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AWS Neuron

AWS Neuron is the software development kit (SDK) used to run deep learning and generative AI workloads on AWS
Inferentia and AWS Trainium powered Amazon EC2 instances and UltraServers (Inf1, Inf2, Trn1 , Trn2 and Trn2
UltraServer). It includes a compiler, runtime, training and inference libraries, and profiling tools. Neuron supports
customers in their end-to-end ML development lifecycle including building and deploying deep learning and AI models.

• ML Frameworks and Libraries - Neuron integrates with PyTorch and JAX, and offers NxD Training and NxD
Inference PyTorch libraries for distributed workflows. It also supports third party libraries such as Hugging Face
Optimum Neuron, PyTorch Lightning, and AXLearn library for JAX model training.

• Frontier Models Support - Neuron supports frontier models such as Llama3.3-70b and Llama Llama3.1-405b.

• Developer Tools - Neuron provides health monitoring, observability, and profiling tools for AWS Inferentia
and Trainium instances. It tracks hardware utilization, model execution metrics, and device information. The
Neuron Profiler identifies performance bottlenecks. Neuron also integrates with third-party monitoring tools like
Datadog and Weights and Biases.

• Compute Kernels - Neuron Kernel Interface (NKI) provides direct hardware access on AWS Trainium and
Inferentia, enabling customer to write optimized kernel. NKI provides a Python-based environment with Triton-
like syntax. Neuron supports custom C++ operators, allowing developers to extend functionality and enhance
deep learning models.

• Workloads Orchestrations and Managed Services - Neuron enables you to use Trainium and Inferentia-based
instances with Amazon services such as SageMaker, EKS, ECS, ParallelCluster, and Batch. and third-party
solutions like Ray (Anyscale) and Domino Data Lab.

• Architecture - To understand the architecture of AWS AI Chips, Trn/Inf instances, and NeuronCores visit In-
stance and UltraServer Architecture, Amazon EC2 AI Chips Architecture and AWS NeuronCore Architecture.

For more information about the latest AWS Neuron release, see Neuron 2.24.1 (06/30/2025) and check the Announce-
ments page.

For list of AWS Neuron model samples and tutorials on Amazon EC2 Inf1, Inf2, Trn1, and Trn2 instances, see
Model samples and tutorials.

Get Started with Neuron Neuron Quick Links
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https://aws.amazon.com/ai/machine-learning/inferentia/
https://aws.amazon.com/ai/machine-learning/inferentia/
https://aws.amazon.com/ai/machine-learning/trainium/
https://aws.amazon.com/ec2/instance-types/inf1/
https://aws.amazon.com/ec2/instance-types/inf2/
https://aws.amazon.com/ec2/instance-types/trn1/
https://aws.amazon.com/ec2/instance-types/trn2/
https://aws.amazon.com/ec2/ultraservers/
https://aws.amazon.com/ec2/ultraservers/
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CHAPTER

ONE

OVERVIEW

This document is relevant for: Inf1, Inf2, Trn1, Trn2

1.1 Neuron Quick Links

Overview

• Get Started with Neuron

• Ask Q Developer

• Model samples and tutorials

• Neuron performance

• What’s New

• Announcements

ML frameworks

• PyTorch Neuron

• JAX Neuron (beta)

• TensorFlow Neuron

• MXNet Neuron (maintenance)

ML libraries

• NxD Training

• NxD Inference

• NxD Core

• Transformers NeuronX (transformers-neuronx)

• AWS Neuron Reference for NeMo Megatron

User Guides

• NeuronX Runtime

• Neuron Compiler

• Neuron Kernel Interface (NKI) (beta)

• Neuron Custom C++ Operators (beta)

• Monitoring Tools
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• Profiling Tools

• Other Tools

• Setup Guide

• Neuron DLAMI User Guide

• Neuron Containers

• AWS Workload Orchestration

Learn AWS Neuron

• Neuron Architecture

• Neuron Features

• Neuron Application Notes

• Neuron FAQ

• Troubleshooting Guide

About AWS Neuron

• Release Details

• Roadmap

• Support

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

1.2 Ask Q Developer

Use Q Developer as your Neuron Expert for general Neuron technical guidance and to jumpstart your NKI kernel
developement.

Ask Q through Chat Ask Q in your IDE Guidelines for Quality Results

1.2.1 Guidelines for Quality Results

1. Be Specific: Clearly state the task, desired output, and any constraints.

2. Provide Context: Mention specific versions, strategies, and any relevant performance requirements.

3. Request Complete Code: Ask for full implementations including imports, decorators, and main functions. Re-
member to always review and test the generated code before using it in production.

4. Ask for Explanations: Request comments or separate explanations for complex parts of the code.

5. Iterate: If the initial response isn’t satisfactory, refine your prompt based on the output. If you encounter issues
or inaccuracies, consider rephrasing your prompt or breaking down complex tasks into smaller, more specific
questions.

4 Chapter 1. Overview

https://aws.amazon.com/q/
https://aws.amazon.com/q/
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.amazon-q-vscode
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6. Fact check: Use Q as a starting point and supplement its output with official documentation, AWS NKI Samples
repository, and your own expertise.

Example Prompts

Note: Amazon Q Developer support for Neuron is currently in Beta. Therefore, Q may not always produce optimal
or fully accurate results.

1. “Explain the key features and benefits of AWS Neuron Kernel Interface (NKI).”

2. “How do different parallelism strategies (data, pipeline, tensor) affect training performance on Neuron?”

3. “What are the best practices for optimizing matrix multiplication operations using Neuron Kernel Interface
(NKI)?”

4. “Provide complete Neuron Kernel Interface (NKI) code for a matrix multiplication kernel, including imports,
decorators, and explanations of key optimizations. Focus on efficient tiling and data movement strategies.”

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

1.3 Get Started with Neuron

This section walks you through the various options to get started with Neuron. You have to install Neuron on Trainium
and Inferentia powered instances to enable deep-learning acceleration.

Get started with PyTorch Get Started with JAX Get Started with TensorFlow Get Started
with Q Developer This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

1.4 Model samples and tutorials

This document is relevant for: Trn1

1.4.1 Training Samples/Tutorials (Trn1/Trn1n)

Table of contents

• Encoders

• Decoders

• Encoder-Decoders

• Vision Transformers

• Stable Diffusion

• Multi Modal

1.3. Get Started with Neuron 5
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• Convolutional Neural Networks(CNN)

Encoders

Model Frame-
works/Libraries

Samples and Tutorials

bert-base-cased torch-neuronx
• Fine-tune a “bert-base-cased” PyTorch model for Text

Classification
• How to fine-tune a “bert base cased” PyTorch model with

AWS Trainium (Trn1 instances) for Sentiment Analysis

bert-base-uncased torch-neuronx
• Fine-tune a “bert-base-uncased” PyTorch model
• Fine tuning BERT base model from HuggingFace on

Amazon SageMaker

bert-large-cased torch-neuronx
• Fine-tune a “bert-large-cased” PyTorch model

bert-large-uncased torch-neuronx
• Hugging Face BERT Pretraining Tutorial (Data-Parallel)
• Launch Bert Large Phase 1 pretraining job on Parallel

Cluster
• Launch a Multi-Node PyTorch Neuron Training Job on

Trainium Using TorchX and EKS
• PyTorch Neuron for Trainium Hugging Face BERT

MRPC task finetuning using Hugging Face Trainer API
• Fine-tune a “bert-large-uncased” PyTorch model

roberta-base tensorflow-
neuronx • Fine-tune a “roberta-base” PyTorch model

roberta-large torch-neuronx
• Fine-tune a “roberta-large” PyTorch model

xlm-roberta-base torch-neuronx
• Fine-tune a “xlm-roberta-base” PyTorch model

alberta-base-v2 torch-neuronx
• Fine-tune a “alberta-base-v2” PyTorch model

distilbert-base-uncased torch-neuronx
• Fine-tune a “distilbert-base-uncased” PyTorch model

camembert-base torch-neuronx
• Fine-tune a “camembert-base PyTorch model

cl-tohoku/bert-base-
japanese-whole-word-
masking

torch-neuronx
• Fine-tuning & Deployment Hugging Face BERT

Japanese model
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https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/BertBaseCased.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/BertBaseCased.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_sentiment_analysis/01-hf-single-neuron.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_sentiment_analysis/01-hf-single-neuron.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/BertBaseUncased.ipynb
https://github.com/aws-neuron/aws-neuron-sagemaker-samples/blob/master/training/trn1-bert-fine-tuning-on-sagemaker/bert-base-uncased-amazon-polarity.ipynb
https://github.com/aws-neuron/aws-neuron-sagemaker-samples/blob/master/training/trn1-bert-fine-tuning-on-sagemaker/bert-base-uncased-amazon-polarity.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/BertLargeCased.ipynb
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/dp-bert-launch-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/dp-bert-launch-job.md
https://github.com/aws-neuron/aws-neuron-eks-samples/tree/master/dp_bert_hf_pretrain#tutorial-launch-a-multi-node-pytorch-neuron-training-job-on-trainium-using-torchx-and-eks
https://github.com/aws-neuron/aws-neuron-eks-samples/tree/master/dp_bert_hf_pretrain#tutorial-launch-a-multi-node-pytorch-neuron-training-job-on-trainium-using-torchx-and-eks
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/BertLargeCased.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/RobertaBase.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/RobertaLarge.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/XlmRobertaBase.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/AlbertBase.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/DistilbertBaseUncased.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/CamembertBase.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_bert_jp/bert-jp-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_bert_jp/bert-jp-tutorial.ipynb
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Decoders

Model Frame-
works/Libraries

Samples and Tutorials

gpt-2 nxd-training
• Megatron GPT Pretraining

gpt-2 torch-neuronx
• How to run training jobs for “gpt2” PyTorch model with

AWS Trainium
• ZeRO-1 Tutorial

gpt-3 neuronx-nemo-
megatron • Launch a GPT-3 23B pretraining job using neuronx-

nemo-megatron
• Launch a GPT-3 46B pretraining job using neuronx-

nemo-megatron
• Launch a GPT-3 175B pretraining job using neuronx-

nemo-megatron

GPT-NEOX-20B neuronx-
distributed • Training GPT-NeoX 20B with Tensor Parallelism and

ZeRO-1 Optimizer
• Training GPT-NEOX 20B model using neuronx-

distributed
• Pre-train GPT Neox 20b on Wikicorpus dataset using

Neuronx Distributed library

GPT-NEOX-6.9B neuronx-
distributed • Training GPT-NeoX 6.9B with Tensor Parallelism and

ZeRO-1 Optimizer
• Training GPT-NEOX 6.9B model using neuronx-

distributed
• Pre-train GPT Neox 6.9b on Wikicorpus dataset using

Neuronx Distributed library

meta-llama/Llama-3.1-
70b

neuronx-
distributed • Training Llama-3.1-70B, Llama-3-70B or Llama-2-

13B/70B with Tensor Parallelism and Pipeline Paral-
lelism

meta-llama/Llama-3.1-8b neuronx-
distributed • Training Llama3.1-8B, Llama3-8B and Llama2-7B with

Tensor Parallelism and ZeRO-1 Optimizer

meta-llama/Llama-3-70b neuronx-
distributed • Training Llama-3.1-70B, Llama-3-70B or Llama-2-

13B/70B with Tensor Parallelism and Pipeline Paral-
lelism

meta-llama/Llama-3-8b nxd-training
• HuggingFace Llama3.1/Llama3-8B Pretraining
• HuggingFace Llama3.1/Llama3-8B Supervised Fine-

tuning

meta-llama/Llama-3-8b neuronx-
distributed • Training Llama3 8B Model with Tensor Parallelism and

ZeRO-1 Optimizer
• Tutorial for Fine-tuning Llama3 8B with tensor paral-

lelism and LoRA using Neuron PyTorch-Lightning with
NeuronX Distributed

meta-llama/Llama-2-7b neuronx-
distributed • Training Llama3.1-8B, Llama3-8B and Llama2-7B with

Tensor Parallelism and ZeRO-1 Optimizer
• Training Llama2 7B Model with AWS Batch and

Trainium
• llama2_7b_tp_zero1_ptl_finetune_tutorial
• Pre-train Llama2-7B on Wikicorpus dataset using Neu-

ronx Distributed library

meta-llama/Llama-2-13b neuronx-
distributed • Training Llama-3.1-70B, Llama-3-70B or Llama-2-

13B/70B with Tensor Parallelism and Pipeline Paral-
lelism

meta-llama/Llama-2-70b neuronx-
distributed • Training Llama-3.1-70B, Llama-3-70B or Llama-2-

13B/70B with Tensor Parallelism and Pipeline Paral-
lelism

codegen25-7b-mono neuronx-
distributed • codegen25_7b_tp_zero1_tutorial

meta-llama/Llama-2 neuronx-nemo-
megatron • Launch a Llama-2-7B pretraining job using neuronx-

nemo-megatron
• Launch a Llama-2-13B pretraining job using neuronx-

nemo-megatron
• Launch a Llama-2-70B pretraining job using neuronx-

nemo-megatron

Mistral-7B neuronx-nemo-
megatron • Training Mistral-7B

8 Chapter 1. Overview

https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_language_modeling/gpt2/gpt2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_language_modeling/gpt2/gpt2.ipynb
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-gpt-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-gpt-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-gpt-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-gpt-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-gpt-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-gpt-job.md
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_20b_hf_pretrain
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_20b_hf_pretrain
https://github.com/aws-samples/amazon-eks-machine-learning-with-terraform-and-kubeflow/blob/master/examples/neuronx-distributed/gpt_neox_20b/README.md
https://github.com/aws-samples/amazon-eks-machine-learning-with-terraform-and-kubeflow/blob/master/examples/neuronx-distributed/gpt_neox_20b/README.md
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_6.9b_hf_pretrain
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_6.9b_hf_pretrain
https://github.com/aws-samples/amazon-eks-machine-learning-with-terraform-and-kubeflow/blob/master/examples/neuronx-distributed/gpt_neox_6.9b/README.md#pre-train-gpt-neox-69b-on-wikicorpus-dataset-using-neuronx-distributed-library
https://github.com/aws-samples/amazon-eks-machine-learning-with-terraform-and-kubeflow/blob/master/examples/neuronx-distributed/gpt_neox_6.9b/README.md#pre-train-gpt-neox-69b-on-wikicorpus-dataset-using-neuronx-distributed-library
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/aws-batch/llama2/README.md
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/aws-batch/llama2/README.md
https://github.com/aws-samples/amazon-eks-machine-learning-with-terraform-and-kubeflow/blob/master/examples/neuronx-distributed/llama2_7b/README.md
https://github.com/aws-samples/amazon-eks-machine-learning-with-terraform-and-kubeflow/blob/master/examples/neuronx-distributed/llama2_7b/README.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-llamav2-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-llamav2-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-llamav2-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-llamav2-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-llamav2-job.md
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples/blob/master/examples/jobs/neuronx-nemo-megatron-llamav2-job.md
https://github.com/aws-neuron/neuronx-nemo-megatron/blob/main/nemo/examples/nlp/language_modeling/test_mistral.sh
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Encoder-Decoders

Model Frame-
works/Libraries

Samples and Tutorials

t5-small
• torch-

neuronx
• optimum-

neuron

• Fine-tune T5 model on Trn1

facebook/bart-large
• torch-

neuronx
• How to fine-tune a “Bart-Large” PyTorch model with

AWS Trainium (trn1 instances)

Vision Transformers

Model Frame-
works/Libraries

Samples and Tutorials

google/vit-base-patch16-
224-in21k

torch-neuronx
• Fine-tune a pretrained HuggingFace vision transformer

PyTorch model

openai/clip-vit-base-
patch32

torch-neuronx
• Fine-tune a pretrained HuggingFace CLIP-base PyTorch

model with AWS Trainium

openai/clip-vit-large-
patch14

torch-neuronx
• Fine-tune a pretrained HuggingFace CLIP-large PyTorch

model with AWS Trainium

Stable Diffusion

Model Frame-
works/Libraries

Samples and Tutorials

stabilityai/stable-
diffusion-2-1-base

torch-neuronx
• [Beta] Train stabilityai/stable-diffusion-2-1-base with

AWS Trainium (trn1 instances)

runwayml/stable-
diffusion-v1-5

torch-neuronx
• [Beta] Train runwayml/stable-diffusion-v1-5 with AWS

Trainium (trn1 instances)

1.4. Model samples and tutorials 9

https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/hf_summarization/BartLarge.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/hf_summarization/BartLarge.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_image_classification/vit.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_image_classification/vit.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_contrastive_image_text/CLIPBase.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_contrastive_image_text/CLIPBase.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_contrastive_image_text/CLIPLarge.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_contrastive_image_text/CLIPLarge.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/stable_diffusion/
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/stable_diffusion/
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/stable_diffusion/
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/stable_diffusion/
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Multi Modal

Model Frame-
works/Libraries

Samples and Tutorials

language-perceiver torch-neuronx
• How to fine-tune a “language perceiver” PyTorch model

with AWS Trainium (trn1 instances)

vision-perceiver-conv torch-neuronx
• How to fine-tune a pretrained HuggingFace Vision Per-

ceiver Conv

Convolutional Neural Networks(CNN)

Model Frame-
works/Libraries

Samples and Tutorials

resnet50 torch-neuronx
• How to fine-tune a pretrained ResNet50 Pytorch model

with AWS Trainium (trn1 instances) using NeuronSDK

milesial/Pytorch-UNet torch-neuronx
• This notebook shows how to fine-tune a pretrained UNET

PyTorch model with AWS Trainium (trn1 instances) using
NeuronSDK.

This document is relevant for: Trn1

This document is relevant for: Inf2, Trn1

1.4.2 Inference Samples/Tutorials (Inf2/Trn1/Trn2)

Table of contents

• Encoders

• Decoders

• Encoder-Decoders

• Vision Transformers

• Convolutional Neural Networks(CNN)

• Stable Diffusion

• Diffusion Transformers

• Audio

• Multi Modal

10 Chapter 1. Overview

https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/LanguagePerceiver.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_text_classification/LanguagePerceiver.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_image_classification/VisionPerceiverConv.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/hf_image_classification/VisionPerceiverConv.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/resnet50
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/resnet50
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/unet_image_segmentation
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/unet_image_segmentation
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/unet_image_segmentation
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Encoders

Model Frame-
works/Libraries

Samples and Tutorials

bert-base-cased-
finetuned-mrpc

torch-neuronx
• BERT TorchServe tutorial
• HuggingFace pretrained BERT tutorial [html] [notebook]
• LibTorch C++ Tutorial for HuggingFace Pretrained

BERT
• Compiling and Deploying HuggingFace Pretrained

BERT on Inf2 on Amazon SageMaker

bert-base-cased-
finetuned-mrpc

neuronx-
distributed • tp_inference_tutorial

bert-base-uncased torch-neuronx
• HuggingFace Pretrained BERT Inference on Trn1

distilbert-base-uncased torch-neuronx
• HuggingFace Pretrained DistilBERT Inference on Trn1

roberta-base tensorflow-
neuronx • HuggingFace Roberta-Base [html] [notebook]

roberta-large torch-neuronx
• HuggingFace Pretrained RoBERTa Inference on Trn1
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https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/torch-neuronx/bert-base-cased-finetuned-mrpc-inference-on-trn1-tutorial.ipynb
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/frameworks/torch/torch-neuron/tutorials/tutorial-libtorch.html#pytorch-tutorials-libtorch
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/frameworks/torch/torch-neuron/tutorials/tutorial-libtorch.html#pytorch-tutorials-libtorch
https://github.com/aws-neuron/aws-neuron-sagemaker-samples/blob/master/inference/inf2-bert-on-sagemaker/inf2_bert_sagemaker.ipynb
https://github.com/aws-neuron/aws-neuron-sagemaker-samples/blob/master/inference/inf2-bert-on-sagemaker/inf2_bert_sagemaker.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_bert_inference_on_trn1.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_distilbert_Inference_on_trn1.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/tensorflow-neuronx/tfneuronx-roberta-base-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_roberta_inference_on_frn1.ipynb


AWS Neuron

Decoders

Model Frame-
works/Libraries

Samples and Tutorials

gpt2 torch-neuronx
• HuggingFace Pretrained GPT2 Feature Extraction on

Trn1

meta-llama/Llama-3.3-
70B

neuronx-
distributed-
inference

• Tutorial: Using Speculative Decoding to improve Llama-
3.3-70B inference performance on Trn2 instances

• Tutorial: Scaling LLM Inference with Data Parallelism
on Trn2

meta-llama/Llama-3.2-
11B-Vision-Instruct

neuronx-
distributed-
inference

• Tutorial for deploying Llama3.2 Multimodal Models on
Trn1 & Inf2 instances

meta-llama/Llama-3.2-
90B-Vision-Instruct

neuronx-
distributed-
inference

• Tutorial for deploying Llama3.2 Multimodal Models on
Trn1 & Inf2 instances

meta-llama/Llama-3.1-8b transformers-
neuronx • Run Hugging Face Llama 3.1 8B autoregressive sampling

on Inf2 & Trn1 with 32k sequence length
• Run Hugging Face Llama 3.1 8B autoregressive sampling

on Inf2 & Trn1 with 128k sequence length
• Run meta-llama/Meta-Llama-3.1-8B autoregressive sam-

pling on Inf2 & Trn1

meta-llama/Llama-3.1-
70b

transformers-
neuronx • Run Hugging Face Llama 3.1 70B autoregressive sam-

pling on Trn1 with 64k sequence length
• Run Hugging Face meta-llama/Meta-Llama-3.1-70B au-

toregressive sampling on Inf2 & Trn1

meta-llama/Llama-3.1-
70b-Instruct

transformers-
neuronx • Run Hugging Face Llama-3.1-70B-Instruct + Llama-

3.2-1B-Instruct Speculative Decoding on Trn1 with
transformers-neuronx and vLLM

• Run Hugging Face Llama-3.1-70B-Instruct EAGLE
Speculative Decoding on Trn1 with transformers-
neuronx and vLLM

meta-llama/Llama-3.1-
405b

neuronx-
distributed-
inference

• Tutorial for deploying Llama-3.1-405B on Trn2
• Tutorial: Using Speculative Decoding and Quantization

to improve Llama-3.1-405B inference performance on
Trn2 instances

meta-llama/Llama-3.1-
405b

transformers-
neuronx • Run Hugging Face Llama 3.1 405B autoregressive sam-

pling on Trn1/Trn1n with 16k sequence length

meta-llama/Llama-3-8b transformers-
neuronx • Run Hugging Face meta-llama/Llama-3-8b autoregres-

sive sampling on Inf2 & Trn1

meta-llama/Llama-3-70b transformers-
neuronx • Run Hugging Face meta-llama/Llama-3-70b autoregres-

sive sampling on Inf2 & Trn1

meta-llama/Llama-2-13b transformers-
neuronx • Run Hugging Face meta-llama/Llama-2-13b autoregres-

sive sampling on Inf2 & Trn1

meta-llama/Llama-2-70b transformers-
neuronx • Run Hugging Face meta-llama/Llama-2-70b autoregres-

sive sampling on Inf2 & Trn1
• Run speculative sampling on Meta Llama models [Beta]

meta-llama/Llama-3.2-
1B-Instruct

neuronx-
distributed • Run meta-llama/Llama-3.2-1B-Instruct on Inf2 and Trn1

meta-llama/codellama-
13b

neuronx-
distributed • Run meta-llama/codellama-13b-16k-sampling

mistralai/Mistral-7B-
Instruct-v0.1

transformers-
neuronx • Run Mistral-7B-Instruct-v0.1 autoregressive sampling on

Inf2 & Trn1

mistralai/Mistral-7B-
Instruct-v0.2

transformers-
neuronx • Run Hugging Face mistralai/Mistral-7B-Instruct-v0.2 au-

toregressive sampling on Inf2 & Trn1 [Beta]

Mixtral-8x7B-v0.1 transformers-
neuronx • Run Hugging Face mistralai/Mixtral-8x7B-v0.1 autore-

gressive sampling on Inf2 & Trn1

Mixtral-8x7B neuronx-
distributed • Mixtral inference with NeuronX Distributed on Inf2 &

Trn1

DBRX neuronx-
distributed • DBRX inference with NeuronX Distributed on Inf2 &

Trn1

codellama/CodeLlama-
13b-hf

transformers-
neuronx • Run Hugging Face codellama/CodeLlama-13b-hf autore-

gressive sampling on Inf2 & Trn1
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https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_gpt2_feature_extraction_on_trn1.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_gpt2_feature_extraction_on_trn1.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/llama-3.1-8b-32k-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/llama-3.1-8b-32k-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/llama-3.1-8b-128k-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/llama-3.1-8b-128k-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/meta-llama-3.1-8b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/meta-llama-3.1-8b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/llama-3.1-70b-64k-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/llama-3.1-70b-64k-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/meta-llama-3.1-70b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/meta-llama-3.1-70b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/llama-3.1-70b-speculative-decoding.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/llama-3.1-70b-speculative-decoding.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/llama-3.1-70b-speculative-decoding.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/llama-3.1-70b-eagle-speculative-decoding.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/llama-3.1-70b-eagle-speculative-decoding.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/llama-3.1-70b-eagle-speculative-decoding.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/llama-3.1-405b-multinode-16k-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/llama-3.1-405b-multinode-16k-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/meta-llama-3-8b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/meta-llama-3-8b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/meta-llama-3-70b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/meta-llama-3-70b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/meta-llama-2-13b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/meta-llama-2-13b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/transformers-neuronx/inference/llama-70b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/transformers-neuronx/inference/llama-70b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/speculative_sampling.ipynb
https://github.com/aws-neuron/neuronx-distributed/tree/main/examples/inference/llama
https://github.com/aws-neuron/aws-neuron-samples/torch-neuronx/transformers-neuronx/inference/codellama-13b-16k-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/mistralai-Mistral-7b-Instruct-v0.2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/mistralai-Mistral-7b-Instruct-v0.2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/mixtral-8x7b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/mixtral-8x7b-sampling.ipynb
https://github.com/aws-neuron/neuronx-distributed/tree/main/examples/inference/mixtral
https://github.com/aws-neuron/neuronx-distributed/tree/main/examples/inference/mixtral
https://github.com/aws-neuron/neuronx-distributed/tree/main/examples/inference/dbrx
https://github.com/aws-neuron/neuronx-distributed/tree/main/examples/inference/dbrx
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/codellama-13b-16k-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/codellama-13b-16k-sampling.ipynb


AWS Neuron

Encoder-Decoders

Model Frame-
works/Libraries

Samples and Tutorials

t5-large
• torch-

neuronx
• optimum-

neuron

• T5 inference tutorial [html] [notebook]

t5-3b neuronx-
distributed • T5 inference tutorial [html] [notebook]

google/flan-t5-xl neuronx-
distributed • flan-t5-xl inference tutorial [html] [notebook]

Vision Transformers

Model Frame-
works/Libraries

Samples and Tutorials

google/vit-base-patch16-
224

torch-neuronx
• HuggingFace Pretrained ViT Inference on Trn1

clip-vit-base-patch32 torch-neuronx
• HuggingFace Pretrained CLIP Base Inference on Inf2

clip-vit-large-patch14 torch-neuronx
• HuggingFace Pretrained CLIP Large Inference on Inf2

Convolutional Neural Networks(CNN)

Model Frame-
works/Libraries

Samples and Tutorials

resnet50 torch-neuronx
• Torchvision Pretrained ResNet50 Inference on Trn1 / Inf2
• Torchvision ResNet50 tutorial [html] [notebook]

resnet50 tensorflow-
neuronx • Using NEURON_RT_VISIBLE_CORES with TensorFlow

Serving

unet torch-neuronx
• Pretrained UNet Inference on Trn1 / Inf2

vgg torch-neuronx
• Torchvision Pretrained VGG Inference on Trn1 / Inf2
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https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/torch-neuronx/t5-inference-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/neuronx_distributed/t5-inference/t5-inference-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/neuronx_distributed/t5-inference/t5-inference-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_vit_inference_on_inf2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_clip_base_inference_on_inf2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_clip_large_inference_on_inf2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/tv_pretrained_resnet50_inference_on_trn1.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/torch-neuronx/resnet50-inference-on-trn1-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/pretrained_unet_inference_on_trn1.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/tv_pretrained_vgg_inference_on_trn1.ipynb


AWS Neuron

Stable Diffusion

Model Frame-
works/Libraries

Samples and Tutorials

stable-diffusion-v1-5 torch-neuronx
• HuggingFace Stable Diffusion 1.5 (512x512) Inference

on Trn1 / Inf2

stable-diffusion-2-1-base torch-neuronx
• HuggingFace Stable Diffusion 2.1 (512x512) Inference

on Trn1 / Inf2

stable-diffusion-2-1 torch-neuronx
• HuggingFace Stable Diffusion 2.1 (768x768) Inference

on Trn1 / Inf2
• Deploy & Run Stable Diffusion on SageMaker and Infer-

entia2

stable-diffusion-xl-base-
1.0

torch-neuronx
• HuggingFace Stable Diffusion XL 1.0 (1024x1024) Infer-

ence on Inf2
• HuggingFace Stable Diffusion XL 1.0 Base and Refiner

(1024x1024) Inference on Inf2

stable-diffusion-2-
inpainting

torch-neuronx
• stable-diffusion-2-inpainting model Inference on Trn1 /

Inf2

Diffusion Transformers

Model Frame-
works/Libraries

Samples and Tutorials

pixart-alpha torch-neuronx
• HuggingFace PixArt Alpha (256x256, 512x512 square

resolution) Inference on Trn1 / Inf2

pixart-sigma torch-neuronx
• HuggingFace PixArt Sigma (256x256, 512x512 square

resolution) Inference on Trn1 / Inf2

Audio

Model Frame-
works/Libraries

Samples and Tutorials

wav2vec2-conformer torch-neuronx
• Run HuggingFace Pretrained Wav2Vec2-Conformer with

Rotary Position Embeddings Inference on Inf2
• Run HuggingFace Pretrained Wav2Vec2-Conformer with

Relative Position Embeddings Inference on Inf2 & Trn1
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https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sd15_512_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sd15_512_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sd2_512_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sd2_512_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sd2_768_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sd2_768_inference.ipynb
https://github.com/aws-neuron/aws-neuron-sagemaker-samples/blob/master/inference/stable-diffusion/StableDiffusion2_1.ipynb
https://github.com/aws-neuron/aws-neuron-sagemaker-samples/blob/master/inference/stable-diffusion/StableDiffusion2_1.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sdxl_base_1024_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sdxl_base_1024_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sdxl_base_and_refiner_1024_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_sdxl_base_and_refiner_1024_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/inference/hf_pretrained_sd2_inpainting_936_624_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/inference/hf_pretrained_sd2_inpainting_936_624_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_pixart_alpha_inference_on_inf2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_pixart_alpha_inference_on_inf2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_pixart_sigma_inference_on_inf2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_pixart_sigma_inference_on_inf2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_wav2vec2_conformer_rope_inference_on_inf2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_wav2vec2_conformer_rope_inference_on_inf2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_wav2vec2_conformer_relpos_inference_on_inf2.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_wav2vec2_conformer_relpos_inference_on_inf2.ipynb


AWS Neuron

Multi Modal

Model Frame-
works/Libraries

Samples and Tutorials

multimodal-perceiver torch-neuronx
• HuggingFace Multimodal Perceiver Inference on Trn1 /

Inf2

language-perceiver torch-neuronx
• HF Pretrained Perceiver Language Inference on Trn1 /

Inf2

vision-perceiver-conv torch-neuronx
• HF Pretrained Perceiver Image Classification Inference

on Trn1 / Inf2

This document is relevant for: Inf2, Trn1

This document is relevant for: Inf1

1.4.3 Inference Samples/Tutorials (Inf1)

Table of contents

• Encoders

• Vision Transformers

• Convolutional Neural Networks(CNN)

• Vision
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https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_perceiver_multimodal_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_perceiver_multimodal_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_perceiver_language_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_perceiver_language_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_perceiver_vision_inference.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/inference/hf_pretrained_perceiver_vision_inference.ipynb


AWS Neuron

Encoders

Model Frame-
works/Libraries

Samples and Tutorials

bert-base-cased-
finetuned-mrpc

torch-neuron
• HuggingFace pretrained BERT tutorial [html] [notebook]
• BertBaseCased Inference on Inf1 instances
• Bert TorchServe tutorial [html]
• Bring your own HuggingFace pretrained BERT container

to Sagemaker Tutorial [html] [notebook]

bert-base-uncased torch-neuron
• NeuronCore Pipeline tutorial [html] [notebook]

bert-large-uncased torch-neuron
• BertLargeUncased Inference on Inf1 instances

roberta-base torch-neuron
• Roberta-Base inference on Inf1 instances

distilbert-base-uncased-
finetuned-sst-2-english

tensorflow-neuron
• Tensorflow 2.x - HuggingFace Pipelines distilBERT with

Tensorflow2 Neuron [html] [notebook]

gluon bert mxnet-neuron
• MXNet 1.8: Using data parallel mode tutorial [html]

[notebook]

Vision Transformers

Model Frame-
works/Libraries

Samples and Tutorials

ssd torch-neuron
• Inference of SSD model on inf1 instances

TrOCR torch-neuron
• TrOCR inference on Inf1 instances

vgg torch-neuron
• VGG inference on Inf1 instances

google/vit-base-patch16-
224

torch-neuron
• ViT model inference on Inf1
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https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/bert_tutorial/tutorial_pretrained_bert.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/bertbasecased/BertBaseCased.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/byoc_sm_bert_tutorial/sagemaker_container_neuron.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/pipeline_tutorial/neuroncore_pipeline_pytorch.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/bertlargeuncased/BertLargeUncased.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/robertabase/RobertaBase.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/tensorflow/huggingface_bert/huggingface_bert.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/mxnet/data_parallel/data_parallel_tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/ssd/SSD300VGG16.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/trocr/TrOCR.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/vgg/VGG.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/vit/ViT.ipynb
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Convolutional Neural Networks(CNN)

Model Frame-
works/Libraries

Samples and Tutorials

EfficientNet torch-neuron
• EfficientNet model inference on Inf1 instances

GFL (MMDetection) torch-neuron
• GFL (MMDetection) inference on Inf1 instances

HRNet torch-neuron
• HRNET - Pose Estimation

MarianMT torch-neuron
• HuggingFace MarianMT tutorial [html] [notebook]
• Inference of Pre-trained MarianMT model on Inf1

Detectron2 R-CNN torch-neuron
• R-CNN inference on Inf1

resnet torch-neuron
• Inference of Pre-trained Resnet model

(18,34,50,101,152) on Inf1
• ResNet-50 tutorial [html] [notebook]

resnet tensorflow-neuron
• Tensorflow 2.x - Using NEU-

RON_RT_VISIBLE_CORES with TensorFlow Serving
[html]

resnet mxnet-neuron
• ResNet-50 tutorial [html] [notebook]
• Getting started with Gluon tutorial [html] [notebook]
• NeuronCore Groups tutorial [html] [notebook]

Resnext torch-neuron
• Inference of Resnext model on Inf1

Yolov4 torch-neuron
• PyTorch YOLOv4 tutorial [html] [notebook]

Yolov5 torch-neuron
• Inference of Yolov5 on Inf1

Yolov6 torch-neuron
• Inference of Yolov6 on Inf1 instances

Yolov7 torch-neuron
• Inference of Yolov7 model on Inf1

Yolof torch-neuron
• Inference of Yolof model on Inf1

fairseq torch-neuron
• Inference of fairseq model on Inf1

unet tensorflow-neuron
• Unet - Tensorflow 2.x tutorial
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https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/resnet/Resnet.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/resnet/Resnet.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/resnet50.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/mxnet/resnet50/resnet50.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/mxnet/mxnet-gluon-tutorial.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/mxnet/resnet50_neuroncore_groups.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/resnext/Resnext.ipynb
https://github.com/aws-neuron/aws-neuron-sdk/blob/master/src/examples/pytorch/yolo_v4.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/yolov5/Yolov5.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/yolov6/Yolov6.ipynb
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuron/inference/yolov7
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuron/inference/yolof_detectron2/YoloF.ipynb
https://github.com/aws-neuron/aws-neuron-samples-staging/tree/master/torch-neuron/inference/fairseq
https://github.com/aws-neuron/aws-neuron-samples/blob/master/tensorflow-neuron/inference/unet
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Vision

Model Frame-
works/Libraries

Samples and Tutorials

craft-pytorch torch-neuron
• CRAFT model inference on Inf1

This document is relevant for: Inf1

This section gives you the consolidated list of code samples and tutorials published by AWS Neuron across documen-
tation and various GitHub repositories.

Training on Trn1 Inference on Inf2, Trn1 and Trn2 Inference on Inf1 For links to individual
GitHub sample repositories, see neuron-github-samples

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1

1.5 Neuron performance

The Neuron performance pages provide a reference to the expected performance of various open-source models for
popular deep learning in Natural Language Processing (NLP), Computer Vision (CV) and Recommender model tasks.
We have included with each model links to allow you to setup and reconstruct the test with a few steps.

Inference performance numbers for Inf1 Inference performance numbers for Inf2 Inference performance
numbers for Trn1 Training performance numbers for Trn1 This document is relevant for: Inf1, Inf2,
Trn1

This document is relevant for: Inf1, Inf2, Trn1, Trn2

1.6 What’s New

1.6.1 Neuron 2.24.1 (06/30/2025)

Neuron version 2.24.1 resolves an installation issue that could prevent NeuronX Distributed Training from being in-
stalled successfully.

1.6.2 Neuron 2.24.0 (06/24/2025)

Neuron version 2.24 introduces new inference capabilities including prefix caching, disaggregated inference (Beta), and
context parallelization support (Beta). This release also includes NKI language enhancements and enhanced profiling
visualizations for improved debugging and performance analysis. Neuron 2.24 adds support for PyTorch 2.7 and JAX
0.6, updates existing DLAMIs and DLCs, and introduces a new vLLM inference container.

