.

2. Download the tool:

wget https://raw.githubusercontent.com/aws/aws-neuron-sdk/master/src/neuron-gatherinfo/
→˓mx_neuron_check_model.py
python mx_neuron_check_model.py -h

16.3. Helper Tools 845

AWS Neuron

usage: mx_neuron_check_model.py [-h] [--show_names] [--expand_subgraph]
model_path

positional arguments:
model_path path prefix to MXNet model (the part before -symbol.json)

optional arguments:
-h, --help show this help message and exit
--show_names list operation by name instead of summarizing by type

(caution: this option will generate many lines of output
for a large model).

--expand_subgraph show subgraph operations.

3. After step 3 of MXNet ResNet50 tutorial, you can check the uncompiled model to see Neuron supported opera-
tions:

$ python mx_neuron_check_model.py resnet-50

* The following table shows the supported and unsupported operations within this␣
→˓uncompiled model.
* Each line shows an operation type, the number of instances of that type within model,
* and whether the type is supported in Neuron.
* Some operation types are excluded from table because they are no-operations or␣
→˓training-related operations:
['null']

Op Type Num Instances Neuron Supported ?
------- ------------- ------------------
BatchNorm 51 Yes
Convolution 53 Yes
Activation 50 Yes
Pooling 2 Yes
elemwise_add 16 Yes
Flatten 1 Yes
FullyConnected 1 Yes
SoftmaxOutput 1 No

* Total inference operations: 175
* Total Neuron supported inference operations: 174
* Percent of total inference operations supported by Neuron: 99.4

4. You can also check the compiled model to see the number of pipeline NeuronCores for each subgraph:

$ python mx_neuron_check_model.py resnet-50_compiled

* Found 1 Neuron subgraph(s) (_neuron_subgraph_op(s)) in this compiled model.
* Use this tool on the original uncompiled model to see Neuron supported operations.
* The following table shows all operations, including Neuron subgraphs.
* Each line shows an operation type, the number of instances of that type within model,
* and whether the type is supported in Neuron.
* Some operation types are excluded from table because they are no-operations or␣
→˓training-related operations:
['null']

(continues on next page)

846 Chapter 16. Neuron Tools

AWS Neuron

(continued from previous page)

Op Type Num Instances Neuron Supported ?
------- ------------- ------------------
_neuron_subgraph_op 1 Yes
SoftmaxOutput 1 No

* Please run this model on Inf1 instance with at least 1 NeuronCore(s).
* The following list show each Neuron subgraph with number of pipelined NeuronCores used␣
→˓by subgraph
* (and subgraph operations if --expand_subgraph is used):

Subgraph Name Num Pipelined NeuronCores
------------- -------------------------
_neuron_subgraph_op0 1

5. When showing subgraph information, you can use –expand_subgraph to show operation types in each subgraph:

$ python mx_neuron_check_model.py resnet-50_compiled --expand_subgraph

(output truncated to show subgraph information only)

Subgraph Name Num Pipelined NeuronCores
------------- -------------------------
_neuron_subgraph_op0 1

Op Type Num Instances
------- -------------
BatchNorm 51
Convolution 53
Activation 50
Pooling 2
elemwise_add 16
Flatten 1
FullyConnected 1

6. Use –show_names to see full operation names (caution: this option will generate many lines of output for a large
model):

$ python mx_neuron_check_model.py resnet-50_compiled --show_names

* Found 1 Neuron subgraph(s) (_neuron_subgraph_op(s)) in this compiled model.
* Use this tool on the original uncompiled model to see Neuron supported operations.
* The following table shows all operations, including Neuron subgraphs.
* Each line shows an operation name and whether the type of that operation is supported␣
→˓in Neuron.
* Some operation types are excluded from table because they are no-operations or␣
→˓training-related operations:
['null']

Op Name Op Type Neuron Supported ?
------- ------- ------------------
_neuron_subgraph_op0 _neuron_subgraph_op Yes
softmax SoftmaxOutput No

(continues on next page)

16.3. Helper Tools 847

AWS Neuron

(continued from previous page)

* Please run this model on Inf1 instance with at least 1 NeuronCore(s).
* The following list show each Neuron subgraph with number of pipelined NeuronCores used␣
→˓by subgraph
* (and subgraph operations if --expand_subgraph is used):

Subgraph Name Num Pipelined NeuronCores
------------- -------------------------
_neuron_subgraph_op0 1

This document is relevant for: Inf1

This document is relevant for: Inf1

16.3.2 Using Neuron GatherInfo Tool to collect debug and support information

Overview

The Neuron GatherInfo tool neuron-gatherinfo.py can assist in automating the collection and packaging of infor-
mation from Neuron SDK tools that is useful to both user and AWS for issue resolution. The tool gathers log files and
other system information. If being used to supply that info to AWS, the tool will redact proprietary and confidential
information. The GatherInfo tool is supplied in source code form - available here: Neuron Gatherinfo

The tool enables developers to gather compiler and inference/runtime logs. Additionally, the common usage is from
within one of the supported ML frameworks that have been integrated with Neuron, and information can be captured
from those compile/runtime environments using the frameworks.

Steps Overview:

1. Obtain a copy of neuron-gatherinfo.py from Neuron Gatherinfo

2. Install into a location in your $PATH or into a location from where you can launch the script

3. Use with compile and/or runtime environments

Neuron-CC information gathering

Step 1: Re-run the compile steps for your workload with increased verbosity or debug levels

• For TensorFlow-Neuron, change the Python code as shown. Note that ‘compiler-workdir’ is expected to be an
empty directory to prevent files from other runs from interfering with the information gathering. The call to the
compile function has to be augmented with the verbose and the **compiler_workdir **arguments. In addition,
please capture the stdout messages into a file (for example, by redirecting the stdout to a file)

tfn.saved_model.compile(model_dir, compiled_model_dir, compiler_args=['--verbose', '2',
→˓'--pipeline', 'compile', 'SaveTemps'], compiler_workdir='./compiler-workdir')

• For Neuron Apache MXNet, add compiler arguments as shown below and run the compilation process from an
empty workdir:

848 Chapter 16. Neuron Tools

https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/neuron-gatherinfo/neuron-gatherinfo.py
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/neuron-gatherinfo/neuron-gatherinfo.py

AWS Neuron

import mxnet as mx
import os

from packaging import version
mxnet_version = version.parse(mx.__version__)
if mxnet_version >= version.parse("1.8"):
import mx_neuron as neuron

else:
from mxnet.contrib import neuron

...
os.environ['SUBGRAPH_INFO'] = '1'
compile_args = { '--verbose' : 2, '--pipeline' : 'compile', 'flags' : ['SaveTemps'] }
csym, cargs, cauxs = neuron.compile(sym, args, auxs, inputs=inputs, **compile_args)

Step 2: Run neuron-gatherinfo.py to gather information to share

The output result will be a tar.gz file.

Neuron Runtime information gathering

Step 1: EXECUTE inference steps for your workload with increased verbosity or debug levels

In the case of runtime information, the tool neuron-dump.py is used by **neuron-gatherinfo.py **to gather that in-
formation. Make sure that you have the neuron tools package (aws-neuron-tools) installed.

Step 2: Run neuron-gatherinfo.py to gather information to share

The output result will be a tar.gz file.

Tool Usage Reference

Run neuron-gatherinfo.py using the “—help“ option:

bash $ ~/bin/neuron-gatherinfo.py --help
usage: neuron-gatherinfo.py [-h] [--additionalfileordir ADDFLDIR] [-c CCDIR]

[-i] [-f FILTERFILE] [-m] -o OUTDIR [-r RTDIR] -s
STDOUT [-v]

Usage: /home/user/bin/neuron-gatherinfo.py [options]
This program is used to gather information from this system for analysis
and debugging

optional arguments:
-h, --help show this help message and exit
--additionalfileordir ADDFLDIR

Additional file or directory that the user wants to
(continues on next page)

16.3. Helper Tools 849

AWS Neuron

(continued from previous page)

provide in the archive. The user can sanitize this
file or directory before sharing

-c CCDIR, --compileroutdir CCDIR
Location of the neuron-cc generated files

-i, --include By default, only the lines containing (grep) patterns
like 'nrtd|neuron|kernel:' from the syslog are copied.
Other lines are excluded. Using this option allows the
timestamp section of other lines to be included. The
rest of the contents of the line itself are elided.
Providing the timestamp section may provide time
continuity while viewing the copied syslog file

-f FILTERFILE, --filter FILTERFILE
-m, --modeldata By using this option, the entire compiler work

directory's contents will be included (excluding the
.pb files, unless an additional option is used). This
would include model information, etc. The files that
are included, by default, are these: graph_def.neuron-
cc.log, all_metrics.csv, hh-tr-operand-
tensortensor.json

-o OUTDIR, --out OUTDIR
The output directory where all the files and other
information will be stored. The output will be stored
as an archive as well as the actual directory where
all the contents are copied. This will allow a simple
audit of the files, if necessary. *** N O T E ***:
Make sure that this directory has enough space to hold
the files and resulting archive

-r RTDIR, --runtimeoutdir RTDIR
Location of the neuron runtime generated files

-s STDOUT, --stdout STDOUT
The file where the stdout of the compiler run was
saved

-v, --verbose Verbose mode displays commands executed and any
additional information which may be useful in
debugging the tool itself

Examples

Example 1: no ML model information gathered (default behavior)

In this case, the tool will archive just the default information gathering:

bash $ sudo ~/bin/neuron-gatherinfo.py -o compile-and-run-info-for-debugging-no-model-
→˓info -i --verbose -s stdout-from-compile_resnet50.out -c compiler-workdir

Running cmd: lscpu and capturing output in file: /home/user/tutorials-3/compile-and-run-
→˓info-for-debugging-no-model-info/neuron-gatherinfo/report-lscpu.txt
Running cmd: lshw and capturing output in file: /home/user/tutorials-3/compile-and-run-
→˓info-for-debugging-no-model-info/neuron-gatherinfo/report-lshw.txt
Running cmd: lspci | grep -i Amazon and capturing output in file: /home/user/tutorials-3/
→˓compile-and-run-info-for-debugging-no-model-info/neuron-gatherinfo/report-lspci.txt

(continues on next page)

850 Chapter 16. Neuron Tools

AWS Neuron

(continued from previous page)

Running cmd: neuron-cc --version and capturing output in file: /home/user/tutorials-3/
→˓compile-and-run-info-for-debugging-no-model-info/neuron-gatherinfo/report-neuron-cc.txt
Running cmd: neuron-ls and capturing output in file: /home/user/tutorials-3/compile-and-
→˓run-info-for-debugging-no-model-info/neuron-gatherinfo/report-neuron-ls.txt
<SNIP>

Archive created at:

/home/user/tutorials-3/compile-and-run-info-for-debugging-no-model-info/neuron-
→˓gatherinfo.tar.gz

From directory:
/home/user/tutorials-3/compile-and-run-info-for-debugging-no-model-info/neuron-

→˓gatherinfo

Example 2 : model ML information gathered using the “—modeldata” option

In this case, the tool will archive the compiler work directory in addition to the default information gathering

bash $ sudo ~/bin/neuron-gatherinfo.py -o compile-and-run-info-for-debugging -i --
→˓verbose -s stdout-from-compile_resnet50.out -c compiler-workdir --modeldata

<SNIP>
Running cmd: lscpu and capturing output in file: /home/user/tutorials-3/compile-and-run-
→˓info-for-debugging/neuron-gatherinfo/report-lscpu.txt
Running cmd: lshw and capturing output in file: /home/user/tutorials-3/compile-and-run-
→˓info-for-debugging/neuron-gatherinfo/report-lshw.txt
Running cmd: lspci | grep -i Amazon and capturing output in file: /home/user/tutorials-3/
→˓compile-and-run-info-for-debugging/neuron-gatherinfo/report-lspci.txt
Running cmd: neuron-cc --version and capturing output in file: /home/user/tutorials-3/
→˓compile-and-run-info-for-debugging-no-model-info/neuron-gatherinfo/report-neuron-cc.txt
Running cmd: neuron-ls and capturing output in file: /home/user/tutorials-3/compile-and-
→˓run-info-for-debugging-no-model-info/neuron-gatherinfo/report-neuron-ls.txt
<SNIP>

Archive created at:

/home/user/tutorials-3/compile-and-run-info-for-debugging/neuron-gatherinfo.tar.
→˓gz

From directory:
/home/user/tutorials-3/compile-and-run-info-for-debugging/neuron-gatherinfo

Based on your command line option, we're also packaging these files:

graph_def.neuron-cc.log
all_metrics.csv
hh-tr-operand-tensortensor.json

And this directory: /home/user/tutorials-3/compiler-workdir
(continues on next page)

16.3. Helper Tools 851

AWS Neuron

(continued from previous page)

This document is relevant for: Inf1

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

Helper Tools

• Neuron Check Model

• Using Neuron GatherInfo Tool to collect debug and support information

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

16.4 NeuronPerf (Beta)

NeuronPerf is a lightweight Python library with a simple API that enables fast measurements of performance when
running models using Neuron.

16.4.1 NeuronPerf Quickstart

To install NeuronPerf in your Neuron environment, execute:

$ pip install neuronperf --extra-index-url=https://pip.repos.neuron.amazonaws.com

Refer to the NeuronPerf Examples and NeuronPerf User Guide to get started.

16.4.2 NeuronPerf User Guide

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

NeuronPerf Overview

NeuronPerf is a lightweight Python library that can help you easily benchmark your models with Neuron hardware.

NeuronPerf supports Neuron releases for PyTorch, Tensorflow, and MXNet. It is used internally by the Neuron team
to generate performance benchmarking numbers.

When interacting with NeuronPerf, you will typically import the base package along with one of the submodule wrap-
pers, for example:

import neuronperf
import neuronperf.torch

You may then benchmark and/or compile one or more models with NeuronPerf. For example,

reports = neuronperf.torch.benchmark(model, inputs, ...)

The compile and benchmark methods must be accessed through one of the supported framework submodules.

852 Chapter 16. Neuron Tools

AWS Neuron

Benchmarking

All NeuronPerf benchmark calls require a minimum of two arguments:

1. A filename

2. Inputs

The filename may refer to:

1. A Neuron-compiled model (e.g. my_model.pt)

2. A Model Index.

A Model Index is useful for benchmarking more than one model in a single session.

Compiling

NeuronPerf also provides a standard interface to all Neuron frameworks through the compile API.

model_index = neuronperf.torch.compile(model, inputs, ...)

This is completely optional. You may use the standard compilation guides for supported frameworks.

Next Steps

Take a look at the simple NeuronPerf Examples, NeuronPerf Benchmark Guide, NeuronPerf Compile Guide, and Neu-
ronPerf API .

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

NeuronPerf Terminology

• Model Inputs - An individual input or list of inputs - Example: inputs = [(torch.ones((batch_size,
5))) for batch_size in batch_sizes] - Each input is associated with the batch_sizes specified, in the
same order - Each input is fed individually to a corresponding model - If an input is provided as a tuple, it will
be destructured to model(*input) to support multiple args - See NeuronPerf Framework Notes for framework-
specific requirements

• Latency
– Time to execute a single model(input)

– Typically measured in milliseconds

• Model
– Your data model; varies by framework. See NeuronPerf Framework Notes

– Models may be wrapped by submodules (torch, tensorflow, mxnet) as callables

• Model Index
– A JSON file that tracks compiled model artifacts

• Model Inputs
– A tuple of inputs passed to a model, i.e. a single complete example

16.4. NeuronPerf (Beta) 853

AWS Neuron

– Example: input = (torch.ones((5, 3, 224, 224)),)

• Throughput
– Inferences / second

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

NeuronPerf Examples

This page walks through several examples of using NeuronPerf, starting with the simplest way—using a compiled
model. We will also see how we can use NeuronPerf to perform a hyperparameter search, and manage the artifacts
produced, as well as our results.

Benchmark a Compiled Model

This example assumes you have already compiled your model for Neuron and saved it to disk. You will need to adapt
the batch size, input shape, and filename for your model.

import torch # or tensorflow, mxnet

import neuronperf as npf
import neuronperf.torch # or tensorflow, mxnet

Construct dummy inputs
batch_sizes = 1
input_shape = (batch_sizes, 3, 224, 224)
inputs = torch.ones(input_shape) # or numpy array for TF, MX

Benchmark and save results
reports = npf.torch.benchmark("your_model_file.pt", inputs, batch_sizes)
npf.print_reports(reports)
npf.write_json(reports)

INFO:neuronperf.benchmarking - Benchmarking 'your_model_file.pt', ~8.0 minutes remaining.
throughput_avg latency_ms_p50 latency_ms_p99 n_models pipeline_size ␣
→˓ workers_per_model batch_size model_filename
296766.5 0.003 0.003 1 1 ␣
→˓ 1 1 your_model_file.pt
3616109.75 0.005 0.008 24 1 ␣
→˓ 1 1 your_model_file.pt
56801.0 0.035 0.04 1 1 ␣
→˓ 2 1 your_model_file.pt
3094419.4 0.005 0.051 24 1 ␣
→˓ 2 1 your_model_file.pt

Let’s suppose you only wish to test two specific configurations. You wish to benchmark 1 model and 1 worker thread,
and also with 2 worker threads for 15 seconds each. The call to benchmark becomes:

reports = npf.torch.benchmark(filename, inputs, batch_sizes, n_models=1, workers_per_
→˓model=[1, 2], duration=15)

854 Chapter 16. Neuron Tools

AWS Neuron

You can also add a custom model name to reports.

reports = npf.torch.benchmark(..., model_name="MyFancyModel")

See the NeuronPerf Benchmark Guide for further details.

Benchmark a Model from Source

In this example, we define, compile, and benchmark a simple (dummy) model using PyTorch.

We’ll assume you already have a PyTorch model compiled for Neuron with the filename model_neuron_b1.pt. Fur-
thermore, let’s assume the model was traced with a batch size of 1, and has an input shape of (3, 224, 224).

Listing 1: test_simple_pt.py

1 import torch
2 import torch.neuron
3

4 import neuronperf as npf
5 import neuronperf.torch
6

7

8 # Define a simple model
9 class Model(torch.nn.Module):

10 def forward(self, x):
11 x = x * 3
12 return x + 1
13

14

15 # Instantiate
16 model = Model()
17 model.eval()
18

19 # Define some inputs
20 batch_sizes = [1]
21 inputs = [torch.ones((batch_size, 3, 224, 224)) for batch_size in batch_sizes]
22

23 # Compile for Neuron
24 model_neuron = torch.neuron.trace(model, inputs)
25 model_neuron.save("model_neuron_b1.pt")
26

27 # Benchmark
28 reports = npf.torch.benchmark("model_neuron_b1.pt", inputs, batch_sizes)
29

30 # View and save results
31 npf.print_reports(reports)
32 npf.write_csv(reports, "model_neuron_b1.csv")

(aws_neuron_pytorch_p36) ubuntu@ip-172-31-11-122:~/tmp$ python test_simple_pt.py
INFO:neuronperf.benchmarking - Benchmarking 'model_neuron_b1.pt', ~8.0 minutes remaining.
throughput_avg latency_ms_p50 latency_ms_p99 n_models pipeline_size ␣
→˓ workers_per_model batch_size model_filename
296766.5 0.003 0.003 1 1 ␣
→˓ 1 1 model_neuron_b1.pt (continues on next page)

16.4. NeuronPerf (Beta) 855

AWS Neuron

(continued from previous page)

3616109.75 0.005 0.008 24 1 ␣
→˓ 1 1 model_neuron_b1.pt
56801.0 0.035 0.04 1 1 ␣
→˓ 2 1 model_neuron_b1.pt
3094419.4 0.005 0.051 24 1 ␣
→˓ 2 1 model_neuron_b1.pt

Great! Here is what a default csv file looks like.

n_modelswork-
ers_per_model

pipeline_sizebatch_sizethrough-
put_avg

through-
put_peak

la-
tency_ms_p0

la-
tency_ms_p50

la-
tency_ms_p90

la-
tency_ms_p95

la-
tency_ms_p99

la-
tency_ms_p100

load_avg_mswarmup_avg_mse2e_avg_msin-
put_avg_ms

pre-
pro-
cess_avg_ms

post-
pro-
cess_avg_ms

in-
fer_avg_ms

worker_avg_sto-
tal_infs

to-
tal_s

sta-
tus

model_filenamemul-
ti-
pro-
cess

mul-
ti-
in-
ter-
preter

de-
vice_type

in-
stance_type

1 1 1 1 31346.031408.00.030.030.0310.0320.0370.73262.2172.6250.0310.0010.0 0.0 0.0284.931547045.0 fin-
ished

model_neuron_b1.ptTrueFalseneu-
ron

inf1.6xlarge

16 16 1 1 380604.75380923.00.030.0320.0540.0540.0570.938293.8063.2660.0430.0010.0 0.0 0.0394.7 17995495.0 fin-
ished

model_neuron_b1.ptTrueFalseneu-
ron

inf1.6xlarge

1 2 1 1 51178.051319.00.0350.0360.0370.0390.0471.13114.1182.7130.0370.0010.0 0.0 0.0334.882489845.0 fin-
ished

model_neuron_b1.ptTrueFalseneu-
ron

inf1.6xlarge

16 32 1 1 381098.75383905.00.030.0580.0670.0730.12148.07303.9164.420.080.0010.0 0.0 0.0744.6918049255.0 fin-
ished

model_neuron_b1.ptTrueFalseneu-
ron

inf1.6xlarge

Compile and Benchmark a Model

Here is an end-to-end example of compiling and benchmarking a ResNet-50 model from torchvision.

Listing 2: test_resnet50_pt.py

1 import torch
2 import torch_neuron
3

4 import neuronperf as npf
5 import neuronperf.torch
6

7 from torchvision import models
8

9

10 # Load a pretrained ResNet50 model
11 model = models.resnet50(pretrained=True)
12

13 # Select a few batch sizes to test
14 filename = 'resnet50.json'
15 batch_sizes = [5, 6, 7]
16

17 # Construct example inputs
18 inputs = [torch.zeros([batch_size, 3, 224, 224], dtype=torch.float32) for batch_size in␣

→˓batch_sizes]
19

20 # Compile
21 npf.torch.compile(

(continues on next page)

856 Chapter 16. Neuron Tools

AWS Neuron

(continued from previous page)

22 model,
23 inputs,
24 batch_sizes=batch_sizes,
25 filename=filename,
26)
27

28 # Benchmark
29 reports = npf.torch.benchmark(filename, inputs)
30

31 # View and save results
32 npf.print_reports(reports)
33 npf.write_csv(reports, 'resnet50_results.csv')
34 npf.write_json(reports, 'resnet50_results.json')

Benchmark on CPU or GPU

When benchmarking on CPU or GPU, the API is slightly different. With CPU or GPU, there is no compiled model to
benchmark, so instead we need to directly pass a reference to the model class that will be instantiated.

Note: GPU benchmarking is currently only available for PyTorch.

CPU:

cpu_reports = npf.cpu.benchmark(YourModelClass, ...)

GPU:

gpu_reports = npf.torch.benchmark(YourModelClass, ..., device_type="gpu")

Please refer to Benchmark on CPU or GPU for details and an example of providing your model class.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

NeuronPerf Benchmark Guide

The call to neuronperf[torch/tensorflow/mxnet/cpu].benchmark is used to measure your model performance.
It will choose reasonable defaults if none are provided, and will return back reports that summarize the benchmarking
results.

16.4. NeuronPerf (Beta) 857

AWS Neuron

What is the default behavior of benchmark?

That will depend how you provided your model and how your model was compiled.

The two most common ways to provide your model are:

1. Provide the path to your compiled model

2. Provide the path to a model index from neuronperf.compile (a JSON file)

Data Parallel

Your model is benchmarked on provided inputs in 4 different configurations:
1. A single model on 1 NeuronCore with one worker (min. latency)

2. A single model on 1 NeuronCore with two workers (max. throughput / NC)

3. MAX models on MAX NeuronCores with one worker (min. latency + max. instance usage)

4. MAX models on MAX NeuronCores with two workers (max. throughput + max. instance usage)

The value MAX is automatically determined by your instance size. If it can’t be identified, those configurations will be
skipped.

The primary benefit of (3) and (4) is to verify that your model scales well at maximum instance usage.

Note:
If you provided the path to a model index from compile:

• Your input parameters to benchmark (batch_sizes, etc.) are treated as filters on the index

• Each remaining model configuration is benchmarked as described in (1)

Pipeline

Pipeline mode is active when using a Neuron device and pipeline_sizes > 1. The same behavior as described in
Data Parallel applies, except that only one worker configuration is executed: the optimal number of workers for your
pipeline size, unless manually overridden.

Parameters

Below are some useful and common parameters to tweak. Please see the NeuronPerf API for full details.

• n_models controls how many models to load. The default behavior is n_models=[1, MAX].

• workers_per_model controls how many worker threads will be feeding inputs to each model. The default is
automatically determined.

• pipeline_sizes tells the benchmarker how many cores are needed for your model so that each model instance
can be loaded properly. Default is 1.

• duration controls how long to run each configuration.

• batch_sizes is used to inform the benchmarker of your input shape so that throughput can be computed cor-
rectly.

858 Chapter 16. Neuron Tools

AWS Neuron

Almost all NeuronPerf behaviors are controllable via arguments found in the NeuronPerf API . This guide attempts to
provide some context and examples for those arguments.

Inputs

Models accept one or more inputs to operate on. Since NeuronPerf needs to support multiple inputs for multiple models,
as well as multi-input models, there are some details that may need your attention. See the NeuronPerf Framework Notes
for details.

Multi-input Models

If your model accepts multiple inputs, you must provide them in a tuple. For example, suppose you have a model like
this:

class Model(torch.nn.Module):
def forward(self, x, y, z):

...
return output

In order for NeuronPerf to pass along your multiple inputs correctly, you should provide them as a tuple:

inputs = (x, y, z)
npf.torch.benchmark(model_filename, inputs, ...)

If you are compiling and/or benchmarking multiple models, you can pass different sized inputs as a list of tuples:

inputs = [(x1, y1, z1), (x2, y2, z2), ...]
npf.torch.benchmark(model_filename, inputs, ...)

Preprocessing and Postprocessing

Many models have additional preprocessing and postprocessing steps involved that may add non-negligible overhead
to inference time. NeuronPerf supports these use cases through the use of custom functions.

Preprocessing

Recall that NeuronPerf expects (or wraps) each model input into a tuple. These tuples will be unpacked before calling
your model.

Here is an example for a model with one input. The example multiples the input by 5 before inference.

def preprocess_fn(x):
return x * 5

...

Benchmark with custom preprocessing function
reports = npf.torch.benchmark(

filename,
inputs,

(continues on next page)

16.4. NeuronPerf (Beta) 859

AWS Neuron

(continued from previous page)

...,
preprocess_fn = preprocess_fn,

)

Or if your model expects multiple inputs:

def preprocess_fn(x, y, z):
return x / 255, y / 255, z / 255

...

Benchmark with custom preprocessing function
reports = npf.torch.benchmark(

filename,
inputs,
...,
preprocess_fn = preprocess_fn,

)

Postprocessing

Postprocessing is almost identical to preprocessing, except that your function will receive whatever the output of your
model is, exactly as returned without modification. There are no type guarantees.

def postprocess_fn(x):
return x.argmax()

...

Benchmark with custom preprocessing function
reports = npf.torch.benchmark(

filename,
inputs,
...,
postprocess_fn = postprocess_fn,

)

860 Chapter 16. Neuron Tools

AWS Neuron

Minimal Latency

Suppose you are interested in the minimal latency achievable with your model. In this case, there is no need for more
than one worker to execute at a time. We can manually specify the number of workers to use. See below Worker
Threads.

Worker Threads

The argument workers_per_model controls the number of worker threads that are trying to prepare and load examples
onto a single NeuronCore at a time. Therefore, a value of 1 corresponds to 1 thread / model. If n_models=16, then there
would be 16 worker threads, one per model. This number is selected based upon whether you are using DataParallel
(i.e. pipeline_sizes == 1), or Pipeline Mode (pipeline_sizes != 1).

By default, NeuronPerf will try to pick try multiple combinations of model copies and workers. You may be interested
in controlling this manually.

reports = npf.torch.benchmark('model_neuron_b1.pt', ..., workers_per_model=1)

You may also pass a list, as with other parameters:

workers_per_model = [1, 2] # Same as the default for data parallel
reports = npf.torch.benchmark('model_neuron_b1.pt', ..., workers_per_model=workers_per_
→˓model)

With the default number of Model Copies, a call to print_results might look like this:

throughput_avg latency_ms_p50 latency_ms_p99 n_models pipeline_size workers_per_
→˓model batch_size model_filename
307.25 3.251 3.277 1 1 1 ␣
→˓ 1 models/a5cff386-89ca-4bbf-9087-d0e624c3c604.pt
2746.0 5.641 6.82 16 1 1 ␣
→˓ 1 models/a5cff386-89ca-4bbf-9087-d0e624c3c604.pt
329.5 6.053 6.108 1 1 2 ␣
→˓ 1 models/a5cff386-89ca-4bbf-9087-d0e624c3c604.pt
2809.0 10.246 12.52 16 1 2 ␣
→˓ 1 models/a5cff386-89ca-4bbf-9087-d0e624c3c604.pt

Model Copies

By default, NeuronPerf will benchmark two settings for n_models:
1. A single copy

2. The maximum number number of copies for your instance size

You can override this behavior by passing n_models to benchmark, as shown below:

reports = npf.torch.benchmark('model_neuron_b1.pt', ..., n_models=6)

or

n_models = list(range(1, 10))
reports = npf.torch.benchmark('model_neuron_b1.pt', ..., n_models=n_models)

16.4. NeuronPerf (Beta) 861

AWS Neuron

Pipeline Mode

By default, NeuronPerf will assume you intend to use DataParallel, with two exceptions:

• You compiled your model using NeuronPerf for pipeline mode

• You constructed a neuronperf_model_index that uses pipeline mode

You can also manually tell NeuronPerf that your model was compiled for pipeline mode. It is similar to how other
arguments are passed.

reports = npf.torch.benchmark('model_neuron_b1.pt', ..., pipeline_sizes=2)

If you are passing multiple models in an index, then you should pass a list for pipeline_sizes.

reports = npf.torch.benchmark('model_index.json', ..., pipeline_sizes=[1, 2, 3])

Duration

NeuronPerf will benchmark each configuration specified for 60 seconds by default. You can control the duration by
passing duration (in seconds).

reports = npf.torch.benchmark('model_index.json', ..., duration=10)

Warning: If you make the duration too short, it may expire before all models are loaded and have had time to
execute.

Custom Datasets (Beta)

Currently, only PyTorch supports custom datasets, and the interface is subject to change. If you provide a custom
dataset, it will be fully executed on each loaded model copy. So if you provide n_models=2, your dataset will be run
through twice in parallel.

To use this API, call benchmark passing a torch.utils.data.Dataset to inputs. You can easily create your own
Dataset by implementing the interface, or use one of the available datasets. For example:

import torchvision

dataset = torchvision.datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor()

)

reports = npf.torch.benchmark('model_index.json', inputs=dataset, batch_sizes=[8],␣
→˓preprocess_fn=lambda x: x[0], loop_dataset=False)

Note: The preprocess_fn is required here to extract image input from the (image, label) tuple generated by
dataloader. If the length of dataset is not sufficient to get the runtime performance, one can set loop_dataset=True

862 Chapter 16. Neuron Tools

AWS Neuron

to rerun dataset until certain duration.

Results

Viewing and Saving

There are currently three ways to view results.

• neuronperf.print_reports(...)

– Dump abbrieviated results in your terminal

• neuronperf.write_csv(...)

– Store metrics of interest as CSV

• neuronperf.write_json(...)

– Store everything as JSON

See the NeuronPerf API for full details.

Full Timing Results

NeuronPerf automatically combines and summarizes the detailed timing information collecting during benchmarking.
If you wish to receive everything back yourself, you can use:

results = npf.torch.benchmark('model_index.json', ..., return_timers=True)

If you later wish to produce reports the same way that NeuronPerf does internally, you can call:

reports = npf.get_reports(results)

Verbosity

Verbosity is an integer, currently one of {0, 1, 2}, where:

• 0 = SILENT

• 1 = INFO (default)

• 2 = VERBOSE / DEBUG

Example:

reports = npf.torch.benchmark(..., n_models=1, duration=5, verbosity=2)

DEBUG:neuronperf.benchmarking - Cast mode was not specified, assuming default.
INFO:neuronperf.benchmarking - Benchmarking 'resnet50.json', ~5 seconds remaining.
DEBUG:neuronperf.benchmarking - Running model config: {'model_filename': 'models/model_
→˓b1_p1_83bh3hhs.pt', 'device_type': 'neuron', 'input_idx': 0, 'batch_size': 1, 'n_models
→˓': 1, 'workers_per_model': 2, 'pipeline_size': 1, 'cast_mode': None, 'multiprocess':␣
→˓True, 'multiinterpreter': False, 'start_dts': '20211111-062818', 'duration': '5'}
DEBUG:neuronperf.benchmarking - Benchmarker 0 started.

(continues on next page)

16.4. NeuronPerf (Beta) 863

AWS Neuron

(continued from previous page)

DEBUG:neuronperf.benchmarking - Benchmarker 0, Worker 0 started.
DEBUG:neuronperf.benchmarking - Benchmarker 0, Worker 1 started.
DEBUG:neuronperf.benchmarking - Benchmarker 0, Worker 0 finished after 738 inferences.
DEBUG:neuronperf.benchmarking - Benchmarker 0, Worker 1 finished after 738 inferences.
DEBUG:neuronperf.benchmarking - Benchmarker 0 finished.
throughput_avg latency_ms_p50 latency_ms_p99 n_models pipeline_size workers_per_
→˓model batch_size model_filename
329.667 6.073 6.109 1 1 2 ␣
→˓ 1 models/model_b1_p1_83bh3hhs.pt

Internal Process Model

For each model loaded (see Model Copies), a process is spawned. Each process may use multiple threads (see Worker
Threads). The threads will continue to load examples and keep the hardware busy.

NeuronPerf spawns processes slightly differently between frameworks. For PyTorch and Apache MXNet, processes
are forked. For Tensorflow/Keras, a fresh interpreter is launched, and benchmarkers are serialized and run as a script.

If you suspect you are having trouble due to the way processes are managed, you have two mechanisms of control:

reports = npf.torch.benchmark(..., multiprocess=False)

Default is True, and False will disable multiprocessing and run everything inside a single parent process. This may
not work for all frameworks beyond the first model configuration, because process teardown is used to safely deallocate
models from the hardware. It is not recommeneded to benchmark this way.

reports = npf.torch.benchmark(..., multiinterpreter=True)

This flag controls whether a fresh interpreter is used instead of forking. Defaults to False except with Tensor-
flow/Keras.

Benchmark on CPU or GPU

When benchmarking on CPU or GPU, the API is slightly different. With CPU or GPU, there is no compiled model to
benchmark, so instead we need to directly pass a reference to the model class that will be instantiated.

Note: GPU benchmarking is currently only available for PyTorch.

CPU:

cpu_reports = npf.cpu.benchmark(YourModelClass, ...)

GPU:

gpu_reports = npf.torch.benchmark(YourModelClass, ..., device_type="gpu")

Your model class will be instantiated in a subprocess, so there are some things to keep in mind.

• Your model class must be defined at the top level inside a Python module
– i.e. don’t place your model class definition inside a function or other nested scope

864 Chapter 16. Neuron Tools

AWS Neuron

• If your model class has special Python module dependencies, consider importing them inside your class
__init__

• If your model class expects constructor arguments, wrap your class so that it has no constructor arguments

Example of a wrapped model class for CPU/GPU benchmarking:

class ModelWrapper(torch.nn.Module):
def __init__(self):

super().__init__()
from transformers import AutoModelForSequenceClassification
model_name = "bert-base-cased"
self.bert = AutoModelForSequenceClassification.from_pretrained(model_name, return_

→˓dict=False)
self.add_module(model_name, self.bert)

def forward(self, *inputs):
return self.bert(*inputs)

reports = npf.torch.benchmark(ModelWrapper, inputs, device_type="gpu")

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

NeuronPerf Evaluate Guide

NeuronPerf has a new API for evaluating model accuracy on Neuron hardware. This API is currently only available
for PyTorch.

You can access the API through standard benchmark() by passing an additional kwarg, eval_metrics.

For example:

reports = npf.torch.benchmark(
model_index_or_path,
dataset,
n_models=1,
workers_per_model=2,
duration=0,
eval_metrics=['accuracy', 'precision']

)

In this example, we fix n_models and n_workers because replicating the same model will not impact accuracy. We
also set duration=0 to allow benchmarking to run untimed through all dataset examples.

Because this call can be tedious to type, a convenience function is provided:

reports = npf.torch.evaluate(model_index_or_path, dataset, metrics=['accuracy',
→˓'precision'])

The dataset can be any iterable object that produces tuple(*INPUTS, TARGET).

If TARGET does not appear in the last column for your dataset, you can customize this by passing eval_target_col.

For example:

16.4. NeuronPerf (Beta) 865

AWS Neuron

reports = npf.torch.evaluate(model_index_or_path, dataset, metrics='accuracy', eval_
→˓target_col=1)

You can list the currently available metrics.

>>> npf.list_metrics() ␣
→˓ ·····
Name Description ␣
→˓ ·····
Accuracy (TP + TN) / (TP + TN + FP + FN) ␣
→˓ ·····
TruePositiveRate TP / (TP + FN) ␣
→˓ ·····
Sensitivity Alias for TruePositiveRate ␣
→˓ ·····
Recall Alias for TruePositiveRate ␣
→˓ ·····
Hit Rate Alias for TruePositiveRate ␣
→˓ ·····
TrueNegativeRate TN / (TN + FP) ␣
→˓ ·····
Specificity Alias for TrueNegativeRate ␣
→˓ ·····
Selectivity Alias for TrueNegativeRate ␣
→˓ ·····
PositivePredictiveValue TP / (TP + FP) ␣
→˓ ·····
Precision Alias for PositivePredictiveValue ␣
→˓ ·····
NegativePredictiveValue TN / (TN + FN) ␣
→˓ ·····
FalseNegativeRate FN / (FN + TP) ␣
→˓ ·····
FalsePositiveRate FP / (FP + TN) ␣
→˓ ·····
FalseDiscoveryRate FP / (FP + TN) ␣
→˓ ·····
FalseOmissionRate FP / (FP + TP) ␣
→˓ ·····
PositiveLikelihoodRatio TPR / FPR ␣
→˓ ·····
NegativeLikelihoodRatio FNR / TNR ␣
→˓ ·····
PrevalenceThreshold sqrt(FPR) / (sqrt(FPR) + sqrt(TPR)) ␣
→˓ ·····
ThreatScore TP / (TP + FN + FP) ␣
→˓ ·····
F1Score 2TP / (2TP + FN + FP) ␣
→˓ ·····
MeanAbsoluteError sum(|y - x|) / n ␣
→˓ ·····
MeanSquaredError sum((y - x)^2) / n

New metrics may appear in the list after importing a submodule. For example, import neuronperf.torch will

866 Chapter 16. Neuron Tools

AWS Neuron

register a new topk metric.

Custom Metrics

Simple Variants

If you wish to register a metric that is a slight tweak of an existing metric with different init args, you can use
register_metric_from_existing():

npf.register_metric_from_existing("topk", "topk_3", k=3)

This example registers a new metric topk_3 from existing metric topk, passing k=3 as at init time.

New Metrics

You can register your own metrics using register_metric().

You metrics must extend BaseEvalMetric:

class BaseEvalMetric(ABC):
"""
Abstract base class BaseEvalMetric from which other metrics inherit.
"""

@abstractmethod
def process_record(self, output: Any = None, target: Any = None) -> None:

"""Process an individual record and return the result."""
pass

@staticmethod
def aggregate(metrics: Iterable["BaseEvalMetric"]) -> Any:

"""Combine a sequence of metrics into a single result."""
raise NotImplementedError

For example:

import neuronperf as npf

class MyCustomMetric(npf.BaseEvalMetric):
def __init__(self):

super().__init__()
self.passing = 0
self.processed = 0

def process_record(self, outputs, target):
self.processed += 1
if outputs == target:

self.passing += 1

@staticmethod
def aggregate(metrics):

passing = 0
(continues on next page)

16.4. NeuronPerf (Beta) 867

AWS Neuron

(continued from previous page)

processed = 0
for metric in metrics:

passing += metric.passing
processed += metric.processed

return passing / processed if processed else 0

npf.register_metric("MyCustomMetric", MyCustomMetric)

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

NeuronPerf Compile Guide

If you wish to compile multiple configurations at once, NeuronPerf provides a simplified and uniform API across
frameworks. The output is a neuronperf_model_index that tracks the artifacts produces, and can be passed directly to the
benchmark routine for a streamlined end-to-end process. This may be useful if you wish to test multiple configurations
of your model on Neuron hardware.

You can manually specify the model index filename by passing filename, or let NeuronPerf generate one and return
it for you. Compiled artifacts will be placed in a local models directory.

How does compile know which instance type to compile for?

NeuronPerf will assume that the instance type your are currently on is also the compile target. However, you may com-
pile on a non-Neuron instance or choose to target a different instance type. In the case, you can pass compiler_target
to the compile call.

For example:

import neuronperf as npf
import neuronperf.torch

npf.torch.compile(model, inputs) # compile for current instance type
npf.torch.compile(model, inputs, compiler_target="inf2") # compile for inf2

Compiling multiple variants

If you provide multiple pipeline sizes, batch sizes, and/or cast modes, NeuronPerf will compile all of them.

Select a few batch sizes and pipeline configurations to test
batch_sizes = [1, 5, 10]
pipeline_sizes = [1, 2, 4]

Construct example inputs
example_inputs = [torch.zeros([batch_size, 3, 224, 224], dtype=torch.float16) for batch_
→˓size in batch_sizes]

Compile all configurations
index = npf.torch.compile(

(continues on next page)

868 Chapter 16. Neuron Tools

AWS Neuron

(continued from previous page)

model,
example_inputs,
batch_sizes=batch_sizes,
pipeline_sizes=pipeline_sizes,

)

If you wished to benchmark specific subsets of configurations, you could compile the specific configurations indepen-
dently and later combine the results into a single index, as shown below.

Compile with pipeline size 1 and vary batch dimension
batch_index = npf.torch.compile(

model,
example_inputs,
batch_sizes=batch_sizes,
pipeline_sizes=1,

)

Compile with batch size 1 and vary pipeline dimension
pipeline_index = npf.torch.compile(

model,
example_inputs[0],
batch_sizes=1,
pipeline_sizes=pipeline_sizes,

)

index = npf.model_index.append(batch_index, pipeline_index)
npf.model_index.save(index, 'model_index.json')

The compile function supports batch_sizes, pipeline_sizes, cast_modes, and custom compiler_args. If
there is an error during compilation for a requested configuration, it will be logged and compilation will continue
onward without terminating. (This is to support long-running compile jobs with many configurations.)

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

NeuronPerf Model Index Guide

A model index is a JSON file that tracks information about one or more compiled models. You can generate them
using compile, by using the API described here, or you may create them manually in a text editor.

After a call to compile you may notice that you now have a models directory. You will also spot a new file named
something like model_83b3raj2.json in your local directory, if you didn’t provide a filename yourself.

A model index is not intended to be opaque; you should feel free to open, inspect, and modify it yourself. It contains
some information about the artifacts that were compiled. Individual models referenced by the index can be handed to
benchmark directly along with an example input, or you may pass the entire index as in the basic example above. Here
is an example index:

python3 -m json.tool model_index.json

{
"version": "0.0.0.0+0bc220a",

(continues on next page)

16.4. NeuronPerf (Beta) 869

AWS Neuron

(continued from previous page)

"model_configs": [
{

"filename": "models/model_b1_p1_38793jda.pt",
"input_idx": 0,
"batch_size": 1,
"pipeline_size": 1,
"compile_s": 5.32

}
]

}

An index is useful for keeping track of your compiled artifacts and their parameters. The advantages of using
neuronperf.[torch/tensorflow/mxnet].compile are clearer when we wish to compile multiple variants of our
model and benchmark all of them at the same time. All of the model artifacts and the index can be destroyed using
model_index.delete('model_index.json').

Benchmarking

When benchmarking with an index, there are some important details to keep in mind. If you originally built the index
using a set of inputs, the model index has associated the inputs with the compiled models by their positional index.

For example:

batch_sizes = [1, 2]
inputs = [torch.zeros((b, 100)) for b in batch_sizes]

Here, inputs[0] corresponds to batch size 1. Therefore, the model index will contain a reference to input 0 for that
model. When you call benchmark, you must pass inputs with the same shape in the same positions as at compile time.

Note: It’s only necessary that there is an input with the correct shape at``inputs[input_index]``. The example data
itself is not important.

Working with Indexes

The API detail below describes utilities for working with indexes. An index can be either a loaded index (JSON) or
the path to an index (it will be loaded automatically).

Creating

index = neuronperf.model_index.create('/path/to/model', batch_size=1)
filename = neuronperf.model_index.save(index)

Once you have an index, you can pass its path directly to benchmark. You can also pass a custom filename instead:

index = neuronperf.model_index.create('/path/to/model', batch_size=1)
neuronperf.model_index.save(index, 'my_index.json')

870 Chapter 16. Neuron Tools

AWS Neuron

Appending

If multiple models use the same inputs, you can append them together. For example, if you have the same batch size
with multiple pipeline sizes, the inputs are the same, but the model changes.

pipeline_sizes = [1, 2, 3, 4]
indexes = [neuronperf.model_index.create(f'/path/to/model_p{p}', pipeline_size=p, batch_
→˓size=5) for p in pipeline_sizes]
index = neuronperf.model_index.append(*indexes)
neuronperf.model_index.save(index, 'my_index.json')

Filtering

You can construct a new model index that is filtered by some parameter. For example, to get a new index with only
batch sizes [1, 2], you could do:

new_index = neuronperf.model_index.filter(index, batch_sizes=[1, 2])

You can also benchmark subset of a model index by passing only the subset parameters of interest, but remember to
ensure you provide the correct number of inputs for the index (even if some are not used).

For example, if you an index with models at batch_sizes = [1, 2, 3], but only wish to benchmark batch size 2:

batch_sizes = [1, 2, 3]
inputs = [torch.zeros((b, 100)) for b in batch_sizes]
reports = neuronperf.torch.benchmark('model_index.json', inputs, batch_sizes=2)

Copying

You can copy an index to a new location with neuronperf.model_index.copy(index, new_index_name,
new_index_dir). This is mostly useful in combination with filter/append.

Deleting

If you wish to keep your compiled models, just delete the model index file yourself. If you want to delete your model
index and all associated artifacts, use:

neuronperf.model_index.delete('my_index.json')

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

16.4. NeuronPerf (Beta) 871

AWS Neuron

16.4.3 NeuronPerf API Reference

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

NeuronPerf API

Due to a bug in Sphinx, some of the type annotations may be incomplete. You can download the source code
here. In the future, the source will be hosted in a more browsable way.

compile(compile_fn, model, inputs, batch_sizes: Union[int, List[int]] = None, pipeline_sizes: Union[int, List[int]]
= None, performance_levels: Union[str, List[int]] = None, models_dir: str = 'models', filename: str =
None, compiler_args: dict = None, verbosity: int = 1, *args, **kwargs)→ str:

Compiles the provided model with each provided example input, pipeline size, and performance level. Any
additional compiler_args passed will be forwarded to the compiler on every invocation.

Parameters
• model – The model to compile.
• inputs (list) – A list of example inputs.
• batch_sizes – A list of batch sizes that correspond to the example inputs.
• pipeline_sizes – A list of pipeline sizes to use. See NeuronCore Pipeline.
• performance_levels – A list of performance levels to try. Options are: 0 (max ac-

curacy), 1, 2, 3 (max performance, default). See Mixed precision and performance-
accuracy tuning (neuron-cc).

• models_dir (str) – The directory where compilation artifacts will be stored.
• model_name (str) – An optional model name tag to apply to compiled artifacts.
• filename (str) – The name of the model index to write out. If not provided, a name

will be generated and returned.
• compiler_args (dict) – Additional compiler arguments to be forwarded with every

compilation.
• verbosity (int) – 0 = error, 1 = info, 2 = debug

Returns A model index filename. If a configuration fails to compile, it will not be included in the
index and an error will be logged.

Return type str

benchmark(load_fn: Callable[[str, int], Any], model_filename: str, inputs: Any, batch_sizes: Union[int, List[int]]
= None, duration: float = BENCHMARK_SECS, n_models: Union[int, List[int]] = None,
pipeline_sizes: Union[int, List[int]] = None, cast_modes: Union[str, List[str]] = None,
workers_per_model: Union[int, None] = None, env_setup_fn: Callable[[int, Dict], None] = None,
setup_fn: Callable[[int, Dict, Any], None] = None, preprocess_fn: Callable[[Any], Any] = None,
postprocess_fn: Callable[[Any], Any] = None, dataset_loader_fn: Callable[[Any, int], Any] = None,
verbosity: int = 1, multiprocess: bool = True, multiinterpreter: bool = False, return_timers: bool =
False, device_type: str = 'neuron')→ List[Dict]:

Benchmarks the model index or individiual model using the provided inputs. If a model index is provided, addi-
tional fields such as pipeline_sizes and performance_levels can be used to filter the models to benchmark.
The default behavior is to benchmark all configurations in the model index.

Parameters
• load_fn – A function that accepts a model filename and device id, and returns a loaded

model. This is automatically passed through the subpackage calls (e.g. neuronperf.
torch.benchmark).

• model_filename (str) – A path to a model index from compile or path to an individ-
ual model. For CPU benchmarking, a class should be passed that can be instantiated
with a default constructor (e.g. MyModelClass).

• inputs (list) – A list of example inputs. If the list contains tuples, they will be
destructured on inference to support multiple arguments.

872 Chapter 16. Neuron Tools

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

AWS Neuron

• batch_sizes – A list of ints indicating batch sizes that correspond to the inputs. As-
sumes 1 if not provided.

• duration (float) – The number of seconds to benchmark each model.
• n_models – The number of models to run in parallel. Default behavior runs 1 model and

the max number of models possible, determined by a best effort from device_type,
instance size, or other environment state.

• pipeline_sizes – A list of pipeline sizes to use. See NeuronCore Pipeline.
• performance_levels – A list of performance levels to try. Options are: 0 (max ac-

curacy), 1, 2, 3 (max performance, default). See Mixed precision and performance-
accuracy tuning (neuron-cc).

• workers_per_model – The number of workers to use per model loaded. If None, this
is automatically selected.

• env_setup_fn – A custom environment setup function to run in each subprocess be-
fore model loading. It will receive the benchmarker id and config.

• setup_fn – A function that receives the benchmarker id, config, and model to perform
last minute configuration before inference.

• preprocess_fn – A custom preprocessing function to perform on each input before
inference.

• postprocess_fn – A custom postprocessing function to perform on each input after
inference.

• multiprocess (bool) – When True, model loading is dispatched to forked subpro-
cesses. Should be left alone unless debugging.

• multiinterpreter (bool) – When True, benchmarking is performed in a new python
interpreter per model. All parameters must be serializable. Overrides multiprocess.

• return_timers (bool) – When True, the return of this function is a list of tuples
(config, results) with detailed information. This can be converted to reports with
get_reports(results).

• stats_interval (float) – Collection interval (in seconds) for metrics during bench-
marking, such as CPU and memory usage.

• device_type (str) – This will be set automatically to one of the
SUPPORTED_DEVICE_TYPES.

• cost_per_hour (float) – The price of this device / hour. Used to estimate cost / 1
million infs in reports.

• model_name (str) – A friendly name for the model to use in reports.
• model_class_name (str) – Internal use.
• model_class_file (str) – Internal use.
• verbosity (int) – 0 = error, 1 = info, 2 = debug

Returns A list of benchmarking results.
Return type list[dict]

get_reports(results)
Summarizes and combines the detailed results from neuronperf.benchmark, when run with
return_timers=True. One report dictionary is produced per model configuration benchmarked. The
list of reports can be fed directly to other reporting utilities, such as neuronperf.write_csv.

Parameters
• results (list[tuple]) – The list of results from neuronperf.benchmark.
• batch_sizes (list[int]) – The batch sizes that correspond to the inputs provided

to compile and benchmark. Used to correct throughput values in the reports.
Returns A list of dictionaries that summarize the results for each model configuration.
Return type list[dict]

print_reports(reports, cols=SUMMARY_COLS, sort_by='throughput_peak', reverse=False)
Print a report to the terminal. Example of default behavior:

16.4. NeuronPerf (Beta) 873

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

AWS Neuron

>>> neuronperf.print_reports(reports)
throughput_avg latency_ms_p50 latency_ms_p99 n_models pipeline_size workers_per_
→˓model batch_size model_filename
329.667 6.073 6.109 1 1 2 ␣
→˓ 1 models/model_b1_p1_83bh3hhs.pt

Parameters
• reports – Results from get_reports.
• cols – The columns in the report to be displayed.
• sort_by – Sort the cols by the specified key.
• reverse – Sort order.

write_csv(reports: list[dict], filename: str = None, cols=REPORT_COLS)
Write benchmarking reports to CSV file.

Parameters
• reports (list[dict]) – Results from neuronperf.get_reports.
• filename (str) – Filename to write. If not provided, generated from model_name in

report and current timestamp.
• cols (list[str]) – The columns in the report to be kept.

Returns The filename written.
Return type str

write_json(reports: list[dict], filename: str = None)
Writes benchmarking reports to a JSON file.

param list[dict] reports Results from neuronperf.get_reports.
param str filename Filename to write. If not provided, generated from model_name

in report and current timestamp.
return The filename written.
rtype str

model_index.append(*model_indexes: Union[str, dict])→ dict:
Appends the model indexes non-destructively into a new model index, without modifying any of the internal
data.

This is useful if you have benchmarked multiple related models and wish to combine their respective model
indexes into a single index.

Model name will be taken from the first index provided. Duplicate configs will be filtered.
Parameters model_indexes – Model indexes or paths to model indexes to combine.
Returns A new dictionary representing the combined model index.
Return type dict

model_index.copy(old_index: Union[str, dict], new_index: str, new_dir: str)→ str:
Copy an index to a new location. Will rename old_index to new_index and copy all model files into new_dir,
updating the index paths.

This is useful for pulling individual models out of a pool.

Returns the path to the new index.

model_index.create(filename, input_idx=0, batch_size=1, pipeline_size=1, cast_mode=DEFAULT_CAST,
compile_s=None)

Create a new model index from a pre-compiled model.
Parameters

• filename (str) – The path to the compiled model.
• input_idx (int) – The index in your inputs that this model should be run on.
• batch_size (int) – The batch size at compilation for this model.

874 Chapter 16. Neuron Tools

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

AWS Neuron

• pipeline_size (int) – The pipeline size used at compilation for this model.
• cast_mode (str) – The casting option this model was compiled with.
• compile_s (float) – Seconds spent compiling.

Returns A new dictionary representing a model index.
Return type dict

model_index.delete(filename: str):

Deletes the model index and all associated models referenced by the index.

model_index.filter(index: Union[str, dict], **kwargs)→ dict:
Filters provided model index on provided criteria and returns a new index. Each kwarg is a standard (k, v) pair,
where k is treated as a filter name and v may be one or more values used to filter model configs.

model_index.load(filename)→ dict:
Load a NeuronPerf model index from a file.

model_index.move(old_index: str, new_index: str, new_dir: str)→ str:
This is the same as copy followed by delete on the old index.

model_index.save(model_index, filename: str = None, root_dir=None)→ str:
Save a NeuronPerf model index to a file.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

NeuronPerf Framework Notes

PyTorch

• Requires: torch-neuron or torch-neuronx
– Versions: 1.7.x, 1.8.x, 1.9.x, 1.10.x, 1.11.x, 1.12.x, 1.13.x

• Input to compile: torch.nn.Module

• Model inputs: Any.

TensorFlow 1.x

• Requires: tensorflow-neuron
– Versions: All

• Input to compile: Path to uncompiled model dir from saved_model.simple_save

• Model inputs: Tensors must be provided as numpy.ndarray

Note: Although TensorFlow tensors must be ndarray, this doesn’t stop you from wrapping them inside of data
structures that traverse process boundaries safely. For example, you can still pass an input dict like {'input_0':
np.zeros((2, 1))}.

16.4. NeuronPerf (Beta) 875

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

AWS Neuron

TensorFlow 2.x

• Requires: tensorflow-neuron or tensorflow-neuronx
– Versions: All

• Input to compile: tf.keras.Model

• Model inputs: Tensors must be provided as numpy.ndarray

Note: Although TensorFlow tensors must be ndarray, this doesn’t stop you from wrapping them inside of data
structures that traverse process boundaries safely. For example, you can still pass an input dict like {'input_0':
np.zeros((2, 1))}.

Apache MXNet

• Requires: mxnet-neuron
– Versions 1.5, 1.8

• Input to compile: tuple(sym, args, aux)

• Inputs: Tensors must be provided as mxnet.ndarray or numpy.ndarray

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

16.4.4 FAQ

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

NeuronPerf FAQ

Table of contents

• When should I use NeuronPerf?

• When should I not use NeuronPerf?

• Which frameworks does NeuronPerf support?

• Which Neuron instance types does NeuronPerf support?

• Is NeuronPerf Open Source?

• What is the secret to obtaining the best numbers?

• What are the “best practices” that NeuronPerf uses?

876 Chapter 16. Neuron Tools

AWS Neuron

When should I use NeuronPerf?

When you want to measure the highest achievable performance for your model with Neuron.

When should I not use NeuronPerf?

When measuring end-to-end performance that includes your network serving stack. Instead, your should compare your
e2e numbers to those obtained by NeuronPerf to optimize your serving overhead.

Which frameworks does NeuronPerf support?

See NeuronPerf Framework Notes.

Which Neuron instance types does NeuronPerf support?

PyTorch and TensorFlow support all instance types. MXNet support is limited to inf1.

Is NeuronPerf Open Source?

Yes. You can download the source here.

What is the secret to obtaining the best numbers?

There is no secret sauce. NeuronPerf follows best practices.

What are the “best practices” that NeuronPerf uses?

• These vary slightly by framework and how your model was compiled

• For a model compiled for a single NeuronCore (DataParallel):

– To maximize throughput, for N models, use 2 * N worker threads

– To minimize latency, use 1 worker thread per model

• Use a new Python process for each model to avoid GIL contention

• Ensure you benchmark long enough for your numbers to stabilize

• Ignore outliers at the start and end of inference benchmarking

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

16.4. NeuronPerf (Beta) 877

AWS Neuron

16.4.5 Troubleshooting

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

NeuronPerf Troubleshooting

Table of contents

• Compilation issues

– Model fails to compile

• Benchmarking Issues

– Benchmarking terminates early with errors

• Other Issues or Feature Requests

Compilation issues

Model fails to compile

Please file a bug with as much information as possible.

Benchmarking Issues

Benchmarking terminates early with errors

• Scroll up and read the output. Most likely causes are:
– invalid input shapes or

– not enough memory to load the requested number of model copies on the device. Try passing
n_models=1 to benchmark again to test for memory issues.

Other Issues or Feature Requests

Please file a bug on Github.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

878 Chapter 16. Neuron Tools

https://github.com/aws/aws-neuron-sdk/issues
https://github.com/aws/aws-neuron-sdk/issues

AWS Neuron

16.4.6 Release Notes

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

What’s New

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

NeuronPerf 1.x Release Notes

NeuronPerf is a lightweight Python library with a simple API that enables fast measurements of performance when
running models using Neuron.

Table of Contents

• NeuronPerf release [1.8.55.0]

• NeuronPerf release [1.8.15.0]

• NeuronPerf release [1.8.7.0]

• NeuronPerf release [1.7.0.0]

• NeuronPerf release [1.6.0.0]

• NeuronPerf release [1.3.0.0]

• NeuronPerf release [1.2.0.0]

NeuronPerf release [1.8.55.0]

Date: 04/01/2024

• Minor updates

NeuronPerf release [1.8.15.0]

Date: 12/21/2023

• Minor updates

NeuronPerf release [1.8.7.0]

Date: 8/28/2023

• Minor updates

16.4. NeuronPerf (Beta) 879

AWS Neuron

NeuronPerf release [1.7.0.0]

Date: 3/28/2023

• Adds trn1/inf2 support for PyTorch and TensorFlow 2.x

• Uses new IMDSv2 for obtaining instance types

NeuronPerf release [1.6.0.0]

Date: 11/23/2022

• New Evaluation + metrics API (see NeuronPerf Evaluation Guide)

• Support map and iterable-type torch datasets

• Support custom torch DataLoader args via dataloader_kwargs

• New get_report_by_tag utility to identify specific configurations

• Python 3.7+ now default from 3.6

• Pricing and sizing info updated for inf1 + trn1

Bug fixes

• GPU inputs are now moved correctly

NeuronPerf release [1.3.0.0]

Date: 04/29/2022

• Minor updates

NeuronPerf release [1.2.0.0]

Date: 03/25/2022

• Initial release of NeuronPerf

• Supports PyTorch, TensorFlow, and Apache MXNet.

• Supports customizable JSON and CSV reports

• See NeuronPerf (Beta) for more information.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

880 Chapter 16. Neuron Tools

AWS Neuron

Performance and Benchmarks Tools

• NeuronPerf (Beta)

• NCCOM-TEST User Guide

• Neuron Profile User Guide

Tutorials

TensorBoard

• Neuron Plugin for TensorBoard (Trn1)

• Track Training Progress in TensorBoard using PyTorch Neuron

• torch-neuronx-profiling-with-tb

System Tools

• track-system-monitor

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

16.4. NeuronPerf (Beta) 881

AWS Neuron

882 Chapter 16. Neuron Tools

CHAPTER

SEVENTEEN

NEURON CALCULATOR

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

883

AWS Neuron

884 Chapter 17. Neuron Calculator

CHAPTER

EIGHTEEN

SETUP GUIDE

This document is relevant for: Inf2, Trn1, Trn1n

18.1 PyTorch Neuron (torch-neuronx) Setup

Note: This Setup guide is relevant for Inf2 & Trn1 / Trn1n instances.

Table of contents

• torch-neuronx setup on Ubuntu 20

• torch-neuronx setup on Ubuntu 22

• torch-neuronx setup on Amazon Linux 2 (AL2)

• torch-neuronx setup on Amazon Linux 2023 (AL2023)

18.1.1 torch-neuronx setup on Ubuntu 20

Ubuntu 20 (Ubuntu20 AMI) Ubuntu 20 (DLAMI Base AMI) Ubuntu 20 (DLAMI PyTorch
Neuron)

18.1.2 torch-neuronx setup on Ubuntu 22

Ubuntu 22 (Neuron Multi-Framework DLAMI) Ubuntu 22 (Ubuntu22 AMI)

18.1.3 torch-neuronx setup on Amazon Linux 2 (AL2)

Amazon Linux 2 (Amazon Linux 2 AMI) Amazon Linux 2 (DLAMI Base AMI) Amazon Linux
2 (DLAMI PyTorch Neuron)

885

AWS Neuron

18.1.4 torch-neuronx setup on Amazon Linux 2023 (AL2023)

Amazon Linux 2023 (Amazon Linux 2023 AMI) This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf1

18.2 PyTorch Neuron (torch-neuron) Setup

Note: This Setup guide is relevant for Inf1 instances.

Table of contents

• torch-neuron setup on Ubuntu 20

• torch-neuron setup on Ubuntu 22

• torch-neuron setup on Amazon Linux 2 (AL2)

• torch-neuron setup on Amazon Linux 2023 (AL2023)

18.2.1 torch-neuron setup on Ubuntu 20

Ubuntu 20 (Ubuntu20 AMI) Ubuntu 20 (DLAMI Base AMI) Ubuntu 20 (DLAMI Pytorch
AMI)

18.2.2 torch-neuron setup on Ubuntu 22

Ubuntu 22 (Neuron Multi-Framework DLAMI) Ubuntu 22 (Ubuntu22 AMI)

18.2.3 torch-neuron setup on Amazon Linux 2 (AL2)

Amazon Linux 2 (Amazon Linux 2 AMI) Amazon Linux 2 (DLAMI Base AMI) Amazon Linux
2 (DLAMI Pytorch AMI)

18.2.4 torch-neuron setup on Amazon Linux 2023 (AL2023)

Amazon Linux 2023 (Amazon Linux 2023 AMI) This document is relevant for: Inf1

This document is relevant for: Inf2, Trn1, Trn1n

886 Chapter 18. Setup Guide

AWS Neuron

18.3 Tensorflow Neuron (tensorflow-neuronx) Setup

Note: This Setup guide is relevant for Inf2 & Trn1 / Trn1n instances.

Table of contents

• tensorflow-neuronx setup on Ubuntu 20

• tensorflow-neuronx setup on Ubuntu 22

• tensorflow-neuronx setup on Amazon Linux 2 (AL2)

• tensorflow-neuronx setup on Amazon Linux 2023 (AL2023)

18.3.1 tensorflow-neuronx setup on Ubuntu 20

Ubuntu 20 (Ubuntu20 AMI) Ubuntu 20 (DLAMI Base AMI) Ubuntu 20 (DLAMI Tensorflow
AMI)

18.3.2 tensorflow-neuronx setup on Ubuntu 22

Ubuntu 22 (Neuron Multi-Framework DLAMI) Ubuntu 22 (Ubuntu22 AMI)

18.3.3 tensorflow-neuronx setup on Amazon Linux 2 (AL2)

Amazon Linux 2 (Amazon Linux 2 AMI) Amazon Linux 2 (DLAMI Base AMI) Amazon Linux
2 (DLAMI Tensorflow AMI)

18.3.4 tensorflow-neuronx setup on Amazon Linux 2023 (AL2023)

Amazon Linux 2023 (Amazon Linux 2023 AMI) This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf1

18.4 Tensorflow Neuron (tensorflow-neuron) Setup

Note: This Setup guide is relevant for Inf1 instances.

Table of contents

• tensorflow-neuron setup on Ubuntu 20

• tensorflow-neuron setup on Ubuntu 22

• tensorflow-neuron setup on Amazon Linux 2 (AL2)

18.3. Tensorflow Neuron (tensorflow-neuronx) Setup 887

AWS Neuron

• tensorflow-neuron setup on Amazon Linux 2023 (AL2023)

18.4.1 tensorflow-neuron setup on Ubuntu 20

Ubuntu 20 (Ubuntu20 AMI) Ubuntu 20 (DLAMI Base AMI)

18.4.2 tensorflow-neuron setup on Ubuntu 22

Ubuntu 22 (Neuron Multi-Framework DLAMI) Ubuntu 22 (Ubuntu22 AMI)

18.4.3 tensorflow-neuron setup on Amazon Linux 2 (AL2)

Amazon Linux 2 (Amazon Linux 2 AMI) Amazon Linux 2 (DLAMI Base AMI)

18.4.4 tensorflow-neuron setup on Amazon Linux 2023 (AL2023)

Amazon Linux 2023 (Amazon Linux 2023 AMI) This document is relevant for: Inf1

This document is relevant for: Inf1

18.5 MxNet Neuron (mxnet-neuron) Setup

Note: This Setup guide is relevant for Inf1 instances.

Table of contents

• mxnet-neuron setup on Ubuntu 20

• mxnet-neuron setup on Ubuntu 22

• mxnet-neuron setup on Amazon Linux 2 (AL2)

• mxnet-neuron setup on Amazon Linux 2023 (AL2023)

18.5.1 mxnet-neuron setup on Ubuntu 20

Ubuntu 20 (Ubuntu20 AMI) Ubuntu 20 (DLAMI Base AMI)

888 Chapter 18. Setup Guide

AWS Neuron

18.5.2 mxnet-neuron setup on Ubuntu 22

Ubuntu 22 (Ubuntu22 AMI)

18.5.3 mxnet-neuron setup on Amazon Linux 2 (AL2)

Amazon Linux 2 (Amazon Linux 2 AMI) Amazon Linux 2 (DLAMI Base AMI)

18.5.4 mxnet-neuron setup on Amazon Linux 2023 (AL2023)

Amazon Linux 2023 (Amazon Linux 2023 AMI) This document is relevant for: Inf1

This section walks you through the various options to install and upgrade Neuron. You have to install Neuron on
Trainium and Inferentia powered instances to enable deep-learning acceleration.

PyTorch Neuron (torch-neuronx) Setup for Inf2 & Trn1 / Trn1n Instances PyTorch Neuron
(torch-neuron) Setup for Inf1 Instances Tensorflow Neuron (tensorflow-neuronx) Setup for Inf2 &
Trn1 / Trn1n Instances Tensorflow Neuron (tensorflow-neuron) Setup for Inf1 Instances MxNet
Neuron (mxnet-neuron) Setup for Inf1 Instances This document is relevant for: Inf1, Inf2, Trn1, Trn1n

18.5. MxNet Neuron (mxnet-neuron) Setup 889

AWS Neuron

890 Chapter 18. Setup Guide

CHAPTER

NINETEEN

NEURON DLAMI USER GUIDE

Table of Contents

• Neuron DLAMI Overview

• Neuron Multi Framework DLAMI

– Multi Framework DLAMIs supported

– Virtual Environments pre-installed

• Neuron Single Framework DLAMI

– Single Framework DLAMIs supported

– Virtual Environments pre-installed

• Neuron Base DLAMI

– Base DLAMIs supported

• Using SSM parameters to find DLAMI id and trigger Cloud Automation flows

– Finding specific DLAMI image id with the latest neuron release

• Other Resources

19.1 Neuron DLAMI Overview

Neuron DLAMIs are an easy way to get started on Neuron SDK as they come pre-installed with Neuron SDK. Neuron
currently supports 3 types of DLAMIs, multi-framework DLAMIs , single framework DLAMIs and base DLAMIs to
easily get started on single Neuron instance. Below sections describe the supported Neuron DLAMIs, corresponding
virtual environments and easy way to retrieve the DLAMI id using SSM parameters.

891

AWS Neuron

19.2 Neuron Multi Framework DLAMI

Neuron Deep Learning AMI (DLAMI) is a multi-framework DLAMI that supports multiple Neuron frame-
work/libraries. Each DLAMI is pre-installed with Neuron drivers and support all Neuron instance types. Each virtual
environment that corresponds to a specific Neuron framework/library comes pre-installed with all the Neuron libraries
including Neuron compiler and Neuron run-time needed for you to easily get started.

19.2.1 Multi Framework DLAMIs supported

Operating System Neuron Instances Supported DLAMI Name
Ubuntu 22.04 Inf1, Inf2, Trn1, Trn1n AWS Deep Learning AMI Neuron (Ubuntu 22.04)

19.2.2 Virtual Environments pre-installed

Neuron Framework/Libraries supported Virtual Environment
PyTorch Neuron 2.1 (Torch NeuronX , NeuronX Distributed) /opt/aws_neuronx_venv_pytorch_2_1
PyTorch Neuron 1.13.1 (Torch NeuronX , NeuronX Distributed) /opt/aws_neuronx_venv_pytorch_1_13
Transformers NeuronX (PyTorch 2.1) /opt/aws_neuronx_venv_transformers_neuronx
Tensorflow Neuron 2.10 (Tensorflow NeuronX) /opt/aws_neuronx_venv_tensorflow_2_10
PyTorch Neuron 1.13.1 (Inf1) (Torch Neuron) /opt/aws_neuron_venv_pytorch_1_13_inf1
Tensorflow 2.10 (Inf1) (Tensorflow Neuron) /opt/aws_neuron_venv_tensorflow_2_10_inf1

You can easily get started with the multi-framework DLAMI through AWS console by following this setup guide . If
you are looking to use the Neuron DLAMI in your cloud automation flows , Neuron also supports SSM parameters to
easily retrieve the latest DLAMI id.

19.3 Neuron Single Framework DLAMI

Neuron supports single framework DLAMIs that correspond to a single framework version (ex:- PyTorch 1.13). Each
DLAMI is pre-installed with Neuron drivers and supports all Neuron instance types. Each virtual environment corre-
sponding to a specific Neuron framework/library comes pre-installed with all the relevant Neuron libraries including
Neuron compiler and Neuron run-time.

19.3.1 Single Framework DLAMIs supported

Framework Operating
System

Neuron Instances
Supported

DLAMI Name

PyTorch
1.13

Ubuntu 20.04 Inf1, Inf2, Trn1, Trn1n AWS Deep Learning AMI Neuron PyTorch 1.13
(Ubuntu 20.04)

PyTorch
1.13

Amazon Linux
2

Inf1, Inf2, Trn1, Trn1n AWS Deep Learning AMI Neuron PyTorch 1.13
(Amazon Linux 2)

Tensorflow
2.10

Ubuntu 20.04 Inf2, Trn1, Trn1n AWS Deep Learning AMI Neuron TensorFlow 2.10
(Ubuntu 20.04)

TensorFlow
2.10

Amazon Linux
2

Inf2, Trn1, Trn1 AWS Deep Learning AMI Neuron TensorFlow 2.10
(Amazon Linux 2)

892 Chapter 19. Neuron DLAMI User Guide

AWS Neuron

19.3.2 Virtual Environments pre-installed

DLAMI Name Neuron Libraries sup-
ported

Virtual Environment

AWS Deep Learning AMI Neuron PyTorch 1.13
(Ubuntu 20.04)

torch-neuronx, neuronx-
distributed

/opt/aws_neuron_venv_pytorch

AWS Deep Learning AMI Neuron PyTorch 1.13
(Ubuntu 20.04)

torch-neuron /opt/aws_neuron_venv_pytorch_inf1

AWS Deep Learning AMI Neuron PyTorch 1.13
(Amazon Linux 2)

torch-neuronx, neuronx-
distributed

/opt/aws_neuron_venv_pytorch

AWS Deep Learning AMI Neuron PyTorch 1.13
(Amazon Linux 2)

torch-neuron /opt/aws_neuron_venv_pytorch_inf1

AWS Deep Learning AMI Neuron TensorFlow 2.10
(Ubuntu 20.04)

tensorflow-neuronx /opt/aws_neuron_venv_tensorflow

AWS Deep Learning AMI Neuron TensorFlow 2.10
(Amazon Linux 2)

tensorflow-neuronx /opt/aws_neuron_venv_tensorflow

You can easily get started with the single framework DLAMI through AWS console by following one of the corre-
sponding setup guides . If you are looking to use the Neuron DLAMI in your cloud automation flows , Neuron also
supports SSM parameters to easily retrieve the latest DLAMI id.

19.4 Neuron Base DLAMI

Neuron Base DLAMIs comes pre-installed with Neuron driver, EFA, and Neuron tools. Base DLAMIs might be
relevant if you are extending the DLAMI for containerized applications.

19.4.1 Base DLAMIs supported

Operating Sys-
tem

Neuron Instances Sup-
ported

DLAMI Name

Ubuntu 20.04 Inf1, Inf2, Trn1, Trn1n AWS Deep Learning Base AMI Neuron (Ubuntu 20.04)
Amazon Linux 2 Inf1, Inf2, Trn1, Trn1n AWS Deep Learning Base AMI Neuron (Amazon Linux

2)

19.5 Using SSM parameters to find DLAMI id and trigger Cloud Au-
tomation flows

Neuron DLAMIs support AWS SSM parameters to easily find the Neuron DLAMI id. Currently we only support
finding the latest DLAMI id that corresponds to latest Neuron SDK release with SSM parameter support. In the future
releases, we will add support for finding the DLAMI id using SSM parameters for a specific Neuron release.

19.4. Neuron Base DLAMI 893

AWS Neuron

19.5.1 Finding specific DLAMI image id with the latest neuron release

You can find the DLAMI that supports latest Neuron SDK by using the SSM get-parameter.

aws ssm get-parameter \
--region us-east-1 \
--name <dlami-ssm-parameter-prefix>/latest/image_id \
--query "Parameter.Value" \
--output text

The SSM parameter prefix for each DLAMI can be seen below

SSM Parameter Prefix

AMI Name SSM parameter Prefix
AWS Deep Learning AMI Neuron
(Ubuntu 22.04)

/aws/service/neuron/dlami/multi-framework/ubuntu-22.04

AWS Deep Learning AMI Neuron
PyTorch 1.13 (Ubuntu 20.04)

/aws/service/neuron/dlami/pytorch-1.13/ubuntu-20.04

AWS Deep Learning AMI Neuron
PyTorch 1.13 (Amazon Linux 2)

/aws/service/neuron/dlami/pytorch-1.13/amazon-linux-2

AWS Deep Learning AMI Neuron
TensorFlow 2.10 (Ubuntu 20.04)

/aws/service/neuron/dlami/tensorflow-2.10/ubuntu-20.04

AWS Deep Learning AMI Neuron
TensorFlow 2.10 (Amazon Linux 2)

/aws/service/neuron/dlami/tensorflow-2.10/amazon-linux-2

AWS Deep Learning Base AMI Neu-
ron (Amazon Linux 2)

/aws/service/neuron/dlami/base/amazon-linux-2

AWS Deep Learning Base AMI Neu-
ron (Ubuntu 20.04)

/aws/service/neuron/dlami/base/ubuntu-20.04

For example to find the latest DLAMI id for Multi-Framework DLAMI (Ubuntu 22) you can use the following

aws ssm get-parameter \
--region us-east-1 \
--name /aws/service/neuron/dlami/multi-framework/ubuntu-22.04/latest/image_id \
--query "Parameter.Value" \
--output text

You can find all available parameters supported in Neuron DLAMis via CLI

aws ssm get-parameters-by-path \
--region us-east-1 \
--path /aws/service/neuron \
--recursive

You can also view the SSM parameters supported in Neuron through AWS parameter store by selecting the “Neuron”
service.

894 Chapter 19. Neuron DLAMI User Guide

AWS Neuron

Use SSM Parameter to launch instance directly via CLI

You can use CLI to find the latest DLAMI id and also launch the instance simulataneuosly. Below code snippet shows
an example of launching inf2 instance using multi-framework DLAMI

aws ec2 run-instances \
--region us-east-1 \
--image-id resolve:ssm:/aws/service/neuron/dlami/pytorch-1.13/amazon-linux-2/latest/
→˓image_id \
--count 1 \
--instance-type inf2.48xlarge \
--key-name <my-key-pair> \
--security-groups <my-security-group>

Use SSM alias in EC2 launch templates

SSM Parameters can also be used directly in launch templates. So, you can update your Auto Scaling groups to use
new AMI IDs without needing to create new launch templates or new versions of launch templates each time an AMI
ID changes. Ref: https://docs.aws.amazon.com/autoscaling/ec2/userguide/using-systems-manager-parameters.html

19.6 Other Resources

https://docs.aws.amazon.com/dlami/latest/devguide/what-is-dlami.html

https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html

https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

19.6. Other Resources 895

https://docs.aws.amazon.com/autoscaling/ec2/userguide/using-systems-manager-parameters.html
https://docs.aws.amazon.com/dlami/latest/devguide/what-is-dlami.html
https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html

AWS Neuron

896 Chapter 19. Neuron DLAMI User Guide

CHAPTER

TWENTY

DEPLOY CONTAINERS WITH NEURON

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

20.1 Containers - Locate Neuron DLC Image

Introduction

The Pytorch Neuron DLC images are published to ECR Public, which is the recommended URL to use for most cases.
If you are working within AWS SageMaker, you should use the Amazon ECR URL instead of the Amazon ECR Public
one because of the restriction of Sagemaker. TensorFlow DLCs are not updated with the latest release. For earlier
releases please check here.

Neuron DLC images in Amazon ECR Public

Frame-
work

Neuron Package Job
Type

Sup-
ported
EC2
Instance
Types

Python
Ver-
sion
Op-
tions

ECR Public
Repo URL

Image Details Other
Pack-
ages

Py-
Torch
2.1.2

aws-neuronx-tools,
neuronx_distributed,
torch-neuronx,
transformers-neuronx

in-
fer-
ence

trn1 and
inf2

3.10
(py310)

https://gallery.
ecr.aws/neuron/
pytorch-inference-neuronx

https://github.
com/aws-neuron/
deep-learning-containers#
pytorch-inference-neuronx

torch-
serve

Py-
Torch
2.1.2

aws-neuronx-tools,
neuronx_distributed,
torch-neuronx

train-
ing

trn1 and
inf2

3.10
(py310)

https://gallery.
ecr.aws/neuron/
pytorch-training-neuronx

https://github.
com/aws-neuron/
deep-learning-containers#
pytorch-training-neuronx

Py-
Torch
1.13.1

aws-neuronx-tools,
torch-neuron

in-
fer-
ence

inf1 3.10
(py310)

https://gallery.
ecr.aws/neuron/
pytorch-inference-neuron

https://github.
com/aws-neuron/
deep-learning-containers#
pytorch-inference-neuron

torch-
serve

Py-
Torch
1.13.1

aws-neuronx-tools,
neuronx_distributed,
torch-neuronx,
transformers-neuronx

in-
fer-
ence

trn1 and
inf2

3.10
(py310)

https://gallery.
ecr.aws/neuron/
pytorch-inference-neuronx

https://github.
com/aws-neuron/
deep-learning-containers#
pytorch-inference-neuronx

torch-
serve

Py-
Torch
1.13.1

aws-neuronx-tools,
neuronx_distributed,
torch-neuronx

train-
ing

trn1 and
inf2

3.10
(py310)

https://gallery.
ecr.aws/neuron/
pytorch-training-neuronx

https://github.
com/aws-neuron/
deep-learning-containers#
pytorch-training-neuronx

897

https://github.com/aws/deep-learning-containers/blob/master/available_images.md#neuron-containers
https://gallery.ecr.aws/neuron/pytorch-inference-neuronx
https://gallery.ecr.aws/neuron/pytorch-inference-neuronx
https://gallery.ecr.aws/neuron/pytorch-inference-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-inference-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-inference-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-inference-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-inference-neuronx
https://gallery.ecr.aws/neuron/pytorch-training-neuronx
https://gallery.ecr.aws/neuron/pytorch-training-neuronx
https://gallery.ecr.aws/neuron/pytorch-training-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-training-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-training-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-training-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-training-neuronx
https://gallery.ecr.aws/neuron/pytorch-inference-neuron
https://gallery.ecr.aws/neuron/pytorch-inference-neuron
https://gallery.ecr.aws/neuron/pytorch-inference-neuron
https://github.com/aws-neuron/deep-learning-containers#pytorch-inference-neuron
https://github.com/aws-neuron/deep-learning-containers#pytorch-inference-neuron
https://github.com/aws-neuron/deep-learning-containers#pytorch-inference-neuron
https://github.com/aws-neuron/deep-learning-containers#pytorch-inference-neuron
https://gallery.ecr.aws/neuron/pytorch-inference-neuronx
https://gallery.ecr.aws/neuron/pytorch-inference-neuronx
https://gallery.ecr.aws/neuron/pytorch-inference-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-inference-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-inference-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-inference-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-inference-neuronx
https://gallery.ecr.aws/neuron/pytorch-training-neuronx
https://gallery.ecr.aws/neuron/pytorch-training-neuronx
https://gallery.ecr.aws/neuron/pytorch-training-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-training-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-training-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-training-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-training-neuronx

AWS Neuron

Latest Neuron DLC images in Amazon ECR

Find latest Neuron DLC images.

Locate specific Neuron DLC release in Amazon ECR

In the DLC release page do a search for Neuron to get the ECR repo location of specific Neuron DLC release.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

20.2 Containers - Getting Started

Training

Launch Trn1 Instance

• Please follow the instructions at launch an Amazon EC2 Instance to Launch an instance, when choosing the
instance type at the EC2 console. Please make sure to select the correct instance type.

• To get more information about instances sizes and pricing see: Trn1 web page, Inf2 web page, Inf1 web page

• Select your Amazon Machine Image (AMI) of choice, please note that Neuron supports Amazon Linux 2
AMI(HVM) - Kernel 5.10.

• When launching a Trn1, please adjust your primary EBS volume size to a minimum of 512GB.

• After launching the instance, follow the instructions in Connect to your instance to connect to the instance

Note: If you are facing a connectivity issue during the model loading process on a Trn1 instance with Ubuntu, that
could probably be because of Ubuntu limitations with multiple interfaces. To solve this problem, please follow the
steps mentioned here.

Users are highly encouraged to use DLAMI to launch the instances, since DLAMIs come with the required fix.

Install Drivers

Configure Linux for Neuron repository updates

sudo tee /etc/yum.repos.d/neuron.repo > /dev/null <<EOF
[neuron]
name=Neuron YUM Repository
baseurl=https://yum.repos.neuron.amazonaws.com
enabled=1
metadata_expire=0
EOF
sudo rpm --import https://yum.repos.neuron.amazonaws.com/GPG-PUB-KEY-AMAZON-AWS-NEURON.
→˓PUB

Update OS packages
(continues on next page)

898 Chapter 20. Deploy Containers with Neuron

https://github.com/aws/deep-learning-containers/blob/master/available_images.md#user-content-neuron-containers
https://github.com/aws/deep-learning-containers/releases
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-launch-instance
https://aws.amazon.com/ec2/instance-types/trn1/
https://aws.amazon.com/ec2/instance-types/inf2/
https://aws.amazon.com/ec2/instance-types/inf1/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-connect-to-instance-linux

AWS Neuron

(continued from previous page)

sudo yum update -y

Install OS headers
sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r) -y

Remove preinstalled packages and Install Neuron Driver and Runtime
sudo yum remove aws-neuron-dkms -y
sudo yum remove aws-neuronx-dkms -y
sudo yum install aws-neuronx-dkms-2.* -y

Install EFA Driver(only required for multi-instance training)
curl -O https://efa-installer.amazonaws.com/aws-efa-installer-latest.tar.gz
wget https://efa-installer.amazonaws.com/aws-efa-installer.key && gpg --import aws-efa-
→˓installer.key
cat aws-efa-installer.key | gpg --fingerprint
wget https://efa-installer.amazonaws.com/aws-efa-installer-latest.tar.gz.sig && gpg --
→˓verify ./aws-efa-installer-latest.tar.gz.sig
tar -xvf aws-efa-installer-latest.tar.gz
cd aws-efa-installer && sudo bash efa_installer.sh --yes
cd
sudo rm -rf aws-efa-installer-latest.tar.gz aws-efa-installer

Install Docker

sudo yum install -y docker.io
sudo usermod -aG docker $USER

Logout and log back in to refresh membership.

Verify Docker

docker run hello-world

Expected result:

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
(amd64)
3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

(continues on next page)

20.2. Containers - Getting Started 899

AWS Neuron

(continued from previous page)

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/get-started/

Verify Neuron Component

Once the environment is setup, a container can be started with –device=/dev/neuron# to specify desired set of Inferen-
tia/Trainium devices to be exposed to the container. To find out the available neuron devices on your instance, use the
command ls /dev/neuron*.

When running neuron-ls inside a container, you will only see the set of exposed Trainiums. For example:

docker run --device=/dev/neuron0 neuron-test neuron-ls

Would produce the following output in trn1.32xlarge:

::

+--------+--------+--------+---------+
| NEURON | NEURON | NEURON | PCI |
| DEVICE | CORES | MEMORY | BDF |
+--------+--------+--------+---------+
| 0 | 2 | 32 GB | 10:1c.0 |
+--------+--------+--------+---------+

Build and Run Docker Image

• how-to-build-neuron-container

Run Tutorial

Run training in Pytorch Neuron container

Inference

Launch Inf1 Instance

Install Drivers

Configure Linux for Neuron repository updates
sudo tee /etc/yum.repos.d/neuron.repo > /dev/null <<EOF
[neuron]
name=Neuron YUM Repository
baseurl=https://yum.repos.neuron.amazonaws.com
enabled=1

(continues on next page)

900 Chapter 20. Deploy Containers with Neuron

AWS Neuron

(continued from previous page)

metadata_expire=0
EOF
sudo rpm --import https://yum.repos.neuron.amazonaws.com/GPG-PUB-KEY-AMAZON-AWS-NEURON.
→˓PUB

Update OS packages
sudo yum update -y

###
→˓#######################
To install or update to Neuron versions 1.19.1 and newer from previous releases:
- DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade to␣
→˓latest Neuron driver
###
→˓#######################

Install OS headers
sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r) -y

Install Neuron Driver
sudo yum install aws-neuron-dkms -y

##
Warning: If Linux kernel is updated as a result of OS package update
Neuron driver (aws-neuron-dkms) should be re-installed after reboot
##

Install Docker

sudo yum install -y docker.io
sudo usermod -aG docker $USER

Logout and log back in to refresh membership.

Verify Docker

docker run hello-world

Expected result:

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
(amd64)
3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.

(continues on next page)

20.2. Containers - Getting Started 901

AWS Neuron

(continued from previous page)

4. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/get-started/

Verify Neuron Component

Once the environment is setup, a container can be started with –device=/dev/neuron# to specify desired set of Inferen-
tia/Trainium devices to be exposed to the container. To find out the available neuron devices on your instance, use the
command ls /dev/neuron*.

When running neuron-ls inside a container, you will only see the set of exposed Inferentias. For example:

docker run --device=/dev/neuron0 neuron-test neuron-ls

Would produce the following output in inf1.xlarge:

::

+--------------+---------+--------+-----------+-----------+------+------+
| PCI BDF | LOGICAL | NEURON | MEMORY | MEMORY | EAST | WEST |
| | ID | CORES | CHANNEL 0 | CHANNEL 1 | | |
+--------------+---------+--------+-----------+-----------+------+------+
| 0000:00:1f.0 | 0 | 4 | 4096 MB | 4096 MB | 0 | 0 |
+--------------+---------+--------+-----------+-----------+------+------+

Run Tutorial

Run inference in pytorch neuron container

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

20.3 Containers - Kubernetes - Getting Started

Prerequisite

• Working kubernetes cluster

• Inf1/Trn1 instances as worker nodes with attached roles allowing: * ECR read access policy to retrieve container
images from ECR: arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryReadOnly

902 Chapter 20. Deploy Containers with Neuron

AWS Neuron

• tutorial-docker-env-setup: to install required packages in the worker nodes. With EKS, the EKS optimized
accelarated AMI has the necessary neuron components installed

• Kubernetes node object has instance-type set to inf1/trn1 types. For ex, "node.kubernetes.io/
instance-type": "inf1.2xlarge" or "node.kubernetes.io/instance-type": "trn1.2xlarge"

Deploy Neuron Device Plugin

Neuron device plugin exposes Neuron cores & devices to kubernetes as a resource. aws.amazon.com/neuroncore,
aws.amazon.com/neurondevice, aws.amazon.com/neuron are the resources that the neuron device plugin regis-
ters with the kubernetes. aws.amazon.com/neuroncore is used for allocating neuron cores to the container.
aws.amazon.com/neurondevice is used for allocating neuron devices to the container. When neurondevice is used
all the cores belonging to the device will be allocated to container. aws.amazon.com/neuron also allocates neuronde-
vices and this exists just to be backward compatible with already existing installations. aws.amazon.com/neurondevice
is the recommended resource for allocating devices to the container.

• Make sure prequisite are satisified

• Download the neuron device plugin yaml file. k8s-neuron-device-plugin.yml

• Download the neuron device plugin rbac yaml file. This enables permissions for device plugin to update the node
and Pod annotations. k8s-neuron-device-plugin-rbac.yml

• Apply the Neuron device plugin as a daemonset on the cluster with the following command

kubectl apply -f k8s-neuron-device-plugin-rbac.yml
kubectl apply -f k8s-neuron-device-plugin.yml

• Verify that neuron device plugin is running

kubectl get ds neuron-device-plugin-daemonset --namespace kube-system

Expected result (with 2 nodes in cluster):

NAME DESIRED CURRENT READY UP-TO-DATE ␣
→˓AVAILABLE NODE SELECTOR AGE
neuron-device-plugin-daemonset 2 2 2 2 ␣
→˓2 <none> 27h

• Verify that the node has allocatable neuron cores and devices with the following command

kubectl get nodes "-o=custom-columns=NAME:.metadata.name,NeuronCore:.
→˓status.allocatable.aws\.amazon\.com/neuroncore"

Expected result:

NAME NeuronCore
ip-192-168-65-41.us-west-2.compute.internal 32
ip-192-168-87-81.us-west-2.compute.internal 32

kubectl get nodes "-o=custom-columns=NAME:.metadata.name,NeuronDevice:.
→˓status.allocatable.aws\.amazon\.com/neurondevice"

Expected result:

20.3. Containers - Kubernetes - Getting Started 903

https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html#gpu-ami
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html#gpu-ami

AWS Neuron

NAME NeuronDevice
ip-192-168-65-41.us-west-2.compute.internal 16
ip-192-168-87-81.us-west-2.compute.internal 16

Deploy Neuron Scheduler Extension

Neuron scheduler extension is required for scheduling pods that require more than one Neuron core or device resource.
Refer k8s-neuron-scheduler-flow for details on how the neuron scheduler extension works. Neuron scheduler extension
filter out nodes with non-contiguous core/device ids and enforces allocation of contiguous core/device ids for the PODs
requiring it.

Multiple Scheduler Approach

In cluster environments where there is no access to default scheduler, the neuron scheduler extension can be used with
another scheduler. A new scheduler is added (along with the default scheduler) and then the pod’s that needs to run
the neuron workload use this new scheduler. Neuron scheduler extension is added to this new scheduler. EKS natively
does not yet support the neuron scheduler extension and so in the EKS environment this is the only way to add the
neuron scheduler extension.

• Make sure Neuron device plugin is running

• Download the my scheduler my-scheduler.yml

• Download the scheduler extension k8s-neuron-scheduler-eks.yml

• Apply the neuron-scheduler-extension

kubectl apply -f k8s-neuron-scheduler-eks.yml

• Apply the my-scheduler.yml

kubectl apply -f my-scheduler.yml

• Check there are no errors in the my-scheduler pod logs and the k8s-neuron-scheduler pod is bound to a node

kubectl logs -n kube-system my-scheduler-79bd4cb788-hq2sq

I1012 15:30:21.629611 1 scheduler.go:604] "Successfully bound pod to␣
→˓node" pod="kube-system/k8s-neuron-scheduler-5d9d9d7988-xcpqm" node="ip-
→˓192-168-2-25.ec2.internal" evaluatedNodes=1 feasibleNodes=1

• When running new pod’s that need to use the neuron scheduler extension, make sure it uses the my-scheduler as
the scheduler. Sample pod spec is below

apiVersion: v1
kind: Pod
metadata:
name: <POD_NAME>
spec:
restartPolicy: Never
schedulerName: my-scheduler
containers:

- name: <POD_NAME>
(continues on next page)

904 Chapter 20. Deploy Containers with Neuron

AWS Neuron

(continued from previous page)

command: ["<COMMAND>"]
image: <IMAGE_NAME>
resources:

limits:
cpu: "4"
memory: 4Gi
aws.amazon.com/neuroncore: 9
requests:
cpu: "1"
memory: 1Gi

• Once the neuron workload pod is run, make sure logs in the k8s neuron scheduler has successfull filter/bind
request

kubectl logs -n kube-system k8s-neuron-scheduler-5d9d9d7988-xcpqm

2022/10/12 15:41:16 POD nrt-test-5038 fits in Node:ip-192-168-2-25.ec2.
→˓internal
2022/10/12 15:41:16 Filtered nodes: [ip-192-168-2-25.ec2.internal]
2022/10/12 15:41:16 Failed nodes: map[]
2022/10/12 15:41:16 Finished Processing Filter Request...

2022/10/12 15:41:16 Executing Bind Request!
2022/10/12 15:41:16 Determine if the pod %v is NeuronDevice podnrt-test-
→˓5038
2022/10/12 15:41:16 Updating POD Annotation with alloc devices!
2022/10/12 15:41:16 Return aws.amazon.com/neuroncore
2022/10/12 15:41:16 neuronDevUsageMap for resource:aws.amazon.com/
→˓neuroncore in node: ip-192-168-2-25.ec2.internal is [false false false␣
→˓false false false false false false false false false false false false␣
→˓false]
2022/10/12 15:41:16 Allocated ids for POD nrt-test-5038 are: 0,1,2,3,4,5,6,
→˓7,8
2022/10/12 15:41:16 Try to bind pod nrt-test-5038 in default namespace to␣
→˓node ip-192-168-2-25.ec2.internal with &Binding{ObjectMeta:{nrt-test-
→˓5038 8da590b1-30bc-4335-b7e7-fe574f4f5538 0 0001-01-01 00:00:00␣
→˓+0000 UTC <nil> <nil> map[] map[] [] [] []},Target:ObjectReference{Kind:
→˓Node,Namespace:,Name:ip-192-168-2-25.ec2.internal,UID:,APIVersion:,
→˓ResourceVersion:,FieldPath:,},}
2022/10/12 15:41:16 Updating the DevUsageMap since the bind is successful!
2022/10/12 15:41:16 Return aws.amazon.com/neuroncore
2022/10/12 15:41:16 neuronDevUsageMap for resource:aws.amazon.com/
→˓neuroncore in node: ip-192-168-2-25.ec2.internal is [false false false␣
→˓false false false false false false false false false false false false␣
→˓false]
2022/10/12 15:41:16 neuronDevUsageMap for resource:aws.amazon.com/
→˓neurondevice in node: ip-192-168-2-25.ec2.internal is [false false false␣
→˓false]
2022/10/12 15:41:16 Allocated devices list 0,1,2,3,4,5,6,7,8 for resource␣
→˓aws.amazon.com/neuroncore
2022/10/12 15:41:16 Allocated devices list [0] for other resource aws.
→˓amazon.com/neurondevice

(continues on next page)

20.3. Containers - Kubernetes - Getting Started 905

AWS Neuron

(continued from previous page)

2022/10/12 15:41:16 Allocated devices list [0] for other resource aws.
→˓amazon.com/neurondevice
2022/10/12 15:41:16 Allocated devices list [0] for other resource aws.
→˓amazon.com/neurondevice
2022/10/12 15:41:16 Allocated devices list [0] for other resource aws.
→˓amazon.com/neurondevice
2022/10/12 15:41:16 Allocated devices list [1] for other resource aws.
→˓amazon.com/neurondevice
2022/10/12 15:41:16 Allocated devices list [1] for other resource aws.
→˓amazon.com/neurondevice
2022/10/12 15:41:16 Allocated devices list [1] for other resource aws.
→˓amazon.com/neurondevice
2022/10/12 15:41:16 Allocated devices list [1] for other resource aws.
→˓amazon.com/neurondevice
2022/10/12 15:41:16 Allocated devices list [2] for other resource aws.
→˓amazon.com/neurondevice
2022/10/12 15:41:16 Return aws.amazon.com/neuroncore
2022/10/12 15:41:16 Succesfully updated the DevUsageMap [true true true␣
→˓true true true true true true false false false false false false false]␣
→˓ and otherDevUsageMap [true true true false] after alloc for node ip-192-
→˓168-2-25.ec2.internal
2022/10/12 15:41:16 Finished executing Bind Request...

Default Scheduler Approach

• Make sure Neuron device plugin is running

• Download the scheduler config map k8s-neuron-scheduler-configmap.yml

• Download the scheduler extension k8s-neuron-scheduler.yml

• Enable the kube-scheduler with option to use configMap for scheduler policy. In your cluster.yml Please update
the spec section with the following

spec:
kubeScheduler:
usePolicyConfigMap: true

• Launch the cluster

kops create -f cluster.yml
kops create secret --name neuron-test-1.k8s.local sshpublickey admin -i ~/.
→˓ssh/id_rsa.pub
kops update cluster --name neuron-test-1.k8s.local --yes

• Apply the k8s-neuron-scheduler-configmap.yml [Registers neuron-scheduler-extension with kube-scheduler]

kubectl apply -f k8s-neuron-scheduler-configmap.yml

• Launch the neuron-scheduler-extension

kubectl apply -f k8s-neuron-scheduler.yml

906 Chapter 20. Deploy Containers with Neuron

AWS Neuron

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

20.4 Containers - Tutorials

This document is relevant for: Inf1

20.4.1 Containers – Inference Tutorials

This document is relevant for: Inf1

Run inference in pytorch neuron container

Table of Contents

• Overview

• Setup Environment

Overview

This tutorial demonstrates how to run a pytorch DLC on an inferentia instance.

By the end of this tutorial you will be able to run the inference using the container

You will use an inf1.2xlarge to test your Docker configuration for Inferentia.

To find out the available neuron devices on your instance, use the command ls /dev/neuron*.

Setup Environment

1. Launch an Inf1 Instance
2. Set up docker environment according to tutorial-docker-env-setup

3. A sample Dockerfile for for torch-neuron can be found here inference-dlc-dockerfile. This dockerfile needs the
torchserve entrypoint found here torchserve-neuron and torchserve config.properties found here torchserve-config-
properties.

With the files in a dir, build the image with the following command:

docker build . -f Dockerfile.pt -t neuron-container:pytorch

Run the following command to start the container

docker run -itd --name pt-cont -p 80:8080 -p 8081:8081 --device=/dev/neuron0 neuron-
→˓container:pytorch /usr/local/bin/entrypoint.sh -m 'pytorch-resnet-neuron=https://aws-
→˓dlc-sample-models.s3.amazonaws.com/pytorch/Resnet50-neuron.mar' -t /home/model-server/
→˓config.properties

20.4. Containers - Tutorials 907

AWS Neuron

This document is relevant for: Inf1

This document is relevant for: Inf1

Deploy a TensorFlow Resnet50 model as a Kubernetes service

This tutorial uses Resnet50 model as a teaching example on how to deploy an inference application using Kubernetes
on the Inf1 instances.

Prerequisite:

• tutorial-k8s-env-setup-for-neuron: to setup k8s support on your cluster.

• Inf1 instances as worker nodes with attached roles allowing:

– ECR read access policy to retrieve container images from ECR:
arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryReadOnly

– S3 access to retrieve saved_model from within tensorflow serving container.

Deploy a TensorFlow Serving application image

A trained model must be compiled to an Inferentia target before it can be deployed on Inferentia instances. To continue,
you will need a Neuron optimized TensorFlow model saved in Amazon S3. If you don’t already have a SavedModel,
please follow the tutorial for creating a Neuron compatible ResNet50 model and upload the resulting SavedModel to
S3.

ResNet-50 is a popular machine learning model used for image classification tasks. For more information about com-
piling Neuron models, see The AWS Inferentia Chip With DLAMI in the AWS Deep Learning AMI Developer Guide.

The sample deployment manifest manages a pre-built inference serving container for TensorFlow provided by AWS
Deep Learning Containers. Inside the container is the AWS Neuron Runtime and the TensorFlow Serving application.
A complete list of pre-built Deep Learning Containers optimized for Neuron is maintained on GitHub under Available
Images. At start-up, the DLC will fetch your model from Amazon S3, launch Neuron TensorFlow Serving with the
saved model, and wait for prediction requests.

The number of Neuron devices allocated to your serving application can be adjusted by changing the
aws.amazon.com/neuron resource in the deployment yaml. Please note that communication between TensorFlow Serv-
ing and the Neuron runtime happens over GRPC, which requires passing the IPC_LOCK capability to the container.

1. Create a file named rn50_deployment.yaml with the contents below. Update the region-code and model path to
match your desired settings. The model name is for identification purposes when a client makes a request to the
TensorFlow server. This example uses a model name to match a sample ResNet50 client script that will be used
in a later step for sending prediction requests.

Note:
1. Replace the s3 bucket name in model_base_path arg in the file with the location of the where the saved model

was stored in s3.

2. In the image: add the appropriate location of the DLC tensorflow image

908 Chapter 20. Deploy Containers with Neuron

https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-inferentia-tf-neuron.html
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-inferentia.html
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#user-content-neuron-containers
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#user-content-neuron-containers

AWS Neuron

kind: Deployment
apiVersion: apps/v1
metadata:
name: k8s-neuron-test
labels:
app: k8s-neuron-test
role: master

spec:
replicas: 2
selector:
matchLabels:
app: k8s-neuron-test
role: master

template:
metadata:
labels:
app: k8s-neuron-test
role: master

spec:
containers:
- name: k8s-neuron-test
image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/tensorflow-inference-

→˓neuron:1.15.4-neuron-py37-ubuntu18.04
command:
- /usr/local/bin/entrypoint.sh

args:
- --port=8500
- --rest_api_port=9000
- --model_name=resnet50_neuron
- --model_base_path=s3://your-bucket-of-models/resnet50_neuron/

ports:
- containerPort: 8500
- containerPort: 9000

imagePullPolicy: IfNotPresent
env:
- name: AWS_REGION
value: "us-east-1"

- name: S3_USE_HTTPS
value: "1"

- name: S3_VERIFY_SSL
value: "0"

- name: S3_ENDPOINT
value: s3.us-east-1.amazonaws.com

- name: AWS_LOG_LEVEL
value: "3"

resources:
limits:
cpu: 4
memory: 4Gi
aws.amazon.com/neuron: 1

requests:
cpu: "1"
memory: 1Gi

(continues on next page)

20.4. Containers - Tutorials 909

AWS Neuron

(continued from previous page)

securityContext:
capabilities:
add:
- IPC_LOCK

2. Deploy the model.

kubectl apply -f rn50_deployment.yaml

3. Create a file named rn50_service.yaml with the following contents. The HTTP and gRPC ports are opened for
accepting prediction requests.

kind: Service
apiVersion: v1
metadata:
name: k8s-neuron-test
labels:
app: k8s-neuron-test

spec:
type: ClusterIP
ports:
- name: http-tf-serving
port: 8500
targetPort: 8500

- name: grpc-tf-serving
port: 9000
targetPort: 9000

selector:
app: k8s-neuron-test
role: master

4. Create a Kubernetes service for your TensorFlow model Serving application.

kubectl apply -f rn50_service.yaml

Make predictions against your TensorFlow Serving service

1. To test locally, forward the gRPC port to the k8s-neuron-test service.

kubectl port-forward service/k8s-neuron-test 8500:8500 &

2. Create a Python script called tensorflow-model-server-infer.py with the following content. This script runs infer-
ence via gRPC, which is service framework.

import numpy as np
import grpc
import tensorflow as tf
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.resnet50 import preprocess_input
from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2_grpc

(continues on next page)

910 Chapter 20. Deploy Containers with Neuron

AWS Neuron

(continued from previous page)

from tensorflow.keras.applications.resnet50 import decode_predictions

if __name__ == '__main__':
channel = grpc.insecure_channel('localhost:8500')
stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
img_file = tf.keras.utils.get_file(

"./kitten_small.jpg",
"https://raw.githubusercontent.com/awslabs/mxnet-model-server/master/docs/images/

→˓kitten_small.jpg")
img = image.load_img(img_file, target_size=(224, 224))
img_array = preprocess_input(image.img_to_array(img)[None, ...])
request = predict_pb2.PredictRequest()
request.model_spec.name = 'resnet50_inf1'
request.inputs['input'].CopyFrom(

tf.make_tensor_proto(img_array, shape=img_array.shape))
result = stub.Predict(request)
prediction = tf.make_ndarray(result.outputs['output'])
print(decode_predictions(prediction))

3. Run the script to submit predictions to your service.

python3 tensorflow-model-server-infer.py

Your output should look like the following:

[[(u'n02123045', u'tabby', 0.68817204), (u'n02127052', u'lynx', 0.12701613), (u'n02123159
→˓', u'tiger_cat', 0.08736559), (u'n02124075', u'Egyptian_cat', 0.063844085), (u
→˓'n02128757', u'snow_leopard', 0.009240591)]]

This document is relevant for: Inf1

• Run inference in pytorch neuron container

• Deploy a TensorFlow Resnet50 model as a Kubernetes service

This document is relevant for: Inf1

This document is relevant for: Trn1, Trn1n

20.4.2 Containers – Training Tutorials

This document is relevant for: Trn1, Trn1n

Run training in Pytorch Neuron container

Table of Contents

• Overview

• Setup Environment

20.4. Containers - Tutorials 911

AWS Neuron

Overview

This tutorial demonstrates how to run a pytorch container on an trainium instance.

By the end of this tutorial you will be able to run simple mlp training using the container

You will use an trn1.2xlarge to test your Docker configuration for Trainium.

To find out the available neuron devices on your instance, use the command ls /dev/neuron*.

Setup Environment

1. Launch an Trn1 Instance
2. Set up docker environment according to tutorial-docker-env-setup

3. A sample Dockerfile for for torch-neuron can be found here trainium-dlc-dockerfile. This dockerfile needs the mlp
train script found here mlp-train

With the files in a dir, build the image with the following command:

docker build . -f Dockerfile.pt -t neuron-container:pytorch

Run the following command to start the container

docker run -it --name pt-cont --net=host --device=/dev/neuron0 neuron-container:pytorch␣
→˓python3 /opt/ml/mlp_train.py

This document is relevant for: Trn1, Trn1n

This document is relevant for: Trn1, Trn1n

Deploy a simple mlp training script as a Kubernetes job

This tutorial uses mlp train as a teaching example on how to deploy an training application using Kubernetes on the
Trn1 instances.

Prerequisite:

• tutorial-k8s-env-setup-for-neuron: to setup k8s support on your cluster.

• Trn1 instances as worker nodes with attached roles allowing:

– ECR read access policy to retrieve container images from ECR:
arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryReadOnly

• Have a container image that is build using Run training in Pytorch Neuron container

912 Chapter 20. Deploy Containers with Neuron

AWS Neuron

Deploy a mlp training image

1. Create a file named mlp_train.yaml with the contents below.

Note: In the image: add the appropriate location of the image

apiVersion: v1
kind: Pod
metadata:
name: trn1-mlp

spec:
restartPolicy: Never
schedulerName: default-scheduler
hostNetwork: true
nodeSelector:
beta.kubernetes.io/instance-type: trn1.32xlarge
beta.kubernetes.io/instance-type: trn1.2xlarge

containers:
- name: trn1-mlp
command: ["/usr/local/bin/python3"]
args: ["/opt/ml/mlp_train.py"]
image: 647554078242.dkr.ecr.us-east-1.amazonaws.com/sunda-pt:k8s_mlp_0907
imagePullPolicy: IfNotPresent
env:
- name: NEURON_RT_LOG_LEVEL
value: "INFO"

resources:
limits:
aws.amazon.com/neuron: 2

requests:
aws.amazon.com/neuron: 2

2. Deploy the pod.

kubectl apply -f mlp_train.yaml

3. Check the logs to make sure training completed

kubectl logs <pod name>

Your log should have the following

Final loss is 0.1977
----------End Training ---------------

This document is relevant for: Trn1, Trn1n

• Run training in Pytorch Neuron container

• Deploy a simple mlp training script as a Kubernetes job

This document is relevant for: Trn1, Trn1n

20.4. Containers - Tutorials 913

AWS Neuron

Training

• Run training in Pytorch Neuron container

• Deploy a simple mlp training script as a Kubernetes job

Inference

• Run inference in pytorch neuron container

• Deploy a TensorFlow Resnet50 model as a Kubernetes service

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

20.5 Containers - Developer Flows

This document is relevant for: Inf1

20.5.1 Deploy Neuron Container on EC2

Table of Contents

• Description

• Setup Environment

914 Chapter 20. Deploy Containers with Neuron

AWS Neuron

Description

You can use the Neuron version of the AWS Deep Learning Containers to run inference on inf1 instances. In this
developer flow, you provision an EC2 inf1 instance using a Deep Learming AMI (DLAMI), pull the container image
with the Neuron version of the desired framework, and run the container as a server for the already compiled model.
This developer flow assumes the model has already has been compiled through a compilation developer flow

Setup Environment

1. Launch an Inf1 Instance
• Please follow the instructions at launch an Amazon EC2 Instance to Launch an Inf1 instance, when

choosing the instance type at the EC2 console. Please make sure to select the correct instance type.
To get more information about Inf1 instances sizes and pricing see Inf1 web page.

• Select your Amazon Machine Image (AMI) of choice, please note that Neuron supports Ubuntu 18
AMI or Amazon Linux 2 AMI, you can also choose Ubuntu 18 or Amazon Linux 2 Deep Learning
AMI (DLAMI)

• After launching the instance, follow the instructions in Connect to your instance to connect to the
instance

2. Once you have your EC2 environment set according to tutorial-docker-env-setup, you can build and run a Neuron
container using the how-to-build-neuron-container section above.

Note: Prior to running the container, make sure that the Neuron runtime on the instance is turned off, by running
the command:

sudo service neuron-rtd stop

This document is relevant for: Inf1

20.5. Containers - Developer Flows 915

https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-ec2-tutorials-inference.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-launch-instance
https://aws.amazon.com/ec2/instance-types/inf1/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-connect-to-instance-linux

AWS Neuron

This document is relevant for: Inf1

20.5.2 Deploy Neuron Container on Elastic Container Service (ECS)

Table of Contents

• Description

• Setup Environment

Description

You can use the Neuron version of the AWS Deep Learning Containers to run inference on Amazon Elastic Container
Service (ECS). In this developer flow, you set up an ECS cluster with inf1 instances, create a task description for your
inference service and deploy it to your cluster. This developer flow assumes:

1. The model has already been compiled through Compilation with Framework API on EC2 instance or through
Compilation with Sagemaker Neo.

2. You already set up your container to retrieve it from storage.

Setup Environment

1. Set up an Amazon ECS cluster: Follow the instructions on Setting up Amazon ECS for Deep Learning Con-
tainers

2. Define an Inference Task: Use the instruction on the DLC Inference on ECS Tutorial to define a task and create
a service for the appropriate framework.

When creating tasks for inf1 instances on ECS, be aware of the considerations and requirements listed in
Working with inference workloads on Amazon ECS.

3. Use the container image created using how-to-build-neuron-container as the image in your task definition.

Note: Before deploying your task definition to your ECS cluster, make sure to push the image to ECR. Refer to
Pushing a Docker image for more information.

916 Chapter 20. Deploy Containers with Neuron

https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-ecs-tutorials-inference.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-ecs-setting-up-ecs.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-ecs-setting-up-ecs.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-ecs-tutorials-inference.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-inference.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-ecr-image.html

AWS Neuron

This document is relevant for: Inf1

This document is relevant for: Inf1

20.5.3 Deploy Neuron Container on Elastic Kubernetes Service (EKS)

Table of Contents

• Description

• Setup Environment

– Self-managed Kubernetes

Description

You can use the Neuron version of the AWS Deep Learning Containers to run inference on Amazon Elastic Kubernetes
Service (EKS). In this developer flow, you set up an EKS cluster with Inf1 instances, create a Kubernetes manifest for
your inference service and deploy it to your cluster. This developer flow assumes:

1. The model has already been compiled through Compilation with Framework API on EC2 instance or through
Compilation with Sagemaker Neo.

2. You already set up your container to retrieve it from storage.

20.5. Containers - Developer Flows 917

https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-ecs-tutorials-inference.html

AWS Neuron

Setup Environment

1. Install pre-requisits: Follow these instruction to install or upgrade the eksctl command line utility on your local
computer.

Follow these instruction to install kubectl in the same computer. kubectl is a command line tool for working
with Kubernetes clusters.

2. Follow the instructions in this EKS documentation link to set up AWS Inferentia on your EKS cluster. Using the
YML deployment manifest shown in the same link, replace the image in the containers specification with the
one you built using how-to-build-neuron-container above.

Note: Before deploying your task definition to your EKS cluster, make sure to push the image to ECR. Refer to
Pushing a Docker image for more information.

Self-managed Kubernetes

Please refer to tutorial-k8s-env-setup-for-neuron. In Deploy a TensorFlow Resnet50 model as a Kubernetes service,
the container image referenced in the YML manifest is created using how-to-build-neuron-container.

This document is relevant for: Inf1

This document is relevant for: Inf1

20.5.4 Bring Your Own Neuron Container to Sagemaker Hosting (inf1)

Table of Contents

• Description

• Setup Environment

Description

918 Chapter 20. Deploy Containers with Neuron

https://docs.aws.amazon.com/eks/latest/userguide/eksctl.html
https://docs.aws.amazon.com/eks/latest/userguide/install-kubectl.html
https://docs.aws.amazon.com/eks/latest/userguide/inferentia-support.html
https://docs.aws.amazon.com/eks/latest/userguide/inferentia-support.html#deploy-tensorflow-serving-application
https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-ecr-image.html

AWS Neuron

You can use a SageMaker Notebook or an EC2 instance to compile models and build your own containers for deploy-
ment on SageMaker Hosting using ml.inf1 instances. In this developer flow, you provision a Sagemaker Notebook or
an EC2 instance to train and compile your model to Inferentia. Then you deploy your model to SageMaker Hosting
using the SageMaker Python SDK. Follow the steps bellow to setup your environment. Once your environment is set
you’ll be able to follow the BYOC HuggingFace pretrained BERT container to Sagemaker Tutorial .

Setup Environment

1. Create a Compilation Instance: If using an EC2 instance for compilation you can use an Inf1 instance to
compile and test a model. Follow these steps to launch an Inf1 instance:

• Please follow the instructions at launch an Amazon EC2 Instance to Launch an Inf1 instance, when
choosing the instance type at the EC2 console. Please make sure to select the correct instance type.
To get more information about Inf1 instances sizes and pricing see Inf1 web page.

• Select your Amazon Machine Image (AMI) of choice, please note that Neuron supports Ubuntu 18
AMI or Amazon Linux 2 AMI, you can also choose Ubuntu 18 or Amazon Linux 2 Deep Learning
AMI (DLAMI)

• After launching the instance, follow the instructions in Connect to your instance to connect to the
instance

If using an SageMaker Notebook for compilation, follow the instructions in Get Started with Notebook
Instances to provision the environment.

It is recommended that you start with an ml.c5.4xlarge instance for the compilation. Also, increase the
volume size of you SageMaker notebook instance, to accomodate the models and containers built locally.
A volume of 10GB is sufficient.