Table of contents

• Inference

• Training
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• Neuron Kernel Interface (NKI)

• Neuron Tools

• Neuron Deep Learning Containers (DLCs)

• Neuron Deep Learning AMIs (DLAMIs)

Inference

NxD Inference (NxDI) includes the following enhancements:

• Prefix caching: Improves Time To First Token (TTFT) by up to 3x when processing common shared prompts
across requests.

• Disaggregated inference (Beta): Uses 1P1D (1 Prefill, 1 Decode) architecture to reduce prefill-decode interfer-
ence and improve goodput.

• Context parallelism (Beta): Improves TTFT for longer sequence lengths by processing context encoding in
parallel across multiple NeuronCores.

• Model support: Added beta support for Qwen 2.5 text models.

• NxD Inference Library: Upgraded to support PyTorch 2.7 and Transformers 4.48.

Hugging Face Optimum Neuron 0.2.0 now supports PyTorch-based NxD Core backend for LLM inference, simplifying
the implementation of new PyTorch model architectures. Models including Llama 3.1-8B and Llama-3.3-70B have
migrated from Transformers NeuronX to the NxD backend.

Training

Library Upgrades
• NxD Training (NxDT) Library: Upgraded to support PyTorch 2.7 and Transformers 4.48.

• JAX Training Support: Upgraded to JAX 0.6.0.

Neuron Kernel Interface (NKI)

• New nki.language.gather_flattened: Provides efficient parallel tensor element gathering.

• Enhanced accuracy: Improved valid range of nki.language.sqrt and nki.isa.activation(nl.sqrt)

• Advanced indexing: Improved performance for nki.isa.nc_match_replace8.

Neuron Tools

Neuron Profiler Enhancements
• Framework stack traces: Maps device instructions to model source code.

• Scratchpad memory usage visualization: Shows tensor-level memory usage over time with HLO name asso-
ciation.

• On-device collectives barriers: Identifies synchronization overhead.

• HBM throughput visualization: Tracks data movement involving High Bandwidth Memory (HBM) over time.

NCCOM-TEST Improvements

1.6. What’s New 19
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• Added --report-to-json-file flag: Outputs results in JSON format.

• Added --show-input-output-size flag: Explicitly displays input and output sizes based on operations.

Neuron Deep Learning Containers (DLCs)

• Updated containers with PyTorch 2.7 support for inference and training.

• Added new inference container with NxD Inference and vLLM with FastAPI.

• JAX DLCs now support JAX 0.6.0 training.

Neuron Deep Learning AMIs (DLAMIs)

• Updated MultiFramework DLAMIs to include PyTorch 2.7 and JAX 0.6.0.

• Added new Single Framework DLAMIs for PyTorch 2.7 and JAX 0.6.0.
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1.6.3 Neuron 2.24 Feature Release Notes

What’s New Details Instances
NxD Core (neuronx-distributed)

• NxD Core Release Notes
(neuronx-distributed)

Trn1 / Trn1n, Trn2

NxD Inference (neuronx-
distributed-inference) • NxD Inference Release

Notes (neuronx-distributed-
inference)

Inf2, Trn1 / Trn1n, Trn2

NxD Training (neuronx-distributed-
training) • NxD Training Release

Notes (neuronx-distributed-
training)

Trn1 / Trn1n, Trn2

PyTorch NeuronX (torch-neuronx)
• PyTorch Neuron (torch-

neuronx) release notes

Inf2, Trn1 / Trn1n, Trn2

Neuron Compiler (neuronx-cc)
• Neuron Compiler (neuronx-

cc) release notes

Inf2, Trn1 / Trn1n, Trn2

Neuron Kernel Interface (NKI)
• Neuron Kernel Interface

(NKI) release notes

Inf2, Trn1/ Trn1n

Neuron Tools
• Neuron System Tools Inf1, Inf2, Trn1/ Trn1n

Neuron Runtime
• Neuron Runtime Release

Notes

Inf1, Inf2, Trn1/ Trn1n

Transformers NeuronX
(transformers-neuronx) for In-
ference

• Transformers Neuron
(transformers-neuronx)
release notes

Inf2, Trn1 / Trn1n

Neuron Deep Learning AMIs
(DLAMIs) • Neuron DLAMI User Guide Inf1, Inf2, Trn1 / Trn1n

Neuron Deep Learning Containers
(DLCs) • neuron-dlc-release-notes

Inf1, Inf2, Trn1 / Trn1n

Release Announcements
• announce-no-longer-support-

beta-pytorch-neuroncore-
placement-apis

• announce-eos-block-
dimension-nki

• announce-eos-pytorch25
• announce-eos-tensorflow-

tutorial
• announce-eos-tnx
• announce-eos-longer-

support-xla-bf16-vars
• announce-eos-block-

dimension-nki
• announce-no-longer-support-

llama-32-meta-checkpoint
• announce-no-longer-support-

nki-jit
• See more at Announcements.

Inf1, Inf2, Trn1/ Trn1n
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For detailed release artifacts, see Release Artifacts.

1.6.4 Previous Releases

• prev-rn

• pre-release-content

• prev-n1-rn

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

1.7 Announcements

This page will be replaced by ABlog. It’s here to make sure it’s in the TOC.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

1.7. Announcements 23
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CHAPTER

TWO

ML FRAMEWORKS

This document is relevant for: Inf1, Inf2, Trn1, Trn2

2.1 PyTorch Neuron

PyTorch Neuron unlocks high-performance and cost-effective deep learning acceleration on AWS Trainium-based and
AWS Inferentia-based Amazon EC2 instances.

The PyTorch Neuron plugin architecture enables native PyTorch models to be accelerated on Neuron devices, so you
can use your existing framework application and get started easily with minimal code changes.

For help selecting a framework type for inference, see torch-neuron_vs_torch-neuronx

This document is relevant for: Inf1, Inf2, Trn1, Trn2

2.1.1 Pytorch Neuron Setup

PyTorch Neuron (torch-neuronx) Setup for Inf2, Trn1, and Trn2 Instances PyTorch Neuron (torch-neuron)
Setup for Inf1 Instances This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

2.1.2 Inference with torch-neuronx (Inf2 & Trn1/Trn2)

This document is relevant for: Inf2, Trn1, Trn2

Tutorials for Inference (torch-neuronx)

Compiling and Deploying HuggingFace Pretrained BERT on Trn1 or Inf2

Introduction

In this tutorial we will compile and deploy a HuggingFace Transformers BERT model for accelerated inference on
Neuron. In this tutorial, we will be deploying directly on Trn1/Inf2 instances. If you are looking to deploy this model
through SageMaker on Inf2 instance, please visit the Sagemaker samples repository.

This tutorial will use the bert-base-cased-finetuned-mrpc model. This model has 12 layers, 768 hidden dimensions, 12
attention heads, and 110M total parameters. The final layer is a binary classification head that has been trained on the
Microsoft Research Paraphrase Corpus (mrpc). The input to the model is two sentences and the output of the model is
whether or not those sentences are a paraphrase of each other.
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This tutorial has the following main sections:

1. Install dependencies

2. Compile the BERT model

3. Run inference on Neuron and compare results to CPU

4. Benchmark the model using multicore inference

5. Finding the optimal batch size

This Jupyter notebook should be run on a Trn1 instance (trn1.2xlarge or larger.) or Inf2 instance (inf2.xlarge or
larger.)

Install dependencies

The code in this tutorial is written for Jupyter Notebooks. To use Jupyter Notebook on the Neuron instance, you can
use this guide.

This tutorial requires the following pip packages:

• torch-neuronx

• neuronx-cc

• transformers

Most of these packages will be installed when configuring your environment using the Trn1/Inf2 setup guide. The
additional dependencies must be installed here:

[ ]: %env TOKENIZERS_PARALLELISM=True #Supresses tokenizer warnings making errors easier to␣
→˓detect
!pip install --upgrade transformers

Compile the model into an AWS Neuron optimized TorchScript

In the following section, we load the BERT model and tokenizer, get a sample input, run inference on CPU, compile
the model for Neuron using torch_neuronx.trace(), and save the optimized model as TorchScript.

torch_neuronx.trace() expects a tensor or tuple of tensor inputs to use for tracing, so we unpack the tokenizer
output using the encode function.

The result of the trace stage will be a static executable where the operations to be run upon inference are determined
during compilation. This means that when inferring, the resulting Neuron model must be executed with tensors that
are the exact same shape as those provided at compilation time. If a model is given a tensor at inference time whose
shape does not match the tensor given at compilation time, an error will occur.

For language models, the shape of the tokenizer tensors can vary based on the length of input sentence. We can satisfy
the Neuron restriction of using a fixed shape input by padding all varying input tensors to a specified length. In a
deployment scenario, the padding size should be chosen based on the maximum token length that is expected to occur
for the application.

In the following section we will assume that we will receive a maximum of 128 tokens at inference time. We will pad
our example inputs by using padding='max_length' and to avoid potential errors caused by creating a tensor that is
larger than max_length=128, we will always tokenize using truncation=True.
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[ ]: import torch
import torch_neuronx
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import transformers

def encode(tokenizer, *inputs, max_length=128, batch_size=1):
tokens = tokenizer.encode_plus(

*inputs,
max_length=max_length,
padding='max_length',
truncation=True,
return_tensors="pt"

)
return (

torch.repeat_interleave(tokens['input_ids'], batch_size, 0),
torch.repeat_interleave(tokens['attention_mask'], batch_size, 0),
torch.repeat_interleave(tokens['token_type_ids'], batch_size, 0),

)

# Create the tokenizer and model
name = "bert-base-cased-finetuned-mrpc"
tokenizer = AutoTokenizer.from_pretrained(name)
model = AutoModelForSequenceClassification.from_pretrained(name, torchscript=True)

# Set up some example inputs
sequence_0 = "The company HuggingFace is based in New York City"
sequence_1 = "Apples are especially bad for your health"
sequence_2 = "HuggingFace's headquarters are situated in Manhattan"

paraphrase = encode(tokenizer, sequence_0, sequence_2)
not_paraphrase = encode(tokenizer, sequence_0, sequence_1)

# Run the original PyTorch BERT model on CPU
cpu_paraphrase_logits = model(*paraphrase)[0]
cpu_not_paraphrase_logits = model(*not_paraphrase)[0]

# Compile the model for Neuron
model_neuron = torch_neuronx.trace(model, paraphrase)

# Save the TorchScript for inference deployment
filename = 'model.pt'
torch.jit.save(model_neuron, filename)

2.1. PyTorch Neuron 27
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Run inference and compare results

In this section we load the compiled model, run inference on Neuron, and compare the CPU and Neuron outputs.

NOTE: Although this tutorial section uses one NeuronCore (and the next section uses two NeuronCores), by default
each Jupyter notebook Python process will attempt to take ownership of all NeuronCores visible on the instance. For
multi-process applications where each process should only use a subset of the NeuronCores on the instance you can use
NEURON_RT_NUM_CORES=N or NEURON_RT_VISIBLE_CORES=< list of NeuronCore IDs > when starting the
Jupyter notebook as described in NeuronCore Allocation and Model Placement for Inference.

[ ]: # Load the TorchScript compiled model
model_neuron = torch.jit.load(filename)

# Verify the TorchScript works on both example inputs
neuron_paraphrase_logits = model_neuron(*paraphrase)[0]
neuron_not_paraphrase_logits = model_neuron(*not_paraphrase)[0]

# Compare the results
print('CPU paraphrase logits: ', cpu_paraphrase_logits.detach().numpy())
print('Neuron paraphrase logits: ', neuron_paraphrase_logits.detach().numpy())
print('CPU not-paraphrase logits: ', cpu_not_paraphrase_logits.detach().numpy())
print('Neuron not-paraphrase logits: ', neuron_not_paraphrase_logits.detach().numpy())

Benchmarking

In this section we benchmark the performance of the BERT model on Neuron. By default, models compiled with
torch_neuronx will always execute on a single NeuronCore. When loading multiple models, the default behavior of
the Neuron runtime is to evenly distribute models across all available NeuronCores. The runtime places models on the
NeuronCore that has the fewest models loaded to it first. In the following section, we will torch.jit.load multiple
instances of the model which should each be loaded onto their own NeuronCore. It is not useful to load more copies of
a model than the number of NeuronCores on the instance since an individual NeuronCore can only execute one model
at a time.

To ensure that we are maximizing hardware utilization, we must run inferences using multiple threads in parallel. It is
nearly always recommended to use some form of threading/multiprocessing and some form of model replication since
even the smallest Neuron EC2 instance has 2 NeuronCores available. Applications with no form of threading are only
capable of 1 / num_neuron_cores hardware utilization which becomes especially problematic on large instances.

One way to view the hardware utilization is by executing the neuron-top application in the terminal while the bench-
mark is executing. If the monitor shows >90% utilization on all NeuronCores, this is a good indication that the hardware
is being utilized effectively.

In this example we load two models, which utilizes all NeuronCores (2) on a trn1.2xlarge or inf2.xlarge instance.
Additional models can be loaded and run in parallel on larger Trn1 or Inf2 instance sizes to increase throughput.

We define a benchmarking function that loads two optimized BERT models onto two separate NeuronCores, runs
multithreaded inference, and calculates the corresponding latency and throughput.

[ ]: import time
import concurrent.futures
import numpy as np

def benchmark(filename, example, n_models=2, n_threads=2, batches_per_thread=1000):
(continues on next page)
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(continued from previous page)

"""
Record performance statistics for a serialized model and its input example.

Arguments:
filename: The serialized torchscript model to load for benchmarking.
example: An example model input.
n_models: The number of models to load.
n_threads: The number of simultaneous threads to execute inferences on.
batches_per_thread: The number of example batches to run per thread.

Returns:
A dictionary of performance statistics.

"""

# Load models
models = [torch.jit.load(filename) for _ in range(n_models)]

# Warmup
for _ in range(8):

for model in models:
model(*example)

latencies = []

# Thread task
def task(model):

for _ in range(batches_per_thread):
start = time.time()
model(*example)
finish = time.time()
latencies.append((finish - start) * 1000)

# Submit tasks
begin = time.time()
with concurrent.futures.ThreadPoolExecutor(max_workers=n_threads) as pool:

for i in range(n_threads):
pool.submit(task, models[i % len(models)])

end = time.time()

# Compute metrics
boundaries = [50, 95, 99]
percentiles = {}

for boundary in boundaries:
name = f'latency_p{boundary}'
percentiles[name] = np.percentile(latencies, boundary)

duration = end - begin
batch_size = 0
for tensor in example:

if batch_size == 0:
batch_size = tensor.shape[0]

inferences = len(latencies) * batch_size

(continues on next page)
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(continued from previous page)

throughput = inferences / duration

# Metrics
metrics = {

'filename': str(filename),
'batch_size': batch_size,
'batches': len(latencies),
'inferences': inferences,
'threads': n_threads,
'models': n_models,
'duration': duration,
'throughput': throughput,
**percentiles,

}

display(metrics)

def display(metrics):
"""
Display the metrics produced by `benchmark` function.

Args:
metrics: A dictionary of performance statistics.

"""
pad = max(map(len, metrics)) + 1
for key, value in metrics.items():

parts = key.split('_')
parts = list(map(str.title, parts))
title = ' '.join(parts) + ":"

if isinstance(value, float):
value = f'{value:0.3f}'

print(f'{title :<{pad}} {value}')

# Benchmark BERT on Neuron
benchmark(filename, paraphrase)

Finding the optimal batch size

Batch size has a direct impact on model performance. The NeuronCore architecture is optimized to maximize through-
put with relatively small batch sizes. This means that a Neuron compiled model can outperform a GPU model, even if
running single digit batch sizes.

As a general best practice, we recommend optimizing your model’s throughput by compiling the model with a small
batch size and gradually increasing it to find the peak throughput on Neuron. To minimize latency, using batch size
= 1will nearly always be optimal. This batch size configuration is typically used for on-demand inference applications.
To maximize throughput, usually 1 < batch_size < 10 is optimal. A configuration which uses a larger batch size
is generally ideal for batched on-demand inference or offline batch processing.
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In the following section, we compile BERT for multiple batch size inputs. We then run inference on each batch size
and benchmark the performance. Notice that latency increases consistently as the batch size increases. Throughput
increases as well, up until a certain point where the input size becomes too large to be efficient.

[ ]: # Compile BERT for different batch sizes
for batch_size in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:

tokenizer = AutoTokenizer.from_pretrained(name)
model = AutoModelForSequenceClassification.from_pretrained(name, torchscript=True)
example = encode(tokenizer, sequence_0, sequence_2, batch_size=batch_size)
model_neuron = torch_neuronx.trace(model, example)
filename = f'model_batch_size_{batch_size}.pt'
torch.jit.save(model_neuron, filename)

[ ]: # Benchmark BERT for different batch sizes
for batch_size in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:

print('-'*50)
example = encode(tokenizer, sequence_0, sequence_2, batch_size=batch_size)
filename = f'model_batch_size_{batch_size}.pt'
benchmark(filename, example)
print()

This document is relevant for: Inf2, Trn1, Trn2

BERT TorchServe Tutorial

Table of Contents

• Overview

• Run the tutorial

• Setup TorchServe

• Run TorchServe

• Benchmark TorchServe
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Overview

This tutorial demonstrates the use of TorchServe with Neuron, the SDK for EC2 Inf2 and Trn1 instances. By the end
of this tutorial, you will understand how TorchServe can be used to serve a model backed by EC2 Inf2/Trn1 instances.
We will use a pretrained BERT-Base model to determine if one sentence is a paraphrase of another.

Run the tutorial

Open a terminal, log into your remote instance, and activate a Pytorch virtual environment setup (see the:ref:Install
PyTorch Neuron <setup-torch-neuronx>). To complete this tutorial, you will also need a compiled BERT model. You
can run trace_bert_neuronx.py to obtain a traced BERT model.

You should now have a compiled bert_neuron_b6.pt file, which is required going forward.

Open a shell on the instance you prepared earlier, create a new directory named torchserve. Copy your compiled
model from the previous tutorial into this new directory.

cd torchserve
python trace_bert_neuronx.py
ls

bert_neuron_b6.pt

Prepare a new Python virtual environment with the necessary Neuron and TorchServe components. Use a virtual
environment to keep (most of) the various tutorial components isolated from the rest of the system in a controlled way.

pip install transformers==4.20.1 torchserve==0.7.0 torch-model-archiver==0.7.0 captum==0.
→˓6.0

Install the system requirements for TorchServe.

Amazon Linux 2 DLAMI Base

sudo yum -y install jq java-11-amazon-corretto-headless
sudo alternatives --config java
sudo alternatives --config javac

Ubuntu 20 DLAMI Base

sudo apt install openjdk-11-jdk -y

java -version

openjdk version "11.0.17" 2022-10-18
OpenJDK Runtime Environment (build 11.0.17+8-post-Ubuntu-1ubuntu218.04)
OpenJDK 64-Bit Server VM (build 11.0.17+8-post-Ubuntu-1ubuntu218.04, mixed mode, sharing)

javac -version
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javac 11.0.17

Verify that TorchServe is now available.

torchserve --version

TorchServe Version is 0.7.0

Setup TorchServe

During this tutorial you will need to download a few files onto your instance. The simplest way to accomplish this is to
paste the download links provided above each file into a wget command. (We don’t provide the links directly because
they are subject to change.) For example, right-click and copy the download link for config.json shown below.

Listing 2.1: config.json

{
"model_name": "bert-base-cased-finetuned-mrpc",
"max_length": 128,
"batch_size": 6

}

Now execute the following in your shell:

wget <paste link here>
ls

bert_neuron_b6.pt config.json

Download the custom handler script that will eventually respond to inference requests.

Listing 2.2: handler_bert_neuronx.py

1 import os
2 import json
3 import sys
4 import logging
5 from abc import ABC
6

7 import torch
8 import torch_neuronx
9

10 from transformers import AutoTokenizer
11 from ts.torch_handler.base_handler import BaseHandler
12

13

14 # one core per worker
15 os.environ['NEURON_RT_NUM_CORES'] = '1'
16

17 logger = logging.getLogger(__name__)
18

19 class BertEmbeddingHandler(BaseHandler, ABC):
(continues on next page)
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20 """
21 Handler class for Bert Embedding computations.
22 """
23 def __init__(self):
24 super(BertEmbeddingHandler, self).__init__()
25 self.initialized = False
26

27 def initialize(self, ctx):
28 self.manifest = ctx.manifest
29 properties = ctx.system_properties
30 self.device = 'cpu'
31 model_dir = properties.get('model_dir')
32 serialized_file = self.manifest['model']['serializedFile']
33 model_pt_path = os.path.join(model_dir, serialized_file)
34

35 # point sys.path to our config file
36 with open('config.json') as fp:
37 config = json.load(fp)
38 self.max_length = config['max_length']
39 self.batch_size = config['batch_size']
40 self.classes = ['not paraphrase', 'paraphrase']
41

42 self.model = torch.jit.load(model_pt_path)
43 logger.debug(f'Model loaded from {model_dir}')
44 self.model.to(self.device)
45 self.model.eval()
46

47 self.tokenizer = AutoTokenizer.from_pretrained(config['model_name'])
48 self.initialized = True
49

50 def preprocess(self, input_data):
51 """
52 Tokenization pre-processing
53 """
54

55 input_ids = []
56 attention_masks = []
57 token_type_ids = []
58 for row in input_data:
59 seq_0 = row['seq_0'].decode('utf-8')
60 seq_1 = row['seq_1'].decode('utf-8')
61 logger.debug(f'Received text: "{seq_0}", "{seq_1}"')
62

63 inputs = self.tokenizer.encode_plus(
64 seq_0,
65 seq_1,
66 max_length=self.max_length,
67 padding='max_length',
68 truncation=True,
69 return_tensors='pt'
70 )
71

(continues on next page)
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72 input_ids.append(inputs['input_ids'])
73 attention_masks.append(inputs['attention_mask'])
74 token_type_ids.append(inputs['token_type_ids'])
75

76 batch = (torch.cat(input_ids, 0),
77 torch.cat(attention_masks, 0),
78 torch.cat(token_type_ids, 0))
79

80 return batch
81

82 def inference(self, inputs):
83 """
84 Predict the class of a text using a trained transformer model.
85 """
86

87 # sanity check dimensions
88 assert(len(inputs) == 3)
89 num_inferences = len(inputs[0])
90 assert(num_inferences <= self.batch_size)
91

92 # insert padding if we received a partial batch
93 padding = self.batch_size - num_inferences
94 if padding > 0:
95 pad = torch.nn.ConstantPad1d((0, 0, 0, padding), value=0)
96 inputs = [pad(x) for x in inputs]
97

98 outputs = self.model(*inputs)[0]
99 predictions = []

100 for i in range(num_inferences):
101 prediction = self.classes[outputs[i].argmax(dim=-1).item()]
102 predictions.append([prediction])
103 logger.debug("Model predicted: '%s'", prediction)
104 return predictions
105

106 def postprocess(self, inference_output):
107 return inference_output

Next, we need to associate the handler script with the compiled model using torch-model-archiver. Run the
following commands in your terminal:

mkdir model_store
MAX_LENGTH=$(jq '.max_length' config.json)
BATCH_SIZE=$(jq '.batch_size' config.json)
MODEL_NAME=bert-max_length$MAX_LENGTH-batch_size$BATCH_SIZE
torch-model-archiver --model-name "$MODEL_NAME" --version 1.0 --serialized-file ./bert_
→˓neuron_b6.pt --handler "./handler_bert_neuronx.py" --extra-files "./config.json" --
→˓export-path model_store

Note: If you modify your model or a dependency, you will need to rerun the archiver command with the -f flag
appended to update the archive.
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The result of the above will be a mar file inside the model_store directory.

ls model_store

bert-max_length128-batch_size6.mar

This file is essentially an archive associated with a fixed version of your model along with its dependencies (e.g. the
handler code).

Note: The version specified in the torch-model-archiver command can be appended to REST API requests to
access a specific version of your model. For example, if your model was hosted locally on port 8080 and named
“bert”, the latest version of your model would be available at http://localhost:8080/predictions/bert, while
version 1.0 would be accessible at http://localhost:8080/predictions/bert/1.0. We will see how to perform
inference using this API in Step 6.

Create a custom config file to set some parameters. This file will be used to configure the server at launch when we run
torchserve --start.

Listing 2.3: torchserve.config

# bind inference API to all network interfaces with SSL enabled
inference_address=http://0.0.0.0:8080
default_workers_per_model=1

Note: This will cause TorchServe to bind on all interfaces. For security in real-world applications, you’ll probably
want to use port 8443 and enable SSL.

Run TorchServe

It’s time to start the server. Typically we’d want to launch this in a separate console, but for this demo we’ll just redirect
output to a file.

torchserve --start --ncs --model-store model_store --ts-config torchserve.config 2>&1 >
→˓torchserve.log

Verify that the server seems to have started okay.

curl http://127.0.0.1:8080/ping

{
"status": "Healthy"

}

Note: If you get an error when trying to ping the server, you may have tried before the server was fully launched.
Check torchserve.log for details.

Use the Management API to instruct TorchServe to load our model.

First, determine the number of NeuronCores available based on your instance size.
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Inf2

Instance Size # of NeuronCores
xlarge 2
8xlarge 2
24xlarge 12
48xlarge 24

Trn1

Instance Size # of NeuronCores
2xlarge 2
32xlarge 32

MAX_BATCH_DELAY=5000 # ms timeout before a partial batch is processed
INITIAL_WORKERS=2 # Number from table above
curl -X POST "http://localhost:8081/models?url=$MODEL_NAME.mar&batch_size=$BATCH_SIZE&
→˓initial_workers=$INITIAL_WORKERS&max_batch_delay=$MAX_BATCH_DELAY"

{
"status": "Model \"bert-max_length128-batch_size6\" Version: 1.0 registered with X␣

→˓initial workers"
}

Warning: You shouldn’t set INITIAL_WORKERS above the number of NeuronCores. If you attempt to load more
models than NeuronCores available, one of two things will occur. Either the extra models will fit in device memory
but performance will suffer, or you will encounter an error on your initial inference. However, you may want to use
fewer cores if you are using the NeuronCore Pipeline feature.

Note: Any additional attempts to configure the model after the initial curl request will cause the server to return a 409
error. You’ll need to stop/start/configure the server to realize any changes.

The MAX_BATCH_DELAY is a timeout value that determines how long to wait before processing a partial batch. This is
why the handler code needs to check the batch dimension and potentially add padding. TorchServe will instantiate the
number of model handlers indicated by INITIAL_WORKERS, so this value controls how many models we will load onto
Inferentia in parallel. If you want to control worker scaling more dynamically, see the docs.

It looks like everything is running successfully at this point, so it’s time for an inference.

Create the infer_bert.py file below on your instance.

Listing 2.4: infer_bert.py

1 import json
2 import concurrent.futures
3 import requests
4

5 with open('config.json') as fp:
(continues on next page)
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6 config = json.load(fp)
7 max_length = config['max_length']
8 batch_size = config['batch_size']
9 name = f'bert-max_length{max_length}-batch_size{batch_size}'

10

11 # dispatch requests in parallel
12 url = f'http://localhost:8080/predictions/{name}'
13 paraphrase = {'seq_0': "HuggingFace's headquarters are situated in Manhattan",
14 'seq_1': "The company HuggingFace is based in New York City"}
15 not_paraphrase = {'seq_0': paraphrase['seq_0'], 'seq_1': 'This is total nonsense.'}
16

17 with concurrent.futures.ThreadPoolExecutor(max_workers=batch_size) as executor:
18 def worker_thread(worker_index):
19 # we'll send half the requests as not_paraphrase examples for sanity
20 data = paraphrase if worker_index < batch_size//2 else not_paraphrase
21 try:
22 response = requests.post(url, data=data)
23

24 # Check if the response status code indicates success
25 if response.status_code == 200:
26 print(worker_index, response.json())
27 else:
28 # If the response is not successful, raise an exception with the status␣

→˓code and error message
29 error_message = response.json().get('message', 'Unknown Error')
30 raise Exception(f"Failed request with status code {response.status_code}:

→˓ {error_message}")
31 except Exception as e:
32 # Catch all other exceptions that may be raised
33 print(f"An unexpected error occurred: {e}")
34 raise
35

36 for worker_index in range(batch_size):
37 executor.submit(worker_thread, worker_index)

This script will send a batch_size number of requests to our model. In this example, we are using a model that
estimates the probability that one sentence is a paraphrase of another. The script sends positive examples in the first
half of the batch and negative examples in the second half.

Execute the script in your terminal.

python infer_bert.py

1 ['paraphrase']
3 ['not paraphrase']
4 ['not paraphrase']
0 ['paraphrase']
5 ['not paraphrase']
2 ['paraphrase']

We can see that the first three threads (0, 1, 2) all report paraphrase, as expected. If we instead modify the script to
send an incomplete batch and then wait for the timeout to expire, the excess padding results will be discarded.
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Benchmark TorchServe

We’ve seen how to perform a single batched inference, but how many inferences can we process per second? A separate
upcoming tutorial will document performance tuning to maximize throughput. In the meantime, we can still perform
a simple naïve stress test. The code below will spawn 64 worker threads, with each thread repeatedly sending a full
batch of data to process. A separate thread will periodically print throughput and latency measurements.

Listing 2.5: benchmark_bert.py

1 import os
2 import argparse
3 import time
4 import numpy as np
5 import requests
6 import sys
7 from concurrent import futures
8

9 import torch
10

11

12 parser = argparse.ArgumentParser()
13 parser.add_argument('--url', help='Torchserve model URL', type=str, default=f'http://127.

→˓0.0.1:8080/predictions/bert-max_length128-batch_size6')
14 parser.add_argument('--num_thread', type=int, default=64, help='Number of threads␣

→˓invoking the model URL')
15 parser.add_argument('--batch_size', type=int, default=6)
16 parser.add_argument('--sequence_length', type=int, default=128)
17 parser.add_argument('--latency_window_size', type=int, default=1000)
18 parser.add_argument('--throughput_time', type=int, default=300)
19 parser.add_argument('--throughput_interval', type=int, default=10)
20 args = parser.parse_args()
21

22 data = { 'seq_0': 'A completely made up sentence.',
23 'seq_1': 'Well, I suppose they are all made up.' }
24 live = True
25 num_infer = 0
26 latency_list = []
27

28

29 def one_thread(pred, feed_data):
30 global latency_list
31 global num_infer
32 global live
33 session = requests.Session()
34 while True:
35 start = time.time()
36 result = session.post(pred, data=feed_data)
37 latency = time.time() - start
38 latency_list.append(latency)
39 num_infer += 1
40 if not live:
41 break
42

(continues on next page)
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43

44 def current_performance():
45 last_num_infer = num_infer
46 for _ in range(args.throughput_time // args.throughput_interval):
47 current_num_infer = num_infer
48 throughput = (current_num_infer - last_num_infer) / args.throughput_interval
49 p50 = 0.0
50 p90 = 0.0
51 if latency_list:
52 p50 = np.percentile(latency_list[-args.latency_window_size:], 50)
53 p90 = np.percentile(latency_list[-args.latency_window_size:], 90)
54 print('pid {}: current throughput {}, latency p50={:.3f} p90={:.3f}'.format(os.

→˓getpid(), throughput, p50, p90))
55 sys.stdout.flush()
56 last_num_infer = current_num_infer
57 time.sleep(args.throughput_interval)
58 global live
59 live = False
60

61

62 with futures.ThreadPoolExecutor(max_workers=args.num_thread+1) as executor:
63 executor.submit(current_performance)
64 for _ in range(args.num_thread):
65 executor.submit(one_thread, args.url, data)

Run the benchmarking script.

python benchmark_bert.py

pid 1214554: current throughput 0.0, latency p50=0.000 p90=0.000
pid 1214554: current throughput 713.9, latency p50=0.071 p90=0.184
pid 1214554: current throughput 737.9, latency p50=0.071 p90=0.184
pid 1214554: current throughput 731.6, latency p50=0.068 p90=0.192
pid 1214554: current throughput 732.2, latency p50=0.070 p90=0.194
pid 1214554: current throughput 733.9, latency p50=0.070 p90=0.187
pid 1214554: current throughput 739.3, latency p50=0.071 p90=0.184
...

Note: Your throughput numbers may differ from these based on instance type and size.

Congratulations! By now you should have successfully served a batched model over TorchServe.

You can now shutdown torchserve.

torchserve --stop

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf1
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LibTorch C++ Tutorial

Table of Contents

• Overview

• Notes

• Run the tutorial

• Benchmark

• Troubleshooting

Overview

This tutorial demonstrates the use of LibTorch with Neuron, the SDK for Amazon Inf1, Inf2 and Trn1 instances. By
the end of this tutorial, you will understand how to write a native C++ application that performs inference on EC2 Inf1,
Inf2 and Trn1 instances. We will use an inf1.6xlarge and a pretrained BERT-Base model to determine if one sentence
is a paraphrase of another.

Verify that this tutorial is running in a virtual environement that was set up according to the Torch-
Neuronx Installation Guide <https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/setup/torch-
neuronx.html#setup-torch-neuronx> or Torch-Neuron Installation Guide <https://awsdocs-neuron.readthedocs-
hosted.com/en/latest/general/setup/torch-neuron.html#setup-torch-neuron>

Notes

The tutorial has been tested on Inf1, Inf2 and Trn1 instances on ubuntu instances.

Run the tutorial

This tutorial is self contained. It produces similar output to [html] [notebook].

Note: The tutorial will use about 8.5 GB of disk space. Please ensure you have sufficient space before beginning.

Right-click and copy this link address to the tutorial archive.

wget <paste archive URL>
tar xvf libtorch_demo.tar.gz

Your directory tree should now look like this:

libtorch_demo
bert_neuronx

compile.py
detect_instance.py

clean.sh
core_count

build.sh
main.cpp

example_app
(continues on next page)
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build.sh
core_count.hpp
example_app.cpp
README.txt
utils.cpp
utils.hpp

neuron.patch
run_tests.sh
setup.sh
tokenizer.json
tokenizers_binding

build_python.sh
build.sh
remote_rust_tokenizer.h
run_python.sh
run.sh
tokenizer.json
tokenizer_test
tokenizer_test.cpp
tokenizer_test.py

This tutorial uses the HuggingFace Tokenizers library implemented in Rust. Install Cargo, the package manager for the
Rust programming language.

Ubuntu Amazon Linux

sudo apt install -y cargo sudo yum install -y cargo

Run the setup script to download additional depdendencies and build the app. (This may take a few minutes to com-
plete.)

cd libtorch_demo
chmod +x setup.sh && ./setup.sh

...
+ PATH_NEURON_LIB=/opt/aws/neuron/lib/
+ g++ utils.cpp example_app.cpp -o ../example-app -O2 -D_GLIBCXX_USE_CXX11_ABI=0 -I../
→˓libtorch/include -L../tokenizers_binding/lib -L/opt/aws/neuron/lib/ -L../libtorch/lib -
→˓Wl,-rpath,libtorch/lib -Wl,-rpath,tokenizers_binding/lib -Wl,-rpath,/opt/aws/neuron/
→˓lib/ -ltokenizers -ltorchneuron -ltorch_cpu -lc10 -lpthread -lnrt
~/libtorch_demo
Successfully completed setup
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Benchmark

The setup script should have compiled and saved a PyTorch model compiled for neuron (bert_neuron_b6.pt). Run the
provided sanity tests to ensure everything is working properly.

./run_tests.sh bert_neuron_b6.pt

Running tokenization sanity checks.

None of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available␣
→˓and only tokenizers, configuration and file/data utilities can be used.
Tokenizing: 100%|| 10000/10000 [00:00<00:00, 15021.69it/s]
Python took 0.67 seconds.
Sanity check passed.
Begin 10000 timed tests.
..........
End timed tests.
C++ took 0.226 seconds.

Tokenization sanity checks passed.
Running end-to-end sanity check.

The company HuggingFace is based in New York City
HuggingFace's headquarters are situated in Manhattan
not paraphrase: 10%
paraphrase: 90%

The company HuggingFace is based in New York City
Apples are especially bad for your health
not paraphrase: 94%
paraphrase: 6%

Sanity check passed.

Finally, run the example app directly to benchmark the BERT model.

Note: You can safely ignore the warning about None of PyTorch, Tensorflow >= 2.0, .... This occurs be-
cause the test runs in a small virtual environment that doesn’t require the full frameworks.

./example-app bert_neuron_b6.pt

Getting ready................
Benchmarking................
Completed 32000 operations in 43 seconds => 4465.12 pairs / second

====================
Summary information:
====================
Batch size = 6
Num neuron cores = 16
Num runs per neuron core = 2000
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Congratulations! By now you should have successfully built and used a native C++ application with LibTorch.

Troubleshooting

• In the event of SIGBUS errors you may have insufficient disk space for the creation of temporary model files at
runtime. Consider clearing space or mounting additional disk storage.

• In the event of a neuron runtime failure, confirm that the Neuron kernel module is loaded using sudo modprobe
neuron.

This document is relevant for: Inf1

Compiling and Deploying ResNet50 on Trn1 or Inf2

Introduction

In this tutorial we will compile and deploy a TorchVision ResNet50 model for accelerated inference on Neuron. To get
started with Jupyter Notebook on Neuron Instance you launched, please use this guide.

This tutorial will use the resnet50 model, which is primarily used for arbitrary image classification tasks.

This tutorial has the following main sections:

1. Install dependencies

2. Compile the ResNet model

3. Run inference on Neuron and compare results to CPU

4. Benchmark the model using multicore inference

5. Finding the optimal batch size

This Jupyter notebook should be run on a Trn1 instance (trn1.2xlarge or larger.) or Inf2 instance (inf2.xlarge or
larger.)

Install Dependencies

The code in this tutorial is written for Jupyter Notebooks. To use Jupyter Notebook on the Neuron instance, you can
use this guide.