Note: To compile the model in the SageMaker Notebook instance, you’ll need to update
the conda environments to include the Neuron Compiler and Neuron Framework Extensions.
Follow the installation guide on the section how-to-update-to-latest-Neuron-Conda-Env to
update the environments.

2. Set up the environment to compile a model, build your own container and deploy: To compile your model
on EC2 or SageMaker Notebook, follow the Set up a development environment section on the EC2 Setup
Environment documentation.

Refer to Adapting Your Own Inference Container documentation for information on how to bring your
own containers to SageMaker Hosting.

Make sure to add the AmazonEC2ContainerRegistryPowerUser role to your IAM role ARN, so you’re
able to build and push containers from your SageMaker Notebook instance.

Note: The container image can be created using how-to-build-neuron-container.

This document is relevant for: Inf1

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

20.5. Containers - Developer Flows 919

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-launch-instance
https://aws.amazon.com/ec2/instance-types/inf1/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-connect-to-instance-linux
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-setup-working-env.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-setup-working-env.html
https://docs.aws.amazon.com/sagemaker/latest/dg/adapt-inference-container.html

AWS Neuron

20.5.5 Customize Neuron DLC

Table of Contents

• Description

• Method 1: Using DLC as a Base Image

• Method 2: Modifying Published Dockerfiles

Description

This guide covers how to customize and extend the Neuron Deep Learning Container (DLC) to fit your specific project
needs. You can customize the DLC either by using the DLC as a base image in your Dockerfile or by modifying
published Dockerfiles on GitHub.

Method 1: Using DLC as a Base Image

1. Create a New Dockerfile. In your Dockerfile, specify the Neuron DLC as your base image using the FROM
directive.

2. Complete the Dockerfile. You can add additional packages, change the base environment, or any other modifica-
tions that suit your project. AWS Batch Training is a good example which needs customize Neuron DLC by using
it as the base image. From its Dockerfile, we can find the customized container copies llama_batch_training.sh
to the container and runs it.

3. Navigate to the directory containing your Dockerfile and build your custom container.

Method 2: Modifying Published Dockerfiles

1. Visit the Neuron DLC Github repo and locate the Dockerfile for the container you wish to customize.

2. Modify the Dockerfile as needed. You can add additional packages, change the base environment, or any other
modifications that suit your project. For example, if you do not need to use Neuron tools in your scenario and
want to make the container smaller, you can remove aws-neuronx-tools at this line.

3. Navigate to the directory containing your Dockerfile and build your custom container.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

Inference

• Deploy Neuron Container on EC2

• Deploy Neuron Container on Elastic Container Service (ECS)

• Deploy Neuron Container on Elastic Kubernetes Service (EKS)

• Bring Your Own Neuron Container to Sagemaker Hosting (inf1)

• Customize Neuron DLC

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

920 Chapter 20. Deploy Containers with Neuron

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/devflows/training/batch/batch-training.html#batch-training
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/aws-batch/llama2/docker/Dockerfile
https://github.com/aws-neuron/deep-learning-containers
https://github.com/aws-neuron/deep-learning-containers/blob/a969c77fdba17ff8d35f411b39ce3a9bc6368730/docker/pytorch/inference/2.1.1/Dockerfile.neuronx#L64

AWS Neuron

20.6 Containers - FAQ, Troubleshooting & ReleaseNotes

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

20.6.1 Neuron Containers FAQ

Table of Contents

• Where can I find DLC images

• What is OCI Neuron Hook and do we need that

• What container runtimes are supported

• How to expose Neuron Devices to Container

• How to expose Neuron Cores to Container

• Can Neuron Devices be shared by different Containers running in the same Host

• Can Neuron Cores be shared by different Containers running in the same Host

• When would you use Neuron K8 Scheduler Extension

• How to add EFA devices to the container

• Can distributed training jobs be run without EFA devices in container

Where can I find DLC images

• The Inference/Training DLC images can be found here.

• In the DLC release page do a search for neuron to get the ECR repo location of specific neuron DLC release.

What is OCI Neuron Hook and do we need that

Neuron devices are exposed to the containers using the –device option in the docker run command. Docker runtime
(runc) does not yet support the ALL option to expose all neuron devices to the container.

With OCI neuron hook support is added to expose ALL devices to container using an environment variable,
“AWS_NEURON_VISIBLE_DEVICES=ALL”. For more details please refer oci neuron hook

In Kubernetes, if we are using the device plugin version 1.7 & below, then the oci neuron hook is needed. If using
device plugin version >= 1.8 then oci neuron hook is not needed

20.6. Containers - FAQ, Troubleshooting & ReleaseNotes 921

https://github.com/aws/deep-learning-containers/blob/master/available_images.md#user-content-neuron-containers
https://github.com/aws/deep-learning-containers/releases

AWS Neuron

What container runtimes are supported

Neuron containers have been tested to work with docker, containerd, cri-o runtimes without any changes. If the oci
neuron hook is used then they need to be enabled in the runtime config. For more details please refer oci neuron hook

How to expose Neuron Devices to Container

Neuron Device: Represents the number of Inferentia/Trainium chips in the instance. Refer Container Devices for more
details

How to expose Neuron Cores to Container

Neuron Core: Represents the number of Neuron Cores in the instance. Refer Container Cores for more details. Each
Inferentia Chip has 4 Neuron Cores and each Trainium chip has 2 Neuron Cores. When the devices are exposed to the
containers all the cores in the device are available for use in the container. Please refer NeuronX Runtime Configuration
to see how the environment variables NEURON_RT_VISIBLE_CORES and NEURON_RT_NUM_CORES can be
used to assign core to containers

Can Neuron Devices be shared by different Containers running in the same Host

Yes, except in Kubernetes environment where the devices cannot be shared

Can Neuron Cores be shared by different Containers running in the same Host

No

When would you use Neuron K8 Scheduler Extension

The neuron cores/devices that are exposed to the container needs to be contiguous. The kubernetes device plugin does
not guarantee the devices to be contiguous. The K8 Neuron Scheduler Extension takes care of assigning contiguous
devices to the containers.

How to add EFA devices to the container

The EFA devices are exposed to the container using the –device option

--device /dev/infiniband/uverbs0

In the kubernetes environment the EFA device plugin is used to detect and advertise EFA interfaces.

:: kubectl apply -f https://raw.githubusercontent.com/aws-samples/aws-efa-eks/main/manifest/
efa-k8s-device-plugin.yml

Application can use the resource type vpc.amazonaws.com/efa in a pod request spec

vpc.amazonaws.com/efa: 4

922 Chapter 20. Deploy Containers with Neuron

https://raw.githubusercontent.com/aws-samples/aws-efa-eks/main/manifest/efa-k8s-device-plugin.yml
https://raw.githubusercontent.com/aws-samples/aws-efa-eks/main/manifest/efa-k8s-device-plugin.yml

AWS Neuron

Can distributed training jobs be run without EFA devices in container

No. For distributed training jobs in Trainium all the EFA inrerfaces in trn1.32xlarge needs to be exposed to the con-
tainers

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

20.6.2 Troubleshooting Neuron Containers

This document aims to provide more information on how to fix issues you might encounter while using the Neuron
Containers. For each issue we will provide an explanation of what happened and what can potentially correct the issue.

If your issue is not listed below or you have a more nuanced problem, contact us via issues posted to this repo, the AWS
Neuron developer forum, or through AWS support.

Neuron Container includes the following Neuron Components. For issues relating to these components inside the
container refer the individual component troubleshooting guides Troubleshooting Guide

• Neuron Runtime/Driver

• Pytorch/Tenosrflow/MXNet frameworks

• Libfabric/EFA

The following are container specific issues

Neuron Device Not found

The neuron container expects the neuron devices to be exposed to the container as referenced in container-devices.

Please look at the container logs to see messages like below

2022-Sep-08 17:55:23.0768 19:19 ERROR TDRV:tdrv_get_dev_info ␣
→˓ No neuron device available

If the above message is seen then devices are not exposed to container

Solution

• Refer container-devices and make sure the devices are exposed to container

• If specific cores are being used refer container-cores and make sure the cores are exposed to container

• In kubernetes environment refer k8s-specify-devices or k8s-specify-cores to make sure neuron devices/cores are
there in pods container spec

20.6. Containers - FAQ, Troubleshooting & ReleaseNotes 923

https://github.com/aws/aws-neuron-sdk/issues
https://forums.aws.amazon.com/forum.jspa?forumID=355
https://forums.aws.amazon.com/forum.jspa?forumID=355

AWS Neuron

Contiguous Device ID’s

Neuron runtime expects the inferentia/trainium device id’s to be contigious. If the device id’s are not contiguous you
might see error messages like below

2022-Sep-08 21:52:11.0307 7:7 ERROR TDRV:tdrv_init_mla_phase1 ␣
→˓ Could not open the nd1

2022-Sep-08 23:00:05.0667 8:8 ERROR NRT:nrt_allocate_neuron_cores ␣
→˓ Neuron cores are not contiguous

Solution

• In the docker run command make sure the devices specified using –device are all contiguous

• If oci neuron hook is used and the env variable AWS_NEURON_VISIBLE_DEVICES is used then make sure
the

devices specified are all contiguous * In kubernetes environment with just the neuron device plugin running there is no
guarantee that the devices allocated will be contiguous. Make sure to run the neuron scheduler extension as specified
in neuron-k8-scheduler-ext

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

20.6.3 Neuron Containers Release Notes

Table of contents

• Neuron 2.5.0

• Neuron 2.4.0

• Neuron 2.3.0

• Neuron 1.19.0

• Neuron 1.16.0

Neuron 2.5.0

Date: 11/07/2022

• Neuron now supports trn1-based training in Sagemaker and Deep Learning Containers using PyTorch. Find
Neuron DLC containers here: https://github.com/aws/deep-learning-containers/blob/master/available_images.
md#neuron-containers

924 Chapter 20. Deploy Containers with Neuron

https://github.com/aws/deep-learning-containers/blob/master/available_images.md#neuron-containers
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#neuron-containers

AWS Neuron

Neuron 2.4.0

Date: 10/27/2022

• Neuron now supports Kubernetes work scheduling at the level of NeuronCore. Updates on how to use the new
core allocation method is captured in the Kubernetes documentation on this site.

Neuron 2.3.0

Date: 10/10/2022

• Now supporting TRN1 and INF1 EC2 instance types as part of Neuron. There is an optional aws-neuronx-oci-
hooks package users may install for conveince that supports use of the AWS_NEURON_VISIBLE_DEVICES
environment variable when launching containers. New DLC containers will be coming soon in support of training
workloads on TRN1.

Neuron 1.19.0

Date: 04/29/2022

• Neuron Kubernetes device driver plugin now can figure out communication with the Neuron driver without the
oci hooks. Starting with Neuron 1.19.0 release, installing aws-neuron-runtime-base and oci-add-hooks
are no longer a requirement for Neuron Kubernetes device driver plugin.

Neuron 1.16.0

Date: 10/27/2021

New in this release

• Starting with Neuron 1.16.0, use of Neuron ML Frameworks now comes with an integrated Neuron Runtime
as a library, as a result it is no longer needed to deploy neuron-rtd. Please visit neuron-containers for more
information.

• When using containers built with components from Neuron 1.16.0, or newer, please use aws-neuron-dkms ver-
sion 2.1 or newer and the latest version of aws-neuron-runtime-base. Passing additional system capabilities
is no longer required.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

20.6.4 Neuron K8 Release Notes

Table of contents

• Introduction

• Neuron K8 release [2.19.16.0]

• Neuron K8 release [2.16.18.0]

• Neuron K8 release [2.1.0.0]

20.6. Containers - FAQ, Troubleshooting & ReleaseNotes 925

AWS Neuron

• Neuron K8 release [2.0.0.0]

• Neuron K8 release [1.9.3.0]

• Neuron K8 release [1.9.2.0]

• Neuron K8 release [1.9.0.0]

• Neuron K8 release [1.8.2.0]

• Neuron K8 release [1.7.7.0]

• Neuron K8 release [1.7.3.0]

• [1.6.22.0]

• [1.6.15.0]

• [1.6.7.0]

• [1.6.0.0]

• [1.5.3.0]

• [1.4.1.0]

• [1.3.2.0]

• [1.2.0.0]

• [1.1.23.0]

• [1.1.17.0]

• [1.0.11000.0]

Introduction

This document lists the current release notes for AWS Neuron Kubernetes (k8) components. Neuron K8 components
include a device plugin and a scheduler extension to assist with deployment and management of inf/trn nodes within
Kubernetes clusters. Both components are offered as pre-built containers in Public ECR and ready for deployment.

• Device Plugin: public.ecr.aws/neuron/neuron-device-plugin:2.x.y.z

• Neuron Scheduler: public.ecr.aws/neuron/neuron-scheduler:2.x.y.z

It’s recommended to pin the version of the components used and to never use the “latest” tag. To get the list of image
tags (2.x.y.z), please refer to these notes or check the image tags on the repo directly.

To Pull the Images from ECR:

docker pull public.ecr.aws/neuron/neuron-device-plugin:2.x.y.z
docker pull public.ecr.aws/neuron/neuron-scheduler:2.x.y.z

926 Chapter 20. Deploy Containers with Neuron

AWS Neuron

Neuron K8 release [2.20.13.0]

Date: 04/01/2024

Summary

• Minor updates.

Neuron K8 release [2.19.16.0]

Date: 01/18/2024

Critical Security Patch

We updated the dependencies used by the Neuron Device Plugin and the Neuron Kubernetes Scheduler to fix sev-
eral important security vulnerabilities. This update fixes all security vulnerabilities reported in https://github.com/
aws-neuron/aws-neuron-sdk/issues/817. Please see the ticket for all impacted dependencies and their associated vul-
nerabilities.

Neuron K8 release [2.16.18.0]

Date: 09/01/2023

Major New Features

• Previously, the Neuron Device indexing was assigned randomly, which made programming difficult. Changed to
using 0-based indexing for Neuron Devices and NeuronCores in EKS container environments; requires Neuron
Driver version 2.12.14 or newer.

• Improved logging when Neuron Driver not installed/present.

Bug Fixes

• Fixed Neuron Device Plugin crash when Neuron Driver is not installed/present on the host.

• Fixed issue where pods fail to deploy when multiple containers are requesting Neuron resources.

• Fixed issue where launching many pods each requesting Neuron cores fails to deploy.

Neuron K8 release [2.1.0.0]

Date: 10/27/2022

20.6. Containers - FAQ, Troubleshooting & ReleaseNotes 927

https://github.com/aws-neuron/aws-neuron-sdk/issues/817
https://github.com/aws-neuron/aws-neuron-sdk/issues/817

AWS Neuron

Summary

• Added support for NeuronCore based scheduling to the Neuron Kubernetes Scheduler. Learn more about how to
use NeuronCores for finer grain control over container scheduling by following the K8 tutorials documentation
in the containers section.

Neuron K8 release [2.0.0.0]

Date: 10/10/2022

Summary

• Added support for TRN1 and INF1 EC2 instance types.

Neuron K8 release [1.9.3.0]

Date: 08/02/2022

Summary

• Minor updates.

Neuron K8 release [1.9.2.0]

Date: 05/27/2022

Summary

• Minor updates.

Neuron K8 release [1.9.0.0]

Date: 04/29/2022

Summary

• Minor updates.

928 Chapter 20. Deploy Containers with Neuron

AWS Neuron

Neuron K8 release [1.8.2.0]

Date: 03/25/2022

Summary

• Minor updates.

Neuron K8 release [1.7.7.0]

Date: 01/20/2022

Summary

Minor updates

Neuron K8 release [1.7.3.0]

Date: 10/27/2021

Summary

Minor updates

[1.6.22.0]

Date: 08/30/2021

Summary

Minor updates.

[1.6.15.0]

Date: 08/06/2021

Summary

Minor updates.

20.6. Containers - FAQ, Troubleshooting & ReleaseNotes 929

AWS Neuron

[1.6.7.0]

Date: 07/26/2021

Summary

Minor internal enhancements.

[1.6.0.0]

Date: 07/02/2021

Summary

Minor internal enhancements.

[1.5.3.0]

Date: 05/01/2021

Summary

Minor internal enhancements.

[1.4.1.0]

Date: 01/30/2021

Summary

Minor internal enhancements.

[1.3.2.0]

Date: 12/23/2020

Summary

Minor internal enhancements.

930 Chapter 20. Deploy Containers with Neuron

AWS Neuron

[1.2.0.0]

Date: 11/17/2020

Summary

Minor internal enhancements.

[1.1.23.0]

Date: 10/22/2020

Summary

Support added for use with Neuron Runtime 1.1. More details in the Neuron Runtime release notes at neuron-runtime-
release-notes.

[1.1.17.0]

Date: 09/22/2020

Summary

Minor internal enhancements.

[1.0.11000.0]

Date: 08/08/2020

Summary

First release of the Neuron K8 Scheduler extension.

Major New Features

• New scheduler extension is provided to ensure that kubelet is scheduling pods on inf1 with contiguous device
ids. Additional details about the new scheduler are provided neuron-k8-scheduler-ext. including instructions on
how to apply it.

– NOTE: The scheduler is only required when using inf1.6xlarge and/or inf1.24xlarge

• With this release the device plugin now requires RBAC permission changes to get/patch NODE/POD objects.
Please apply the k8s-neuron-device-plugin-rbac.yml before using the new device plugin.

20.6. Containers - FAQ, Troubleshooting & ReleaseNotes 931

https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/k8/k8s-neuron-device-plugin-rbac.yml

AWS Neuron

Resolved Issues

• Scheduler is intended to address https://github.com/aws/aws-neuron-sdk/issues/110

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

• Neuron Containers FAQ

• Troubleshooting Neuron Containers

• Neuron Containers Release Notes

• Neuron K8 Release Notes

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

In this section you will find resources to help you use containers for your accelerated deep learning model acceleration
on top of Inferentia and Trainium enabled instances.

The section is organized based on the target deployment environment and use case. In most cases, it is recommended to
use a preconfigured Deep Learning Container (DLC) from AWS. Each DLC is pre-configured to have all of the Neuron
components installed and is specific to the chosen ML Framework.

Locate Neuron DLC image

Introduction

The Pytorch Neuron DLC images are published to ECR Public, which is the recommended URL to use for most cases.
If you are working within AWS SageMaker, you should use the Amazon ECR URL instead of the Amazon ECR Public
one because of the restriction of Sagemaker. TensorFlow DLCs are not updated with the latest release. For earlier
releases please check here.

932 Chapter 20. Deploy Containers with Neuron

https://github.com/aws/aws-neuron-sdk/issues/110
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/what-is-dlc.html
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#neuron-containers

AWS Neuron

Neuron DLC images in Amazon ECR Public

Frame-
work

Neuron Package Job
Type

Sup-
ported
EC2
Instance
Types

Python
Ver-
sion
Op-
tions

ECR Public
Repo URL

Image Details Other
Pack-
ages

Py-
Torch
2.1.2

aws-neuronx-tools,
neuronx_distributed,
torch-neuronx,
transformers-neuronx

in-
fer-
ence

trn1 and
inf2

3.10
(py310)

https://gallery.
ecr.aws/neuron/
pytorch-inference-neuronx

https://github.
com/aws-neuron/
deep-learning-containers#
pytorch-inference-neuronx

torch-
serve

Py-
Torch
2.1.2

aws-neuronx-tools,
neuronx_distributed,
torch-neuronx

train-
ing

trn1 and
inf2

3.10
(py310)

https://gallery.
ecr.aws/neuron/
pytorch-training-neuronx

https://github.
com/aws-neuron/
deep-learning-containers#
pytorch-training-neuronx

Py-
Torch
1.13.1

aws-neuronx-tools,
torch-neuron

in-
fer-
ence

inf1 3.10
(py310)

https://gallery.
ecr.aws/neuron/
pytorch-inference-neuron

https://github.
com/aws-neuron/
deep-learning-containers#
pytorch-inference-neuron

torch-
serve

Py-
Torch
1.13.1

aws-neuronx-tools,
neuronx_distributed,
torch-neuronx,
transformers-neuronx

in-
fer-
ence

trn1 and
inf2

3.10
(py310)

https://gallery.
ecr.aws/neuron/
pytorch-inference-neuronx

https://github.
com/aws-neuron/
deep-learning-containers#
pytorch-inference-neuronx

torch-
serve

Py-
Torch
1.13.1

aws-neuronx-tools,
neuronx_distributed,
torch-neuronx

train-
ing

trn1 and
inf2

3.10
(py310)

https://gallery.
ecr.aws/neuron/
pytorch-training-neuronx

https://github.
com/aws-neuron/
deep-learning-containers#
pytorch-training-neuronx

Latest Neuron DLC images in Amazon ECR

Find latest Neuron DLC images.

Locate specific Neuron DLC release in Amazon ECR

In the DLC release page do a search for Neuron to get the ECR repo location of specific Neuron DLC release.

Getting Started

Training

Launch Trn1 Instance

• Please follow the instructions at launch an Amazon EC2 Instance to Launch an instance, when choosing the
instance type at the EC2 console. Please make sure to select the correct instance type.

• To get more information about instances sizes and pricing see: Trn1 web page, Inf2 web page, Inf1 web page

• Select your Amazon Machine Image (AMI) of choice, please note that Neuron supports Amazon Linux 2
AMI(HVM) - Kernel 5.10.

• When launching a Trn1, please adjust your primary EBS volume size to a minimum of 512GB.

• After launching the instance, follow the instructions in Connect to your instance to connect to the instance

20.6. Containers - FAQ, Troubleshooting & ReleaseNotes 933

https://gallery.ecr.aws/neuron/pytorch-inference-neuronx
https://gallery.ecr.aws/neuron/pytorch-inference-neuronx
https://gallery.ecr.aws/neuron/pytorch-inference-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-inference-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-inference-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-inference-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-inference-neuronx
https://gallery.ecr.aws/neuron/pytorch-training-neuronx
https://gallery.ecr.aws/neuron/pytorch-training-neuronx
https://gallery.ecr.aws/neuron/pytorch-training-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-training-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-training-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-training-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-training-neuronx
https://gallery.ecr.aws/neuron/pytorch-inference-neuron
https://gallery.ecr.aws/neuron/pytorch-inference-neuron
https://gallery.ecr.aws/neuron/pytorch-inference-neuron
https://github.com/aws-neuron/deep-learning-containers#pytorch-inference-neuron
https://github.com/aws-neuron/deep-learning-containers#pytorch-inference-neuron
https://github.com/aws-neuron/deep-learning-containers#pytorch-inference-neuron
https://github.com/aws-neuron/deep-learning-containers#pytorch-inference-neuron
https://gallery.ecr.aws/neuron/pytorch-inference-neuronx
https://gallery.ecr.aws/neuron/pytorch-inference-neuronx
https://gallery.ecr.aws/neuron/pytorch-inference-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-inference-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-inference-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-inference-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-inference-neuronx
https://gallery.ecr.aws/neuron/pytorch-training-neuronx
https://gallery.ecr.aws/neuron/pytorch-training-neuronx
https://gallery.ecr.aws/neuron/pytorch-training-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-training-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-training-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-training-neuronx
https://github.com/aws-neuron/deep-learning-containers#pytorch-training-neuronx
https://github.com/aws/deep-learning-containers/blob/master/available_images.md#user-content-neuron-containers
https://github.com/aws/deep-learning-containers/releases
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-launch-instance
https://aws.amazon.com/ec2/instance-types/trn1/
https://aws.amazon.com/ec2/instance-types/inf2/
https://aws.amazon.com/ec2/instance-types/inf1/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-connect-to-instance-linux

AWS Neuron

Note: If you are facing a connectivity issue during the model loading process on a Trn1 instance with Ubuntu, that
could probably be because of Ubuntu limitations with multiple interfaces. To solve this problem, please follow the
steps mentioned here.

Users are highly encouraged to use DLAMI to launch the instances, since DLAMIs come with the required fix.

Install Drivers

Configure Linux for Neuron repository updates

sudo tee /etc/yum.repos.d/neuron.repo > /dev/null <<EOF
[neuron]
name=Neuron YUM Repository
baseurl=https://yum.repos.neuron.amazonaws.com
enabled=1
metadata_expire=0
EOF
sudo rpm --import https://yum.repos.neuron.amazonaws.com/GPG-PUB-KEY-AMAZON-AWS-NEURON.
→˓PUB

Update OS packages
sudo yum update -y

Install OS headers
sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r) -y

Remove preinstalled packages and Install Neuron Driver and Runtime
sudo yum remove aws-neuron-dkms -y
sudo yum remove aws-neuronx-dkms -y
sudo yum install aws-neuronx-dkms-2.* -y

Install EFA Driver(only required for multi-instance training)
curl -O https://efa-installer.amazonaws.com/aws-efa-installer-latest.tar.gz
wget https://efa-installer.amazonaws.com/aws-efa-installer.key && gpg --import aws-efa-
→˓installer.key
cat aws-efa-installer.key | gpg --fingerprint
wget https://efa-installer.amazonaws.com/aws-efa-installer-latest.tar.gz.sig && gpg --
→˓verify ./aws-efa-installer-latest.tar.gz.sig
tar -xvf aws-efa-installer-latest.tar.gz
cd aws-efa-installer && sudo bash efa_installer.sh --yes
cd
sudo rm -rf aws-efa-installer-latest.tar.gz aws-efa-installer

934 Chapter 20. Deploy Containers with Neuron

AWS Neuron

Install Docker

sudo yum install -y docker.io
sudo usermod -aG docker $USER

Logout and log back in to refresh membership.

Verify Docker

docker run hello-world

Expected result:

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
(amd64)
3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/get-started/

Verify Neuron Component

Once the environment is setup, a container can be started with –device=/dev/neuron# to specify desired set of Inferen-
tia/Trainium devices to be exposed to the container. To find out the available neuron devices on your instance, use the
command ls /dev/neuron*.

When running neuron-ls inside a container, you will only see the set of exposed Trainiums. For example:

docker run --device=/dev/neuron0 neuron-test neuron-ls

Would produce the following output in trn1.32xlarge:

::

+--------+--------+--------+---------+
| NEURON | NEURON | NEURON | PCI |
| DEVICE | CORES | MEMORY | BDF |

(continues on next page)

20.6. Containers - FAQ, Troubleshooting & ReleaseNotes 935

AWS Neuron

(continued from previous page)

+--------+--------+--------+---------+
| 0 | 2 | 32 GB | 10:1c.0 |
+--------+--------+--------+---------+

Build and Run Docker Image

• how-to-build-neuron-container

Run Tutorial

Run training in Pytorch Neuron container

Inference

Launch Inf1 Instance

Install Drivers

Configure Linux for Neuron repository updates
sudo tee /etc/yum.repos.d/neuron.repo > /dev/null <<EOF
[neuron]
name=Neuron YUM Repository
baseurl=https://yum.repos.neuron.amazonaws.com
enabled=1
metadata_expire=0
EOF
sudo rpm --import https://yum.repos.neuron.amazonaws.com/GPG-PUB-KEY-AMAZON-AWS-NEURON.
→˓PUB

Update OS packages
sudo yum update -y

###
→˓#######################
To install or update to Neuron versions 1.19.1 and newer from previous releases:
- DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade to␣
→˓latest Neuron driver
###
→˓#######################

Install OS headers
sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r) -y

Install Neuron Driver
sudo yum install aws-neuron-dkms -y

##
Warning: If Linux kernel is updated as a result of OS package update

(continues on next page)

936 Chapter 20. Deploy Containers with Neuron

AWS Neuron

(continued from previous page)

Neuron driver (aws-neuron-dkms) should be re-installed after reboot
##

Install Docker

sudo yum install -y docker.io
sudo usermod -aG docker $USER

Logout and log back in to refresh membership.

Verify Docker

docker run hello-world

Expected result:

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
(amd64)
3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/get-started/

Verify Neuron Component

Once the environment is setup, a container can be started with –device=/dev/neuron# to specify desired set of Inferen-
tia/Trainium devices to be exposed to the container. To find out the available neuron devices on your instance, use the
command ls /dev/neuron*.

When running neuron-ls inside a container, you will only see the set of exposed Inferentias. For example:

docker run --device=/dev/neuron0 neuron-test neuron-ls

Would produce the following output in inf1.xlarge:

(continues on next page)

20.6. Containers - FAQ, Troubleshooting & ReleaseNotes 937

AWS Neuron

(continued from previous page)

::

+--------------+---------+--------+-----------+-----------+------+------+
| PCI BDF | LOGICAL | NEURON | MEMORY | MEMORY | EAST | WEST |
| | ID | CORES | CHANNEL 0 | CHANNEL 1 | | |
+--------------+---------+--------+-----------+-----------+------+------+
| 0000:00:1f.0 | 0 | 4 | 4096 MB | 4096 MB | 0 | 0 |
+--------------+---------+--------+-----------+-----------+------+------+

Run Tutorial

Run inference in pytorch neuron container

Kubernetes Getting Started

Prerequisite

• Working kubernetes cluster

• Inf1/Trn1 instances as worker nodes with attached roles allowing: * ECR read access policy to retrieve container
images from ECR: arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryReadOnly

• tutorial-docker-env-setup: to install required packages in the worker nodes. With EKS, the EKS optimized
accelarated AMI has the necessary neuron components installed

• Kubernetes node object has instance-type set to inf1/trn1 types. For ex, "node.kubernetes.io/
instance-type": "inf1.2xlarge" or "node.kubernetes.io/instance-type": "trn1.2xlarge"

Deploy Neuron Device Plugin

Neuron device plugin exposes Neuron cores & devices to kubernetes as a resource. aws.amazon.com/neuroncore,
aws.amazon.com/neurondevice, aws.amazon.com/neuron are the resources that the neuron device plugin regis-
ters with the kubernetes. aws.amazon.com/neuroncore is used for allocating neuron cores to the container.
aws.amazon.com/neurondevice is used for allocating neuron devices to the container. When neurondevice is used
all the cores belonging to the device will be allocated to container. aws.amazon.com/neuron also allocates neuronde-
vices and this exists just to be backward compatible with already existing installations. aws.amazon.com/neurondevice
is the recommended resource for allocating devices to the container.

• Make sure prequisite are satisified

• Download the neuron device plugin yaml file. k8s-neuron-device-plugin.yml

• Download the neuron device plugin rbac yaml file. This enables permissions for device plugin to update the node
and Pod annotations. k8s-neuron-device-plugin-rbac.yml

• Apply the Neuron device plugin as a daemonset on the cluster with the following command

kubectl apply -f k8s-neuron-device-plugin-rbac.yml
kubectl apply -f k8s-neuron-device-plugin.yml

• Verify that neuron device plugin is running

kubectl get ds neuron-device-plugin-daemonset --namespace kube-system

938 Chapter 20. Deploy Containers with Neuron

https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html#gpu-ami
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html#gpu-ami

AWS Neuron

Expected result (with 2 nodes in cluster):

NAME DESIRED CURRENT READY UP-TO-DATE ␣
→˓AVAILABLE NODE SELECTOR AGE
neuron-device-plugin-daemonset 2 2 2 2 ␣
→˓2 <none> 27h

• Verify that the node has allocatable neuron cores and devices with the following command

kubectl get nodes "-o=custom-columns=NAME:.metadata.name,NeuronCore:.
→˓status.allocatable.aws\.amazon\.com/neuroncore"

Expected result:

NAME NeuronCore
ip-192-168-65-41.us-west-2.compute.internal 32
ip-192-168-87-81.us-west-2.compute.internal 32

kubectl get nodes "-o=custom-columns=NAME:.metadata.name,NeuronDevice:.
→˓status.allocatable.aws\.amazon\.com/neurondevice"

Expected result:

NAME NeuronDevice
ip-192-168-65-41.us-west-2.compute.internal 16
ip-192-168-87-81.us-west-2.compute.internal 16

Deploy Neuron Scheduler Extension

Neuron scheduler extension is required for scheduling pods that require more than one Neuron core or device resource.
Refer k8s-neuron-scheduler-flow for details on how the neuron scheduler extension works. Neuron scheduler extension
filter out nodes with non-contiguous core/device ids and enforces allocation of contiguous core/device ids for the PODs
requiring it.

Multiple Scheduler Approach

In cluster environments where there is no access to default scheduler, the neuron scheduler extension can be used with
another scheduler. A new scheduler is added (along with the default scheduler) and then the pod’s that needs to run
the neuron workload use this new scheduler. Neuron scheduler extension is added to this new scheduler. EKS natively
does not yet support the neuron scheduler extension and so in the EKS environment this is the only way to add the
neuron scheduler extension.

• Make sure Neuron device plugin is running

• Download the my scheduler my-scheduler.yml

• Download the scheduler extension k8s-neuron-scheduler-eks.yml

• Apply the neuron-scheduler-extension

kubectl apply -f k8s-neuron-scheduler-eks.yml

• Apply the my-scheduler.yml

20.6. Containers - FAQ, Troubleshooting & ReleaseNotes 939

AWS Neuron

kubectl apply -f my-scheduler.yml

• Check there are no errors in the my-scheduler pod logs and the k8s-neuron-scheduler pod is bound to a node

kubectl logs -n kube-system my-scheduler-79bd4cb788-hq2sq

I1012 15:30:21.629611 1 scheduler.go:604] "Successfully bound pod to␣
→˓node" pod="kube-system/k8s-neuron-scheduler-5d9d9d7988-xcpqm" node="ip-
→˓192-168-2-25.ec2.internal" evaluatedNodes=1 feasibleNodes=1

• When running new pod’s that need to use the neuron scheduler extension, make sure it uses the my-scheduler as
the scheduler. Sample pod spec is below

apiVersion: v1
kind: Pod
metadata:
name: <POD_NAME>
spec:
restartPolicy: Never
schedulerName: my-scheduler
containers:

- name: <POD_NAME>
command: ["<COMMAND>"]
image: <IMAGE_NAME>
resources:

limits:
cpu: "4"
memory: 4Gi
aws.amazon.com/neuroncore: 9
requests:
cpu: "1"
memory: 1Gi

• Once the neuron workload pod is run, make sure logs in the k8s neuron scheduler has successfull filter/bind
request

kubectl logs -n kube-system k8s-neuron-scheduler-5d9d9d7988-xcpqm

2022/10/12 15:41:16 POD nrt-test-5038 fits in Node:ip-192-168-2-25.ec2.
→˓internal
2022/10/12 15:41:16 Filtered nodes: [ip-192-168-2-25.ec2.internal]
2022/10/12 15:41:16 Failed nodes: map[]
2022/10/12 15:41:16 Finished Processing Filter Request...

2022/10/12 15:41:16 Executing Bind Request!
2022/10/12 15:41:16 Determine if the pod %v is NeuronDevice podnrt-test-
→˓5038
2022/10/12 15:41:16 Updating POD Annotation with alloc devices!
2022/10/12 15:41:16 Return aws.amazon.com/neuroncore
2022/10/12 15:41:16 neuronDevUsageMap for resource:aws.amazon.com/
→˓neuroncore in node: ip-192-168-2-25.ec2.internal is [false false false␣
→˓false false false false false false false false false false false false␣
→˓false]

(continues on next page)

940 Chapter 20. Deploy Containers with Neuron

AWS Neuron

(continued from previous page)

2022/10/12 15:41:16 Allocated ids for POD nrt-test-5038 are: 0,1,2,3,4,5,6,
→˓7,8
2022/10/12 15:41:16 Try to bind pod nrt-test-5038 in default namespace to␣
→˓node ip-192-168-2-25.ec2.internal with &Binding{ObjectMeta:{nrt-test-
→˓5038 8da590b1-30bc-4335-b7e7-fe574f4f5538 0 0001-01-01 00:00:00␣
→˓+0000 UTC <nil> <nil> map[] map[] [] [] []},Target:ObjectReference{Kind:
→˓Node,Namespace:,Name:ip-192-168-2-25.ec2.internal,UID:,APIVersion:,
→˓ResourceVersion:,FieldPath:,},}
2022/10/12 15:41:16 Updating the DevUsageMap since the bind is successful!
2022/10/12 15:41:16 Return aws.amazon.com/neuroncore
2022/10/12 15:41:16 neuronDevUsageMap for resource:aws.amazon.com/
→˓neuroncore in node: ip-192-168-2-25.ec2.internal is [false false false␣
→˓false false false false false false false false false false false false␣
→˓false]
2022/10/12 15:41:16 neuronDevUsageMap for resource:aws.amazon.com/
→˓neurondevice in node: ip-192-168-2-25.ec2.internal is [false false false␣
→˓false]
2022/10/12 15:41:16 Allocated devices list 0,1,2,3,4,5,6,7,8 for resource␣
→˓aws.amazon.com/neuroncore
2022/10/12 15:41:16 Allocated devices list [0] for other resource aws.
→˓amazon.com/neurondevice
2022/10/12 15:41:16 Allocated devices list [0] for other resource aws.
→˓amazon.com/neurondevice
2022/10/12 15:41:16 Allocated devices list [0] for other resource aws.
→˓amazon.com/neurondevice
2022/10/12 15:41:16 Allocated devices list [0] for other resource aws.
→˓amazon.com/neurondevice
2022/10/12 15:41:16 Allocated devices list [1] for other resource aws.
→˓amazon.com/neurondevice
2022/10/12 15:41:16 Allocated devices list [1] for other resource aws.
→˓amazon.com/neurondevice
2022/10/12 15:41:16 Allocated devices list [1] for other resource aws.
→˓amazon.com/neurondevice
2022/10/12 15:41:16 Allocated devices list [1] for other resource aws.
→˓amazon.com/neurondevice
2022/10/12 15:41:16 Allocated devices list [2] for other resource aws.
→˓amazon.com/neurondevice
2022/10/12 15:41:16 Return aws.amazon.com/neuroncore
2022/10/12 15:41:16 Succesfully updated the DevUsageMap [true true true␣
→˓true true true true true true false false false false false false false]␣
→˓ and otherDevUsageMap [true true true false] after alloc for node ip-192-
→˓168-2-25.ec2.internal
2022/10/12 15:41:16 Finished executing Bind Request...

20.6. Containers - FAQ, Troubleshooting & ReleaseNotes 941

AWS Neuron

Default Scheduler Approach

• Make sure Neuron device plugin is running

• Download the scheduler config map k8s-neuron-scheduler-configmap.yml

• Download the scheduler extension k8s-neuron-scheduler.yml

• Enable the kube-scheduler with option to use configMap for scheduler policy. In your cluster.yml Please update
the spec section with the following

spec:
kubeScheduler:
usePolicyConfigMap: true

• Launch the cluster

kops create -f cluster.yml
kops create secret --name neuron-test-1.k8s.local sshpublickey admin -i ~/.
→˓ssh/id_rsa.pub
kops update cluster --name neuron-test-1.k8s.local --yes

• Apply the k8s-neuron-scheduler-configmap.yml [Registers neuron-scheduler-extension with kube-scheduler]

kubectl apply -f k8s-neuron-scheduler-configmap.yml

• Launch the neuron-scheduler-extension

kubectl apply -f k8s-neuron-scheduler.yml

Tutorials

Training

• Run training in Pytorch Neuron container

• Deploy a simple mlp training script as a Kubernetes job

Inference

• Run inference in pytorch neuron container

• Deploy a TensorFlow Resnet50 model as a Kubernetes service

Developer Flows

Inference

• Deploy Neuron Container on EC2

• Deploy Neuron Container on Elastic Container Service (ECS)

• Deploy Neuron Container on Elastic Kubernetes Service (EKS)

• Bring Your Own Neuron Container to Sagemaker Hosting (inf1)

• Customize Neuron DLC

942 Chapter 20. Deploy Containers with Neuron

AWS Neuron

FAQ, Troubleshooting and Release Note

• Neuron Containers FAQ

• Troubleshooting Neuron Containers

• Neuron Containers Release Notes

• Neuron K8 Release Notes

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

20.6. Containers - FAQ, Troubleshooting & ReleaseNotes 943

AWS Neuron

944 Chapter 20. Deploy Containers with Neuron

CHAPTER

TWENTYONE

DEVELOPER FLOWS

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

21.1 AWS EC2

This document is relevant for: Inf1

21.1.1 EC2 Flows - Inference

This document is relevant for: Inf1

Compile with Framework API and Deploy on EC2 Inf1

Table of Contents

• Description

• Setup Environment

– 1. Launch an Inf1 Instance

– 2. Set up a development environment

∗ Enable PyTorch-Neuron

∗ Enable TensorFlow-Neuron

∗ Enable Apache MXNet

– 3. Set up Jupyter notebook

945

AWS Neuron

Description

You can use a single inf1 instance as a development environment to compile and deploy Neuron models. In this
developer flow, you provision an EC2 inf1 instance using a Deep Learming AMI (DLAMI) and execute the two steps
of the development flow in the same instance. The DLAMI comes pre-packaged with the Neuron frameworks, compiler,
and required runtimes to complete the flow. Development happens through Jupyter Notebooks or using a secure shell
(ssh) connection in terminal. Follow the steps bellow to setup your environment.

Note: Model compilation can be executed on a non-inf1 instance for later deployment. Follow the same EC2
Developer Flow Setup using other instance families and leverage Amazon Simple Storage Service (S3) to share the
compiled models between different instances.

Setup Environment

1. Launch an Inf1 Instance

• Please follow the instructions at launch an Amazon EC2 Instance to Launch an Inf1 instance, when
choosing the instance type at the EC2 console. Please make sure to select the correct instance type.
To get more information about Inf1 instances sizes and pricing see Inf1 web page.

• When choosing an Amazon Machine Image (AMI) make sure to select Deep Learning AMI with
Conda Options. Please note that Neuron Conda environments are supported only in Ubuntu 18
DLAMI and Amazon Linux2 DLAMI, Neuron Conda environments are not supported in Amazon
Linux DLAMI.

• After launching the instance, follow the instructions in Connect to your instance to connect to the
instance

Note: You can also launch the instance from AWS CLI, please see AWS CLI commands to launch inf1
instances.

946 Chapter 21. Developer Flows

https://docs.aws.amazon.com/AmazonS3/latest/userguide/upload-objects.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-launch-instance
https://aws.amazon.com/ec2/instance-types/inf1/
https://docs.aws.amazon.com/dlami/latest/devguide/conda.html
https://docs.aws.amazon.com/dlami/latest/devguide/conda.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-connect-to-instance-linux

AWS Neuron

2. Set up a development environment

Enable PyTorch-Neuron

Important:
For successful installation or update to next releases (Neuron 1.20.0 and newer):

• Uninstall aws-neuron-dkms by running: sudo apt remove aws-neuron-dkms or sudo yum
remove aws-neuron-dkms

• Install or upgrade to latest Neuron driver (aws-neuron-dkms) by following the “Setup Guide” instruc-
tions.

PyTorch 1.9.1

Ubuntu DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

Neuron is pre-installed on Deep Learning AMI (DLAMI), latest DLAMI version may not␣
→˓include latest Neuron versions
To update to latest Neuron version, follow "Update to latest release" instruction on␣
→˓Neuron documentation

###
→˓#######################
To install or update to Neuron versions 1.19.1 and newer from previous releases:
- DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade␣
→˓to latest Neuron driver
###
→˓#######################

Install OS headers
sudo apt-get install linux-headers-$(uname -r) -y

Install Neuron Driver
sudo apt-get install aws-neuronx-dkms --allow-change-held-packages -y

##
Warning: If Linux kernel is updated as a result of OS package update
Neuron driver (aws-neuron-dkms) should be re-installed after reboot
##

Activate PyTorch
source activate

21.1. AWS EC2 947

AWS Neuron

Amazon Linux DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

Neuron is pre-installed on Deep Learning AMI (DLAMI), latest DLAMI version may not␣
→˓include latest Neuron versions
To update to latest Neuron version, follow "Update to latest release" instruction on␣
→˓Neuron documentation

###
→˓#######################
To install or update to Neuron versions 1.19.1 and newer from previous releases:
- DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade␣
→˓to latest Neuron driver
###
→˓#######################

Install OS headers
sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r) -y

Install Neuron Driver
sudo yum versionlock delete aws-neuronx-dkms
sudo yum install aws-neuronx-dkms -y

##
Warning: If Linux kernel is updated as a result of OS package update
Neuron driver (aws-neuron-dkms) should be re-installed after reboot
##

Activate PyTorch
source activate

PyTorch 1.8.1

Ubuntu DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

Neuron is pre-installed on Deep Learning AMI (DLAMI), latest DLAMI version may not␣
→˓include latest Neuron versions
To update to latest Neuron version, follow "Update to latest release" instruction on␣
→˓Neuron documentation

###
→˓#######################

(continues on next page)

948 Chapter 21. Developer Flows

AWS Neuron

(continued from previous page)

To install or update to Neuron versions 1.19.1 and newer from previous releases:
- DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade␣
→˓to latest Neuron driver
###
→˓#######################

Install OS headers
sudo apt-get install linux-headers-$(uname -r) -y

Install Neuron Driver
sudo apt-get install aws-neuronx-dkms --allow-change-held-packages -y

##
Warning: If Linux kernel is updated as a result of OS package update
Neuron driver (aws-neuron-dkms) should be re-installed after reboot
##

Activate PyTorch
source activate aws_neuron_pytorch_p36

Amazon Linux DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

Neuron is pre-installed on Deep Learning AMI (DLAMI), latest DLAMI version may not␣
→˓include latest Neuron versions
To update to latest Neuron version, follow "Update to latest release" instruction on␣
→˓Neuron documentation

###
→˓#######################
To install or update to Neuron versions 1.19.1 and newer from previous releases:
- DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade␣
→˓to latest Neuron driver
###
→˓#######################

Install OS headers
sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r) -y

Install Neuron Driver
sudo yum versionlock delete aws-neuronx-dkms
sudo yum install aws-neuronx-dkms -y

##
Warning: If Linux kernel is updated as a result of OS package update
Neuron driver (aws-neuron-dkms) should be re-installed after reboot

(continues on next page)

21.1. AWS EC2 949

AWS Neuron

(continued from previous page)

##

Activate PyTorch
source activate aws_neuron_pytorch_p36

Enable TensorFlow-Neuron

Important:
For successful installation or update to next releases (Neuron 1.20.0 and newer):

• Uninstall aws-neuron-dkms by running: sudo apt remove aws-neuron-dkms or sudo yum
remove aws-neuron-dkms

• Install or upgrade to latest Neuron driver (aws-neuron-dkms) by following the “Setup Guide” instruc-
tions.

TensorFlow 2.5.1

Ubuntu DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

Traceback (most recent call last):
File "src/helperscripts/neuronsetuphelper.py", line 1001, in <module>
setup_cmd += nr_setup.instructions(framework=framework,action=action,framework_

→˓version=args.framework_version,os=args.os,ami=args.ami,mode=args.mode)
File "src/helperscripts/neuronsetuphelper.py", line 977, in instructions
setup_cmd=hlpr_instructions(self,self.neuron_version)

File "src/helperscripts/neuronsetuphelper.py", line 787, in hlpr_instructions
fal_supported_rtd=nr_setup.fal_supported_runtime[fw][fw_ver]['neuron-rtd']

KeyError: '2.10.1'

Amazon Linux DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

Traceback (most recent call last):
File "src/helperscripts/neuronsetuphelper.py", line 1001, in <module>
setup_cmd += nr_setup.instructions(framework=framework,action=action,framework_

→˓version=args.framework_version,os=args.os,ami=args.ami,mode=args.mode)
(continues on next page)

950 Chapter 21. Developer Flows

AWS Neuron

(continued from previous page)

File "src/helperscripts/neuronsetuphelper.py", line 977, in instructions
setup_cmd=hlpr_instructions(self,self.neuron_version)

File "src/helperscripts/neuronsetuphelper.py", line 787, in hlpr_instructions
fal_supported_rtd=nr_setup.fal_supported_runtime[fw][fw_ver]['neuron-rtd']

KeyError: '2.10.1'

TensorFlow 1.15.5

Ubuntu DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

Neuron is pre-installed on Deep Learning AMI (DLAMI), latest DLAMI version may not␣
→˓include latest Neuron versions
To update to latest Neuron version, follow "Update to latest release" instruction on␣
→˓Neuron documentation

###
→˓#######################
To install or update to Neuron versions 1.19.1 and newer from previous releases:
- DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade␣
→˓to latest Neuron driver
###
→˓#######################

Install OS headers
sudo apt-get install linux-headers-$(uname -r) -y

Install Neuron Driver
sudo apt-get install aws-neuronx-dkms --allow-change-held-packages -y

##
Warning: If Linux kernel is updated as a result of OS package update
Neuron driver (aws-neuron-dkms) should be re-installed after reboot
##

Activate TensorFlow
source activate aws_neuron_tensorflow_p36

21.1. AWS EC2 951

AWS Neuron

Amazon Linux DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

Neuron is pre-installed on Deep Learning AMI (DLAMI), latest DLAMI version may not␣
→˓include latest Neuron versions
To update to latest Neuron version, follow "Update to latest release" instruction on␣
→˓Neuron documentation

###
→˓#######################
To install or update to Neuron versions 1.19.1 and newer from previous releases:
- DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade␣
→˓to latest Neuron driver
###
→˓#######################

Install OS headers
sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r) -y

Install Neuron Driver
sudo yum versionlock delete aws-neuronx-dkms
sudo yum install aws-neuronx-dkms -y

##
Warning: If Linux kernel is updated as a result of OS package update
Neuron driver (aws-neuron-dkms) should be re-installed after reboot
##

Activate TensorFlow
source activate aws_neuron_tensorflow_p36

Enable Apache MXNet

Important:
For successful installation or update to next releases (Neuron 1.20.0 and newer):

• Uninstall aws-neuron-dkms by running: sudo apt remove aws-neuron-dkms or sudo yum
remove aws-neuron-dkms

• Install or upgrade to latest Neuron driver (aws-neuron-dkms) by following the “Setup Guide” instruc-
tions.

952 Chapter 21. Developer Flows

AWS Neuron

MXNet 1.8.0

Ubuntu DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

Note: There is no DLAMI Conda environment for this framework version
Framework will be installed/updated inside a Python environment

Update OS packages
sudo apt-get update -y

###
→˓#######################
To install or update to Neuron versions 1.19.1 and newer from previous releases:
- DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade␣
→˓to latest Neuron driver
###
→˓#######################

Install OS headers
sudo apt-get install linux-headers-$(uname -r) -y

Install Neuron Driver
sudo apt-get install aws-neuronx-dkms --allow-change-held-packages -y

##
Warning: If Linux kernel is updated as a result of OS package update
Neuron driver (aws-neuron-dkms) should be re-installed after reboot
##

Install Neuron Tools
sudo apt-get install aws-neuronx-tools -y

export PATH=/opt/aws/neuron/bin:$PATH

Activate MXNet
source activate aws_neuron_mxnet_p36

Set Pip repository to point to the Neuron repository
pip config set global.extra-index-url https://pip.repos.neuron.amazonaws.com

#Install Neuron MXNet
wget https://aws-mx-pypi.s3.us-west-2.amazonaws.com/1.8.0/aws_mx-1.8.0.2-py2.py3-none-
→˓manylinux2014_x86_64.whl
pip install aws_mx-1.8.0.2-py2.py3-none-manylinux2014_x86_64.whl
pip install mx_neuron neuron-cc

21.1. AWS EC2 953

AWS Neuron

Amazon Linux DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

Note: There is no DLAMI Conda environment for this framework version
Framework will be installed/updated inside a Python environment

Update OS packages
sudo yum update -y

###
→˓#######################
To install or update to Neuron versions 1.19.1 and newer from previous releases:
- DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade␣
→˓to latest Neuron driver
###
→˓#######################

Install OS headers
sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r) -y

Install Neuron Driver
sudo yum versionlock delete aws-neuronx-dkms
sudo yum install aws-neuronx-dkms -y

##
Warning: If Linux kernel is updated as a result of OS package update
Neuron driver (aws-neuron-dkms) should be re-installed after reboot
##

Install Neuron Tools
sudo yum install aws-neuronx-tools -y

export PATH=/opt/aws/neuron/bin:$PATH

Activate MXNet
source activate aws_neuron_mxnet_p36

Set Pip repository to point to the Neuron repository
pip config set global.extra-index-url https://pip.repos.neuron.amazonaws.com

#Install Neuron MXNet
wget https://aws-mx-pypi.s3.us-west-2.amazonaws.com/1.8.0/aws_mx-1.8.0.2-py2.py3-none-
→˓manylinux2014_x86_64.whl
pip install aws_mx-1.8.0.2-py2.py3-none-manylinux2014_x86_64.whl
pip install mx_neuron neuron-cc

954 Chapter 21. Developer Flows

AWS Neuron

MXNet 1.5.1

Ubuntu DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

Neuron is pre-installed on Deep Learning AMI (DLAMI), latest DLAMI version may not␣
→˓include latest Neuron versions
To update to latest Neuron version, follow "Update to latest release" instruction on␣
→˓Neuron documentation

###
→˓#######################
To install or update to Neuron versions 1.19.1 and newer from previous releases:
- DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade␣
→˓to latest Neuron driver
###
→˓#######################

Install OS headers
sudo apt-get install linux-headers-$(uname -r) -y

Install Neuron Driver
sudo apt-get install aws-neuronx-dkms --allow-change-held-packages -y

##
Warning: If Linux kernel is updated as a result of OS package update
Neuron driver (aws-neuron-dkms) should be re-installed after reboot
##

Activate MXNet
source activate aws_neuron_mxnet_p36

Amazon Linux DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

Neuron is pre-installed on Deep Learning AMI (DLAMI), latest DLAMI version may not␣
→˓include latest Neuron versions
To update to latest Neuron version, follow "Update to latest release" instruction on␣
→˓Neuron documentation

###
→˓#######################
To install or update to Neuron versions 1.19.1 and newer from previous releases:

(continues on next page)

21.1. AWS EC2 955

AWS Neuron

(continued from previous page)

- DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade␣
→˓to latest Neuron driver
###
→˓#######################

Install OS headers
sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r) -y

Install Neuron Driver
sudo yum versionlock delete aws-neuronx-dkms
sudo yum install aws-neuronx-dkms -y

##
Warning: If Linux kernel is updated as a result of OS package update
Neuron driver (aws-neuron-dkms) should be re-installed after reboot
##

Activate MXNet
source activate aws_neuron_mxnet_p36

3. Set up Jupyter notebook

To develop from a Jupyter notebook see setup-jupyter-notebook-steps-troubleshooting

You can also run a Jupyter notebook as a script, first enable the ML framework Conda or Python environment of your
choice and see running-jupyter-notebook-as-script for instructions.

This document is relevant for: Inf1

This document is relevant for: Inf1

Compile with Framework API and Deploy on EC2 Inf2

Table of Contents

• Description

• Setup Environment

– 1. Launch an Inf2 Instance

– 2. Set up a development environment

∗ Enable PyTorch-Neuron

– 3. Set up Jupyter notebook

956 Chapter 21. Developer Flows

AWS Neuron

Description

You can use a single inf2 instance as a development environment to compile and deploy Neuron models. In this
developer flow, you provision an EC2 inf2 instance using a Deep Learning AMI (DLAMI) and execute the two steps of
the development flow in the same instance. The DLAMI comes pre-packaged with the Neuron frameworks, compiler,
and required runtimes to complete the flow. Development happens through Jupyter Notebooks or using a secure shell
(ssh) connection in terminal. Follow the steps below to setup your environment.

Note: Model compilation can be executed on a non-inf2 instance for later deployment. Follow the same EC2
Developer Flow Setup using other instance families and leverage Amazon Simple Storage Service (S3) to share the
compiled models between different instances.

Setup Environment

1. Launch an Inf2 Instance

• Please follow the instructions at launch an Amazon EC2 Instance to launch an Inf2 instance, when
choosing the instance type at the EC2 console. Please make sure to select the correct instance type.
To get more information about Inf2 instances sizes and pricing see Inf2 web page.

• When choosing an Amazon Machine Image (AMI) make sure to select Deep Learning AMI with
Conda Options. Please note that Neuron Conda environments are supported only in Ubuntu 18
DLAMI and Amazon Linux2 DLAMI, Neuron Conda environments are not supported in Amazon
Linux DLAMI.

• After launching the instance, follow the instructions in Connect to your instance to connect to the
instance

Note: You can also launch the instance from AWS CLI, please see AWS CLI commands to launch inf2
instances.

21.1. AWS EC2 957

https://docs.aws.amazon.com/AmazonS3/latest/userguide/upload-objects.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-launch-instance
https://aws.amazon.com/ec2/instance-types/inf2/
https://docs.aws.amazon.com/dlami/latest/devguide/conda.html
https://docs.aws.amazon.com/dlami/latest/devguide/conda.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-connect-to-instance-linux

AWS Neuron

2. Set up a development environment

Enable PyTorch-Neuron

Important:
For successful installation or update to next releases (Neuron 1.20.0 and newer):

• Uninstall aws-neuron-dkms by running: sudo apt remove aws-neuron-dkms or sudo yum
remove aws-neuron-dkms

• Install or upgrade to latest Neuron driver (aws-neuron-dkms) by following the “Setup Guide” instruc-
tions.

PyTorch 1.9.1

Ubuntu DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

Neuron is pre-installed on Deep Learning AMI (DLAMI), latest DLAMI version may not␣
→˓include latest Neuron versions
To update to latest Neuron version, follow "Update to latest release" instruction on␣
→˓Neuron documentation

###
→˓#######################
To install or update to Neuron versions 1.19.1 and newer from previous releases:
- DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade␣
→˓to latest Neuron driver
###
→˓#######################

Install OS headers
sudo apt-get install linux-headers-$(uname -r) -y

Install Neuron Driver
sudo apt-get install aws-neuronx-dkms --allow-change-held-packages -y

##
Warning: If Linux kernel is updated as a result of OS package update
Neuron driver (aws-neuron-dkms) should be re-installed after reboot
##

Activate PyTorch
source activate

958 Chapter 21. Developer Flows

AWS Neuron

Amazon Linux DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

Neuron is pre-installed on Deep Learning AMI (DLAMI), latest DLAMI version may not␣
→˓include latest Neuron versions
To update to latest Neuron version, follow "Update to latest release" instruction on␣
→˓Neuron documentation

###
→˓#######################
To install or update to Neuron versions 1.19.1 and newer from previous releases:
- DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade␣
→˓to latest Neuron driver
###
→˓#######################

Install OS headers
sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r) -y

Install Neuron Driver
sudo yum versionlock delete aws-neuronx-dkms
sudo yum install aws-neuronx-dkms -y

##
Warning: If Linux kernel is updated as a result of OS package update
Neuron driver (aws-neuron-dkms) should be re-installed after reboot
##

Activate PyTorch
source activate

PyTorch 1.8.1

Ubuntu DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

Neuron is pre-installed on Deep Learning AMI (DLAMI), latest DLAMI version may not␣
→˓include latest Neuron versions
To update to latest Neuron version, follow "Update to latest release" instruction on␣
→˓Neuron documentation

###
→˓#######################

(continues on next page)

21.1. AWS EC2 959

AWS Neuron

(continued from previous page)

To install or update to Neuron versions 1.19.1 and newer from previous releases:
- DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade␣
→˓to latest Neuron driver
###
→˓#######################

Install OS headers
sudo apt-get install linux-headers-$(uname -r) -y

Install Neuron Driver
sudo apt-get install aws-neuronx-dkms --allow-change-held-packages -y

##
Warning: If Linux kernel is updated as a result of OS package update
Neuron driver (aws-neuron-dkms) should be re-installed after reboot
##

Activate PyTorch
source activate aws_neuron_pytorch_p36

Amazon Linux DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

Neuron is pre-installed on Deep Learning AMI (DLAMI), latest DLAMI version may not␣
→˓include latest Neuron versions
To update to latest Neuron version, follow "Update to latest release" instruction on␣
→˓Neuron documentation

###
→˓#######################
To install or update to Neuron versions 1.19.1 and newer from previous releases:
- DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade␣
→˓to latest Neuron driver
###
→˓#######################

Install OS headers
sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r) -y

Install Neuron Driver
sudo yum versionlock delete aws-neuronx-dkms
sudo yum install aws-neuronx-dkms -y

##
Warning: If Linux kernel is updated as a result of OS package update
Neuron driver (aws-neuron-dkms) should be re-installed after reboot

(continues on next page)

960 Chapter 21. Developer Flows

AWS Neuron

(continued from previous page)

##

Activate PyTorch
source activate aws_neuron_pytorch_p36

3. Set up Jupyter notebook

To develop from a Jupyter notebook see setup-jupyter-notebook-steps-troubleshooting

You can also run a Jupyter notebook as a script, first enable the ML framework Conda or Python environment of your
choice and see running-jupyter-notebook-as-script for instructions.

This document is relevant for: Inf1

• Compile with Framework API and Deploy on EC2 Inf1

• Compile with Framework API and Deploy on EC2 Inf2

This document is relevant for: Inf1

This document is relevant for: Trn1, Trn1n

21.1.2 EC2 Flows- Training

This document is relevant for: Inf2, Trn1, Trn1n

Train your model on EC2

Table of Contents

• Description

• Setup Environment

– 1. Launch an Trn1 Instance

– 2. Set up a development environment

∗ Enable PyTorch-Neuron

– 3. Set up Jupyter notebook

21.1. AWS EC2 961

AWS Neuron

Description

You can use a single Trn1 instance as a development environment to compile and train Neuron models. In this developer
flow, you provision an EC2 Trn1 instance using a Deep Learming AMI (DLAMI) and execute the two steps of the
development flow in the same instance. The DLAMI comes pre-packaged with the Neuron frameworks, compiler, and
required runtimes to complete the flow. Development happens through Jupyter Notebooks or using a secure shell (ssh)
connection in terminal. Follow the steps bellow to setup your environment.

Setup Environment

1. Launch an Trn1 Instance

• Please follow the instructions at launch an Amazon EC2 Instance to Launch an Trn1 instance, when
choosing the instance type at the EC2 console. Please make sure to select the correct instance type.
To get more information about Trn1 instances sizes and pricing see Trn1 web page.

• Select your Amazon Machine Image (AMI) of choice, please note that Neuron support Ubuntu 18
AMI or Amazon Linux 2 AMI, you can also choose Ubuntu 18 or Amazon Linux 2 Deep Learning
AMI (DLAMI)

• When launching a Trn1, please adjust your primary EBS volume size to a minimum of 512GB.

• After launching the instance, follow the instructions in Connect to your instance to connect to the
instance

Note: If you are facing a connectivity issue during the model loading process on a Trn1 instance with
Ubuntu, that could probably be because of Ubuntu limitations with multiple interfaces. To solve this
problem, please follow the steps mentioned here.

Users are highly encouraged to use DLAMI to launch the instances, since DLAMIs come with the required
fix.

962 Chapter 21. Developer Flows

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-launch-instance
https://aws.amazon.com/ec2/instance-types/trn1/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-connect-to-instance-linux

AWS Neuron

2. Set up a development environment

Enable PyTorch-Neuron

PyTorch 1.11.0

Ubuntu 20 AMI

Note:
• Instructions in this page only apply to setting up Neuron components on Linux host running Ubuntu

or Amazon Linux AMI.

• When launching a Trn1, please adjust your primary EBS volume size to a minimum of 512GB.

Configure Linux for Neuron repository updates
. /etc/os-release

sudo tee /etc/apt/sources.list.d/neuron.list > /dev/null <<EOF
deb https://apt.repos.neuron.amazonaws.com ${VERSION_CODENAME} main
EOF
wget -qO - https://apt.repos.neuron.amazonaws.com/GPG-PUB-KEY-AMAZON-AWS-
→˓NEURON.PUB | sudo apt-key add -

Update OS packages
sudo apt-get update -y

Install git
sudo apt-get install git -y

Install OS headers
sudo apt-get install linux-headers-$(uname -r) -y

Remove preinstalled packages and Install Neuron Driver and Runtime
sudo apt-get remove aws-neuron-dkms -y
sudo apt-get remove aws-neuronx-dkms -y
sudo apt-get remove aws-neuronx-oci-hook -y
sudo apt-get remove aws-neuronx-runtime-lib -y
sudo apt-get remove aws-neuronx-collectives -y
sudo apt-get install aws-neuronx-dkms=2.* -y
sudo apt-get install aws-neuronx-oci-hook=2.* -y
sudo apt-get install aws-neuronx-runtime-lib=2.* -y
sudo apt-get install aws-neuronx-collectives=2.* -y

Install EFA Driver(only required for multi-instance training)

curl -O https://efa-installer.amazonaws.com/aws-efa-installer-latest.tar.gz
wget https://efa-installer.amazonaws.com/aws-efa-installer.key && gpg --import␣
→˓aws-efa-installer.key
cat aws-efa-installer.key | gpg --fingerprint
wget https://efa-installer.amazonaws.com/aws-efa-installer-latest.tar.gz.sig &&
→˓ gpg --verify ./aws-efa-installer-latest.tar.gz.sig (continues on next page)

21.1. AWS EC2 963

AWS Neuron

(continued from previous page)

tar -xvf aws-efa-installer-latest.tar.gz
cd aws-efa-installer && sudo bash efa_installer.sh --yes
cd
sudo rm -rf aws-efa-installer-latest.tar.gz aws-efa-installer

Remove pre-installed package and Install Neuron Tools
sudo apt-get remove aws-neuron-tools -y
sudo apt-get remove aws-neuronx-tools -y
sudo apt-get install aws-neuronx-tools=2.* -y

export PATH=/opt/aws/neuron/bin:$PATH

Install Python venv and activate Python virtual environment to install
Neuron pip packages.
sudo apt install python3.8-venv
python3.8 -m venv aws_neuron_venv_pytorch
source aws_neuron_venv_pytorch/bin/activate
pip install -U pip

Install wget, awscli
pip install wget
pip install awscli

Install packages from repos
python -m pip config set global.extra-index-url "https://pip.repos.neuron.
→˓amazonaws.com"

Install Python packages - Transformers package is needed for BERT
python -m pip install torch-neuronx=="1.11.0.1.*" "neuronx-cc==2.*"

Amazon Linux 2 AMI

Note:
• Instructions in this page only apply to setting up Neuron components on Linux host running Ubuntu

or Amazon Linux AMI.

• When launching a Trn1, please adjust your primary EBS volume size to a minimum of 512GB.

Configure Linux for Neuron repository updates

sudo tee /etc/yum.repos.d/neuron.repo > /dev/null <<EOF
[neuron]
name=Neuron YUM Repository
baseurl=https://yum.repos.neuron.amazonaws.com
enabled=1
metadata_expire=0
EOF
sudo rpm --import https://yum.repos.neuron.amazonaws.com/GPG-PUB-KEY-AMAZON-
→˓AWS-NEURON.PUB (continues on next page)

964 Chapter 21. Developer Flows

AWS Neuron

(continued from previous page)

Install OS headers
sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r) -y

Update OS packages
sudo yum update -y

Install git
sudo yum install git -y

Remove preinstalled packages and Install Neuron Driver and Runtime
sudo yum remove aws-neuron-dkms -y
sudo yum remove aws-neuronx-dkms -y
sudo yum remove aws-neuronx-oci-hook -y
sudo yum remove aws-neuronx-runtime-lib -y
sudo yum remove aws-neuronx-collectives -y
sudo yum install aws-neuronx-dkms-2.* -y
sudo yum install aws-neuronx-oci-hook-2.* -y
sudo yum install aws-neuronx-runtime-lib-2.* -y
sudo yum install aws-neuronx-collectives-2.* -y

Install EFA Driver(only required for multi-instance training)
curl -O https://efa-installer.amazonaws.com/aws-efa-installer-latest.tar.gz
wget https://efa-installer.amazonaws.com/aws-efa-installer.key && gpg --import␣
→˓aws-efa-installer.key
cat aws-efa-installer.key | gpg --fingerprint
wget https://efa-installer.amazonaws.com/aws-efa-installer-latest.tar.gz.sig &&
→˓ gpg --verify ./aws-efa-installer-latest.tar.gz.sig
tar -xvf aws-efa-installer-latest.tar.gz
cd aws-efa-installer && sudo bash efa_installer.sh --yes
cd
sudo rm -rf aws-efa-installer-latest.tar.gz aws-efa-installer

Remove pre-installed package and Install Neuron Tools
sudo yum remove aws-neuron-tools -y
sudo yum remove aws-neuronx-tools -y
sudo yum install aws-neuronx-tools-2.* -y

export PATH=/opt/aws/neuron/bin:$PATH

Install Python venv and activate Python virtual environment to install
Neuron pip packages.
python3.7 -m venv aws_neuron_venv_pytorch
source aws_neuron_venv_pytorch/bin/activate
python -m pip install -U pip

Install wget, awscli
pip install wget
pip install awscli

Install packages from repos
python -m pip config set global.extra-index-url "https://pip.repos.neuron.
→˓amazonaws.com" (continues on next page)

21.1. AWS EC2 965

AWS Neuron

(continued from previous page)

Install Python packages - Transformers package is needed for BERT
python -m pip install torch-neuronx=="1.11.0.1.*" "neuronx-cc==2.*"

3. Set up Jupyter notebook

To develop from a Jupyter notebook see setup-jupyter-notebook-steps-troubleshooting

You can also run a Jupyter notebook as a script, first enable the ML framework Conda or Python environment of your
choice and see running-jupyter-notebook-as-script for instructions.

This document is relevant for: Inf2, Trn1, Trn1n

• Train your model on EC2

This document is relevant for: Trn1, Trn1n

Inference

• Compile with Framework API and Deploy on EC2 Inf1

• Compile with Framework API and Deploy on EC2 Inf2

Training

• Train your model on EC2

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

21.2 Amazon EKS

This document is relevant for: Inf1

21.2.1 EKS Flows - Inference

This document is relevant for: Inf1

Deploy Neuron Container on Elastic Kubernetes Service (EKS)

Table of Contents

• Description

• Setup Environment

– Self-managed Kubernetes

966 Chapter 21. Developer Flows

AWS Neuron

Description

You can use the Neuron version of the AWS Deep Learning Containers to run inference on Amazon Elastic Kubernetes
Service (EKS). In this developer flow, you set up an EKS cluster with Inf1 instances, create a Kubernetes manifest for
your inference service and deploy it to your cluster. This developer flow assumes:

1. The model has already been compiled through Compilation with Framework API on EC2 instance or through
Compilation with Sagemaker Neo.

2. You already set up your container to retrieve it from storage.

Setup Environment

1. Install pre-requisits: Follow these instruction to install or upgrade the eksctl command line utility on your local
computer.

Follow these instruction to install kubectl in the same computer. kubectl is a command line tool for working
with Kubernetes clusters.

2. Follow the instructions in this EKS documentation link to set up AWS Inferentia on your EKS cluster. Using the
YML deployment manifest shown in the same link, replace the image in the containers specification with the
one you built using how-to-build-neuron-container above.

Note: Before deploying your task definition to your EKS cluster, make sure to push the image to ECR. Refer to
Pushing a Docker image for more information.

21.2. Amazon EKS 967

https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-ecs-tutorials-inference.html
https://docs.aws.amazon.com/eks/latest/userguide/eksctl.html
https://docs.aws.amazon.com/eks/latest/userguide/install-kubectl.html
https://docs.aws.amazon.com/eks/latest/userguide/inferentia-support.html
https://docs.aws.amazon.com/eks/latest/userguide/inferentia-support.html#deploy-tensorflow-serving-application
https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-ecr-image.html

AWS Neuron

Self-managed Kubernetes

Please refer to tutorial-k8s-env-setup-for-neuron. In Deploy a TensorFlow Resnet50 model as a Kubernetes service,
the container image referenced in the YML manifest is created using how-to-build-neuron-container.

This document is relevant for: Inf1

• Deploy Neuron Container on Elastic Kubernetes Service (EKS)

This document is relevant for: Inf1

This document is relevant for: Trn1, Trn1n

21.2.2 EKS Flows - Training

Note: Amazon EKS support is coming soon.

This document is relevant for: Trn1, Trn1n

Inference

• Deploy Neuron Container on Elastic Kubernetes Service (EKS)

Training

Note: Amazon EKS support is coming soon.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

21.3 AWS ECS

This document is relevant for: Inf1

21.3.1 ECS FLOWS - Inference

This document is relevant for: Inf1

968 Chapter 21. Developer Flows

AWS Neuron

Deploy Neuron Container on Elastic Container Service (ECS)

Table of Contents

• Description

• Setup Environment

Description

You can use the Neuron version of the AWS Deep Learning Containers to run inference on Amazon Elastic Container
Service (ECS). In this developer flow, you set up an ECS cluster with inf1 instances, create a task description for your
inference service and deploy it to your cluster. This developer flow assumes:

1. The model has already been compiled through Compilation with Framework API on EC2 instance or through
Compilation with Sagemaker Neo.

2. You already set up your container to retrieve it from storage.

Setup Environment

1. Set up an Amazon ECS cluster: Follow the instructions on Setting up Amazon ECS for Deep Learning Con-
tainers

2. Define an Inference Task: Use the instruction on the DLC Inference on ECS Tutorial to define a task and create
a service for the appropriate framework.

When creating tasks for inf1 instances on ECS, be aware of the considerations and requirements listed in
Working with inference workloads on Amazon ECS.

3. Use the container image created using how-to-build-neuron-container as the image in your task definition.

Note: Before deploying your task definition to your ECS cluster, make sure to push the image to ECR. Refer to
Pushing a Docker image for more information.

This document is relevant for: Inf1

• Deploy Neuron Container on Elastic Container Service (ECS)

21.3. AWS ECS 969

https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-ecs-tutorials-inference.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-ecs-setting-up-ecs.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-ecs-setting-up-ecs.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-ecs-tutorials-inference.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-inference.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-ecr-image.html

AWS Neuron

This document is relevant for: Inf1

This document is relevant for: Trn1, Trn1n

21.3.2 ECS Flows- Training

Note: Amazon ECS supports Trn1.

An example of how to train a model with Neuron using ECS is coming soon.

This document is relevant for: Trn1, Trn1n

Inference

• Deploy Neuron Container on Elastic Container Service (ECS)

Training

Note: Amazon ECS supports Trn1.

An example of how to train a model with Neuron using ECS is coming soon.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

21.4 Sagemaker

This document is relevant for: Inf1

21.4.1 Sagemaker Flows - Inference

Bring Your Own Neuron Container to Sagemaker Hosting (inf2 or trn1)

Table of Contents

• Description

• Setup Environment

970 Chapter 21. Developer Flows

AWS Neuron

Description

You can use a SageMaker Notebook or an EC2 instance to compile models and build your own containers for deploy-
ment on SageMaker Hosting using ml.inf2 instances. In this developer flow, you provision a Sagemaker Notebook or
an EC2 instance to train and compile your model to Inferentia. Then you deploy your model to SageMaker Hosting
using the SageMaker Python SDK.

You may not need to create a container to bring your own code to Amazon SageMaker. When you are using a framework
such as TensorFlow or PyTorch that has direct support in SageMaker, you can simply supply the Python code that
implements your algorithm using the SDK entry points for that framework.

Follow the steps bellow to setup your environment. Once your environment is set you’ll be able to follow the Compiling
and Deploying HuggingFace Pretrained BERT on Inf2 on Amazon SageMaker Sample.

Setup Environment

1. Create a Compilation Instance: If using an EC2 instance for compilation only you can use any instances to
compile a model. It is recommended that you start with an c5.4xlarge instance. If using an EC2 instance
for compilation and test a model you can use an Inf2 instance. Follow these steps to launch an Inf2
instance:

• Please follow the instructions at launch an Amazon EC2 Instance to launch an Inf2
instance, when choosing the instance type at the EC2 console. Please make sure to
select the correct instance type. To get more information about Inf2 instances sizes and
pricing see Inf2 web page.

• When choosing an Amazon Machine Image (AMI) make sure to select Deep Learning
AMI with Conda Options. Please note that Neuron Conda environments are supported
only in Ubuntu 18 DLAMI and Amazon Linux2 DLAMI, Neuron Conda environments
are not supported in Amazon Linux DLAMI.

• After launching the instance, follow the instructions in Connect to your instance to con-
nect to the instance

Note: You can also launch the instance from AWS CLI, please see AWS CLI commands to
launch inf2 instances.

21.4. Sagemaker 971

https://sagemaker.readthedocs.io/en/stable/index.html
https://github.com/aws-neuron/aws-neuron-sagemaker-samples/tree/master/inference/inf2-bert-on-sagemaker
https://github.com/aws-neuron/aws-neuron-sagemaker-samples/tree/master/inference/inf2-bert-on-sagemaker
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-launch-instance
https://aws.amazon.com/ec2/instance-types/inf2/
https://docs.aws.amazon.com/dlami/latest/devguide/conda.html
https://docs.aws.amazon.com/dlami/latest/devguide/conda.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-connect-to-instance-linux

AWS Neuron

If using an SageMaker Notebook for compilation, follow the instructions in Get Started with Notebook
Instances to provision the environment.

It is recommended that you start with an ml.c5.4xlarge instance for the compilation. Also, increase the
volume size of you SageMaker notebook instance, to accomodate the models and containers built locally.
A volume of 10GB is sufficient.

Note: To compile the model in the SageMaker Notebook instance, you’ll need to install the
Neuron Compiler and Neuron Framework Extensions. Follow the Compiling and Deploying
HuggingFace Pretrained BERT on Inf2 on Amazon SageMaker Sample to install the environ-
ments.

2. Set up the environment to compile a model, build your own container and deploy: To compile your model
on EC2 or SageMaker Notebook, follow the Set up a development environment section on the EC2 Setup
Environment documentation.

Refer to Adapting Your Own Inference Container documentation for information on how to bring your
own containers to SageMaker Hosting.

Make sure to add the AmazonEC2ContainerRegistryPowerUser role to your IAM role ARN, so you’re
able to build and push containers from your SageMaker Notebook instance.

Note: The container image can be created using how-to-build-neuron-container.

This document is relevant for: Inf1

Bring Your Own Neuron Container to Sagemaker Hosting (inf1)

Table of Contents

• Description

• Setup Environment

972 Chapter 21. Developer Flows

https://docs.aws.amazon.com/sagemaker/latest/dg/gs-setup-working-env.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-setup-working-env.html
https://github.com/aws-neuron/aws-neuron-sagemaker-samples/tree/master/inference/inf2-bert-on-sagemaker
https://github.com/aws-neuron/aws-neuron-sagemaker-samples/tree/master/inference/inf2-bert-on-sagemaker
https://docs.aws.amazon.com/sagemaker/latest/dg/adapt-inference-container.html

AWS Neuron

Description

You can use a SageMaker Notebook or an EC2 instance to compile models and build your own containers for deploy-
ment on SageMaker Hosting using ml.inf1 instances. In this developer flow, you provision a Sagemaker Notebook or
an EC2 instance to train and compile your model to Inferentia. Then you deploy your model to SageMaker Hosting
using the SageMaker Python SDK. Follow the steps bellow to setup your environment. Once your environment is set
you’ll be able to follow the BYOC HuggingFace pretrained BERT container to Sagemaker Tutorial .

Setup Environment

1. Create a Compilation Instance: If using an EC2 instance for compilation you can use an Inf1 instance to
compile and test a model. Follow these steps to launch an Inf1 instance:

• Please follow the instructions at launch an Amazon EC2 Instance to Launch an Inf1 instance, when
choosing the instance type at the EC2 console. Please make sure to select the correct instance type.
To get more information about Inf1 instances sizes and pricing see Inf1 web page.

• Select your Amazon Machine Image (AMI) of choice, please note that Neuron supports Ubuntu 18
AMI or Amazon Linux 2 AMI, you can also choose Ubuntu 18 or Amazon Linux 2 Deep Learning
AMI (DLAMI)

• After launching the instance, follow the instructions in Connect to your instance to connect to the
instance

If using an SageMaker Notebook for compilation, follow the instructions in Get Started with Notebook
Instances to provision the environment.

It is recommended that you start with an ml.c5.4xlarge instance for the compilation. Also, increase the
volume size of you SageMaker notebook instance, to accomodate the models and containers built locally.
A volume of 10GB is sufficient.

Note: To compile the model in the SageMaker Notebook instance, you’ll need to update
the conda environments to include the Neuron Compiler and Neuron Framework Extensions.
Follow the installation guide on the section how-to-update-to-latest-Neuron-Conda-Env to
update the environments.

21.4. Sagemaker 973

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-launch-instance
https://aws.amazon.com/ec2/instance-types/inf1/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-connect-to-instance-linux
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-setup-working-env.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-setup-working-env.html

AWS Neuron

2. Set up the environment to compile a model, build your own container and deploy: To compile your model
on EC2 or SageMaker Notebook, follow the Set up a development environment section on the EC2 Setup
Environment documentation.

Refer to Adapting Your Own Inference Container documentation for information on how to bring your
own containers to SageMaker Hosting.

Make sure to add the AmazonEC2ContainerRegistryPowerUser role to your IAM role ARN, so you’re
able to build and push containers from your SageMaker Notebook instance.

Note: The container image can be created using how-to-build-neuron-container.

This document is relevant for: Inf1

This document is relevant for: Inf1

Compile with Sagemaker Neo and Deploy on Sagemaker Hosting (inf1)

Table of Contents

• Description

• Setup Environment

Description

You can use SageMaker Neo to compile models for deployment on SageMaker Hosting using ml.inf1 instances. In
this developer flow, you provision a Sagemaker Notebook instance to train, compile and deploy your model using the
SageMaker Python SDK. Follow the steps bellow to setup your environment.

974 Chapter 21. Developer Flows

https://docs.aws.amazon.com/sagemaker/latest/dg/adapt-inference-container.html

AWS Neuron

Setup Environment

1. Create an Amazon SageMaker Notebook Instance:

Follow the instructions in Get Started with Notebook Instances

The Notebook instance created provides the required Python SDK for training, compiling and de-
ploying models with Amazon SageMaker.

2. Compile a model using the Amazon SageMaker SDK:

Refer to Supported Instances Types and Frameworks for information on the framework versions
currently supported by Amazon SageMaker Neo on AWS Inferentia.

More information about compiling and deploying models with Amazon SageMaker Neo can be
found on Use Neo to Compile a Model

This document is relevant for: Inf1

• Bring Your Own Neuron Container to Sagemaker Hosting (inf2 or trn1)

• Bring Your Own Neuron Container to Sagemaker Hosting (inf1)

• Compile with Sagemaker Neo and Deploy on Sagemaker Hosting (inf1)

• AWS Neuron Sagemaker Samples GitHub Repository

This document is relevant for: Inf1

This document is relevant for: Trn1, Trn1n

21.4.2 Sagemaker Flows- Training

This document is relevant for: Inf2, Trn1, Trn1n

Train your model on SageMaker

Table of Contents

• Description

• Setup environment

Description

SageMaker Training helps you manage cloud computing resources in Amazon EC2, data storage services such as S3,
EFS, and FSx, and security management services such as IAM and VPC. SageMaker Training provides you a complete
end-to-end experience of training classical ML and state-of-the-art DL models.

You can use SageMaker to train models using Trn1 instances (ml.trn1 instance types). In this developer flow, you
provision a SageMaker Notebook instance or SageMaker Studio to train your model using the SageMaker Python
SDK.

The Amazon SageMaker Python SDK lets you launch training jobs in just a few lines of code with ease. As shown in
the below diagram Amazon SageMaker launches Trn1 instances, copies both data and code onto the instance. It then
runs the training script to generate model artifacts. The trained model artifacts are then uploaded to S3 and finally
SageMaker will terminate the provisioned instances. In order to speed up the training process for successive runs you

21.4. Sagemaker 975

https://docs.aws.amazon.com/sagemaker/latest/dg/gs-setup-working-env.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-cloud.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-job-compilation.html
https://github.com/aws-neuron/aws-neuron-sagemaker-samples
https://sagemaker.readthedocs.io/en/stable/index.html
https://sagemaker.readthedocs.io/en/stable/index.html

AWS Neuron

can copy the Neuron Persistent Cache to S3 and then copied by future training jobs as they will leverage the cached
artifacts. (See Hugging Face fine tuning BERT base model on Amazon SageMaker Tutorial for an example on how to
reuse the compiled cache.)

Setup environment

1. Create an Amazon SageMaker Notebook Instance

Follow the instructions in Get Started with Notebook Instances or Use Amazon SageMaker Studio Notebooks.
The Notebook instance provides the required Python SDK for training models with Amazon SageMaker. Please
make sure SageMaker Python SDK version is 2.116.0 or later.

2. Train a model using the Amazon SageMaker SDK

Follow the instructions in Distributed Training with PyTorch Neuron on Trn1 instances. You’ll be able to follow
the Hugging Face fine tuning BERT base model on Amazon SageMaker Tutorial.

Note: SageMaker support for EC2 Trn1 instance is currently available only for PyTorch Estimator. HuggingFace
Estimator will be available in future release.

This document is relevant for: Inf2, Trn1, Trn1n

• Train your model on SageMaker

• AWS Neuron Sagemaker Samples GitHub Repository

This document is relevant for: Trn1, Trn1n

976 Chapter 21. Developer Flows

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/arch/neuron-features/neuron-caching.html
https://github.com/aws-neuron/aws-neuron-sagemaker-samples/tree/main/training/trn1-bert-fine-tuning-on-sagemaker
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-console.html
https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks.html
https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#distributed-training-with-pytorch-neuron-on-trn1-instances
https://github.com/aws-neuron/aws-neuron-sagemaker-samples/tree/main/training/trn1-bert-fine-tuning-on-sagemaker
https://github.com/aws-neuron/aws-neuron-sagemaker-samples

AWS Neuron

Inference

• Bring Your Own Neuron Container to Sagemaker Hosting (inf2 or trn1)

• Bring Your Own Neuron Container to Sagemaker Hosting (inf1)

• Compile with Sagemaker Neo and Deploy on Sagemaker Hosting (inf1)

• AWS Neuron Sagemaker Samples GitHub Repository

Training

• Train your model on SageMaker

• AWS Neuron Sagemaker Samples GitHub Repository

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

21.5 Parallel Cluster

This document is relevant for: Inf1

21.5.1 Parallel Cluster Flows - Inference

Note: AWS ParallelCluster support is coming soon.

This document is relevant for: Inf1

This document is relevant for: Trn1, Trn1n

21.5.2 Parallel Cluster Flows- Training

This document is relevant for: Inf2, Trn1, Trn1n

Train your model on ParallelCluster

Table of Contents

• Description

• Setup environment

21.5. Parallel Cluster 977

https://github.com/aws-neuron/aws-neuron-sagemaker-samples
https://github.com/aws-neuron/aws-neuron-sagemaker-samples

AWS Neuron

Description

This document explains how to use AWS ParallelCluster to build HPC compute environment that uses Trn1 compute
nodes to run your distributed ML training job. Once the nodes are launched, we will run a training task to confirm that
the nodes are working, and use slurm commands to check the job status. In this tutorial, we will use AWS pcluster
command to run a yaml file in order to generate the cluster. As an example, we are going to launch multiple Trn1.32xl
nodes in our cluster.

We are going to set up our ParallelCluster infrastructure as below:

As shown in the figure above, inside a VPC, there are two subnets, a public and a private ones. Head Node resides in
the public subnet, while the compute fleet (in this case, trn1 instances) are in the private subnet. A Network Address
Translation (NAT) gateway is also needed in order for nodes in the private subnet to connect to clients outside the VPC.
In the next section, we are going to describe how to set up all the necessary infrastructure for trn1 ParallelCluster.

Setup environment

1. Install prerequisite infrastructure:

Follow these setup instructions to install VPC and all the necessary components for ParallelCluster.

2. Create and launch ParallelCluster

Follow these creating cluster instructions to launch ParallelCluster in the VPC.

1. Launch training job

Follow these running training instructions to submit a model training script as a slurm job.

This document is relevant for: Inf2, Trn1, Trn1n

• Train your model on ParallelCluster

This document is relevant for: Trn1, Trn1n

978 Chapter 21. Developer Flows

https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/general/network/vpc-subnet-setup.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/cluster-configs/trn1-16-nodes-pcluster.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/dp-bert-launch-job.md

AWS Neuron

Training

• Train your model on ParallelCluster

Inference

Note: AWS ParallelCluster support is coming soon.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

21.6 AWS Batch Flows

This document is relevant for: Inf1

21.6.1 AWS Batch Flows - Inference

Note: AWS Batch supports Inf1.

An example of how to deploy a model with Neuron using Batch is coming soon.

This document is relevant for: Inf1

This document is relevant for: Trn1, Trn1n

21.6.2 AWS Batch Flows- Training

• batch-training

This document is relevant for: Trn1, Trn1n

Inference

Note: AWS Batch supports Inf1.

An example of how to deploy a model with Neuron using Batch is coming soon.

21.6. AWS Batch Flows 979

AWS Neuron

Training

• batch-training

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

Neuron can be used in a wide selection of development flows. Each flow has its own starting point and requirements
which are required to enable deep learning acceleration with AWS Neuron.

Deploy Containers with Neuron

AWS EC2

Inference

• Compile with Framework API and Deploy on EC2 Inf1

• Compile with Framework API and Deploy on EC2 Inf2

Training

• Train your model on EC2

Amazon EKS

Inference

• Deploy Neuron Container on Elastic Kubernetes Service (EKS)

Training

Note: Amazon EKS support is coming soon.

Amazon ECS

Inference

• Deploy Neuron Container on Elastic Container Service (ECS)

Training

Note: Amazon ECS supports Trn1.

An example of how to train a model with Neuron using ECS is coming soon.

980 Chapter 21. Developer Flows

AWS Neuron

AWS Sagemaker

Inference

• Bring Your Own Neuron Container to Sagemaker Hosting (inf2 or trn1)

• Bring Your Own Neuron Container to Sagemaker Hosting (inf1)

• Compile with Sagemaker Neo and Deploy on Sagemaker Hosting (inf1)

• AWS Neuron Sagemaker Samples GitHub Repository

Training

• Train your model on SageMaker

• AWS Neuron Sagemaker Samples GitHub Repository

AWS ParallelCluster

Training

• Train your model on ParallelCluster

Inference

Note: AWS ParallelCluster support is coming soon.

AWS Batch

Inference

Note: AWS Batch supports Inf1.

An example of how to deploy a model with Neuron using Batch is coming soon.

Training

• batch-training

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

21.6. AWS Batch Flows 981

https://github.com/aws-neuron/aws-neuron-sagemaker-samples
https://github.com/aws-neuron/aws-neuron-sagemaker-samples

AWS Neuron

982 Chapter 21. Developer Flows

CHAPTER

TWENTYTWO

NEURON ARCHITECTURE

The Neuron Architecture provides insights into Neuron enabled instances system, software and chip capabilities. The
EC2 Trn and Inf instance architecture provides an overview of the EC2 instances powered by the Inferentia and Trainium
chips (Neuron Devices), and the corresponding system features like inbox and network connectivity, memory hierarchy,
and NeuronCores versions and capabilities. The Neuron model architecture fit provides insights to what is the best
match between deep-learning model architectures and the NeuronCore version.

Table of contents

• Trn and Inf instances

• Trainium and Inferentia devices

• NeuronCores

• Other

22.1 Trn and Inf instances

EC2 Trn1/Trn1n Architecture EC2 Inf2 Architecture EC2 Inf1 Architecture

22.2 Trainium and Inferentia devices

AWS Trainium Architecture AWS Inferentia2 Architecture AWS Inferentia Architecture

22.3 NeuronCores

NeuronCore-v1 NeuronCore-v2

983

AWS Neuron

22.4 Other

Neuron Glossary

This document is relevant for: Inf1

22.4.1 AWS Inf1 Architecture

On this page, we provide an architectural overview of the AWS Inf1 instance and the corresponding Inferentia Neuron-
Devices that power them (Inferentia devices from here on).

Table of Contents

• Inf1 Architecture

Inf1 Architecture

The EC2 Inf1 instance is powered by 16 Inferentia devices, allowing customers to choose between four instance sizes:

In-
stance
size

of
Infer-
entia
de-
vices

vC-
PUs

Host
Mem-
ory
(GiB)

FP16/BF16
TFLOPS

INT8
TOPS

Device
Mem-
ory
(GiB)

Device
Memory
bandwidth
(GiB/sec)

NeuronLink-
v1 device-to-
device bandwidth
(GiB/sec/device)

EFA
band-
width
(Gbps)

Inf1.xlarge1 4 8 64 128 8 50 N/A up-to 25
Inf1.2xlarge1 8 16 64 128 8 50 N/A up-to 25
Inf1.6xlarge4 24 48 256 512 32 200 32 25
Inf1.24xlarge16 96 192 1024 2048 128 800 32 100

Inf1 offers a direct device-to-device interconnect called NeuronLink-v1, which enables co-optimizing latency and
throughput via the Neuron Core Pipeline technology.

This document is relevant for: Inf1

This document is relevant for: Trn1, Trn1n

984 Chapter 22. Neuron Architecture

AWS Neuron

22.4.2 AWS Trn1/Trn1n Architecture

On this page, we provide an architectural overview of the AWS Trn1/Trn1n instances, and the corresponding Trainium
NeuronDevices that power them (Trainium devices from here on).

Table of contents

• Trn1/Trn1n Architecture

Trn1/Trn1n Architecture

An EC2 Trn1/Trn1n instance is powered by up to 16 Trainium devices.

In-
stance
size

of
Trainium
de-
vices

vC-
PUs

Host
Mem-
ory
(GiB)

FP8/FP16/BF16/TF32
TFLOPS

FP32
TFLOPS

Device
Mem-
ory
(GiB)

Device
Memory
Bandwidth
(GiB/sec)

NeuronLink-
v2 device-
to-device
(GiB/sec/device)

EFA
band-
width
(Gbps)

Trn1.2xlarge1 8 32 190 47.5 32 820 N/A up-to
25

Trn1.32xlarge16 128 512 3,040 760 512 13,120 384 800
Trn1n.32xlarge16 128 512 3,040 760 512 13,120 768 1,600

The Trn1.2xlarge instance size allows customers to train their models on a single Trainium device, which is useful for
small model training, as well as for model experimentation. The Trn1.32xlarge and Trn1n.32xlarge instance size come
with a high-bandwidth and low-latency NeuronLink-v2 device-to-device interconnect, which utilizes a 4D-HyperCube
topology. This is useful for collective communication between the Trainium devices during scale-out training, as well
as for pooling the memory capacity of all Trainium devices, making it directly addressable from each of the devices.

In a Trn1/Trn1n server, the Trainium devices are connected in a 2D Torus topology, as depicted below:

22.4. Other 985

AWS Neuron

The Trn1/Trn1n instances are also available in an EC2 UltraCluster, which enables customers to scale Trn1/Trn1n
instances to over 30,000 Trainium devices, and leverage the AWS-designed non-blocking petabit-scale EFA networking
infrastructure.

986 Chapter 22. Neuron Architecture

AWS Neuron

This document is relevant for: Trn1, Trn1n

This document is relevant for: Inf2

22.4.3 AWS Inf2 Architecture

On this page we provide an architectural overview of the AWS Inf2 instances and the corresponding Inferentia2 Neu-
ronDevices that power them (Inferentia2 devices from here on).

Inf2 Architecture

The EC2 Inf2 instance is powered by up to 12 Inferentia2 devices, and allows customers to choose between four instance
sizes:

In-
stance
size

of
Infer-
entia2
devices

vC-
PUs

Host
Mem-
ory
(GiB)

FP8/FP16/BF16/TF32
TFLOPS

FP32
TFLOPS

Device
Mem-
ory
(GiB)

Instance
Memory
Bandwidth
(GiB/sec)

NeuronLink-v2
device-to-device
(GiB/sec/device)

Inf2.xlarge1 4 16 190 47.5 32 820 N/A
Inf2.8xlarge1 32 128 190 47.5 32 820 N/A
Inf2.24xlarge6 96 384 1140 285 192 4920 192
Inf2.48xlarge12 192 768 2280 570 384 9840 192

Inf2 offers a low-latency, high-bandwidth chip-to-chip interconnect called NeuronLink-v2, which enables high-
performance collective communication operations (e.g., AllReduce and AllGather).

This allows sharding large models across Inferentia2 devices (e.g., via Tensor Parallelism), thus optimizing latency and
throughput. This capability is especially useful when deploying Large Generative Models.

22.4. Other 987

AWS Neuron

This document is relevant for: Inf2

This document is relevant for: Inf1

22.4.4 Inferentia Architecture

At the heart of each Inf1 instance are sixteen Inferentia devices, each with four NeuronCore-v1, as depicted below:

988 Chapter 22. Neuron Architecture

AWS Neuron

Each Inferentia device consists of:

Compute Four NeuronCore-v1 cores, delivering 128 INT8 TOPS and 64 FP16/BF16 TFLOPS
Device Mem-
ory

8GiB of device DRAM memory (for storing parameters and intermediate state), with 50 GiB/sec
of bandwidth

NeuronLink Enables co-optimization of latency and throughput via the Neuron Core Pipeline technology

This document is relevant for: Inf1

This document is relevant for: Inf2

22.4. Other 989

AWS Neuron

22.4.5 Inferentia2 Architecture

At the heart of each Inf2 instance are up to twelve Inferentia2 devices (each with two NeuronCore-v2 cores). Infer-
entia2 is the second generation AWS purpose-built Machine Learning inference accelerator. The Inferentia2 device
architecture is depicted below:

Each Inferentia2 device consists of:

990 Chapter 22. Neuron Architecture

AWS Neuron

Compute Two NeuronCore-v2 cores, delivering 380 INT8 TOPS, 190 FP16/BF16/cFP8/TF32 TFLOPS, and
47.5 FP32 TFLOPS.

Device
Memory

32GiB of high-bandwidth device memor (HBM) (for storing model state), with 820 GiB/sec of band-
width.

Data
Movement

1 TB/sec of DMA bandwidth, with inline memory compression/decompression.

Neuron-
Link

NeuronLink-v2 for device-to-device interconnect enables high-performance collective compute for
co-optimization of latency and throughput.

Pro-
gramma-
bility

Inferentia2 supports dynamic shapes and control flow, via ISA extensions of NeuronCore-v2 and
custom-operators via the deeply embedded GPSIMD engines.

For a more detailed description of all the hardware engines, see NeuronCore-v2.

This document is relevant for: Inf2

This document is relevant for: Trn1, Trn1n

22.4.6 Trainium Architecture

At the heart of the Trn1 instance are 16 x Trainium devices (each Trainium include 2 x NeuronCore-v2). Trainium
is the second generation purpose-built Machine Learning accelerator from AWS. The Trainium device architecture is
depicted below:

22.4. Other 991

AWS Neuron

Each Trainium device consists of:

Com-
pute

Two NeuronCore-v2 delivering 380 INT8 TOPS, 190 FP16/BF16/cFP8/TF32 TFLOPS, and 47.5 FP32
TFLOP.

De-
vice
Mem-
ory

32 GiB of device memory (for storing model state), with 820 GiB/sec of bandwidth.

Data
Move-
ment

1 TB/sec of DMA bandwidth, with inline memory compression/decompression.

Neu-
ron-
Link

NeuronLink-v2 for device-to-device interconnect enables efficient scale-out training, as well as memory
pooling between the different Trainium devices.

Pro-
gramma-
bility

Trainium supports dynamic shapes and control flow, via ISA extensions of NeuronCore-v2. In addition,
Trainium also allows for user-programmable rounding mode (Round Nearest Even Stochastic Rounding),
and custom operators via the deeply embedded GPSIMD engines.

992 Chapter 22. Neuron Architecture

AWS Neuron

For a detailed description of all the hardware engines, see NeuronCore-v2

This document is relevant for: Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

22.4.7 AWS NeuronCore Architecture

see neuroncores-v1-arch and neuroncores-v2-arch

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

22.4.8 Neuron Glossary

Table of contents

• Terms

– Neuron Devices (Accelerated Machine Learning chips)

– Neuron powered Instances

– NeuronCore terms

• Abbreviations

Terms

Neuron Devices (Accelerated Machine Learning chips)

Term Description

Inferentia AWS first generation accelerated machine learning chip
supporting inference only

Trainium AWS second generation accelerated machine learning
chip supporting training and inference

Neuron Device Accelerated machine learning chip (e.g. Inferentia or
Trainium)

Neuron powered Instances

Term Description

Inf1 Inferentia powered accelerated compute EC2 instance

Trn1 Trainium powered accelerated compute EC2 instance

22.4. Other 993

AWS Neuron

NeuronCore terms

Term Description

NeuronCore The machine learning compute cores within Inferen-
tia/Trainium

NeuronCore-v1 Neuron Core within Inferentia

NeuronCore-v2 Neuron Core within Trainium

Tensor Engine 2D systolic array (within the NeuronCore), used for ma-
trix computations

Scalar Engine A scalar-engine within each NeuronCore, which can ac-
celerate element-wise operations (e.g. GELU, ReLU, re-
ciprocal, etc)

Vector Engine A vector-engine with each NeuronCore, which can ac-
celerate spatial operations (e.g. layerNorm, TopK, pool-
ing, etc)

GPSIMD Engine Embedded General Purpose SIMD cores, within each
NeuronCore, to accelerate custom-operators

Sync Engine The SP engine, which is integrated inside NeuronCore.
Used for synchronization and DMA triggering.

Collective Communication Engine Dedicated engine for collective communication, allows
for overlapping computation and communication

NeuronLink Interconnect between NeuronCores

NeuronLink-v1 Interconnect between NeuronCores in Inferentia device

NeuronLink-v2 Interconnect between NeuronCores in Trainium device

994 Chapter 22. Neuron Architecture

AWS Neuron

Abbreviations

Abbreviation Description

NC Neuron Core

NeuronCore Neuron Core

ND Neuron Device

NeuronDevice Neuron Device

TensEng Tensor Engine

ScalEng Scalar Engine

VecEng Vector Engine

SyncEng Sync Engine

CCE Collective Communication Engine

FP32 Float32

TF32 TensorFloat32

FP16 Float16

BF16 Bfloat16

cFP8 Configurable Float8

RNE Round Nearest Even

SR Stochastic Rounding

CustomOps Custom Operators

RT Neuron Runtime

DP Data Parallel

DPr Data Parallel degree

TP Tensor Parallel

TPr Tensor Parallel degree

PP Pipeline Parallel

PPr Pipeline Parallel degree

22.4. Other 995

AWS Neuron

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

996 Chapter 22. Neuron Architecture

CHAPTER

TWENTYTHREE

NEURON FEATURES

Neuron features provide insights into Neuron capabilities that enable high-performance and improve usability of de-
veloping and deploying deep learning acceleration on top of Inferentia and Trainium based instances.

Data Types Neuron Rounding Modes Neuron Batching NeuronCore Pipeline
Neuron Persistent Cache Neuron Collective Communication Neuron Control Flow Neuron
Custom C++ Operators

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

23.1 Data Types

Table of contents

• Introduction

• NeuronCore v1 Data Types

– Neuron Data-Types

• NeuronCore v2 Data Types

– Model Type Conversion

– NeuronCore v2 Rounding Modes

23.1.1 Introduction

Inferentia and Trainium NeuronDevices include different NeuronCore versions, which support different data-types.
This section describes what data-types are supported in each NeuronCore version, for details about NeuronCore ver-
sions see neuron_hw_arch.

997

AWS Neuron

23.1.2 NeuronCore v1 Data Types

Neuron Data-Types

Neuron enables developers to choose from multiple data-types. The supported data-types are FP32, FP16, and BF16.
Developers can train their models on their platform of choice (e.g. EC2 P3 instances), and then easily move their trained
models to EC2 Inf1 for execution.

FP16/BF16 models

Models natively trained in FP16/BF16 will be executed in their trained data-types. This is a straightforward migration
from the training platform to Inf1.

FP32 models

Neuron SDK supports automatic model conversion from FP32 to BF16 by default. This capability allows developers
to train their models using FP32 format for the highest accuracy, and achieve performance benefits without having to
worry about low-precision training (e.g. no need for loss-scaling during training). ML models are typically robust
to FP32 to BF16 conversion, with minimal to no impact on accuracy. The conversion accuracy is model dependent;
therefore, users are encouraged to benchmark the accuracy of the auto-converted model against the original FP32
trained model.

When the compiler is supplied with an unmodified FP32 model input it will automatically compile the model to run as
BF16 on Inferentia. During inference the FP32 input data will be auto-converted internally by Inferentia to BF16 and
the output will be converted back to FP32 data-type. For explicit FP16 inferencing, either use an FP16 trained model,
or use an external tool (like AMP) to make the explicit conversions.

23.1.3 NeuronCore v2 Data Types

The NeuronCore v2 supports the following data types:

• 32 and 16-bit Floating Point (FP32 / FP16)

• TensorFloat-32 (TF32)

• Brain Floating Point (BFloat16)

• 8-bit Floating point with configurable range and precision (cFP8)

• Unsigned 8-bit integer (UINT8)

Note: Neuron Compiler support for cFP8 and UINT8 is planned for a future Neuron SDK release. For INT8, see
Neuron Compiler: Enable Neuron INT8 support for details.

The layout for these is as follows:

998 Chapter 23. Neuron Features

https://github.com/aws/aws-neuron-sdk/issues/36

AWS Neuron

Model Type Conversion

The Neuron SDK supports automatic model conversion from FP32 to BF16 by default. This capability allows devel-
opers to train their models using FP32 format for the highest accuracy, and then achieve run-time performance benefits
without having to worry about low-precision training (e.g. no need for loss-scaling during training). ML models are
typically robust to FP32 to BF16 conversion, with minimal to no impact on accuracy. Since conversion accuracy is
model dependent, users are encouraged to benchmark the accuracy of the auto-converted model against the original
FP32 trained model.

See Mixed Precision and Performance-accuracy Tuning for Training for more details on supported data types and their
properties.

The Neuron compiler offers the --auto-cast and --auto-cast-type options to specify automatic casting of FP32
tensors to other data types to address performance and accuracy tradeoffs. See the Neuron Compiler CLI Reference
Guide for a description of these options.

NeuronCore v2 Rounding Modes

Because floating point values are represented by a finite number of bits, they cannot represent all real numbers ac-
curately. Floating point calculations that exceed their defined data type size are rounded. The NeuronCore v2 per-
forms a Round-to-Nearest (RNE) algorithm with ties to Even by default. It also provides a new Stochastic Rounding
mode. When Stochastic Rounding is enabled, the hardware will round the floating point value up or down using
a proportional probability. This could lead to improved model convergence. Use the environment variable NEU-
RON_RT_STOCHASTIC_ROUNDING_EN to select a rounding mode.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

23.2 Neuron Rounding Modes

Table of contents

• Round Nearest, ties to Even (RNE)

• Stochastic Rounding (SR)

• Quick Tests

23.2.1 Round Nearest, ties to Even (RNE)

When the exact result of a floating point operation cannot be exactly represented as a floating point value, it must be
rounded. The IEEE 754-2008 standard defines the default rounding mode to be ‘Round Nearest, ties to Even’ (RNE
for short). Under this scheme, numbers are rounded to the nearest representable value, and in case of a ‘tie’ (i.e. the
number is exactly between the two nearest representable values) numbers will be rounded to the nearest even number.

All NeuronCore generations support the RNE rounding scheme, which is the most commonly used rounding scheme
for Machine Learning workloads. Below is an illustration of the RNE rounding scheme:

23.2. Neuron Rounding Modes 999

AWS Neuron

23.2.2 Stochastic Rounding (SR)

One downside of the RNE rounding scheme (and other rounding schemes described in the IEEE 754-2008 standard),
is that when adding floating point values of significantly different magnitudes, rounding can squash small values and
prevent them from accumulating over time.

To improve this, starting from the second generation of the NeuronCore (NeuronCore-v2), customers can choose be-
tween the RNE rounding scheme described above, and a second rounding scheme called ‘Stochastic Rounding’ (SR
for short). Stochastic rounding prevents the computation precision-loss described above, by performing the rounding
operations in a probabilistic manner, according to the relative distance from the two nearest representable values, as
illustrated below:

By performing the rounding in a probabilistic manner, this scheme allows for small increments to accumulate over time,
even when added to numbers of significantly higher magnitude, which leads to more precise results when performing
large floating point computations (as done for machine learning).

1000 Chapter 23. Neuron Features

AWS Neuron

23.2.3 Quick Tests

As an example, we examine the code-snippet below:

import torch
import torch_xla
import torch_xla.core.xla_model as xm
device = xm.xla_device()

a = torch.tensor(1024.0).half().to(device)

for i in range(2048) :
a = (a + 0.5)
xm.mark_step()

print(a)

This code shows that rounding can significantly impact the calculation’s precision over time. To use standard RNE
rounding, use the environment variable NEURON_RT_STOCHASTIC_ROUNDING_EN=0. To enable stochastic rounding,
use the environment variable NEURON_RT_STOCHASTIC_ROUNDING_EN=1.

NOTE: Stochastic rounding mode is enabled by default in PyTorch-Neuron when XLA_USE_BF16=1.

The first test continues to show 1024 due to RNE rounding after each addition, and the second test shows result that is
mostly in line with expectation.

$ NEURON_RT_STOCHASTIC_ROUNDING_EN=0 python3 rounding_mode_test.py

tensor(1024., device='xla:1', dtype=torch.float16)

$ NEURON_RT_STOCHASTIC_ROUNDING_EN=1 python3 rounding_mode_test.py

tensor(2056., device='xla:1', dtype=torch.float16)

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

23.3 Neuron Batching

Batching refers to the process of grouping multiple samples together, and processing them as a group (i.e. passing
them together through the neural network). Batching is typically used as an optimization for improving throughput at
the expense of higher latency (and potentially higher memory footprint). Batching considerations are slightly different
between inference and training workloads, and we thus cover them separately below.

Table of contents

• Batching in inference workloads

– What is batched inference?

– What are the benefits of batched Inference?

– How to determine the optimal batch-size for inference workloads?

23.3. Neuron Batching 1001

AWS Neuron

– How to set the batch-size?

• Batching in training workloads

– How to determine the optimal batch-size for training workloads?

23.3.1 Batching in inference workloads

What is batched inference?

The concept of batched inference is conceptually illustrated below, with a single NeuronCore performing batched
computation of a 3 layer neural network with a batch-size of 4. The NeuronCore reads the parameters for a certain
layer from the external memory, and then performs the corresponding computations for all 4 inference-requests, before
reading the next set of parameters (thus, performing more compute for every parameter read from memory).

What are the benefits of batched Inference?

For inference, batching is typically used as a trade-off knob between throughput and latency: higher batch-size typically
leads to better hardware utilization and thus higher throughput, but at the same time batching requires to perform more
computation until getting the first results, and hence leads to higher latency.

To understand why batching tends to improve throughput (up to a certain max value), it is useful to consider an intu-
itive visual performance-model called ‘the roofline model’, which provides with a theoretical bound on the system’s
performance:

1002 Chapter 23. Neuron Features

AWS Neuron

The X-axis indicates the arithmetic intensity (AI) of the workload, which is the ratio between the number of operations
and the number of bytes read-from/written-to memory. The Y-axis indicates the theoretical extractable performance.
For small(large) AI values, the workload is expected to be memory(compute) bound. For inference workloads, AI is
often approximated by dividing the model’s number of operations by its memory footprint (#params x dtype_size).
To a first order approximate, the AI value is linearly dependent on the batch-size, which means that the workloads
performance (throughput) is expected to increase with the batch-size. To understand this more intuitively, for a larger
batch size, Neuron can better amortize the cost of reading parameters from the external memory, and thus improve
the overall hardware efficiency. It should be noted that while the roofline model can be very useful, it is not perfectly
accurate (e.g. it doesn’t take into account spill/fills from/to on-chip SRAM memories), and thus users are encouraged
to use it as a tool for estimating the optimal batch-size for their workloads.

How to determine the optimal batch-size for inference workloads?

The optimal batch size is dependent on the application-level requirements: some applications require strict latency
guarantees (in which case, check out the NeuronCore Pipeline technology), while other applications strictly aim to
maximize throughput. We thus encourage our users to try out multiple batch-sizes, and compare performance between
them. A good starting for batch-size exploration can be identified using the roofline model: we can choose a batch-size
that achieves an Arithmetic Intensity which is at the edge of the compute bound region. By doing that, we aim to
achieve max throughput with a minimal batch-size, and thus minimal impact to latency.

This can be expressed via the following equation: batch-size(Inference) = ceiling[0.5 x (<NeuronDevice
PeakFLOPS>/<NeuronDevice MemBW>) / (<model FLOPs>/(<#model-dense-params> x <dtype_size>))]
(for NeuronDevice PeakFLOPS and MemBW, see the Trainium Architecture, Inferentia Architecture and Inferentia2
Architecture pages.

For example, a BF16 BERT-Large model, with a sequence length of 128, will have the following approximated batch
sizes:

23.3. Neuron Batching 1003

AWS Neuron

Model Neu-
ron-
De-
vice

Peak
TFLOPS
(BF16)

MemBW
(GB/sec)

Model
GFLOPs

Model Dense
Params (Mil-
lions)

Data-
type size
(BF16)

Approximated
optimal batch-
size

BERT-
Large (Se-
qLen=128)

Infer-
entia

64 50 77.3 302 2 6

BERT-
Large (Se-
qLen=128)

Trainium 210 820 77.3 302 2 2

ResNet-50 Infer-
entia

64 50 7.8 25 2 5

ResNet-50 Trainium 210 820 7.8 25 2 1

We recommend to evaluate multiple batch sizes and compare the performance between them, in order to determine the
optimal latency/throughput deployment-point.

How to set the batch-size?

The Neuron compiler takes a model and its sample input, as inputs for the compilation process. For example, the code
snippet below will compile a model with a batch-size of 4:

import torch
import torch_neuron
from torchvision import models

Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

Compile with an example input of batch size 4
image = torch.rand([4, 3, 224, 224])

model_neuron = torch.neuron.trace(model, image, dynamic_batch_size=True)

Execute with a batch of 12 images
batch = torch.rand([12, 3, 224, 224])
results = model_neuron(batch)

For ahead-of-time compiled inference graphs (i.e. Inf1), dynamic batching can be used (as shown in the above code
snippet) to process a larger client-side inference batch-size, and allow the framework to automatically break up the
user-batch (12 in our case) into smaller batch sizes, to match the compiled batch-size (4 in our case). This technique
increases the achievable throughput by hiding the framework-to-neuron overhead, and amortizing it over a larger batch
size.

During inference, dynamic batching can be used to process a larger client-side inference batch-size, and allow the
framework to automatically break up the user-batch into smaller batch sizes, to match the compiled batch-size. This
technique increases the achievable throughput by hiding the framework-to-neuron overhead, and amortizing it over a
larger batch size. See Dynamic Batching in torch-neuronx and Special Flags in tensorflow-neuronx.

1004 Chapter 23. Neuron Features

AWS Neuron

23.3.2 Batching in training workloads

Unlike inference workloads, training is inherently an offline process, and thus doesn’t have latency requirements. This
means that training is almost always batched to some degree.

How to determine the optimal batch-size for training workloads?

Determining the optimal batch-size for training workloads can be a non-trivial task. In most cases, we’d want to choose
the largest batch-size that we can get away with.

The most dominant factor for determining the optimal batch-size in training workloads is memory footprint: training
workloads have higher memory footprint compared to inference, as they require saving more tensors aside from the
model parameters, such as gradients, intermediate activations (passed between forward-pass and backward-pass), and
optimizer-state. If the batch-size is increased beyond a certain point, one can run out of device memory (indicated by
an ‘Out of device memory’ error, typically abbreviated as OOM).

To estimate the memory footprint of a model, we look at the different contributors:

1. Weights and gradients:

1. typically 2B each, thus 4B per parameter

2. Optimizer state:

1. typically 4B - 12B per parameter

3. Intermediate activations:

1. sum of all tensor sizes for forward pass

2. for example, for a transformer neural network, this is roughly 16 x x <num_layers> x x x = 100MB x

For training workloads, determining the optimal batch size can be a little more tricky, due to two reasons:

1. Higher memory footprint: Training workloads have higher memory footprint compared to inference, as they
require saving more tensors aside from the model parameters, such as gradients, intermediate-state and optimizer-
state. If the batch-size is increased too much, one can run out of device memory (indicated by an ‘Out of memory’
error, typically abbreviated as OOM).

2. Arithmetic intensity estimation: Arithmetic intensity is harder to estimate in training workloads, compared to
inference workloads, as the majority of the external memory access are due to reads/writes of intermediate acti-
vation state (rather than parameters), which requires lower level familiarity with the model to estimate correctly.

A good first order approximate for the optimal batch-size in a training workload, is the largest one
that can fit in the device’s memory (i.e. won’t lead to OOM error). batch-size(Training) =
0.6 x (<TP-Rank> x <PP-Rank> x ``<NeuronCore MemoryCapacity>) / ``(<#model-dense-params> x
``<model-state-bytes-per-parameter>)

Note TP-rank stands for Tensor-Parallelism rank, i.e. how many NeuronCores participate in a single Tensor-Parallelism
group. Similarly, PP-rank stands for Pipeline-Parallelism rank, i.e. how many NeuronCores participate in a single
Pipeline-Parallelism group.

For example, for BERT-Large Ph1 training, with a model-state of 4B per parameter (2B weights, 2B param-
eters), and TP-rank = PP-rank = 1, the approximated optimal per-NeuronCore training batch-size would be:
batch-size(Training/Trainium) = 0.6 x (1 x 1 x 16e+9`) / (300e+6 x 4) = 8`

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1

23.3. Neuron Batching 1005

AWS Neuron

23.4 NeuronCore Pipeline

The Neuron software feature referred to as a NeuronCore Pipeline refers to the process of sharding a compute-
graph across multiple NeuronCores, caching the model parameters in each core’s on-chip memory (cache),
and then streaming inference requests across the cores in a pipelined manner. Based on the number of
NeuronCores selected, the model might get seamlessly sharded across up-to 16 Inferentia devices (i.e. 64
NeuronCores). This enables users to optimize for both throughput and latency, as it enables the Neuron-
Cores to process neural-networks with locally cached data and avoid the cost of accessing external memory.