This tutorial requires the following pip packages:

• torch-neuronx

• neuronx-cc

• torchvision

• Pillow

Most of these packages will be installed when configuring your environment using the Trn1 setup guide. The additional
dependencies must be installed here:

[ ]: !pip install Pillow
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Compile the model into an AWS Neuron optimized TorchScript

In the following section, we load the model, get a sample input, run inference on CPU, compile the model for Neuron
using torch_neuronx.trace(), and save the optimized model as TorchScript.

torch_neuronx.trace() expects a tensor or tuple of tensor inputs to use for tracing, so we convert the input image
into a tensor using the get_image function.

The result of the trace stage will be a static executable where the operations to be run upon inference are determined
during compilation. This means that when inferring, the resulting Neuron model must be executed with tensors that
are the exact same shape as those provided at compilation time. If a model is given a tensor at inference time whose
shape does not match the tensor given at compilation time, an error will occur.

In the following section, we assume that we will receive an image shape of [1, 3, 224, 224] at inference time.

[ ]: import os
import urllib
from PIL import Image

import torch
import torch_neuronx
from torchvision import models
from torchvision.transforms import functional

def get_image(batch_size=1, image_shape=(224, 224)):
# Get an example input
filename = "000000039769.jpg"
if not os.path.exists(filename):

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
urllib.request.urlretrieve(url, filename)

image = Image.open(filename).convert('RGB')
image = functional.resize(image, (image_shape))
image = functional.to_tensor(image)
image = torch.unsqueeze(image, 0)
image = torch.repeat_interleave(image, batch_size, 0)
return (image, )

# Create the model
model = models.resnet50(pretrained=True)
model.eval()

# Get an example input
image = get_image()

# Run inference on CPU
output_cpu = model(*image)

# Compile the model
model_neuron = torch_neuronx.trace(model, image)

# Save the TorchScript for inference deployment
filename = 'model.pt'
torch.jit.save(model_neuron, filename)
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Run inference and compare results

In this section we load the compiled model, run inference on Neuron, and compare the CPU and Neuron outputs using
the ImageNet classes.

[ ]: import json

# Load the TorchScript compiled model
model_neuron = torch.jit.load(filename)

# Run inference using the Neuron model
output_neuron = model_neuron(*image)

# Compare the results
print(f"CPU tensor: {output_cpu[0][0:10]}")
print(f"Neuron tensor: {output_neuron[0][0:10]}")

# Download and read the ImageNet classes
urllib.request.urlretrieve("https://s3.amazonaws.com/deep-learning-models/image-models/
→˓imagenet_class_index.json","imagenet_class_index.json")
with open("imagenet_class_index.json", "r") as file:

class_id = json.load(file)
id2label = [class_id[str(i)][1] for i in range(len(class_id))]

# Lookup and print the top-5 labels
top5_cpu = output_cpu[0].sort()[1][-5:]
top5_neuron = output_neuron[0].sort()[1][-5:]
top5_labels_cpu = [id2label[idx] for idx in top5_cpu]
top5_labels_neuron = [id2label[idx] for idx in top5_neuron]
print(f"CPU top-5 labels: {top5_labels_cpu}")
print(f"Neuron top-5 labels: {top5_labels_neuron}")

Benchmarking

In this section we benchmark the performance of the ResNet model on Neuron. By default, models compiled with
torch_neuronx will always execute on a single NeuronCore. When loading multiple models, the default behavior of
the Neuron runtime is to evenly distribute models across all available NeuronCores. The runtime places models on the
NeuronCore that has the fewest models loaded to it first. In the following section, we will torch.jit.load multiple
instances of the model which should each be loaded onto their own NeuronCore. It is not useful to load more copies of
a model than the number of NeuronCores on the instance since an individual NeuronCore can only execute one model
at a time.

To ensure that we are maximizing hardware utilization, we must run inferences using multiple threads in parallel. It is
nearly always recommended to use some form of threading/multiprocessing and some form of model replication since
even the smallest Neuron EC2 instance has 2 NeuronCores available. Applications with no form of threading are only
capable of 1 / num_neuron_cores hardware utilization which becomes especially problematic on large instances.

One way to view the hardware utilization is by executing the neuron-top application in the terminal while the bench-
mark is executing. If the monitor shows >90% utilization on all NeuronCores, this is a good indication that the hardware
is being utilized effectively.

In this example we load two models, which utilizes all NeuronCores (2) on a trn1.2xlarge or inf2.xlarge instance.
Additional models can be loaded and run in parallel on larger Trn1 or Inf2 instance sizes to increase throughput.
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We define a benchmarking function that loads two optimized ResNet models onto two separate NeuronCores, runs
multithreaded inference, and calculates the corresponding latency and throughput.

[ ]: import time
import concurrent.futures
import numpy as np

def benchmark(filename, example, n_models=2, n_threads=2, batches_per_thread=1000):
"""
Record performance statistics for a serialized model and its input example.

Arguments:
filename: The serialized torchscript model to load for benchmarking.
example: An example model input.
n_models: The number of models to load.
n_threads: The number of simultaneous threads to execute inferences on.
batches_per_thread: The number of example batches to run per thread.

Returns:
A dictionary of performance statistics.

"""

# Load models
models = [torch.jit.load(filename) for _ in range(n_models)]

# Warmup
for _ in range(8):

for model in models:
model(*example)

latencies = []

# Thread task
def task(model):

for _ in range(batches_per_thread):
start = time.time()
model(*example)
finish = time.time()
latencies.append((finish - start) * 1000)

# Submit tasks
begin = time.time()
with concurrent.futures.ThreadPoolExecutor(max_workers=n_threads) as pool:

for i in range(n_threads):
pool.submit(task, models[i % len(models)])

end = time.time()

# Compute metrics
boundaries = [50, 95, 99]
percentiles = {}

for boundary in boundaries:
(continues on next page)
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name = f'latency_p{boundary}'
percentiles[name] = np.percentile(latencies, boundary)

duration = end - begin
batch_size = 0
for tensor in example:

if batch_size == 0:
batch_size = tensor.shape[0]

inferences = len(latencies) * batch_size
throughput = inferences / duration

# Metrics
metrics = {

'filename': str(filename),
'batch_size': batch_size,
'batches': len(latencies),
'inferences': inferences,
'threads': n_threads,
'models': n_models,
'duration': duration,
'throughput': throughput,
**percentiles,

}

display(metrics)

def display(metrics):
"""
Display the metrics produced by `benchmark` function.

Args:
metrics: A dictionary of performance statistics.

"""
pad = max(map(len, metrics)) + 1
for key, value in metrics.items():

parts = key.split('_')
parts = list(map(str.title, parts))
title = ' '.join(parts) + ":"

if isinstance(value, float):
value = f'{value:0.3f}'

print(f'{title :<{pad}} {value}')

# Benchmark ResNet on Neuron
benchmark(filename, image)

48 Chapter 2. ML Frameworks



AWS Neuron

Finding the optimal batch size

Batch size has a direct impact on model performance. The NeuronCore architecture is optimized to maximize through-
put with relatively small batch sizes. This means that a Neuron compiled model can outperform a GPU model, even if
running single digit batch sizes.

As a general best practice, we recommend optimizing your model’s throughput by compiling the model with a small
batch size and gradually increasing it to find the peak throughput on Neuron. To minimize latency, using batch size
= 1will nearly always be optimal. This batch size configuration is typically used for on-demand inference applications.
To maximize throughput, usually 1 < batch_size < 10 is optimal. A configuration which uses a larger batch size
is generally ideal for batched on-demand inference or offline batch processing.

In the following section, we compile ResNet for multiple batch size inputs. We then run inference on each batch size
and benchmark the performance. Notice that latency increases consistently as the batch size increases. Throughput
increases as well, up until a certain point where the input size becomes too large to be efficient.

[ ]: # Compile ResNet for different batch sizes
for batch_size in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:

model = models.resnet50(pretrained=True)
model.eval()
example = get_image(batch_size=batch_size)
model_neuron = torch_neuronx.trace(model, example)
filename = f'model_batch_size_{batch_size}.pt'
torch.jit.save(model_neuron, filename)

[ ]: # Benchmark ResNet for different batch sizes
for batch_size in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:

print('-'*50)
example = get_image(batch_size=batch_size)
filename = f'model_batch_size_{batch_size}.pt'
benchmark(filename, example)
print()

T5 model inference on Trn1 or Inf2

Introduction

In this tutorial we will compile and deploy a pretrained T5 model for accelerated inference on Neuron.

This tutorial will use the t5-large model. The T5 model can be used for machine translation, document summarization,
question answering, and classification tasks.

This tutorial has the following main sections:

1. Install dependencies

2. Compile the T5 model

3. Run inference with greedy decoding on Neuron

4. Run infernece with beam search on Neuron

This Jupyter notebook should be run on a Trn1 instance (trn1.2xlarge or larger.) or Inf2 instance (inf2.xlarge or
larger.)

2.1. PyTorch Neuron 49

https://huggingface.co/t5-large


AWS Neuron

Install dependencies

The code in this tutorial is written for Jupyter Notebooks. To use Jupyter Notebook on the Neuron instance, you can
use this guide.

This tutorial requires the following pip packages:

• torch-neuronx

• neuronx-cc

• transformers

• optimum-neuron

Most of these packages will be installed when configuring your environment using the Trn1/Inf2 setup guide. The
additional dependencies must be installed here:

[ ]: !pip install --upgrade transformers==4.31.0 optimum-neuron==0.0.8 sentencepiece

Optimum Neuron is the interface between the Transformers library and AWS Accelerators including AWS Trainium
and AWS Inferentia. It provides a set of tools enabling easy model loading, training and inference on single- and multi-
Accelerator settings for different downstream tasks. In this tutorial we use HuggingFace Optimum Neuron’s generate()
method instead of transformers’s generate() to perform greedy decoding. Optimum Neuron takes care of padding the
inputs which is necessary to infer on Neuron.

Compile the model into an AWS Neuron optimized TorchScript

In the following section, we load the T5 model, compile the model’s encoder and decoder for Neuron using
torch_neuronx.trace(), and save the optimized encoder and decoder as TorchScript.

Before we trace the model, we need to make a couple of changes.

1. We need to write encoder and decoder wrappers - torch_neuronx can only trace functions with positional
arguments. But the T5 encoder and decoder both use keyword arguments. So, in order to trace them, we have to
write wrappers that convert keyword arguments to positional arguments

2. We modify the t5 code to maximize the computation on the neuron device - Having sections of code running on
cpu will reduce the performance. Moreover, we do not want to move data berween the neuron device and cpu
during inference. The code we trace with torch_neuronx is the code that runs on the neuron device, so we
refactor the t5 code to run computationally heavy operations within the wrapper.

Let us start with the EncoderWrapper.

In the huggingface t5 implementation, the encoder block takes in the input ids and returns the encoder hidden states.
This hidden states are then used to initialize the KV cache in the decoder blocks during the first decoder invocation.
We could trace both the encoder and the cache initialization step separately. But there is a better way, we could just
compute the initial KV cache state within the encoder wrapper. This way, we remove the overhead of moving the hidden
states from neuron device to cpu and back. This also allows neuron’s compiler to optimize execution across both the
encoder and cache initialization.

Why don’t we just initalize the cache on the first decoder run?

This is harder to do on Neuron. Similar to torch.jit.trace(), torch_neuronx.trace() produces a function that
has a fixed control flow, i.e. there are no conditional executions. So we cannot choose to conditionally initialize the
cache in the first decoder iteration. Instead, we can compute the initial cache state outside the generation flow and pass
the cache to it.
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[ ]: import torch

from transformers.models.t5.modeling_t5 import T5Stack, T5LayerCrossAttention

class EncoderWrapper(torch.nn.Module):
'''

We will trace an instance of the EncoderWrapper.
This wrapper just converts positional args to kwargs.

'''

def __init__(self,
encoder,
decoder,
model_config,
batch_size,
max_length,
device,
num_beams,
tp_degree=None):

super().__init__()
self.encoder = encoder
self.decoder = decoder
self.batch_size = batch_size
self.max_length = max_length
self.model_config = model_config
self.device = device
self.num_beams = num_beams
self.num_attention_heads_per_partition = model_config.num_heads
self.tp_degree = tp_degree

def forward(self, input_ids, attention_mask):
'''

This is the core functionality we want to trace.
'''
encoder_output = self.encoder(input_ids=input_ids,

attention_mask=attention_mask,
output_attentions=False,
output_hidden_states=False)

last_hidden_state = encoder_output["last_hidden_state"]
encoder_hidden_states = torch.concat([tensor.unsqueeze(0).repeat(self.num_beams,␣

→˓1, 1) for tensor in last_hidden_state])

decoder_blocks = self.decoder.block
present_key_value_states_sa = []
present_key_value_states_ca = []

for i, block in enumerate(decoder_blocks):

# Cross attention has to be initialized with the encoder hidden state
cross_attention: T5LayerCrossAttention = block.layer[1]
attention = cross_attention.EncDecAttention

(continues on next page)
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def shape(states):
"""projection"""
return states.view(self.batch_size, -1, self.num_attention_heads_per_

→˓partition, attention.key_value_proj_dim).transpose(1, 2)

key_states = shape(attention.k(encoder_hidden_states))
value_states = shape(attention.v(encoder_hidden_states))

# cross_attn_kv_state
present_key_value_states_ca.append(key_states)
present_key_value_states_ca.append(value_states)

# Self attention kv states are initialized to zeros. This is done to keep␣
→˓the size of the kv cache tensor constant.

# The kv cache will be an input to the decoder trace. Any traced function␣
→˓will have a fixed control flow. What this means

# is that the trace performs the exact same computations on inputs of the␣
→˓same shape in each invocation. So the attention

# kv cache is padded here to keep a fixed shape.
present_key_value_states_sa.append(torch.zeros((self.batch_size, ␣

→˓ # key states
self.model_config.num_heads,
self.max_length-1,
self.model_config.d_kv),␣

→˓dtype=torch.float32, device=self.device))
present_key_value_states_sa.append(torch.zeros((self.batch_size, ␣

→˓ # value states
self.model_config.num_heads,
self.max_length-1,
self.model_config.d_kv),␣

→˓dtype=torch.float32, device=self.device))

return present_key_value_states_sa + present_key_value_states_ca

In the decoder wrapper, in addition to converting keyword arguments to positional arguments we add support for
attention caching. Generating text from the encoder decoder models is an autoregressive process. For each invocation,
we have to compute the key and value states of the attention heads repeatedly. To improve the performance, we cache
the key and value states. This cache is what HuggingFace transformers code refers to as past_key_values.

In HuggingFace transformers, the past_key_values are updated outside the decoder. This works for training and
evaluation but for inference we want to perform them within a single trace. This way, we can optimize across both the
decoder execution and cache update. So, we move the cache update within the decoder wrapper.

[3]: class DecoderWrapper(torch.nn.Module):

def __init__(self,
decoder: T5Stack,
lm_head: torch.nn.Linear,
model_config,
num_beams: int,
max_length: int,

(continues on next page)
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device: str,
tp_degree=None):

super().__init__()
self.decoder = decoder
self.lm_head = lm_head
self.model_dim=model_config.d_model
self.device = device
self.num_beams = num_beams
self.batch_size = 1
self.config = model_config

num_heads=model_config.num_heads
num_decoder_layers=model_config.num_decoder_layers

self.num_attention_heads_per_partition = num_heads

# (num_beams, n_heads, seq_length, dim_per_head)
if device == "cpu":

self.past_key_values_sa = [torch.ones((num_beams,num_heads,max_length-1,
→˓model_config.d_kv), dtype=torch.float32) for _ in range(num_decoder_layers * 2)]

self.past_key_values_ca = [torch.ones((num_beams,num_heads,max_length,model_
→˓config.d_kv), dtype=torch.float32) for _ in range(num_decoder_layers * 2)]

elif device == "xla":
self.past_key_values_sa = torch.nn.ParameterList([torch.nn.Parameter(torch.

→˓ones((num_beams,self.num_attention_heads_per_partition,max_length-1,model_config.d_kv),
→˓ dtype=torch.float32), requires_grad=False) for _ in range(num_decoder_layers * 2)])

self.past_key_values_ca = torch.nn.ParameterList([torch.nn.Parameter(torch.
→˓ones((num_beams,self.num_attention_heads_per_partition,max_length,model_config.d_kv),␣
→˓dtype=torch.float32), requires_grad=False) for _ in range(num_decoder_layers * 2)])

def update_past(self, past_key_values):
new_past_sa = []
new_past_ca = []
for past_layer in past_key_values:

new_past_layer = list(past_layer)
for i in range(len(new_past_layer[:2])):

new_past_layer[i] = past_layer[i][:, :, 1:]
new_past_sa += [new_past_layer[:2],]
new_past_ca += [new_past_layer[2:],]

return new_past_sa, new_past_ca

def reorder_cache(self, past_key_values, beam_idx):
for i in range(len(past_key_values)):

gather_index = beam_idx.view([beam_idx.shape[0],1,1,1]).expand_as(past_key_
→˓values[i])

past_key_values[i] = torch.gather(past_key_values[i], dim = 0, index=gather_
→˓index)

return past_key_values

def forward(self,
input_ids,
decoder_attention_mask,

(continues on next page)
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encoder_hidden_states,
encoder_attention_mask,
beam_idx,
beam_scores,
**kwargs):

if self.num_beams > 1:
# We reorder the cache based on the beams selected in each iteration.␣

→˓Required step for beam search.
past_key_values_sa = self.reorder_cache(self.past_key_values_sa, beam_idx)
past_key_values_ca = self.reorder_cache(self.past_key_values_ca, beam_idx)

else:
# We do not need to reorder for greedy sampling
past_key_values_sa = self.past_key_values_sa
past_key_values_ca = self.past_key_values_ca

# The cache is stored in a flatten form. We order the cache per layer before␣
→˓passing it to the decoder.

# Each layer has 4 tensors, so we group by 4.
past_key_values = [[*past_key_values_sa[i*2:i*2+2], *past_key_values_ca[i*2:

→˓i*2+2]] for i in range(0, int(len(past_key_values_ca)/2))]

decoder_output = self.decoder(
input_ids=input_ids,
attention_mask=decoder_attention_mask,
past_key_values=past_key_values,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
output_attentions=False,
output_hidden_states=False)

last_hidden_state = decoder_output['last_hidden_state']
past_key_values = decoder_output['past_key_values']

if self.config.tie_word_embeddings:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/

→˓fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py
→˓#L586

last_hidden_state = last_hidden_state * (self.model_dim**-0.5)

lm_logits = self.lm_head(last_hidden_state)

past_key_values_sa, past_key_values_ca = self.update_past(past_key_values)

# We flatten the cache to a single array. This is required for the input output␣
→˓aliasing to work

past_key_values_sa = [vec for kv_per_layer in past_key_values_sa for vec in kv_
→˓per_layer]

past_key_values_ca = [vec for kv_per_layer in past_key_values_ca for vec in kv_
→˓per_layer]

(continues on next page)
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if self.device == "cpu":
self.past_key_values_sa = past_key_values_sa
self.past_key_values_ca = past_key_values_ca

# We calculate topk inside the wrapper
next_token_logits = lm_logits[:, -1, :]

if self.num_beams > 1:
# This section of beam search is run outside the decoder in the huggingface␣

→˓t5 implementation.
# To maximize the computation within the neuron device, we move this within␣

→˓the wrapper
logit_max, _ = torch.max(next_token_logits, dim=-1, keepdim=True)
logsumexp = torch.log(torch.exp(next_token_logits - logit_max).sum(dim=-1,␣

→˓keepdim=True))
next_token_scores = next_token_logits - logit_max - logsumexp
next_token_scores = next_token_scores + beam_scores[:, None].expand_as(next_

→˓token_scores)

# reshape for beam search
vocab_size = next_token_scores.shape[-1]
next_token_scores = next_token_scores.view(self.batch_size, self.num_beams *␣

→˓vocab_size)
next_token_scores = next_token_scores * 1

# Sample 2 next tokens for each beam (so we have some spare tokens and match␣
→˓output of beam search)

next_token_scores, next_tokens = torch.topk(
next_token_scores, 2 * self.num_beams, dim=1, largest=True, sorted=True

)

next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
next_tokens = next_tokens % vocab_size

return [next_token_scores, next_tokens, next_indices] + past_key_values_sa +␣
→˓past_key_values_ca

else:
# Greedy
next_tokens = torch.argmax(next_token_logits, dim=-1)
return [next_tokens] + past_key_values_sa + past_key_values_ca

Now let’s create a T5 model wrapper to make it compatible with our traced encoder and decoder.

There are two reasons for having this wrapper,

1. The encoder and decoder traces can only be invoked with positional arguments. But the HuggingFace transform-
ers code is written with keyword arguments. So we override the functions that invoke encoder and decoder to
call with positional arguments.

2. The generate() function in the NeuronGenerationMixin performs cache update within the CPU. As we are han-
dling the cache within the DecoderWrapper, we disable the cache update on CPU.
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3. The topK computation to determine the next tokens for beam search was moved into the decoder wrapper. So,
we need to override the huggingface’s beam search implementation to accept the next tokens and the beam scores
from the decoder.

Let’s also override the generate() function so that it will intialize the cache using the cache initalizer before starting
the greedy decoding.

[4]: import torch
import torch_xla.core.xla_model as xm

from transformers import T5Tokenizer, T5ForConditionalGeneration
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
from transformers.models.t5.modeling_t5 import T5Stack, T5LayerCrossAttention
from transformers.generation.utils import ModelOutput
from typing import Any, Dict, List, Optional, Tuple, Union
from transformers.generation.beam_search import BeamScorer, BeamSearchScorer

from optimum.neuron.generation import NeuronGenerationMixin

from transformers.generation.logits_process import (
LogitsProcessorList,

)
from transformers.generation.stopping_criteria import (

MaxLengthCriteria,
MaxTimeCriteria,
StoppingCriteriaList,
validate_stopping_criteria,

)

from transformers.generation.utils import (
BeamSearchOutput,
GreedySearchOutput,

)

class T5Wrapper(T5ForConditionalGeneration, NeuronGenerationMixin):

def _prepare_encoder_decoder_kwargs_for_generation(
self,
inputs_tensor: torch.Tensor,
model_kwargs,
model_input_name: Optional[str] = None

) -> Dict[str, Any]:
encoder = self.get_encoder()
model_kwargs["encoder_outputs"]: ModelOutput = encoder(inputs_tensor, model_

→˓kwargs["attention_mask"])
return model_kwargs

# Override to cut the input_ids to just last token
def prepare_inputs_for_generation(

self,
input_ids,
past_key_values=None,
attention_mask=None,
head_mask=None,

(continues on next page)
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decoder_head_mask=None,
decoder_attention_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,

):
# cut decoder_input_ids as past is cached
input_ids = input_ids[:, -1:]

return {
"decoder_input_ids": input_ids,
"past_key_values": past_key_values,
"encoder_outputs": encoder_outputs,
"attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"decoder_attention_mask": decoder_attention_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache,

}

'''
We update the cache in the decoder trace, so lets override the _update_model_

→˓kwargs_for_xla_generation in NeuronGenerationMixin
'''
def _update_model_kwargs_for_xla_generation(

self,
model_kwargs: Dict[str, Any],
batch_size: int,
is_encoder_decoder: bool = False,
standardize_cache_format: bool = False,
max_length: Optional[int] = None,
seq_length: Optional[int] = None,
use_cache: bool = True,

) -> Dict[str, Any]:

def _update_attention(model_kwargs, is_encoder_decoder):
"""Updates the appropriate attention mask -- encoder-decoder models use␣

→˓`decoder_attention_mask`"""

attention_mask_name = "decoder_attention_mask" if is_encoder_decoder else
→˓"attention_mask"

attention_mask = model_kwargs.pop(attention_mask_name)
attention_mask_update_slice = torch.ones(

(batch_size, 1), dtype=attention_mask.dtype, device=attention_mask.device
)
attention_mask = torch.cat([attention_mask[:, 1:], attention_mask_update_

→˓slice], dim=-1)
mask = {attention_mask_name: attention_mask}
return mask

(continues on next page)
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mask = _update_attention(model_kwargs, is_encoder_decoder)
# sets the updated variables (mask and past_key_values)
model_kwargs.update(mask)

# Set a mock cache tensor
model_kwargs["past_key_values"] = torch.tensor([])

return model_kwargs

def _reorder_cache(self, past_key_values, beam_idx):
'''

This is needed for beam search and not greedy sampling
We reorder the cache within the trace so we can skip it in modelling_t5.py.␣

→˓So we override the _reorder_cache
'''
self.beam_idx = beam_idx
return past_key_values

def generate(self,
tokenizer: T5Tokenizer,
prompt: str,
max_length: int,
num_beams: int,
num_return_sequences: int,
device: str):

batch_encoding = tokenizer(prompt, max_length=max_length, truncation=True,␣
→˓padding='max_length',

return_tensors="pt")

past_key_values = self.encoder(batch_encoding['input_ids'],batch_encoding[
→˓'attention_mask'])

decoder_attention_mask = torch.cat([torch.zeros((1, max_length-1), dtype=torch.
→˓int32),

torch.ones((1, 1), dtype=torch.int32)],␣
→˓axis=1)

# copy the new cache state to the decoder
if device == "xla":

for state, tensor in zip(self.decoder.parameters(), past_key_values):
state.copy_(tensor)

else:
# First half of the cache is self attention and the rest is cross attention
self.decoder.past_key_values_sa = past_key_values[:len(past_key_values)//2]
self.decoder.past_key_values_ca = past_key_values[len(past_key_values)//2:]

output = super().generate(**batch_encoding,
max_length=max_length,
num_beams=num_beams,
num_return_sequences=num_return_sequences,
do_sample=False,

(continues on next page)
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use_cache=True,
decoder_attention_mask=decoder_attention_mask,
encoder_outputs={"last_hidden_state": torch.ones((1,128,

→˓1))}) # Pass fake encoder_outputs so the transfomers code will not invoke the encoder
return output

def forward(
self,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
beam_scores = None,
**kwargs

) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:

hidden_states = encoder_outputs["last_hidden_state"]

if not hasattr(self, 'beam_idx'):
# Infering the number of beams from the attention mask
num_beams = attention_mask.shape[0]
self.beam_idx = torch.arange(0, num_beams, dtype=torch.int64)

decoder_outputs = self.decoder(
decoder_input_ids,
decoder_attention_mask,
hidden_states,
attention_mask,
self.beam_idx,
beam_scores

)

# lm_logits = decoder_outputs[0]
next_token_scores = decoder_outputs[0]
next_tokens = decoder_outputs[1]
next_indices = decoder_outputs[2]

return next_token_scores, next_tokens, next_indices

def beam_search(
self,
input_ids: torch.LongTensor,
beam_scorer: BeamScorer,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[Union[int, List[int]]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_scores: Optional[bool] = None,
return_dict_in_generate: Optional[bool] = None,

(continues on next page)
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synced_gpus: Optional[bool] = False,
seq_length: Optional[int] = None,
**model_kwargs,

) -> Union[BeamSearchOutput, torch.LongTensor]:

logits_processor = logits_processor if logits_processor is not None else␣
→˓LogitsProcessorList()

stopping_criteria = stopping_criteria if stopping_criteria is not None else␣
→˓StoppingCriteriaList()

pad_token_id = pad_token_id if pad_token_id is not None else self.generation_
→˓config.pad_token_id

eos_token_id = eos_token_id if eos_token_id is not None else self.generation_
→˓config.eos_token_id

if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]

output_scores = output_scores if output_scores is not None else self.generation_
→˓config.output_scores

output_attentions = (
output_attentions if output_attentions is not None else self.generation_

→˓config.output_attentions
)
output_hidden_states = (

output_hidden_states if output_hidden_states is not None else self.
→˓generation_config.output_hidden_states

)

batch_size = len(beam_scorer._beam_hyps)
num_beams = beam_scorer.num_beams

batch_beam_size, cur_len = input_ids.shape

# Overwrite cur_len
cur_len = seq_length

if num_beams * batch_size != batch_beam_size:
raise ValueError(

f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but␣
→˓is {batch_beam_size}."

)

# init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and output_scores) else None
beam_indices = (

tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and␣
→˓output_scores) else None

)

# initialise score of first beam with 0 and the rest with -1e9. This makes sure␣
→˓that only tokens

# of the first beam are considered to avoid sampling the exact same tokens␣
→˓across all beams.

# beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float,␣

(continues on next page)
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→˓device=input_ids.device)
beam_scores_device = "cpu"
beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float,␣

→˓device=beam_scores_device)
beam_scores[:, 1:] = -1e9
beam_scores = beam_scores.view((batch_size * num_beams,))

while True:
# prepare model inputs
# From max_length-sized input_ids, select first
# cur_len - 1 values.
update_indices = torch.stack(

[torch.arange(input_ids.size(0)), torch.tensor(cur_len - 1).repeat(input_
→˓ids.size(0))], dim=-1

)
input_ids_ = input_ids[update_indices[:, 0], update_indices[:, 1], None]
model_inputs = self.prepare_inputs_for_generation(input_ids_, **model_kwargs)

next_token_scores, next_tokens, next_indices = self(
**model_inputs,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
beam_scores=beam_scores

)

# stateless
beam_outputs = beam_scorer.process(

input_ids.to("cpu")[:, :cur_len],
next_token_scores.to("cpu"),
next_tokens.to("cpu"),
next_indices.to("cpu"),
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
beam_indices=beam_indices,

)

beam_scores = beam_outputs["next_beam_scores"]
beam_next_tokens = beam_outputs["next_beam_tokens"]
beam_idx = beam_outputs["next_beam_indices"]

update_indices = torch.stack(
[torch.arange(batch_beam_size), torch.tensor(cur_len - 1).repeat(batch_

→˓beam_size)], dim=-1
)
update_indices_2 = torch.stack(

[torch.arange(batch_beam_size), torch.tensor(cur_len).repeat(batch_beam_
→˓size)], dim=-1

)
# First select beam_indices
device = input_ids.device
beam_idx_device = beam_idx.to(device=input_ids.device)

(continues on next page)
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input_ids[:, :] = input_ids[beam_idx_device.long(), :]

# Then append new tokens
input_ids[update_indices_2[:, 0], update_indices_2[:, 1], None] = beam_next_

→˓tokens.unsqueeze(-1).to(device).to(torch.long)
input_ids = input_ids * 1 # Hack to materialize tensor

# update generated ids, model inputs, and length for next step
model_kwargs = self._update_model_kwargs_for_xla_generation(

model_kwargs,
batch_size=batch_beam_size,
is_encoder_decoder=self.config.is_encoder_decoder,
max_length=stopping_criteria.max_length,
seq_length=cur_len,
use_cache=model_kwargs["use_cache"],

)
if model_kwargs["past_key_values"] is not None:

model_kwargs["past_key_values"] = self._reorder_cache(model_kwargs["past_
→˓key_values"], beam_idx.to(torch.int64))

if return_dict_in_generate and output_scores:
beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i␣

→˓in range(len(beam_indices))))

# increase cur_len
cur_len = cur_len + 1

# stop when each sentence is finished, or if we exceed the maximum length
stop_criterion_1 = beam_scorer.is_done
if isinstance(stopping_criteria, list):

if len(stopping_criteria) == 1:
stopping_criteria = stopping_criteria[0]

# Cases that can be handled in XLA without requiring
# non-padded input_ids
if isinstance(stopping_criteria, MaxLengthCriteria):

stop_criterion_2 = cur_len >= stopping_criteria.max_length
elif isinstance(stopping_criteria, MaxTimeCriteria):

stop_criterion_2 = stopping_criteria(input_ids, scores)
else:

# Other cases will be handled on CPU
batch_size, _ = input_ids.shape
input_ids_cpu = input_ids.to("cpu")
mask = torch.cat(

[torch.ones(batch_size, cur_len), torch.zeros(batch_size, input_ids.
→˓shape[1] - cur_len)], dim=1

).bool()
input_ids_cpu = torch.masked_select(input_ids_cpu, mask).reshape((batch_

→˓size, cur_len))
scores_cpu = scores.to("cpu") if torch.is_tensor(scores) else scores
stop_criterion_2 = stopping_criteria(input_ids_cpu, scores_cpu)

(continues on next page)
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if stop_criterion_1 or stop_criterion_2:
if not synced_gpus:

break
else:

this_peer_finished = True

sequence_outputs = beam_scorer.finalize(
input_ids.to("cpu"),
beam_scores.to("cpu"),
next_tokens.to("cpu"),
next_indices.to("cpu"),
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
max_length=stopping_criteria.max_length,
beam_indices=beam_indices,

)

for k, v in sequence_outputs.items():
if type(v) == torch.Tensor:

sequence_outputs[k] = sequence_outputs[k].to(input_ids.device)

return sequence_outputs["sequences"]

def greedy_search(
self,
input_ids: torch.LongTensor,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[Union[int, List[int]]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_scores: Optional[bool] = None,
return_dict_in_generate: Optional[bool] = None,
seq_length: Optional[int] = int,
streamer: Optional["BaseStreamer"] = None,
**model_kwargs,

) -> Union[GreedySearchOutput, torch.LongTensor]:
"""

Overriding greedy sampling to use next tokens returned from neuron device␣
→˓instead of logits.

"""
# init values
logits_processor = logits_processor if logits_processor is not None else␣

→˓LogitsProcessorList()
use_cache = model_kwargs["use_cache"] if "use_cache" in model_kwargs else False
stopping_criteria = stopping_criteria if stopping_criteria is not None else␣

→˓StoppingCriteriaList()
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_

→˓config.pad_token_id

(continues on next page)
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eos_token_id = eos_token_id if eos_token_id is not None else self.generation_
→˓config.eos_token_id

if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]

eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_
→˓token_id is not None else None

output_scores = output_scores if output_scores is not None else self.generation_
→˓config.output_scores

output_attentions = (
output_attentions if output_attentions is not None else self.generation_

→˓config.output_attentions
)
output_hidden_states = (

output_hidden_states if output_hidden_states is not None else self.
→˓generation_config.output_hidden_states

)

# init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and output_scores) else None
decoder_attentions = () if (return_dict_in_generate and output_attentions) else␣

→˓None
cross_attentions = () if (return_dict_in_generate and output_attentions) else␣

→˓None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states)␣

→˓else None

# keep track of which sequences are already finished
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long,␣

→˓device=input_ids.device)

this_peer_finished = False # used by synced_gpus only
while True:

# prepare model inputs
# From max_length-sized input_ids, select first
# seq_length - 1 values.

if model_kwargs.get("past_key_values") is None:
input_ids_ = input_ids[:, :seq_length]

else:
update_indices = torch.stack(

[torch.arange(input_ids.size(0)), torch.tensor(seq_length - 1).
→˓repeat(input_ids.size(0))],

dim=-1,
)
input_ids_ = input_ids[update_indices[:, 0], update_indices[:, 1], None]

model_inputs = self.prepare_inputs_for_generation(input_ids_, **model_kwargs)

# forward pass to get next token
output = self(

(continues on next page)

64 Chapter 2. ML Frameworks



AWS Neuron

(continued from previous page)

**model_inputs,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,

)
next_tokens = output[0]

# finished sentences should have their next token be a padding token
if eos_token_id is not None:

if pad_token_id is None:
raise ValueError("If `eos_token_id` is defined, make sure that `pad_

→˓token_id` is defined.")
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 -␣

→˓unfinished_sequences)

# update generated ids, model inputs, and length for next step

batch_size, _ = input_ids.shape
update_indices = torch.stack(

[torch.arange(batch_size), torch.tensor(seq_length).repeat(batch_size)],␣
→˓dim=-1

)
input_ids[update_indices[:, 0], update_indices[:, 1]] = next_tokens[:]
model_kwargs = self._update_model_kwargs_for_xla_generation(

model_kwargs,
batch_size=batch_size,
is_encoder_decoder=self.config.is_encoder_decoder,
max_length=stopping_criteria.max_length,
seq_length=seq_length,
use_cache=use_cache,

)

seq_length += 1

# if eos_token was found in one sentence, set sentence to finished
if eos_token_id_tensor is not None:

unfinished_sequences = unfinished_sequences.mul(
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_

→˓tensor.unsqueeze(1)).prod(dim=0)
)

# stop when each sentence is finished, or if we exceed the maximum length
stop_criterion_1 = unfinished_sequences.max() == 0

if isinstance(stopping_criteria, list):
if len(stopping_criteria) == 1:

stopping_criteria = stopping_criteria[0]

# Cases that can be handled in XLA without requiring
# non-padded input_ids
if isinstance(stopping_criteria, MaxLengthCriteria):

stop_criterion_2 = seq_length >= stopping_criteria.max_length

(continues on next page)
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elif isinstance(stopping_criteria, MaxTimeCriteria):
stop_criterion_2 = stopping_criteria(input_ids, scores)

else:
# Other cases will be handled on CPU
batch_size, _ = input_ids.shape
mask = torch.cat(

[torch.ones(batch_size, seq_length), torch.zeros(batch_size, input_
→˓ids.shape[1] - seq_length)],

dim=1,
).bool()
input_ids_cpu = torch.masked_select(input_ids, mask).reshape((batch_size,

→˓ seq_length)).to("cpu")
scores_cpu = scores.to("cpu") if torch.is_tensor(scores) else scores
stop_criterion_2 = stopping_criteria(input_ids_cpu, scores_cpu)

if stop_criterion_1 or stop_criterion_2:
this_peer_finished = True

if this_peer_finished:
break

if streamer is not None:
streamer.end()

return input_ids

Now let’s test inference on CPU with all the wrappers before tracing.

[5]: # Let's set some run parameters

model_name = "t5-large"
num_beams = 1
num_return_sequences = 1
max_length = 128

[6]: from transformers import T5Tokenizer

prompt="translate English to German: Lets eat good food."

tokenizer = T5Tokenizer.from_pretrained(model_name, model_max_length=max_length)
model = T5Wrapper.from_pretrained(model_name)

model.encoder = EncoderWrapper(model.encoder, model.decoder, model.config, num_beams,␣
→˓max_length, "cpu", num_beams)
setattr(model.encoder, 'main_input_name', 'input_ids') # Attribute required by beam␣
→˓search

model.decoder = DecoderWrapper(decoder=model.decoder,
lm_head=model.lm_head,
model_config=model.config,

(continues on next page)
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num_beams=num_beams,
max_length=max_length,
device="cpu")

output = model.generate(tokenizer=tokenizer,
prompt=prompt,
max_length=max_length,
num_beams=num_beams,
num_return_sequences=num_return_sequences,
device="cpu")

results = [tokenizer.decode(t, skip_special_tokens=True) for t in output]

print('Results:')
for i, summary in enumerate(results):

print(i + 1, summary)

Results:
1 Lassen Sie uns gutes Essen essen.

Now that the wrappers are running as expected, let’s trace the encoder, and decoder. To trace these functions, we pass
the function and a sample input to the trace function. The result of the trace stage will be a static executable where the
operations to be run upon inference are determined during compilation. This means that when inferring, the resulting
Neuron model must be executed with tensors that are the exact same shape as those provided at compilation time. If
a model is given a tensor at inference time whose shape does not match the tensor given at compilation time, an error
will occur.

The decoder wrapper returns the new state of the cache as an output which is copied back to the CPU. As the cache
is a large tensor, copying it to and from the XLA device for each decoder invocation will significantly slow down the
inference. Instead, we can use input output aliasing, a feature of torch_neuronx to keep these tensors on device
rather than copying back to the CPU. To use input output aliasing, we need to map the outputs to input parameters
while tracing.

[ ]: import torch
import torch_neuronx

from transformers import T5Tokenizer, T5ForConditionalGeneration

def trace_encoder(model: T5ForConditionalGeneration,
tokenizer: T5Tokenizer,
max_length: int,
num_beams: int):

# Trace encoder
batch_encoding = tokenizer("translate English to German: Lets go home now",

max_length=max_length, truncation=True, padding='max_
→˓length', return_tensors="pt")

input_ids = batch_encoding['input_ids']
attention_mask = batch_encoding['attention_mask']

encoder = EncoderWrapper(model.encoder, model.decoder, model.config, num_beams, max_
→˓length, "xla", num_beams)

(continues on next page)
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traced_encoder = torch_neuronx.trace(encoder, (input_ids, attention_mask), compiler_
→˓workdir="/tmp/encoder/")

setattr(traced_encoder, 'main_input_name', 'input_ids') # Attribute required by␣
→˓beam search

return traced_encoder

def trace_decoder(model: T5ForConditionalGeneration,
num_beams: int,
max_length: int):

decoder = DecoderWrapper(decoder=model.decoder,
lm_head=model.lm_head,
model_config=model.config,
num_beams=num_beams,
max_length=max_length,
device="xla")

# We create mock inputs so we can trace the decoder
decoder_input_ids = torch.ones((num_beams, 1), dtype=torch.int64)
decoder_attention_mask = torch.ones((num_beams, max_length), dtype=torch.int32)
encoder_attention_mask = torch.ones((num_beams, max_length), dtype=torch.int64)
encoder_hidden_states = torch.ones((num_beams, max_length, model.config.d_model),␣

→˓dtype=torch.float32)

beam_idx = torch.arange(0, num_beams, dtype=torch.int64)
beam_scores = torch.zeros((num_beams,), dtype=torch.float)

num_outputs_from_trace = 3 if num_beams > 1 else 1

aliases = {}
for i in range(len(decoder.past_key_values_sa)):

aliases[decoder.past_key_values_sa[i]] = i + num_outputs_from_trace
for i in range(len(decoder.past_key_values_ca)):

aliases[decoder.past_key_values_ca[i]] = len(decoder.past_key_values_sa) + i +␣
→˓num_outputs_from_trace

traced_decoder = torch_neuronx.trace(decoder, (
decoder_input_ids,
decoder_attention_mask,
encoder_hidden_states,
encoder_attention_mask,
beam_idx,
beam_scores,

), input_output_aliases=aliases, compiler_workdir="/tmp/decoder/")

return traced_decoder

tokenizer = T5Tokenizer.from_pretrained(model_name, model_max_length=max_length)
model = T5ForConditionalGeneration.from_pretrained(model_name)

(continues on next page)
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# We enable this flag to ensure model uses attention key value caching
model.config.use_cache = True

traced_encoder = trace_encoder(model, tokenizer, max_length, num_beams)
traced_decoder = trace_decoder(model, num_beams, max_length)

torch.jit.save(traced_encoder, "TracedEncoder.pt")
torch.jit.save(traced_decoder, "TracedDecoder.pt")

Run inference with greedy decoding

Now that we have the traced model, let’s use it for inference.

[8]: runtime = torch.classes.neuron.Runtime()
runtime.initialize()
runtime.set_default_neuron_cores(0, 1)

tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5Wrapper.from_pretrained(model_name)

model.encoder = torch.jit.load("TracedEncoder.pt")
# Attribute required by beam search
setattr(model.encoder, 'main_input_name', 'input_ids')

model.decoder = torch.jit.load("TracedDecoder.pt")
torch_neuronx.move_trace_to_device(model.decoder, 0)

output = model.generate(tokenizer=tokenizer,
prompt="translate English to German: Lets eat good food.",
max_length=max_length,
num_beams=num_beams,
num_return_sequences=num_return_sequences,
device="xla")

results = [tokenizer.decode(t, skip_special_tokens=True) for t in output]

print('Results:')
for i, summary in enumerate(results):

print(i + 1, summary)

Results:
1 Lassen Sie uns gutes Essen essen.
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Run inference with beam search

[ ]: # Let's set some run parameters for beam search

model_name = "t5-large"
num_beams = 4
num_return_sequences = 4
max_length = 128

tokenizer = T5Tokenizer.from_pretrained(model_name, model_max_length=max_length)
model = T5ForConditionalGeneration.from_pretrained(model_name)
model.config.use_cache = True

traced_encoder = trace_encoder(model, tokenizer, max_length, num_beams)
traced_decoder = trace_decoder(model, num_beams, max_length)

torch.jit.save(traced_encoder, "TracedEncoder.pt")
torch.jit.save(traced_decoder, "TracedDecoder.pt")

[10]: tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5Wrapper.from_pretrained(model_name)

model.encoder = torch.jit.load("TracedEncoder.pt")
# Attribute required by beam search
setattr(model.encoder, 'main_input_name', 'input_ids')

model.decoder = torch.jit.load("TracedDecoder.pt")
torch_neuronx.move_trace_to_device(model.decoder, 0)

output = model.generate(tokenizer=tokenizer,
prompt="translate English to German: Lets eat good food.",
max_length=max_length,
num_beams=num_beams,
num_return_sequences=num_return_sequences,
device="xla")

results = [tokenizer.decode(t, skip_special_tokens=True) for t in output]

print('Results:')
for i, summary in enumerate(results):

print(i + 1, summary)

Results:
1 Lassen Sie uns gutes Essen essen.
2 Lassen Sie uns gutes Essen zu essen.
3 Lassen Sie uns essen gutes Essen.
4 Lassen Sie uns gutes Essen.

• HuggingFace pretrained BERT tutorial [html] [notebook]

• TorchServe tutorial [html]

• LibTorch C++ tutorial (for torch-neuron and torch-neuronx) [html]
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• Torchvision ResNet50 tutorial [html] [notebook]

• T5 inference tutorial [html] [notebook]

Note: To use Jupyter Notebook see:

• setup-jupyter-notebook-steps-troubleshooting

• running-jupyter-notebook-as-script

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

Additional Examples (torch-neuronx)

• AWS Neuron Samples GitHub Repository

• Transformers Neuron GitHub samples

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

API Reference Guide (torch-neuronx)

This document is relevant for: Inf2, Trn1, Trn2

PyTorch NeuronX Tracing API for Inference

torch_neuronx.trace(func, example_inputs, *_, input_output_aliases={}, compiler_workdir=None,
compiler_args=None, partitioner_config=None, inline_weights_to_neff=True,
cpu_backend=False)

Trace and compile operations in the func by executing it using example_inputs.

This function is similar to a torch.jit.trace() since it produces a ScriptModule that can be saved with
torch.jit.save() and reloaded with torch.jit.load(). The resulting module is an optimized fused graph
representation of the func that is only compatible with Neuron.

Tracing a module produces a more efficient inference-only version of the model. XLA Lazy Tensor execution
should be used during training. See: Comparison of Traced Inference versus XLA Lazy Tensor Inference (torch-
neuronx)

Warning: Currently this only supports NeuronCore-v2 type instances (e.g. trn1, inf2). To compile models
compatible with NeuronCore-v1 (e.g. inf1), please see torch_neuron.trace()

Parameters
• func (Module,callable) – The function/module that that will be run using the
example_inputs arguments in order to record the computation graph.

• example_inputs (Tensor,tuple[Tensor]) – A tuple of example inputs that will be
passed to the func while tracing.

Keyword Arguments
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• input_output_aliases (dict) – Marks input tensors as state tensors which are device
tensors.

• compiler_workdir (str) – Work directory used by neuronx-cc. This can be useful for
debugging and/or inspecting intermediary neuronx-cc outputs

• compiler_args (str,list[str]) – List of strings representing neuronx-cc compiler ar-
guments. See Neuron Compiler CLI Reference Guide (neuronx-cc) for more information
about compiler options.

• partitioner_config (PartitionerConfig) – A PartitionerConfig object, which can be
optionally supplied if there are unsupported ops in the model that need to be partitioned out
to CPU.

• inline_weights_to_neff (bool) – A boolean indicating whether the weights should be
inlined to the NEFF. If set to False, weights will be separated from the NEFF. The default is
True.

• cpu_backend (bool) – A boolean indicating whether CPU should be used for tracing. If
set to True, tracing can be done completely on CPU. This keyword needs to be used with the
compiler_args option to set the --target flag. The default is False.

Returns
The traced ScriptModule with the embedded compiled Neuron graph. Operations in this mod-
ule will execute on Neuron.

Return type
ScriptModule

Warning: Behavior Change! The use of using args for kwargs is deprecated starting from release
2.15.0 (torch-neuronx==1.13.1.1.12.0). The current behavior is that a warning will be raised, but
torch_neuronx.trace() will attempt to infer the keyword arguments. This is likely to become an error in
future releases, so to avoid the warning/error, assign kwargs as kwargs and not args.

Notes

This function records operations using torch-xla to create a HloModule representation of the func. This fixed
graph representation is compiled to the Neuron Executable File Format (NEFF) using the neuronx-cc compiler.
The NEFF binary executable is embedded into an optimized ScriptModule for torchscript execution.

In contrast to a regular torch.jit.trace() that produces a graph of many separate operations, tracing with
Neuron produces a graph with a single fused operator that is executed entirely on device. In torchscript this
appears as a stateful neuron::Model component with an associated neuron::forward* operation.

Tracing can be performed on any EC2 machine with sufficient memory and compute resources, but inference
can only be executed on a Neuron instance.

Unlike some devices (such as torch-xla) that use to() to move Parameter and Tensor data between CPU and
device, upon loading a Neuron traced ScriptModule, the model binary executable is automatically moved to a
NeuronCore. When the underlying neuron::Model is initialized after tracing or upon torch.jit.load(), it
is loaded to a Neuron device without specifying a device or map_location argument.

Warning: One small exception is models traced with inline_weights_to_neff=False. For these mod-
els, the NEFF is loaded onto the NeuronCore automatically, but the weights are not moved automatically. To
move the weights to the NeuronCore, call torch_neuronx.move_trace_to_device(). If this is not done,
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a perfomance penalty is incurred per inference, because on every inference call, the weights move from CPU
to Neuron.

Furthermore, the Neuron traced ScriptModule expects to consume CPU tensors and produces CPU tensors. The
underlying operation performs all data transfers to and from the Neuron device without explicit data movement.
This is a significant difference from the training XLA device mechanics since XLA operations are no longer
required to be recorded after a trace. See: Developer Guide for Training with PyTorch NeuronX

By default, when multiple NeuronCores are available, every Neuron traced model ScriptModule within in
a process is loaded to each available NeuronCore in round-robin order. This is useful at deployment to fully
utilize the Neuron hardware since it means that multiple calls to torch.jit.load() will attempt to load to
each available NeuronCore in linear order. The default start device is chosen according to the NeuronX Runtime
Configuration.

A traced Neuron module has limitations that are not present in regular torch modules:

• Fixed Control Flow: Similar to torch.jit.trace(), tracing a model with Neuron statically preserves
control flow (i.e. if/for/while statements) and will not re-evaluate the branch conditions upon inference.
If a model result is based on data-dependent control flow, the traced function may produce inaccurate results.

• Fixed Input Shapes: After a function has been traced, the resulting ScriptModule will always expect to
consume tensors of the same shape. If the tensor shapes used at inference differs from the tensor shapes
used in the example_inputs, this will result in an error. See: Running inference on variable input shapes
with bucketing.

• Fixed Tensor Shapes: The intermediate tensors within the func must always stay the same shape for the
same shaped inputs. This means that certain operations which produce data-dependent sized tensors are
not supported. For example, nonzero() produces a different tensor shape depending on the input data.

• Fixed Data Types: After a model has been traced, the input, output, and intermediate data types cannot be
changed without recompiling.

• Device Compatibility: Due to Neuron using a specialized compiled format (NEFF), a model traced with
Neuron can no longer be executed in any non-Neuron environment.

• Operator Support: If an operator is unsupported by torch-xla, then this will throw an exception.

Examples

Function Compilation

import torch
import torch_neuronx
def func(x, y):

return 2 * x + y
example_inputs = torch.rand(3), torch.rand(3)
# Runs `func` with the provided inputs and records the tensor operations
trace = torch_neuronx.trace(func, example_inputs)
# `trace` can now be run with the TorchScript interpreter or saved
# and loaded in a Python-free environment
torch.jit.save(trace, 'func.pt')
# Executes on a NeuronCore
loaded = torch.jit.load('func.pt')
loaded(torch.rand(3), torch.rand(3))

Module Compilation
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import torch
import torch_neuronx
import torch.nn as nn
class Model(nn.Module):

def __init__(self):
super().__init__()
self.conv = nn.Conv2d(1, 1, 3)

def forward(self, x):
return self.conv(x) + 1

model = Model()
model.eval()
example_inputs = torch.rand(1, 1, 3, 3)
# Traces the forward method and constructs a `ScriptModule`
trace = torch_neuronx.trace(model, example_inputs)
torch.jit.save(trace, 'model.pt')
# Executes on a NeuronCore
loaded = torch.jit.load('model.pt')
loaded(torch.rand(1, 1, 3, 3))

Weight Separated Module

import torch
import torch_neuronx
import torch.nn as nn

class Model(nn.Module):

def __init__(self):
super().__init__()
self.conv = nn.Conv2d(1, 1, 3)

def forward(self, x):
return self.conv(x) + 1

model = Model()
model.eval()

example_inputs = torch.rand(1, 1, 3, 3)

# Traces the forward method and constructs a `ScriptModule`
trace = torch_neuronx.trace(model, example_inputs,inline_weights_to_neff=False)

# Model can be saved like a normally traced model
torch.jit.save(trace, 'model.pt')

# Executes on a NeuronCore like a normally traced model
loaded = torch.jit.load('model.pt')
torch_neuronx.move_trace_to_device(loaded,0) # necessary for performance
loaded(torch.rand(1, 1, 3, 3))

CPU Compilation

On CPU:
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import torch
import torch_neuronx
import torch.nn as nn
class Model(nn.Module):

def __init__(self):
super().__init__()
self.conv = nn.Conv2d(1, 1, 3)

def forward(self, x):
return self.conv(x) + 1

model = Model()
model.eval()
example_inputs = torch.rand(1, 1, 3, 3)
# Traces the forward method on CPU, compiling for Trn1
trace = torch_neuronx.trace(model, example_inputs, compiler_args="--target trn1",␣
→˓cpu_backend=True)
torch.jit.save(trace, 'model.pt')
# Move model.pt to a Neuron instance

On Neuron:

import torch
import torch_neuronx
import torch.nn as nn

loaded = torch.jit.load('model.pt')
loaded(torch.rand(1, 1, 3, 3))

Note: Weight Separated models can have its weights replaced via the torch_neuronx.replace_weights API.

Moving a Traced Module to a Neuron Core

Warning: This function will be deprecated in a future release, and instead, torch_neuronx.experimental.
set_neuron_cores() will move out of experimental, and become a stable API.

torch_neuronx.move_trace_to_device(trace, device_id)
This function moves a model traced with torch_neuronx.trace(), to a Neuron Core. Here are some reasons
to use this function|colon|

1. Explicit control of device placement for models

By default, the Neuron Runtime assigns neffs to devices in a Round Robin manner, meaning it will
allocate a neff onto Neuron Core 0, then 1, 2, and then loop around.

2. Allocating Weights onto the Neuron Core for Weight Separated models.

This is necessary for performance reasons. If this is not done, the weights would remain on CPU and
would need to move to device on every inference call, which is an expensive operation.

Parameters
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• trace (ScriptModule) – This is the torchscript model returned from torch_neuronx.
trace()

• device_id (int) – The Neuron Core to move the traced model to. This number will need
to be between 0 to the max number of NCs on the instance - 1. For example, a trn1.32xlarge
has 32 Neuron Cores, so the acceptable values are from 0-31.

Returns
Nothing, the movement of the model happens in-place.

Return type
None

Autobucketing

Note: See neuronx_distributed.parallel_model_trace() for the API to use the autobucketing feature along
with tensor parallelism.

class torch_neuronx.BucketModelConfig(bucket_kernel, *_, shared_state_buffer=None,
shared_state_buffer_preprocessor=None, func_kwargs=None)

This object contains configuration data for how buckets are selected based on input via the bucket_kernel.

This also supports the concept of a shared buffer between bucket models. You can use this to define how the shared
buffer can be manipulated to be fed as input to a bucket model via the shared_state_buffer_preprocessor.
Details on how these are defined are found below.

Parameters
bucket_kernel (callable) – A function that returns a new TorchScript function. The Torch-
Script function has been adapted to the TorchScript representation using torch.jit.script().
This new function takes in a list of input tensors and outputs a list of tensors and an index tensor.

Keyword Arguments
• shared_state_buffer (Optional[List[torch.Tensor]]) – A list of tensors that is

used as the initial values for a shared state for bucket models via aliasing.

• shared_state_buffer_preprocessor (Optional[Callable]) – Similar to
bucket_kernel, this is a function that returns a new TorchScript function that has been
adapted to the TorchScript representation using torch.jit.script(). This new Torch-
Script function takes in 3 arguments: an n-dimensional integer list representing a list of
tensor shapes, the state_buffer list of tensors, and a tensor representing the bucket index.
This function outputs a reshaped state_buffer to be supplied to the bucket model. If
shared_state_buffer_preprocessor is not supplied when shared_state_buffer is
supplied, the preprocessor returns the full shared_state_buffer.

• func_kwargs (Optional[Union[Dict[str, Any], List[Any]]]) – A single dictio-
nary or a list of dictionaries that can be used to supply custom arguments to the function
supplied to the func argument in torch_neuronx.bucket_model_trace(). If you are
using a list of dictionaries, verify that func_kwargs equals the bucket degree, or number of
buckets. By default func_kwargs is None, which means no arguments.

Returns
The torch_neuronx.BucketModelConfigwith the configuration defining bucket selection for
inputs and shared buffers.

Return type
BucketModelConfig
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torch_neuronx.bucket_model_trace(func, example_inputs, bucket_config, compiler_workdir=None,
compiler_args=None)

This function traces a single model with multiple example_inputs and a bucket_config object to pro-
duce a single compiled model that can take in multiple input shapes. This trace function is very similar to
torch_neuronx.trace(), but it has a few key differences:

1. In this case, func does not take in a Model. Instead, it takes in a function that returns a tuple containing a
Model and input_output_aliases. This is like neuronx_distributed.parallel_model_trace(),
and is done for the same reason, which is that bucket models are traced in parallel.

2. Instead of taking in one input, the function takes in multiple inputs in the form of a list. For example,
[torch.rand(128,128),torch.rand(256,256)].

3. The bucket_config argument is of type torch_neuronx.BucketModelConfig(), which defines how
an input is mapped to a bucket. For more details, see the torch_neuronx.BucketModelConfig() API
Reference. You can use this for a variety of bucketing applications, such as sequence length bucketing for
language models or image resolution bucketing for computer vision models.

Apart from the aforementioned differences, the rest of the function behaves similarly to torch_neuronx.
trace(). You can save the model with torch.jit.save() and load it with torch.jit.load().

Parameters
• func (Module,callable) – This is a function that returns a Model object and

a dictionary of states, or input_output_aliases. Similar to neuronx_distributed.
parallel_model_trace(), this API calls this function inside each worker and runs
trace against them. Note: This differs from the torch_neuronx.trace where the
torch_neuronx.trace requires a model object to be passed.

• example_inputs (List[Union[Tensor,tuple[Tensor]]]) – A list of possible inputs
to the bucket model.

• bucket_config (BucketModelConfig) – The config object that defines bucket selection
behavior.

Keyword Arguments
• compiler_workdir (str) – Work directory used by neuronx-cc. This can be useful for

debugging and inspecting intermediary neuronx-cc outputs.

• compiler_args (str,list[str]) – List of strings representing neuronx-cc compiler ar-
guments. See Neuron Compiler CLI Reference Guide (neuronx-cc) for more information
about compiler options.

Returns
The traced ScriptModule with the embedded compiled Neuron graphs for each bucket model.
Operations in this module will execute on Neuron.

Return type
ScriptModule

Warning: If you receive the Too Many Open Files error message, increase the ulimit via ulimit -n 65535.
There is a limitation in torch_xla’s xmp.spawn function when dealing with large amounts of data.

The developer guide for Autobucketing is located here, which contains an example usage of autobucketing with BERT.
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Dynamic Batching

torch_neuronx.dynamic_batch(neuron_script)
Enables a compiled Neuron model to be called with variable sized batches.

When tracing with Neuron, usually a model can only consume tensors that are the same size as the exam-
ple tensor used in the torch_neuronx.trace() call. Enabling dynamic batching allows a model to con-
sume inputs that may be either smaller or larger than the original trace-time tensor size. Internally, dynamic
batching splits & pads an input batch into chunks of size equal to the original trace-time tensor size. These
chunks are passed to the underlying model(s). Compared to serial inference, the expected runtime scales by
ceil(inference_batch_size / trace_batch_size) / neuron_cores.

This function modifies the neuron_script network in-place. The returned result is a reference to the modified
input.

Dynamic batching is only supported by chunking inputs along the 0th dimension. A network that uses a non-0
batch dimension is incompatible with dynamic batching. Upon inference, inputs whose shapes differ from the
compile-time shape in a non-0 dimension will raise a ValueError. For example, take a model was traced with a
single example input of size [2, 3, 5]. At inference time, when dynamic batching is enabled, a batch of size
[3, 3, 5] is valid while a batch of size [2, 7, 5] is invalid due to changing a non-0 dimension.

Dynamic batching is only supported when the 0th dimension is the same size for all inputs. For example, this
means that dynamic batching would not be applicable to a network which consumed two inputs with shapes [1,
2] and [3, 2] since the 0th dimension is different. Similarly, at inference time, the 0th dimension batch size
for all inputs must be identical otherwise a ValueError will be raised.

Required Arguments

Parameters
neuron_script (ScriptModule) – The neuron traced ScriptModule with the embedded
compiled neuron graph. This is the output of torch_neuronx.trace().

Returns
The traced ScriptModule with the embedded compiled neuron graph. The same type as the
input, but with dynamic_batch enabled in the neuron graph.

Return type
ScriptModule

import torch
import torch_neuronx
import torch.nn as nn

class Net(nn.Module):
def __init__(self):

super(Net, self).__init__()
self.conv = nn.Conv2d(1, 1, 3)

def forward(self, x):
return self.conv(x) + 1

n = Net()
n.eval()

inputs = torch.rand(1, 1, 3, 3)
inputs_batch_8 = torch.rand(8, 1, 3, 3)

(continues on next page)
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(continued from previous page)

# Trace a neural network with input batch size of 1
neuron_net = torch_neuronx.trace(n, inputs)

# Enable the dynamic batch size feature so the traced network
# can consume variable sized batch inputs
neuron_net_dynamic_batch = torch_neuronx.dynamic_batch(neuron_net)

# Run inference on inputs with batch size of 8
# different than the batch size used in compilation (tracing)
ouput_batch_8 = neuron_net_dynamic_batch(inputs_batch_8)

Graph Partitioner

torch_neuronx.PartitionerConfig(*, trace_kwargs=None, model_support_percentage_threshold=0.5,
min_subgraph_size=-1, max_subgraph_count=-1, ops_to_partition=None,
analyze_parameters=None)

Allows for Neuron to trace a model with unsupported operators and partition these operators to CPU.

This model will contain subgraphs of Neuron and CPU submodules, but it is executed like one model, and can
be saved and loaded like one model as well.

The graph partitioner is customized using this class, and is only enabled (disabled by default) from the
torch_neuronx.trace API by setting partitioner_config keyword argument to this class. Below are the
various configuration options.

Parameters
• trace_kwargs (Dict) – Used if you need to pass trace kwargs to the Neuron subgraphs,

such as the compiler_workdir and/or compiler_args. The default is None correspond-
ing to the default trace args.

• model_support_percentage_threshold (float) – A number between 0 to 1 represent-
ing the maximum allowed percentage of operators that must be supported. If the max is
breached, the function will throw a ValueError. Default is 0.5 (i.e 50% of operators must be
supported by Neuron)

• min_subgraph_size (int) – The minimum number of operators in a subgraph. Can be >=
1 or == -1. If -1, minimum subgraph size is not checked (i.e no minimum). If >= 1, each
subgraph must contain at least that many operators. If not, the graph partitioner will throw a
ValueError.

• max_subgraph_count (int) – The maximum number of subgraphs in the partitioned
model. Can be >= 1 or == -1. If -1, max subgraph count is not checked (i.e no maxi-
mum). If >= 1, the partitioned model must contain at most that many subgraphs. If not, the
graph partitioner will throw a ValueError.

• ops_to_partition (Set[str]) – This is a set of strings of this structure
“aten::<operator>”. These are operators that will be partitioned to CPU regardless of
Neuron support. The default is None (i.e no additional operators will be partitioned).

• analyze_parameters (Dict) – This is a dictionary of kwargs used in torch_neuronx.
analyze(). NOTE: Not all kwargs in torch_neuronx.analyze() are supported in the
graph partitioner. The following kwargs in analyze are supported for use in the graph parti-
tioenr.

a) compiler_workdir
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b) additional_ignored_ops

c) max_workers

The default is None, corresponding to the default analyze arguments.

Returns
The PartitionerConfig with the configuration for the graph partitioner.

Return type
PartitionerConfig

Examples

This example demonstrates using the graph partitioner.

The below model is a simple MLP model with sorted log softmax output. The sort operator, torch.sort() or aten:
:sort, is not supported by neuronx-cc at this time, so the graph partitioner will partition out the sort operator to
CPU.

import torch
import torch_neuronx
import torch.nn as nn

import logging

# adjust logger level to see what the partitioner is doing
logger = logging.getLogger("Neuron")

class MLP(nn.Module):
def __init__(

self, input_size=28 * 28, output_size=10, layers=[4096, 2048]
):

super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, layers[0])
self.fc2 = nn.Linear(layers[0], layers[1])
self.fc3 = nn.Linear(layers[1], output_size)
self.relu = nn.ReLU()

def forward(self, x):
f1 = self.fc1(x)
r1 = self.relu(f1)
f2 = self.fc2(r1)
r2 = self.relu(f2)
f3 = self.fc3(r2)
out = torch.log_softmax(f3, dim=1)
sort_out,_ = torch.sort(out)
return sort_out

n = MLP()
n.eval()

inputs = torch.rand(32,784)

# Configure the graph partitioner with the default values
(continues on next page)
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partitioner_config = torch_neuronx.PartitionerConfig()

# Trace a neural network with graph partitioner enabled
neuron_net = torch_neuronx.trace(n, inputs, partitioner_config=partitioner_config)

# Run inference on the partitioned model
output = neuron_net(inputs)

Note: Dynamic batching has a case-by-case support with partitioned models, because it is highly dependent on how
the final partition scheme looks like.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

PyTorch Neuron (torch-neuronx) Weight Replacement API for Inference

torch_neuronx.replace_weights(neuron_model, weights)
Replaces the weights in a Neuron Model with split weights. This function will emit a warning of the supplied
Neuron model does not contain any separated weights.

Warning: The below API is only applicable for models traced with the parameter
inline_weights_to_neff=False, which is True by default. See torch_neuronx.trace() for
details.

Parameters
• neuron_model (RecursiveScriptModule) – A Neuron model compiled with split

weights

• weights (Module,Dict[str, Tensor]) – Either the original model with the new
weights, or the state_dict of a model.

Returns
None, this function performs the weight replacement inline.

Return type
None

Examples

Using a model

import torch
import torch_neuronx

class Network(torch.nn.Module):
def __init__(self, hidden_size=4, layers=3) -> None:

super().__init__()
(continues on next page)
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self.layers = torch.nn.Sequential(
*(torch.nn.Linear(hidden_size, hidden_size) for _ in range(layers)))

def forward(self, tensor):
return self.layers(tensor)

# initialize two networks
network = Network()
network2 = Network()
network.eval()
network2.eval()

inp = torch.rand(2,4)

# trace weight separated model with first network
weight_separated_trace = torch_neuronx.trace(network,inp,inline_weights_to_
→˓neff=False)

# replace with weights from second network
torch_neuronx.replace_weights(weight_separated_trace,network2.state_dict())

# get outputs from neuron and cpu networks
out_network2 = network2(inp)
out_neuron = weight_separated_trace(inp)

# check that they are equal
print(out_network2,out_neuron)

Using safetensors

The safetensors library is useful for storing/loading model tensors safely and quickly.

import torch
import torch_neuronx

from safetensors import safe_open
from safetensors.torch import save_model

class Network(torch.nn.Module):
def __init__(self, hidden_size=4, layers=3) -> None:

super().__init__()
self.layers = torch.nn.Sequential(

*(torch.nn.Linear(hidden_size, hidden_size) for _ in range(layers)))

def forward(self, tensor):
return self.layers(tensor)

# initialize two networks
network = Network()
network2 = Network()

(continues on next page)
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(continued from previous page)

network.eval()
network2.eval()

inp = torch.rand(2,4)

# trace weight separated model with first network
weight_separated_trace = torch_neuronx.trace(network,inp,inline_weights_to_
→˓neff=False)

# save network2 weights to safetensors
safetensor_path = f"{directory}/network2.safetensors"
save_model(network2,safetensor_path)

#load safetensors from network2 into traced_weight separated model
tensors = {}
with safe_open(safetensor_path,framework="pt") as f:

for k in f.keys():
tensors[k] = f.get_tensor(k)

# replace with weights from second network
torch_neuronx.replace_weights(weight_separated_trace,tensors)

# get outputs from neuron and cpu networks
out_network2 = network2(inp)
out_neuron = weight_separated_trace(inp)

# check that they are equal
print(out_network2,out_neuron)

Note: For non-safetensors models, use torch.load to load the model, and pass the model’s state_dict
inside like the first example.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

PyTorch NeuronX NeuronCore Placement APIs [Beta]

Warning: The following functionality is beta and will not be supported in future releases of the NeuronSDK. This
module serves only as a preview for future functionality. In future releases, equivalent functionality may be moved
directly to the torch_neuronx module and will no longer be available in the torch_neuronx.experimental
module.

Functions which enable placement of torch.jit.ScriptModule to specific NeuronCores. Two sets of functions are
provided which can be used interchangeably but have different performance characteristics and advantages:

• The multicore_context()& neuron_cores_context() functions are context managers that allow a model
to be placed on a given NeuronCore only at torch.jit.load() time. These functions are the most efficient
way of loading a model since the model is loaded directly to a NeuronCore. The alternative functions described
below require that a model is unloaded from one core and then reloaded to another.
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• The set_multicore() & set_neuron_cores() functions allow a model that has already been loaded to a
NeuronCore to be moved to a different NeuronCore. This functionality is less efficient than directly loading a
model to a NeuronCore within a context manager but allows device placement to be fully dynamic at runtime.
This is analogous to the torch.nn.Module.to() function for device placement.

Important: A prerequisite to enable placement functionality is that the loaded torch.jit.ScriptModule has
already been compiled with the torch_neuronx.trace() API. Attempting to place a regular torch.nn.Module
onto a NeuronCore prior to compilation will do nothing.

torch_neuronx.experimental.set_neuron_cores(trace: torch.jit.ScriptModule, start_nc: int = -1, nc_count:
int = -1)

Set the NeuronCore start/count for all Neuron subgraphs in a torch Module.

This will unload the model from an existing NeuronCore if it is already loaded.

Requires Torch 1.8+

Parameters
trace (ScriptModule) – A torch module which contains one or more Neuron subgraphs.

Keyword Arguments
• start_nc (int) – The starting NeuronCore index where the Module is placed. The value
-1 automatically loads to the optimal NeuronCore (least used). Note that this index is always
relative to NeuronCores visible to this process.

• nc_count (int) – The number of NeuronCores to use. The value -1 will load a model to
exactly one NeuronCore. If nc_count is greater than than one, the model will be replicated
across multiple NeuronCores.

Raises
• [RuntimeError] – If the Neuron runtime cannot be initialized.

• [ValueError] – If the nc_count is an invalid number of NeuronCores.

Examples

Single Load: Move a model to the first visible NeuronCore after loading.

model = torch.jit.load('example_neuron_model.pt')
torch_neuronx.experimental.set_neuron_cores(model, start_nc=0, nc_count=1)

model(example) # Executes on NeuronCore 0
model(example) # Executes on NeuronCore 0
model(example) # Executes on NeuronCore 0

Multiple Core Replication: Replicate a model to 2 NeuronCores after loading. This allows a single torch.jit.
ScriptModule to use multiple NeuronCores by running round-robin executions.

model = torch.jit.load('example_neuron_model.pt')
torch_neuronx.experimental.set_neuron_cores(model, start_nc=2, nc_count=2)

model(example) # Executes on NeuronCore 2
model(example) # Executes on NeuronCore 3
model(example) # Executes on NeuronCore 2
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Multiple Model Load: Move and pin 2 models to separate NeuronCores. This causes each torch.jit.
ScriptModule to always execute on a specific NeuronCore.

model1 = torch.jit.load('example_neuron_model.pt')
torch_neuronx.experimental.set_neuron_cores(model1, start_nc=2)

model2 = torch.jit.load('example_neuron_model.pt')
torch_neuronx.experimental.set_neuron_cores(model2, start_nc=0)

model1(example) # Executes on NeuronCore 2
model1(example) # Executes on NeuronCore 2
model2(example) # Executes on NeuronCore 0
model2(example) # Executes on NeuronCore 0

torch_neuronx.experimental.set_multicore(trace: torch.jit.ScriptModule)
Loads all Neuron subgraphs in a torch Module to all visible NeuronCores.

This loads each Neuron subgraph within a torch.jit.ScriptModule to multiple NeuronCores without re-
quiring multiple calls to torch.jit.load(). This allows a single torch.jit.ScriptModule to use multiple
NeuronCores for concurrent threadsafe inferences. Executions use a round-robin strategy to distribute across
NeuronCores.

This will unload the model from an existing NeuronCore if it is already loaded.

Requires Torch 1.8+

Parameters
trace (ScriptModule) – A torch module which contains one or more Neuron subgraphs.

Raises
[RuntimeError] – If the Neuron runtime cannot be initialized.

Examples

Multiple Core Replication: Move a model across all visible NeuronCores after loading. This allows a single
torch.jit.ScriptModule to use all NeuronCores by running round-robin executions.

model = torch.jit.load('example_neuron_model.pt')
torch_neuronx.experimental.set_multicore(model)

model(example) # Executes on NeuronCore 0
model(example) # Executes on NeuronCore 1
model(example) # Executes on NeuronCore 2

torch_neuronx.experimental.neuron_cores_context(start_nc: int = -1, nc_count: int = -1)
A context which sets the NeuronCore start/count for Neuron models loaded with torch.jit.load().

This context manager may only be used when loading a model with torch.jit.load(). A model which has
already been loaded into memory will not be affected by this context manager. Furthermore, after loading the
model, inferences do not need to occur in this context in order to use the correct NeuronCores.

Note that this context is not threadsafe. Using multiple core placement contexts from multiple threads may not
correctly place models.

Keyword Arguments
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• start_nc (int) – The starting NeuronCore index where the Module is placed. The value
-1 automatically loads to the optimal NeuronCore (least used). Note that this index is always
relative to NeuronCores visible to this process.

• nc_count (int) – The number of NeuronCores to use. The value -1 will load a model to
exactly one NeuronCore. If nc_count is greater than than one, the model will be replicated
across multiple NeuronCores.

Raises
• [RuntimeError] – If the Neuron runtime cannot be initialized.

• [ValueError] – If the nc_count is an invalid number of NeuronCores.

Examples

Single Load: Directly load a model from disk to the first visible NeuronCore.

with torch_neuronx.experimental.neuron_cores_context(start_nc=0, nc_count=1):
model = torch.jit.load('example_neuron_model.pt') # Load must occur within the␣

→˓context

model(example) # Executes on NeuronCore 0
model(example) # Executes on NeuronCore 0
model(example) # Executes on NeuronCore 0

Multiple Core Replication: Directly load a model from disk to 2 NeuronCores. This allows a single torch.
jit.ScriptModule to use multiple NeuronCores by running round-robin executions.

with torch_neuronx.experimental.neuron_cores_context(start_nc=2, nc_count=2):
model = torch.jit.load('example_neuron_model.pt') # Load must occur within the␣

→˓context

model(example) # Executes on NeuronCore 2
model(example) # Executes on NeuronCore 3
model(example) # Executes on NeuronCore 2

Multiple Model Load: Directly load 2 models from disk and pin them to separate NeuronCores. This causes
each torch.jit.ScriptModule to always execute on a specific NeuronCore.

with torch_neuronx.experimental.neuron_cores_context(start_nc=2):
model1 = torch.jit.load('example_neuron_model.pt') # Load must occur within␣

→˓the context

with torch_neuronx.experimental.neuron_cores_context(start_nc=0):
model2 = torch.jit.load('example_neuron_model.pt') # Load must occur within␣

→˓the context

model1(example) # Executes on NeuronCore 2
model1(example) # Executes on NeuronCore 2
model2(example) # Executes on NeuronCore 0
model2(example) # Executes on NeuronCore 0

torch_neuronx.experimental.multicore_context()

A context manager which loads models to all visible NeuronCores for Neuron models loaded with torch.jit.
load().
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This loads each Neuron subgraph within a torch.jit.ScriptModule to multiple NeuronCores without re-
quiring multiple calls to torch.jit.load(). This allows a single torch.jit.ScriptModule to use multiple
NeuronCores for concurrent threadsafe inferences. Executions use a round-robin strategy to distribute across
NeuronCores.