One benefit to this approach is that NeuronCore Pipeline can typically hit maximal hardware efficiency without the
need for batching (e.g. BERT, ResNet50).

For maximal performance, users should choose an instance-size that can cache the entire model by using sufficient
NeuronCores. Inf1 instance types have different number of Inferentia devices, each of which has 4 NeuronCores, as
shown here https://aws.amazon.com/ec2/instance-types/inf1/

To enable the NeuronCore Pipeline optimization, the compiler should be invoked with the following flags:
--neuroncore-pipeline-cores N. The number of NeuronCores is typically chosen to be the minimal number that
can fit the entire model, which is currently done through a trial-and-error process (compiling to different number of
cores and looking for compilation success/failure message). This process will be automated in the future. A simple
formula to help define the number of NeuronCores that may be an appropriate choice is

neuroncore-pipeline-cores = 4 * round(number-of-weights-in-model/(2 * 10^7))

This allocates a set of NeuronCores based on the size of the given model’s weights and normalizes to multiples of 4 so
it uses full Inferentias.

The code snippet below shows how to compile a model with NeuronCore Pipeline for 16 NeuronCores (instance size
inf1.6xlarge).

import numpy as np
import tensorflow.neuron as tfn

example_input = np.zeros([1,224,224,3], dtype='float16')
tfn.saved_model.compile("rn50_fp16",

"rn50_fp16_compiled/1",
model_feed_dict={'input_1:0' : example_input },
compiler_args = ['--neuroncore-pipeline-cores', '16'])

This document is relevant for: Inf1

1006 Chapter 23. Neuron Features

https://aws.amazon.com/ec2/instance-types/inf1/

AWS Neuron

This document is relevant for: Inf2, Trn1, Trn1n

23.5 Neuron Collective Communication

Table of contents

• Introduction

• trn1.32xlarge topology

• trn1.2xlarge topology

• inf2.48xlarge topology

• Inf2 other instance sizes topologies

23.5.1 Introduction

Collective Communications is an integral component of distributed ML training. Multiple training nodes exchange
information during ML training via Collective Communication operators such as all-reduce. Neuron provides hardware
support for the execution of Collective Communication with the Neuron SDK responsible for the hardware configuration
and for the execution orchestration. Neuron provides the following Collective Communication operators:

• all-reduce

• all-gather

• reduce-scatter

Neuron also provides the following peer to peer operators:

• send

• receive

Support for additional Collective Communication operators might be added in future releases. Neuron devices are
connected via NeuronLinks within a single instance and EFA links between instances. All NeuronLinks transfer the
data directly between Neuron device and between Neuron devices and EFA devices bypassing the host to achieve high
bandwidth and low latency.

Collective Communication support on Neuron requires installation of 3 separate packages:

• aws-neuronx-runtime-lib - supports execution on Neuron, not specific to Collective Communication and is
always required

• aws-neuronx-collectives - supports Collective Communication execution on a single instance and on mul-
tiple instances.

• efa_installer - low level libraries and drivers to support Collective Communication execution over EFA,
required to support Collective Communication on multiple instances.

ML models need to be compiled by the Neuron compiler before they can be executed on Neuron devices. The result of
the compilation is a binary object containing computational instruction and data movement instructions. Any Collective
Communication operators encountered during compilation are converted to the place holder instructions to be filled
by the runtime/collectives libraries during load and execution. This approach allows Neuron compiler to be unaware
of the specific physical topology connecting Neuron devices. Once a compiled mode is placed on Neuron devices the
runtime/collectives libraries generate the appropriate data movement instructions based on the placement. For example,

23.5. Neuron Collective Communication 1007

AWS Neuron

a different set of instructions is generated when the next rank is connected via NeuronLinks or via EFA. Neuron executes
Collective Communication operators using dedicated hardware that is not shared with computational resources. That
allows Neuron to execute compute and communication in parallel. For example Neuron can all-reduce gradients of one
layer while the gradients for another layer are computed. Overlapping compute and communication can result is lower
latency and higher performance.

23.5.2 trn1.32xlarge topology

Trn1.32xl 2D torus topology
On a single trn1.32xlarge instance Neuron devices are connected in a 2D torus topology supporting Collective Commu-
nication operators in sets of 2, 8 and 32 ranks. Other set sizes might be supported in future releases. A single instance

1008 Chapter 23. Neuron Features

AWS Neuron

topology can be further extended across multiple instances using EFA NeuronLinks.

For example an 8x4 topology on a single instance, such as 8 rank tensor parallel and 4 ranks data parallel can be
extended across multiple instances creating a large tensor/data parallel training cluster.

23.5.3 trn1.2xlarge topology

Trn1.2xlarge instance type contains a single Neuron device with two NeuronCores. This instance type supports only
2 ranks Collective Communication operators. EFA is not available on trn1.2xlarge and the ranks cannot be extended
beyond a single instance.

23.5.4 inf2.48xlarge topology

inf2.48xlarge topology
On inf2.48xlarge instance Neuron devices are connected in a ring via NeuronLink. Any even number of ranks for Col-
lective Communication operators is supported provided that the ranks occupy consecutive Neuron devices. However,
when using any number of ranks other than 24 (full instance) full performance of the ring is not utilized.

23.5.5 Inf2 other instance sizes topologies

inf2 other instance sizes topologies
On other inf2 instance sizes Neuron devices are connected bi-directionally. Any even number of ranks for Collec-
tive Communication operators is supported provided that the ranks occupy consecutive Neuron devices. Collective
Communication performance is similar to the performance on inf2.48xlarge when fewer than 24 ranks are used.

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

23.5. Neuron Collective Communication 1009

AWS Neuron

23.6 Neuron Control Flow

Note: This feature is supported in neuroncores-v2-arch, the NeuronCore that exists in Trainium, however it is still not
implemented by the Neuron Compiler.

Stay tuned and follow the Neuron Roadmap

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf2, Trn1, Trn1n

23.7 Neuron Custom C++ Operators

Neuron Custom C++ Operators enable developers to write C++ Custom Operators (“CustomOps”) that run on Neu-
ronCores. This enables developers to extend operator support beyond what is officially supported by Neuron.

Developers can use standard PyTorch custom operators programming interfaces to leverage Neuron Custom C++ Op-
erators feature. This makes it easy to migrate CPU Custom Operators to Neuron, and implement new beta operators,
all without any intimate knowledge of the NeuronCore hardware.

For more details see Neuron Custom C++ Operators [Beta]

This document is relevant for: Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

1010 Chapter 23. Neuron Features

CHAPTER

TWENTYFOUR

NEURON APPLICATION NOTES

Neuron 2.x

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

24.1 Introducing the first release of Neuron 2.x enabling EC2 Trn1
General Availability (GA)

Neuron release 2.3 is the first release of Neuron 2.x that enables GA of the new EC2 Trn1 instances. Neuron release
2.3 extends the latest release of Neuron 1.x (Neuron 1.19.2), adding support for Deep Learning training on the AWS
Trainium chips.

Starting with Neuron release 2.3, developers can run Deep Learning training workloads on Trn1 instances, saving
training costs by up to 50% over equivalent GPU-based EC2 instances, while achieving the highest training performance
in the AWS cloud for popular NLP models. Neuron 2.x introduces new capabilities and major architectural updates to
support training neural-networks with the Trn1 instances.

In addition, starting with this release, Neuron introduces new packages, renames several packages, and updates Neuron
installation and update instructions. This release also ends support for Neuron Runtime 1.x.

1011

AWS Neuron

24.1.1 More about the release

What’s New
• rn2.3.0_new

• neuron-packages-changes

• announce-aws-neuron-github-org

• announce-neuron-rtd-eol

Get started with Neuron
• torch_quick_start

• Neuron Quick Links

Tested workloads and known issues
• rn2.3.0_tested

• rn2.3.0-known-issues

Frequently Asked Questions (FAQ)
• neuron2-intro-faq

• neuron-training-faq

Troubleshooting
• PyTorch Neuron Troubleshooting on Trn1

• Neuron Runtime Troubleshooting on Inf1 and
Trn1

Neuron architecture and features
• Neuron Architecture

• Neuron Features

Neuron Components release notes
• Neuron Components Release Notes

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

Neuron Runtime library

This document is relevant for: Inf1

24.2 Introducing Neuron Runtime 2.x (libnrt.so)

Table of contents

• What are we changing?

• Why are we making this change?

• How will this change affect the Neuron SDK?

1012 Chapter 24. Neuron Application Notes

AWS Neuron

– Neuron Driver

– Neuron Runtime

– Neuron framework extensions

– TensorFlow model server

– Neuron tools

• How will this change affect me?

– Neuron installation and upgrade

– Migrate your application to Neuron Runtime 2.x (libnrt.so)

• Troubleshooting

– Application fails to start

– Application fails to start although I installed latest aws-neuron-dkms

– Application unexpected behavior when upgrading to release Neuron 1.16.0 or newer

– Application unexpected behavior when downgrading to releases before Neuron 1.6.0 (from Neuron
1.16.0 or newer)

– Neuron Core is in use

• Frequently Asked Questions (FAQ)

– Do I need to recompile my model to run it with Neuron Runtime 2.x (libnrt.so)?

– Do I need to change my application launch command?

– Can libnrt.so and neuron-rtd co-exist in the same environment?

– Are there Neuron framework versions that will not support Neuron Runtime 2.x (libnrt.so)?

24.2.1 What are we changing?

Starting with the Neuron 1.16.0 release, Neuron Runtime 1.x (neuron-rtd) is entering maintenance mode and is
being replaced by Neuron Runtime 2.x, a shared library named (libnrt.so). For more information on Runtime 1.x
see maintenance_rtd.

Upgrading to libnrt.so simplifies the Neuron installation and upgrade process, introduces new capabilities for allo-
cating NeuronCores to applications, streamlines container creation, and deprecates tools that are no longer needed.

This document describes the capabilities of Neuron Runtime 2.x in detail, provides information needed for successful
installation and upgrade, and provides information needed for successful upgrade of Neuron applications using Neuron
Runtime 1.x (included in releases before Neuron 1.16.0) to Neuron Runtime 2.x (included in releases Neuron 1.16.0 or
newer).

24.2. Introducing Neuron Runtime 2.x (libnrt.so) 1013

AWS Neuron

24.2.2 Why are we making this change?

Before Neuron 1.16.0, Neuron Runtime was delivered as a daemon (neuron-rtd), and communicated with Neu-
ron framework extensions through a gRPC interface. neuron-rtd was packaged as an rpm or debian package
(aws-neuron-runtime) and required a separate installation step.

Starting with Neuron 1.16.0, Neuron Runtime 2.x is delivered as a shared library (libnrt.so) and is directly linked to
Neuron framework extensions. libnrt.so is packaged and installed as part of the Neuron framework extensions (e.g.
TensorFlow Neuron, PyTorch Neuron or MXNet Neuron), and does not require a separate installation step. Installing
Neuron Runtime as part of the Neuron framework extensions simplifies installation and improves the user experience.
In addition, since libnrt.so is directly linked to the Neuron framework extensions, faster communication between
the Neuron Runtime and Neuron Frameworks is enabled by eliminating the gRPC interface overhead.

For more information see How will this change affect the Neuron SDK? and Migrate your application to Neuron Runtime
2.x (libnrt.so).

24.2.3 How will this change affect the Neuron SDK?

Neuron Driver

Use the latest Neuron Driver. For successful installation and upgrade to Neuron 1.16.0 or newer, you must install or
upgrade to Neuron Driver (aws-neuron-dkms) version 2.1.5.0 or newer. Neuron applications using Neuron 1.16.0
will fail if they do not detect Neuron Driver version 2.1.5.0 or newer. For installation and upgrade instructions see
install-guide-index.

Important: Starting with Neuron version 2.3, the aws-neuron-dkms package name has been changed to
aws-neuronx-dkms. See Introducing the first release of Neuron 2.x enabling EC2 Trn1 General Availability (GA)

To see details of Neuron component versions please see neuron-release-content.

Important:
For successful installation or update to Neuron 1.16.0 and newer from previous releases:

• Stop Neuron Runtime 1.x daemon (neuron-rtd) by running: sudo systemctl stop neuron-rtd

• Uninstall neuron-rtd by running: sudo apt remove aws-neuron-runtime or sudo yum remove
aws-neuron-runtime

• Install or upgrade to the latest Neuron Driver (aws-neuron-dkms) by following the install-guide-index
instructions.

• Starting with Neuron version 2.3, aws-neuron-dkms the package name has been changed to
aws-neuronx-dkms, see Introducing the first release of Neuron 2.x enabling EC2 Trn1 General Avail-
ability (GA)

1014 Chapter 24. Neuron Application Notes

AWS Neuron

Neuron Runtime

• Installation Starting from Neuron 1.16.0, Neuron releases will no longer include the aws-neuron-runtime
packages and Neuron Runtime will be part of the Neuron framework extension of choice (TensorFlow Neuron,
PyTorch Neuron or MXNet Neuron). Installing any Neuron framework package will install the Neuron Runtime
library (libnrt.so).

– For installation and upgrade instructions see install-guide-index.

• Configuring Neuron Runtime Before Neuron 1.16.0, Neuron Runtime 1.x was configured in configuration files
(e.g. /opt/aws/neuron/config/neuron-rtd.config). Starting from Neuron 1.16.0, Neuron Runtime 2.x can be
configured through environment variables. See NeuronX Runtime Configuration for details.

• Starting and Stopping Neuron Runtime Before introducing libnrt.so, neuron-rtd ran as a daemon that
communicated through a gRPC interface. Whenever neuron-rtd took ownership of a Neuron device, it
continued owning that device until it was stopped. This created the need to stop neuron-rtd in certain
cases. With the introduction of libnrt.so, Neuron Runtime as it runs inside the context of the application.
With Neuron Runtime 2.x, the act of starting and stopping a Neuron application causes libnrt.so to
automatically claim or release ownership of the required Neuron devices.

• NeuronCore Groups (NCG) deprecation Before the introduction of Neuron Runtime 2.x, NeuronCore Group
(NCG) was used to define an execution group of one or more NeuronCores where models could be loaded
and executed. It also provided separation between processes.

With the introduction of Neuron Runtime 2.x, strict separation of NeuronCores into groups is no longer
necessary and NeuronCore Groups (NCG) has been deprecated. See eol-ncg for more information.

• Running multiple Neuron Runtimes Before the introduction of libnrt.so, it was necessary to run multi-
ple neuron-rtd daemons to allocate Neuron devices for each neuron-rtd, using configuration files.
After the introduction of libnrt.so, it will no longer necessary to run multiple neuron-rtd dae-
mons to allocate Neuron devices to a specific Neuron application. With libnrt.so NeuronCores
(A Neuron device includes multiple NeuronCores) are allocated to a particular application by using
NEURON_RT_VISIBLE_CORES or NEURON_RT_NUM_CORES environment variables, for example:

NEURON_RT_VISIBLE_CORES=0-3 myapp1.py
NEURON_RT_VISIBLE_CORES=4-11 myapp2.py

Or

NEURON_RT_NUM_CORES=3 myapp1.py &
NEURON_RT_NUM_CORES=4 myapp2.py &

See NeuronX Runtime Configuration for details.

• Logging Similar to Neuron Runtime 1.x, Neuron Runtime 2.x logs into syslog (verbose logging). To make
debugging easier, Neuron Runtime 2.x also logs into the console (error-only logging). Refer to NeuronX
Runtime Configuration to see how to increase or decrease logging verbosity.

• Multi-process access to NeuronCores With the introduction of libnrt.so, it is no longer possible to load
models from multiple processes on the same NeuronCore. A NeuronCore can only be accessed from the
same process. Instead you can load models on a specific NeuronCore, using multiple threads from the
same process.

Note: For optimal performance of multi-model execution, each NeuronCore executes a single model.

• Neuron Runtime architecture Neuron Runtime 2.x is delivered as a shared library (libnrt.so) and is directly
linked to Neuron framework extensions. libnrt.so is packaged and installed as part of Neuron frame-

24.2. Introducing Neuron Runtime 2.x (libnrt.so) 1015

AWS Neuron

work extensions (e.g. TensorFlow Neuron, PyTorch Neuron, or MXNet Neuron), and does not require a
separate installation step. Installing Neuron Runtime as part of the Neuron framework extensions simplifies
installation and improves the user experience. In addition, since libnrt.so is directly linked to Neuron
framework extensions, it enables faster communication between Neuron Runtime and Neuron Frameworks
by eliminating gRPC interface overhead.

Neuron framework extensions

Starting from Neuron 1.16.0, Neuron framework extensions (TensorFlow Neuron, PyTorch Neuron, or MXNet Neuron)
are packaged together with libnrt.so. It is required to install the aws-neuron-dkms Driver version 2.1.5.0 or newer
for proper operation. The neuron-rtd daemon that was installed in previous releases no longer works starting with
Neuron 1.16.0.

To see details of Neuron component versions see neuron-release-content.

TensorFlow model server

Starting from Neuron 1.16.0, the TensorFlow Neuron model server is packaged together with libnrt.so and expects
aws-neuron-dkms version 2.1.5.0 or newer for proper operation.

Note: The TensorFlow Neuron model server included in Neuron 1.16.0 runs from the directory in which it was installed
and will not run properly if copied to a different location, due to its dependency on libnrt.so.

Important: Starting with Neuron version 2.3, the aws-neuron-dkms package name has been changed to
aws-neuronx-dkms. See Introducing the first release of Neuron 2.x enabling EC2 Trn1 General Availability (GA)

Neuron tools

• neuron-cli - Starting from Neuron 1.16.0, neuron-cli enters maintenance mode. See maintenance_neuron-
cli for more information.

• neuron-top - Starting from Neuron 1.16.0, neuron-top has a new user interface. See Neuron Top User Guide
for more information.

• neuron-monitor - neuron-monitor was updated to support Neuron Runtime 2.x (libnrt.so)

– See Neuron Monitor User Guide for an updated user guide of neuron-monitor.

– See neuron-monitor-upg for a list of changes between Neuron Monitor 2.x and Neuron Monitor 1.0

– See neuron-monitor-bwc for instructions for using Neuron Monitor 2.x with Neuron Runtime 1.x
(neuron-rtd) .

1016 Chapter 24. Neuron Application Notes

AWS Neuron

24.2.4 How will this change affect me?

Neuron installation and upgrade

As explained in “How will this change affect the Neuron SDK?”, starting from Neuron 1.16.0, libnrt.so requires the
latest Neuron Driver (aws-neuron-dkms). In addition, it is no longer necessary to install aws-neuron-runtime. To
install Neuron or to upgrade to latest Neuron version, follow the installation and upgrade instructions below:

• PyTorch Neuron
– install-neuron-pytorch.

– update-neuron-pytorch.

• TensorFlow Neuron
– install-neuron-tensorflow.

– update-neuron-tensorflow.

• MXNet Neuron
– install-neuron-mxnet.

– update-neuron-mxnet.

Important: Starting with Neuron version 2.3, the aws-neuron-dkms package name has been changed to
aws-neuronx-dkms. See Introducing the first release of Neuron 2.x enabling EC2 Trn1 General Availability (GA)

Migrate your application to Neuron Runtime 2.x (libnrt.so)

For a successful migration from previous releases of your application to Neuron 1.16.0 or newer, make sure you perform
the following:

1. Prerequisite Read “How will this change affect the Neuron SDK?”.

2. Make sure you are not using Neuron Runtime 1.x (aws-neuron-runtime)
• Remove any code that installs aws-neuron-runtime from any CI/CD scripts.

• Stop neuron-rtd by running sudo systemctl stop neuron-rtd

• Uninstall neuron-rtd by running sudo apt remove aws-neuron-runtime or sudo yum
remove aws-neuron-runtime

3. Upgrade to your Neuron Framework of choice:
• update-neuron-pytorch.

• update-neuron-tensorflow.

• update-neuron-mxnet.

4. If you have code that starts and/or stops neuron-rtd Remove any code that starts or stops neuron-rtd
from any CI/CD scripts.

5. Application running multiple neuron-rtd If your application runs multiple processes and requires running
multiple neuron-rtd daemons:

• Remove the code that runs multiple neuron-rtd daemons.

24.2. Introducing Neuron Runtime 2.x (libnrt.so) 1017

AWS Neuron

• Instead of allocating Neuron devices to neuron-rtd through configuration files, use
NEURON_RT_VISIBLE_CORES or NEURON_RT_NUM_CORES environment variables to allocate
NeuronCores. See NeuronX Runtime Configuration for details.

If you application uses NEURONCORE_GROUP_SIZES, see the next item.

Note: NEURON_RT_VISIBLE_CORES and NEURON_RT_NUM_CORES environment variables enable you to
allocate NeuronCores to an application. Allocating NeuronCores improves application granularity, be-
cause Neuron devices include multiple NeuronCores.

6. Application running multiple processes using NEURONCORE_GROUP_SIZES
• Consider using NEURON_RT_VISIBLE_CORES or NEURON_RT_NUM_CORES environment variables

instead of NEURONCORE_GROUP_SIZES, which is being deprecated.

See NeuronX Runtime Configuration for details.

• If you are using TensorFlow Neuron (tensorflow-neuron (TF2.x)) and you are replacing
NEURONCORE_GROUP_SIZES=AxB which enables auto multicore replication, see the new API Ten-
sorFlow Neuron (tensorflow-neuron) Auto Multicore Replication (Beta) for usage and documenta-
tion.

• The behavior of your application will remain the same as before if you do not set
NEURON_RT_VISIBLE_CORES and do not set NEURON_RT_NUM_CORES.

• If you are considering migrating to NEURON_RT_VISIBLE_CORES or NEURON_RT_NUM_CORES:

– NEURON_RT_VISIBLE_CORES takes precedence over NEURON_RT_NUM_CORES.

– If you are migrating to NEURON_RT_VISIBLE_CORES:

∗ For TensorFlow applications or PyTorch applications make sure that
NEURONCORE_GROUP_SIZES is unset, or that NEURONCORE_GROUP_SIZES allocates the
same or smaller number of NeuronCores as allocated by NEURON_RT_VISIBLE_CORES.

∗ For MXNet applications, setting NEURONCORE_GROUP_SIZES and
NEURON_RT_VISIBLE_CORES environment variables at the same time is not sup-
ported. Use NEURON_RT_VISIBLE_CORES only.

∗ See NeuronX Runtime Configuration for more details on how to use
NEURON_RT_VISIBLE_CORES.

– If you are migrating to NEURON_RT_NUM_CORES:

∗ Make sure that NEURONCORE_GROUP_SIZES is unset.

∗ See NeuronX Runtime Configuration for more details on how to use
NEURON_RT_NUM_CORES.

7. Application running multiple processes accessing the same NeuronCore If your application accesses the
same NeuronCore from multiple processes, this is no longer possible with libnrt.so. Instead, mod-
ify your application to access the same NeuronCore from multiple threads.

Note: Optimal performance of multi-model execution is achieved when each NeuronCore executes a
single model.

8. Neuron Tools
• If you are using Neuron Monitor, see neuron-monitor-upg for details.

1018 Chapter 24. Neuron Application Notes

AWS Neuron

• If you are using neuron-cli remove any call to neuron-cli. For more information, see
maintenance_neuron-cli.

9. Containers If your application is running within a container, and it previously executed neuron-rtd within
the container, you need to re-build your container, so it will not include or install aws-neuron-runtime.
See neuron-containers and containers-migration-to-runtime2 for details.

24.2.5 Troubleshooting

Application fails to start

Description

Starting with the Neuron 1.16.0 release, Neuron Runtime (libnrt.so) requires Neuron Driver 2.0 or greater
(aws-neuron-dkms). Neuron Runtime requires the Neuron Driver (aws-neuron-dkms package) to access Neuron
devices.

If aws-neuron-dkms is not installed, the application will fail with an error message on the console and syslog similar
to the following:

NRT:nrt_init Unable to determine Neuron Driver version. Please check aws-neuron-
→˓dkms package is installed.

If an old aws-neuron-dkms is installed, the application will fail with an error message on the console and syslog
similar to the following:

NRT:nrt_init This runtime requires Neuron Driver version 2.0 or greater. Please␣
→˓upgrade aws-neuron-dkms package.

Solution

Follow the installation steps in install-guide-index to install aws-neuron-dkms.

Important: Starting with Neuron version 2.3, the aws-neuron-dkms package name has been changed to
aws-neuronx-dkms. See Introducing the first release of Neuron 2.x enabling EC2 Trn1 General Availability (GA)

Application fails to start although I installed latest aws-neuron-dkms

Description

Starting from the Neuron 1.16.0 release, Neuron Runtime (libnrt.so) requires Neuron Driver 2.0 or greater
(aws-neuron-dkms). If an old aws-neuron-dkms is installed, the application will fail. You may try to install
aws-neuron-dkms and still face application failure, because the aws-neuron-dkms installation failed as a result
of neuron-rtd daemon that was still running.

24.2. Introducing Neuron Runtime 2.x (libnrt.so) 1019

AWS Neuron

Solution

• Stop neuron-rtd by running: sudo systemctl stop neuron-rtd

• Uninstall neuron-rtd by running: sudo apt remove aws-neuron-runtime or sudo yum remove
aws-neuron-runtime

• Install aws-neuron-dkms by following steps in install-guide-index

Important: Starting with Neuron version 2.3, the aws-neuron-dkms package name has been changed to
aws-neuronx-dkms. See Introducing the first release of Neuron 2.x enabling EC2 Trn1 General Availability (GA)

Application unexpected behavior when upgrading to release Neuron 1.16.0 or newer

Description

When upgrading to release Neuron 1.16.0 or newer from previous releases, the OS may include two different versions
of Neuron Runtime: the libnrt.so shared library and neuron-rtd daemon. This can happen if the user did not stop
neuron-rtd daemon or did not make sure to uninstall the existing Neuron version before upgrade. In this case the
user application may behave unexpectedly.

Solution

If the OS includes two different versions of Neuron Runtime, libnrt.so shared library and neuron-rtd daemon:

• Before running applications that use neuron-rtd, restart neuron-rtd by calling sudo systemctl restart
neuron-rtd.

• Before running applications linked with libnrt.so, stop neuron-rtd by calling sudo systemctl stop
neuron-rtd.

Application unexpected behavior when downgrading to releases before Neuron 1.6.0 (from Neuron
1.16.0 or newer)

Description

When upgrading to release Neuron 1.16.0 or newer from previous releases, and then downgrading back to releases
before Neuron 1.6.0, the OS may include two different versions of Neuron Runtime: the libnrt.so shared library and
neuron-rtd daemon. This can happen if the user did not make sure to uninstall the existing Neuron version before
the upgrade or downgrade. In this case the user application may behave unexpectedly.

1020 Chapter 24. Neuron Application Notes

AWS Neuron

Solution

If the OS include two different versions of Neuron Runtime, libnrt.so shared library and neuron-rtd daemon:

• Before running applications that use neuron-rtd, restart neuron-rtd by calling sudo systemctl restart
neuron-rtd.

• Before running applications linked with libnrt.so, stop neuron-rtd by calling sudo systemctl stop
neuron-rtd.

Neuron Core is in use

Description

A Neuron Core cannot be shared between two applications. If an application started using a Neuron Core all other
applications trying to use the NeuronCore will fail during runtime initialization with the following message in the
console and in syslog:

ERROR NRT:nrt_allocate_neuron_cores NeuronCore(s) not available -␣
→˓Requested:nc1-nc1 Available:0

Solution

Terminate the the process using NeuronCore and then try launching the application.

24.2.6 Frequently Asked Questions (FAQ)

Do I need to recompile my model to run it with Neuron Runtime 2.x (libnrt.so)?

No.

Do I need to change my application launch command?

No.

Can libnrt.so and neuron-rtd co-exist in the same environment?

Although we recommend upgrading to the latest Neuron release, we understand that for a transition period you may
continue using neuron-rtd for old releases. If you are using Neuron Framework (PyTorch,TensorFlow or MXNet)
from releases before Neuron 1.16.0:

• Install the latest Neuron Driver (aws-neuron-dkms)

Important: Starting with Neuron version 2.3, the aws-neuron-dkms package name has been changed to
aws-neuronx-dkms. See Introducing the first release of Neuron 2.x enabling EC2 Trn1 General Availability (GA)

• For development, we recommend using different environments for Neuron Framework (PyTorch,TensorFlow or
MXNet) from releases before Neuron 1.16.0 and for Neuron Framework (PyTorch,TensorFlow or MXNet) from
Neuron 1.16.0 and newer. If that is not possible, make sure to stop neuron-rtd before executing models using
Neuron Framework (PyTorch,TensorFlow or MXNet) from Neuron 1.16.0 and newer.

24.2. Introducing Neuron Runtime 2.x (libnrt.so) 1021

AWS Neuron

• For deployment, when you are ready to upgrade, upgrade to Neuron Framework (PyTorch,TensorFlow or MXNet)
from Neuron 1.16.0 and newer. See Migrate your application to Neuron Runtime 2.x (libnrt.so) for more infor-
mation.

Warning: Executing models using Neuron Framework (PyTorch,TensorFlow or MXNet) from Neuron 1.16.0
and newer in an environment where neuron-rtd is running may cause undefined behavior. Make sure to stop
neuron-rtd before executing models using Neuron Framework (PyTorch,TensorFlow or MXNet) from Neuron
1.16.0 and newer.

Are there Neuron framework versions that will not support Neuron Runtime 2.x (libnrt.so)?

All supported PyTorch Neuron and TensorFlow framework extensions, in addition to Neuron MXnet 1.8.0 framework
extensions support Neuron Runtime 2.x.

Neuron MxNet 1.5.1 does not support Neuron Runtime 2.x (libnrt.so) and has now entered maintenance mode. See
maintenance_mxnet_1_5 for details.

This document is relevant for: Inf1

Performance (Inf1)

This document is relevant for: Inf1

24.3 Performance Tuning

Important: NeuronCore Groups (NCG) have been deprecated. See eol-ncg and Migrate your application to Neuron
Runtime 2.x (libnrt.so) for more details.

This guide is intended to provide the reader with an in-depth understanding of how to optimize neural network per-
formance on Inferentia for both throughput and latency. For simplicity, the guide uses the TensorFlow and ResNet-50
models as teaching examples to show how to choose between different compile-time optimizations (e.g., Batching and
NeuronCore Pipeline), as well as model-serving optimizations (e.g., multi-threading and dynamic-batching) to improve
inference performance.

The following guides are considered to be prerequisites for this tutorial:

• Running ResNet50 on Inferentia

• tensorflow-serving-neurocore-group

• Neuron Batching

• NeuronCore Pipeline

1022 Chapter 24. Neuron Application Notes

AWS Neuron

24.3.1 Batching and pipelining (technical background)

Neuron provides developers with various performance optimization features.

Two of the most widely used features are batching and pipelining. Both techniques aim to keep the data close to the
compute engines, but they achieve this data locality in different ways. In batching it is achieved by loading the data into
an on-chip cache and reusing it multiple times for multiple different model-inputs, while in pipelining it is achieved by
caching all model parameters into the on-chip cache across multiple NeuronCores and streaming the calculation across
them.

As a general rule of thumb, batching is preferred for applications that aim to optimize throughput and cost at the
expense of latency, while pipelining is preferred for applications with a high-throughput requirement under a strict
latency budget.

24.3.2 Compiling for batching optimization

To enable batching optimization, the model must first be compiled for a target batch-size. This is done by specifying
the batch size in the input tensor’s batch dimension during compilation. Users are encouraged to evaluate multiple
batch size, in order to determine the optimal latency/throughput deployment-point, which is application-dependent.

For example, the code snippet below enables batching on a ResNet50 model, with a batch-size of 5:

import numpy as np
import tensorflow.neuron as tfn

To change the batch size, change the first dimension in example_input
batch_size = 5
example_input = np.zeros([batch_size,224,224,3], dtype='float16')

tfn.saved_model.compile("rn50_fp16",
"rn50_fp16_compiled/1",
model_feed_dict={'input_1:0': example_input },
dynamic_batch_size=True)

Note: Depending on the size of the neural network, Neuron has a maximum batch size that works optimally on
Inferentia. If an unsupported batch size is used, an internal compiler error message will be displayed. A simple way to
explore optimal batch size for your specific model is to increment the batch size from 1 upward, one at a time, and test
application performance.

24.3.3 Compiling for pipeline optimization

In NeuronCore Pipeline mode, Neuron stores the model parameters in Inferentias’ local cache and streams inference
requests across the available NeuronCores, as specified by the --neuroncore-pipeline-cores compiler argument.
For example, to compile the model to fit a pipeline size of four Inferentia devices (16 NeuronCores) avaliable in the
inf1.6xlarge instance size:

import numpy as np
import tensorflow.neuron as tfn

compiler_args = ['--neuroncore-pipeline-cores', '16']
example_input = np.zeros([1,224,224,3], dtype='float16')

(continues on next page)

24.3. Performance Tuning 1023

AWS Neuron

(continued from previous page)

tfn.saved_model.compile("rn50_fp16",
"rn50_fp16_compiled/1",
model_feed_dict={'input_1:0': example_input },
compiler_args=compiler_args)

The minimum number of NeuronCores needed to run a compiled model can be found using the Neuron Check Model
tool. See Neuron Check Model.

24.3.4 Model-serving inference optimizations

To fully realize the maximum throughput of the compiled model (for either batching and pipelining), users need to
launch multiple host CPU threads to feed inputs into the Neuron pipeline. The number of threads needs to be larger
than the specified maximum number of NeuronCores.

Additionally, dynamic batching can be used to process a larger client-side inference batch-size and the framework
automatically breaks up the user-batch into smaller batch sizes, to match the compiled batch-size. This technique
increases the achievable throughput by hiding the framework-to-neuron overhead, and amortizing it over a larger batch
size. To use dynamic batching, set the argument --dynamic_batch_size=True during compilation and send a larger
inference batch size (user inference batch size) that is equal to a multiple of the compiled batch size.

Both methods can be applied together if this improves performance. However, multi-threading is always needed as a
first step to achieve high throughput. You need to experiment to find optimal settings for your application.

By default the framework sets the number of outstanding inference requests to the total number of NeuronCores plus
three. This can be changed by setting the NEURON_MAX_NUM_INFERS environment variable. For example, if the
compiled model includes CPU partitions (e.g., if the Neuron compiler decides that some operations are more efficient
to execute on CPU), the number of threads needs to be increased to account for the additional compute performed on the
CPU. Note that the available instance host memory size needs to be taken into consideration to prevent out-of-memory
errors. As above, you need to experiment in order to find the optimal settings for your application.

Note: By default the framework allocates a NeuronCore Group size to match the size of the compiled
model. The size of the model is the number of NeuronCores limit passed to compiler during compilation
(--neuroncore-pipeline-cores option). For more information see the tensorflow-serving-neurocore-group.

24.3.5 Other considerations

Mixed Precision

You can find more information about performance and accuracy trade offs in Mixed precision and performance-
accuracy tuning (neuron-cc).

1024 Chapter 24. Neuron Application Notes

AWS Neuron

Operator support

The Neuron Compiler maintains an evolving list of supported operators for each framework: Neuron Supported oper-
ators

AWS Neuron handles unsupported operators by partitioning the graph into subgraphs and executing them on different
targets (e.g., NeuronCore partition, CPU partition). If the entire model can run on Inferentia (i.e., all operators are
supported), then it will be compiled into a single subgraph, which will be executed by a NeuronCore Group.

Debug

You can examine the post-compiled model to view the compilation results using the Neuron plugin for TensorBoard.
See Visualize graphs executed on Neuron.

24.3.6 ResNet-50 optimization example

For an example demonstrating the concepts described here, see Tensorflow ResNet 50 Optimization Tutorial

This document is relevant for: Inf1

This document is relevant for: Inf1

24.4 Parallel Execution using NEURON_RT_NUM_CORES

Important: NEURONCORE_GROUP_SIZES will no longer be supported starting with the Neuron 1.19.0 release. If
your application uses NEURONCORE_GROUP_SIZES see Migrate your application to Neuron Runtime 2.x (libnrt.so) and
eol-ncgs-env_2 for more details.

24.4.1 Introduction

Inf1 instances are available with a different number of Inferentia chips. Each Inferentia chip consists of 4 NeuronCores
and an Inf1 instance includes 4 to 64 NeuronCores, depending on the size of the instance. This guide shows you how to
load one or more compiled models into different consecutive groups of NeuronCores using your framework of choice.

24.4.2 Data Parallel Execution

In PyTorch and TensorFlow, the same compiled model can run in parallel on an Inf1 instance by load-
ing it multiple times, up to the total number of NeuronCores specified in NEURON_RT_NUM_CORES
or NEURON_RT_VISIBLE_CORES. For more information about NEURON_RT_NUM_CORES and NEU-
RON_RT_VISIBLE_CORES, refer to Neuron Runtime Configuration.

24.4. Parallel Execution using NEURON_RT_NUM_CORES 1025

AWS Neuron

Running multiple models using single process

To run multiple models using a single process, set the environment variable NEURON_RT_NUM_CORES with a list of the
number of cores in each group, separated by commas.

You can set the NEURON_RT_NUM_CORES environment variable at runtime:

#!/bin/bash
NEURON_RT_NUM_CORES=13 python your_neuron_application.py

Or from within the Python process running your models (NOTE: You can only set it once in the same process at the
beginning of the script):

#!/usr/bin/env python
import os

Set Environment
os.environ['NEURON_RT_NUM_CORES']='13'

Load models and run inferences ...

The following examples allow you to load 4 models into 4 groups of NeuronCores within one process. For example, if
there are 4 models A, B, C, D compiled to 2, 4, 3, and 4 NeuronCores respectively, directly load the models A, B, C, D
in sequence within your TensorFlow or PyTorch Neuron process. This example requires an inf1.6xlarge instance with
16 NeuronCores, as the total number of NeuronCores within the NeuronCore Groups is 13.

In MXNet, mapping from models to NeuronCores is controlled by context mx.neuron(neuron_core_index) where
neuron_core_index is the NeuronCore index at the start of the group. In the example above, map model A to
mx.neuron(0) context, model B to mx.neuron(2) context, model C to mx.neuron(6) context and model D to
mx.neuron(9) context. For further details, refer to Flexible Execution Group (FlexEG) in Neuron-MXNet.

For PyTorch

See Data Parallel Inference on Torch Neuron for more details.

For Tensorflow

Set Environment
os.environ['NEURON_RT_NUM_CORES']='13'

Load models (TF2)
model0 = tf.keras.models.load_model(model0_file) # loaded into the first group of NC0-NC1
model1 = tf.keras.models.load_model(model1_file) # loaded into the second group of NC2-
→˓NC5
model2 = tf.keras.models.load_model(model1_file) # loaded into the third group of NC6-NC8
model3 = tf.keras.models.load_model(model1_file) # loaded into the fourth group of NC9-
→˓NC12

run inference by simply calling the loaded model
results0 = model0(inputs0)
results1 = model1(inputs1)
results2 = model2(inputs2)
results3 = model3(inputs3)

For MXNet 2.x:

1026 Chapter 24. Neuron Application Notes

AWS Neuron

Set Environment
os.environ['NEURON_RT_NUM_CORES']='13'

Load models (MXNet)
loaded into the first group of NC0-NC1
sym, args, aux = mx.model.load_checkpoint(mx_model0_file, 0)
model0 = sym.bind(ctx=mx.neuron(0), args=args, aux_states=aux, grad_req='null')
loaded into the second group of NC2-NC5
sym, args, aux = mx.model.load_checkpoint(mx_model1_file, 0)
model1 = sym.bind(ctx=mx.neuron(2), args=args, aux_states=aux, grad_req='null')
loaded into the third group of NC6-NC8
sym, args, aux = mx.model.load_checkpoint(mx_model2_file, 0)
model2 = sym.bind(ctx=mx.neuron(6), args=args, aux_states=aux, grad_req='null')
loaded into the fourth group of NC9-NC12
sym, args, aux = mx.model.load_checkpoint(mx_model3_file, 0)
model3 = sym.bind(ctx=mx.neuron(9), args=args, aux_states=aux, grad_req='null')

run inference by simply calling the loaded model
results0 = model0.forward(data=inputs0)
results1 = model1.forward(data=inputs1)
results2 = model2.forward(data=inputs2)
results3 = model3.forward(data=inputs3)

You can identify the NeuronCores used by each application with the neuron-top command line tool. For more
information about the neuron-top user interface, see Neuron Top User Guide.

$ neuron-top

24.4. Parallel Execution using NEURON_RT_NUM_CORES 1027

AWS Neuron

Running multiple models using multiple processes

You can also run multiple models in parallel processes, when you set NEURON_RT_NUM_CORES per process:

$ NEURON_RT_NUM_CORES=2 python your_1st_neuron_application.py
$ NEURON_RT_NUM_CORES=2 python your_2nd_neuron_application.py

The first process automatically selects a first set of 2 unused NeuronCores for its new group. The second process
automatically selects a new set of 2 unused NeuronCores for its new group.

Running multiple models on the same NeuronCore group

You can load more than one model in a NeuronCore group within one process. Neuron runtime handles switching
from one model to the next model within the NeuronCore group, when the next model is run within the application. In
TensorFlow or PyTorch, simply load the additional models after the initial number of models have been loaded, to fill
the NeuronCore groups associated with the process.

For PyTorch:

Set Environment
os.environ['NEURON_RT_NUM_CORES']='2'

Load models (PT)
model0 = torch.jit.load(model0_file) # loaded into the first group of NC0-NC1
model1 = torch.jit.load(model1_file) # loaded into the first group of NC0-NC1

run inference by simply calling the loaded model
results0 = model0(inputs0)
results1 = model1(inputs1)

For TensorFlow 2.x:

Set Environment
os.environ['NEURON_RT_NUM_CORES']='2'

(continues on next page)

1028 Chapter 24. Neuron Application Notes

AWS Neuron

(continued from previous page)

Load models (TF2)
model0 = tf.keras.models.load_model(model0_file) # loaded into the first group of NC0-NC1
model1 = tf.keras.models.load_model(model1_file) # loaded into the first group of NC0-NC1

run inference by simply calling the loaded model
results0 = model0(inputs0)
results1 = model1(inputs1)

In MXNet, use context mx.neuron(neuron_core_index) and use the same NeuronCore start index for the additional
models.

Set Environment
os.environ['NEURON_RT_NUM_CORES']='2'

Load models (MXNet)
loaded into the first group of NC0-NC1
sym, args, aux = mx.model.load_checkpoint(mx_model0_file, 0)
model0 = sym.bind(ctx=mx.neuron(0), args=args, aux_states=aux, grad_req='null')
loaded into the first group of NC0-NC1
sym, args, aux = mx.model.load_checkpoint(mx_model1_file, 0)
model1 = sym.bind(ctx=mx.neuron(0), args=args, aux_states=aux, grad_req='null')

run inference by simply calling the loaded model
results0 = model0.forward(data=inputs0)
results1 = model1.forward(data=inputs1)

The total NEURON_RT_NUM_CORES across all processes cannot exceed the number of NeuronCores available on the
instance. For example, on an inf1.xlarge with default configurations where the total number of NeuronCores visible to
TensorFlow-Neuron is 4, you can launch one process with NEURON_RT_NUM_CORES=2 (pipelined) and another process
with NEURON_RT_NUM_CORES=2 (data-parallel).

Examples using NEURON_RT_NUM_CORES include:

• PyTorch example

• MXNet example

24.4.3 Auto Model Replication in TensorFlow Neuron (tensorflow-neuron) (Beta)

Refer to the following API documentation to see how to perform automatic replication on multiple cores. Note auto-
replication will only work on models compiled with pipeline size 1: via --neuroncore-pipeline-cores=1. If
automatic replication is not enabled, the model will default to replicate on up to 4 cores.

Python API (TF 2.x only):

TensorFlow Neuron (tensorflow-neuron) Auto Multicore Replication (Beta)

CLI API (TF 1.x and TF 2.x):

TensorFlow Neuron TF2.x (tensorflow-neuronx TF2.x) Auto Multicore Replication CLI (Beta)

24.4. Parallel Execution using NEURON_RT_NUM_CORES 1029

AWS Neuron

24.4.4 Auto Model Replication (Being Deprecated)

The Auto Model Replication feature in TensorFlow-Neuron enables you to load the model once and the data parallel
replication will occur automatically. This reduces framework memory usage, as the same model is not loaded multiple
times. This feature is beta and available in TensorFlow-Neuron only.

To enable Auto Model Replication, set NEURONCORE_GROUP_SIZES to Nx1, where N is the desired replication
count (the number of NeuronCore groups, each group has size 1). For example, NEURONCORE_GROUP_SIZES=8x1
would automatically replicate the single-NeuronCore model 8 times.

os.environ['NEURONCORE_GROUP_SIZES'] = '4x1'

or

NEURONCORE_GROUP_SIZES=4x1 python3 application.py

When NEURONCORE_GROUP_SIZES is not set, the default is 4x1, where a single-NeuronCore model is replicated
4 times on any size of inf1 machine.

This feature is only available for models compiled with neuroncore-pipeline-cores set to 1 (default).

You will still need to use threads in the scaffolding code, to feed the loaded replicated model instance, to achieve high
throughput.

Example of auto model replication: Running OpenPose on Inferentia

24.4.5 FAQ

Can I mix data parallel and NeuronCore Pipelines?

Yes. You can compile the model using the neuroncore-pipeline-cores option. This tells the compiler to set compilation
to the specified number of cores for NeuronCore Pipeline. The Neuron Compiler returns a NEFF that fits within this
limit. See the Neuron compiler CLI Reference Guide (neuron-cc) for instructions on how to use this option.

For example, on an inf1.2xlarge, you can load two model instances, each compiled with neuroncore-pipeline-cores set
to 2, so they can run in parallel. The model instances can be loaded from different saved models or from the same saved
model.

Can I have a mix of multiple models in one Neuroncore group and single model in another one
Neuroncore group?

Currently, you can do this in MXNet, by setting up two Neuroncore groups, then loading, for example, multiple models
in one NCG, using context mx.neuron(0), and loading a single model in the second NCG, using context mx.neuron(2).
You can also load a single model in the first NCG and multiple models in the second NCG. For example:

Set Environment
os.environ['NEURON_RT_NUM_CORES']='6'

Load models (MXNet)
loaded into the first group of NC0-NC1
sym, args, aux = mx.model.load_checkpoint(mx_model0_file, 0)
model0 = sym.bind(ctx=mx.neuron(0), args=args, aux_states=aux, grad_req='null')
loaded into the second group of NC2-NC5
sym, args, aux = mx.model.load_checkpoint(mx_model1_file, 0)

(continues on next page)

1030 Chapter 24. Neuron Application Notes

AWS Neuron

(continued from previous page)

model1 = sym.bind(ctx=mx.neuron(2), args=args, aux_states=aux, grad_req='null')
loaded into the second group of NC2-NC5
sym, args, aux = mx.model.load_checkpoint(mx_model2_file, 0)
model2 = sym.bind(ctx=mx.neuron(2), args=args, aux_states=aux, grad_req='null')
loaded into the second group of NC2-NC5
sym, args, aux = mx.model.load_checkpoint(mx_model3_file, 0)
model3 = sym.bind(ctx=mx.neuron(2), args=args, aux_states=aux, grad_req='null')

run inference by simply calling the loaded model
results0 = model0.forward(data=inputs0)
results1 = model1.forward(data=inputs1)
results2 = model2.forward(data=inputs2)
results3 = model3.forward(data=inputs3)

Loading multiple models in one NCG and a single model in another NCG is currently not supported in TensorFlow
and PyTorch.

This document is relevant for: Inf1

PyTorch Neuron (torch-neuron)

This document is relevant for: Inf1

24.5 Running R-CNNs on Inf1

This application note demonstrates how to compile and run Detectron2-based R-CNNs on Inf1. It also provides guid-
ance on how to use profiling to improve performance of R-CNN models on Inf1.

Table of contents

• R-CNN Model Overview

– R-CNN Limitations and Considerations on Inferentia (NeuronCore-v1)

• Requirements

• Installation

• Compiling an R-CNN for Inf1

– Create a Detectron2 R-CNN Model

– Profile the Model

– Compiling the ResNet backbone to Inf1

• Optimize the R-CNN model

– Compiling the RPN

– Fusing the Backbone and RPN Head

– Compiling the RoI Heads

• End-to-end Compilation and Inference

24.5. Running R-CNNs on Inf1 1031

https://github.com/facebookresearch/detectron2

AWS Neuron

– Benchmarking

– Other improvements

∗ For latency sensitive applications:

∗ For throughput sensitive applications:

24.5.1 R-CNN Model Overview

Region-based CNN (R-CNN) models are commonly used for object detection and image segmentation tasks. A typical
R-CNN architecture consists of the following components:

• Backbone: The backbone extracts features from input images. In some models the backbone is a Feature Pyramid
Network (FPN), which uses a top-down architecture with lateral connections to build an in-network feature
pyramid from a single-scale input. The backbone is commonly a ResNet or Vision Transformer based network.

• Region Proposal Network (RPN): The RPN predicts region proposals with a wide range of scales and aspect
ratios. RPNs are constructed using convolutional layers and anchor boxes, which that serve as references for
multiple scales and aspect ratios.

• Region of Interest (RoI): The RoI component is used to resize the extracted features of varying size to the same
size so that they can be consumed by a fully connected layer. RoI Align is typically used instead of RoI Pooling,
because RoI Align provides better alignment.

The Detectron2 library provides many popular PyTorch R-CNN implementations, including R-CNN, Fast R-CNN,
Faster R-CNN, and Mask R-CNN. This application note focuses on the Detectron2 R-CNN models.

R-CNN Limitations and Considerations on Inferentia (NeuronCore-v1)

R-CNN models may have limitations and considerations on Inferentia (NeuronCore-v1). See the Model Architecture
Fit Guidelines for more information. These limitations are not applicable to NeuronCore-v2.

24.5.2 Requirements

The process described in this application note is intended to be run on an inf1.2xlarge. In practice, R-CNN models
can be run on any Inf1 instance size.

Verify that this Jupyter notebook is running the Python kernel environment that was set up according to the PyTorch
Installation Guide. Select the kernel from the “Kernel -> Change Kernel” option at the top of the Jupyter notebook
page.

24.5.3 Installation

This process requires the following pip packages:

• torch==1.11.0

• torch-neuron

• neuron-cc

• opencv-python

• pycocotools

• torchvision==0.12.0

1032 Chapter 24. Neuron Application Notes

https://github.com/facebookresearch/detectron2
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/frameworks/torch/torch-neuron/setup/pytorch-install.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/frameworks/torch/torch-neuron/setup/pytorch-install.html

AWS Neuron

• detectron2==0.6

The following section explains how to build torchvision from source and install the Detectron2 package. It also
reinstalls the Neuron packages, to ensure version compatibility.

The torchvision roi_align_kernel.cpp kernel is modified to use OMP threading for a multi-threaded inference
on the CPU. This significantly improves the performance of RoI Align kernels on Inf1: OMP threading leads to a RoI
Align latency reduction two to three times larger than the default roi_align_kernel.cpp kernel configuration.

Install python3.7-dev for pycocotools (a Detectron2 dependency)
!sudo apt install python3.7-dev -y

Install Neuron packages
!pip config set global.extra-index-url https://pip.repos.neuron.amazonaws.com
!pip uninstall -y torchvision
!pip install --force-reinstall torch-neuron==1.11.0.* neuron-cc[tensorflow] "protobuf==3.
→˓20.1" ninja opencv-python

Change cuda to 10.2 for Detectron2
!sudo rm /usr/local/cuda
!sudo ln -s /usr/local/cuda-10.2 /usr/local/cuda

Install Torchvision 0.12.0 from source
!git clone -b release/0.12 https://github.com/pytorch/vision.git

Update the RoI Align kernel to use OMP multithreading
with open('vision/torchvision/csrc/ops/cpu/roi_align_kernel.cpp', 'r') as file:

content = file.read()

Enable OMP Multithreading and set the number of threads to 4
old = "// #pragma omp parallel for num_threads(32)"
new = "#pragma omp parallel for num_threads(4)"
content = content.replace(old, new)

Re-write the file
with open('vision/torchvision/csrc/ops/cpu/roi_align_kernel.cpp', 'w') as file:

file.write(content)

Build Torchvision with OMP threading
!cd vision && CFLAGS="-fopenmp" python setup.py bdist_wheel
%pip install vision/dist/*.whl

Install Detectron2 release v0.6
!python -m pip install 'git+https://github.com/facebookresearch/detectron2.git@v0.6'

24.5. Running R-CNNs on Inf1 1033

AWS Neuron

24.5.4 Compiling an R-CNN for Inf1

By default, R-CNN models are not compilable on Inf1, because they cannot be traced with torch.jit.trace, which
is a requisite for inference on Inf1. The following section demonstrates techniques for compiling a Detectron2 R-CNN
model for inference on Inf1.

Specifically, this section explains how to create a standard Detectron2 R-CNN model, using a ResNet-101 backbone. It
demonstrates how to use profiling to identify the most compute-intensive parts of the R-CNN that need to be compiled
for accelerated inference on Inf1. It then explains how to manually extract and compile the ResNet backbone (the
dominant compute component) and inject the compiled backbone back into the full model, for improved performance.

Create a Detectron2 R-CNN Model

Create a Detectron2 R-CNN model using the COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml pretrained
weights and config file. Download a sample image from the COCO dataset and run an example inference.

from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg

def get_model():

Configure the R-CNN model
CONFIG_FILE = "COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml"
WEIGHTS_FILE = "COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml"
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file(CONFIG_FILE))
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(WEIGHTS_FILE)
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
cfg.MODEL.DEVICE = 'cpu' # Send to CPU for Neuron Tracing

Create the R-CNN predictor wrapper
predictor = DefaultPredictor(cfg)
return predictor

import os
import urllib.request

Define a function to get a sample image
def get_image():

filename = 'input.jpg'
if not os.path.exists(filename):

url = "http://images.cocodataset.org/val2017/000000439715.jpg"
urllib.request.urlretrieve(url, filename)

return filename

import time
import cv2

Create an R-CNN model
predictor = get_model()

Get a sample image from the COCO dataset
(continues on next page)

1034 Chapter 24. Neuron Application Notes

AWS Neuron

(continued from previous page)

image_filename = get_image()
image = cv2.imread(image_filename)

Run inference and print inference latency
start = time.time()
outputs = predictor(image)
print(f'Inference time: {(time.time() - start):0.3f} s')

Profile the Model

Use the PyTorch Profiler to identify which operators contribute the most to the model’s runtime on CPU. Ideally, you
can compile these compute intensive operators onto Inf1 for accelerated inference.

import torch.autograd.profiler as profiler

with profiler.profile(record_shapes=True) as prof:
with profiler.record_function("model_inference"):

predictor(image)
print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=30))

We see that convolution operators (aten::convolution) contribute the most to inference time. By compiling these
convolution operators to Inf1, you can improve performance of the R-CNN model. Print the R-CNN model architecture
to see which layers contain the aten::convolution operators:

print(predictor.model)

Note that the ResNet FPN backbone (predictor.model.backbone L17-L162) contains the majority of convolution op-
erators in the model. The RPN (predictor.model.proposal_generator L181-L533) also contains several convolutions.
Based on this, compile the ResNet backbone and RPN onto Inf1 to maximize performance.

Compiling the ResNet backbone to Inf1

This section demonstrates how to compile the ResNet backbone to Inf1 and use it for inference.

Eextract the backbone by accessing it with predictor.model.backbone. Compile the backbone using
strict=False, because the backbone outputs a dictionary. Use a fixed input shape (800 x 800) for compilation, as
all inputs will be resized to this shape during inference. This section also defines a basic preprocessing function (mostly
derived from the Detectron2 R-CNN DefaultPredictor module L308-L318) that reshapes inputs to 800 x 800.

Create a NeuronRCNN wrapper to inject the compiled backbone back into the model by dynamically replacing the
predictor.model.backbone attribute with the compiled model.

import torch
import torch_neuron

example = torch.rand([1, 3, 800, 800])

Use `with torch.no_grad():` to avoid a jit tracing issue in the ResNet backbone
with torch.no_grad():

neuron_backbone = torch_neuron.trace(predictor.model.backbone, example, strict=False)

(continues on next page)

24.5. Running R-CNNs on Inf1 1035

https://pytorch.org/docs/stable/profiler.html
https://github.com/facebookresearch/detectron2/blob/v0.6/detectron2/modeling/backbone/fpn.py
https://github.com/facebookresearch/detectron2/blob/v0.6/detectron2/modeling/proposal_generator/rpn.py
https://github.com/facebookresearch/detectron2/blob/45b3fcea6e76bf7a351e54e01c7d6e1a3a0100a5/detectron2/engine/defaults.py

AWS Neuron

(continued from previous page)

backbone_filename = 'backbone.pt'
torch.jit.save(neuron_backbone, backbone_filename)

from detectron2.modeling.meta_arch.rcnn import GeneralizedRCNN
from torch.jit import ScriptModule

class NeuronRCNN(torch.nn.Module):
"""
Creates a `NeuronRCNN` wrapper that injects the compiled backbone into
the R-CNN model. It also stores the `size_divisibility` attribute from
the original backbone.
"""

def __init__(self, model: GeneralizedRCNN, neuron_backbone: ScriptModule) -> None:
super().__init__()

Keep track of the backbone variables
size_divisibility = model.backbone.size_divisibility

Load and inject the compiled backbone
model.backbone = neuron_backbone

Set backbone variables
setattr(model.backbone, 'size_divisibility', size_divisibility)

self.model = model

def forward(self, x):
return self.model(x)

Create the R-CNN with the compiled backbone
neuron_rcnn = NeuronRCNN(predictor.model, neuron_backbone)
neuron_rcnn.eval()

Print the R-CNN architecture to verify the backbone is now the
`neuron_backbone` (shows up as `RecursiveScriptModule`)
print(neuron_rcnn)

def preprocess(original_image, predictor):
"""
A basic preprocessing function that sets the input height=800 and
input width=800. The function is derived from the preprocessing
steps in the Detectron2 `DefaultPredictor` module.
"""

height, width = original_image.shape[:2]
resize_func = predictor.aug.get_transform(original_image)
resize_func.new_h = 800 # Override height
resize_func.new_w = 800 # Override width
image = resize_func.apply_image(original_image)
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))

(continues on next page)

1036 Chapter 24. Neuron Application Notes

AWS Neuron

(continued from previous page)

inputs = {"image": image, "height": height, "width": width}
return inputs

Get a resized input using the sample image
inputs = preprocess(image, get_model())

Run inference and print inference latency
start = time.time()
for _ in range(10):

outputs = neuron_rcnn([inputs])[0]
print(f'Inference time: {((time.time() - start)/10):0.3f} s')

with profiler.profile(record_shapes=True) as prof:
with profiler.record_function("model_inference"):

neuron_rcnn([inputs])
print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=30))

By running the backbone on Inf1, the overall runtime is already significantly improved. The count and runtime of
aten::convolution operators is also decreased. We now see a neuron::forward_v2 operator that is the compiled
backbone.

24.5.5 Optimize the R-CNN model

Compiling the RPN

Examine the profiling and note that there are still several aten::convolution, aten::linear, and aten::
addmm operators that significantly contribute to the model’s overall latency. By inspecting the model’s architec-
ture and code, we can determine that the majority of these operators are contained in the RPN module (predic-
tor.model.proposal_generator L181-L533).

To improve the model’s performance, extract the RPN Head and compile it on Inf1 to increase the number of operators
running on Inf1. You need to compile the RPN Head, because the RPN Anchor Generator contains objects that are not
traceable with torch.jit.trace.

The RPN Head contains five layers that run inference on multiple resized inputs. To compile the RPN Head, cre-
ate a list of tensors that contain the input (“features”) shapes used by RPN Head on each layer. These tensor
shapes can be determined by printing the input shapes in the RPN Head forward function (predictor.model.
proposal_generator.rpn_head.forward).

Create a new NeuronRCNN wrapper that injects both the compiled backbone and RPN Head into the R-CNN model.

import math

input_shape = [1, 3, 800, 800] # Overall input shape at inference time

Create the list example of RPN inputs using the resizing logic from the RPN Head
features = list()
for i in [0, 1, 2, 3, 4]:

ratio = 1 / (4 * 2**i)
x_i_h = math.ceil(input_shape[2] * ratio)
x_i_w = math.ceil(input_shape[3] * ratio)

(continues on next page)

24.5. Running R-CNNs on Inf1 1037

https://github.com/facebookresearch/detectron2/blob/v0.6/detectron2/modeling/proposal_generator/rpn.py
https://github.com/facebookresearch/detectron2/blob/v0.6/detectron2/modeling/proposal_generator/rpn.py

AWS Neuron

(continued from previous page)

feature = torch.zeros(1, 256, x_i_h, x_i_w)
features.append(feature)

Extract and compile the RPN Head
neuron_rpn_head = torch_neuron.trace(predictor.model.proposal_generator.rpn_head,␣
→˓[features])
rpn_head_filename = 'rpn_head.pt'
torch.jit.save(neuron_rpn_head, rpn_head_filename)

class NeuronRCNN(torch.nn.Module):
"""
Creates a wrapper that injects the compiled backbone and RPN Head
into the R-CNN model.
"""

def __init__(self, model: GeneralizedRCNN, neuron_backbone: ScriptModule, neuron_rpn_
→˓head: ScriptModule) -> None:

super().__init__()

Keep track of the backbone variables
size_divisibility = model.backbone.size_divisibility

Inject the compiled backbone
model.backbone = neuron_backbone

Set backbone variables
setattr(model.backbone, 'size_divisibility', size_divisibility)

Inject the compiled RPN Head
model.proposal_generator.rpn_head = neuron_rpn_head

self.model = model

def forward(self, x):
return self.model(x)

Create the R-CNN with the compiled backbone and RPN Head
predictor = get_model()
neuron_rcnn = NeuronRCNN(predictor.model, neuron_backbone, neuron_rpn_head)
neuron_rcnn.eval()

Print the R-CNN architecture to verify the compiled modules show up
print(neuron_rcnn)

Run inference and print inference latency
start = time.time()
for _ in range(10):

outputs = neuron_rcnn([inputs])[0]
print(f'Inference time: {((time.time() - start)/10):0.3f} s')

1038 Chapter 24. Neuron Application Notes

AWS Neuron

with profiler.profile(record_shapes=True) as prof:
with profiler.record_function("model_inference"):

neuron_rcnn([inputs])
print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=30))

By running the compiled backbone and RPN Head on Inf1, overall runtime is improved. Once again, the number and
runtime of aten::convolution operators is also decreased. There are now two neuron::forward_v2 operators,
which correspond to the compiled backbone and RPN Head.

Fusing the Backbone and RPN Head

It is usually preferable to compile fewer independent models (“subgraphs”) on Inf1. Combining models and compiling
them as a single subgraph enables the Neuron compiler to perform additional optimizations and reduces I/O data transfer
between CPU and NeuronCores between each subgraph.

In this section, the ResNet backbone and RPN Head are “fused” into a single model to compile on Inf1. Cre-
ate the NeuronFusedBackboneRPNHead wrapper as a compilable model that contains both the ResNet backbone
(predictor.model.backbone L17-L162) and RPN Head (predictor.model.proposal_generator L181-L533). Output the
features to be used downstream by the RoI Heads. Compile this NeuronFusedBackboneRPNHead wrapper
as neuron_backbone_rpn, then create a separate BackboneRPN wrapper to inject the neuron_backbone_rpn
in place of the original backbone and RPN Head. Copy the remainder of the RPN forward code (predic-
tor.model.proposal_generator.forward L431-L480) to create a “fused” backbone + RPN module. Lastly, re-write the
NeuronRCNN wrapper to use the fused backbone + RPN module. The NeuronRCNN wrapper also uses the predictor.
model forward code to re-write the rest of the R-CNN model forward function.

class NeuronFusedBackboneRPNHead(torch.nn.Module):
"""
Wrapper to compile the fused ResNet backbone and RPN Head.
"""

def __init__(self, model: GeneralizedRCNN) -> None:
super().__init__()
self.backbone = model.backbone
self.rpn_head = model.proposal_generator.rpn_head
self.in_features = model.proposal_generator.in_features

def forward(self, x):
features = self.backbone(x)
features_ = [features[f] for f in self.in_features]
return self.rpn_head(features_), features

Create the wrapper with the combined backbone and RPN Head
predictor = get_model()
backbone_rpn_wrapper = NeuronFusedBackboneRPNHead(predictor.model)
backbone_rpn_wrapper.eval()

Compile the wrapper
example = torch.rand([1, 3, 800, 800])

with torch.no_grad():
neuron_backbone_rpn_head = torch_neuron.trace(

backbone_rpn_wrapper, example, strict=False)
(continues on next page)

24.5. Running R-CNNs on Inf1 1039

https://github.com/facebookresearch/detectron2/blob/v0.6/detectron2/modeling/backbone/fpn.py
https://github.com/facebookresearch/detectron2/blob/v0.6/detectron2/modeling/proposal_generator/rpn.py
https://github.com/facebookresearch/detectron2/blob/v0.6/detectron2/modeling/proposal_generator/rpn.py
https://github.com/facebookresearch/detectron2/blob/v0.6/detectron2/modeling/proposal_generator/rpn.py

AWS Neuron

(continued from previous page)

backbone_rpn_filename = 'backbone_rpn.pt'
torch.jit.save(neuron_backbone_rpn_head, backbone_rpn_filename)

class BackboneRPN(torch.nn.Module):
"""
Wrapper that uses the compiled `neuron_backbone_rpn` instead
of the original backbone and RPN Head. We copy the remainder
of the RPN `forward` code (`predictor.model.proposal_generator.forward`)
to create a "fused" backbone + RPN module.
"""

def __init__(self, model: GeneralizedRCNN) -> None:
super().__init__()
self.backbone_rpn_head = NeuronFusedBackboneRPNHead(model)
self._rpn = model.proposal_generator
self.in_features = model.proposal_generator.in_features

def forward(self, images):
preds, features = self.backbone_rpn_head(images.tensor)
features_ = [features[f] for f in self.in_features]
pred_objectness_logits, pred_anchor_deltas = preds
anchors = self._rpn.anchor_generator(features_)

Transpose the Hi*Wi*A dimension to the middle:
pred_objectness_logits = [

(N, A, Hi, Wi) -> (N, Hi, Wi, A) -> (N, Hi*Wi*A)
score.permute(0, 2, 3, 1).flatten(1)
for score in pred_objectness_logits

]
pred_anchor_deltas = [

(N, A*B, Hi, Wi) -> (N, A, B, Hi, Wi) -> (N, Hi, Wi, A, B) -> (N, Hi*Wi*A,␣
→˓B)

x.view(x.shape[0], -1, self._rpn.anchor_generator.box_dim,
x.shape[-2], x.shape[-1])

.permute(0, 3, 4, 1, 2)

.flatten(1, -2)
for x in pred_anchor_deltas

]

proposals = self._rpn.predict_proposals(
anchors, pred_objectness_logits, pred_anchor_deltas, images.image_sizes

)
return proposals, features

class NeuronRCNN(torch.nn.Module):
"""
Wrapper that uses the fused backbone + RPN module and re-writes
the rest of the R-CNN `model` `forward` function.
"""

(continues on next page)

1040 Chapter 24. Neuron Application Notes

AWS Neuron

(continued from previous page)

def __init__(self, model: GeneralizedRCNN) -> None:
super().__init__()

Use the fused Backbone + RPN
self.backbone_rpn = BackboneRPN(model)

self.roi_heads = model.roi_heads

self.preprocess_image = model.preprocess_image
self._postprocess = model._postprocess

def forward(self, batched_inputs):
images = self.preprocess_image(batched_inputs)
proposals, features = self.backbone_rpn(images)
results, _ = self.roi_heads(images, features, proposals, None)
return self._postprocess(results, batched_inputs, images.image_sizes)

Create the new NeuronRCNN wrapper with the combined backbone and RPN Head
predictor = get_model()
neuron_rcnn = NeuronRCNN(predictor.model)
neuron_rcnn.eval()

Inject the Neuron compiled models
neuron_rcnn.backbone_rpn.backbone_rpn_head = neuron_backbone_rpn_head

Print the R-CNN architecture to verify the compiled modules show up
print(neuron_rcnn)

Run inference and print inference latency
start = time.time()
for _ in range(10):

outputs = neuron_rcnn([inputs])[0]
print(f'Inference time: {((time.time() - start)/10):0.3f} s')

with profiler.profile(record_shapes=True) as prof:
with profiler.record_function("model_inference"):

neuron_rcnn([inputs])
print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=30))

By running the fused backbone + RPN Head on Inf1, overall runtime is improved even more. We now see a single
neuron::forward_v2 operator with a lower runtime than the previous combined runtime of the two separate neuron:
:forward_v2 operators.

24.5. Running R-CNNs on Inf1 1041

AWS Neuron

Compiling the RoI Heads

This section describes how to extract and compile part of RoI Heads module (predictor.model.roi_heads L530-
L778) which runs most of the remaining aten::linear and aten::addmm operators on Inf1. The entire
RoI Heads module cannot be extracted, because it contains unsupported operators. So you need to create a
NeuronBoxHeadBoxPredictor wrapper, extracts specific parts of the roi_heads for compilation. The example in-
put for compilation is the shape of the input into the self.roi_heads.box_head.forward function. Write another
wrapper, ROIHead that combines the compiled roi_heads into the rest of the RoI module. The _forward_box and
forward functions are from the predictor.model.roi_heads module. Lastly, re-write the NeuronRCNN wrapper
to use the optimized RoI Heads wrapper as well as the fused backbone + RPN module.

class NeuronBoxHeadBoxPredictor(torch.nn.Module):
"""
Wrapper that extracts the RoI Box Head and Box Predictor
for compilation.
"""

def __init__(self, model: GeneralizedRCNN) -> None:
super().__init__()
self.roi_heads = model.roi_heads

def forward(self, box_features):
box_features = self.roi_heads.box_head(box_features)
predictions = self.roi_heads.box_predictor(box_features)
return predictions

Create the NeuronBoxHeadBoxPredictor wrapper
predictor = get_model()
box_head_predictor = NeuronBoxHeadBoxPredictor(predictor.model)
box_head_predictor.eval()

Compile the wrapper
example = torch.rand([1000, 256, 7, 7])
neuron_box_head_predictor = torch_neuron.trace(box_head_predictor, example)

roi_head_filename = 'box_head_predictor.pt'
torch.jit.save(neuron_box_head_predictor, roi_head_filename)

class ROIHead(torch.nn.Module):
"""
Wrapper that combines the compiled `roi_heads` into the
rest of the RoI module. The `_forward_box` and `forward`
functions are from the `predictor.model.roi_heads` module.
"""

def __init__(self, model: GeneralizedRCNN) -> None:
super().__init__()
self.roi_heads = model.roi_heads
self.neuron_box_head_predictor = NeuronBoxHeadBoxPredictor(model)

def _forward_box(self, features, proposals):
features = [features[f] for f in self.roi_heads.box_in_features]
box_features = self.roi_heads.box_pooler(

(continues on next page)

1042 Chapter 24. Neuron Application Notes

https://github.com/facebookresearch/detectron2/blob/v0.6/detectron2/modeling/roi_heads/roi_heads.py

AWS Neuron

(continued from previous page)

features, [x.proposal_boxes for x in proposals])
predictions = self.neuron_box_head_predictor(box_features)
pred_instances, _ = self.roi_heads.box_predictor.inference(

predictions, proposals)
return pred_instances

def forward(self, images, features, proposals, targets=None):
pred_instances = self._forward_box(features, proposals)
pred_instances = self.roi_heads.forward_with_given_boxes(

features, pred_instances)
return pred_instances, {}

class NeuronRCNN(torch.nn.Module):
"""
Wrapper that uses the fused backbone + RPN module and the optimized RoI
Heads wrapper
"""

def __init__(self, model: GeneralizedRCNN) -> None:
super().__init__()

Create fused Backbone + RPN
self.backbone_rpn = BackboneRPN(model)

Create Neuron RoI Head
self.roi_heads = ROIHead(model)

Define pre and post-processing functions
self.preprocess_image = model.preprocess_image
self._postprocess = model._postprocess

def forward(self, batched_inputs):
images = self.preprocess_image(batched_inputs)
proposals, features = self.backbone_rpn(images)
results, _ = self.roi_heads(images, features, proposals, None)
return self._postprocess(results, batched_inputs, images.image_sizes)

Initialize an R-CNN on CPU
predictor = get_model()

Create the Neuron R-CNN on CPU
neuron_rcnn = NeuronRCNN(predictor.model)
neuron_rcnn.eval()

Inject the Neuron compiled models
neuron_rcnn.backbone_rpn.backbone_rpn_head = neuron_backbone_rpn_head
neuron_rcnn.roi_heads.neuron_box_head_predictor = neuron_box_head_predictor

Run inference and print inference latency
start = time.time()
for _ in range(10):

(continues on next page)

24.5. Running R-CNNs on Inf1 1043

AWS Neuron

(continued from previous page)

outputs = neuron_rcnn([inputs])[0]
print(f'CPU Inference time: {((time.time() - start)/10):0.3f} s')

with profiler.profile(record_shapes=True) as prof:
with profiler.record_function("model_inference"):

neuron_rcnn([inputs])
print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=30))

Although the overall latency did not change significantly, running more of the model on Inf1 instead of CPU frees up
CPU resources when multiple models are running in parallel.

24.5.6 End-to-end Compilation and Inference

This section provides standalone code that compiles and runs an optimized Detectron2 R-CNN on Inf1. Most of the
code in this section is from the previous sections in this application note and is consolidated here for easy deployment.
This section has the following main components:

• Preprocessing and compilation functions

• Wrappers that extract the R-CNN ResNet backbone, RPN Head, and RoI Head for compilation on Inf1.

• A NeuronRCNN wrapper that creates an optimized end-to-end Detectron2 R-CNN model for inference on
Inf1

• Benchmarking code that runs parallelized inference for optimized throughput on Inf1

Benchmarking

The benchmarking section explains how to load multiple optimized RCNN models and run them in parallel, to maximize
throughput.

Use the beta NeuronCore placement API, torch_neuron.experimental.neuron_cores_context(), to ensure all
compiled models in an optimized RCNN model are loaded onto the same NeuronCore. Note that the functionality and
API of torch_neuron.experimental.neuron_cores_context() might change in future releases.

Define a simple benchmark function that loads four optimized RCNN models onto four separate NeuronCores, runs
multithreaded inference, and calculates the corresponding latency and throughput. Benchmark various numbers of
loaded models, to show the impact of parallelism.

Note that throughput increases (at the cost of latency) when more models are run in parallel on Inf1. Increasing the
number of worker threads also improves throughput.

Other improvements

There are many additional optimizations that can be applied to RCNN models on Inf1 depending on the application:

1044 Chapter 24. Neuron Application Notes

AWS Neuron

For latency sensitive applications:

• Each of the five layers in the RPN head can be parallelized to decrease overall latency.

• The number of OMP Threads can be increased in the ROI Align kernel. Both of these optimizations improve
latency, at the cost of decreasing throughput.

For throughput sensitive applications:

• The input batch size can be increased to improve NeuronCore utilization.

import time
import os
import urllib.request
from typing import Any, Union, Callable

import cv2
import numpy as np
from concurrent.futures import ThreadPoolExecutor

import torch
import torch_neuron

from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.modeling.meta_arch.rcnn import GeneralizedRCNN

Helper functions

def get_model():

Configure the R-CNN model
CONFIG_FILE = "COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml"
WEIGHTS_FILE = "COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml"
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file(CONFIG_FILE))
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(WEIGHTS_FILE)
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
cfg.MODEL.DEVICE = 'cpu' # Send to CPU for Neuron Tracing

Create the R-CNN predictor wrapper
predictor = DefaultPredictor(cfg)
return predictor

def get_image():

Get a sample image
filename = 'input.jpg'

(continues on next page)

24.5. Running R-CNNs on Inf1 1045

AWS Neuron

(continued from previous page)

if not os.path.exists(filename):
url = "http://images.cocodataset.org/val2017/000000439715.jpg"
urllib.request.urlretrieve(url, filename)

return filename

def preprocess(original_image, predictor):
"""
A basic preprocessing function that sets the input height=800 and
input width=800. The function is derived from the preprocessing
steps in the Detectron2 `DefaultPredictor` module.
"""

height, width = original_image.shape[:2]
resize_func = predictor.aug.get_transform(original_image)
resize_func.new_h = 800 # Override height
resize_func.new_w = 800 # Override width
image = resize_func.apply_image(original_image)
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
inputs = {"image": image, "height": height, "width": width}
return inputs

Neuron modules

class NeuronFusedBackboneRPNHead(torch.nn.Module):
"""
Wrapper to compile the fused ResNet backbone and RPN Head.
"""

def __init__(self, model: GeneralizedRCNN) -> None:
super().__init__()
self.backbone = model.backbone
self.rpn_head = model.proposal_generator.rpn_head
self.in_features = model.proposal_generator.in_features

def forward(self, x):
features = self.backbone(x)
features_ = [features[f] for f in self.in_features]
return self.rpn_head(features_), features

class BackboneRPN(torch.nn.Module):
"""
Wrapper that uses the compiled `neuron_backbone_rpn` instead
of the original backbone and RPN Head. We copy the remainder
of the RPN `forward` code (`predictor.model.proposal_generator.forward`)
to create a "fused" backbone + RPN module.
"""

(continues on next page)

1046 Chapter 24. Neuron Application Notes

AWS Neuron

(continued from previous page)

def __init__(self, model: GeneralizedRCNN) -> None:
super().__init__()
self.backbone_rpn_head = NeuronFusedBackboneRPNHead(model)
self._rpn = model.proposal_generator
self.in_features = model.proposal_generator.in_features

def forward(self, images):
preds, features = self.backbone_rpn_head(images.tensor)
features_ = [features[f] for f in self.in_features]
pred_objectness_logits, pred_anchor_deltas = preds
anchors = self._rpn.anchor_generator(features_)

Transpose the Hi*Wi*A dimension to the middle:
pred_objectness_logits = [

(N, A, Hi, Wi) -> (N, Hi, Wi, A) -> (N, Hi*Wi*A)
score.permute(0, 2, 3, 1).flatten(1)
for score in pred_objectness_logits

]
pred_anchor_deltas = [

(N, A*B, Hi, Wi) -> (N, A, B, Hi, Wi) -> (N, Hi, Wi, A, B) -> (N, Hi*Wi*A,␣
→˓B)

x.view(x.shape[0], -1, self._rpn.anchor_generator.box_dim,
x.shape[-2], x.shape[-1])

.permute(0, 3, 4, 1, 2)

.flatten(1, -2)
for x in pred_anchor_deltas

]

proposals = self._rpn.predict_proposals(
anchors, pred_objectness_logits, pred_anchor_deltas, images.image_sizes

)
return proposals, features

class NeuronBoxHeadBoxPredictor(torch.nn.Module):
"""
Wrapper that extracts the RoI Box Head and Box Predictor
for compilation.
"""

def __init__(self, model: GeneralizedRCNN) -> None:
super().__init__()
self.roi_heads = model.roi_heads

def forward(self, box_features):
box_features = self.roi_heads.box_head(box_features)
predictions = self.roi_heads.box_predictor(box_features)
return predictions

class ROIHead(torch.nn.Module):
"""

(continues on next page)

24.5. Running R-CNNs on Inf1 1047

AWS Neuron

(continued from previous page)

Wrapper that combines the compiled `roi_heads` into the
rest of the RoI module. The `_forward_box` and `forward`
functions are from the `predictor.model.roi_heads` module.
"""

def __init__(self, model: GeneralizedRCNN) -> None:
super().__init__()
self.roi_heads = model.roi_heads
self.neuron_box_head_predictor = NeuronBoxHeadBoxPredictor(model)

def _forward_box(self, features, proposals):
features = [features[f] for f in self.roi_heads.box_in_features]
box_features = self.roi_heads.box_pooler(

features, [x.proposal_boxes for x in proposals])
predictions = self.neuron_box_head_predictor(box_features)
pred_instances, _ = self.roi_heads.box_predictor.inference(

predictions, proposals)
return pred_instances

def forward(self, images, features, proposals, targets=None):
pred_instances = self._forward_box(features, proposals)
pred_instances = self.roi_heads.forward_with_given_boxes(

features, pred_instances)
return pred_instances, {}

class NeuronRCNN(torch.nn.Module):
"""
Wrapper that uses the fused backbone + RPN module and the optimized RoI
Heads wrapper
"""

def __init__(self, model: GeneralizedRCNN) -> None:
super().__init__()

Create fused Backbone + RPN
self.backbone_rpn = BackboneRPN(model)

Create Neuron RoI Head
self.roi_heads = ROIHead(model)

Define pre and post-processing functions
self.preprocess_image = model.preprocess_image
self._postprocess = model._postprocess

def forward(self, batched_inputs):
images = self.preprocess_image(batched_inputs)
proposals, features = self.backbone_rpn(images)
results, _ = self.roi_heads(images, features, proposals, None)
return self._postprocess(results, batched_inputs, images.image_sizes)

(continues on next page)

1048 Chapter 24. Neuron Application Notes

AWS Neuron

(continued from previous page)

Compilation functions

def compile(
model: Union[Callable, torch.nn.Module],
example_inputs: Any,
filename: str,
**kwargs

) -> torch.nn.Module:
"""
Compiles the model for Inf1 if it doesn't already exist and saves it as the provided␣

→˓filename.

model: A module or function which defines a torch model or computation.
example_inputs: An example set of inputs which will be passed to the

`model` during compilation.
filename: Name of the compiled model
kwargs: Extra `torch_neuron.trace` kwargs
"""

if not os.path.exists(filename):
with torch.no_grad():

compiled_model = torch_neuron.trace(model, example_inputs, **kwargs)
torch.jit.save(compiled_model, filename)

Benchmarking function

def benchmark(backbone_rpn_filename, roi_head_filename, inputs,
n_models=4, batch_size=1, n_threads=4, iterations=200):

"""
A simple benchmarking function that loads `n_models` optimized
models onto separate NeuronCores, runs multithreaded inference,
and calculates the corresponding latency and throughput.
"""

Load models
models = list()
for i in range(n_models):

with torch_neuron.experimental.neuron_cores_context(i):
Create the RCNN with the fused backbone + RPN Head and compiled RoI Heads
Initialize an R-CNN on CPU
predictor = get_model()

Create the Neuron R-CNN on CPU
neuron_rcnn = NeuronRCNN(predictor.model)
neuron_rcnn.eval()

Inject the Neuron compiled models

(continues on next page)

24.5. Running R-CNNs on Inf1 1049

AWS Neuron

(continued from previous page)

neuron_rcnn.backbone_rpn.backbone_rpn_head = torch.jit.load(backbone_rpn_
→˓filename)

neuron_rcnn.roi_heads.neuron_box_head_predictor = torch.jit.load(roi_head_
→˓filename)

models.append(neuron_rcnn)

Warmup
for _ in range(8):

for model in models:
model([inputs])

latencies = []

Thread task
def task(i):

start = time.time()
models[i]([inputs])
finish = time.time()
latencies.append((finish - start) * 1000)

begin = time.time()
with ThreadPoolExecutor(max_workers=n_threads) as pool:

for i in range(iterations):
pool.submit(task, i % n_models)

end = time.time()

Compute metrics
boundaries = [50, 95, 99]
names = [f'Latency P{i} (ms)' for i in boundaries]
percentiles = np.percentile(latencies, boundaries)
duration = end - begin

Display metrics
results = {

'Samples': iterations,
'Batch Size': batch_size,
'Models': n_models,
'Threads': n_threads,
'Duration (s)': end - begin,
'Throughput (inf/s)': (batch_size * iterations) / duration,
**dict(zip(names, percentiles)),

}

print('-' * 80)
pad = max(map(len, results))
for key, value in results.items():

if isinstance(value, float):
print(f'{key + ":" :<{pad + 1}} {value:0.3f}')

else:
print(f'{key + ":" :<{pad + 1}} {value}')

print()

(continues on next page)

1050 Chapter 24. Neuron Application Notes

AWS Neuron

(continued from previous page)

if __name__ == "__main__":

Create and compile the combined backbone and RPN Head wrapper
backbone_rpn_filename = 'backbone_rpn.pt'
predictor = get_model()
backbone_rpn_wrapper = NeuronFusedBackboneRPNHead(predictor.model)
backbone_rpn_wrapper.eval()
example = torch.rand([1, 3, 800, 800])
compile(backbone_rpn_wrapper, example, backbone_rpn_filename, strict=False)

Create and compile the RoI Head wrapper
roi_head_filename = 'box_head_predictor.pt'
predictor = get_model()
box_head_predictor = NeuronBoxHeadBoxPredictor(predictor.model)
box_head_predictor.eval()
example = torch.rand([1000, 256, 7, 7])
compile(box_head_predictor, example, roi_head_filename)

Download a sample image from the COCO dataset and read it
image_filename = get_image()
image = cv2.imread(image_filename)
inputs = preprocess(image, get_model())

Benchmark the Neuron R-CNN model for various numbers of loaded models
benchmark(backbone_rpn_filename, roi_head_filename, inputs, n_models=1, n_threads=1)
benchmark(backbone_rpn_filename, roi_head_filename, inputs, n_models=1, n_threads=2)
benchmark(backbone_rpn_filename, roi_head_filename, inputs, n_models=2, n_threads=2)
benchmark(backbone_rpn_filename, roi_head_filename, inputs, n_models=2, n_threads=4)
benchmark(backbone_rpn_filename, roi_head_filename, inputs, n_models=4, n_threads=4)
benchmark(backbone_rpn_filename, roi_head_filename, inputs, n_models=4, n_threads=8)

This document is relevant for: Inf1

PyTorch Neuronx (torch-neuronx)

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

24.6 Graph Partitioner on torch_neuronx

Table of Contents

• Introduction

• The Purpose of the Graph Partitioner

• How it Works

– Determining Unsupported Operators

24.6. Graph Partitioner on torch_neuronx 1051

AWS Neuron

– Customizability

• Examples

– Default Usage

– Specifying requirements

– Specifying additional operators to partition

24.6.1 Introduction

This guide introduces the graph partitioner for torch-neuronx. The following sections explain the purpose of the graph
partitioner, how it works, and go over a few examples.

24.6.2 The Purpose of the Graph Partitioner

While neuronx-cc is very sophisticated and can compile most operators, there are some operator configurations that
are not supported by the compiler. Usually in a model that contains unsupported operators, these are only a few operators
while the supported parts of the model can benefit from the acceleration benefits that Neuron offers. With this in mind,
we developed a graph partitioner that will partition out unsupported operators to be executed on CPU, while compiling
and executing the supported operators on Neuron.

24.6.3 How it Works

Determining Unsupported Operators

Operator support is determined by the neuronx-cc compiler frontend. This is done because this gives us more flexi-
bility than a static list. This is evident in cases where a specific operator configuration is supported but another config-
uration is not supported. For example, we support the square root operator, but do not support it with a C64 data type
for example.

To check operator support, we use the torch_neuronx.analyze()API, which queries the compiler for device place-
ment: Neuron or CPU, which gives the graph partitioner a base graph to start partitioning.

The below image shows the flow of the graph partitioner:

1052 Chapter 24. Neuron Application Notes

AWS Neuron

Customizability

The graph partitioner has a wide range of customizability for a variety of situations. The customization options include:

1. Minimum Operator Support: Only partition the model if a minimum percentage of operators are supported.

2. Minimum Subgraph Size: The minimum number of operators in any given subgraph. This can be useful if
having compute chokepoints with single operator subgraphs is not desired.

3. Maximum Subgraph Count: The maximum number of subgraphs. Too many subgraphs can fragment the
computation graph causing performance degredation.

4. Ops to Partition: Additional operators to partition to CPU beyond the unsupported operators. This can be useful
to suggest to the graph partitioner to partition to create a more balanced graph.

Furthermore, compiler flags/args can be passed into all Neuron subgraphs through the graph partitioner.

For the API Reference, visit torch_neuronx.trace() and torch_neuronx.PartitionerConfig

Note: Dynamic batching has a case-by-case support with partitioned models, because it is highly dependent on how
the final partition scheme looks like.

24.6. Graph Partitioner on torch_neuronx 1053

AWS Neuron

24.6.4 Examples

The following sections provide example usages of the graph partitioner.

Default Usage

The below model is a simple MLP model with sorted log softmax output. The sort operator, torch.sort() or aten:
:sort, is not supported by neuronx-cc at this time, so the graph partitioner will partition out the sort operator to
CPU.

import torch
import torch_neuronx
import torch.nn as nn

import logging

adjust logger level to see what the partitioner is doing
logger = logging.getLogger("Neuron")

class MLP(nn.Module):
def __init__(

self, input_size=28 * 28, output_size=10, layers=[4096, 2048]
):

super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, layers[0])
self.fc2 = nn.Linear(layers[0], layers[1])
self.fc3 = nn.Linear(layers[1], output_size)
self.relu = nn.ReLU()

def forward(self, x):
f1 = self.fc1(x)
r1 = self.relu(f1)
f2 = self.fc2(r1)
r2 = self.relu(f2)
f3 = self.fc3(r2)
out = torch.log_softmax(f3, dim=1)
sort_out,_ = torch.sort(out)
return sort_out

n = MLP()
n.eval()

inputs = torch.rand(32,784)

Configure the graph partitioner with the default values
partitioner_config = torch_neuronx.PartitionerConfig()

Trace a neural network with graph partitioner enabled
neuron_net = torch_neuronx.trace(n, inputs, partitioner_config=partitioner_config)

Run inference on the partitioned model
output = neuron_net(inputs)

1054 Chapter 24. Neuron Application Notes

AWS Neuron

Specifying requirements

This example is very similar to the previous example, but has two differences. The unsupported sort operator is sand-
wiched between the ReLU activation function after the first linear layer and the second linear layer. The second differ-
ence is that we are specifying a max subgraph count of 2.

import torch
import torch_neuronx
import torch.nn as nn

import logging

adjust logger level to see what the partitioner is doing
logger = logging.getLogger("Neuron")

class MLP(nn.Module):
def __init__(

self, input_size=28 * 28, output_size=10, layers=[4096, 2048]
):

super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, layers[0])
self.fc2 = nn.Linear(layers[0], layers[1])
self.fc3 = nn.Linear(layers[1], output_size)
self.relu = nn.ReLU()

def forward(self, x):
f1 = self.fc1(x)
r1 = self.relu(f1)
sort_r1,_ = torch.sort(r1)
f2 = self.fc2(sort_r1)
r2 = self.relu(f2)
f3 = self.fc3(r2)
out = torch.log_softmax(f3, dim=1)
return out

n = MLP()
n.eval()

inputs = torch.rand(32,784)

Configure the graph partitioner with the default values
partitioner_config = torch_neuronx.PartitionerConfig(max_subgraph_count=2)

This trace will fail since the min_subgraph_size requirement can't be satisfied by the␣
→˓graph partitioner
neuron_net = torch_neuronx.trace(n, inputs, partitioner_config=partitioner_config)

Output:

ValueError: The partitioner has found 3 subgraphs which exceeds the specified max␣
→˓subgraph count of 2.

This example fails because the sort operator placement generates 3 subgraphs, which is more than 2.

24.6. Graph Partitioner on torch_neuronx 1055

AWS Neuron

Specifying additional operators to partition

This example shows a situation where we want to partition out the log_softmax operator despite it being supported.
We also specify an 80% support percentage threshold.

import torch
import torch_neuronx
import torch.nn as nn

import logging

adjust logger level to see what the partitioner is doing
logger = logging.getLogger("Neuron")
logger.setLevel(logging.INFO)

class MLP(nn.Module):
def __init__(

self, input_size=28 * 28, output_size=10, layers=[4096, 2048]
):

super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, layers[0])
self.fc2 = nn.Linear(layers[0], layers[1])
self.fc3 = nn.Linear(layers[1], output_size)
self.relu = nn.ReLU()

def forward(self, x):
f1 = self.fc1(x)
r1 = self.relu(f1)
f2 = self.fc2(r1)
r2 = self.relu(f2)
f3 = self.fc3(r2)
out = torch.log_softmax(f3, dim=1)
sort_out,_ = torch.sort(out)
return sort_out

n = MLP()
n.eval()

inputs = torch.rand(32,784)

Configure the graph partitioner with the default values
partitioner_config = torch_neuronx.PartitionerConfig(min_operator_percentage_threshold=0.
→˓8,ops_to_partition=set(["aten::log_softmax"]))

This trace succeeds
neuron_net = torch_neuronx.trace(n, inputs, partitioner_config=partitioner_config)

Key Output logs:

...
Neuron: The following operations are currently supported:
Neuron: aten::linear
Neuron: aten::relu
Neuron: aten::log_softmax

(continues on next page)

1056 Chapter 24. Neuron Application Notes

AWS Neuron

(continued from previous page)

Neuron: The following operations are currently not supported:
Neuron: aten::sort, unsup.py(28): <stack_trace>
...
Neuron: 85.71% of arithmetic operations (6 of 7) are supported
Neuron: Num Partitions: 2

Neuron: Creating Partition #1 for device: Device.NEURON
Neuron: The following operators will be included in this partition:
Neuron: prim::GetAttr:9
Neuron: aten::linear:3
Neuron: aten::relu:2
...
Neuron: Creating Partition #2 for device: Device.CPU
Neuron: The following operators will be included in this partition:
Neuron: prim::Constant:4
Neuron: aten::sort:1
Neuron: aten::log_softmax:1

Notice that we still report that aten::log_softmax is still supported, but also report that aten::log_softmax is in
Partition #2 which is for Device.CPU.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

Transformers Neuron (transformers-neuronx)

This document is relevant for: Inf2, Trn1, Trn1n

24.7 Generative LLM inference with Neuron

Table of contents

• Background

• Performance optimizations

– KV-caching:

– Model sharding:

– Computation/communication overlap:

– Compact data-types:

– Bucketing:

• Model partitioning

– How many NeuronCores do I need?

– Which parallelism technique should I use?

– What batch-size should I use?

24.7. Generative LLM inference with Neuron 1057

AWS Neuron

24.7.1 Background

Large Language Models (LLMs) generate human-like text through a process known as generative inference. Funda-
mentally, given an input prompt, generative LLM inference generates text outputs, by iteratively predicting the next
token in a sequence.

These models typically take a sequence of integers as input, which represent a sequence of tokens (words/subwords),
and generate a prediction for the next token to be emitted. Below is a simple example that illustrates this in code:

Vocabulary of tokens the model can parse. The position of each token in the
vocabulary is used as the token_id (an integer representing that token)
vocab = ["having", "I", "fun", "am", "learning", ".", "Neuron"]

input token_ids: list of integers that represent the input tokens in this
case: "I", "am", "having", "fun"
input_token_ids = [1, 3, 0, 2]

The LLM gets a vector of input token_ids, and generates a probability-distribution
for what the output token_id should be (with a probability score for each token_id
in the vocabulary)
output = LLM(input_token_ids)

by taking argmax on the output, we effectively perform a 'greedy sampling' process,
i.e. we choose the token_id with the highest probability. Other sampling techniques
also exist, e.g. Top-K. By choosing a probabilistic sampling method we enable the model
to generate different outputs when called multiple times with the same input.
next_token_id = np.argmax(output)

map the token_id back into an output token
next_token = vocab[next_token_id]

To generate entire sentences, the application iteratively invokes the LLM to generate the next token’s prediction, and at
each iteration we append the predicted token back into the input:

def generate(input_token_ids, n_tokens_to_generate):
for _ in range(n_tokens_to_generate): # decode loop

output = LLM(input_token_ids) # model forward pass

next_token_id = np.argmax(output) # greedy sampling

if (next_token_id == EOS_TOK_ID)
break # break if generated End Of Sentence (EOS)

append the prediction to the input, and continue to the next out_token
input_token_ids.append(int(next_token_id))

return input_token_ids[-n_tokens_to_generate :] # only return generated token_ids

input_token_ids = [1, 3] # "I" "am"
output_token_ids = generate(input_tokens_ids, 4) # output_token_ids = [0, 2, 4, 6]
output_tokens = [vocab[i] for i in output_token_ids] # "having" "fun" "learning" “Neuron”

1058 Chapter 24. Neuron Application Notes

AWS Neuron

This process, of predicting a future value (regression) and adding it back into the input (auto), is sometimes referred to
as autoregression. For more details, Jay Mody’s GPT in 60 Lines of NumPy is an excellent writeup on GPTs (Generative
Pre-trained Transformers).

24.7.2 Performance optimizations

The sheer size of state-of-the-art LLMs, as well as the sequential nature of text generation, poses multiple challenges
for efficient generative LLM deployment.

First, the model is typically sharded across multiple devices, in order to fit the model in device memory. This creates
communication overhead and complexity among devices. Secondly, certain deployments have strict application-level
latency bounds, thus requiring substantial latency optimizations. This is especially challenging, due to the sequential
nature of token-by-token generation. Finally, generating one token at a time often leads to poor device utilization, due
to low arithmetic intensity, which can be improved via batching (see What batch-size should I use?).

The Neuron SDK provides several built-in optimizations, allowing you to extract optimal performance when deploying
LLM models, including:

KV-caching:

The transformers-neuronx library implements KV-cache optimization, which saves compute resources by reusing pre-
viously calculated SelfAttention key-value pairs, instead of recalculating them for each generated token.

To illustrate this concept, see the inner workings of the MaskedSelfAttention operator in the figure below.

At each token generation step, the Query vector of a single current token is multiplied by the Key vectors of all previous
tokens in the sequence to create attention scores and these scores are further multiplied by the Value vectors of all
previous tokens.

The core idea behind this optimization is that instead of re-computing the Key and Value vectors for all previous
tokens at each token generation step, Neuron can perform only incremental computation for the current token and re-
use previously computed Key/Value vectors from the KV-cache. The Key/Value vector of the current token is also
appended to the KV-cache, for the next token generation step.

24.7. Generative LLM inference with Neuron 1059

https://jaykmody.com/blog/gpt-from-scratch/
https://github.com/aws-neuron/transformers-neuronx

AWS Neuron

Note that the first token in the output sequence is unique in two ways:

• No KV-cache is available at this point.

• Neuron needs to compute the entire KV-cache for <input_len> tokens (the input prompt), rather than one incre-
mental KV-cache entry.

This means that first-token latency is typically higher than the following tokens.

Model sharding:

Neuron enables you to shard the model across devices via Tensor Parallelism, Pipeline Parallelism (coming soon), or
a combination of the two (coming soon).

Tensor Parallelism shards each layer across multiple devices, enabling you to achieve the optimal latency.

Pipeline Parallelism places different layers on different devices and creates a pipeline between them (as the name
suggests) and is useful mainly when optimizing throughput and/or cost-per-inference.

To find the optimal Tensor/Pipeline parallelism configuration for your model, see the Model partitioning section.

Computation/communication overlap:

The Neuron compiler automatically fuses Collective Communication primitives (e.g., AllReduce) with the following
computation (e.g., GEMM) in the compute graph. This helps minimize any overhead caused by sharding the model
across devices.

1060 Chapter 24. Neuron Application Notes

AWS Neuron

Compact data-types:

Neuron supports INT8 and FP8 (coming soon), which can significantly reduce the model’s memory bandwidth and
capacity requirements. This is especially useful for Generative LLM inference, which is typically memory-bound.
Therefore, using a compact data-type can improve the overall LLM inference performance with lower latency and
higher throughput.

Bucketing:

The transformers-neuronx library automatically uses bucketing to process the input prompt and output tokens. Buck-
eting makes it possible to handle variable sequence lengths, without requiring support for dynamic shapes. Using
multiple progressively larger buckets helps minimize the portion of the KV-cache that needs to be read for each token.

24.7.3 Model partitioning

How many NeuronCores do I need?

Transformer models are typically defined via a hyper-parameter configuration, such as the following:

{
"n_vocab": 50257, # number of tokens in our vocabulary
"n_ctx": 2048, # maximum possible sequence length of the input
"n_embd": 9216, # embedding dimension (determines the "width" of the network)
"n_head": 72, # number of attention heads (n_embd must be divisible by n_head)
"n_layer": 64 # number of layers (determines the "depth" of the network)
}

To determine the number of NeuronCores needed to fit the model, perform the following calculation:

weight_mem_footprint = 12 x <n_layer> x <n_embd>^2 x <dtype-size>
KV_cache_mem_footprint = <batch-size> x <n_layer> x <n_ctx> x <n_embd> x 2 x <dtype-size>
<dtype-size> is 2 for BF16/FP16, or 1 for FP8/INT8

mem_footprint = weight_mem_footprint + KV_cache_mem_footprint

And from here, determining the number of NeuronCores is straightforward:

num_neuron_cores = ceil_to_closest_supported_size (mem_footprint / <NC-HBM-capacity>,
→˓<instance-type>) # 16GiB per Inferentia2/Trainium1 NeuronCore

For example, when running OPT-66B on Inf2, with a batch-size of 16, the number of required NeuronCores can be
computed as follows.

OPT-66B example (BF16, Inf2)
n_layer=64, n_ctx=2048, n_embd=9216, batch=16
weight_mem_footprint = 12 x 64 x 9216^2 x 2 = 121.5 GiB
KV_cache_mem_footprint = 16 x 64 x 2048 x 9216 x 2 x 2 = 72 GiB

mem_footprint = 121.5GiB + 72GiB = 193.5 GiB

num_neuron_cores = ceil_to_closest_supported_size (193.5GiB / 16GiB, Inf2)
= ceil_to_closest_supported_size (12.1) = 24

(continues on next page)

24.7. Generative LLM inference with Neuron 1061

AWS Neuron

(continued from previous page)

Currently, the Neuron runtime supports tensor-parallelism degrees 2,␣
→˓8, and 32 on Trn1

and supports tensor-parallelism degrees 2, 4, 8, 12 and 24 on Inf2.

Use the Neuron Calculator to compute the number of cores needed for a custom hyper-parameter configuration.

Which parallelism technique should I use?

Tensor parallelism improves latency, at the expense of increased intra-layer communication. Thus, as a general rule,
it is recommended to use the smallest tensor parallelism degree that meets your latency requirement and then use
pipeline/data parallelism from that point on.

If latency is not a major concern in your application (e.g., model evaluation) and the primary goal is to maximize
throughput (i.e., minimize total cost per token), then it is most efficient to use pipeline parallelism and increase the
batch-size as much as possible.

What batch-size should I use?

Due to the serial token generation nature of generative LLM inference, this workload tends to be extremely memory
bound. This means that throughput (and thus cost per inference) improves significantly by batching.

As a general rule, we recommend increasing the batch-size to the maximum amount that fits within the latency budget
(up to batch=256. A larger batch-size typically does not help with performance.)

Note that the KV-cache grows linearly with the batch-size and can grow until it runs out of memory (typically referred
to as OOM). If the latency budget allows, we recommend increasing the batch-size to the maximum value that does not
result in OOM.

Users may also consider pipelining the model beyond what is necessary to fit model parameters / KV-cache on devices,
in order to free up device-memory space and thus allow the batch-size to increase without causing OOM issues.

This document is relevant for: Inf2, Trn1, Trn1n

PyTorch 2.x

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

24.8 Introducing PyTorch 2.1 Support

Table of contents

• What are we introducing?

• How is PyTorch NeuronX 2.1 different than PyTorch NeuronX 1.13?

• How can I install PyTorch NeuronX 2.1?

• Migrate your application to PyTorch 2.1 and PJRT

– Migrating Training scripts

– Migrating Inference scripts

1062 Chapter 24. Neuron Application Notes

AWS Neuron

• Troubleshooting

– Socket Error: Socket failed to bind

– AttributeError: module 'torch' has no attribute 'xla' Failure

– Incorrect device assignment when using ellipsis

– Lower performance for BERT-Large

– Divergence (non-convergence) of loss for BERT/LLaMA when using release 2.16 compiler

– Error “Attempted to access the data pointer on an invalid python storage” when using HF Trainer API

– ImportError: libcrypt.so.1: cannot open shared object file: No such file or
directory on Amazon Linux 2023

– FileNotFoundError: [Errno 2] No such file or directory: 'libneuronpjrt-path'
Failure

• Frequently Asked Questions (FAQ)

– What is the difference between PJRT and Neuron Runtime?

– Do I need to recompile my models with PyTorch 2.1?

– Do I need to update my scripts for PyTorch 2.1?

– What environment variables will be changed with PJRT?

– What features will be missing with PyTorch NeuronX 2.1?

– Can I use Neuron Distributed and Transformers Neuron libraries with PyTorch NeuronX 2.1?

– Can I still use PyTorch 1.13 version?

24.8.1 What are we introducing?

Starting with the Neuron 2.18 release, customers will be able to upgrade to PyTorch NeuronX(torch-neuronx)
supporting PyTorch 2.1. PyTorch NeuronX 2.x now uses the PyTorch-XLA PJRT instead of XRT to provide better
scalability and simpler Neuron integration.

We have updated PyTorch Neuron (torch-neuronx) Setup to include installation instructions for PyTorch NeuronX 2.1
for AL2023, Ubuntu 20 and Ubuntu 22. Users will also have to make possible training and inference script changes
which are shown below in migration guide.

24.8.2 How is PyTorch NeuronX 2.1 different than PyTorch NeuronX 1.13?

By upgrading to PyTorch NeuronX 2.1, we will be removing the previous XRT runtime and XRT server that manages
your program, applications will now be managed by individual PJRT clients instead. For more details on the changes
between XRT and PJRT with PyTorch/XLA see this documentation.

In addition, the behavior of xm.rendezvous() APIs have been updated in PyTorch 2.1. There’s no code change
needed to switch from PyTorch NeuronX 1.13 to PyTorch NeuronX 2.1, except for snapshotting which is discussed in
the below migration guide

HLO snapshot dumping is available in PyTorch Neuron 2.1 via the XLA_FLAGS environment variable, using a combi-
nation of the --xla_dump_to and --xla_dump_hlo_snapshots command-line arguments. For example:

XLA_FLAGS="--xla_dump_hlo_snapshots --xla_dump_to=./dump" python foo.py

24.8. Introducing PyTorch 2.1 Support 1063

https://github.com/pytorch/xla/blob/r2.1/docs/pjrt.md

AWS Neuron

will have foo.py’s PJRT runtime execution snapshots dumped into ./dump directory. See Snapshotting With Torch-
Neuronx 2.1 section for more information.

Note: Snapshot dumping triggered by a runtime error such as NaN is not yet available in PyTorch NeuronX 2.1. It
will be available in a future release.

Starting with PyTorch/XLA 2.1, functionalization changes result in new graphs leading to lower performance while
training. Refer similar discussions here. We set XLA_DISABLE_FUNCTIONALIZATION=1 as default to help with better
performance. More on functionalization in Pytorch can be found here.

Note: In PyTorch/XLA 2.1, the HLOModuleProto files dumped in the neuron cache /var/tmp/
neuron-compile-cache (default path) is suffixed as .hlo_module.pb which was earlier dumped out as .hlo.pb in
PyTorch/XLA 1.13

24.8.3 How can I install PyTorch NeuronX 2.1?

To install PyTorch NeuronX 2.1 please follow the PyTorch Neuron (torch-neuronx) Setup guides for AL2023, Ubuntu
20 AMI and Ubuntu 22 AMI. Please also refer to the Neuron multi framework DLAMI setup guide for Ubuntu 22 with
a pre-installed virtual environment for PyTorch NeuronX 2.1 that you can use to easily get started. PyTorch NeuronX
2.1 can be installed using the following:

python -m pip install --upgrade neuronx-cc==2.* torch-neuronx==2.1.* torchvision

Note: PyTorch NeuronX DLAMIs for Ubuntu 20 does not yet have a pre-installed PyTorch 2.1. Please use Ubuntu 20
AMI and Ubuntu 22 AMI setup guide instructions.

24.8.4 Migrate your application to PyTorch 2.1 and PJRT

Please make sure you have first installed the PyTorch NeuronX 2.1 as described above in installation guide

Migrating Training scripts

Following changes need to be made to migrate the training scripts from PyTorch NeuronX 1.13 to PyTorch NeuronX
2.1.

Activation Checkpointing changes

Starting with PyTorch Neuron 2.1, users will have to use torch_xla.utils.checkpoint.checkpoint instead of
torch.utils.checkpoint.checkpoint as the checkpointing function while wrapping pytorch modules for ac-
tivation checkpointing. Refer to the pytorch/xla discussion regarding this issue. Also set use_reentrant=True
while calling the torch_xla checkpoint function. Failure to do so will lead to XLA currently does not support
use_reentrant==False error. For more details on checkpointing, refer the documentation.

1064 Chapter 24. Neuron Application Notes

https://github.com/pytorch/xla/issues/6294
https://dev-discuss.pytorch.org/t/functionalization-in-pytorch-everything-you-wanted-to-know/965
https://github.com/pytorch/xla/issues/5766
https://pytorch.org/docs/stable/checkpoint.html

AWS Neuron

Changes to xm.rendezvous() behavior

As xm.rendezvous() behavior has changed in PyTorch/XLA 2.x, PyTorch NeuronX 2.1 has implemented syn-
chronization API to be compatible with the change. There are no code changes users have to do related to
xm.rendezvous(). Users can however see possible performance drops and memory issues when calling xm.
rendezvous() with a payload on large XLA graphs.

Migrating Inference scripts

There are no code changes required in the inference scripts.

24.8.5 Troubleshooting

Socket Error: Socket failed to bind

Description

In PyTorch 2.1, there needs to be a socket available for both torchrun and the init_process_group to bind. Both of
these, by default, will be set to unused sockets. If you plan to use a MASTER_PORT environment variable then this error
may occur, if the port you set it to is already in use.

[W socket.cpp:426] [c10d] The server socket has failed to bind to [::]:29500 (errno: 98 -
→˓ Address already in use).
[W socket.cpp:426] [c10d] The server socket has failed to bind to ?UNKNOWN? (errno: 98 -␣
→˓Address already in use).
[E socket.cpp:462] [c10d] The server socket has failed to listen on any local network␣
→˓address.
RuntimeError: The server socket has failed to listen on any local network address.
The server socket has failed to bind to ?UNKNOWN? (errno: 98 - Address already in use).

Solution

Please ensure if you are setting MASTER_PORT that the port you’re setting it to is not used anywhere else in your scripts.
Otherwise, you can leave MASTER_PORT unset, and torchrun will set the default port for you.

AttributeError: module 'torch' has no attribute 'xla' Failure

In PyTorch 2.1, training scripts might fail during activation checkpointing with the error shown below.

AttributeError: module 'torch' has no attribute 'xla'

The solution is to use torch_xla.utils.checkpoint.checkpoint instead of torch.utils.checkpoint.
checkpoint as the checkpoint function while wrapping pytorch modules for activation checkpointing. Refer to the
pytorch/xla discussion regarding this issue. Also set use_reentrant=True while calling the torch_xla checkpoint
function. Failure to do so will lead to XLA currently does not support use_reentrant==False error. For
more details on checkpointing, refer the documentation.

24.8. Introducing PyTorch 2.1 Support 1065

https://github.com/pytorch/xla/issues/5766
https://pytorch.org/docs/stable/checkpoint.html

AWS Neuron

Incorrect device assignment when using ellipsis

Usage of ellipsis (...) with PyTorch/XLA 2.1 can lead to incorrect device assignment of the tensors as ‘lazy’ instead
of ‘xla’. Refer to the example shown

import torch
import torch_xla.core.xla_model as xm
device = xm.xla_device()

x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], device=device)
print(f"x.device : {x.device}")
y = x[:3, ...]
print(f"y.device : {y.device}")
print(x + y)

leads to

x.device : xla:0
y.device : lazy:0
RuntimeError: torch_xla/csrc/tensor.cpp:57 : Check failed: tensor.device().type() == at::
→˓kCPU (lazy vs. cpu)

This only happens for scenarios where ellipsis is used to extract a subset of a tensor with the same size as that of the
original tensor. An issue is created with pytorch/xla to fix this behavior Ref. Potential workaround is to avoid using
ellipsis and instead replace it with : for each corresponding dimensions in the buffer.

For the faulty code shown above, replace it with

import torch
import torch_xla.core.xla_model as xm
device = xm.xla_device()

x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], device=device)
print(f"x.device : {x.device}")
Replaced '...' with ':'
y = x[:3, :]
print(f"y.device : {y.device}")
print(x + y)

Lower performance for BERT-Large

Currently we see 8% less performance when running BERT-Large pretraining tutorial with Torch-Neuronx 2.1.

Divergence (non-convergence) of loss for BERT/LLaMA when using release 2.16 compiler

Currently, when using release 2.16 compiler version 2.12.54.0+f631c2365, you may see divergence (non-
convergence) of loss curve. To workaround this issue, please use release 2.15 compiler version 2.11.0.
35+4f5279863.

1066 Chapter 24. Neuron Application Notes

https://github.com/pytorch/xla/issues/6398

AWS Neuron

Error “Attempted to access the data pointer on an invalid python storage” when using HF Trainer
API

While using HuggingFace Transformers Trainer API to train (i.e. HuggingFace Trainer API fine-tuning tutorial), you
may see the error “Attempted to access the data pointer on an invalid python storage”. This is a known issue and has
been fixed in the version 4.37.3 of HuggingFace Transformers.

ImportError: libcrypt.so.1: cannot open shared object file: No such file or directory on
Amazon Linux 2023

torch-xla version 2.1+ now requires libcrypt.so.1 shared library. Currently, Amazon Linux 2023 includes
libcrypt.so.2 shared library by default so you may see ImportError: libcrypt.so.1: cannot open shared object
file: No such file or directory` when using torch-neuronx 2.1+ on Amazon Linux 2023. To install libcrypt.so.
1 on Amazon Linux 2023, please run the following installation command (see also https://github.com/amazonlinux/
amazon-linux-2023/issues/182 for more context):

sudo yum install libxcrypt-compat

FileNotFoundError: [Errno 2] No such file or directory: 'libneuronpjrt-path' Failure

In PyTorch 2.1, users might face the error shown below due to incompatible libneuronxla and torch-neuronx
versions being installed.

FileNotFoundError: [Errno 2] No such file or directory: 'libneuronpjrt-path'

Check that the version of libneuronxla is 2.0.*. If not, then uninstall libneuronxla using pip uninstall
libneuronxla and then reinstall the packages following the installation guide installation guide

24.8.6 Frequently Asked Questions (FAQ)

What is the difference between PJRT and Neuron Runtime?

PJRT is the framework-level interface that enables frameworks such as PyTorch and JAX to compile HLO graphs using
Neuron Compiler and execute compiled graphs using Neuron Runtime. Neuron Runtime is device-specific runtime
that enables compiled graphs to run on the Neuron devices. Both runtimes will be used by Neuron SDK to support
PyTorch NeuronX 2.x.

Do I need to recompile my models with PyTorch 2.1?

Yes.

24.8. Introducing PyTorch 2.1 Support 1067

https://github.com/huggingface/transformers/issues/27578
https://github.com/amazonlinux/amazon-linux-2023/issues/182
https://github.com/amazonlinux/amazon-linux-2023/issues/182

AWS Neuron

Do I need to update my scripts for PyTorch 2.1?

No changes are required for PyTorch 2.1 if users are migrating from PyTorch 1.13. If migrating from PyTorch 2.0, users
can optionally get rid of the torch_xla.experimental.pjrt* imports for init_process_group call. Please see
the migration guide

What environment variables will be changed with PJRT?

Any of the previous XRT or libtpu.so environment variables that start with XRT or TPU (ex:- TPU_NUM_DEVICES)
can be removed from scripts. PJRT_DEVICE is the new environment variable to control your compute device, by default
it will be set to NEURON. Also NEURON_DUMP_HLO_SNAPSHOT and NEURON_NC0_ONLY_SNAPSHOT are no longer support
in 2.1. Please see snapshotting guide for updated 2.1 instructions.

What features will be missing with PyTorch NeuronX 2.1?

PyTorch NeuronX 2.1 now have most of the supported features in PyTorch NeuronX 1.13, with known issues listed
above, and unsupported features as listed in release notes.

Can I use Neuron Distributed and Transformers Neuron libraries with PyTorch NeuronX 2.1?

Yes, Neuron Distributed and Transformers Neuron libraries will work with PyTorch NeuronX 2.1.

Can I still use PyTorch 1.13 version?