This context manager may only be used when loading a model with torch.jit.load(). A model which has
already been loaded into memory will not be affected by this context manager. Furthermore, after loading the
model, inferences do not need to occur in this context in order to use the correct NeuronCores.

Note that this context is not threadsafe. Using multiple core placement contexts from multiple threads may not
correctly place models.

Raises
[RuntimeError] – If the Neuron runtime cannot be initialized.

Examples

Multiple Core Replication: Directly load a model to all visible NeuronCores. This allows a single torch.jit.
ScriptModule to use all NeuronCores by running round-robin executions.

with torch_neuronx.experimental.multicore_context():
model = torch.jit.load('example_neuron_model.pt') # Load must occur within the␣

→˓context

model(example) # Executes on NeuronCore 0
model(example) # Executes on NeuronCore 1
model(example) # Executes on NeuronCore 2

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

PyTorch NeuronX Analyze API for Inference

torch_neuronx.analyze(func, example_inputs, compiler_workdir=None)
Checks the support of the operations in the func by checking each operator against neuronx-cc.

Parameters
• func (Module,callable) – The function/module that that will be run using the
example_inputs arguments in order to record the computation graph.

• example_inputs (Tensor,tuple[Tensor]) – A tuple of example inputs that will be
passed to the func while tracing.

Keyword Arguments
• compiler_workdir (str) – Work directory used by neuronx-cc. This can be useful for

debugging and/or inspecting intermediary neuronx-cc outputs

• additional_ignored_ops (set) – A set of aten operators to not analyze. Default is an
empty set.

• max_workers (int) – The max number of workers threads to spawn. The default is 4.

• is_hf_transformers (bool) – If the model is a huggingface transformers model, it is
recommended to enable this option to prevent deadlocks. Default is False.
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• cleanup (bool) – Specifies whether to delete the compiler artifact directories generated
after running analyze. Default is False.

Returns
A JSON like Dict with the supported operators and their count, and unsupported operators with
the failure mode and location of the operator in the python code.

Return type
Dict

Examples

Fully supported model

import json

import torch
import torch.nn as nn
import torch_neuronx

class MLP(nn.Module):
def __init__(self, input_size=28*28, output_size=10, layers=[120,84]):

super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, layers[0])
self.relu = nn.ReLU()
self.fc2 = nn.Linear(layers[0], layers[1])

def forward(self, x):
f1 = self.fc1(x)
r1 = self.relu(f1)
f2 = self.fc2(r1)
r2 = self.relu(f2)
f3 = self.fc3(r2)
return torch.log_softmax(f3, dim=1)

model = MLP()
ex_input = torch.rand([32,784])

model_support = torch_neuronx.analyze(model,ex_input)
print(json.dumps(model_support,indent=4))

{
"torch_neuronx_version": "1.13.0.1.5.0",
"neuronx_cc_version": "2.0.0.11796a0+24a26e112",
"support_percentage": "100.00%",
"supported_operators": {

"aten::linear": 3,
"aten::relu": 2,
"aten::log_softmax": 1
},
"unsupported_operators": []

}

Unsupported Model/Operator
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import json
import torch
import torch_neuronx

def fft(x):
return torch.fft.fft(x)

model = fft
ex_input = torch.arange(4)

model_support = torch_neuronx.analyze(model,ex_input)
print(json.dumps(model_support,indent=4))

{
"torch_neuronx_version": "1.13.0.1.5.0",
"neuronx_cc_version": "2.0.0.11796a0+24a26e112",
"support_percentage": "0.00%",
"supported_operators": {},
"unsupported_operators": [

{
"kind": "aten::fft_fft",
"failureAt": "neuronx-cc",
"call": "test.py(6): fft\n/home/ubuntu/testdir/venv/lib/python3.8/site-

→˓packages/torch_neuronx/xla_impl/analyze.py(35): forward\n/home/ubuntu/testdir/
→˓venv/lib/python3.8/site-packages/torch/nn/modules/module.py(1182): _slow_forward\
→˓n/home/ubuntu/testdir/venv/lib/python3.8/site-packages/torch/nn/modules/module.
→˓py(1194): _call_impl\n/home/ubuntu/testdir/venv/lib/python3.8/site-packages/torch/
→˓jit/_trace.py(976): trace_module\n/home/ubuntu/testdir/venv/lib/python3.8/site-
→˓packages/torch/jit/_trace.py(759): trace\n/home/ubuntu/testdir/venv/lib/python3.8/
→˓site-packages/torch_neuronx/xla_impl/analyze.py(302): analyze\ntest.py(11):
→˓<module>\n",

"opGraph": "graph(%x : Long(4, strides=[1], requires_grad=0, device=cpu),\
→˓n %neuron_4 : NoneType,\n %neuron_5 : int,\n %neuron_6 : NoneType):
→˓\n %neuron_7 : ComplexFloat(4, strides=[1], requires_grad=0, device=cpu) = aten::
→˓fft_fft(%x, %neuron_4, %neuron_5, %neuron_6)\n return (%neuron_7)\n"

}
]

}

Note: the failureAt field can either be “neuronx-cc” or “Lowering to HLO”. If the field is “neuronx-cc”, then
it indicates that the provided operator configuration failed to be compiled with neuronx-cc. This could either
indicate that the operator configuration is unsupported, or there is a bug with that operator configuration.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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PyTorch NeuronX DataParallel API

The torch_neuronx.DataParallel() Python API implements data parallelism on ScriptModule models created
by PyTorch NeuronX Tracing API for Inference. This function is analogous to DataParallel in PyTorch. The Data
Parallel Inference on torch_neuronx application note provides an overview of how torch_neuronx.DataParallel()
can be used to improve the performance of inference workloads on Inferentia.

torch_neuronx.DataParallel(model, device_ids=None, dim=0, set_dynamic_batching=True)
Applies data parallelism by replicating the model on available NeuronCores and distributing data across the
different NeuronCores for parallelized inference.

By default, DataParallel will use all available NeuronCores allocated for the current process for parallelism.
DataParallel will apply parallelism on dim=0 if dim is not specified.

DataParallel automatically enables dynamic batching on eligible models if dim=0. Dynamic batching
can be disabled using torch_neuronx.DataParallel.disable_dynamic_batching(), or by setting
set_dynamic_batching=False when initializing the DataParallel object. If dynamic batching is not enabled,
the batch size at compilation-time must be equal to the batch size at inference-time divided by the number of
NeuronCores being used. Specifically, the following must be true when dynamic batching is disabled: input.
shape[dim] / len(device_ids) == compilation_input.shape[dim].

torch.neuron.DataParallel() requires PyTorch >= 1.8.

Required Arguments

Parameters
model (ScriptModule) – Model created by the PyTorch NeuronX Tracing API for Inference to
be parallelized.

Optional Arguments

Parameters
• device_ids (list) – List of int or 'nc:#' that specify the NeuronCores to use for paral-

lelization (default: all NeuronCores). Refer to the device_ids note for a description of how
device_ids indexing works.

• dim (int) – Dimension along which the input tensor is scattered across NeuronCores (default
dim=0).

• set_dynamic_batching (bool) – Whether to enable dynamic batching.

Attributes

Parameters
• num_workers (int) – Number of worker threads used for multithreaded inference (default:
2 * number of NeuronCores).

• split_size (int) – Size of the input chunks (default: max(1, input.shape[dim] //
number of NeuronCores)).

torch.neuron.DataParallel.disable_dynamic_batching()

Disables automatic dynamic batching on the DataParallel module. See Dynamic batching disabled for example
of how DataParallel can be used with dynamic batching disabled. Use as follows:

>>> model_parallel = torch_neuronx.DataParallel(model_neuron)
>>> model_parallel.disable_dynamic_batching()
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Note: device_ids uses per-process NeuronCore granularity and zero-based indexing. Per-process granularity means
that each Python process “sees” its own view of the world. Specifically, this means that device_ids only “sees” the
NeuronCores that are allocated for the current process. Zero-based indexing means that each Python process will index
its allocated NeuronCores starting at 0, regardless of the “global” index of the NeuronCores. Zero-based indexing
makes it possible to redeploy the exact same code unchanged in different process. This behavior is analogous to the
device_ids argument in the PyTorch DataParallel function.

As an example, assume DataParallel is run on an inf2.48xlarge, which contains 12 Inferentia chips each of which
contains two NeuronCores:

• If NEURON_RT_VISIBLE_CORES is not set, a single process can access all 24 NeuronCores. Thus specify-
ing device_ids=["nc:0"] will correspond to chip0:core0 and device_ids=["nc:13"] will correspond to
chip6:core1.

• However, if two processes are launched where: process 1 has NEURON_RT_VISIBLE_CORES=0-11 and process
2 has NEURON_RT_VISIBLE_CORES=12-23, device_ids=["nc:13"] cannot be specified in either process.
Instead, chip6:core1 can only be accessed in process 2. Additionally, chip6:core1 is specified in process 2 with
device_ids=["nc:1"]. Furthermore, in process 1, device_ids=["nc:0"]would correspond to chip0:core0;
in process 2 device_ids=["nc:0"] would correspond to chip6:core0.

Examples

The following sections provide example usages of the torch_neuronx.DataParallel() module.

Default usage

The default DataParallel use mode will replicate the model on all available NeuronCores in the current process. The
inputs will be split on dim=0.

import torch
import torch_neuronx
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch_neuronx.trace(model, image)

# Create the DataParallel module
model_parallel = torch_neuronx.DataParallel(model_neuron)

# Create a batched input
batch_size = 5
image_batched = torch.rand([batch_size, 3, 224, 224])

# Run inference with a batched input
output = model_parallel(image_batched)
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Specifying NeuronCores

The following example uses the device_ids argument to use the first three NeuronCores for DataParallel inference.

import torch
import torch_neuronx
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch_neuronx.trace(model, image)

# Create the DataParallel module, run on the first two NeuronCores
# Equivalent to model_parallel = torch.neuron.DataParallel(model_neuron, device_ids=[0,␣
→˓1])
model_parallel = torch_neuronx.DataParallel(model_neuron, device_ids=['nc:0', 'nc:1'])

# Create a batched input
batch_size = 5
image_batched = torch.rand([batch_size, 3, 224, 224])

# Run inference with a batched input
output = model_parallel(image_batched)

DataParallel with dim != 0

In this example we run DataParallel inference using two NeuronCores and dim = 2. Because dim != 0, dynamic
batching is not enabled. Consequently, the DataParallel inference-time batch size must be two times the compile-time
batch size.

import torch
import torch_neuronx

# Create an example model
class Model(torch.nn.Module):

def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(3, 3, 3)

def forward(self, x):
return self.conv(x) + 1

model = Model()
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 8, 8])
model_neuron = torch_neuronx.trace(model, image)

(continues on next page)
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(continued from previous page)

# Create the DataParallel module using 2 NeuronCores and dim = 2
model_parallel = torch_neuronx.DataParallel(model_neuron, device_ids=[0, 1], dim=2)

# Create a batched input
# Note that image_batched.shape[dim] / len(device_ids) == image.shape[dim]
batch_size = 2 * 8
image_batched = torch.rand([1, 3, batch_size, 8])

# Run inference with a batched input
output = model_parallel(image_batched)

Dynamic batching

In the following example, we use the torch_neuronx.DataParallel() module to run inference using several dif-
ferent batch sizes without recompiling the Neuron model.

import torch
import torch_neuronx
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch_neuronx.trace(model, image)

# Create the DataParallel module
model_parallel = torch_neuronx.DataParallel(model_neuron)

# Create batched inputs and run inference on the same model
batch_sizes = [2, 3, 4, 5, 6]
for batch_size in batch_sizes:

image_batched = torch.rand([batch_size, 3, 224, 224])

# Run inference with a batched input
output = model_parallel(image_batched)

Dynamic batching disabled

In the following example, we use torch_neuronx.DataParallel.disable_dynamic_batching() to disable dy-
namic batching. We provide an example of a batch size that will not work when dynamic batching is disabled as well
as an example of a batch size that does work when dynamic batching is disabled.

import torch
import torch_neuronx
from torchvision import models

(continues on next page)
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(continued from previous page)

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch_neuronx.trace(model, image)

# Create the DataParallel module and use 2 NeuronCores
model_parallel = torch_neuronx.DataParallel(model_neuron, device_ids=[0, 1], dim=0)

# Disable dynamic batching
model_parallel.disable_dynamic_batching()

# Create a batched input (this won't work)
batch_size = 4
image_batched = torch.rand([batch_size, 3, 224, 224])

# This will fail because dynamic batching is disabled and
# image_batched.shape[dim] / len(device_ids) != image.shape[dim]
# output = model_parallel(image_batched)

# Create a batched input (this will work)
batch_size = 2
image_batched = torch.rand([batch_size, 3, 224, 224])

# This will work because
# image_batched.shape[dim] / len(device_ids) == image.shape[dim]
output = model_parallel(image_batched)

This document is relevant for: Inf2, Trn1, Trn2

API Reference Guide (torch-neuronx)

• PyTorch NeuronX Tracing API for Inference

• PyTorch Neuron (torch-neuronx) Weight Replacement API for Inference

• PyTorch NeuronX NeuronCore Placement APIs [Beta]

• PyTorch NeuronX Analyze API for Inference

• PyTorch NeuronX DataParallel API

• torch_neuronx_lazy_async_load_api

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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Developer Guide (torch-neuronx)

This document is relevant for: Inf2, Trn1, Trn2

NeuronCore Allocation and Model Placement for Inference (torch-neuronx)

This programming guide describes the how to allocate NeuronCores to processes and place models onto specific Neu-
ronCores. The models in this guide are expected to have been traced with with torch_neuronx.trace().

Warning: This guide is not applicable to NeuronCore placement using XLA LazyTensor device execution. See:
Comparison of Traced Inference versus XLA Lazy Tensor Inference (torch-neuronx)

In order of precedence, the recommendation is to use the following placement techniques:

1. For nearly all regular models, default core placement should be used to take control of all cores for a single
process.

2. For applications using multiple processes, default core placement should be used in conjunction with
NEURON_RT_NUM_CORES (Default Core Allocation & Placement)

3. For more granular control, then the beta explicit placement APIs may be used (Explicit Core Placement [Beta]).

Table of Contents

• NeuronCore Allocation and Model Placement for Inference (torch-neuronx)

– Default Core Allocation & Placement

∗ Example: Default

∗ Example: NEURON_RT_NUM_CORES

∗ Example: NEURON_RT_VISIBLE_CORES

∗ Example: Multiple Processes

– Explicit Core Placement [Beta]

∗ Example: Manual Core Selection

∗ Example: Automatic Multicore

The following guide will assume a machine with 8 NeuronCores:

• NeuronCores will use the notation nc0, nc1, etc.

• Models will use the notation m0, m1 etc.

NeuronCores and model allocations will be displayed in the following format:

The actual cores that are visible to the process can be adjusted according to the NeuronX Runtime Configuration.

Unlike torch-neuron (with neuron-cc) instances, torch-neuronx (with neuronx-cc) does not support NeuronCore
Pipeline. This simplifies model core allocations since it means that model pipelines will likely not span across multiple
NeuronCores.
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Default Core Allocation & Placement

The most basic requirement of an inference application is to be able to place a single model on a single NeuronCore.
More complex applications may use multiple NeuronCores or even multiple processes each executing different models.
The important thing to note about designing an inference application is that a single NeuronCore will always be allocated
to a single process. Processes do not share NeuronCores. Different configurations can be used to ensure that an
application process has enough NeuronCores allocated to execute its model(s):

• Default: A process will attempt to take ownership of all NeuronCores visible on the instance. This should be
used when an instance is only running a single inference process since no other process will be allowed to take
ownership of any NeuronCores.

• NEURON_RT_NUM_CORES: Specify the number of NeuronCores to allocate to the process. This places no re-
strictions on which NeuronCores will be used, however, the resulting NeuronCores will always be contiguous.
This should be used in multi-process applications where each process should only use a subset of NeuronCores.

• NEURON_RT_VISIBLE_CORES: Specifies exactly which NeuronCores are allocated to the process by index. Sim-
ilar to NEURON_RT_NUM_CORES, this can be used in multi-process applications where each process should only
use a subset of NeuronCores. This provides more fined-grained controls over the exact NeuronCores that are
allocated to a given process.

See the NeuronX Runtime Configuration for more environment variable details.

Example: Default

Python Script:

import torch
import torch_neuronx

m0 = torch.jit.load('model.pt') # Loads to nc0
m1 = torch.jit.load('model.pt') # Loads to nc1

With no environment configuration, the process will take ownership of all NeuronCores. In this example, only two of
the NeuronCores are used by the process and the remaining are allocated but left idle.

Example: NEURON_RT_NUM_CORES

Environment Setup:

export NEURON_RT_NUM_CORES = '2'

Python Script:

import torch
import torch_neuronx

m0 = torch.jit.load('model.pt') # Loads to nc0
m1 = torch.jit.load('model.pt') # Loads to nc1

Since there is no other process on the instance, only the first 2 NeuronCores will be acquired by the process. Models
load in a simple linear order to the least used NeuronCores.
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Example: NEURON_RT_VISIBLE_CORES

Environment Setup:

export NEURON_RT_VISIBLE_CORES = '4-5'

Python Script:

import torch
import torch_neuronx

m0 = torch.jit.load('model.pt') # Loads to nc4
m1 = torch.jit.load('model.pt') # Loads to nc5

Unlike NEURON_RT_NUM_CORES, setting the visible NeuronCores allows the process to take control of a specific con-
tiguous set. This allows an application to have a more fine-grained control of where models will be placed.

Example: Multiple Processes

Environment Setup:

export NEURON_RT_NUM_CORES = '2'

Python Script:

import torch
import torch_neuronx

m0 = torch.jit.load('model.pt') # Loads to nc0
m1 = torch.jit.load('model.pt') # Loads to nc1

In this example, if the script is run twice, the following allocations will be made:

Note that each process will take ownership of as many NeuronCores as is specified by the NEURON_RT_NUM_CORES
configuration.

Explicit Core Placement [Beta]

The torch_neuronx framework allows can be found in the PyTorch NeuronX NeuronCore Placement APIs [Beta]
documentation.

Example: Manual Core Selection

The most direct usage of the placement APIs is to manually select the start NeuronCore that each model is loaded to.

Environment Setup:

export NEURON_RT_NUM_CORES = '4'

Python Script:
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import torch
import torch_neuronx

# NOTE: Order of loads does NOT matter
with torch_neuronx.experimental.neuron_cores_context(start_nc=3):

m0 = torch.jit.load('model.pt') # Loads to nc3

with torch_neuronx.experimental.neuron_cores_context(start_nc=0, nc_count=2):
m1 = torch.jit.load('model.pt') # Loads replicas to nc0 and nc1

example = torch.rand(1, 3, 224, 224)

m1(example) # Executes on nc3
m1(example) # Executes on nc3

m0(example) # Executes on nc0
m0(example) # Executes on nc1
m0(example) # Executes on nc0

Example: Automatic Multicore

Using explicit core placement it is possible to replicate a model to multiple NeuronCores simultaneously. This means
that a single model object within python can utilize all available NeuronCores (or NeuronCores allocated to the process).

Environment Setup:

export NEURON_RT_NUM_CORES = '8'

Python Script:

import torch
import torch_neuronx

with torch_neuronx.experimental.multicore_context():
m0 = torch.jit.load('model.pt') # Loads replications to nc0-nc7

example = torch.rand(1, 3, 224, 224)

m0(example) # Executes on nc0
m0(example) # Executes on nc1

To make full use of a model that has been loaded to multiple NeuronCores, multiple threads should be used to run
inferences in parallel.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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Comparison of Traced Inference versus XLA Lazy Tensor Inference (torch-neuronx)

Table of contents

• Introduction

• XLA Lazy Tensor Inference Mechanics

• Traced Inference Mechanics

• Traced Inference Advantages

• Summary

Introduction

Using torch-neuronx, there are two ways that a model can be executed for inference:

• XLA LazyTensor Inference: A model is executed on Neuron by calling to() to move Parameter and Tensor
data using the xm.xla_device(). Executing operations uses torch Lazy Tensor to record, compile, and execute
the graph. These are the same mechanisms used for training.

• (Recommended) Traced Inference: A model is traced prior to inference using the trace() API. This trace is
similar to torch.jit.trace() but instead creates a Neuron-specific TorchScript artifact. This artifact provides
improved performance and portability compared to XLA Lazy Tensor inference.

XLA Lazy Tensor Inference Mechanics

XLA Lazy Tensor inference uses Just-In-Time (JIT) compilation for Neuron execution.

XLA Device execution uses the built-in torch-xla functionality with torch Lazy Tensor to record torch operations us-
ing the xm.xla_device(). The graph of operations is sent to the neuronx-cc compiler upon calling xm.mark_step().
Finally the compiled graph is transferred to a NeuronCore and executed in the Neuron backend.

The initial model inference will be very slow since the model binary file in the Neuron Executable File Format (NEFF)
will need to be generated by the compiler. Upon each subsequent call to a model, the application will re-execute the
python, rebuild the graph, and check a cache to see if an existing NEFF file is available for the given graph before
attempting to recompile.

The process of recording graph operations in python can become a bottleneck for otherwise fast models. This overhead
will always have an effect on performance regardless of model size but may be less noticeable on larger models. Note
that this XLA Lazy Tensor execution performance may improve significantly with new torch features in the future.

Example

Fixed Shape Example

import torch
import torch_neuronx
import torch_xla.core.xla_model as xm

# Create XLA device
(continues on next page)
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(continued from previous page)

device = xm.xla_device()

# Load example model and inputs to Neuron device
model = torch.nn.Sequential(

torch.nn.Linear(784, 120),
torch.nn.ReLU(),
torch.nn.Linear(120, 10),
torch.nn.Softmax(dim=-1),

)
model.eval()
model.to(device)
example = torch.rand((1, 784), device=device)

# Inference
with torch.no_grad():

result = model(example)
xm.mark_step() # Compilation occurs here
print(result.cpu())

Dynamic Shape Example

The following is an example of a model that dynamically changes the sequence length and batch size of the input token
ID tensor to trigger recompilations. This kind of workflow would require padding when using traced inference.

import torch
import torch_neuronx
import torch_xla.core.xla_model as xm

# Create XLA device
device = xm.xla_device()

# Load example model and inputs to Neuron device
model = torch.nn.Sequential(

torch.nn.Embedding(num_embeddings=30522, embedding_dim=512),
torch.nn.Linear(512, 128),
torch.nn.ReLU(),
torch.nn.Linear(128, 2),
torch.nn.Softmax(dim=-1),

)
model.eval()
model.to(device)

token_ids_1 = torch.tensor([
[1, 28, 748, 0],

]) # shape: [1, 4]
token_ids_2 = torch.tensor([

[1, 13087, 10439, 1990, 18912, 0],
[1, 12009, 7849, 2509, 3500, 0],

]) # shape: [2, 6]

# Inference
(continues on next page)
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with torch.no_grad():

# First compilation/inference
result = model(token_ids_1)
xm.mark_step()
print(result.cpu()) # shape: [1, 4, 2]

# Recompilation occurs here since token_ids_2 is a different shape. This infer
# would have failed if the model had been traced with shape [1, 4]
result = model(token_ids_2)
xm.mark_step()
print(result.cpu()) # shape: [2, 6, 2]

Traced Inference Mechanics

Traced inference uses Ahead-Of-Time (AOT) compilation for Neuron execution.

Similar to XLA Lazy Tensor inference, trace() uses the operation recording mechanisms provided by torch-xla to
build the graph structure. This graph structure is also sent to the neuronx-cc compiler to produce a binary (NEFF) that
is executable on Neuron.

The main difference is that the call to trace() returns a new fully compiled graph as a TorchScript Module. Upon call-
ing this new Module, rather than re-executing the python, rebuilding the graph, and checking the cache for a matching
model, the new Module simply executes the precompiled graph that was preloaded during tracing. This is a significantly
more optimized runtime since it avoids the python operator tracing, graph building, etc.

One disadvantage of this interface is that a model will never dynamically recompile after a trace. This means that
dynamic control flow is not supported within a function/module. Tensor input/output shapes are fixed to the shapes
passed to the trace() API. Dynamic batching and bucketing can be used to avoid the pitfalls of static shapes.

Example

import torch
import torch_neuronx

# Create example model and inputs
model = torch.nn.Sequential(

torch.nn.Linear(784, 120),
torch.nn.ReLU(),
torch.nn.Linear(120, 10),
torch.nn.Softmax(dim=-1),

)
model.eval()
example = torch.rand((1, 784))

# Create fixed model trace
trace = torch_neuronx.trace(model, example)

# Inference
result = trace(example) # No recompilation. Input shapes must not change
print(result)
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Traced Inference Advantages

Traced inference should be used for nearly all deployment purposes since it provides some key advantages over XLA
Lazy Tensor execution:

• Reduced Overhead: There is no overhead associated with graph recording, compilation, and model loading
since these steps are performed only once within the call to trace(). In contrast, when using XLA Lazy Tensor
inference, all of these steps are performed just-in-time (with caching to improve performance).

• Serializable: The TorchScript Module that is produced from the trace() API is serializable using the normal
torch.jit.save() function. It is able to be reloaded in an inference environment with torch.jit.load().
In contrast, XLA device inference does not provide a predetermined serialization format that includes the pre-
compiled NEFF artifacts. These must be manually copied to an inference environment to be used.

• Reduced Dependencies: When using the traced TorchScript Module in an inference environment, it is no longer
required to install the neuronx-cc compiler. In contrast, when using the XLA Lazy Tensor execution, an execution
may require a recompile to successfully infer.

• Static & Predictable: The resulting module produced by trace()will contain a static model that will consume
a predictable amount of Neuron device memory and will never require recompilation based on input changes.
In contrast, since XLA device inference performs just-in-time compilation, it can be more difficult to predict
memory utilization and the compilations that may be required at inference time.

• C++ Usability: If the end application is an inference platform using libtorch, it is easy to integrate with
libtorchneuron to load traced modules. It is not currently possible to set up an environment to use torch in
C++ in conjunction with Neuron XLA Lazy Tensor execution.

Summary

XLA Device Inference Traced Inference
Compilation JIT AOT
Serialization N/A TorchScript
Performance Slower Faster
Dynamic Yes No
C++ Usage No Yes

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

Data Parallel Inference on torch_neuronx

Table of Contents

• Introduction

• Data parallel inference

• torch_neuronx.DataParallel

– NeuronCore selection

– Batch dim
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– Dynamic batching

– Performance optimizations

• Examples

– Default usage

– Specifying NeuronCores

– DataParallel with dim != 0

– Dynamic batching

– Dynamic batching disabled

Introduction

This guide introduces torch_neuronx.DataParallel(), a Python API that implements data parallelism on
ScriptModulemodels created by the PyTorch NeuronX Tracing API for Inference. The following sections explain how
data parallelism can improve the performance of inference workloads on Inferentia, including how torch_neuronx.
DataParallel() uses dynamic batching to run inference on variable input sizes. It covers an overview of the
torch_neuronx.DataParallel() module and provides a few example data parallel applications.

Data parallel inference

Data Parallelism is a form of parallelization across multiple devices or cores, referred to as nodes. Each node contains
the same model and parameters, but data is distributed across the different nodes. By distributing the data across
multiple nodes, data parallelism reduces the total execution time of large batch size inputs compared to sequential
execution. Data parallelism works best for smaller models in latency sensitive applications that have large batch size
requirements.

torch_neuronx.DataParallel

To fully leverage the Inferentia hardware, we want to use all available NeuronCores. An inf2.xlarge and inf2.8xlarge
have two NeuronCores, an inf2.24xlarge has 12 NeuronCores, and an inf2.48xlarge has 24 NeuronCores. For max-
imum performance on Inferentia hardware, we can use torch_neuronx.DataParallel() to utilize all available
NeuronCores.

torch_neuronx.DataParallel() implements data parallelism at the module level by replicating the Neuron model
on all available NeuronCores and distributing data across the different cores for parallelized inference. This function
is analogous to DataParallel in PyTorch. torch_neuronx.DataParallel() requires PyTorch >= 1.8.

The following sections provide an overview of some of the features of torch_neuronx.DataParallel() that enable
maximum performance on Inferentia.

2.1. PyTorch Neuron 103



AWS Neuron

NeuronCore selection

By default, DataParallel will try to use all NeuronCores allocated to the current process to fully saturate the Inferentia
hardware for maximum performance. It is more efficient to make the batch dimension divisible by the number of
NeuronCores. This will ensure that NeuronCores are not left idle during parallel inference and the Inferentia hardware
is fully utilized.

In some applications, it is advantageous to use a subset of the available NeuronCores for DataParallel inference. Dat-
aParallel has a device_ids argument that accepts a list of int or 'nc:#' that specify the NeuronCores to use for
parallelization. See Specifying NeuronCores for an example of how to use device_ids argument.

Batch dim

DataParallel accepts a dim argument that denotes the batch dimension used to split the input data for distributed infer-
ence. By default, DataParalell splits the inputs on dim = 0 if the dim argument is not specified. For applications with
a non-zero batch dim, the dim argument can be used to specify the inference-time input batch dimension. DataParallel
with dim ! = 0 provides an example of data parallel inference on inputs with batch dim = 2.

Dynamic batching

Batch size has a direct impact on model performance. The Inferentia chip is optimized to run with small batch sizes.
This means that a Neuron compiled model can outperform a GPU model, even if running single digit batch sizes.

As a general best practice, we recommend optimizing your model’s throughput by compiling the model with a small
batch size and gradually increasing it to find the peak throughput on Inferentia.

Dynamic batching is a feature that allows you to use tensor batch sizes that the Neuron model was not originally
compiled against. This is necessary because the underlying Inferentia hardware will always execute inferences with
the batch size used during compilation. Fixed batch size execution allows tuning the input batch size for optimal
performance. For example, batch size 1 may be best suited for an ultra-low latency on-demand inference application,
while batch size > 1 can be used to maximize throughput for offline inferencing. Dynamic batching is implemented by
slicing large input tensors into chunks that match the batch size used during the torch_neuronx.trace() compilation
call.

The torch_neuronx.DataParallel() class automatically enables dynamic batching on eligible models. This allows
us to run inference in applications that have inputs with a variable batch size without needing to recompile the model.
See Dynamic batching for an example of how DataParallel can be used to run inference on inputs with a dynamic batch
size without needing to recompile the model.

Dynamic batching using small batch sizes can result in sub-optimal throughput because it involves slicing tensors into
chunks and iteratively sending data to the hardware. Using a larger batch size at compilation time can use the Inferentia
hardware more efficiently in order to maximize throughput. You can test the tradeoff between individual request latency
and total throughput by fine-tuning the input batch size.

Automatic batching in the DataParallel module can be disabled using the disable_dynamic_batching() function
as follows:

>>> model_parallel = torch_neuronx.DataParallel(model_neuron)
>>> model_parallel.disable_dynamic_batching()

If dynamic batching is disabled, the compile-time batch size must be equal to the inference-time batch size divided by
the number of NeuronCores. DataParallel with dim != 0 and Dynamic batching disabled provide examples of running
DataParallel inference with dynamic batching disabled.
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Performance optimizations

The DataParallel module has a num_workers attribute that can be used to specify the number of worker threads used
for multithreaded inference. By default, num_workers = 2 * number of NeuronCores. This value can be fine
tuned to optimize DataParallel performance.

DataParallel has a split_size attribute that dictates the size of the input chunks that are distributed to each Neuron-
Core. By default, split_size = max(1, input.shape[dim] // number of NeuronCores). This value can
be modified to optimally match the inference input chunk size with the compile-time batch size.

Examples

The following sections provide example usages of the torch_neuronx.DataParallel() module.

Default usage

The default DataParallel use mode will replicate the model on all available NeuronCores in the current process. The
inputs will be split on dim=0.

import torch
import torch_neuronx
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch_neuronx.trace(model, image)

# Create the DataParallel module
model_parallel = torch_neuronx.DataParallel(model_neuron)

# Create a batched input
batch_size = 5
image_batched = torch.rand([batch_size, 3, 224, 224])

# Run inference with a batched input
output = model_parallel(image_batched)

Specifying NeuronCores

The following example uses the device_ids argument to use the first three NeuronCores for DataParallel inference.

import torch
import torch_neuronx
from torchvision import models

# Load the model and set it to evaluation mode
(continues on next page)
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model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch_neuronx.trace(model, image)

# Create the DataParallel module, run on the first two NeuronCores
# Equivalent to model_parallel = torch.neuron.DataParallel(model_neuron, device_ids=[0,␣
→˓1])
model_parallel = torch_neuronx.DataParallel(model_neuron, device_ids=['nc:0', 'nc:1'])

# Create a batched input
batch_size = 5
image_batched = torch.rand([batch_size, 3, 224, 224])

# Run inference with a batched input
output = model_parallel(image_batched)

DataParallel with dim != 0

In this example we run DataParallel inference using two NeuronCores and dim = 2. Because dim != 0, dynamic
batching is not enabled. Consequently, the DataParallel inference-time batch size must be two times the compile-time
batch size.

import torch
import torch_neuronx

# Create an example model
class Model(torch.nn.Module):

def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(3, 3, 3)

def forward(self, x):
return self.conv(x) + 1

model = Model()
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 8, 8])
model_neuron = torch_neuronx.trace(model, image)

# Create the DataParallel module using 2 NeuronCores and dim = 2
model_parallel = torch_neuronx.DataParallel(model_neuron, device_ids=[0, 1], dim=2)

# Create a batched input
# Note that image_batched.shape[dim] / len(device_ids) == image.shape[dim]
batch_size = 2 * 8
image_batched = torch.rand([1, 3, batch_size, 8])

(continues on next page)
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# Run inference with a batched input
output = model_parallel(image_batched)

Dynamic batching

In the following example, we use the torch_neuronx.DataParallel() module to run inference using several dif-
ferent batch sizes without recompiling the Neuron model.

import torch
import torch_neuronx
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch_neuronx.trace(model, image)

# Create the DataParallel module
model_parallel = torch_neuronx.DataParallel(model_neuron)

# Create batched inputs and run inference on the same model
batch_sizes = [2, 3, 4, 5, 6]
for batch_size in batch_sizes:

image_batched = torch.rand([batch_size, 3, 224, 224])

# Run inference with a batched input
output = model_parallel(image_batched)

Dynamic batching disabled

In the following example, we use torch_neuronx.DataParallel.disable_dynamic_batching() to disable dy-
namic batching. We provide an example of a batch size that will not work when dynamic batching is disabled as well
as an example of a batch size that does work when dynamic batching is disabled.

import torch
import torch_neuronx
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch_neuronx.trace(model, image)

(continues on next page)
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# Create the DataParallel module and use 2 NeuronCores
model_parallel = torch_neuronx.DataParallel(model_neuron, device_ids=[0, 1], dim=0)

# Disable dynamic batching
model_parallel.disable_dynamic_batching()

# Create a batched input (this won't work)
batch_size = 4
image_batched = torch.rand([batch_size, 3, 224, 224])

# This will fail because dynamic batching is disabled and
# image_batched.shape[dim] / len(device_ids) != image.shape[dim]
# output = model_parallel(image_batched)

# Create a batched input (this will work)
batch_size = 2
image_batched = torch.rand([batch_size, 3, 224, 224])

# This will work because
# image_batched.shape[dim] / len(device_ids) == image.shape[dim]
output = model_parallel(image_batched)

This document is relevant for: Inf2, Trn1, Trn2

Developer Guide for Inference (torch-neuronx)

• NeuronCore Allocation and Model Placement for Inference (torch-neuronx)

• Comparison of Traced Inference versus XLA Lazy Tensor Inference (torch-neuronx)

• Data Parallel Inference on torch_neuronx

• torch-neuronx-autobucketing-devguide

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

Misc (torch-neuronx)

This document is relevant for: Inf2, Trn1, Trn2

PyTorch Neuron (torch-neuronx) release notes

Table of Contents

• Release [2.7.0.2.8.*, 2.6.0.2.8.*, 2.5.1.2.8.*]

• Release [2.6.0.2.7.*, 2.5.1.2.7.*]

• Release [2.5.1.2.6.0]

108 Chapter 2. ML Frameworks



AWS Neuron

• Release [2.5.1.2.4.0]

• Release [2.1.2.2.4.0]

• Release [1.13.1.1.16.0]

• Release [2.1.2.2.3.2]

• Release [2.1.2.2.3.1]

• Release [2.1.2.2.3.0]

• Release [1.13.1.1.16.0]

• Release [2.1.2.2.2.0]

• Release [1.13.1.1.15.0]

• Release [2.1.2.2.1.0]

• Release [1.13.1.1.14.0]

• Release [2.1.1.2.0.0b0] (Beta)

• Release [1.13.1.1.13.0]

• Release [2.0.0.2.0.0b0] (Beta)

• Release [1.13.1.1.12.0]

• Release [1.13.1.1.11.0]

• Release [1.13.1.1.10.1]

• Release [1.13.1.1.10.0]

• Release [1.13.1.1.9.0]

• Release [1.13.1.1.8.0]

• Release [1.13.1.1.7.0]

• Release [1.13.0.1.6.1]

• Release [1.13.0.1.6.1]

• Release [1.13.0.1.6.0]

• Release [1.13.0.1.5.0]

• Release [1.13.0.1.4.0]

• Release [1.12.0.1.4.0]

• Release [1.11.0.1.2.0]

• Release [1.11.0.1.1.1]

PyTorch Neuron for Trn1/Inf2 is a software package that enables PyTorch users to train, evaluate, and perform inference
on second-generation Neuron hardware (See: NeuronCore-v2).
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Release [2.7.0.2.8.*, 2.6.0.2.8.*, 2.5.1.2.8.*]

Date: 6/24/2025

Summary

• Introducing PyTorch 2.7 Support

Known limitations

• PyTorch NeuronX currently does not support GSPMD

• PyTorch NeuronX currently does not support torch.compile

• PyTorch NeuronX currently does not support DDP/FSDP

Resolved issues

[v2.7] Resolved the lower BERT pretraining performance with torch-neuronx 2.6 compared to torch-
neuronx 2.5

With torch-neuronx v2.6, BERT pretraining performance is ~10% lower compared to torch-neuronx 2.5. This issue is
fixed with torch-neuronx v2.7. See https://github.com/pytorch/xla/issues/9037 for more details.

Known issues

Please see the Introducing PyTorch 2.6 Support for a full list of known issues with v2.6. Please see the Introducing
PyTorch 2.5 Support for a full list of known issues with v2.5.

Updating Ubuntu OS kernel version from 5.15 to 6.8 may result in lower performance

Currently, when switching Ubuntu OS kernel version from 5.15 to 6.8, you may see performance differences due
to the new kernel scheduler (CFS vs EEVDF). For example, BERT pretraining performance could be lower by up
to 10%. You may try using an older OS kernel (i.e. Amazon Linux 2023) or experiment with the kernel real-time
scheduler by running sudo chrt --fifo 99 before your command (i.e. sudo chrt --fifo 99 <script>) to
improve the performance. Note that adjusting the real-time scheduler can also result in lower performance. See https:
//www.kernel.org/doc/html/latest/scheduler/sched-eevdf.html for more information.

Tensor split on second dimension of 2D array not working

Currently, when using tensor split operation on a 2D array in the second dimension, the resulting ten-
sors don’t have the expected data (https://github.com/pytorch/xla/issues/8640). The work-around is to set
XLA_DISABLE_FUNCTIONALIZATION=0. Another work-around is to use torch.tensor_split.
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[v2.5] Import torch_xla crashed with TypeError: must be called with a dataclass type or
instance with torch-xla 2.5 and torch 2.5.1+cpu (CPU flavor)

When using torch 2.5.1+cpu (CPU flavor) on python 3.10, importing torch_xla crashed with TypeError: must be
called with a dataclass type or instance due to installed triton version 3.2.0 (https://github.com/pytorch/
xla/issues/8560). To work-around, please remove the installed triton package or downgrade to triton==3.1.0 or use the
regular torch 2.5.1 (GPU flavor).

[v2.5] Certain sequence of operations with xm.save() could corrupt tensors

When using the xm.save function to save tensors, please use xm.mark_step() before xm.save to avoid the error
described in https://github.com/pytorch/xla/issues/8422 where parameter aliasing could corrupt other tensor values.
This issue will be fixed in a future release.

(Here xm is torch_xla.core.xla_model following PyTorch/XLA convention)

[v2.6] Lower BERT pretraining performance with torch-neuronx 2.6 compared to torch-neuronx 2.5

Currently, BERT pretraining performance is ~10% lower with torch-neuronx 2.6 compared to torch-neuronx 2.5. This
is due to a known regression in torch-xla https://github.com/pytorch/xla/issues/9037 and can affect other models with
high graph tracing overhead. To work-around this issue, please build the r2.6_aws_neuron branch of torch-xla as
follows (see:ref:pytorch-neuronx-install-cxx11 for C++11 ABI version):

# Setup build env (make sure you are in a python virtual env). Replace "apt" with "yum"␣
→˓on AL2023.
sudo apt install cmake
pip install yapf==0.30.0
wget https://github.com/bazelbuild/bazelisk/releases/download/v1.20.0/bazelisk-linux-
→˓amd64
sudo cp bazelisk-linux-amd64 /usr/local/bin/bazel
# Clone repos
git clone --recursive https://github.com/pytorch/pytorch --branch v2.6.0
cd pytorch/
git clone --recursive https://github.com/pytorch/xla.git --branch r2.6_aws_neuron
_GLIBCXX_USE_CXX11_ABI=0 python setup.py bdist_wheel
# pip wheel will be present in ./dist
cd xla/
CXX_ABI=0 python setup.py bdist_wheel
# pip wheel will be present in ./dist and can be installed instead of the torch-xla␣
→˓released in pypi.org

Lower BERT pretraining performance when switch to using model.to(torch.bfloat16)

Currently, BERT pretraining performance is ~11% lower when switching to using model.to(torch.bfloat16) as
part of migration away from the deprecated environment variable XLA_DOWNCAST_BF16 due to https://github.com/
pytorch/xla/issues/8545. As a work-around to recover the performance, you can set XLA_DOWNCAST_BF16=1 which
would still work in torch-neuronx 2.5 and 2.6 although there will be deprecation warnings (as noted below).
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Warning “XLA_DOWNCAST_BF16 will be deprecated after the 2.5 release, please downcast your
model directly”

Environment variables XLA_DOWNCAST_BF16 and XLA_USE_BF16 are deprecated (warning when used). Please switch
to automatic mixed-precision or use model.to(torch.bfloat16) command to cast model to BF16. (see migra-
tion_from_xla_downcast_bf16)

[v2.6] AttributeError: <module ‘torch_xla.core.xla_model’ . . . does not have the attribute
‘xrt_world_size’

This is an error that torch_xla.core.xla_model.xrt_world_size() is removed in torch-xla version 2.7. Please
switch to using torch_xla.runtime.world_size() instead.

[v2.6] AttributeError: <module ‘torch_xla.core.xla_model’ . . . does not have the attribute
‘get_ordinal’

This is an error that torch_xla.core.xla_model.xla_model.get_ordinal() is removed in torch-xla version 2.7.
Please switch to using torch_xla.runtime.global_ordinal() instead.

[v2.5] WARNING:root:torch_xla.core.xla_model.xrt_world_size() will be removed in release 2.7. is
deprecated. Use torch_xla.runtime.world_size instead.

This is a warning that torch_xla.core.xla_model.xrt_world_size()will be removed in a future release. Please
switch to using torch_xla.runtime.world_size() instead.

[v2.5] WARNING:torch_xla.core.xla_model.xla_model.get_ordinal() will be removed in release 2.7. is
deprecated. Use torch_xla.runtime.global_ordinal instead.

This is a warning that torch_xla.core.xla_model.xla_model.get_ordinal() will be removed in a future re-
lease. Please switch to using torch_xla.runtime.global_ordinal() instead.

AttributeError: module ‘torch_xla.runtime’ has no attribute ‘using_pjrt’

In Torch-XLA 2.5, torch_xla.runtime.using_pjrt is removed because PJRT is the sole Torch-XLA runtime. See
commit PR.

Release [2.6.0.2.7.*, 2.5.1.2.7.*]

Date: 5/15/2025
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Summary

• Introducing PyTorch 2.6 Support

• Added support for libneuronxla 2.2.*

• Improved rendezvous performance when a payload is specified (see Resolved Issues below)

• Return non-zero exit code when neuron_parallel_compile encounters compilation failure(s)

• Added torch_neuronx.testing.assert_close, which provides Neuron allclose in an interface similar to
torch.testing.assert_close. Neuron allclose is a modified allclose algorithm that multiples rtol by the
absolute max, rather than by the absolute value. This means Neuron allclose is less strict to account for our hard-
ware. You should use torch_neuronx.testing.assert_close instead of torch.testing.assert_close
to compare tensors that ran on Neuron.

Known limitations

• PyTorch NeuronX currently does not support GSPMD

• PyTorch NeuronX currently does not support torch.compile

• PyTorch NeuronX currently does not support DDP/FSDP

Resolved issues

neuron_parallel_compile returns success after compilation failure(s)

Previously, when running neuron_parallel_compile –command compile with a Neuron Cache that contains known-bad
HLO file, neuron_parallel_compile fails to compile the graph and still returns with exit code 0 / success. This issue is
now fixed in this release.

Neuronx-Distributed Training Llama 3.1 70B 8-node tutorial failed with OSError when the Neuron
Cache is placed on FSx mount

Previously, the Neuronx-Distributed Training Llama 3.1 70B 8-node tutorial failed with OSError (Errno 61) when the
Neuron Cache is placed on FSx mount. This issue is fixed in this release.

Check failed: tensor_data error during when using torch.utils.data.DataLoader with
shuffle=True

Previously, using torch.utils.data.DataLoader with shuffle=True would cause the Check failed:
tensor_data error in synchronize_rng_states (i.e. ZeRO1 tutorial). This issue is fixed in release 2.23 with
the updated rendezvous handling when a payload is specified.
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"EOFError: Ran out of input" or "_pickle.UnpicklingError: invalid load key, '!'" errors dur-
ing Neuron Parallel Compile

Previously, HF Trainer API’s use of XLA function .mesh_reduce causes "EOFError: Ran out of input" or
"_pickle.UnpicklingError: invalid load key, '!'" errors during Neuron Parallel Compile. These errors
are resolved release 2.23 with the updated rendezvous handling when a payload is specified.

Known issues

Please see the Introducing PyTorch 2.6 Support for a full list of known issues with v2.6. Please see the Introducing
PyTorch 2.5 Support for a full list of known issues with v2.5.

Updating Ubuntu OS kernel version from 5.15 to 6.8 may result in lower performance

Currently, when switching Ubuntu OS kernel version from 5.15 to 6.8, you may see performance differences due to the
new kernel scheduler (CFS vs EEVDF). For example, BERT pretraining performance could be lower by up to 10%. You
may try using an older OS kernel or experiment with the kernel real-time scheduler by running sudo chrt --fifo
99 before your command (i.e. sudo chrt --fifo 99 <script>) to improve the performance. Note that adjusting
the real-time scheduler can also result in lower performance.

Tensor split on second dimension of 2D array not working

Currently, when using tensor split operation on a 2D array in the second dimension, the resulting ten-
sors don’t have the expected data (https://github.com/pytorch/xla/issues/8640). The work-around is to set
XLA_DISABLE_FUNCTIONALIZATION=0. Another work-around is to use torch.tensor_split.

[v2.5] Import torch_xla crashed with TypeError: must be called with a dataclass type or
instance with torch-xla 2.5 and torch 2.5.1+cpu (CPU flavor)

When using torch 2.5.1+cpu (CPU flavor) on python 3.10, importing torch_xla crashed with TypeError: must be
called with a dataclass type or instance due to installed triton version 3.2.0 (https://github.com/pytorch/
xla/issues/8560). To work-around, please remove the installed triton package or downgrade to triton==3.1.0 or use the
regular torch 2.5.1 (GPU flavor).

[v2.5] Certain sequence of operations with xm.save() could corrupt tensors

When using the xm.save function to save tensors, please use xm.mark_step() before xm.save to avoid the error
described in https://github.com/pytorch/xla/issues/8422 where parameter aliasing could corrupt other tensor values.
This issue will be fixed in a future release.

(Here xm is torch_xla.core.xla_model following PyTorch/XLA convention)
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[v2.6] Lower BERT pretraining performance with torch-neuronx 2.6 compared to torch-neuronx 2.5

Currently, BERT pretraining performance is ~10% lower with torch-neuronx 2.6 compared to torch-neuronx 2.5. This
is due to a known regression in torch-xla https://github.com/pytorch/xla/issues/9037 and can affect other models with
high graph tracing overhead. To work-around this issue, please build the r2.6_aws_neuron branch of torch-xla as
follows (see:ref:pytorch-neuronx-install-cxx11 for C++11 ABI version):

# Setup build env (make sure you are in a python virtual env). Replace "apt" with "yum"␣
→˓on AL2023.
sudo apt install cmake
pip install yapf==0.30.0
wget https://github.com/bazelbuild/bazelisk/releases/download/v1.20.0/bazelisk-linux-
→˓amd64
sudo cp bazelisk-linux-amd64 /usr/local/bin/bazel
# Clone repos
git clone --recursive https://github.com/pytorch/pytorch --branch v2.6.0
cd pytorch/
git clone --recursive https://github.com/pytorch/xla.git --branch r2.6_aws_neuron
_GLIBCXX_USE_CXX11_ABI=0 python setup.py bdist_wheel
# pip wheel will be present in ./dist
cd xla/
CXX_ABI=0 python setup.py bdist_wheel
# pip wheel will be present in ./dist and can be installed instead of the torch-xla␣
→˓released in pypi.org

Lower BERT pretraining performance when switch to using model.to(torch.bfloat16)

Currently, BERT pretraining performance is ~11% lower when switching to using model.to(torch.bfloat16) as
part of migration away from the deprecated environment variable XLA_DOWNCAST_BF16 due to https://github.com/
pytorch/xla/issues/8545. As a work-around to recover the performance, you can set XLA_DOWNCAST_BF16=1 which
would still work in torch-neuronx 2.5 and 2.6 although there will be deprecation warnings (as noted below).

Warning “XLA_DOWNCAST_BF16 will be deprecated after the 2.5 release, please downcast your
model directly”

Environment variables XLA_DOWNCAST_BF16 and XLA_USE_BF16 are deprecated (warning when used). Please switch
to automatic mixed-precision or use model.to(torch.bfloat16) command to cast model to BF16. (see migra-
tion_from_xla_downcast_bf16)

[v2.6] AttributeError: <module ‘torch_xla.core.xla_model’ . . . does not have the attribute
‘xrt_world_size’

This is an error that torch_xla.core.xla_model.xrt_world_size() is removed in torch-xla version 2.7. Please
switch to using torch_xla.runtime.world_size() instead.
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[v2.6] AttributeError: <module ‘torch_xla.core.xla_model’ . . . does not have the attribute
‘get_ordinal’

This is an error that torch_xla.core.xla_model.xla_model.get_ordinal() is removed in torch-xla version 2.7.
Please switch to using torch_xla.runtime.global_ordinal() instead.

[v2.5] WARNING:root:torch_xla.core.xla_model.xrt_world_size() will be removed in release 2.7. is
deprecated. Use torch_xla.runtime.world_size instead.

This is a warning that torch_xla.core.xla_model.xrt_world_size()will be removed in a future release. Please
switch to using torch_xla.runtime.world_size() instead.

[v2.5] WARNING:torch_xla.core.xla_model.xla_model.get_ordinal() will be removed in release 2.7. is
deprecated. Use torch_xla.runtime.global_ordinal instead.

This is a warning that torch_xla.core.xla_model.xla_model.get_ordinal() will be removed in a future re-
lease. Please switch to using torch_xla.runtime.global_ordinal() instead.

AttributeError: module ‘torch_xla.runtime’ has no attribute ‘using_pjrt’

In Torch-XLA 2.5, torch_xla.runtime.using_pjrt is removed because PJRT is the sole Torch-XLA runtime. See
commit PR.

Release [2.5.1.2.6.0]

Date: 4/3/2025

Summary

Minor bug fixes and enhancements.

Known limitations

• PyTorch NeuronX currently does not support GSPMD

• PyTorch NeuronX currently does not support torch.compile

• PyTorch NeuronX currently does not support DDP/FSDP
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Known issues

Please see the Introducing PyTorch 2.5 Support for a full list of known issues.

Neuronx-Distributed Training Llama 3.1 70B 8-node tutorial failed with OSError when the Neuron
Cache is placed on FSx mount

Currently, the Neuronx-Distributed Training Llama 3.1 70B 8-node tutorial failed with OSError (Errno 61) when the
Neuron Cache is placed on FSx mount:

[rank197]: RuntimeError: Bad StatusOr access: INVALID_ARGUMENT: RunNeuronCCImpl: error␣
→˓condition !(error != 400): <class 'OSError'>: [Errno 61] No data available: '/fsxl/
→˓neuron_cache/neuronxcc-2.16.372.0+4a9b2326/MODULE_3540044791706521849+4eb52b03/model.
→˓neff' -> '/tmp/tmpx7bvfpmm/model.neff'

We found that the error is due to FSx failing during file copy when there are multiple readers (13 workers fail to copy
out of 256). This issue doesn’t affect simpler models like BERT.

To work-around the issue, please use the shared NFS mount (/home directory on a Parallel Cluster) instead of FSx to
store Neuron Cache. This will be fixed in an upcoming release.

Running in-place update operations (e.g. all_reduce) on 0-dimensional tensors result in buffer alias-
ing errors in torch 2.5 and earlier

Torch’s lazy tensor core has a feature where 0-dimensional tensors are stored in a device cache, so scalar constant values
can be transferred once and then reused. The values in the device cache are supposed to be marked read-only and never
participate in parameter aliasing. However, due to a bug in torch-xla 2.5 (#8499), sometimes the read-only flag can be
dropped, allowing these tensors to be donated, resulting in aliasing errors later when the cached value is used again.

A work-around is to avoid using 0-dimensional tensors by changing them to be 1d tensor of length 1 (exam-
ple). If modifying library code is not possible, disable XLA parameter aliasing by setting environment variable
XLA_ENABLE_PARAM_ALIASING=0

Tensor split on second dimension of 2D array not working

Currently, when using tensor split operation on a 2D array in the second dimension, the resulting ten-
sors don’t have the expected data (https://github.com/pytorch/xla/issues/8640). The work-around is to set
XLA_DISABLE_FUNCTIONALIZATION=0.

Import torch_xla crashed with TypeError: must be called with a dataclass type or instance
with torch-xla 2.5 and torch 2.5.1+cpu (CPU flavor)

When using torch 2.5.1+cpu (CPU flavor) on python 3.10, importing torch_xla crashed with TypeError: must be
called with a dataclass type or instance due to installed triton version 3.2.0 (https://github.com/pytorch/
xla/issues/8560). To work-around, please remove the installed triton package or downgrade to triton==3.1.0 or use the
regular torch 2.5.1 (GPU flavor).
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Certain sequence of operations with xm.save() could corrupt tensors

When using the xm.save function to save tensors, please use xm.mark_step() before xm.save to avoid the error
described in https://github.com/pytorch/xla/issues/8422 where parameter aliasing could corrupt other tensor values.
This issue will be fixed in a future release.

(Here xm is torch_xla.core.xla_model following PyTorch/XLA convention)

Lower BERT pretraining performance with torch-neuronx 2.5 compared to torch-neuronx 2.1

Currently, BERT pretraining performance is ~11% lower with torch-neuronx 2.5 compared to torch-neuronx 2.1. This
is due to the switch to using model.to(torch.bfloat16) as part of migration away from the deprecated environment
variable XLA_DOWNCAST_BF16. As a work-around to recover the performance, you can set XLA_DOWNCAST_BF16=1
which would still work in torch-neuronx 2.5 although there will be deprecation warnings (as noted below).

Warning “XLA_DOWNCAST_BF16 will be deprecated after the 2.5 release, please downcast your
model directly”

Environment variables XLA_DOWNCAST_BF16 and XLA_USE_BF16 are deprecated (warning when used). Please switch
to automatic mixed-precision or use model.to(torch.bfloat16) command to cast model to BF16. (see migra-
tion_from_xla_downcast_bf16)

WARNING:root:torch_xla.core.xla_model.xrt_world_size() will be removed in release 2.7. is depre-
cated. Use torch_xla.runtime.world_size instead.

This is a warning that torch_xla.core.xla_model.xrt_world_size()will be removed in a future release. Please
switch to using torch_xla.runtime.world_size() instead.

WARNING:torch_xla.core.xla_model.xla_model.get_ordinal() will be removed in release 2.7. is dep-
recated. Use torch_xla.runtime.global_ordinal instead.

This is a warning that torch_xla.core.xla_model.xla_model.get_ordinal() will be removed in a future re-
lease. Please switch to using torch_xla.runtime.global_ordinal instead.

AttributeError: module ‘torch_xla.runtime’ has no attribute ‘using_pjrt’

In Torch-XLA 2.5, torch_xla.runtime.using_pjrt is removed because PJRT is the sole Torch-XLA runtime. See
commit PR.
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"EOFError: Ran out of input" or "_pickle.UnpicklingError: invalid load key, '!'" errors dur-
ing Neuron Parallel Compile

With PyTorch 2.5 (torch-neuronx), HF Trainer API’s use of XLA function .mesh_reduce causes "EOFError:
Ran out of input" or "_pickle.UnpicklingError: invalid load key, '!'" errors during Neuron Paral-
lel Compile. To work-around this issue, you can add the following code snippet (after python imports) to replace
xm.mesh_reduce with a form that uses xm.all_gather instead of xm.rendezvous() with payload. This will add
additional small on-device graphs (as opposed to the original xm.mesh_reduce which runs on CPU).

import copy
import torch_xla.core.xla_model as xm
def mesh_reduce(tag, data, reduce_fn):

xm.rendezvous(tag)
xdatain = copy.deepcopy(data)
xdatain = xdatain.to("xla")
xdata = xm.all_gather(xdatain, pin_layout=False)
cpu_xdata = xdata.detach().to("cpu")
cpu_xdata_split = torch.split(cpu_xdata, xdatain.shape[0])
xldata = [x for x in cpu_xdata_split]
return reduce_fn(xldata)

xm.mesh_reduce = mesh_reduce

Check failed: tensor_data error during when using torch.utils.data.DataLoader with
shuffle=True

With PyTorch 2.5 (torch-neuronx), using torch.utils.data.DataLoader with shuffle=True would cause the
following error in synchronize_rng_states (i.e. ZeRO1 tutorial):

RuntimeError: torch_xla/csrc/xla_graph_executor.cpp:562 : Check failed: tensor_data

This is due to synchronize_rng_states using xm.mesh_reduce to synchronize RNG states. xm.mesh_reduce in
turn uses xm.rendezvous() with payload, which as noted in 2.x migration guide, would result in extra graphs that
could lead to lower performance due to change in xm.rendezvous() in torch-xla 2.x. In the case of ZeRO1 tutorial,
using xm.rendezvous() with payload also lead to the error above. This limitation will be fixed in an upcoming re-
lease. For now, to work around the issue, please disable shuffle in DataLoader when NEURON_EXTRACT_GRAPHS_ONLY
environment is set automatically by Neuron Parallel Compile:

train_dataloader = DataLoader(
train_dataset, shuffle=(os.environ.get("NEURON_EXTRACT_GRAPHS_ONLY", None) == None),␣

→˓collate_fn=default_data_collator, batch_size=args.per_device_train_batch_size
)

Additionally, as in the previous section, you can add the following code snippet (after python imports) to replace
xm.mesh_reduce with a form that uses xm.all_gather instead of xm.rendezvous() with payload. This will add
additional small on-device graphs (as opposed to the original xm.mesh_reduce which runs on CPU).

import copy
import torch_xla.core.xla_model as xm
def mesh_reduce(tag, data, reduce_fn):

xm.rendezvous(tag)
xdatain = copy.deepcopy(data)
xdatain = xdatain.to("xla")

(continues on next page)
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(continued from previous page)

xdata = xm.all_gather(xdatain, pin_layout=False)
cpu_xdata = xdata.detach().to("cpu")
cpu_xdata_split = torch.split(cpu_xdata, xdatain.shape[0])
xldata = [x for x in cpu_xdata_split]
return reduce_fn(xldata)

xm.mesh_reduce = mesh_reduce

Compiler assertion error when running Stable Diffusion training

Currently, with PyTorch 2.5 (torch-neuronx), we are seeing the following compiler assertion error with Stable Diffusion
training when gradient accumulation is enabled. This will be fixed in an upcoming release. For now, if you would like
to run Stable Diffusion training with Neuron SDK release 2.21, please disable gradient accumulation in torch-neuronx
2.5.

ERROR 222163 [NeuronAssert]: Assertion failure in usr/lib/python3.8/concurrent/futures/
→˓process.py at line 239 with exception:
too many partition dims! {{0,+,960}[10],+,10560}[10]

Release [2.5.1.2.4.0]

Date: 12/20/2024

Summary

• Introducing PyTorch 2.5 Support

• Added support for Trainium2

• Added support for C++11 ABI

• Added support for Neuron Profiler 2.0

• Added support for libneuronxla 2.1.*

• Supported Python versions: 3.9, 3.10, 3.11

Known limitations

• PyTorch NeuronX currently does not support GSPMD

• PyTorch NeuronX currently does not support torch.compile

• PyTorch NeuronX currently does not support DDP/FSDP
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Known issues

Please see the Introducing PyTorch 2.5 Support for a full list of known issues.

Tensor split on second dimension of 2D array not working

Currently, when using tensor split operation on a 2D array in the second dimension, the resulting ten-
sors don’t have the expected data (https://github.com/pytorch/xla/issues/8640). The work-around is to set
XLA_DISABLE_FUNCTIONALIZATION=0.

Import torch_xla crashed with TypeError: must be called with a dataclass type or instance
with torch-xla 2.5 and torch 2.5.1+cpu (CPU flavor)

When using torch 2.5.1+cpu (CPU flavor) on python 3.10, importing torch_xla crashed with TypeError: must be
called with a dataclass type or instance due to installed triton version 3.2.0 (https://github.com/pytorch/
xla/issues/8560). To work-around, please remove the installed triton package or downgrade to triton==3.1.0 or use the
regular torch 2.5.1 (GPU flavor).

Certain sequence of operations with xm.save() could corrupt tensors

When using the xm.save function to save tensors, please use xm.mark_step() before xm.save to avoid the error
described in https://github.com/pytorch/xla/issues/8422 where parameter aliasing could corrupt other tensor values.
This issue will be fixed in a future release.

(Here xm is torch_xla.core.xla_model following PyTorch/XLA convention)

Lower BERT pretraining performance with torch-neuronx 2.5 compared to torch-neuronx 2.1

Currently, BERT pretraining performance is ~11% lower with torch-neuronx 2.5 compared to torch-neuronx 2.1. This
is due to the switch to using model.to(torch.bfloat16) as part of migration away from the deprecated environment
variable XLA_DOWNCAST_BF16. As a work-around to recover the performance, you can set XLA_DOWNCAST_BF16=1
which would still work in torch-neuronx 2.5 although there will be deprecation warnings (as noted below).

Warning “XLA_DOWNCAST_BF16 will be deprecated after the 2.5 release, please downcast your
model directly”

Environment variables XLA_DOWNCAST_BF16 and XLA_USE_BF16 are deprecated (warning when used). Please switch
to automatic mixed-precision or use model.to(torch.bfloat16) command to cast model to BF16. (see migra-
tion_from_xla_downcast_bf16)
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WARNING:root:torch_xla.core.xla_model.xrt_world_size() will be removed in release 2.7. is depre-
cated. Use torch_xla.runtime.world_size instead.

This is a warning that torch_xla.core.xla_model.xrt_world_size()will be removed in a future release. Please
switch to using torch_xla.runtime.world_size instead.

WARNING:torch_xla.core.xla_model.xla_model.get_ordinal() will be removed in release 2.7. is dep-
recated. Use torch_xla.runtime.global_ordinal instead.

This is a warning that torch_xla.core.xla_model.xla_model.get_ordinal() will be removed in a future re-
lease. Please switch to using torch_xla.runtime.global_ordinal() instead.

AttributeError: module ‘torch_xla.runtime’ has no attribute ‘using_pjrt’

In Torch-XLA 2.5, torch_xla.runtime.using_pjrt is removed because PJRT is the sole Torch-XLA runtime. See
commit PR.

"EOFError: Ran out of input" or "_pickle.UnpicklingError: invalid load key, '!'" errors dur-
ing Neuron Parallel Compile

With PyTorch 2.5 (torch-neuronx), HF Trainer API’s use of XLA function .mesh_reduce causes "EOFError:
Ran out of input" or "_pickle.UnpicklingError: invalid load key, '!'" errors during Neuron Paral-
lel Compile. To work-around this issue, you can add the following code snippet (after python imports) to replace
xm.mesh_reduce with a form that uses xm.all_gather instead of xm.rendezvous() with payload. This will add
additional small on-device graphs (as opposed to the original xm.mesh_reduce which runs on CPU).

import copy
import torch_xla.core.xla_model as xm
def mesh_reduce(tag, data, reduce_fn):

xm.rendezvous(tag)
xdatain = copy.deepcopy(data)
xdatain = xdatain.to("xla")
xdata = xm.all_gather(xdatain, pin_layout=False)
cpu_xdata = xdata.detach().to("cpu")
cpu_xdata_split = torch.split(cpu_xdata, xdatain.shape[0])
xldata = [x for x in cpu_xdata_split]
return reduce_fn(xldata)

xm.mesh_reduce = mesh_reduce

Check failed: tensor_data error during when using torch.utils.data.DataLoader with
shuffle=True

With PyTorch 2.5 (torch-neuronx), using torch.utils.data.DataLoader with shuffle=True would cause the
following error in synchronize_rng_states (i.e. ZeRO1 tutorial):

RuntimeError: torch_xla/csrc/xla_graph_executor.cpp:562 : Check failed: tensor_data

This is due to synchronize_rng_states using xm.mesh_reduce to synchronize RNG states. xm.mesh_reduce in
turn uses xm.rendezvous() with payload, which as noted in 2.x migration guide, would result in extra graphs that
could lead to lower performance due to change in xm.rendezvous() in torch-xla 2.x. In the case of ZeRO1 tutorial,
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using xm.rendezvous() with payload also lead to the error above. This limitation will be fixed in an upcoming re-
lease. For now, to work around the issue, please disable shuffle in DataLoader when NEURON_EXTRACT_GRAPHS_ONLY
environment is set automatically by Neuron Parallel Compile:

train_dataloader = DataLoader(
train_dataset, shuffle=(os.environ.get("NEURON_EXTRACT_GRAPHS_ONLY", None) == None),␣

→˓collate_fn=default_data_collator, batch_size=args.per_device_train_batch_size
)

Additionally, as in the previous section, you can add the following code snippet (after python imports) to replace
xm.mesh_reduce with a form that uses xm.all_gather instead of xm.rendezvous() with payload. This will add
additional small on-device graphs (as opposed to the original xm.mesh_reduce which runs on CPU).

import copy
import torch_xla.core.xla_model as xm
def mesh_reduce(tag, data, reduce_fn):

xm.rendezvous(tag)
xdatain = copy.deepcopy(data)
xdatain = xdatain.to("xla")
xdata = xm.all_gather(xdatain, pin_layout=False)
cpu_xdata = xdata.detach().to("cpu")
cpu_xdata_split = torch.split(cpu_xdata, xdatain.shape[0])
xldata = [x for x in cpu_xdata_split]
return reduce_fn(xldata)

xm.mesh_reduce = mesh_reduce

Compiler assertion error when running Stable Diffusion training

Currently, with PyTorch 2.5 (torch-neuronx), we are seeing the following compiler assertion error with Stable Diffusion
training when gradient accumulation is enabled. This will be fixed in an upcoming release. For now, if you would like
to run Stable Diffusion training with Neuron SDK release 2.21/2.22, please disable gradient accumulation in torch-
neuronx 2.5.

ERROR 222163 [NeuronAssert]: Assertion failure in usr/lib/python3.8/concurrent/futures/
→˓process.py at line 239 with exception:
too many partition dims! {{0,+,960}[10],+,10560}[10]

Release [2.1.2.2.4.0]

Date: 12/xx/2024

Summary

• Added support for Trainium2

• Added support for C++11 ABI

• Added support for Neuron Profiler 2.0

• Added support for libneuronxla 2.1.*
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Note: The CVEs CVE-2024-31583 and CVE-2024-31580 affect PyTorch versions 2.1 and earlier. Based on Amazon’s
analysis, executing models on Trainium and Inferentia is not exposed to either of these vulnerabilities. We recommend
upgrading to the new version of Torch-NeuronX by following the Neuron setup instruction.

Release [1.13.1.1.16.0]

Date: 12/xx/2024

Summary

Minor updates

Note: Torch NeuronX 1.13 currently does not support Trainium2.

Note: The CVEs CVE-2024-31583 and CVE-2024-31580 affect PyTorch versions 2.1 and earlier. Based on Amazon’s
analysis, executing models on Trainium and Inferentia is not exposed to either of these vulnerabilities. We recommend
upgrading to the new version of Torch-NeuronX by following the Neuron setup instruction.

Release [2.1.2.2.3.2]

Date: 11/20/2024

Summary

This patch narrows the range of dependent libneuronxla versions to support minor version bumps and fixes the “list
index out of range” error when using the Zero Redundancy Optimizer (ZeRO1) checkpoint loading.

Release [2.1.2.2.3.1]

Date: 10/25/2024

Summary

This patch release removes the excessive lock wait time during neuron_parallel_compile graph extraction for large
cluster training.
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Release [2.1.2.2.3.0]

Date: 09/16/2024

Summary

This release adds support for Neuron Kernel Interface (NKI), Python 3.11, and protobuf versions 3.20+, as well as
improved BERT performance.

What’s new in this release

• Added support for Neuron Kernel Interface (NKI). Please see NKI documentation for more information.

• Added support for Python 3.11.

• Added support for protobuf versions 3.20+.

• (Training) Increased performance for BERT-Large pretraining by changing
NEURON_TRANSFER_WITH_STATIC_RING_OPS default.

• (Training) Improved Neuron Cache locking mechanism for better Neuron Cache performance during multi-node
training

• (Inference) Added support for weight separated models for DataParallel class.

Known limitations

The following features are not yet supported in this version of Torch-Neuronx 2.1: * (Training) GSPMD * (Train-
ing/Inference) TorchDynamo (torch.compile) * (Training) DDP/FSDP

Resolved Issues

Better performance for BERT-Large pretraining

Currently we see about 20% better trn1.32xlarge performance for BERT-Large BF16 pre-training with PyTorch 2.1
(torch-neuronx) when NEURON_TRANSFER_WITH_STATIC_RING_OPS="Embedding" (the new default) instead of the
previous default "Embedding,LayerNorm,Linear,Conv2d,BatchNorm2d". No action is needed from users when
using release 2.20’s torch-neuronx which includes the new default. See list of environment variables regarding infor-
mation about NEURON_TRANSFER_WITH_STATIC_RING_OPS.

Known issues

Please see the Introducing PyTorch 2.1 Support for a full list of known issues.
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Error cannot import name 'builder' from 'google.protobuf.internal' after installing compiler
from earlier releases (2.19 or earlier)

When using torch-neuronx from Neuron SDK release 2.20 and installing the compiler from an earlier release (Neuron
SDK release 2.19 or earlier), you may encounter the error ImportError: cannot import name 'builder' from
'google.protobuf.internal. This issue is caused by the compiler’s dependency on protobuf version 3.19 in the
Neuron SDK release 2.19 or earlier.

To work-around this issue, please install protobuf 3.20.3:

pip install protobuf==3.20.3

Ignore the pip dependency check error that may occur due to the earlier compiler’s dependency on protobuf version
3.19.

Lower accuracy when fine-tuning Roberta

In the current Neuron SDK release 2.20, we have observed lower accuracy (68% vs expected 89%) when fine-tuning
the RoBERTa-large model on the MRPC dataset. This issue will be addressed in a future release.

To work around this problem, you can use the compiler from Neuron SDK release 2.19, while also installing the correct
version of the protobuf library. Run the following command:

python3 -m pip install neuronx-cc==2.14.227.0+2d4f85be protobuf==3.20.3

Please note the protobuf version requirement mentioned in the previous section, as it is necessary to address the com-
patibility issue between the Neuron SDK 2.19 compiler and the protobuf library.

Slower loss convergence for NxD LLaMA-3 70B pretraining using ZeRO1 tutorial

Currently, with PyTorch 2.1 (torch-neuronx), we see slower loss convergence in the LLaMA-3 70B tutorial for neuronx-
distributed when using the recommended flags (NEURON_CC_FLAGS="--distribution-strategy llm-training
--model-type transformer"). To work-around this issue, please only use --model-type transformer flag
(NEURON_CC_FLAGS="--model-type transformer").

GlibC error on Amazon Linux 2

If using PyTorch 2.1 (torch-neuronx) on Amazon Linux 2, you will see a GlibC error below. Please switch to a newer
supported OS such as Ubuntu 20, Ubuntu 22, or Amazon Linux 2023.