Yes, PyTorch 1.13 will continue to be supported.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

1068 Chapter 24. Neuron Application Notes

CHAPTER

TWENTYFIVE

NEURON FAQ

Table of contents

• Neuron 2.x FAQ

• Training Only FAQ

• Inference Only FAQ

• Runtime FAQ

• Compiler FAQ

• Neuron Containers

• ONNX FAQ

• Support

25.1 Neuron 2.x FAQ

• neuron2-intro-faq

25.2 Training Only FAQ

• neuron-training-faq

25.3 Inference Only FAQ

• neuron-f1-faq

• trouble-shooting-inf1-faq

• tf1_faq

• tf2_faq

• NeuronPerf

1069

AWS Neuron

25.4 Runtime FAQ

• Neuron Runtime FAQ

25.5 Compiler FAQ

• Neuron Compiler FAQ (neuronx-cc)

• Neuron Compiler FAQ (neuron-cc)

25.6 Neuron Containers

• Neuron Containers FAQ

25.7 ONNX FAQ

• onnx-faq

25.8 Support

• neuron_roadmap_faq

• contribute-faq

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

1070 Chapter 25. Neuron FAQ

CHAPTER

TWENTYSIX

TROUBLESHOOTING GUIDE

Table of contents

• Training Only Troubleshooting

• Inference Only Troubleshooting

• Runtime Troubleshooting

• Containers Troubleshooting

• Setup Troubleshooting

26.1 Training Only Troubleshooting

• PyTorch Neuron for Training

26.2 Inference Only Troubleshooting

• PyTorch Neuron for Inference

• NeuronPerf

• MXNet Neuron

26.3 Runtime Troubleshooting

• Neuron Runtime Troubleshooting on Inf1 and Trn1

1071

AWS Neuron

26.4 Containers Troubleshooting

• Containers

26.5 Setup Troubleshooting

• neuron-setup-troubleshooting

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

1072 Chapter 26. Troubleshooting Guide

CHAPTER

TWENTYSEVEN

RELEASE DETAILS

27.1 Latest Release

• What’s New

• Release Artifacts

27.2 Previous Releases

• prev-rn

• pre-release-content

• prev-n1-rn

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

1073

AWS Neuron

1074 Chapter 27. Release Details

CHAPTER

TWENTYEIGHT

ROADMAP

The AWS Neuron feature roadmap provides visibility onto what we are working on in terms of functional and perfor-
mance in the near future. We hope this will help you better plan how to use Neuron with your products. We’d love to
get our customers feedback as well, to help us ensure we are working on the most important requests.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

1075

AWS Neuron

1076 Chapter 28. Roadmap

CHAPTER

TWENTYNINE

SUPPORT

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

29.1 SDK Maintenance Policy

Table of Contents

• Overview

• Neuron SDK

• Dependency Software

• Neuron SDK version life-cycle

• Dependency Software version life-cycle

• Communication

• Licenses

29.1.1 Overview

This document outlines the maintenance policy for AWS Neuron Software Development Kit (SDK) and its underlying
dependencies. AWS regularly provides the Neuron SDK with updates that may contain support for new or updated
APIs, new features, enhancements, bug fixes, security patches, or documentation updates. Updates may also address
changes with dependencies, language runtimes, and operating systems. Neuron SDK releases are available as Conda (
up to Neuron 1.13.0) and Pip Packages that can be installed within Amazon Machine Images (AMIs).

We recommend users to stay up-to-date with SDK releases to keep up with the latest features, security updates, and
underlying dependencies. Continued use of an unsupported SDK version is not recommended and is done at the user’s
discretion.

1077

AWS Neuron

29.1.2 Neuron SDK

AWS Neuron is the SDK for AWS Inferentia, the custom designed machine learning chips enabling high-performance
deep learning inference applications on EC2 Inf1 instances. Neuron includes a deep learning compiler, runtime and
tools that are natively integrated into TensorFlow, PyTorch and MXNet. With Neuron, you can develop, profile, and
deploy high-performance inference applications on top of EC2 Inf1 instances.

The Neuron SDK release versions are in the form of X.Y.Z where X represents the major version and Y represent the
minor version. Increasing the major version of an SDK indicates that this SDK underwent significant and substantial
changes, and some of those changes may not maintain the same programming model. Increasing the minor version of
an SDK indicates that this SDK underwent addition of new features, support of new dependency software versions,
end-of-support of certain dependency software, enhancement and/or bugfixes. Applications may need to be updated
in order for them to work with the newest SDK version. It is important to update major versions carefully and in
accordance with the upgrade guidelines provided by AWS.

29.1.3 Dependency Software

Neuron SDK has underlying dependencies, such as language runtimes, operating systems, or third party libraries and
machine learning frameworks. These dependencies are typically tied to the language community or the vendor who
owns that particular component. The following terms are used to classify underlying dependencies:

• Operating system (OS): Examples include Amazon Linux AMI, Amazon Linux 2.

• Language runtime: Examples include Python.

• Third party library / framework: Examples include PyTorch, TensorFlow, MXNet and ONNX.

Each community or vendor maintains their own versioning policy and publishes their own end-of-support schedule for
their product.

29.1.4 Neuron SDK version life-cycle

The life-cycle for Neuron SDK version consists of 3 phases, which are outlined below.

• Supported (Phase 1)
During this phase, AWS will provide critical bugfixes and security patches. Usually AWS will support each
Neuron SDK version for at least 12 months, but AWS reserves the right to stop supporting an SDK version
before the 12 months period.

Note: AWS will address new features or Dependency Software updates by publishing a new version with an
increment in the Neuron SDK minor version.

• End-of-Support Announcement (Phase 2)
AWS will announce the End-of-Support phase at least 3 months before a specific Neuron SDK version enters
End-of-Support phase. During this period, the SDK will continue to be supported.

• End-of-Support (Phase 3)
When a Neuron SDK version reaches end-of support, it will no longer receive critical bugfixes and security
patches. Previously published Neuron SDK versions will continue to be available via Conda (up to Neuron 1.13.0
) or Pip packages. Use of an SDK version which has reached end-of-support is done at the user’s discretion. We
recommend users to upgrade to the latest Neuron SDK version.

1078 Chapter 29. Support

https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/ec2/instance-types/inf1/
https://aws.amazon.com/ec2/instance-types/inf1/

AWS Neuron

29.1.5 Dependency Software version life-cycle

The life-cycle for Dependency Software version consists of 4 phases, but there may not be a Phase 3 (Maintenance)
period in some cases. The phases are outlined below.

• Supported (Phase 1)
During this phase, Dependency Software version is supported. AWS will provide regular updates, bug fixes
and/or security patches to the Dependency Software version, AWS will address those updates and bug fixes by
including them in a new Neuron SDK version with an increment in the Neuron SDK minor version. There is no
minimum support period for a Dependency Software version.

• Maintenance and/or End-of-Support Announcement (Phase 2)
AWS will announce the Maintenance phase or the End-of-Support phase of Dependency Software version.

Since each community or vendor maintains their own versioning policy and publishes their own end-of-support
schedule for their product, there is no minimum duration to do the announcement before Dependency Software
version enters Maintenance phase or End-of-Support phase and in some cases the announcement can happen at
the same time when the Dependency Software version enters Maintenance phase or End-of-Support phase.

During this period, the Dependency Software version will continue to be supported.

• Maintenance (Phase 3)
During the maintenance phase, AWS limits Dependency Software version to address critical bug fixes and secu-
rity issues only. There is no minimum Maintenance period.

This phase is optional and AWS will reserve the right to skip it for specific Dependency Software products.

• End-of-Support (Phase 4)
When a Dependency Software version reaches end-of support, it will no longer receive updates or releases.
Previously published releases will continue to be available via Conda (up to Neuron 1.13.0) or Pip packages.
Use of an SDK which has reached end-of-support is done at the user’s discretion. We recommend users to
upgrade to the new major version.

When a Dependency Software version reaches end-of support, it will no longer receive critical bugfixes and
security patches. Previously published Dependency Software versions will continue to be available via Neuron
SDK Conda (up to Neuron 1.13.0) or Pip packages.

Use of a Dependency Software version which has reached end-of-support is done at the user’s discretion. We
recommend users to upgrade to the latest Neuron SDK version that include the latest Dependency Software
versions.

Note: AWS reserves the right to stop support for an underlying dependency without a maintenance phase.

29.1.6 Communication

Maintenance and End-Of-Support announcements are communicated as follows:

• Neuron SDK documentation.

To see the list of available Neuron SDK versions and supported Dependency Software versions see neuron-release-
content and What’s New in latest Neuron version.

29.1. SDK Maintenance Policy 1079

AWS Neuron

29.1.7 Licenses

The license files for the Neuron SDK packages are located in the installation directories.

For RPM/YUM packages, first follow Neuron SDK setup instructions to install RPM/YUM packages, then do:

The following command assumes you have already installed RPM/YUM packages per Neuron␣
→˓SDK setup instructions
if [$USER == "ubuntu"]; then sudo dpkg -L $(sudo dpkg-query -f '${binary:Package}\n' -
→˓W | grep neuron) | grep -i license; else rpm -ql $(rpm -qa | grep neuron) | grep -i␣
→˓license; fi

Example output:

/usr/share/doc/aws-neuronx-tools/LICENSE.txt
/usr/share/doc/aws-neuronx-tools/THIRD-PARTY-LICENSES.txt
/usr/share/doc/aws-neuronx-oci-hook/LICENSE.txt
/usr/share/doc/aws-neuronx-oci-hook/THIRD-PARTY-LICENSES.txt
/usr/share/doc/aws-neuronx-collectives/LICENSE.txt
/usr/share/doc/aws-neuronx-runtime-lib/LICENSE.txt
/usr/src/aws-neuronx-2.7.33.0/LICENSE

For the Python packages, you can see the locations of licenses in the site-packages directory of the Python environment
using the following commands:

The following installation instructions are only for license check, not development or␣
→˓deployment.
See Neuron SDK setup instruction for proper development or deployment setups.
python -m venv check_license_venv
source check_license_venv/bin/activate
pip install -U pip
python -m pip config set global.extra-index-url "https://pip.repos.neuron.amazonaws.com"
python -m pip install neuron-cc neuronx-cc torch-neuron torch-neuronx tensorflow-neuron␣
→˓tensorflow-neuronx tensorboard-plugin-neuron tensorboard-plugin-neuronx mx_neuron
ls $VIRTUAL_ENV/lib/python*/site-packages/{libneuronxla,torch_xla,torch_neuron,
→˓tensorflow_neuron,tensorboard_plugin_neuron,mx_neuron,neuron}*/*LICENSE*

Example output:

/home/ec2-user/test_venv/lib/python3.7/site-packages/libneuronxla/LICENSE.txt
/home/ec2-user/test_venv/lib/python3.7/site-packages/libneuronxla/THIRD-PARTY-LICENSES.
→˓txt
/home/ec2-user/test_venv/lib/python3.7/site-packages/mx_neuron/THIRD-PARTY-LICENSES.txt
/home/ec2-user/test_venv/lib/python3.7/site-packages/neuron_cc-1.14.3.0+adaa2ac56.dist-
→˓info/LICENSE.txt
/home/ec2-user/test_venv/lib/python3.7/site-packages/neuronx_cc-2.5.0.28+1be23f232.dist-
→˓info/LICENSE.txt
/home/ec2-user/test_venv/lib/python3.7/site-packages/neuronx_hwm-2.5.0.0+dad732dd6.dist-
→˓info/LICENSE.txt
/home/ec2-user/test_venv/lib/python3.7/site-packages/tensorboard_plugin_neuron/LICENSE.
→˓txt
/home/ec2-user/test_venv/lib/python3.7/site-packages/tensorboard_plugin_neuron/THIRD-
→˓PARTY-LICENSES.txt
/home/ec2-user/test_venv/lib/python3.7/site-packages/tensorboard_plugin_neuronx/LICENSE.
→˓txt

(continues on next page)

1080 Chapter 29. Support

AWS Neuron

(continued from previous page)

/home/ec2-user/test_venv/lib/python3.7/site-packages/tensorboard_plugin_neuronx/THIRD-
→˓PARTY-LICENSES.txt
/home/ec2-user/test_venv/lib/python3.7/site-packages/tensorflow_neuron/LICENSE
/home/ec2-user/test_venv/lib/python3.7/site-packages/tensorflow_neuron/THIRD-PARTY-
→˓LICENSES.txt
/home/ec2-user/test_venv/lib/python3.7/site-packages/tensorflow_neuronx/LICENSE.txt
/home/ec2-user/test_venv/lib/python3.7/site-packages/torch_neuron-1.13.1.2.6.5.0.dist-
→˓info/LICENSE.txt
/home/ec2-user/test_venv/lib/python3.7/site-packages/torch_neuronx/LICENSE.txt
/home/ec2-user/test_venv/lib/python3.7/site-packages/torch_xla-1.13.0+torchneuron5.dist-
→˓info/LICENSE

Neuron documentation, samples and tools packages on GitHub licenses are available in the respective GitHub reposi-
tories:

https://github.com/aws-neuron/aws-neuron-sdk/blob/master/LICENSE-DOCUMENTATION

https://github.com/aws-neuron/transformers-neuronx/blob/master/LICENSE

https://github.com/aws-neuron/aws-neuron-samples/blob/master/LICENSE

https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/neuronperf/LICENSE

https://github.com/aws-neuron/aws-neuron-reference-for-megatron-lm/blob/master/LICENSE

https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/LICENSE

https://github.com/aws-neuron/aws-neuron-tensorflow/blob/master/LICENSE

https://github.com/aws-neuron/aws-neuron-tensorflow/blob/master/THIRD-PARTY-LICENSES.txt

https://github.com/aws-neuron/neuronx-nemo-megatron/blob/main/THIRD-PARTY-LICENSES

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

29.2 Neuron Software Classification

Table of Contents

• Overview

• APIs Software Classification

• Packages / Libraries Software Classification

• Features Software Classification

• Neuron Model Classes Software Classification

29.2. Neuron Software Classification 1081

https://github.com/aws-neuron/aws-neuron-sdk/blob/master/LICENSE-DOCUMENTATION
https://github.com/aws-neuron/transformers-neuronx/blob/master/LICENSE
https://github.com/aws-neuron/aws-neuron-samples/blob/master/LICENSE
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/neuronperf/LICENSE
https://github.com/aws-neuron/aws-neuron-reference-for-megatron-lm/blob/master/LICENSE
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/LICENSE
https://github.com/aws-neuron/aws-neuron-tensorflow/blob/master/LICENSE
https://github.com/aws-neuron/aws-neuron-tensorflow/blob/master/THIRD-PARTY-LICENSES.txt
https://github.com/aws-neuron/neuronx-nemo-megatron/blob/main/THIRD-PARTY-LICENSES

AWS Neuron

29.2.1 Overview

This document explains the Neuron software classification for APIs, libraries, packages, features, and Neuron supported
model classes mentioned in the Neuron documentation.

Note: For APIs, libraries, packages, features and model classes, only Alpha and Beta software classifications will be
mentioned. Otherwise, they should be considered as “Stable.”

Note: APIs, libraries, packages, features, and model classes at Alpha or Beta classification should not be used in
production environments, and are meant for early access and feedback purposes only. Alpha and Beta releases are
Developer Preview releases under the AWS SDK policy.

29.2.2 APIs Software Classification

This section details the classification of APIs supported in any Neuron Components, in addition to environment vari-
ables and flags (e.g. compiler flags). Examples of APIs supported by Neuron are Neuron APIs like torch_neuron.
trace(), Neuron Environment variables like PyTorch NeuronX Environment Variables, and Neuron flags like Neuron
compiler flags.

Note: Alpha and Beta classified APIs are APIs in a Developer Preview release (see AWS SDK policy) that should not
be used in production environments and are meant for early access and feedback purposes only.

API Contract API Backward Compatibil-
ity

Alpha Major changes may happen No
Beta Minor changes may happen No
Sta-
ble

Incremental changes in new releases (without breaking the API con-
tract)*

Yes*

Note: *In case when a new Neuron version of a Stable release will break backwards compatibility, AWS will notify
customers of the breaking change at least one month before the change.

29.2.3 Packages / Libraries Software Classification

This section details the classification of Neuron packages or libraries such as Neuron Runtime, PyTorch Neuron or
Neuron Distributed.

Note: Alpha and Beta classified packages/libraries are packages/libraries in a Developer Preview release (see AWS
SDK policy) that should not be used in production environments and are meant for early access and feedback purposes
only.

1082 Chapter 29. Support

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html

AWS Neuron

Testing Features Performance
Alpha Basic Basic
Beta Basic Minimal Viable Product (MVP)*
Stable Standard Product Testing Incremental additions/changes in new releases Tested

Note: *A minimum viable product (MVP) for a package/library contains just enough features to be usable by early
customers who can then provide feedback for future development. MVP can be different per use case and depends on
the specific package/library of interest. Please note that in many cases, an MVP can also represent an advanced level
of features.

29.2.4 Features Software Classification

This section details the classification for Neuron features. An example of a Neuron feature is Neuron Persistent Cache
in the Transformers Neuron library.

Note: Alpha and Beta classified features are features in a Developer Preview release (see AWS SDK policy) that
should not be used in production environments and are meant for early access and feedback purposes only.

Testing Functionality Performance
Alpha Basic Basic
Beta Basic Minimal Viable Product (MVP)*
Stable Standard Product Testing Incremental additions/changes in new releases Tested

Note: *A minimum viable product (MVP) for a feature contains just enough functionality to be usable by early
customers who can then provide feedback for future development. MVP can be different per use case and depends
on the specific feature of interest. Please note that in many cases, an MVP can also represent an advanced level of
functionality.

29.2.5 Neuron Model Classes Software Classification

This section details the classification for Neuron model classes which mainly refers throughput/latency and accuracy
for both training and inference.

Note: A Neuron supported model class is tightly coupled with a specific supported ML Framework (e.g. PyTorch
Neuron), specific ML library (e.g. NeuronX Distributed) and the workload type (e.g. Training or Inference). For
example a model can be supported at Beta level in PyTorch Neuron for training and Stable level in PyTorch Neuron for
inference.

Note: Alpha and Beta classified model classes are model classes in a Developer Preview release (see AWS SDK
policy) that should not be used in production environments and are meant for early access and feedback purposes only.

29.2. Neuron Software Classification 1083

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html

AWS Neuron

Accuracy / Convergence Throughput / Latency

Beta Validated
Stable Validated Tested

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

29.3 Security Disclosures

If you think you’ve found a potential security issue, please do not post it in the Issues. Instead, please follow the
instructions here (https://aws.amazon.com/security/vulnerability-reporting/) or email AWS security directly (mailto:
aws-security@amazon.com).

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

29.4 Contact Us

For support please checkout the Github issues or Neuron AWS forums for an answer, if none of those resources have
an answer to your question please open a ticket.

If you have an urgent need for a feature you can also contact us directly at aws-neuron-support@amazon.com.

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

This document is relevant for: Inf1, Inf2, Trn1, Trn1n

1084 Chapter 29. Support

https://aws.amazon.com/security/vulnerability-reporting/
mailto:aws-security@amazon.com
mailto:aws-security@amazon.com
https://github.com/aws/aws-neuron-sdk/issues
https://forums.aws.amazon.com/forum.jspa?forumID=355
mailto:aws-neuron-support@amazon.com

PYTHON MODULE INDEX

p
placement, 205

1085

AWS Neuron

1086 Python Module Index

INDEX

A
abs (C++ function), 739
abs_out (C++ function), 739
accessor (C++ function), 742
add (C++ function), 740
add_out (C++ function), 740

B
benchmark()

built-in function, 872
BF16, 995
bitwise_and (C++ function), 741
bitwise_and_out (C++ function), 741
bitwise_not (C++ function), 741
bitwise_not_out (C++ function), 741
bitwise_or (C++ function), 741
bitwise_or_out (C++ function), 741
built-in function

benchmark(), 872
compile(), 872
get_reports(), 873
model_index.append(), 874
model_index.copy(), 874
model_index.create(), 874
model_index.filter(), 875
model_index.load(), 875
model_index.move(), 875
model_index.save(), 875
print_reports(), 873
torch.neuron.DataParallel(), 200
torch.neuron.DataParallel.disable_dynamic_batching(),

103, 201
torch_neuron.trace(), 195
torch_neuronx.analyze(), 100
torch_neuronx.bucket_model_trace(), 89
torch_neuronx.DataParallel(), 102
torch_neuronx.dynamic_batch(), 90
torch_neuronx.experimental.multicore_context(),

99
torch_neuronx.experimental.neuron_cores_context(),

98

torch_neuronx.experimental.profiler.profile(),
328

torch_neuronx.experimental.profiler.profile.start(),
329

torch_neuronx.experimental.set_multicore(),
97

torch_neuronx.experimental.set_neuron_cores(),
96

torch_neuronx.PartitionerConfig(), 91
torch_neuronx.replace_weights(), 93
torch_neuronx.trace(), 85
write_csv(), 874
write_json(), 874

C
CCE, 995
ceil (C++ function), 739
ceil_out (C++ function), 739
cFP8, 995
clamp (C++ function), 740
clamp_out (C++ function), 740
close (C++ function), 745, 746
Collective Communication Engine, 994
compile()

built-in function, 872
cos (C++ function), 739
cos_out (C++ function), 739
CustomOps, 995

D
div (C++ function), 741
div_out (C++ function), 741
DP, 995
DPr, 995

E
empty (C++ function), 738
exp (C++ function), 740
exp_out (C++ function), 740
eye (C++ function), 738

1087

AWS Neuron

F
fill_ (C++ function), 742
FLOAT32_TO_FLOAT16 (torch_neuron.Optimization at-

tribute), 196
floor (C++ function), 739
floor_out (C++ function), 739
FP16, 995
FP32, 995
full (C++ function), 738

G
get_accessor_coherence_policy (C++ function),

742
get_cpu_count (C++ function), 749
get_cpu_id (C++ function), 749
get_dst_tensor (C++ function), 748
get_reports()

built-in function, 873
GPSIMD Engine, 994

I
Inf1, 993
Inferentia, 993

L
log (C++ function), 739
log10 (C++ function), 740
log10_out (C++ function), 739
log2 (C++ function), 739
log2_out (C++ function), 739
log_out (C++ function), 739

M
model_index.append()

built-in function, 874
model_index.copy()

built-in function, 874
model_index.create()

built-in function, 874
model_index.filter()

built-in function, 875
model_index.load()

built-in function, 875
model_index.move()

built-in function, 875
model_index.save()

built-in function, 875
module

placement, 205
mul (C++ function), 741
mul_out (C++ function), 740, 741

N
NC, 995

ND, 995
Neuron Device, 993
neuron-cc

neuron-cc command line option, 708, 711
neuron-cc command line option

neuron-cc, 708, 711
neuron-ls

neuron-ls command line option, 779
neuron-ls command line option

neuron-ls, 779
neuron-monitor

neuron-monitor command line option, 762
neuron-monitor command line option

neuron-monitor, 762
neuron-profile

neuron-profile command line option, 791
neuron-profile command line option

neuron-profile, 791
NeuronCore, 994, 995
NeuronCore-v1, 994
NeuronCore-v2, 994
NeuronDevice, 995
NeuronLink, 994
NeuronLink-v1, 994
NeuronLink-v2, 994
neuronx-cc

neuronx-cc command line option, 694, 696
neuronx-cc command line option

neuronx-cc, 694, 696
nrt_add_tensor_to_tensor_set (C function), 649
nrt_allocate_tensor_set (C function), 649
nrt_close (C function), 643
nrt_destroy_tensor_set (C function), 649
nrt_execute (C function), 650
nrt_execute_repeat (C function), 650
nrt_free_model_tensor_info (C function), 646
nrt_get_model_instance_count (C function), 646
nrt_get_model_nc_count (C function), 645
nrt_get_model_tensor_info (C function), 645
nrt_get_tensor_from_tensor_set (C function), 649
nrt_get_total_nc_count (C function), 651
nrt_get_version (C function), 651
nrt_get_visible_nc_count (C function), 651
nrt_init (C function), 642
nrt_load (C function), 644
nrt_load_collectives (C function), 644
nrt_profile_start (C function), 650
nrt_profile_stop (C function), 650
nrt_tensor_allocate (C function), 647
nrt_tensor_allocate_empty (C function), 648
nrt_tensor_allocate_slice (C function), 648
nrt_tensor_attach_buffer (C function), 648
nrt_tensor_free (C function), 647
nrt_tensor_get_size (C function), 648

1088 Index

AWS Neuron

nrt_tensor_get_va (C function), 649
nrt_tensor_read (C function), 647
nrt_tensor_write (C function), 648
nrt_unload (C function), 645

O
ones (C++ function), 738
operator= (C++ function), 743

P
placement

module, 205
pow (C++ function), 740
pow_out (C++ function), 740
PP, 995
PPr, 995
print_reports()

built-in function, 873

R
read (C++ function), 745
read_stream_accessor (C++ function), 742
RNE, 995
RT, 995

S
Scalar Engine, 994
ScalEng, 995
set_accessor_coherence_policy (C++ function),

742
sin (C++ function), 739
sin_out (C++ function), 739
SR, 995
sub (C++ function), 740
sub_out (C++ function), 740
Sync Engine, 994
SyncEng, 995

T
tan (C++ function), 739
tan_out (C++ function), 739
tcm_accessor (C++ function), 742
tcm_to_tensor (C++ function), 748
TensEng, 995
Tensor Engine, 994
tensor_to_tcm (C++ function), 748
TF32, 995
torch.neuron.DataParallel()

built-in function, 200
torch.neuron.DataParallel.disable_dynamic_batching()

built-in function, 103, 201
torch::neuron::tcm_free (C++ function), 748
torch::neuron::tcm_malloc (C++ function), 748

torch_neuron.experimental.multicore_context()
(in module placement), 205

torch_neuron.experimental.neuron_cores_context()
(in module placement), 206

torch_neuron.experimental.set_multicore() (in
module placement), 207

torch_neuron.experimental.set_neuron_cores()
(in module placement), 207

torch_neuron.Optimization (built-in class), 196
torch_neuron.trace()

built-in function, 195
torch_neuronx.analyze()

built-in function, 100
torch_neuronx.bucket_model_trace()

built-in function, 89
torch_neuronx.BucketModelConfig (built-in class),

88
torch_neuronx.DataParallel()

built-in function, 102
torch_neuronx.dynamic_batch()

built-in function, 90
torch_neuronx.experimental.multicore_context()

built-in function, 99
torch_neuronx.experimental.neuron_cores_context()

built-in function, 98
torch_neuronx.experimental.profiler.profile()

built-in function, 328
torch_neuronx.experimental.profiler.profile.start()

built-in function, 329
torch_neuronx.experimental.set_multicore()

built-in function, 97
torch_neuronx.experimental.set_neuron_cores()

built-in function, 96
torch_neuronx.PartitionerConfig()

built-in function, 91
torch_neuronx.replace_weights()

built-in function, 93
torch_neuronx.trace()

built-in function, 85
TP, 995
TPr, 995
Trainium, 993
Trn1, 993

V
VecEng, 995
Vector Engine, 994

W
write (C++ function), 746
write_csv()

built-in function, 874
write_json()

built-in function, 874

Index 1089

AWS Neuron

write_stream_accessor (C++ function), 742

Z
zeros (C++ function), 738

1090 Index

	Neuron Quick Links
	Get Started with Neuron
	Model Samples and Tutorials
	Training Samples/Tutorials (Trn1/Trn1n)
	Encoders
	Decoders
	Encoder-Decoders
	Vision Transformers
	Stable Diffusion
	Multi Modal
	Convolutional Neural Networks(CNN)

	Inference Samples/Tutorials (Inf2/Trn1)
	Encoders
	Decoders
	Encoder-Decoders
	Vision Transformers
	Convolutional Neural Networks(CNN)
	Stable Diffusion
	Multi Modal

	Inference Samples/Tutorials (Inf1)
	Encoders
	Vision Transformers
	Convolutional Neural Networks(CNN)
	Vision

	Neuron Performance
	What’s New
	Neuron 2.18.1 (04/10/2024)
	Neuron 2.18.0 (04/01/2024)
	What’s New
	2.18.0 Known Issues and Limitations
	Neuron Components Release Notes
	Inf1, Trn1/Trn1n and Inf2 common packages
	Trn1/Trn1n and Inf2 only packages
	Inf1 only packages

	Release Artifacts
	Trn1 packages
	Inf2 packages
	Inf1 packages
	Supported Python Versions for Inf1 packages
	Supported Python Versions for Inf2/Trn1 packages
	Supported Numpy Versions
	Supported HuggingFace Transformers Versions

	Previous Releases

	Announcements
	PyTorch Neuron
	Pytorch Neuron Setup
	Inference with torch-neuronx (Inf2 & Trn1/Trn1n)
	Tutorials for Inference (torch-neuronx)
	Compiling and Deploying HuggingFace Pretrained BERT on Trn1 or Inf2
	Introduction
	Install dependencies
	Compile the model into an AWS Neuron optimized TorchScript
	Run inference and compare results
	Benchmarking
	Finding the optimal batch size

	BERT TorchServe Tutorial
	Overview
	Run the tutorial
	Setup TorchServe
	Run TorchServe
	Benchmark TorchServe

	LibTorch C++ Tutorial
	Overview
	Notes
	Run the tutorial
	Benchmark
	Troubleshooting

	Compiling and Deploying ResNet50 on Trn1 or Inf2
	Introduction
	Install Dependencies
	Compile the model into an AWS Neuron optimized TorchScript
	Run inference and compare results
	Benchmarking
	Finding the optimal batch size

	T5 model inference on Trn1 or Inf2
	Introduction
	Install dependencies
	Compile the model into an AWS Neuron optimized TorchScript
	Run inference with greedy decoding
	Run inference with beam search

	Additional Examples (torch-neuronx)
	API Reference Guide (torch-neuronx)
	PyTorch NeuronX Tracing API for Inference
	Autobucketing
	Dynamic Batching
	Graph Partitioner

	PyTorch Neuron (torch-neuronx) Weight Replacement API for Inference
	PyTorch NeuronX NeuronCore Placement APIs [Beta]
	PyTorch NeuronX Analyze API for Inference
	PyTorch NeuronX DataParallel API
	Examples
	Default usage
	Specifying NeuronCores
	DataParallel with dim != 0
	Dynamic batching
	Dynamic batching disabled

	Developer Guide (torch-neuronx)
	NeuronCore Allocation and Model Placement for Inference (torch-neuronx)
	Default Core Allocation & Placement
	Example: Default
	Example: NEURON_RT_NUM_CORES
	Example: NEURON_RT_VISIBLE_CORES
	Example: Multiple Processes

	Explicit Core Placement [Beta]
	Example: Manual Core Selection
	Example: Automatic Multicore

	Comparison of Traced Inference versus XLA Lazy Tensor Inference (torch-neuronx)
	Introduction
	XLA Lazy Tensor Inference Mechanics
	Example

	Traced Inference Mechanics
	Example

	Traced Inference Advantages
	Summary

	Data Parallel Inference on torch_neuronx
	Introduction
	Data parallel inference
	torch_neuronx.DataParallel
	NeuronCore selection
	Batch dim
	Dynamic batching
	Performance optimizations

	Examples
	Default usage
	Specifying NeuronCores
	DataParallel with dim != 0
	Dynamic batching
	Dynamic batching disabled

	Misc (torch-neuronx)
	PyTorch Neuron (torch-neuronx) release notes
	Release [2.1.2.2.1.0]
	Summary
	What’s new in this release
	Known limitations
	Resolved issues
	“Attempted to access the data pointer on an invalid python storage”
	Too many graph compilations when using HF Trainer API
	Divergence (non-convergence) of loss for BERT/LLaMA when using release 2.16 compiler
	Known Issues
	GlibC error on Amazon Linux 2
	"EOFError: Ran out of input" or "_pickle.UnpicklingError: invalid load key, '!'" errors during Neuron Parallel Compile
	Check failed: tensor_data error during when using torch.utils.data.DataLoader with shuffle=True
	Compiler error when torch_neuronx.xla_impl.ops.set_unload_prior_neuron_models_mode(True)
	Compiler assertion error when running Stable Diffusion training
	Compiler assertion error when training using Hugging Face deepmind/language-perceiver model
	Lower performance for BERT-Large
	Slower loss convergence for GPT-2 pretraining using ZeRO1 tutorial when using recommended compiler flags
	Slower loss convergence for NxD LLaMA 70B pretraining using ZeRO1 tutorial when using recommended compiler flags
	Lower accuracy for BERT-base finetuning using HF Trainer API
	Increased in Neuron Parallel Compile time

	Release [1.13.1.1.14.0]
	Summary
	Resolved issues
	Known issues and limitations
	Memory leaking in glibc
	DDP shows slow convergence
	Runtime crash when we use too many workers per node with DDP
	Known issues and limitations (Inference)
	Torchscript serialization error with compiled artifacts larger than 4GB

	Release [2.1.1.2.0.0b0] (Beta)
	Summary
	What’s new in this release
	Known limitations
	Known Issues
	Lower performance for BERT-Large
	Divergence (non-convergence) of loss for BERT/LLaMA when using release 2.16 compiler
	Error “Attempted to access the data pointer on an invalid python storage” when using HF Trainer API

	Release [1.13.1.1.13.0]
	Summary
	What’s new in this release
	Resolved issues
	Known issues and limitations
	Memory leaking in glibc
	DDP shows slow convergence
	Runtime crash when we use too many workers per node with DDP
	Known issues and limitations (Inference)
	torch.argmin() produces incorrect results
	Torchscript serialization error with compiled artifacts larger than 4GB

	Release [2.0.0.2.0.0b0] (Beta)
	Summary
	What’s new in this release
	Known issues and limitations

	Release [1.13.1.1.12.0]
	Summary
	What’s new in this release
	Resolved issues
	Known issues and limitations (Training)
	Memory leaking in glibc
	DDP shows slow convergence
	Runtime crash when we use too many workers per node with DDP
	Known issues and limitations (Inference)
	torch.argmin() produces incorrect results
	Torchscript serialization error with compiled artifacts larger than 4GB

	Release [1.13.1.1.11.0]
	Summary
	Resolved issues

	Release [1.13.1.1.10.1]
	Summary

	Release [1.13.1.1.10.0]
	Summary
	What’s new in this release
	Resolved issues
	Known issues and limitations (Training)
	Memory leaking in glibc
	DDP shows slow convergence
	Runtime crash when we use too many workers per node with DDP
	Known issues and limitations (Inference)
	torch.argmin() produces incorrect results
	No automatic partitioning
	Torchscript serialization error with compiled artifacts larger than 4GB

	Release [1.13.1.1.9.0]
	Summary
	What’s new in this release
	Resolved issues (Training)
	Known issues and limitations (Training)
	Memory leaking in glibc
	Convolution is not supported
	DDP shows slow convergence
	Runtime crash when we use too many workers per node with DDP
	Known issues and limitations (Inference)
	torch.argmin() produces incorrect results
	No automatic partitioning
	Torchscript serialization error with compiled artifacts larger than 4GB

	Release [1.13.1.1.8.0]
	Summary
	What’s new in this release
	Known issues and limitations (Training)
	Memory leaking in glibc
	Convolution is not supported
	DDP shows slow convergence
	Runtime crash when we use too many workers per node with DDP
	Known issues and limitations (Inference)
	torch.argmin() produces incorrect results
	No automatic partitioning
	Torchscript serialization error with compiled artifacts larger than 4GB

	Release [1.13.1.1.7.0]
	Summary
	What’s new in this release
	Resolved issues (Training)
	Unexpected behavior with torch.autocast
	Resolved slower BERT bf16 Phase 1 Single Node Performance
	Resolved lower throughput for BERT-large training on AL2 instances
	Resolved issues (Inference)
	Error when using the original model after torch_neuronx.trace
	Error when using the xm.xla_device() object followed by using torch_neuronx.trace
	Error when executing torch_neuronx.trace with torch.bfloat16 input/output tensors
	Known issues and limitations (Training)
	Memory leaking in glibc
	Convolution is not supported
	DDP shows slow convergence
	Runtime crash when we use too many workers per node with DDP
	Known issues and limitations (Inference)
	torch.argmin() produces incorrect results
	No automatic partitioning
	Torchscript serialization error with compiled artifacts larger than 4GB

	Release [1.13.0.1.6.1]
	Summary
	What’s new in this release

	Release [1.13.0.1.6.1]
	Summary
	What’s new in this release

	Release [1.13.0.1.6.0]
	Summary
	What’s new in this release
	Resolved issues (Training)
	GRPC timeout errors when running Megatron-LM GPT 6.7B tutorial on multiple instances
	NaNs seen with transformers version >= 4.21.0 when running HF GPT fine-tuning or pretraining with XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1
	Resolved issues (Inference)
	torch.argmax() now supports single argument call variant
	Known issues and limitations (Training)
	Slower BERT bf16 Phase 1 Single Node Performance
	Convolution is not supported
	DDP shows slow convergence
	Runtime crash when we use too many workers per node with DDP
	Lower throughput for BERT-large training on AL2 instances
	Known issues and limitations (Inference)
	torch.argmin() produces incorrect results
	Error when using the xm.xla_device() object followed by using torch_neuronx.trace
	Error when executing torch_neuronx.trace with torch.bfloat16 input/output tensors
	No automatic partitioning

	Release [1.13.0.1.5.0]
	Summary
	What’s new in this release
	Resolved issues
	Known issues and limitations (Training)
	Convolution is not supported
	DDP shows slow convergence
	Runtime crash when we use too many workers per node with DDP
	Lower throughput for BERT-large training on AL2 instances
	Known issues and limitations (Inference)
	torch.argmax() and torch.argmin() do not support the single argument call variant
	No automatic partitioning

	Release [1.13.0.1.4.0]
	Summary
	What’s new in this release
	Resolved issues
	Known issues and limitations
	Convolution is not supported
	DDP shows slow convergence
	Runtime crash when we use too many workers per node with DDP
	Lower throughput for BERT-large training on AL2 instances

	Release [1.12.0.1.4.0]
	Summary
	What’s new in this release
	Resolved issues
	NaNs seen with transformers version >= 4.21.0 when running HF BERT fine-tuning or pretraining with XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1
	Known issues and limitations
	Convolution is not supported
	Number of data parallel training workers on one Trn1 instance

	Release [1.11.0.1.2.0]
	Summary
	What’s new in this release
	Resolved issues
	Drop-out rate ignored in dropout operation
	Runtime error “invalid offset in Coalesced_memloc_…” followed by “Failed to process dma block: 1703”
	Compilation error: “TongaSBTensor[0x7fb2a46e0830]:TongaSB partitions[0] uint8 %138392[128, 512]”
	Known issues and limitations
	Convolution is not supported
	Number of data parallel training workers on one Trn1 instance

	Release [1.11.0.1.1.1]
	Summary
	What’s new in this release
	Known issues and limitations
	Convolution is not supported
	Number of data parallel training workers on one Trn1 instance
	Drop-out rate ignored in dropout operation
	Runtime error “invalid offset in Coalesced_memloc_…” followed by “Failed to process dma block: 1703”
	Compilation error: “TongaSBTensor[0x7fb2a46e0830]:TongaSB partitions[0] uint8 %138392[128, 512]”

	Inference with torch-neuron (Inf1)
	Tutorials for Inference with torch-neuron (Inf1)
	Computer Vision Tutorials (torch-neuron)
	Natural Language Processing (NLP) Tutorials (torch-neuron)
	Compiling and Deploying HuggingFace Pretrained BERT
	Introduction
	Install Dependencies:
	Compile the model into an AWS Neuron optimized TorchScript
	Deploy the AWS Neuron optimized TorchScript
	Data parallel inference

	Data Parallel HuggingFace Pretrained BERT with Weight Sharing (Deduplication)
	Introduction
	Install Dependencies:
	Compile the model into an AWS Neuron optimized TorchScript
	Deploy the AWS Neuron optimized TorchScript
	Data parallel inference

	Deploy a pretrained PyTorch BERT model from HuggingFace on Amazon SageMaker with Neuron container
	Overview
	Install Dependencies:
	Compile the model into an AWS Neuron optimized TorchScript
	Package the pre-trained model and upload it to S3
	Build and Push the container
	Deploy Container and run inference based on the pretrained model
	Benchmarking your endpoint
	Cleanup

	BERT TorchServe Tutorial
	Overview
	Run the tutorial
	Setup TorchServe
	Run TorchServe
	Benchmark TorchServe

	Transformers MarianMT Tutorial
	Install Dependencies:
	Parameters
	CPU Model Inference
	Padded Model
	PaddedEncoder & PaddedDecoder Modules
	PaddedGenerator - GenerationMixin Class
	Padded CPU Inference
	Padded Neuron Tracing & Inference
	Padded Neuron Serialization
	Greedy Unrolled Model
	GreedyUnrolledGenerator Module
	Greedy CPU Inference
	Greedy Neuron Tracing & Inference
	Greedy Neuron Serialization
	Appendix
	BART (Mask Filling Task)
	Pegasus (Summarization Task)

	Utilizing Neuron Capabilities Tutorials
	Using NeuronCore Pipeline with PyTorch
	Install Dependencies:
	Compiling a BERT base model for a single NeuronCore
	Running the BERT base model on a single NeuronCore
	Compiling a BERT base model for 16 NeuronCores
	Running the BERT base model on 16 NeuronCores
	Load Testing the Pipeline Parallel Mode
	Bonus Section - Load Testing Data Parallel Mode

	Additional Examples (torch-neuron)
	API Reference Guide (torch-neuron)
	PyTorch-Neuron trace python API
	Example Usage
	Function Compilation
	Module Compilation
	Pre-Trained Model Compilation
	Compiling models with torch.jit.trace kwargs
	Dynamic Batching
	Manual Partitioning
	Separate Weights

	torch.neuron.DataParallel API
	Examples
	Default usage
	Specifying NeuronCores
	DataParallel with dim != 0
	Dynamic batching
	Dynamic batching disabled
	Full tutorial with torch.neuron.DataParallel

	PyTorch Neuron (torch-neuron) Core Placement API [Beta]

	Developer Guide (torch-neuron)
	Running inference on variable input shapes with bucketing
	Introduction
	Applications that benefit from bucketing
	Implementing bucketing
	Creating bucketed models
	Running inference with bucketing

	Examples
	Computer vision bucketing
	End-to-end computer vision bucketing example
	Natural language processing bucketing
	End-to-end natural language processing bucketing example

	Data Parallel Inference on Torch Neuron
	Introduction
	Data parallel inference
	torch.neuron.DataParallel
	NeuronCore selection
	Batch dim
	Dynamic batching
	Performance optimizations

	Examples
	Default usage
	Specifying NeuronCores
	DataParallel with dim != 0
	Dynamic batching
	Dynamic batching disabled
	Full tutorial with torch.neuron.DataParallel

	Developer Guide - PyTorch Neuron (torch-neuron) LSTM Support
	Supported Usage
	Fixed-Length Sequences
	Packed Input, Padded Output, Pre-Sorted Inputs
	Packed Input, Padded Output, Unsorted Inputs
	Packed Inputs, Final Hidden & Cell State Only

	Unsupported Usage
	PackedSequence Returned
	Invalid PackedSequence Usage

	PyTorch Neuron (torch-neuron) Core Placement
	NeuronCore Pipeline
	Default Core Allocation & Placement
	Example: Default
	Example: NEURON_RT_NUM_CORES
	Example: NEURON_RT_VISIBLE_CORES
	Example: Overlapping Models
	Example: Multiple Processes

	NEURONCORE_GROUP_SIZES
	Example: Single NeuronCore Group
	Example: Multiple NeuronCore Groups
	Issue: Overlapping Models with Differing Model Sizes
	Issue: Incompatible Model Sizes
	Issue: Multiple Model Copies
	Issue Summary

	Explicit Core Placement [Beta]
	Example: Manual Core Selection
	Example: Automatic Multicore
	Example: Explicit Replication

	Misc (torch-neuron)
	PyTorch Neuron (torch-neuron) Supported operators
	PyTorch Neuron release [package version 1.*.*.2.9.1.0, SDK 2.13.0]
	PyTorch Neuron release [2.9.0.0]
	PyTorch Neuron release [2.5.0.0]
	PyTorch Neuron release [2.2.0.0]
	PyTorch Neuron release [2.1.7.0]
	PyTorch Neuron Release [2.0.536.0]
	PyTorch Neuron Release [2.0.318.0]
	PyTorch Neuron Release [1.5.21.0]
	PyTorch Neuron Release [1.5.7.0]
	PyTorch Neuron Release [1.4.1.0]
	PyTorch Neuron Release [1.3.5.0]
	PyTorch Neuron Release [1.2.16.0]
	PyTorch Neuron Release [1.2.15.0]
	PyTorch Neuron Release [1.2.3.0]
	PyTorch Neuron Release [1.1.7.0]
	PyTorch Neuron Release [1.0.24045.0]
	PyTorch Neuron Release [1.0.1720.00]
	PyTorch Neuron Release [1.0.1532.0]
	PyTorch Neuron Release [1.0.1522.0]
	PyTorch Neuron Release [1.0.1386.0]
	PyTorch Neuron Release [1.0.1168.0]
	PyTorch Neuron Release [1.0.1001.0]
	PyTorch Neuron Release [1.0.825.0]
	PyTorch Neuron Release [1.0.763.0]
	PyTorch Neuron Release [1.0.672.0]
	PyTorch Neuron Release [1.0.552.0]

	Troubleshooting Guide for PyTorch Neuron (torch-neuron)
	General Torch-Neuron issues
	TorchVision related issues
	2GB protobuf limit related issues
	torch.jit.trace issues
	Compiling models with outputs that are not torch-jit-traceable
	Compiling a submodule in a model that is not torch-jit-traceable

	PyTorch Neuron (torch-neuron) release notes
	Known Issues and Limitations - Updated 03/21/2023
	Min & Max Accuracy
	Python 3.5
	Torchvision
	Dynamic Batching

	PyTorch Neuron release [package ver. 1.*.*.2.9.17.0, SDK ver. 2.16.0]
	PyTorch Neuron release [package ver. 1.*.*.2.9.6.0, SDK ver. 2.15.0]
	PyTorch Neuron release [package ver. 1.*.*.2.9.1.0, SDK ver. 2.13.0]
	PyTorch Neuron release [package ver. 1.*.*.2.8.9.0, SDK ver. 2.12.0]
	PyTorch Neuron release [2.7.10.0]
	New in this release
	Bug fixes

	PyTorch Neuron release [2.7.1.0]
	PyTorch Neuron release [2.6.5.0]
	New in this release
	Bug fixes

	PyTorch Neuron release [2.5.0.0]
	New in this release
	Bug fixes

	PyTorch Neuron release [2.3.0.0]
	New in this release
	Bug fixes

	PyTorch Neuron release [2.2.0.0]
	New in this release

	PyTorch Neuron release [2.1.7.0]
	New in this release
	Bug fixes

	PyTorch Neuron release [2.0.536.0]
	New in this release

	PyTorch Neuron release [2.0.468.0]
	New in this release

	PyTorch Neuron release [2.0.392.0]
	PyTorch Neuron release [2.0.318.0]
	New in this release
	Resolved Issues

	[1.8.1.1.5.21.0]
	Summary

	[1.8.1.1.5.7.0]
	Summary

	[1.8.1.1.4.1.0]
	Summary

	[1.7.1.1.3.5.0]
	Summary

	[1.7.1.1.2.16.0]
	Summary

	[1.7.1.1.2.15.0]
	Summary

	[1.7.1.1.2.3.0]
	Summary

	[1.1.7.0]
	Summary

	[1.0.1978.0]
	Summary

	[1.0.1721.0]
	Summary

	[1.0.1532.0]
	Summary

	[1.0.1522.0]
	Summary

	[1.0.1386.0]
	Summary
	Major New Features
	Resolved Issues

	[1.0.1168.0]
	Summary
	Major New Features
	Resolved Issues
	Known Issues and Limitations

	[1.0.1001.0]
	Summary
	Major New Features
	Resolved Issues
	Known Issues and Limitations

	[1.0.825.0]
	Summary
	Major New Features
	Resolved Issues
	Known Issues and limitations

	[1.0.763.0]
	Summary
	Major new features
	Resolved issues

	[1.0.672.0]
	Summary
	Major new features
	Resolved issues
	Known issues and limitations
	Other Notes

	[1.0.627.0]
	Summary
	Major new features
	Resolved issues
	Known issues and limitations
	Models TESTED
	Pytorch Serving
	Profiler support
	Automated partitioning
	PyTorch dependency
	Trace behavior
	Six pip package is required
	Multiple NeuronCore support
	CPU execution
	Other notes

	Training (torch-neuronx)
	Tutorials for Training(torch-neuronx)
	Hugging Face BERT Pretraining Tutorial
	Phase 1 BERT-Large pretraining
	Setting up the training environment on trn1.32xlarge
	Downloading tokenized and sharded dataset files
	Number of workers
	BFloat16 and stochastic rounding in phase 1
	Pre-compilation
	Initiating a Training Job
	Monitoring Progress of the Training Job
	Monitoring Training Job Progress using neuron-top
	Monitoring Training Job Progress using TensorBoard
	Finishing the tutorial

	Phase 1 BERT-Large pretraining with Layerwise Adaptive Moments based optimizer (LAMB)
	Phase 1 BERT-Large pretraining with PyTorch Autocast (AMP) and stochastic rounding
	Phase 1 BERT-Large pretraining on two instances
	Phase 2 BERT-Large pretraining
	Training Environment
	Initiating a Training Job

	Tools
	neuron-ls
	neuron-top
	Generating tokenized and sharded dataset files

	Known issues and limitations
	NaNs seen with transformers version >= 4.21.0 when running HF BERT fine-tuning or pretraining with XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1
	BERT-large compilation limitations
	BERT-large pretraining with pretokenized dataset hangs when using xm.save
	BERT-large two worker pretraining hangs or run out of host memory during checkpointing on trn1.2xlarge
	BERT precompilation using neuron_parallel_compile hangs when using torchrun
	Reduced multi-node performance with Neuron PyTorch 1.12 (release 2.6)

	Troubleshooting
	ModuleNotFoundError: No module named ‘torch’ , ‘torch_xla’, ‘transformers’, etc

	Multi-Layer Perceptron Training Tutorial
	Setup environment and download examples
	Multi-layer perceptron MNIST model
	Single-worker MLP training script in PyTorch on CPU
	Single-worker MLP training on Trainium
	Multi-worker data-parallel MLP training using torchrun
	Single-worker MLP evaluation on Trainium
	Known issues and limitations

	PyTorch Neuron for Trainium Hugging Face BERT MRPC task finetuning using Hugging Face Trainer API
	Setup and compilation
	Single-worker training
	Multi-worker training
	Converting BERT pretrained checkpoint to Hugging Face pretrained model format
	Older versions of transformers <4.27.0 or PyTorch Neuron <1.13.0
	Known issues and limitations

	Fine-tune T5 model on Trn1
	Setup and compilation
	Single-worker training
	Multi-worker Training
	Known issues and limitations

	ZeRO-1 Tutorial
	What is ZeRO-1?
	Usage
	GPT2-XL Pretraining Tutorial
	Setup
	Dataset
	Training
	Known Issues, Work-arounds and Limitations

	Analyze for Training Tutorial
	Setup
	Running analyze via neuron_parallel_compile
	Understanding analyze report for Unsupported Models
	Default Verbosity
	Lower Level Verbosity

	Neuron Custom C++ Operators in MLP Training
	Setup Environment and Download Examples
	Basic PyTorch Custom Relu Operator
	Multi-layer perceptron MNIST model
	Training the MLP model on CPU
	Neuron Relu CustomOp
	Training the MLP model on Trainium

	Neuron Custom C++ Operators Performance Optimization
	Download Examples
	Model Configuration Adjustment
	Performance with Element-wise Accessor
	Performance with TCM Accessor
	Extending the example to utilize multiple GPSIMD cores

	Additional Examples (torch-neuronx)
	API Reference Guide for Training (torch-neuronx)
	PyTorch NeuronX neuron_parallel_compile CLI
	Debugging with Neuron Persistent Cache
	Separate collection and compilation commands
	Cache maintenance commands
	Analyze operations support

	PyTorch NeuronX Environment Variables
	Neuron Persistent Cache
	PyTorch NeuronX Profiling API

	Developer Guide (torch-neuronx)
	Developer Guide for Training with PyTorch NeuronX
	PyTorch NeuronX
	Neuron XLA device

	PyTorch NeuronX single-worker training/evaluation quick-start
	PyTorch NeuronX multi-worker data parallel training using torchrun
	Conversion from Distributed Data Parallel (DDP) application
	PyTorch NeuronX environment variables
	Neuron Persistent Cache for compiled graphs
	Number of graphs
	Automatic casting of float tensors to BFloat16
	Automatic Mixed-Precision
	BF16 mixed-precision using PyTorch Autocast

	Tips and Best Practices
	Understand the lazy mode in PyTorch NeuronX
	Minimize the number of compilation-and-executions
	Ensure common initial weights across workers
	Use PyTorch/XLA’s model save function

	FAQ
	What is the difference between Trainium and Inferentia?

	Debugging and troubleshooting

	How to debug models in PyTorch NeuronX
	Printing metrics
	Printing tensors
	Use mark_step
	Using Eager Debug Mode
	Profiling model run
	Snapshotting With Torch-Neuronx 2.1
	Snapshotting with Torch-Neuronx 1.13
	Snapshot FAQs:

	Developer Guide for Profiling with PyTorch NeuronX
	Introduction
	Example used in this guide
	Prerequisites
	Environment
	Setup

	Viewing the Trace on TensorBoard
	Using Named Blocks for the Trace

	Misc (Training - torch-neuronx)
	PyTorch Neuron (torch-neuronx) - Supported Operators
	Operator support

	How to prepare trn1.32xlarge for multi-node execution
	Launching an instance
	Assigning public IP address
	Software installation
	Containers
	Application execution environment
	Appendix - trn1 instance launch example script

	PyTorch Neuron (torch-neuronx) for Training Troubleshooting Guide
	General Troubleshooting
	Possible Error Conditions
	Non-Fatal Error OpKernel (‘op: “TPU*” device_type: “CPU”’)
	XLA runtime error: “Invalid argument: Cannot assign a device for operation”
	Error: “Could not start gRPC server”
	Failed compilation result in the cache
	Compilation errors when placing NeuronCache home directory on NFS/EFS/FSx mounted drive
	Compilation error: “Expect ap datatype to be of type float32 float16 bfloat16 uint8”
	NeuronCore(s) not available - Requested:1 Available:0
	TDRV error “TDRV:exec_consume_infer_status_notification”
	TDRV error “TDRV:tdrv_one_tmpbuf_reserve Number of ONE TMPBUF pages requested exceeded the max number of pages allowed (requested: <N>, max allowed: 16).”
	Could not open the ndX, close device failed, TDRV not initialized
	Multiworker execution hangs during NCCL init
	NRT init error “One or more engines are running. Please restart device by reloading driver”
	NRT error “ERROR TDRV:kbl_model_add Attempting to load an incompatible model!”
	NRT error “ERROR HAL:aws_hal_sprot_config_remap_entry SPROT remap destination address must be aligned size”
	NCCL warning : “NCCL WARN Timeout waiting for RX (waited 120 sec) - retrying”
	RPC error: “RPC failed with status = ‘UNAVAILABLE: Socket closed’”
	Error “Assertion `listp->slotinfo[cnt].gen <= GL(dl_tls_generation)’ failed” followed by ‘RPC failed with status = “UNAVAILABLE: Connection reset by peer”’
	RPC connection error: “RPC failed with status = UNAVAILABLE: Connection reset by peer” not preceded by any error
	Runtime errors “Missing infer_status notification” followed by “inference timeout”
	Protobuf Error “TypeError: Descriptors cannot not be created directly.”
	TDRV error “Timestamp program stop timeout”
	Compiler error “module ‘numpy’ has no attribute ‘asscalar’”
	Import errors ‘generic_type: type “IrValue” is already registered!’ or ‘generic_type: type “XlaBuilder” is already registered!’
	Import error “import _XLAC ImportError: <>/site-packages/_XLAC.cpython-38-x86_64-linux-gnu.so: undefined symbol”
	NaNs seen with transformers version >= 4.21.0 when running HF BERT fine-tuning or pretraining with XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1
	Network Connectivity Issue on trn1/trn1n 32xlarge with Ubuntu
	“Too many open files” when running training job
	“undefined symbol”

	TensorFlow Neuron
	Tensorflow Neuron Setup
	Inference on Inf2 & Trn1/Trn1n (tensorflow-neuronx)
	Tutorials (tensorflow-neuronx)
	Running Huggingface Roberta-Base with TensorFlow-NeuronX
	Setup
	Download From Huggingface and Compile for AWS-Neuron
	Run Basic Inference Benchmarking

	Using NEURON_RT_VISIBLE_CORES with TensorFlow Serving
	Install TensorFlow Model Server and Serving API
	Export and Compile Saved Model
	Serving Saved Model
	Generate inference requests to the model server

	API Reference Guide (tensorflow-neuronx)
	TensorFlow 2.x (tensorflow-neuronx) Tracing API
	Method
	Description
	Arguments
	Special Flags
	Returns
	Example Usage
	Example Usage with Manual Device Placement Using subgraph_builder_function

	TensorFlow Neuron (tensorflow-neuronx) Auto Multicore Replication (Beta)
	TensorFlow Neuron TF 2.x (tensorflow-neuron TF2.x) Auto Multicore Replication Python API (Beta)
	Method
	Description
	Arguments
	Returns
	Example Python API Usage for TF2.x traced models:
	Example Python API Usage for TF2.x saved models:

	TensorFlow Neuron TF2.x (tensorflow-neuronx TF2.x) Auto Multicore Replication CLI (Beta)
	Method
	Arguments
	Example CLI Usage for Tensorflow-Serving saved models:

	TensorFlow 2.x (tensorflow-neuronx) analyze_model API
	Method
	Description
	Arguments
	Returns
	Example Usage

	Misc (tensorflow-neuronx)
	TensorFlow Neuron (tensorflow-neuronx) Release Notes
	tensorflow-neuronx 2.x release [2.1.0]
	tensorflow-neuronx 2.10 release [2.0.0]
	tensorflow-neuronx 2.10 release [1.0.0]

	Inference on Inf1 (tensorflow-neuron)
	Tutorials (tensorflow-neuron)
	Computer Vision Tutorials (tensorflow-neuron)
	Running OpenPose on Inferentia
	Note: this tutorial runs on tensorflow-neuron 1.x only
	Introduction:
	Acknowledgement:
	Download tensorflow pose net frozen graph.
	Compile
	Deploy

	Running ResNet50 on Inferentia
	Note: this tutorial runs on tensorflow-neuron 1.x only
	Introduction:
	Compile for Neuron
	Deploy on Inferentia
	After downloading the example image, run the inference.