ImportError: /lib64/libc.so.6: version `GLIBC_2.27' not found (required by /tmp/debug/_
→˓XLAC.cpython-38-x86_64-linux-gnu.so)
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"EOFError: Ran out of input" or "_pickle.UnpicklingError: invalid load key, '!'" errors dur-
ing Neuron Parallel Compile

With PyTorch 2.1 (torch-neuronx), HF Trainer API’s use of XLA function .mesh_reduce causes "EOFError:
Ran out of input" or "_pickle.UnpicklingError: invalid load key, '!'" errors during Neuron Paral-
lel Compile. To work-around this issue, you can add the following code snippet (after python imports) to replace
xm.mesh_reduce with a form that uses xm.all_gather instead of xm.rendezvous() with payload. This will add
additional small on-device graphs (as opposed to the original xm.mesh_reduce which runs on CPU).

import copy
import torch_xla.core.xla_model as xm
def mesh_reduce(tag, data, reduce_fn):

xm.rendezvous(tag)
xdatain = copy.deepcopy(data)
xdatain = xdatain.to("xla")
xdata = xm.all_gather(xdatain, pin_layout=False)
cpu_xdata = xdata.detach().to("cpu")
cpu_xdata_split = torch.split(cpu_xdata, xdatain.shape[0])
xldata = [x for x in cpu_xdata_split]
return reduce_fn(xldata)

xm.mesh_reduce = mesh_reduce

Check failed: tensor_data error during when using torch.utils.data.DataLoader with
shuffle=True

With PyTorch 2.1 (torch-neuronx), using torch.utils.data.DataLoader with shuffle=True would cause the
following error in synchronize_rng_states (i.e. ZeRO1 tutorial):

RuntimeError: torch_xla/csrc/xla_graph_executor.cpp:562 : Check failed: tensor_data

This is due to synchronize_rng_states using xm.mesh_reduce to synchronize RNG states. xm.mesh_reduce in
turn uses xm.rendezvous() with payload, which as noted in 2.x migration guide, would result in extra graphs that
could lead to lower performance due to change in xm.rendezvous() in torch-xla 2.x. In the case of ZeRO1 tutorial,
using xm.rendezvous() with payload also lead to the error above. This limitation will be fixed in an upcoming re-
lease. For now, to work around the issue, please disable shuffle in DataLoader when NEURON_EXTRACT_GRAPHS_ONLY
environment is set automatically by Neuron Parallel Compile:

train_dataloader = DataLoader(
train_dataset, shuffle=(os.environ.get("NEURON_EXTRACT_GRAPHS_ONLY", None) == None),␣

→˓collate_fn=default_data_collator, batch_size=args.per_device_train_batch_size
)

Additionally, as in the previous section, you can add the following code snippet (after python imports) to replace
xm.mesh_reduce with a form that uses xm.all_gather instead of xm.rendezvous() with payload. This will add
additional small on-device graphs (as opposed to the original xm.mesh_reduce which runs on CPU).

import copy
import torch_xla.core.xla_model as xm
def mesh_reduce(tag, data, reduce_fn):

xm.rendezvous(tag)
xdatain = copy.deepcopy(data)
xdatain = xdatain.to("xla")

(continues on next page)
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(continued from previous page)

xdata = xm.all_gather(xdatain, pin_layout=False)
cpu_xdata = xdata.detach().to("cpu")
cpu_xdata_split = torch.split(cpu_xdata, xdatain.shape[0])
xldata = [x for x in cpu_xdata_split]
return reduce_fn(xldata)

xm.mesh_reduce = mesh_reduce

Compiler error when torch_neuronx.xla_impl.ops.set_unload_prior_neuron_models_mode(True)

Currently with PyTorch 2.1 (torch-neuronx), using the torch_neuronx.xla_impl.ops.
set_unload_prior_neuron_models_mode(True) (as previously done in the ZeRO1 tutorial) to unload graphs
during execution would cause a compilation error Expecting value: line 1 column 1 (char 0). You can
remove this line as it is not recommended for use. Please see the updated ZeRO1 tutorial in release 2.18.

Compiler assertion error when running Stable Diffusion training

Currently, with PyTorch 2.1 (torch-neuronx), we are seeing the following compiler assertion error with Stable Diffusion
training when gradient accumulation is enabled. This will be fixed in an upcoming release. For now, if you would like to
run Stable Diffusion training with Neuron SDK release 2.18, please use torch-neuronx==1.13.* or disable gradient
accumulation in torch-neuronx 2.1.

ERROR 222163 [NeuronAssert]: Assertion failure in usr/lib/python3.8/concurrent/futures/
→˓process.py at line 239 with exception:
too many partition dims! {{0,+,960}[10],+,10560}[10]

Release [1.13.1.1.16.0]

Date: 09/16/2024

Summary

This release adds support for Neuron Kernel Interface (NKI), Python 3.11, and protobuf versions 3.20+.

What’s new in this release

• Added support for Neuron Kernel Interface (NKI). Please see NKI documentation for more information.

• Added support for Python 3.11.

• Added support for protobuf versions 3.20+.

• (Inference) Added support for weight separated models for DataParallel class.
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Known Issues and Limitations

Error cannot import name 'builder' from 'google.protobuf.internal' after installing compiler
from earlier releases (2.19 or earlier)

When using torch-neuronx from Neuron SDK release 2.20 and installing the compiler from an earlier release (Neuron
SDK release 2.19 or earlier), you may encounter the error ImportError: cannot import name 'builder' from
'google.protobuf.internal. This issue is caused by the compiler’s dependency on protobuf version 3.19 in the
Neuron SDK release 2.19 or earlier.

To work-around this issue, please install protobuf 3.20.3:

pip install protobuf==3.20.3

Ignore the pip dependency check error that may occur due to the earlier compiler’s dependency on protobuf version
3.19.

Hang while training Stable Diffusion v1.5 with PyTorch 1.13 (torch-neuronx)

In this release, training Stable Diffusion v1.5 at 512x512 resolution using PyTorch 1.13 (torch-neuronx) currently
results in a hang. The fix will be available in an upcoming release. To work-around, you can install compiler from
release 2.19 (noting the protobuf issue mentioned above).

python3 -m pip install neuronx-cc==2.14.227.0+2d4f85be protobuf==3.20.3

Stable Diffusion v2.1 training is unaffected.

Memory leaking in glibc

glibc malloc memory leaks affect Neuron and may be temporarily limited by setting MALLOC_ARENA_MAX or using
jemalloc library (see https://github.com/aws-neuron/aws-neuron-sdk/issues/728).

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data

Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in the
runtime, and you may see errors that look like this:

bootstrap.cc:86 CCOM WARN Call to accept failed : Too many open files``.

Hence, it is recommended to use fewer workers per node with DDP.
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Known Issues and Limitations (Inference)

Torchscript serialization error with compiled artifacts larger than 4GB

When using torch_neuronx.trace(), compiled artifacts which exceed 4GB cannot be serialized. Serializing the
torchscript artifact will trigger a segfault. This issue is resolved in torch but is not yet released: https://github.com/
pytorch/pytorch/pull/99104

Release [2.1.2.2.2.0]

Date: 07/03/2024

Summary

What’s new in this release

• Improvements in ZeRO1 to have FP32 master weights support and BF16 all-gather

• Added custom SILU enabled via NEURON_CUSTOM_SILU environment variable

• Neuron Parallel Compile now handle non utf-8 characters in trial-run log and reports compilation time results
when enabled with NEURON_PARALLEL_COMPILE_DUMP_RESULTS

• Support for using DummyStore during PJRT process group initialization by setting
TORCH_DIST_INIT_BARRIER=0 and XLA_USE_DUMMY_STORE=1

Known limitations

The following features are not yet supported in this version of Torch-Neuronx 2.1: * (Training) GSPMD * (Train-
ing/Inference) TorchDynamo (torch.compile) * (Training) DDP/FSDP

Resolved Issues

Resolved an issue with slower loss convergence for GPT-2 pretraining using ZeRO1 tutorial

Previously with PyTorch 2.1 (torch-neuronx), we see slower loss convergence in the ZeRO1 tutorial. This is-
sue is now resolved. Customer can now run the tutorial with the recommended flags (NEURON_CC_FLAGS=
"--distribution-strategy llm-training --model-type transformer").

Resolved an issue with slower loss convergence for NxD LLaMA-2 70B pretraining using ZeRO1
tutorial

Previously with PyTorch 2.1 (torch-neuronx), we see slower loss convergence in the LLaMA-2 70B tutorial for
neuronx-distributed. This issue is now resolved. Customer can now run the tutorial with the recommended flags
(NEURON_CC_FLAGS="--distribution-strategy llm-training --model-type transformer") and turning
on functionalization (XLA_DISABLE_FUNCTIONALIZATION=0). Turning on functionalization results in slightly higher
device memory usage and ~11% lower in performance due to a known issue with torch-xla 2.1 (https://github.
com/pytorch/xla/issues/7174). The higher device memory usage also limits LLaMA-2 70B tutorial to run on 16
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trn1.32xlarge nodes at the minimum, and running on 8 nodes would result in out-of-memory error. See the list of
environment variables for more information about XLA_DISABLE_FUNCTIONALIZATION.

Resolved an issue where upon a compiler error during XLA JIT execution, the framework process
exits with a stack dump followed by a core dump

Previously, when there’s a compiler error during XLA JIT execution, the framework process exits with a stack dump
following by a core dump:

2024-06-10 04:31:49.733004: F ./torch_xla/csrc/runtime/debug_macros.h:20] Non-OK-status:␣
→˓status.status() status: INTERNAL: RunNeuronCCImpl: error condition error != 0: <class
→˓'subprocess.CalledProcessError'>: Command '' died with <Signals.SIGHUP: 1>.
*** Begin stack trace ***

tsl::CurrentStackTrace()
std::unique_ptr<xla::PjRtLoadedExecutable, std::default_delete<xla::

→˓PjRtLoadedExecutable> > ConsumeValue<std::unique_ptr<xla::PjRtLoadedExecutable, std::
→˓default_delete<xla::PjRtLoadedExecutable> > >(absl::lts_20230125::StatusOr<std::unique_
→˓ptr<xla::PjRtLoadedExecutable, std::default_delete<xla::PjRtLoadedExecutable> > >&&)

torch_xla::runtime::PjRtComputationClient::Compile(std::vector<torch_xla::
→˓runtime::ComputationClient::CompileInstance, std::allocator<torch_xla::runtime::
→˓ComputationClient::CompileInstance> >)

...
Py_RunMain
Py_BytesMain
_start

*** End stack trace ***
Aborted (core dumped)

This is now fixed so that the above error is more succinct:

RuntimeError: Bad StatusOr access: INTERNAL: RunNeuronCCImpl: error condition error != 0:
→˓ <class 'subprocess.CalledProcessError'>: Command '' died with <Signals.SIGHUP: 1>.

Resolved an issue where S3 caching during distributed training can lead to S3 throttling error

When using S3 location as Neuron Cache path (specified via NEURON_COMPILE_CACHE_URL or –cache_dir
option in NEURON_CC_FLAGS), you may get the error An error occurred (SlowDown) when calling the
PutObject operation as in:

2024-04-18 01:51:38.231524: F ./torch_xla/csrc/runtime/debug_macros.h:20] Non-OK-status:␣
→˓status.status() status: INVALID_ARGUMENT: RunNeuronCCImpl: error condition !(error !=␣
→˓400): <class 'boto3.exceptions.S3UploadFailedError'>: Failed to upload /tmp/
→˓tmp4d8d4r2d/model.hlo to bucket/llama-compile-cache/neuronxcc-2.13.68.0+6dfecc895/
→˓MODULE_9048582265414220701+5d2d81ce/model.hlo_module.pb: An error occurred (SlowDown)␣
→˓when calling the PutObject operation (reached max retries: 4): Please reduce your␣
→˓request rate.

This issue is now resolved in release 2.19.
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Resolved error “ImportError: cannot import name ‘packaging’ from ‘pkg_resources’” when using
latest setuptools version 70

As reported in https://github.com/aws-neuron/aws-neuron-sdk/issues/893, When running examples in environment
where the latest setuptools version 70 is installed, you may get the following error:

ImportError: cannot import name 'packaging' from 'pkg_resources' (/home/ubuntu/aws_
→˓neuron_venv_pytorch/lib/python3.8/site-packages/pkg_resources/__init__.py)

In release 2.19 torch-neuronx now depends on setuptools version <= 69.5.1.

Resolved compiler assertion error when training using Hugging Face deepmind/language-perceiver
model

The follow assertion error when training with Hugging Face deepmind/language-perceivermodel is now resolved
in release 2.19 compiler:

ERROR 176659 [NeuronAssert]: Assertion failure in usr/lib/python3.8/multiprocessing/
→˓process.py at line 108 with exception:
Unsupported batch-norm-training op: tensor_op_name: _batch-norm-training.852 | hlo_id:␣
→˓852| file_name: | Line: 0 | Column: 0 | .

Resolved lower accuracy for BERT-base finetuning using HF Trainer API

With release 2.19 compiler, the MRPC dataset accuracy for BERT-base finetuning after 5 epochs is now 87% as ex-
pected.

Resolved the issue with increased in Neuron Parallel Compile time

PyTorch 2.1 (torch-neuronx), the time to run Neuron Parallel Compile for some model configuration has decreased.

Known issues

Please see the Introducing PyTorch 2.1 Support for a full list of known issues.

Slower loss convergence for NxD LLaMA-3 70B pretraining using ZeRO1 tutorial

Currently, with PyTorch 2.1 (torch-neuronx), we see slower loss convergence in the LLaMA-3 70B tutorial for neuronx-
distributed when using the recommended flags (NEURON_CC_FLAGS="--distribution-strategy llm-training
--model-type transformer"). To work-around this issue, please only use --model-type transformer flag
(NEURON_CC_FLAGS="--model-type transformer").

132 Chapter 2. ML Frameworks

https://github.com/aws-neuron/aws-neuron-sdk/issues/893


AWS Neuron

Gradient accumulation is not yet supported for Stable Diffusion due to a compiler error

Currently, with PyTorch 2.1 (torch-neuronx), we are seeing a compiler assertion error with Stable Diffusion training
when gradient accumulation is enabled. To train Stable Diffusion with gradient accumulation, please use PyTorch 1.13
(torch-neuronx) instead of PyTorch 2.1 (torch-neuronx).

Enabling functionalization (XLA_DISABLE_FUNCTIONALIZATION=0) results in 15% lower performance
and non-convergence for the BERT pretraining tutorial

Currently, with PyTorch 2.1 (torch-neuronx), enabling functionalization (XLA_DISABLE_FUNCTIONALIZATION=0)
would result in 15% lower performance and non-convergence for the BERT pretraining tutorial. The lower perfor-
mance is due to missing aliasing for gradient accumulation and is a known issue with torch-xla 2.1 (https://github.
com/pytorch/xla/issues/7174). The non-convergence is due to an issue in marking weights as static (buffer address
not changing), which can be worked around by setting NEURON_TRANSFER_WITH_STATIC_RING_OPS to empty string
(NEURON_TRANSFER_WITH_STATIC_RING_OPS="". See the list of environment variables for more information about
XLA_DISABLE_FUNCTIONALIZATION. and NEURON_TRANSFER_WITH_STATIC_RING_OPS.

export NEURON_TRANSFER_WITH_STATIC_RING_OPS=""

GlibC error on Amazon Linux 2

If using PyTorch 2.1 (torch-neuronx) on Amazon Linux 2, you will see a GlibC error below. Please switch to a newer
supported OS such as Ubuntu 20, Ubuntu 22, or Amazon Linux 2023.

ImportError: /lib64/libc.so.6: version `GLIBC_2.27' not found (required by /tmp/debug/_
→˓XLAC.cpython-38-x86_64-linux-gnu.so)

"EOFError: Ran out of input" or "_pickle.UnpicklingError: invalid load key, '!'" errors dur-
ing Neuron Parallel Compile

With PyTorch 2.1 (torch-neuronx), HF Trainer API’s use of XLA function .mesh_reduce causes "EOFError:
Ran out of input" or "_pickle.UnpicklingError: invalid load key, '!'" errors during Neuron Paral-
lel Compile. To work-around this issue, you can add the following code snippet (after python imports) to replace
xm.mesh_reduce with a form that uses xm.all_gather instead of xm.rendezvous() with payload. This will add
additional small on-device graphs (as opposed to the original xm.mesh_reduce which runs on CPU).

import copy
import torch_xla.core.xla_model as xm
def mesh_reduce(tag, data, reduce_fn):

xm.rendezvous(tag)
xdatain = copy.deepcopy(data)
xdatain = xdatain.to("xla")
xdata = xm.all_gather(xdatain, pin_layout=False)
cpu_xdata = xdata.detach().to("cpu")
cpu_xdata_split = torch.split(cpu_xdata, xdatain.shape[0])
xldata = [x for x in cpu_xdata_split]
return reduce_fn(xldata)

xm.mesh_reduce = mesh_reduce
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Check failed: tensor_data error during when using torch.utils.data.DataLoader with
shuffle=True

With PyTorch 2.1 (torch-neuronx), using torch.utils.data.DataLoader with shuffle=True would cause the
following error in synchronize_rng_states (i.e. ZeRO1 tutorial):

RuntimeError: torch_xla/csrc/xla_graph_executor.cpp:562 : Check failed: tensor_data

This is due to synchronize_rng_states using xm.mesh_reduce to synchronize RNG states. xm.mesh_reduce
in turn uses xm.rendezvous() with payload, which results in extra graphs that could lead to lower performance
due to change in xm.rendezvous() in torch-xla 2.x. In the case of ZeRO1 tutorial, using xm.rendezvous() with
payload also lead to the error above. This limitation will be fixed in an upcoming release. For now, to work around the
issue, please disable shuffle in DataLoader when NEURON_EXTRACT_GRAPHS_ONLY environment is set automatically
by Neuron Parallel Compile:

train_dataloader = DataLoader(
train_dataset, shuffle=(os.environ.get("NEURON_EXTRACT_GRAPHS_ONLY", None) == None),␣

→˓collate_fn=default_data_collator, batch_size=args.per_device_train_batch_size
)

Additionally, as in the previous section, you can add the following code snippet (after python imports) to replace
xm.mesh_reduce with a form that uses xm.all_gather instead of xm.rendezvous() with payload. This will add
additional small on-device graphs (as opposed to the original xm.mesh_reduce which runs on CPU).

import copy
import torch_xla.core.xla_model as xm
def mesh_reduce(tag, data, reduce_fn):

xm.rendezvous(tag)
xdatain = copy.deepcopy(data)
xdatain = xdatain.to("xla")
xdata = xm.all_gather(xdatain, pin_layout=False)
cpu_xdata = xdata.detach().to("cpu")
cpu_xdata_split = torch.split(cpu_xdata, xdatain.shape[0])
xldata = [x for x in cpu_xdata_split]
return reduce_fn(xldata)

xm.mesh_reduce = mesh_reduce

Compiler error when torch_neuronx.xla_impl.ops.set_unload_prior_neuron_models_mode(True)

Currently with PyTorch 2.1 (torch-neuronx), using the torch_neuronx.xla_impl.ops.
set_unload_prior_neuron_models_mode(True) (as previously done in the ZeRO1 tutorial) to unload graphs
during execution would cause a compilation error Expecting value: line 1 column 1 (char 0). You can
remove this line as it is not recommended for use. Please see the updated ZeRO1 tutorial in release 2.18.
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Compiler assertion error when running Stable Diffusion training

Currently, with PyTorch 2.1 (torch-neuronx), we are seeing the following compiler assertion error with Stable Diffusion
training when gradient accumulation is enabled. This will be fixed in an upcoming release. For now, if you would like to
run Stable Diffusion training with Neuron SDK release 2.18, please use torch-neuronx==1.13.* or disable gradient
accumulation in torch-neuronx 2.1.

ERROR 222163 [NeuronAssert]: Assertion failure in usr/lib/python3.8/concurrent/futures/
→˓process.py at line 239 with exception:
too many partition dims! {{0,+,960}[10],+,10560}[10]

Lower performance for BERT-Large

Currently we see 8% less performance when running the BERT-Large pre-training tutorial with PyTorch 2.1 (torch-
neuronx) as compared to PyTorch 1.13 (torch-neuronx).

Release [1.13.1.1.15.0]

Date: 07/03/2024

Summary

What’s new in this release

Improvements in ZeRO1 to have FP32 master weights support and BF16 all-gather Added custom SILU enabled via
NEURON_CUSTOM_SILU environment variable Neuron Parallel Compile now handle non utf-8 characters in trial-run log
and reports compilation time results when enabled with NEURON_PARALLEL_COMPILE_DUMP_RESULTS

Resolved Issues

Known Issues and Limitations

Memory leaking in glibc

glibc malloc memory leaks affect Neuron and may be temporarily limited by setting MALLOC_ARENA_MAX or using
jemalloc library (see https://github.com/aws-neuron/aws-neuron-sdk/issues/728).

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data
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Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in the
runtime, and you may see errors that look like this:

bootstrap.cc:86 CCOM WARN Call to accept failed : Too many open files``.

Hence, it is recommended to use fewer workers per node with DDP.

Known Issues and Limitations (Inference)

Torchscript serialization error with compiled artifacts larger than 4GB

When using torch_neuronx.trace(), compiled artifacts which exceed 4GB cannot be serialized. Serializing the
torchscript artifact will trigger a segfault. This issue is resolved in torch but is not yet released: https://github.com/
pytorch/pytorch/pull/99104

Release [2.1.2.2.1.0]

Date: 04/01/2024

Summary

This release of 2.1 includes support for Neuron Profiler, multi-instance distributed training, Nemo Megatron, and
HuggingFace Trainer API.

What’s new in this release

In addition to previously supported features (Transformers-NeuronX, Torch-NeuronX Trace API, Torch-NeuronX train-
ing, NeuronX Distributed training), PyTorch 2.1 (torch-neuronx) now includes support for:

• (Inference) NeuronX Distributed inference

• (Training/Inference) Neuron Profiler

• (Training) Multi-instance distributed training

• (Training) Nemo Megatron

• (Training) analyze feature in neuron_parallel_compile

• (Training) HuggingFace Trainer API

Additionally, auto-bucketing is a new feature for torch-neuronx and Neuronx-Distributed allowing users to define bucket
models that can be serialized into a single model for multi-shape inference.
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Known limitations

The following features are not yet supported in this version of PyTorch 2.1 (torch-neuronx):

• (Training) GSPMD

• (Training) TorchDynamo (torch.compile)

• (Training) DDP/FSDP

• (Training) S3 caching during distributed training can lead to throttling issues

Resolved issues

“Attempted to access the data pointer on an invalid python storage”

When using Hugging Face Trainer API with transformers version >= 4.35 and < 4.37.3, user would see the error
"Attempted to access the data pointer on an invalid python storage" during model checkpoint sav-
ing. This issue is fixed in transformers version >= 4.37.3. See https://github.com/huggingface/transformers/issues/
27578 for more information.

Too many graph compilations when using HF Trainer API

When using Hugging Face transformers version >= 4.35 and < 4.37.3, user would see many graph compilations (see
https://github.com/aws-neuron/aws-neuron-sdk/issues/813 for more information). To work around this issue, in trans-
formers version >= 4.37.3, user can add the option --save_safetensors False to Trainer API function call and
modify the installed trainer.py as follows (don’t move model to CPU before saving checkpoint):

# Workaround https://github.com/aws-neuron/aws-neuron-sdk/issues/813
sed -i "s/model\.to(\"cpu\")//" `python -c "import site; print(site.getsitepackages()[0])
→˓"`/trainer.py

Divergence (non-convergence) of loss for BERT/LLaMA when using release 2.16 compiler

With release 2.18, the divergence (non-convergence) of BERT/LLaMA loss is resolved. No compiler flag change is
required.

Known Issues

Please see the Introducing PyTorch 2.1 Support for a full list of known issues.
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GlibC error on Amazon Linux 2

If using PyTorch 2.1 (torch-neuronx) on Amazon Linux 2, you will see a GlibC error below. Please switch to a newer
supported OS such as Ubuntu 20, Ubuntu 22, or Amazon Linux 2023.

ImportError: /lib64/libc.so.6: version `GLIBC_2.27' not found (required by /tmp/debug/_
→˓XLAC.cpython-38-x86_64-linux-gnu.so)

"EOFError: Ran out of input" or "_pickle.UnpicklingError: invalid load key, '!'" errors dur-
ing Neuron Parallel Compile

With PyTorch 2.1 (torch-neuronx), HF Trainer API’s use of XLA function .mesh_reduce causes "EOFError:
Ran out of input" or "_pickle.UnpicklingError: invalid load key, '!'" errors during Neuron Paral-
lel Compile. This is an issue with the trial execution of empty NEFFs and should not affect the normal execution of
the training script.

Check failed: tensor_data error during when using torch.utils.data.DataLoader with
shuffle=True

With PyTorch 2.1 (torch-neuronx), using torch.utils.data.DataLoader with shuffle=True would cause the
following error in synchronize_rng_states (i.e. ZeRO1 tutorial):

RuntimeError: torch_xla/csrc/xla_graph_executor.cpp:562 : Check failed: tensor_data

This is due to synchronize_rng_states using xm.mesh_reduce to synchronize RNG states. xm.mesh_reduce in
turn uses xm.rendezvous() with payload, which as noted in 2.x migration guide, would result in extra graphs that
could lead to lower performance due to change in xm.rendezvous() in torch-xla 2.x. In the case of ZeRO1 tutorial,
using xm.rendezvous() with payload also lead to the error above. This limitation will be fixed in an upcoming re-
lease. For now, to work around the issue, please disable shuffle in DataLoader when NEURON_EXTRACT_GRAPHS_ONLY
environment is set automatically by Neuron Parallel Compile:

train_dataloader = DataLoader(
train_dataset, shuffle=(os.environ.get("NEURON_EXTRACT_GRAPHS_ONLY", None) == None),␣

→˓collate_fn=default_data_collator, batch_size=args.per_device_train_batch_size
)

Additionally, you can add the following code snippet (after python imports) to replace xm.mesh_reduce with a form
that uses xm.all_gather instead of xm.rendezvous()with payload. This will add additional small on-device graphs
(as opposed to the original xm.mesh_reduce which runs on CPU).

import copy
import torch_xla.core.xla_model as xm
def mesh_reduce(tag, data, reduce_fn):

xm.rendezvous(tag)
xdatain = copy.deepcopy(data)
xdatain = xdatain.to("xla")
xdata = xm.all_gather(xdatain, pin_layout=False)
cpu_xdata = xdata.detach().to("cpu")
cpu_xdata_split = torch.split(cpu_xdata, xdatain.shape[0])
xldata = [x for x in cpu_xdata_split]
return reduce_fn(xldata)

xm.mesh_reduce = mesh_reduce
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Compiler error when torch_neuronx.xla_impl.ops.set_unload_prior_neuron_models_mode(True)

Currently with PyTorch 2.1 (torch-neuronx), using the torch_neuronx.xla_impl.ops.
set_unload_prior_neuron_models_mode(True) (as previously done in the ZeRO1 tutorial) to unload graphs
during execution would cause a compilation error Expecting value: line 1 column 1 (char 0). You can
remove this line as it is not recommended for use. Please see the updated ZeRO1 tutorial in release 2.18.

Compiler assertion error when running Stable Diffusion training

Currently, with PyTorch 2.1 (torch-neuronx), we are seeing the following compiler assertion error with Stable Diffusion
training. This will be fixed in an upcoming release. For now, if you would like to run Stable Diffusion training with
Neuron SDK release 2.18, please use torch-neuronx==1.13.*.

ERROR 222163 [NeuronAssert]: Assertion failure in usr/lib/python3.8/concurrent/futures/
→˓process.py at line 239 with exception:
too many partition dims! {{0,+,960}[10],+,10560}[10]

Compiler assertion error when training using Hugging Face deepmind/language-perceiver model

Currently, with PyTorch 2.1 (torch-neuronx), we are seeing the following compiler assertion error when training with
Hugging Face deepmind/language-perceiver model. This will be fixed in an upcoming release. For now, if you
would like to train Hugging Face deepmind/language-perceiver model with Neuron SDK release 2.18, please use
torch-neuronx==1.13.*.

ERROR 176659 [NeuronAssert]: Assertion failure in usr/lib/python3.8/multiprocessing/
→˓process.py at line 108 with exception:
Unsupported batch-norm-training op: tensor_op_name: _batch-norm-training.852 | hlo_id:␣
→˓852| file_name: | Line: 0 | Column: 0 | .

Lower performance for BERT-Large

Currently we see 8% less performance when running the BERT-Large pre-training tutorial with PyTorch 2.1 (torch-
neuronx) as compared to PyTorch 1.13 (torch-neuronx).

Slower loss convergence for GPT-2 pretraining using ZeRO1 tutorial when using recommended com-
piler flags

Currently with PyTorch 2.1 (torch-neuronx), we see slower loss convergence in the ZeRO1 tutorial when using recom-
mended compiler flags. To work-around this issue and restore faster convergence, please replace the NEURON_CC_FLAGS
as below:

# export NEURON_CC_FLAGS="--retry_failed_compilation --distribution-strategy llm-
→˓training --model-type transformer"
export NEURON_CC_FLAGS="--retry_failed_compilation -O1"
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Slower loss convergence for NxD LLaMA 70B pretraining using ZeRO1 tutorial when using recom-
mended compiler flags

Currently with PyTorch 2.1 (torch-neuronx), we see slower loss convergence in the LLaMA-2 70B tutorial for neuronx-
distributed when using recommended compiler flags. To work-around this issue and restore faster convergence, please
replace the NEURON_CC_FLAGS as below:

# export NEURON_CC_FLAGS="--retry_failed_compilation --distribution-strategy llm-
→˓training --model-type transformer"
export NEURON_CC_FLAGS="--retry_failed_compilation"

Lower accuracy for BERT-base finetuning using HF Trainer API

Currently, with PyTorch 2.1 (torch-neuronx), MRPC dataset accuracy for BERT-base finetuning after 5 epochs is 83%
instead of 87%. A work-around is to remove the option --model-type=transformer from NEURON_CC_FLAGS. This
will be fixed in an upcoming release.

Increased in Neuron Parallel Compile time

Currently, with PyTorch 2.1 (torch-neuronx), the time to run Neuron Parallel Compile for some model configuration
is increased. In one example, the Neuron Parallel Compile time for NeuronX Nemo-Megatron LLaMA 13B is 2x
compared to when using PyTorch 1.13 (torch-neuronx). This will be fixed in an upcoming release.

Release [1.13.1.1.14.0]

Date: 04/01/2024

Summary

Auto-bucketing is a new feature for torch-neuronx and Neuronx-Distributed allowing users to define bucket models
that can be serialized into a single model for multi-shape inference.

Resolved issues

• (Inference) Fixed an issue where transformers-neuronx inference errors could crash the application and cause it
to hang. Inference errors should now correctly throw a runtime exception.

• (Inference/Training) Fixed an issue where torch.argmin() produced incorrect results.

• (Training) neuron_parallel_compile tool now use traceback.print_exc instead of format to support
Python 3.10.

• (Training) Fixed an issue in ZeRO1 when sharded params are initialized with torch.double.
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Known issues and limitations

Memory leaking in glibc

glibc malloc memory leaks affect Neuron and may be temporarily limited by setting MALLOC_ARENA_MAX or using
jemalloc library (see https://github.com/aws-neuron/aws-neuron-sdk/issues/728).

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data

Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in the
runtime, and you may see errors that look like this:

bootstrap.cc:86 CCOM WARN Call to accept failed : Too many open files``.

Hence, it is recommended to use fewer workers per node with DDP.

Known issues and limitations (Inference)

Torchscript serialization error with compiled artifacts larger than 4GB

When using torch_neuronx.trace(), compiled artifacts that exceed 4GB cannot be serialized. Serializing the
TorchScript artifact triggers a segmentation fault. This issue is resolved in PyTorch but is not yet released: https:
//github.com/pytorch/pytorch/pull/99104

Release [2.1.1.2.0.0b0] (Beta)

Date: 12/21/2023

Summary

Introducing the beta release of Torch-NeuronX with PyTorch 2.1 support.
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What’s new in this release

This version of PyTorch 2.1 (torch-neuronx) supports:

• (Inference) Transformers-NeuronX

• (Inference) Torch-NeuronX Trace API

• (Training) NeuronX Distributed training

• (Training) Torch-NeuronX training

• (Training) New snapshotting capability enabled via the XLA_FLAGS environment variable (see debug guide)

Known limitations

The following features are not yet supported in this version of PyTorch 2.1 (torch-neuronx):

• (Training/Inference) Neuron Profiler

• (Inference) NeuronX Distributed inference

• (Training) Nemo Megatron

• (Training) GSPMD

• (Training) TorchDynamo (torch.compile)

• (Training) analyze feature in neuron_parallel_compile

• (Training) HuggingFace Trainer API (see Known Issues below)

Additional limitations are noted in the Known Issues section below.

Known Issues

Please see the Introducing PyTorch 2.1 Support (Beta) for a full list of known issues.

Lower performance for BERT-Large

Currently we see 8% less performance when running the BERT-Large pre-training tutorial with PyTorch 2.1 (torch-
neuronx) as compared to PyTorch 1.13 (torch-neuronx).

Divergence (non-convergence) of loss for BERT/LLaMA when using release 2.16 compiler

Currently, when using release 2.16 compiler version 2.12.54.0+f631c2365, you may see divergence (non-convergence)
of loss curve. To workaround this issue, please use release 2.15 compiler version 2.11.0.35+4f5279863.
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Error “Attempted to access the data pointer on an invalid python storage” when using HF Trainer
API

Currently, if using HuggingFace Transformers Trainer API to train (i.e. HuggingFace Trainer API fine-tuning tutorial),
you may see the error “Attempted to access the data pointer on an invalid python storage”. This is a known issue
https://github.com/huggingface/transformers/issues/27578 and will be fixed in a future release.

Release [1.13.1.1.13.0]

Date: 12/21/2023

Summary

What’s new in this release

• Added Weight Replacement API For Inference)

Resolved issues

• Add bucketting logic to control the size of tensors for all-gather and reduce-scatter

• Fixed ZeRO-1 bug for inferring local ranks in 2-D configuration (https://github.com/pytorch/xla/pull/5936)

Known issues and limitations

Memory leaking in glibc

glibc malloc memory leaks affect Neuron and may be temporarily limited by setting MALLOC_ARENA_MAX or using
jemalloc library (see https://github.com/aws-neuron/aws-neuron-sdk/issues/728).

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data

Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in the
runtime, and you may see errors that look like this:

bootstrap.cc:86 CCOM WARN Call to accept failed : Too many open files``.

Hence, it is recommended to use fewer workers per node with DDP.
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Known issues and limitations (Inference)

torch.argmin() produces incorrect results

torch.argmin() produces incorrect results.

Torchscript serialization error with compiled artifacts larger than 4GB

When using torch_neuronx.trace(), compiled artifacts that exceed 4GB cannot be serialized. Serializing the
TorchScript artifact triggers a segmentation fault. This issue is resolved in PyTorch but is not yet released: https:
//github.com/pytorch/pytorch/pull/99104

Release [2.0.0.2.0.0b0] (Beta)

Date: 10/26/2023

Summary

Introducing the beta release of Torch-NeuronX with PyTorch 2.0 and PJRT support.

What’s new in this release

• Updating from XRT to PJRT runtime. For more info see: <link to intro pjrt doc>

• (Inference) Added the ability to partition unsupported ops to CPU during traced inference (See torch_neuronx.
trace API guide)

Known issues and limitations

• Snapshotting is not supported

• NEURON_FRAMEWORK_DEBUG=1 is not supported

• Analyze in neuron_parallel_compile is not supported

• Neuron Profiler is not supported

• VGG11 with input sizes 300x300 may show accuracy issues

• Possible issues with NeMo Megatron checkpointing

• S3 caching with neuron_parallel_compile may show compilation errors

• Compiling without neuron_parallel_compile on multiple nodes may show compilation errors

• GPT2 inference may show errors with torch_neuronx.trace
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Release [1.13.1.1.12.0]

Date: 10/26/2023

Summary

What’s new in this release

• (Training) Added coalescing of all-gather and reduce-scatter inside ZeRO1, which should help in improving
performance at high cluster sizes.

• (Inference) Added the ability to partition unsupported ops to CPU during traced inference. (See
torch_neuronx.trace API guide)

• (Inference) Previously undocumented arguments trace API args state and options are now unsupported (have
no effect) and will result in a deprecation warning if used.

Resolved issues

• Fixed an issue where torch.topk would fail on specific dimensions

• (Inference) Fixed an issue where NaNs could be produced when using torch_neuronx.dynamic_batch

• (Inference) Updated torch_neuronx.dynamic_batch to better support Modules (traced, scripted, and normal mod-
ules) with multiple Neuron subgraphs

• (Inference) Isolate frontend calls to the Neuron compiler to working directories, so concurrent compilations do
not conflict by being run from the same directory.

Known issues and limitations (Training)

Memory leaking in glibc

glibc malloc memory leaks affect Neuron and may be temporarily limited by setting MALLOC_ARENA_MAX.

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data

Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in the
runtime, and you may see errors that look like this:

bootstrap.cc:86 CCOM WARN Call to accept failed : Too many open files``.

Hence, it is recommended to use fewer workers per node with DDP.
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Known issues and limitations (Inference)

torch.argmin() produces incorrect results

torch.argmin() produces incorrect results.

Torchscript serialization error with compiled artifacts larger than 4GB

When using torch_neuronx.trace(), compiled artifacts that exceed 4GB cannot be serialized. Serializing the
TorchScript artifact triggers a segmentation fault. This issue is resolved in PyTorch but is not yet released: https:
//github.com/pytorch/pytorch/pull/99104

Release [1.13.1.1.11.0]

Date: 9/15/2023

Summary

Resolved issues

• Fixed an issue in torch_neuronx.analyze() which could cause failures with scalar inputs.

• Improved performance of torch_neuronx.analyze().

Release [1.13.1.1.10.1]

Date: 9/01/2023

Summary

Minor bug fixes and enhancements.

Release [1.13.1.1.10.0]

Date: 8/28/2023

Summary

What’s new in this release

• Removed support for Python 3.7

• (Training) Added a neuron_parallel_compile command to clear file locks left behind when a neu-
ron_parallel_compile execution was interrupted (neuron_parallel_compile –command clear-locks)

• (Training) Seedable dropout now enabled by default
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Resolved issues

• (Training) Convolution is now supported

• Fixed segmentation fault when using torch-neuronx to compile models on U22

• Fixed XLA tensor stride information in torch-xla package, which blocked lowering of log_softmax and similar
functions and showed errors like:

File "/home/ubuntu/waldronn/asr/test_env/lib/python3.7/site-packages/torch/nn/functional.
→˓py", line 1930, in log_softmax

ret = input.log_softmax(dim)
RuntimeError: dimensionality of sizes (3) must match dimensionality of strides (1)

Known issues and limitations (Training)

Memory leaking in glibc

glibc malloc memory leaks affect Neuron and may be temporarily limited by setting MALLOC_ARENA_MAX.

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data

Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in the
runtime, and you may see errors that look like this:

bootstrap.cc:86 CCOM WARN Call to accept failed : Too many open files``.

Hence, it is recommended to use fewer workers per node with DDP.