	Working with YOLO v4 using AWS Neuron SDK
	Optimizing image pre-processing and post-processing for object detection models

	[Broken] Evaluate YOLO v3 on Inferentia
	Note: this tutorial runs on tensorflow-neuron 1.x only
	Introduction
	Prerequisites
	Part 1: Download Dataset and Generate Pretrained SavedModel
	Download COCO 2017 validation dataset
	Generate YOLO v3 tensorflow SavedModel (pretrained on COCO 2017 dataset)
	Part 2: Compile the Pretrained SavedModel for Neuron
	Deploy the model on Inferentia
	Part 3:Evaluate Model Quality after Compilation
	Define evaluation functions
	Evaluate mean average precision (mAP) score

	Running SSD300 with AWS Neuron
	Table of Contents
	Launch EC2 instances and update tensorflow-neuron and neuron-cc
	Generating Neuron compatible SSD300 TensorFlow SavedModel
	Compile open source PyTorch SSD300 model and checkpoint into Neuron compatible SSD300 TensorFlow SavedModel

	Tensorflow ResNet 50 Optimization Tutorial
	Note: this tutorial runs on tensorflow-neuron 1.x only
	Introduction:
	Install Dependencies
	Compile
	Inference
	Known Issues
	Unable to compile with batch and num NeuronCores combination

	Natural Language Processing (NLP) Tutorials (tensorflow-neuron)
	[Broken] Running TensorFlow BERT-Large with AWS Neuron
	Launch EC2 instances
	Compiling Neuron compatible BERT-Large
	Update compilation EC2 instance
	Compile open source BERT-Large saved model using Neuron compatible BERT-Large implementation
	Running the inference demo
	Update inference EC2 instance
	Launching the BERT-Large demo server
	Sending requests to server from multiple clients
	Printing latency metrics
	Using public BERT SavedModels
	Appendix 1
	Appendix 2
	Appendix 3

	Running Huggingface DistilBERT with TensorFlow-Neuron
	Setup
	Download From Huggingface and Compile for AWS-Neuron
	Run Basic Inference Benchmarking

	Utilizing Neuron Capabilities Tutorials (tensorflow-neuron)

	Additional Examples (tensorflow-neuron)
	API Reference Guide (tensorflow-neuron)
	TensorFlow 2.x (tensorflow-neuron) Tracing API
	Method
	Description
	Arguments
	Special Flags
	Returns
	Example Usage
	Example Usage with Manual Device Placement Using subgraph_builder_function

	TensorFlow 2.x (tensorflow-neuron) analyze_model API
	Method
	Description
	Arguments
	Returns
	Example Usage

	TensorFlow 1.x (tensorflow-neuron) Compilation API
	Method
	Description
	Arguments
	Returns
	Example Usage

	TensorFlow Neuron (tensorflow-neuron) Auto Multicore Replication (Beta)
	TensorFlow Neuron TF 2.x (tensorflow-neuron TF2.x) Auto Multicore Replication Python API (Beta)
	Method
	Description
	Arguments
	Returns
	Example Python API Usage for TF2.x traced models:
	Example Python API Usage for TF2.x saved models:

	TensorFlow Neuron TF1.x/TF2.x (tensorflow-neuron TF1.x/TF2.x) Auto Multicore Replication CLI (Beta)
	Method
	Arguments
	Example CLI Usage for TF 1.x and Tensorflow-Serving saved models:

	Misc (tensorflow-neuron)
	TensorFlow Neuron (tensorflow-neuron (TF1.x)) Release Notes
	Known Issues and Limitations - updated 08/12/2021
	tensorflow-neuron 1.x release [2.10.1.0]
	tensorflow-neuron 1.x release [2.9.0.0]
	tensorflow-neuron 1.x release [2.8.9.0]
	tensorflow-neuron 1.x release [2.8.1.0]
	tensorflow-neuron 1.x release [2.7.3.0]
	tensorflow-neuron 1.x release [2.6.5.0]
	tensorflow-neuron 1.x release [2.4.0.0]
	tensorflow-neuron 1.x release [2.3.0.0]
	tensorflow-neuron 1.x release [2.1.14.0]
	tensorflow-neuron 1.x release [2.1.14.0]
	tensorflow-neuron 1.x release [2.1.13.0]
	tensorflow-neuron 1.x release [2.1.6.0]
	tensorflow-neuron 1.x release [2.0.4.0]
	tensorflow-neuron 1.x release [2.0.3.0]
	New in this release
	Resolved Issues

	[1.15.5.1.5.1.0]
	New in this release

	[1.15.5.1.4.0.0]
	New in this release

	[1.15.5.1.3.3.0]
	New in this release

	[1.15.5.1.2.9.0]
	New in this release

	[1.15.5.1.2.8.0]
	New in this release

	[1.15.5.1.2.2.0]
	New in this release

	[1.15.4.1.1.3.0]
	New in this release

	[1.15.4.1.0.2168.0]
	New in this release

	[1.15.3.1.0.2043.0]
	New in this release

	[1.15.3.1.0.1965.0]
	New in this release

	[1.15.3.1.0.1953.0]
	New in this release

	[1.15.3.1.0.1891.0]
	New in this release
	Dependency change
	New Features
	Resolved Issues

	[1.15.2.1.0.1796.0]
	New in this release
	Major New Features
	Resolved Issues
	Known Issues and limitations

	[1.15.2.1.0.1572.0]
	New in this release
	Major New Features
	Resolved Issues
	Known Issues and limitations

	[1.15.0.1.0.1333.0]
	New in this release
	Major New Features
	Resolved Issues
	Known Issues and limitations

	[1.15.0.1.0.1240.0]
	New in this release
	Major New Features
	Resolved Issues
	Known Issues and Limitations
	Other Notes

	[1.15.0.1.0.997.0]
	New in this release
	Major New Features
	Resolved Issues
	Known Issues and Limitations
	Other Notes

	[1.15.0.1.0.803.0]
	New in this release
	Major New Features
	Resolved Issues
	Known Issues and Limitations
	Other Notes

	[1.15.0.1.0.749.0]
	New in this release
	Major New Features
	Resolved Issues
	Known Issues and Limitations
	Other Notes

	[1.15.0.1.0.663.0]
	New in this release
	Major New Features
	Resolved Issues
	Known Issues and Limits
	Models Supported
	Other Notes

	TensorFlow Neuron (tensorflow-neuron (TF2.x)) Release Notes
	Known Issues and Limitations - updated 08/12/2021
	tensorflow-neuron 2.x release [2.10.8.0]
	tensorflow-neuron 2.x release [2.10.2.0]
	tensorflow-neuron 2.x release [2.10.1.0]
	tensorflow-neuron 2.x release [2.9.3.0]
	tensorflow-neuron 2.x release [2.8.9.0]
	tensorflow-neuron 2.x release [2.8.1.0]
	tensorflow-neuron 2.x release [2.7.4.0]
	tensorflow-neuron 2.x release [2.7.3.0]
	tensorflow-neuron 2.x release [2.6.5.0]
	tensorflow-neuron 2.x release [2.6.0.0]
	tensorflow-neuron 2.x release [2.4.0.0]
	tensorflow-neuron 2.x release [2.3.0.0]
	tensorflow-neuron 2.x release [2.2.0.0]
	tensorflow-neuron 2.x release [2.1.14.0]
	tensorflow-neuron 2.x release [2.1.13.0]
	tensorflow-neuron 2.x release [2.1.6.0]
	tensorflow-neuron 2.x release [2.0.4.0]
	tensorflow-neuron 2.x release [2.0.3.0]
	New in this release
	Resolved Issues

	tensorflow-neuron 2.x release [1.6.8.0]
	New in this release

	TensorFlow Neuron (tensorflow-neuron (TF2.x)) Accelerated (torch-neuron) Python APIs and Graph Ops
	Accelerated Python APIs
	Accelerated graph operators

	TensorFlow Neuron (tensorflow-neuron (TF1.x)) Supported operators
	Neuron Compiler Release [1.9.1.0]
	Neuron Compiler Release [1.7.3.0]
	Neuron Compiler Release [1.6.13.0]
	Neuron Compiler Release [1.5.5.0]
	Neuron Compiler Release [1.4.0.0]
	Neuron Compiler Release [1.3.0.0]
	Neuron Compiler Release [1.2.7.0]
	Neuron Compiler Release [1.2.2.0]
	Neuron Compiler Release [1.0.24045.0]
	Neuron Compiler Release [1.0.18001]
	Neuron Compiler Release [1.0.16764]
	Neuron Compiler Release [1.0.15275]
	Neuron Compiler Release [1.0.12696]
	Neuron Compiler Release [1.0.9410]
	Neuron Compiler Release [1.0.7878]
	Neuron Compiler Release [1.0.6801]
	Neuron Compiler Release [1.0.5939]
	Neuron Compiler Release [1.0.5301]
	Neuron Compiler Release [1.0.4680.0]

	MXNet Neuron
	MXNet Neuron Setup
	Inference (mxnet-neuron)
	Tutorials (mxnet-neuron)
	Computer Vision Tutorials (mxnet-neuron)
	Natural Language Processing (NLP) Tutorials (mxnet-neuron)
	Utilizing Neuron Capabilities Tutorials (mxnet-neuron)

	API Reference Guide (mxnet-neuron)
	Neuron Apache MXNet Compilation Python API
	Description
	MXNet 1.5
	Method
	Arguments
	Returns
	Example Usage: Compilation
	MXNet 1.8
	Method
	Arguments
	Returns
	Example Usage: Compilation
	Example Usage: Extract Compilation Statistics

	Developer Guide
	Flexible Execution Group (FlexEG) in Neuron-MXNet
	Introduction
	FlexEG
	Migration from NeuronCore Groups to FlexEG
	Best practices when using FlexEG
	Choosing starting core
	Performance vs. Flexibility tradeoff

	Misc (mxnet-neuron)
	Troubleshooting Guide for Neuron Apache MXNet
	Inference Runtime Error
	Out-of-memory error when calling Symbol API bind() too many times
	Inference crashed with MXNetError: InferShapeKeyword argument name xyz not found
	Inference crashed at mx.nd.waitall() with MXNetError: Check failed: bin.dtype() == mshadow::kUint8
	Inference crashed with NRTD error 1002

	Multi-Model Server
	Failed to create NEURONCORE Group with GRPC Error. Status Error: 14, Error message: “Connect Failed”
	Multiple MMS workers die with “Backend worker process die.” message
	MMS throws a “mxnet.base.MXNetError: array::at” error
	MXNet Model Server is not able to clean up Neuron RTD states after model is unloaded
	Pipeline mode is not able to execute inferences requests in parallel
	Features only in MXNet-Neuron 1.5
	Features only in MXNet-Neuron 1.8

	Apache MXNet Neuron Release Notes
	Apache MXNet Neuron release [1.8.0.2.4.40.0]
	Summary

	Apache MXNet Neuron release [1.8.0.2.4.25.0]
	Summary

	Apache MXNet Neuron release [1.8.0.2.4.10.0]
	Summary

	Apache MXNet Neuron release [1.8.0.2.4.9.0]
	Summary

	Apache MXNet Neuron release [1.8.0.2.4.1.0]
	New in this release
	Known Issues and Limitations

	[1.5.1.1.10.39.0]
	Summary

	Apache MXNet Neuron release [1.8.0.2.2.127.0]
	Summary

	[1.5.1.1.10.37.0]
	Summary

	Apache MXNet Neuron release [1.8.0.2.2.43.0]
	Summary

	[1.5.1.1.10.11.0]
	Summary

	[1.5.1.1.10.0.0]
	Summary

	Apache MXNet Neuron release [1.8.0.2.2.2.0]
	New in this release
	Bug fixes

	[1.5.1.1.9.0.0]
	Summary

	Apache MXNet Neuron release [1.8.0.2.1.5.0]
	New in this release
	Bug fixes

	Apache MXNet Neuron release [1.8.0.2.0.276.0]
	Apache MXNet Neuron release [1.8.0.2.0.271.0]
	New in this release
	Resolved Issues

	[1.5.1.1.7.0.0]
	New in this release
	Resolved Issues

	[1.5.1.1.6.5.0]
	Summary

	[1.8.0.1.3.4.0]
	Summary

	[1.5.1.1.6.1.0]
	Summary

	[1.8.0.1.3.0.0]
	Summary
	Major New Features
	Resolved Issues

	[1.8.0.1.2.1.0]
	Summary
	Resolved Issues

	[1.8.0.1.1.2.0]
	Summary
	Major New Features

	[1.5.1.1.4.x.x]
	Summary

	[1.5.1.1.4.4.0]
	Summary
	Resolved Issues

	[1.5.1.1.3.8.0]
	Summary

	[1.5.1.1.3.7.0]
	Summary

	[1.5.1.1.3.2.0]
	Summary

	[1.5.1.1.2.1.0]
	Summary

	[1.5.1.1.1.88.0]
	Summary
	Resolved Issues

	[1.5.1.1.1.52.0]
	Summary
	Major New Features
	Resolved Issues

	[1.5.1.1.1.1.0]
	Summary
	Major New Features
	Resolved Issues

	[1.5.1.1.0.2101.0]
	Summary
	Major New Features
	Resolved Issues

	[1.5.1.1.0.2093.0]
	Summary
	Major New Features
	Resolved Issues

	[1.5.1.1.0.2033.0]
	Summary
	Major New Features
	Resolved Issues
	Known Issues and Limitations
	Other Notes

	[1.5.1.1.0.1900.0]
	Summary
	Major New Features
	Resolved Issues
	Known Issues and Limitations
	Other Notes

	[1.5.1.1.0.1596.0]
	Summary
	Major New Features
	Resolved Issues
	Known Issues and Limitations
	Other Notes

	[1.5.1.1.0.1498.0]
	Summary
	Major New Features
	Resolved Issues
	Known Issues and Limitations
	Other Notes

	[1.5.1.1.0.1401.0]
	Summary
	Major New Features
	Resolved Issues
	Known Issues and Limitations
	Other Notes

	[1.5.1.1.0.1325.0]
	Summary
	Major New Features
	Resolved Issues
	Known Issues and Limitations
	Other Notes

	[1.5.1.1.0.1349.0]
	Summary

	[1.5.1.1.0.1325.0]
	Summary
	Major New Features
	Resolved Issues
	Known Issues and Limitations
	Other Notes

	[1.5.1.1.0.1260.0]
	Summary
	Major new features
	Resolved issues
	Known issues and limitations
	Models Supported
	Other Notes

	Neuron Apache MXNet Supported operators
	Neuron Compiler Release [1.6.13.0]
	Neuron Compiler Release [1.4.1.0]
	Neuron Compiler Release [1.4.0.0]
	Neuron Compiler Release [1.3.0.0]
	Neuron Compiler Release [1.2.7.0]
	Neuron Compiler Release [1.2.2.0]
	Neuron Compiler Release [1.2.0.0]
	Neuron Compiler Release [1.0.24045.0]
	Neuron Compiler Release [1.0.18001.0]
	Neuron Compiler Release [1.0.17937.0]
	Neuron Compiler Release [1.0.16861.0]
	Neuron Compiler Release [1.0.15275]
	Neuron Compiler Release [1.0.12696]
	Neuron Compiler Release [1.0.9410]
	Neuron Compiler Release [1.0.7878]
	Neuron Compiler Release [1.0.6801]
	Neuron Compiler Release [1.0.5939]
	Neuron Compiler Release [1.0.5301]
	Neuron Compiler Release [1.0.4680.0]

	Transformers NeuronX (transformers-neuronx)
	Transformers NeuronX Setup (transformers-neuronx)
	Transformers Neuron Developer Guide (transformers-neuronx)
	Transformers NeuronX (transformers-neuronx) Developer Guide
	Introduction
	Checkpoint compatibility with HuggingFace Transformers
	Neuron optimized transformer decoders implemented in XLA High Level Operations (HLO)
	Tensor-parallelism support
	Features
	Compile-time Configurations
	Checkpoint support and automatic model selection
	Hugging Face generate() API support
	Neuron Persistent Cache
	int8 weight storage support
	Parallel Input Prompt Context Encoding
	Serialization support [Beta]
	Grouped-query attention (GQA) support [Beta]
	Repeated Ngram Filtering
	Top-K on-device sampling support [Beta]
	Running inference with multiple models
	Streamer
	Stopping Criteria
	Speculative sampling [Beta]

	Transformers NeuronX (transformers-neuronx) Developer Guide For Continuous Batching
	Overview of continuous batching API and vLLM support
	Installing vLLM and running a simple offline script
	Known issues and FAQs

	Transformers NeuronX Tutorials
	Misc (transformers-neuronx)
	Transformers Neuron (transformers-neuronx) release notes
	Model classes status
	Model features
	Release [0.10.0.332]
	Summary
	What’s new in this release
	Known Issues and Limitations

	Release [0.10.0.21]
	Summary
	What’s new in this release
	Resolved Issues
	Known Issues and Limitations

	Release [0.9.474]
	Summary
	What’s new in this release
	Resolved Issues
	Known Issues and Limitations

	Release [0.8.268]
	Summary
	What’s new in this release
	Resolved Issues
	Known Issues and Limitations

	Release [0.7.84]
	Summary
	What’s new in this release
	Resolved Issues
	Known Issues and Limitations

	Release [0.6.106]
	Summary
	What’s new in this release
	Resolved Issues
	Known Issues and Limitations

	Release [0.5.58]
	Summary
	What’s new in this release
	Resolved Issues
	Known Issues and Limitations

	Release [0.4.0]
	Summary
	What’s new in this release
	Resolved Issues
	Incorrect GPT-J linear layer sharding
	Incorrect output with HuggingFace beam_search()

	Release [0.3.0]
	Summary
	What’s new in this release
	Resolved Issues
	Incorrect GPT-J amp_callback import

	Known Issues and Limitations
	Incorrect output with HuggingFace beam_search()

	NeuronX Distributed
	NeuronX Distributed Setup
	App Notes (neuronx-distributed)
	Tensor Parallelism Overview
	Pipeline Parallelism Overview
	Model partitioning
	Pipeline Execution Schedule

	Activation Memory Reduction
	Sequence Parallelism
	Activation Recomputation

	App Reference Guide (neuronx-distributed)
	API Reference Guide (neuronx-distributed)
	Parallel Model State:
	Initialize Model Parallelism:
	Other helper APIs:

	Parallel Layers:
	Parallel Embedding:
	ColumnParallel Linear Layer:
	RowParallel Linear Layer:
	Padding Tensor-Parallel Layers
	Loss functions:

	Pipeline parallelism:
	Neuron Distributed Pipeline Model

	Checkpointing:
	Save Checkpoint:
	Load Checkpoint
	Gradient Clipping:
	Neuron Zero1 Optimizer:

	Neuronx-Distributed Training APIs:
	Initialize NxD config:
	Initialize NxD Model Wrapper:
	Initialize NxD Optimizer Wrapper:
	Save Checkpoint:
	Load Checkpoint:

	Modules:
	GQA-QKV Linear Module:

	Model Trace:
	Trace Model Save/Load:
	Save:
	Load:
	Parameters:

	Neuron PyTorch-Lightning
	Neuron Lightning Module
	Neuron XLA Strategy
	Neuron XLA Precision Plugin
	Neuron TQDM Progress Bar
	Neuron TensorBoard Logger

	Developer Guide (neuronx-distributed)
	Developer guide for Tensor Parallelism (neuronx-distributed)
	Training
	Creating DataLoader:
	Creating Model:
	Final Training script:
	Saving Model:

	Developer guide for Pipeline Parallelism (neuronx-distributed)
	Training
	Creating Model
	Runtime execution:
	Mixed precision training

	Things that require user attention:
	Model initialization
	Using torchdistx’s deferred initialization
	Using meta device for initialization
	Moving model to device
	Gradient checkpointing
	Model tracing
	Special treatment for Hugging Face models
	Auto partition

	Developer guide for Activation Memory reduction (neuronx-distributed)
	Sequence Parallelism
	Model changes for Tensor-Parallel block:
	Model changes for Non-Tensor-Parallel block:
	Transposing the activations:

	Activation Recomputation

	Developer guide for Neuron-PT-Lightning (neuronx-distributed)
	Training
	Configure NeuronLTModule
	Configure DataModule
	Update Training Script
	Create NeuronLTModule and DataModule
	Add Strategy, Plugins, Callbacks
	Create Trainer and Start Training
	Checkpointing

	Developer guide for model and optimizer wrapper (neuronx-distributed)
	Create training config:
	Use model wrapper:
	Use optimizer wrapper:

	Developer guide for save/load checkpoint (neuronx-distributed)
	Save checkpoint:
	Load checkpoint:

	Developer guide for Neuronx-Distributed Inference (neuronx-distributed)
	Overview
	Pre-Requisites
	Creating a Tensor Parallel (TP) Model
	Tracing the Tensor Parallel (TP) Model
	Weight separation
	Autobucketing
	Conclusion

	Tutorials for NeuronX Distributed (neuronx-distributed)
	Training with Tensor Parallelism (neuronx-distributed)
	Known Issues:

	Training GPT-NeoX 6.9B with Tensor Parallelism and ZeRO-1 Optimizer (neuronx-distributed)
	Training GPT-NeoX 20B with Tensor Parallelism and ZeRO-1 Optimizer (neuronx-distributed)
	Training Llama2 7B with Tensor Parallelism and ZeRO-1 Optimizer (neuronx-distributed)
	Setting up environment:
	Running training
	Performance:
	Checkpointing:

	Training Llama-2-13B/70B with Tensor Parallelism and Pipeline Parallelism (neuronx-distributed)
	Training Llama-2-7B/13B/70B using Tensor Parallelism and Pipeline Parallelism with Neuron PyTorch-Lightning (neuronx-distributed)
	Setting up environment:
	Training Llama2-7B with Tensor Parallelism
	Training Llama2-13B/70B with Tensor Parallelism and Pipeline Parallelism
	Checkpointing:

	T5 inference with Tensor Parallelism
	Install dependencies
	Plug in NeuronxDistributed layers into T5
	Compile the parallel T5 model
	Inference with the traced parallel T5 model
	Benchmarking

	Llama-2-7b Inference
	Set up the Jupyter Notebook
	Install Dependencies
	Download the model
	Trace the model
	Inference
	Benchmarking

	Inference with Tensor Parallelism (neuronx-distributed) [Beta]

	Misc (neuronx-distributed)
	Neuron Distributed Release Notes (neuronx-distributed)
	Neuron Distributed [0.7.0]
	New in this release
	Known Issues and Limitations

	Neuron Distributed [0.6.0]
	New in this release
	Known Issues and Limitations

	Neuron Distributed [0.5.0]
	New in this release
	Known Issues and Limitations

	Neuron Distributed [0.4.0]
	New in this release
	Known Issues and Limitations

	Neuron Distributed [0.3.0]
	New in this release
	Known Issues and Limitations

	Neuron Distributed [0.2.0]
	New in this release
	Known Issues and Limitations
	New in this release
	Known Issues and Limitations

	AWS Neuron Reference for NeMo Megatron
	Important Tips for Training with Neuron NeMo Megatron
	Do Not Create the Attention Mask

	NeuronX Runtime
	API Reference Guide
	Developer’s Guide - NeuronX Runtime
	Introduction
	Required Software
	Brief Introduction to Neuron Hardware
	Neuron Device
	NeuronCore

	The Neuron Runtime Architecture
	Application Interface Layer (The libnrt API)
	Monitoring and Profiling
	The NEFF format and NEFF Parser
	Graph Walker and CPU Node Executor
	User Mode Driver
	Memory Management

	Building the first Neuron application
	Prerequisites
	Getting a NEFF file
	The Code
	Code Breakdown
	Initialization and cleanup
	Loading the NEFF
	Creating input/output tensors
	Iterating through tensors in an nrt_tensor_set_t
	Deallocating input/output tensors
	Executing the NEFF

	The LIBNRT API
	API Return Codes
	Initialization, configuration and teardown
	Environment variables used to configure the Runtime Library

	The Model API
	Environment variables used to configure a model being loaded

	The Tensor API
	The Tensorset API

	The Execution API
	The Profiling API
	Other APIs

	Configuration Guide
	NeuronX Runtime Configuration
	NeuronCore Allocation
	Using NEURON_RT_VISIBLE_CORES
	Using NEURON_RT_NUM_CORES
	Notes

	Logging and debug-ability
	Additional Logging Controls
	Checksum
	Shared Weights (NEURON_RT_MULTI_INSTANCE_SHARED_WEIGHTS)
	Aynchronous Execution (NEURON_RT_ASYNC_EXEC_MAX_INFLIGHT_REQUESTS)

	Misc (NeuronX Runtime)
	Neuron Runtime Troubleshooting on Inf1, Inf2 and Trn1
	Generic Errors
	Neuron Driver installation fails
	Solution

	Application fails to start
	Solution

	This Neuron Runtime (compatibility id: X) is not compatible with the installed aws-neuron-dkms package
	Solution

	Neuron Core is in use
	Solution

	Unsupported NEFF Version
	Solution

	Unsupported Hardware Operator Code
	Solution

	Insufficient Memory
	Solution

	Insufficient number of NeuronCores
	Solution

	Numerical Error
	Solution

	RuntimeError: module compiled against API version 0xf but this version of numpy is 0xe
	Failure to initialize Neuron
	An application is trying to use more cores that are available on the instance

	Hardware Errors
	EFA and Collective Communication Errors
	Missing aws-neuronx-collectives package
	Missing efa installer package.
	EFA is not enabled in trn1.32xlarge
	Communication timeout
	Communication errors.
	EFA Kernel messages (dmesg) after process termination.
	Failure to find bootstrap interface
	Name resolution failure

	Usage of Neuron Custom C++ Operators
	Neuron Runtime timeout or GPSIMD exception
	Solution

	FI_EFA_FORK_SAFE

	NeuronX runtime FAQ
	Where can I find information about Neuron Runtime 2.x (libnrt.so)
	What will happen if I will upgrade Neuron Framework without upgrading latest kernel mode driver?
	Do I need to recompile my model to use the Runtime Library?
	Do I need to change my application launch command?
	How do I restart/start/stop the NeuronX Runtime?
	How do I know which runtimes are associated with which Neuron Device(s)?
	What about RedHat or other versions of Linux and Windows?
	How can I take advantage of multiple NeuronCores to run multiple inferences in parallel?

	Neuron Runtime Release Notes
	Known issues
	NEFF Support Table:
	Neuron Runtime Library [PATCH 2.20.22.0]
	Bug fixes

	Neuron Runtime Library [2.20.11.0]
	New in this release
	Bug fixes

	Neuron Runtime Library [2.19.5.0]
	New in this release

	Neuron Runtime Library [2.18.15.0]
	Bug fixes

	Neuron Runtime Library [2.18.14.0]
	New in this release
	Bug fixes

	Neuron Runtime Library [2.17.7.0]
	New in this release
	Bug fixes

	Neuron Runtime Library [2.16.14.0]
	Bug fixes

	Neuron Runtime Library [2.16.8.0]
	New in this release
	Bug fixes

	Neuron Runtime Library [2.15.14.0]
	New in this release

	Neuron Runtime Library [2.15.11.0]
	New in this release

	Neuron Runtime Library [2.14.8.0]
	New in this release
	Bug fixes

	Neuron Runtime Library [2.13.6.0]
	New in this release
	Bug fixes

	Neuron Runtime Library [2.12.23.0]
	Bug fixes

	Neuron Runtime Library [2.12.14.0]
	New in this release

	Neuron Runtime Library [2.11.43.0]
	New in this release
	Bug fixes

	Neuron Runtime Library [2.10.18.0]
	New in this release

	Neuron Runtime Library [2.10.15.0]
	New in this release
	Bug fixes

	Neuron Runtime Library [2.9.64.0]
	New in this release

	Neuron Runtime 2.x (libnrt.so) release [2.2.51.0]
	Neuron Runtime 2.x (libnrt.so) release [2.2.31.0]
	New in the release
	Bug fixes

	Neuron Runtime 2.x (libnrt.so) release [2.2.18.0]
	Neuron Runtime 2.x (libnrt.so) release [2.2.15.0]
	New in this release

	Neuron Driver Release Notes
	Known issues
	Neuron Driver release [2.16.7.0]
	Bug Fixes

	Neuron Driver release [2.15.9.0]
	Bug Fixes

	Neuron Driver release [2.14.5.0]
	New in this release

	Neuron Driver release [2.13.4.0]
	New in this release

	Neuron Driver release [2.12.18.0]
	Bug Fixes

	Neuron Driver release [2.12.11.0]
	New in this release
	Bug Fixes

	Neuron Driver release [2.11.9.0]
	New in this release
	Bug Fixes

	Neuron Driver release [2.10.11.0]
	New in this release
	Bug Fixes

	Neuron Driver release [2.9.4.0]
	New in this release
	Bug Fixes

	Neuron Driver release [2.8.4.0]
	New in this release
	Bug Fixes

	Neuron Driver release [2.7.33.0]
	Bug Fixes

	Neuron Driver release [2.7.15.0]
	New in this release

	Neuron Driver release [2.6.26.0]
	New in this release

	Neuron Driver release [2.5.38.0]
	New in this release
	Bug Fixes

	Neuron Driver release [2.3.26.0]
	Bug Fixes

	Neuron Driver release [2.3.11.0]
	New in this release
	Bug Fixes

	Neuron Driver release [2.3.3.0]
	New in this release
	Bug Fixes

	Neuron Driver release [2.2.14.0]
	New in this release

	Neuron Driver release [2.2.13.0]
	New in this release

	Neuron Driver release [2.2.6.0]
	New in this release
	Resolved issues

	Neuron Driver release [2.1]

	Neuron Collectives Release Notes
	Neuron Collectives [2.20.22.0]
	Neuron Collectives [2.20.11.0]
	Bug Fixes

	Neuron Collectives [2.19.7.0]
	New in this release
	Bug Fixes

	Neuron Collectives [2.18.18.0]
	Neuron Collectives [2.17.9.0]
	Neuron Collectives [2.16.16.0]
	Neuron Collectives [2.16.8.0]
	Neuron Collectives [2.15.16.0]
	Neuron Collectives [2.15.13.0]
	Neuron Collectives [2.14.9.0]
	Neuron Collectives [2.13.7.0]
	Neuron Collectives [2.12.35.0]
	Neuron Collectives [2.12.22.0]
	Neuron Collectives [2.11.47.0]
	Neuron Collectives [2.10.20.0]
	Neuron Collectives [2.9.86.0]

	Neuron Compiler
	NeuronX Compiler for Trn1 & Inf2
	API Reference Guide
	Neuron Compiler CLI Reference Guide (neuronx-cc)
	Usage
	Available Commands:

	Developer Guide
	Mixed Precision and Performance-accuracy Tuning (neuronx-cc)
	Overview
	Neuron Hardware
	Performance-accuracy tradeoffs
	What is the difference between Data Types?
	Should I downcast operations to smaller Data Types?

	Misc (neuronx-cc)
	Neuron Compiler FAQ (neuronx-cc)
	Where can I compile to Neuron?
	What is the difference between neuron-cc and neuronx-cc?
	Should I use neuron-cc or neuronx-cc?
	My current neural network is based on FP32, how can I use it with Neuron?
	Which operators does Neuron support?
	Any operators that Neuron Compiler doesn’t support?
	Will I need to recompile again if I updated runtime/driver version?
	I have a NEFF binary, how can I tell which compiler version generated it?
	How long does it take to compile?
	Why is my model producing different results compared to CPU/GPU?
	Do you support model <insert model type>?

	Neuron Compiler (neuronx-cc) release notes
	Neuron Compiler [2.13.68.0]
	Neuron Compiler [2.13.66.0]
	Neuron Compiler [2.12.68.0]
	Neuron Compiler [2.12.54.0]
	Neuron Compiler [2.11.0.35]
	Neuron Compiler [2.11.0.34]
	Neuron Compiler [2.10.0.35]
	Neuron Compiler [2.10.0.34]
	Neuron Compiler [2.9.0.16]
	Neuron Compiler [2.8.0.25]
	Neuron Compiler [2.7.0.40]
	Neuron Compiler [2.6.0.19]
	Neuron Compiler [2.5.0.28]
	Neuron Compiler [2.4.0.21]
	Neuron Compiler [2.4.0.21]
	Neuron Compiler [2.3.0.4]
	Neuron Compiler [2.2.0.73]
	Neuron Compiler [2.1.0.76]
	Known issues

	Supported Operators

	Neuron Compiler for Inf1
	API Reference Guide
	Neuron compiler CLI Reference Guide (neuron-cc)
	Usage
	Available Commands:

	Developer Guide
	Mixed precision and performance-accuracy tuning (neuron-cc)
	Neuron Hardware
	Performance-accuracy tradeoffs for models trained in FP32
	Compiler casting options
	--fast-math option

	Misc (neuron-cc)
	Neuron Compiler FAQ (neuron-cc)
	Where can I compile to Neuron?
	My current Neural Network is based on FP32, how can I use it with Neuron?
	What are some of the important compiler defaults I should be aware of?
	Which operators does Neuron support?
	Any operators that Neuron doesn’t support?
	Will I need to recompile again if I updated runtime/driver version?
	I have a NEFF binary, how can I tell which compiler version
	How long does it take to compile?

	Neuron Compiler (neuron-cc) for Inf1 Release Notes
	Introduction
	Known issues and limitations - updated 11/23/2022
	Neuron Compiler release [1.21.0.0]]
	Neuron Compiler release [1.20.3.0]]
	Neuron Compiler release [1.19.0.0]]
	Neuron Compiler release [1.17.0.0]]
	New in this release

	Neuron Compiler release [1.16.2.0]
	Neuron Compiler release [1.15.0.0]
	Neuron Compiler release [1.14.3.0]
	Neuron Compiler release [1.13.3.0]
	Neuron Compiler release [1.11.7.0]
	Neuron Compiler release [1.11.4.0]
	Neuron Compiler release [1.10.3.0]
	Neuron Compiler release [1.9.1.0]
	Neuron Compiler release [1.8.5.0]
	New in this release

	Neuron Compiler release [1.8.2.0]
	New in this release

	Neuron Compiler release [1.7.3.0]
	New in this release

	[1.6.13.0]
	New in this release
	Resolved issues

	[1.5.5.0]
	Summary
	New in this release

	[1.4.0.0]
	Summary
	New in this release

	[1.3.0.0]
	Summary
	New in this release
	Resolved Issues

	[1.2.7.0]
	Summary

	[1.2.2.0]
	Summary
	New in this release
	Resolved Issues

	[1.1.7.0]
	Summary
	New in this release
	Resolved Issues

	[1.0.24045.0]
	Summary
	New in this release
	Resolved Issues

	[1.0.20600.0]
	Summary
	New in this release
	Resolved Issues

	[1.0.18001.0]
	Summary
	New in this release
	Resolved Issues

	[1.0.17937.0]
	Summary

	[1.0.16861.0]
	Summary
	New in this release
	Resolved Issues
	Other Notes

	[1.0.15275.0]
	Summary
	New in this release
	Resolved Issues
	Other Notes
	Dependencies

	[1.0.12696.0]
	Summary
	New in this release
	Resolved Issues
	Other Notes
	Dependencies

	[1.0.9410.0]
	Summary
	New in this release
	Resolved Issues
	Known issues and limitations
	Other Notes
	Dependencies

	[1.0.7878.0]
	Summary
	New in this release
	Resolved Issues
	Known issues and limitations
	Other Notes
	Dependencies

	[1.0.6801.0]
	Summary
	New in this release
	Resolved Issues
	Known issues and limitations
	Other Notes
	Dependencies

	[1.0.5939.0]
	Summary
	New in this release
	Resolved Issues
	Known issues and limitations
	Other Notes
	Dependencies

	[1.0.5301.0]
	Summary
	New in this release
	Resolved Issues
	Known Issues and Limitations
	Other Notes
	Dependencies

	[1.0.4680.0]
	New in this release
	Resolved issues
	Known issues and limitations
	Other Notes
	Dependencies

	Neuron Supported operators

	Neuron Custom C++ Operators [Beta]
	API Reference Guide
	Custom Operators API Reference Guide [Beta]
	Tensor Library
	Tensor Factory Functions
	Tensor Operation Functions
	Class torch::Tensor
	Constructors
	Member Functions
	Tensor Operators

	Tensor Accessors
	Example Usage
	Memory Architecture

	Streaming Accessors
	Example Usage
	Class torch::TensorWriteStreamAccessor
	Member Functions

	Class torch::TensorWriteStreamAccessor
	Member Functions

	Coherence

	TCM Accessor
	Example Usage
	TCM Management Functions
	Class torch::TensorTcmAccessor
	Member Functions

	Writing Directly to Output Tensor
	Using multiple GPSIMD cores
	Return Value Handling

	printf()
	Usage
	Example
	Limitations

	Library Limitations

	Developer Guide
	Neuron Custom C++ Operators Developer Guide [Beta]
	Setup & Installation
	Implementing an operator in C++
	Kernel Function
	Shape Function

	Building and executing operators
	Loading a previously built library

	Performance Guidance
	Functional Debug

	Tutorials
	Misc (Neuron Custom C++ Operators)
	Neuron Custom C++ Tools Release Notes
	aws-neuronx-gpsimd-tools [0.1]

	Neuron Custom C++ Library Release Notes
	aws-neuronx-gpsimd-customop-lib [0.3]
	aws-neuronx-gpsimd-customop [0.1]

	Neuron Tools
	System Tools
	Neuron Monitor User Guide
	Overview
	Using neuron-monitor
	Configuration file example
	Neuron applications tagging
	JSON objects and fields in the configuration file
	Neuron Runtime-level metric groups
	System-wide metric groups

	Execution model
	The JSON output format
	Neuron application level metric groups
	neuroncore_counters
	execution_stats
	memory_used
	neuron_runtime_vcpu_usage

	System level metric groups
	neuron_hw_counters
	vcpu_usage
	memory_info

	Companion scripts
	neuron-monitor-cloudwatch.py
	Using neuron-monitor-cloudwatch.py

	neuron-monitor-prometheus.py
	Using neuron-monitor-prometheus.py

	Neuron Top User Guide
	Overview
	Using neuron-top
	Command line arguments
	User interface

	Neuron LS User Guide
	Examples

	Neuron Profile User Guide
	Overview
	Installation
	Ubuntu
	AL2

	Capturing a profile
	Capturing profiles for multi-worker jobs
	Capturing profiles for multi-node jobs

	Processing and viewing the profile results
	Viewing a single profile
	Viewing profiles for multi-worker jobs
	Viewing multiple profiles
	Accessing the profiles

	Understanding a Neuron profile
	Timeline
	Features

	CLI reference
	Troubleshooting
	InfluxDB not installed
	Too many open files
	When viewing UI “FATAL - Failed metadata query”

	Neuron Sysfs User Guide
	Introduction
	Neuron Sysfs Filesystem Structure
	High Level Overview
	Description for Each Metric
	Read and Write to Metrics
	Note

	How to Troubleshoot via Sysfs

	Neuron Distributed Event Tracing (NDET) User Guide
	Overview
	Using neuron-det
	CLI arguments
	Example usage
	Example output

	NCCOM-TEST User Guide
	Overview
	Using nccom-test
	Output description
	CLI arguments
	Examples
	Single Instance Examples
	Multiple Instances Example

	Neuron System Tools
	Neuron Tools [2.17.1.0]
	Bug fixes

	Neuron Tools [2.17.0.0]
	New in the release
	Bug fixes

	Neuron Tools [2.16.1.0]
	New in the release
	Bug fixes
	Known issues

	Neuron Tools [2.15.4.0]
	Neuron Tools [2.14.6.0]
	Neuron Tools [2.13.4.0]
	Neuron Tools [2.12.2.0]
	Neuron Tools [2.11.10.0]
	Neuron Tools [2.10.1.0]
	Neuron Tools [2.9.5.0]
	Neuron Tools [2.8.2.0]
	Neuron Tools [2.7.2.0]
	Neuron Tools [2.6.0.0]
	Neuron Tools [2.5.19.0]
	Neuron Tools [2.5.16.0]
	Neuron Tools [2.4.6.0]
	Neuron Tools [2.1.4.0]
	Neuron Tools [2.0.790.0]
	Neuron Tools [2.0.623.0]
	Neuron Tools [2.0.494.0]
	Neuron Tools [2.0.327.0]
	Neuron Tools [2.0.277.0]

	TensorBoard
	TensorBoard for Trn1
	Track Training Progress in TensorBoard using PyTorch Neuron
	Multi-layer perceptron MNIST model
	Output TensorBoard logs
	View loss in TensorBoard

	Neuron Plugin for TensorBoard (Trn1)
	Overview
	Enable profiling on Trn1
	Launch TensorBoard
	View results in TensorBoard
	Neuron Trace View
	Neuron Operator View
	Neuron Operator Timeline View
	Troubleshooting
	TensorBoard launch fails

	Neuron Plugin for TensorBoard Release Notes
	Known Issues and Limitations - Updated 11/29/2022
	Neuron Plugin for TensorBoard release [2.6.7.0]
	Summary

	Neuron Plugin for TensorBoard release [2.6.1.0]
	Summary

	Neuron Plugin for TensorBoard release [2.5.39.0]
	Summary

	Neuron Plugin for TensorBoard release [2.5.37.0]
	Summary

	Neuron Plugin for TensorBoard release [2.5.26.0]
	Summary

	Neuron Plugin for TensorBoard release [2.5.25.0]
	Summary

	Neuron Plugin for TensorBoard release [2.5.0.0]
	Summary

	Neuron Plugin for TensorBoard release [2.4.0.0]
	Summary

	Neuron Plugin for TensorBoard release [2.3.0.0]
	Summary

	Neuron Plugin for TensorBoard release [2.2.0.0]
	New in this release

	[2.1.2.0]
	Summary

	[2.1.0.0]
	Summary

	[2.0.29.0]
	Summary

	[1.15.0.1.2.6.0]
	Summary

	[1.15.0.1.1.1.0]
	Summary

	[1.15.0.1.0.615.0]
	Summary
	Resolved Issues

	[1.15.0.1.0.600.0]
	Summary

	[1.15.0.1.0.570.0]
	Summary

	[1.15.0.1.0.513.0]
	Summary

	[1.15.0.1.0.491.0]
	Summary
	Resolved Issues

	[1.15.0.1.0.466.0]
	Summary
	Resolved Issues
	Other Notes

	[1.15.0.1.0.392.0]
	Summary
	Major New Features
	Other Notes

	[1.15.0.1.0.366.0]
	Summary
	Resolved Issues

	[1.15.0.1.0.315.0]
	Summary

	[1.15.0.1.0.306.0]
	Summary
	Major New Features
	Resolved Issues
	Known Issues & Limits
	Other Notes

	[1.15.0.1.0.280.0]
	Summary
	Major New Features
	Resolved Issues
	Known Issues & Limits
	Other Notes

	TensorBoard for Inf1
	Neuron Plugin for TensorBoard (Inf1)
	Overview
	Compile the neural network
	Enable profiling
	Launch TensorBoard
	View results in TensorBoard
	Visualize graphs executed on Neuron
	Show how the graph was partition to run on NeuronCores
	Inspect which operators consumes the most time
	Check out Neuron support operators for each framework
	Filter view by device
	Expand/collapse subgraphs and view operator details

	Viewing the Neuron profile data
	See performance summary
	Get a breakdown of time spent per NeuronCore
	Get a breakdown of time spent per operator

	Helper Tools
	Neuron Check Model
	Overview
	TensorFlow-Neuron Check Model
	MXNet-Neuron Check Model

	Using Neuron GatherInfo Tool to collect debug and support information
	Overview
	Steps Overview:
	Neuron-CC information gathering

	Step 1: Re-run the compile steps for your workload with increased verbosity or debug levels
	Step 2: Run neuron-gatherinfo.py to gather information to share
	Neuron Runtime information gathering

	Step 1: EXECUTE inference steps for your workload with increased verbosity or debug levels
	Step 2: Run neuron-gatherinfo.py to gather information to share

	Tool Usage Reference
	Examples
	Example 1: no ML model information gathered (default behavior)
	Example 2 : model ML information gathered using the “—modeldata” option

	NeuronPerf (Beta)
	NeuronPerf Quickstart
	NeuronPerf User Guide
	NeuronPerf Overview
	Benchmarking
	Compiling
	Next Steps

	NeuronPerf Terminology
	NeuronPerf Examples
	Benchmark a Compiled Model
	Benchmark a Model from Source
	Compile and Benchmark a Model
	Benchmark on CPU or GPU

	NeuronPerf Benchmark Guide
	What is the default behavior of benchmark?
	Data Parallel
	Pipeline

	Parameters
	Inputs
	Multi-input Models

	Preprocessing and Postprocessing
	Preprocessing
	Postprocessing

	Minimal Latency
	Worker Threads
	Model Copies
	Pipeline Mode
	Duration
	Custom Datasets (Beta)
	Results
	Viewing and Saving
	Full Timing Results

	Verbosity
	Internal Process Model
	Benchmark on CPU or GPU

	NeuronPerf Evaluate Guide
	Custom Metrics
	Simple Variants
	New Metrics

	NeuronPerf Compile Guide
	How does compile know which instance type to compile for?
	Compiling multiple variants

	NeuronPerf Model Index Guide
	Benchmarking
	Working with Indexes

	Creating
	Appending
	Filtering
	Copying
	Deleting

	NeuronPerf API Reference
	NeuronPerf API
	NeuronPerf Framework Notes
	PyTorch
	TensorFlow 1.x
	TensorFlow 2.x
	Apache MXNet

	FAQ
	NeuronPerf FAQ
	When should I use NeuronPerf?
	When should I not use NeuronPerf?
	Which frameworks does NeuronPerf support?
	Which Neuron instance types does NeuronPerf support?
	Is NeuronPerf Open Source?
	What is the secret to obtaining the best numbers?
	What are the “best practices” that NeuronPerf uses?

	Troubleshooting
	NeuronPerf Troubleshooting
	Compilation issues
	Model fails to compile

	Benchmarking Issues
	Benchmarking terminates early with errors

	Other Issues or Feature Requests

	Release Notes
	What’s New
	NeuronPerf 1.x Release Notes
	NeuronPerf release [1.8.55.0]
	NeuronPerf release [1.8.15.0]
	NeuronPerf release [1.8.7.0]
	NeuronPerf release [1.7.0.0]
	NeuronPerf release [1.6.0.0]
	NeuronPerf release [1.3.0.0]
	NeuronPerf release [1.2.0.0]

	Neuron Calculator
	Setup Guide
	PyTorch Neuron (torch-neuronx) Setup
	torch-neuronx setup on Ubuntu 20
	torch-neuronx setup on Ubuntu 22
	torch-neuronx setup on Amazon Linux 2 (AL2)
	torch-neuronx setup on Amazon Linux 2023 (AL2023)

	PyTorch Neuron (torch-neuron) Setup
	torch-neuron setup on Ubuntu 20
	torch-neuron setup on Ubuntu 22
	torch-neuron setup on Amazon Linux 2 (AL2)
	torch-neuron setup on Amazon Linux 2023 (AL2023)

	Tensorflow Neuron (tensorflow-neuronx) Setup
	tensorflow-neuronx setup on Ubuntu 20
	tensorflow-neuronx setup on Ubuntu 22
	tensorflow-neuronx setup on Amazon Linux 2 (AL2)
	tensorflow-neuronx setup on Amazon Linux 2023 (AL2023)

	Tensorflow Neuron (tensorflow-neuron) Setup
	tensorflow-neuron setup on Ubuntu 20
	tensorflow-neuron setup on Ubuntu 22
	tensorflow-neuron setup on Amazon Linux 2 (AL2)
	tensorflow-neuron setup on Amazon Linux 2023 (AL2023)

	MxNet Neuron (mxnet-neuron) Setup
	mxnet-neuron setup on Ubuntu 20
	mxnet-neuron setup on Ubuntu 22
	mxnet-neuron setup on Amazon Linux 2 (AL2)
	mxnet-neuron setup on Amazon Linux 2023 (AL2023)

	Neuron DLAMI User Guide
	Neuron DLAMI Overview
	Neuron Multi Framework DLAMI
	Multi Framework DLAMIs supported
	Virtual Environments pre-installed

	Neuron Single Framework DLAMI
	Single Framework DLAMIs supported
	Virtual Environments pre-installed

	Neuron Base DLAMI
	Base DLAMIs supported

	Using SSM parameters to find DLAMI id and trigger Cloud Automation flows
	Finding specific DLAMI image id with the latest neuron release
	SSM Parameter Prefix
	Use SSM Parameter to launch instance directly via CLI
	Use SSM alias in EC2 launch templates

	Other Resources

	Deploy Containers with Neuron
	Containers - Locate Neuron DLC Image
	Containers - Getting Started
	Containers - Kubernetes - Getting Started
	Containers - Tutorials
	Containers – Inference Tutorials
	Run inference in pytorch neuron container
	Overview
	Setup Environment

	Deploy a TensorFlow Resnet50 model as a Kubernetes service
	Prerequisite:
	Deploy a TensorFlow Serving application image
	Make predictions against your TensorFlow Serving service

	Containers – Training Tutorials
	Run training in Pytorch Neuron container
	Overview
	Setup Environment

	Deploy a simple mlp training script as a Kubernetes job
	Prerequisite:
	Deploy a mlp training image

	Containers - Developer Flows
	Deploy Neuron Container on EC2
	Description
	Setup Environment

	Deploy Neuron Container on Elastic Container Service (ECS)
	Description
	Setup Environment

	Deploy Neuron Container on Elastic Kubernetes Service (EKS)
	Description
	Setup Environment
	Self-managed Kubernetes

	Bring Your Own Neuron Container to Sagemaker Hosting (inf1)
	Description
	Setup Environment

	Customize Neuron DLC
	Description
	Method 1: Using DLC as a Base Image
	Method 2: Modifying Published Dockerfiles

	Containers - FAQ, Troubleshooting & ReleaseNotes
	Neuron Containers FAQ
	Where can I find DLC images
	What is OCI Neuron Hook and do we need that
	What container runtimes are supported
	How to expose Neuron Devices to Container
	How to expose Neuron Cores to Container
	Can Neuron Devices be shared by different Containers running in the same Host
	Can Neuron Cores be shared by different Containers running in the same Host
	When would you use Neuron K8 Scheduler Extension
	How to add EFA devices to the container
	Can distributed training jobs be run without EFA devices in container

	Troubleshooting Neuron Containers
	Neuron Device Not found
	Solution

	Contiguous Device ID’s
	Solution

	Neuron Containers Release Notes
	Neuron 2.5.0
	Neuron 2.4.0
	Neuron 2.3.0
	Neuron 1.19.0
	Neuron 1.16.0
	New in this release

	Neuron K8 Release Notes
	Introduction
	Neuron K8 release [2.20.13.0]
	Summary

	Neuron K8 release [2.19.16.0]
	Critical Security Patch

	Neuron K8 release [2.16.18.0]
	Major New Features
	Bug Fixes

	Neuron K8 release [2.1.0.0]
	Summary

	Neuron K8 release [2.0.0.0]
	Summary

	Neuron K8 release [1.9.3.0]
	Summary

	Neuron K8 release [1.9.2.0]
	Summary

	Neuron K8 release [1.9.0.0]
	Summary

	Neuron K8 release [1.8.2.0]
	Summary

	Neuron K8 release [1.7.7.0]
	Summary

	Neuron K8 release [1.7.3.0]
	Summary

	[1.6.22.0]
	Summary

	[1.6.15.0]
	Summary

	[1.6.7.0]
	Summary

	[1.6.0.0]
	Summary

	[1.5.3.0]
	Summary

	[1.4.1.0]
	Summary

	[1.3.2.0]
	Summary

	[1.2.0.0]
	Summary

	[1.1.23.0]
	Summary

	[1.1.17.0]
	Summary

	[1.0.11000.0]
	Summary
	Major New Features
	Resolved Issues

	Developer Flows
	AWS EC2
	EC2 Flows - Inference
	Compile with Framework API and Deploy on EC2 Inf1
	Description
	Setup Environment
	1. Launch an Inf1 Instance
	2. Set up a development environment
	Enable PyTorch-Neuron
	Enable TensorFlow-Neuron
	Enable Apache MXNet
	3. Set up Jupyter notebook

	Compile with Framework API and Deploy on EC2 Inf2
	Description
	Setup Environment
	1. Launch an Inf2 Instance
	2. Set up a development environment
	Enable PyTorch-Neuron
	3. Set up Jupyter notebook

	EC2 Flows- Training
	Train your model on EC2
	Description
	Setup Environment
	1. Launch an Trn1 Instance
	2. Set up a development environment
	Enable PyTorch-Neuron
	3. Set up Jupyter notebook

	Amazon EKS
	EKS Flows - Inference
	Deploy Neuron Container on Elastic Kubernetes Service (EKS)
	Description
	Setup Environment
	Self-managed Kubernetes

	EKS Flows - Training

	AWS ECS
	ECS FLOWS - Inference
	Deploy Neuron Container on Elastic Container Service (ECS)
	Description
	Setup Environment

	ECS Flows- Training

	Sagemaker
	Sagemaker Flows - Inference
	Bring Your Own Neuron Container to Sagemaker Hosting (inf2 or trn1)
	Description
	Setup Environment

	Bring Your Own Neuron Container to Sagemaker Hosting (inf1)
	Description
	Setup Environment

	Compile with Sagemaker Neo and Deploy on Sagemaker Hosting (inf1)
	Description
	Setup Environment

	Sagemaker Flows- Training
	Train your model on SageMaker
	Description
	Setup environment

	Parallel Cluster
	Parallel Cluster Flows - Inference
	Parallel Cluster Flows- Training
	Train your model on ParallelCluster
	Description
	Setup environment

	AWS Batch Flows
	AWS Batch Flows - Inference
	AWS Batch Flows- Training

	Neuron Architecture
	Trn and Inf instances
	Trainium and Inferentia devices
	NeuronCores
	Other
	AWS Inf1 Architecture
	Inf1 Architecture

	AWS Trn1/Trn1n Architecture
	Trn1/Trn1n Architecture

	AWS Inf2 Architecture
	Inf2 Architecture

	Inferentia Architecture
	Inferentia2 Architecture
	Trainium Architecture
	AWS NeuronCore Architecture
	Neuron Glossary
	Terms
	Neuron Devices (Accelerated Machine Learning chips)
	Neuron powered Instances
	NeuronCore terms

	Abbreviations

	Neuron Features
	Data Types
	Introduction
	NeuronCore v1 Data Types
	Neuron Data-Types
	FP16/BF16 models
	FP32 models

	NeuronCore v2 Data Types
	Model Type Conversion
	NeuronCore v2 Rounding Modes

	Neuron Rounding Modes
	Round Nearest, ties to Even (RNE)
	Stochastic Rounding (SR)
	Quick Tests

	Neuron Batching
	Batching in inference workloads
	What is batched inference?
	What are the benefits of batched Inference?
	How to determine the optimal batch-size for inference workloads?
	How to set the batch-size?

	Batching in training workloads
	How to determine the optimal batch-size for training workloads?

	NeuronCore Pipeline
	Neuron Collective Communication
	Introduction
	trn1.32xlarge topology
	trn1.2xlarge topology
	inf2.48xlarge topology
	Inf2 other instance sizes topologies

	Neuron Control Flow
	Neuron Custom C++ Operators

	Neuron Application Notes
	Introducing the first release of Neuron 2.x enabling EC2 Trn1 General Availability (GA)
	More about the release

	Introducing Neuron Runtime 2.x (libnrt.so)
	What are we changing?
	Why are we making this change?
	How will this change affect the Neuron SDK?
	Neuron Driver
	Neuron Runtime
	Neuron framework extensions
	TensorFlow model server
	Neuron tools

	How will this change affect me?
	Neuron installation and upgrade
	Migrate your application to Neuron Runtime 2.x (libnrt.so)

	Troubleshooting
	Application fails to start
	Description
	Solution

	Application fails to start although I installed latest aws-neuron-dkms
	Description
	Solution

	Application unexpected behavior when upgrading to release Neuron 1.16.0 or newer
	Description
	Solution

	Application unexpected behavior when downgrading to releases before Neuron 1.6.0 (from Neuron 1.16.0 or newer)
	Description
	Solution

	Neuron Core is in use
	Description
	Solution

	Frequently Asked Questions (FAQ)
	Do I need to recompile my model to run it with Neuron Runtime 2.x (libnrt.so)?
	Do I need to change my application launch command?
	Can libnrt.so and neuron-rtd co-exist in the same environment?
	Are there Neuron framework versions that will not support Neuron Runtime 2.x (libnrt.so)?

	Performance Tuning
	Batching and pipelining (technical background)
	Compiling for batching optimization
	Compiling for pipeline optimization
	Model-serving inference optimizations
	Other considerations
	Mixed Precision
	Operator support
	Debug

	ResNet-50 optimization example

	Parallel Execution using NEURON_RT_NUM_CORES
	Introduction
	Data Parallel Execution
	Running multiple models using single process
	Running multiple models using multiple processes
	Running multiple models on the same NeuronCore group

	Auto Model Replication in TensorFlow Neuron (tensorflow-neuron) (Beta)
	Auto Model Replication (Being Deprecated)
	FAQ
	Can I mix data parallel and NeuronCore Pipelines?
	Can I have a mix of multiple models in one Neuroncore group and single model in another one Neuroncore group?

	Running R-CNNs on Inf1
	R-CNN Model Overview
	R-CNN Limitations and Considerations on Inferentia (NeuronCore-v1)

	Requirements
	Installation
	Compiling an R-CNN for Inf1
	Create a Detectron2 R-CNN Model
	Profile the Model
	Compiling the ResNet backbone to Inf1

	Optimize the R-CNN model
	Compiling the RPN
	Fusing the Backbone and RPN Head
	Compiling the RoI Heads

	End-to-end Compilation and Inference
	Benchmarking
	Other improvements
	For latency sensitive applications:
	For throughput sensitive applications:

	Graph Partitioner on torch_neuronx
	Introduction
	The Purpose of the Graph Partitioner
	How it Works
	Determining Unsupported Operators
	Customizability

	Examples
	Default Usage
	Specifying requirements
	Specifying additional operators to partition

	Generative LLM inference with Neuron
	Background
	Performance optimizations
	KV-caching:
	Model sharding:
	Computation/communication overlap:
	Compact data-types:
	Bucketing:

	Model partitioning
	How many NeuronCores do I need?
	Which parallelism technique should I use?
	What batch-size should I use?

	Introducing PyTorch 2.1 Support
	What are we introducing?
	How is PyTorch NeuronX 2.1 different than PyTorch NeuronX 1.13?
	How can I install PyTorch NeuronX 2.1?
	Migrate your application to PyTorch 2.1 and PJRT
	Migrating Training scripts
	Migrating Inference scripts

	Troubleshooting
	Socket Error: Socket failed to bind
	Description
	Solution

	AttributeError: module 'torch' has no attribute 'xla' Failure
	Incorrect device assignment when using ellipsis
	Lower performance for BERT-Large
	Divergence (non-convergence) of loss for BERT/LLaMA when using release 2.16 compiler
	Error “Attempted to access the data pointer on an invalid python storage” when using HF Trainer API
	ImportError: libcrypt.so.1: cannot open shared object file: No such file or directory on Amazon Linux 2023
	FileNotFoundError: [Errno 2] No such file or directory: 'libneuronpjrt-path' Failure

	Frequently Asked Questions (FAQ)
	What is the difference between PJRT and Neuron Runtime?
	Do I need to recompile my models with PyTorch 2.1?
	Do I need to update my scripts for PyTorch 2.1?
	What environment variables will be changed with PJRT?
	What features will be missing with PyTorch NeuronX 2.1?
	Can I use Neuron Distributed and Transformers Neuron libraries with PyTorch NeuronX 2.1?
	Can I still use PyTorch 1.13 version?

	Neuron FAQ
	Neuron 2.x FAQ
	Training Only FAQ
	Inference Only FAQ
	Runtime FAQ
	Compiler FAQ
	Neuron Containers
	ONNX FAQ
	Support

	Troubleshooting Guide
	Training Only Troubleshooting
	Inference Only Troubleshooting
	Runtime Troubleshooting
	Containers Troubleshooting
	Setup Troubleshooting

	Release Details
	Latest Release
	Previous Releases

	Roadmap
	Support
	SDK Maintenance Policy
	Overview
	Neuron SDK
	Dependency Software
	Neuron SDK version life-cycle
	Dependency Software version life-cycle
	Communication
	Licenses

	Neuron Software Classification
	Overview
	APIs Software Classification
	Packages / Libraries Software Classification
	Features Software Classification
	Neuron Model Classes Software Classification

	Security Disclosures
	Contact Us

	Python Module Index
	Index