Known issues and limitations (Inference)

torch.argmin() produces incorrect results

torch.argmin() produces incorrect results.
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No automatic partitioning

Currently, when Neuron encounters an operation that it does not support during torch_neuronx.trace(), it may
exit with the following compiler error: “Import of the HLO graph into the Neuron Compiler has failed. This may be
caused by unsupported operators or an internal compiler error.” The intended behavior when tracing is to automatically
partition the model into separate subgraphs that run on NeuronCores and subgraphs that run on CPU. This will be
supported in a future release. See PyTorch Neuron (torch-neuronx) - Supported Operators for a list of supported
operators.

Torchscript serialization error with compiled artifacts larger than 4GB

When using torch_neuronx.trace(), compiled artifacts that exceed 4GB cannot be serialized. Serializing the
TorchScript artifact triggers a segmentation fault. This issue is resolved in PyTorch but is not yet released: https:
//github.com/pytorch/pytorch/pull/99104

Release [1.13.1.1.9.0]

Date: 7/19/2023

Summary

What’s new in this release

Training support:

• Uses jemalloc as the primary malloc lib to avoid memory leak at checkpointing

• Added support for ZeRO-1 along with tutorial

Inference support:

• Add async load and lazy model load options to accelerate model loading

• Optimize DataParallel API to load onto multiple cores simultaneously when device IDs specified in device_ids
are consecutive

Resolved issues (Training)

• Remove extra graph creation in torch_neuronx.optim.adamw when the beta/lr parameters values become 0 or 1.

• Stability improvements and faster failure on hitting a fault in XRT server used by XLA.

148 Chapter 2. ML Frameworks

https://github.com/pytorch/pytorch/pull/99104
https://github.com/pytorch/pytorch/pull/99104


AWS Neuron

Known issues and limitations (Training)

Memory leaking in glibc

glibc malloc memory leaks affect Neuron and may be temporarily limited by setting MALLOC_ARENA_MAX.

Convolution is not supported

Convolution is not supported during training.

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data

Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in the
runtime, and you may see errors that look like this:

bootstrap.cc:86 CCOM WARN Call to accept failed : Too many open files``.

Hence, it is recommended to use fewer workers per node with DDP.

Known issues and limitations (Inference)

torch.argmin() produces incorrect results

torch.argmin() produces incorrect results.

No automatic partitioning

Currently, when Neuron encounters an operation that it does not support during torch_neuronx.trace(), it may
exit with the following compiler error: “Import of the HLO graph into the Neuron Compiler has failed. This may be
caused by unsupported operators or an internal compiler error.” The intended behavior when tracing is to automatically
partition the model into separate subgraphs that run on NeuronCores and subgraphs that run on CPU. This will be
supported in a future release. See PyTorch Neuron (torch-neuronx) - Supported Operators for a list of supported
operators.

2.1. PyTorch Neuron 149

https://pytorch.org/xla/release/1.13/index.html#mnist-with-real-data
https://pytorch.org/xla/release/1.13/index.html#mnist-with-real-data


AWS Neuron

Torchscript serialization error with compiled artifacts larger than 4GB

When using torch_neuronx.trace(), compiled artifacts that exceed 4GB cannot be serialized. Serializing the
TorchScript artifact triggers a segmentation fault. This issue is resolved in PyTorch but is not yet released: https:
//github.com/pytorch/pytorch/pull/99104

Release [1.13.1.1.8.0]

Date: 6/14/2023

Summary

• Added s3 caching to NeuronCache.

• Added extract/compile/analyze phases to neuron_parallel_compile.

What’s new in this release

Training support:

• Added S3 caching support to NeuronCache. Removed NeuronCache options –cache_size/cache_ttl (please delete
cache directories as needed).

• Added separate extract and compile phases Neuron Parallel Compile.

• Added model analyze API to Neuron Parallel Compile.

Known issues and limitations (Training)

Memory leaking in glibc

glibc malloc memory leaks affect Neuron and may be temporarily limited by setting MALLOC_ARENA_MAX.

Convolution is not supported

Convolution is not supported during training.

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data
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Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in the
runtime, and you may see errors that look like this:

bootstrap.cc:86 CCOM WARN Call to accept failed : Too many open files``.

Hence, it is recommended to use fewer workers per node with DDP.

Known issues and limitations (Inference)

torch.argmin() produces incorrect results

torch.argmin() produces incorrect results.

No automatic partitioning

Currently, when Neuron encounters an operation that it does not support during torch_neuronx.trace(), this will
cause an error. The intended behavior when tracing is to automatically partition the model into separate subgraphs that
run on NeuronCores and subgraphs that run on CPU. See PyTorch Neuron (torch-neuronx) - Supported Operators for
a list of supported operators.

Torchscript serialization error with compiled artifacts larger than 4GB

When using torch_neuronx.trace(), compiled artifacts that exceed 4GB cannot be serialized. Serializing the
TorchScript artifact triggers a segmentation fault. This issue is resolved in PyTorch but is not yet released: https:
//github.com/pytorch/pytorch/pull/99104

Release [1.13.1.1.7.0]

Date: 05/01/2023

Summary

What’s new in this release

Training support:

• Added an improved Neuron-optimized AdamW optimizer implementation.

• Added an improved Neuron-optimized torch.nn.Dropout implementation.

• Added an assertion when the torch.nn.Dropout argument inplace=True during training. This is currently
not supported on Neuron.

• Added XLA lowering for aten::count_nonzero

Inference support:

• Added profiling support for models compiled with torch_neuronx.trace()

• Added torch_neuronx.DataParallel for models compiled with torch_neuronx.trace()
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Resolved issues (Training)

Unexpected behavior with torch.autocast

Fixed an issue where torch.autocast did not correctly autocast when using torch.bfloat16

Resolved slower BERT bf16 Phase 1 Single Node Performance

As of the Neuron 2.9.0 release, BERT phase 1 pretraining performance has regressed by approximately 8-9% when
executed on a single node only (i.e. just one trn1.32xlarge instance). This is resolved in 2.10 release.

Resolved lower throughput for BERT-large training on AL2 instances

Starting in release 2.7, we see a performance drop of roughly 5-10% for BERT model training on AL2 instances. This
is resolved in release 2.10.

Resolved issues (Inference)

Error when using the original model after torch_neuronx.trace

Fixed an issue where model parameters would be moved to the Neuron 'xla' device during torch_neuronx.trace()
and would no longer be available to execute on the original device. This made it more difficult to compare Neuron
models against CPU since previously this would require manually moving parameters back to CPU.

Error when using the xm.xla_device() object followed by using torch_neuronx.trace

Fixed an issue where XLA device execution and torch_neuronx.trace() could not be performed in the same python
process.

Error when executing torch_neuronx.trace with torch.bfloat16 input/output tensors

Fixed an issue where torch_neuronx.trace() could not compile models which consumed or produced torch.
bfloat16 values.

Known issues and limitations (Training)

Memory leaking in glibc

glibc malloc memory leaks affect Neuron and may be temporarily limited by setting MALLOC_ARENA_MAX.
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Convolution is not supported

Convolution is not supported during training.

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data

Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in the
runtime, and you may see errors that look like this:

bootstrap.cc:86 CCOM WARN Call to accept failed : Too many open files``.

Hence, it is recommended to use fewer workers per node with DDP.

Known issues and limitations (Inference)

torch.argmin() produces incorrect results

torch.argmin() produces incorrect results.

No automatic partitioning

Currently, when Neuron encounters an operation that it does not support during torch_neuronx.trace(), this will
cause an error. The intended behavior when tracing is to automatically partition the model into separate subgraphs that
run on NeuronCores and subgraphs that run on CPU. See PyTorch Neuron (torch-neuronx) - Supported Operators for
a list of supported operators.

Torchscript serialization error with compiled artifacts larger than 4GB

When using torch_neuronx.trace(), compiled artifacts that exceed 4GB cannot be serialized. Serializing the
TorchScript artifact triggers a segmentation fault. This issue is resolved in PyTorch but is not yet released: https:
//github.com/pytorch/pytorch/pull/99104

Release [1.13.0.1.6.1]

Date: 04/19/2023
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Summary

What’s new in this release

Training support:

• No changes

Inference support:

• Enable deserialized TorchScript modules to be compiled with torch_neuronx.trace()

Release [1.13.0.1.6.1]

Date: 04/19/2023

Summary

What’s new in this release

Training support:

• No changes

Inference support:

• Enable deserialized TorchScript modules to be compiled with torch_neuronx.trace()

Release [1.13.0.1.6.0]

Date: 03/28/2023

Summary

What’s new in this release

Training support:

• Added pipeline parallelism support in AWS Samples for Megatron-LM

Inference support:

• Added model analysis API: torch_neuronx.analyze

• Added HLO opcode support for:

– kAtan2

– kAfterAll

– kMap

• Added XLA lowering support for:

– aten::glu

– aten::scatter_reduce
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• Updated torch.nn.MSELoss to promote input data types to a compatible type

Resolved issues (Training)

GRPC timeout errors when running Megatron-LM GPT 6.7B tutorial on multiple instances

When running AWS Samples for Megatron-LM GPT 6.7B tutorial over multiple instances, you may encounter GRPC
timeout errors like below:

E0302 01:10:20.511231294 138645 chttp2_transport.cc:1098] Received a GOAWAY with␣
→˓error code ENHANCE_YOUR_CALM and debug data equal to "too_many_pings"
2023-03-02 01:10:20.511500: W tensorflow/core/distributed_runtime/rpc/grpc_remote_master.
→˓cc:157] RPC failed with status = "UNAVAILABLE: Too many pings" and grpc_error_string =
→˓"{"created":"@1677719420.511317309","description":"Error received from peer ipv4:10.1.
→˓35.105:54729","file":"external/com_github_grpc_grpc/src/core/lib/surface/call.cc",
→˓"file_line":1056,"grpc_message":"Too many pings","grpc_status":14}", maybe retrying␣
→˓the RPC

or:

2023-03-08 21:18:27.040863: F tensorflow/compiler/xla/xla_client/xrt_computation_client.
→˓cc:476] Non-OK-status: session->session()->Run(session_work->feed_inputs, session_work-
→˓>outputs_handles, &outputs) status: UNKNOWN: Stream removed

This is due to excessive DNS lookups during execution, and is fixed in this release.

NaNs seen with transformers version >= 4.21.0 when running HF GPT fine-tuning or pretraining with
XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1

Using Hugging Face transformers version >= 4.21.0 can produce NaN outputs for GPT models when using full BF16
(XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1) plus stochastic rounding. This issue occurs due to large neg-
ative constants used to implement attention masking (https://github.com/huggingface/transformers/pull/17306). To
workaround this issue, please use transformers version <= 4.20.0.

Resolved issues (Inference)

torch.argmax() now supports single argument call variant

Previously only the 3 argument variant of torch.argmax() was supported. Now the single argument call variant is
supported.
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Known issues and limitations (Training)

Slower BERT bf16 Phase 1 Single Node Performance

In the Neuron 2.9.0 release, BERT phase 1 pretraining performance has regressed by approximately 8-9% when exe-
cuted on a single node only (i.e. just one trn1.32xlarge instance).

Convolution is not supported

In this release, convolution is not supported.

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data

Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in
the runtime, and you may see errors that look like this: bootstrap.cc:86 CCOM WARN Call to accept failed
: Too many open files.

Hence, it is recommended to use fewer workers per node with DDP.

Lower throughput for BERT-large training on AL2 instances

We see a performance drop of roughly 5-10% for BERT model training on AL2 instances. This is because of the
increase in time required for tracing the model.

Known issues and limitations (Inference)

torch.argmin() produces incorrect results

torch.argmin() now supports both the single argument call variant and the 3 argument variant. However, torch.
argmin() currently produces incorrect results.

Error when using the xm.xla_device() object followed by using torch_neuronx.trace

Executing a model using the xm.xla_device() object followed by using torch_neuronx.trace in the same process
can produce errors in specific situations due to torch-xla caching behavior. It is recommended that only one type of
execution is used per process.
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Error when executing torch_neuronx.trace with torch.bfloat16 input/output tensors

Executing torch_neuronx.trace with torch.bfloat16 input/output tensors can cause an error. It is currently
recommended to use an alternative torch data type in combination with compiler casting flags instead.

No automatic partitioning

Currently, there’s no automatic partitioning of a model into subgraphs that run on NeuronCores and subgraphs that
run on CPU Operations in the model that are not supported by Neuron would result in compilation error. Please see
PyTorch Neuron (torch-neuronx) - Supported Operators for a list of supported operators.

Release [1.13.0.1.5.0]

Date: 02/24/2023

Summary

What’s new in this release

Training support:

• Added SPMD flag for XLA backend to generate global collective-compute replica groups

Inference support:

• Expanded inference support to inf2

• Added Dynamic Batching

Resolved issues

Known issues and limitations (Training)

Convolution is not supported

In this release, convolution is not supported.

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data
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Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in
the runtime, and you may see errors that look like this: bootstrap.cc:86 CCOM WARN Call to accept failed
: Too many open files.

Hence, it is recommended to use fewer workers per node with DDP.

Lower throughput for BERT-large training on AL2 instances

We see a performance drop of roughly 5-10% for BERT model training on AL2 instances. This is because of the
increase in time required for tracing the model.

Known issues and limitations (Inference)

torch.argmax() and torch.argmin() do not support the single argument call variant

torch.argmax() and torch.argmin() do not support the single argument call variant. Only the 3 argument variant
of these functions is supported. The dim argument must be specified or this function will fail at the call-site. Secondly,
torch.argmin() may produce incorrect results.

No automatic partitioning

Currently, there’s no automatic partitioning of a model into subgraphs that run on NeuronCores and subgraphs that
run on CPU Operations in the model that are not supported by Neuron would result in compilation error. Please see
PyTorch Neuron (torch-neuronx) - Supported Operators for a list of supported operators.

Release [1.13.0.1.4.0]

Date: 02/08/2023

Summary

What’s new in this release

Training support:

• Added support for PyTorch 1.13

• Added support for Python version 3.9

• Added support for torch.nn.parallel.DistributedDataParallel (DDP) along with a tutorial

• Added optimized lowering for Softmax activation

• Added support for LAMB optimizer in BF16 mode

Added initial support for inference on Trn1, including the following features:

• Trace API (torch_neuronx.trace)

• Core placement API (Beta)
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• Python 3.7, 3.8 and 3.9 support

• Support for tracing models larger than 2 GB

The following inference features are not included in this release:

• Automatic partitioning of a model into subgraphs that run on NeuronCores and subgraphs that run on CPU

• cxx11 ABI wheels

Resolved issues

Known issues and limitations

Convolution is not supported

In this release, convolution is not supported.

DDP shows slow convergence

Currently we see that the models converge slowly with DDP when compared to the scripts that don’t use DDP. We
also see a throughput drop with DDP. This is a known issue with torch-xla: https://pytorch.org/xla/release/1.13/index.
html#mnist-with-real-data

Runtime crash when we use too many workers per node with DDP

Currently, if we use 32 workers with DDP, we see that each worker generates its own graph. This causes an error in
the runtime, and you may see errors that look like this: bootstrap.cc:86 CCOM WARN Call to accept failed
: Too many open files.

Hence, it is recommended to use fewer workers per node with DDP.

Lower throughput for BERT-large training on AL2 instances

We see a performance drop of roughly 5-10% for BERT model training on AL2 instances. This is because of the
increase in time required for tracing the model.

Release [1.12.0.1.4.0]

Date: 12/12/2022
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Summary

What’s new in this release

• Added support for PyTorch 1.12.

• Setting XLA_DOWNCAST_BF16=1 now also enables stochastic rounding by default (as done with
XLA_USE_BF16=1).

• Added support for capturing snapshots of inputs, outputs and graph HLO for debug.

• Fixed issue with parallel compile error when both train and evaluation are enabled in HuggingFace fine-tuning
tutorial.

• Added support for LAMB optimizer in FP32 mode.

Resolved issues

NaNs seen with transformers version >= 4.21.0 when running HF BERT fine-tuning or pretraining
with XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1

When running HuggingFace BERT (any size) fine-tuning tutorial or pretraining tutorial with transformers version
>= 4.21.0 and using XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1, you will see NaNs in the loss immedi-
ately at the first step. More details on the issue can be found at pytorch/xla#4152. The workaround is to use 4.20.0
or earlier (the tutorials currently recommend version 4.15.0) or add the line transformers.modeling_utils.
get_parameter_dtype = lambda x: torch.bfloat16 to your Python training script (as now done in latest tuto-
rials). A permanent fix will become part of an upcoming HuggingFace transformers release.

Known issues and limitations

Convolution is not supported

In this release, convolution is not supported.

Number of data parallel training workers on one Trn1 instance

The number of workers used in single-instance data parallel training can be one of the following values: 1 or 2 for
trn1.2xlarge and 1, 2, 8 or 32 for trn1.32xlarge.

Release [1.11.0.1.2.0]

Date: 10/27/2022
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Summary

What’s new in this release

• Added support for argmax.

• Clarified error messages for runtime errors NRT_UNINITIALIZED and NRT_CLOSED.

• When multi-worker training is launched using torchrun on one instance, framework now handles runtime state
cleanup at end of training.

Resolved issues

Drop-out rate ignored in dropout operation

A known issue in the compiler’s implementation of dropout caused drop-rate to be ignored in the last release. It is fixed
in the current release.

Runtime error “invalid offset in Coalesced_memloc_. . . ” followed by “Failed to process dma block:
1703”

Previously, when running MRPC fine-tuning tutorial with bert-base-* model, you would encounter runtime error
“invalid offset in Coalesced_memloc_. . . ” followed by “Failed to process dma block: 1703”. This is fixed in the current
release.

Compilation error: “TongaSBTensor[0x7fb2a46e0830]:TongaSB partitions[0] uint8 %138392[128,
512]”

Previously, when compiling MRPC fine-tuning tutorial with bert-large-* and FP32 (no XLA_USE_BF16=1)
for two workers or more, you would encounter compiler error that looks like Error message:
TongaSBTensor[0x7fb2a46e0830]:TongaSB partitions[0] uint8 %138392[128, 512] followed by
Error class: KeyError. Single worker fine-tuning is not affected. This is fixed in the current release.

Known issues and limitations

Convolution is not supported

In this release, convolution is not supported.

Number of data parallel training workers on one Trn1 instance

The number of workers used in single-instance data parallel training can be one of the following values: 1 or 2 for
trn1.2xlarge and 1, 2, 8 or 32 for trn1.32xlarge.
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Release [1.11.0.1.1.1]

Date: 10/10/2022

Summary

This is the initial release of PyTorch Neuron that supports Trainium for users to train their models on the new EC2 Trn1
instances.

What’s new in this release

Announcing the first PyTorch Neuron release for training.

• XLA device support for Trainium

• PyTorch 1.11 with XLA backend support in torch.distributed

• torch-xla distributed support

• Single-instance and multi-instance distributed training using torchrun

• Support for ParallelCluster and SLURM with node-level scheduling granularity

• Persistent cache for compiled graph

• neuron_parallel_compile utility to help speed up compilation

• Optimizer support: SGD, AdamW

• Loss functions supported: NLLLoss

• Python versions supported: 3.7, 3.8

• Multi-instance training support with EFA

• Support PyTorch’s BF16 automatic mixed precision

Known issues and limitations

Convolution is not supported

In this release, convolution is not supported.

Number of data parallel training workers on one Trn1 instance

The number of workers used in single-instance data parallel training can be one of the following values: 1 or 2 for
trn1.2xlarge and 1, 2, 8 or 32 for trn1.32xlarge.
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Drop-out rate ignored in dropout operation

A known issue in the compiler’s implementation of dropout caused drop-rate to be ignored. Will be fixed in a follow-on
release.

Runtime error “invalid offset in Coalesced_memloc_. . . ” followed by “Failed to process dma block:
1703”

Currently, when running MRPC fine-tuning tutorial with bert-base-* model, you will encounter runtime error “in-
valid offset in Coalesced_memloc_. . . ” followed by “Failed to process dma block: 1703”. This issue will be fixed in
an upcoming release.

Compilation error: “TongaSBTensor[0x7fb2a46e0830]:TongaSB partitions[0] uint8 %138392[128,
512]”

When compiling MRPC fine-tuning tutorial with bert-large-* and FP32 (no XLA_USE_BF16=1) for two workers
or more, you will encounter compiler error that looks like Error message: TongaSBTensor[0x7fb2a46e0830]:
TongaSB partitions[0] uint8 %138392[128, 512] followed by Error class: KeyError. Single worker
fine-tuning is not affected. This issue will be fixed in an upcoming release.

This document is relevant for: Inf2, Trn1, Trn2

• PyTorch Neuron (torch-neuronx) release notes

This document is relevant for: Inf2, Trn1, Trn2

Setup (torch-neuronx)

Tutorials (torch-neuronx)

• HuggingFace pretrained BERT tutorial [html] [notebook]

• TorchServe tutorial [html]

• LibTorch C++ tutorial (for torch-neuron and torch-neuronx) [html]

• Torchvision ResNet50 tutorial [html] [notebook]

• T5 inference tutorial [html] [notebook]

Note: To use Jupyter Notebook see:

• setup-jupyter-notebook-steps-troubleshooting

• running-jupyter-notebook-as-script
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Additional Examples (torch-neuronx)

• AWS Neuron Samples GitHub Repository

• Transformers Neuron GitHub samples

API Reference Guide (torch-neuronx)

• PyTorch NeuronX Tracing API for Inference

• PyTorch Neuron (torch-neuronx) Weight Replacement API for Inference

• PyTorch NeuronX NeuronCore Placement APIs [Beta]

• PyTorch NeuronX Analyze API for Inference

• PyTorch NeuronX DataParallel API

• torch_neuronx_lazy_async_load_api

Developer Guide (torch-neuronx)

• NeuronCore Allocation and Model Placement for Inference (torch-neuronx)

• Comparison of Traced Inference versus XLA Lazy Tensor Inference (torch-neuronx)

• Data Parallel Inference on torch_neuronx

• torch-neuronx-autobucketing-devguide

Misc (torch-neuronx)

• PyTorch Neuron (torch-neuronx) release notes

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf1

2.1.3 Inference with torch-neuron (Inf1)

This document is relevant for: Inf1

Tutorials for Inference with torch-neuron (Inf1)

This document is relevant for: Inf1
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Computer Vision Tutorials (torch-neuron)

• ResNet-50 tutorial [html] [notebook]

• PyTorch YOLOv4 tutorial [html] [notebook]

This document is relevant for: Inf1

This document is relevant for: Inf1

Natural Language Processing (NLP) Tutorials (torch-neuron)

• HuggingFace pretrained BERT tutorial [html] [notebook]

• HuggingFace pretrained BERT tutorial with shared weights [html] [notebook]

• Bring your own HuggingFace pretrained BERT container to Sagemaker Tutorial [html] [notebook]

• LibTorch C++ tutorial [html]

• TorchServe tutorial [html]

• HuggingFace MarianMT tutorial [html] [notebook]

Compiling and Deploying HuggingFace Pretrained BERT

Introduction

In this tutorial we will compile and deploy BERT-base version of HuggingFace Transformers BERT for Inferentia. The
full list of HuggingFace’s pretrained BERT models can be found in the BERT section on this page https://huggingface.
co/transformers/pretrained_models.html.

This Jupyter notebook should be run on an instance which is inf1.6xlarge or larger. The compile part of this tutorial
requires inf1.6xlarge and not the inference itself. For simplicity we will run this tutorial on inf1.6xlarge but in real life
scenario the compilation should be done on a compute instance and the deployment on inf1 instance to save costs.

Verify that this Jupyter notebook is running the Python kernel environment that was set up according to the PyTorch
Installation Guide. You can select the kernel from the “Kernel -> Change Kernel” option on the top of this Jupyter
notebook page.

Install Dependencies:

This tutorial requires the following pip packages:

• torch-neuron

• neuron-cc[tensorflow]

• transformers

Most of these packages will be installed when configuring your environment using the Neuron PyTorch setup guide.
The additional dependencies must be installed here.

[ ]: %env TOKENIZERS_PARALLELISM=True #Supresses tokenizer warnings making errors easier to␣
→˓detect
!pip install --upgrade "transformers==4.6.0"
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Compile the model into an AWS Neuron optimized TorchScript

[ ]: import tensorflow # to workaround a protobuf version conflict issue
import torch
import torch.neuron
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
import transformers
import os
import warnings

# Setting up NeuronCore groups for inf1.6xlarge with 16 cores
num_cores = 16 # This value should be 4 on inf1.xlarge and inf1.2xlarge
os.environ['NEURON_RT_NUM_CORES'] = str(num_cores)

# Build tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased-finetuned-mrpc")
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased-finetuned-
→˓mrpc", return_dict=False)

# Setup some example inputs
sequence_0 = "The company HuggingFace is based in New York City"
sequence_1 = "Apples are especially bad for your health"
sequence_2 = "HuggingFace's headquarters are situated in Manhattan"

max_length=128
paraphrase = tokenizer.encode_plus(sequence_0, sequence_2, max_length=max_length,␣
→˓padding='max_length', truncation=True, return_tensors="pt")
not_paraphrase = tokenizer.encode_plus(sequence_0, sequence_1, max_length=max_length,␣
→˓padding='max_length', truncation=True, return_tensors="pt")

# Run the original PyTorch model on compilation exaple
paraphrase_classification_logits = model(**paraphrase)[0]

# Convert example inputs to a format that is compatible with TorchScript tracing
example_inputs_paraphrase = paraphrase['input_ids'], paraphrase['attention_mask'],␣
→˓paraphrase['token_type_ids']
example_inputs_not_paraphrase = not_paraphrase['input_ids'], not_paraphrase['attention_
→˓mask'], not_paraphrase['token_type_ids']

# Run torch.neuron.trace to generate a TorchScript that is optimized by AWS Neuron
model_neuron = torch.neuron.trace(model, example_inputs_paraphrase)

# Verify the TorchScript works on both example inputs
paraphrase_classification_logits_neuron = model_neuron(*example_inputs_paraphrase)
not_paraphrase_classification_logits_neuron = model_neuron(*example_inputs_not_
→˓paraphrase)

# Save the TorchScript for later use
model_neuron.save('bert_neuron.pt')

You may inspect model_neuron.graph to see which part is running on CPU versus running on the accelerator. All
native aten operators in the graph will be running on CPU.
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[ ]: print(model_neuron.graph)

Deploy the AWS Neuron optimized TorchScript

To deploy the AWS Neuron optimized TorchScript, you may choose to load the saved TorchScript from disk and skip
the slow compilation.

[ ]: # Load TorchScript back
model_neuron = torch.jit.load('bert_neuron.pt')
# Verify the TorchScript works on both example inputs
paraphrase_classification_logits_neuron = model_neuron(*example_inputs_paraphrase)
not_paraphrase_classification_logits_neuron = model_neuron(*example_inputs_not_
→˓paraphrase)
classes = ['not paraphrase', 'paraphrase']
paraphrase_prediction = paraphrase_classification_logits_neuron[0][0].argmax().item()
not_paraphrase_prediction = not_paraphrase_classification_logits_neuron[0][0].argmax().
→˓item()
print('BERT says that "{}" and "{}" are {}'.format(sequence_0, sequence_2,␣
→˓classes[paraphrase_prediction]))
print('BERT says that "{}" and "{}" are {}'.format(sequence_0, sequence_1, classes[not_
→˓paraphrase_prediction]))

Now let’s run the model in parallel on four cores

[ ]: def get_input_with_padding(batch, batch_size, max_length):
## Reformulate the batch into three batch tensors - default batch size batches the␣

→˓outer dimension
encoded = batch['encoded']
inputs = torch.squeeze(encoded['input_ids'], 1)
attention = torch.squeeze(encoded['attention_mask'], 1)
token_type = torch.squeeze(encoded['token_type_ids'], 1)
quality = list(map(int, batch['quality']))

if inputs.size()[0] != batch_size:
print("Input size = {} - padding".format(inputs.size()))
remainder = batch_size - inputs.size()[0]
zeros = torch.zeros( [remainder, max_length], dtype=torch.long )
inputs = torch.cat( [inputs, zeros] )
attention = torch.cat( [attention, zeros] )
token_type = torch.cat( [token_type, zeros] )

assert(inputs.size()[0] == batch_size and inputs.size()[1] == max_length)
assert(attention.size()[0] == batch_size and attention.size()[1] == max_length)
assert(token_type.size()[0] == batch_size and token_type.size()[1] == max_length)

return (inputs, attention, token_type), quality

def count(output, quality):
assert output.size(0) >= len(quality)
correct_count = 0
count = len(quality)

(continues on next page)
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(continued from previous page)

batch_predictions = [ row.argmax().item() for row in output ]

for a, b in zip(batch_predictions, quality):
if int(a)==int(b):

correct_count += 1

return correct_count, count

Data parallel inference

In the below cell, we use the data parallel approach for inference. In this approach, we load multiple models, all of
them running in parallel. Each model is loaded onto a single NeuronCore. In the below implementation, we launch 16
models, thereby utilizing all the 16 cores on an inf1.6xlarge.

Note: Now if you try to decrease the num_cores in the above cells, please restart the notebook and run
!sudo rmmod neuron; sudo modprobe neuron step in cell 2 to clear the Neuron cores.

Since, we can run more than 1 model concurrently, the throughput for the system goes up. To achieve maximum gain
in throughput, we need to efficiently feed the models so as to keep them busy at all times. In the below setup, this is
done by using a producer-consumer model. We maintain a common python queue shared across all the models. The
common queue enables feeding data continuously to the models.

[ ]: from parallel import NeuronSimpleDataParallel
from bert_benchmark_utils import BertTestDataset, BertResults
import time
import functools

max_length = 128
num_cores = 16
batch_size = 1

tsv_file="glue_mrpc_dev.tsv"

data_set = BertTestDataset( tsv_file=tsv_file, tokenizer=tokenizer, max_length=max_
→˓length )
data_loader = torch.utils.data.DataLoader(data_set, batch_size=batch_size, shuffle=True)

#Result aggregation class (code in bert_benchmark_utils.py)
results = BertResults(batch_size, num_cores)
def result_handler(output, result_id, start, end, input_dict):

correct_count, inference_count = count(output[0], input_dict.pop(result_id))
elapsed = end - start
results.add_result(correct_count, inference_count, [elapsed], [end], [start])

parallel_neuron_model = NeuronSimpleDataParallel('bert_neuron.pt', num_cores)

#Starting the inference threads
parallel_neuron_model.start_continuous_inference()

# Warm up the cores
z = torch.zeros( [batch_size, max_length], dtype=torch.long )
batch = (z, z, z)

(continues on next page)
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for _ in range(num_cores*4):
parallel_neuron_model.infer(batch, -1, None)

input_dict = {}
input_id = 0
for _ in range(30):

for batch in data_loader:
batch, quality = get_input_with_padding(batch, batch_size, max_length)
input_dict[input_id] = quality
callback_fn = functools.partial(result_handler, input_dict=input_dict)
parallel_neuron_model.infer(batch, input_id, callback_fn)
input_id+=1

# Stop inference
parallel_neuron_model.stop()

with open("benchmark.txt", "w") as f:
results.report(f, window_size=1)

with open("benchmark.txt", "r") as f:
for line in f:

print(line)

Now recompile with a larger batch size of six sentence pairs

[ ]: batch_size = 6

example_inputs_paraphrase = (
torch.cat([paraphrase['input_ids']] * batch_size,0),
torch.cat([paraphrase['attention_mask']] * batch_size,0),
torch.cat([paraphrase['token_type_ids']] * batch_size,0)

)

# Run torch.neuron.trace to generate a TorchScript that is optimized by AWS Neuron
model_neuron_batch = torch.neuron.trace(model, example_inputs_paraphrase)

## Save the batched model
model_neuron_batch.save('bert_neuron_b{}.pt'.format(batch_size))

Rerun inference with batch 6

[ ]: from parallel import NeuronSimpleDataParallel
from bert_benchmark_utils import BertTestDataset, BertResults
import time
import functools

max_length = 128
num_cores = 16
batch_size = 6

data_set = BertTestDataset( tsv_file=tsv_file, tokenizer=tokenizer, max_length=max_
(continues on next page)
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→˓length )
data_loader = torch.utils.data.DataLoader(data_set, batch_size=batch_size, shuffle=True)

#Result aggregation class (code in bert_benchmark_utils.py)
results = BertResults(batch_size, num_cores)
def result_handler(output, result_id, start, end, input_dict):

correct_count, inference_count = count(output[0], input_dict.pop(result_id))
elapsed = end - start
results.add_result(correct_count, inference_count, [elapsed], [end], [start])

parallel_neuron_model = NeuronSimpleDataParallel('bert_neuron_b{}.pt'.format(batch_size),
→˓ num_cores)

#Starting the inference threads
parallel_neuron_model.start_continuous_inference()

# Adding to the input queue to warm all cores
z = torch.zeros( [batch_size, max_length], dtype=torch.long )
batch = (z, z, z)
for _ in range(num_cores*4):

parallel_neuron_model.infer(batch, -1, None)

input_dict = {}
input_id = 0
for _ in range(30):

for batch in data_loader:
batch, quality = get_input_with_padding(batch, batch_size, max_length)
input_dict[input_id] = quality
callback_fn = functools.partial(result_handler, input_dict=input_dict)
parallel_neuron_model.infer(batch, input_id, callback_fn)
input_id+=1

# Stop inference
parallel_neuron_model.stop()

with open("benchmark_b{}.txt".format(batch_size), "w") as f:
results.report(f, window_size=1)

with open("benchmark_b{}.txt".format(batch_size), "r") as f:
for line in f:

print(line)
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Data Parallel HuggingFace Pretrained BERT with Weight Sharing (Deduplication)

Introduction

In this tutorial we will compile and deploy BERT-base version of HuggingFace Transformers BERT for Inferentia,
with additional demonstration of using Weight Sharing (Deduplication) feature.

To use the Weight Sharing (Deduplication) feature, you must set the Neuron Runtime environmental vari-
able NEURON_RT_MULTI_INSTANCE_SHARED_WEIGHTS to “TRUE” together with the core placement API
(torch_neuron.experimental.neuron_cores_context()).

This Jupyter notebook should be run on an instance which is inf1.6xlarge or larger. The compile part of this tutorial
requires inf1.6xlarge and not the inference itself. For simplicity we will run this tutorial on inf1.6xlarge but in real life
scenario the compilation should be done on a compute instance and the deployment on inf1 instance to save costs.

Verify that this Jupyter notebook is running the Python kernel environment that was set up according to the PyTorch
Installation Guide. You can select the kernel from the “Kernel -> Change Kernel” option on the top of this Jupyter
notebook page.

Install Dependencies:

This tutorial requires the following pip packages:

• torch-neuron

• neuron-cc[tensorflow]

• transformers

Most of these packages will be installed when configuring your environment using the Neuron PyTorch setup guide.
The additional dependencies must be installed here.

[1]: %env TOKENIZERS_PARALLELISM=True #Supresses tokenizer warnings making errors easier to␣
→˓detect
!pip install --upgrade "transformers==4.6.0"

Compile the model into an AWS Neuron optimized TorchScript

This step compiles the model into an AWS Neuron optimized TorchScript, and saves it in the filed bert_neuron.pt.
This step is the same as the pretrained BERT tutorial without Shared Weights feature. We use batch 1 for simplicity.

[1]: import tensorflow # to workaround a protobuf version conflict issue
import torch
import torch.neuron
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
import transformers
import os
import warnings

# Build tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased-finetuned-mrpc")
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased-finetuned-
→˓mrpc", return_dict=False)

(continues on next page)
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# Setup some example inputs
sequence_0 = "The company HuggingFace is based in New York City"
sequence_1 = "Apples are especially bad for your health"
sequence_2 = "HuggingFace's headquarters are situated in Manhattan"

max_length=128
paraphrase = tokenizer.encode_plus(sequence_0, sequence_2, max_length=max_length,␣
→˓padding='max_length', truncation=True, return_tensors="pt")
not_paraphrase = tokenizer.encode_plus(sequence_0, sequence_1, max_length=max_length,␣
→˓padding='max_length', truncation=True, return_tensors="pt")

# Run the original PyTorch model on compilation exaple
paraphrase_classification_logits = model(**paraphrase)[0]

# Convert example inputs to a format that is compatible with TorchScript tracing
example_inputs_paraphrase = paraphrase['input_ids'], paraphrase['attention_mask'],␣
→˓paraphrase['token_type_ids']
example_inputs_not_paraphrase = not_paraphrase['input_ids'], not_paraphrase['attention_
→˓mask'], not_paraphrase['token_type_ids']

# Run torch.neuron.trace to generate a TorchScript that is optimized by AWS Neuron
model_neuron = torch.neuron.trace(model, example_inputs_paraphrase)

# Verify the TorchScript works on both example inputs
paraphrase_classification_logits_neuron = model_neuron(*example_inputs_paraphrase)
not_paraphrase_classification_logits_neuron = model_neuron(*example_inputs_not_
→˓paraphrase)

# Save the TorchScript for later use
model_neuron.save('bert_neuron.pt')

Deploy the AWS Neuron optimized TorchScript

To deploy the AWS Neuron optimized TorchScript, you may choose to load the saved TorchScript from disk and skip
the slow compilation. This step is the same as the pretrained BERT tutorial without Shared Weights feature

[2]: # Load TorchScript back
model_neuron = torch.jit.load('bert_neuron.pt')
# Verify the TorchScript works on both example inputs
paraphrase_classification_logits_neuron = model_neuron(*example_inputs_paraphrase)
not_paraphrase_classification_logits_neuron = model_neuron(*example_inputs_not_
→˓paraphrase)
classes = ['not paraphrase', 'paraphrase']
paraphrase_prediction = paraphrase_classification_logits_neuron[0][0].argmax().item()
not_paraphrase_prediction = not_paraphrase_classification_logits_neuron[0][0].argmax().
→˓item()
print('BERT says that "{}" and "{}" are {}'.format(sequence_0, sequence_2,␣
→˓classes[paraphrase_prediction]))
print('BERT says that "{}" and "{}" are {}'.format(sequence_0, sequence_1, classes[not_
→˓paraphrase_prediction]))
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We define two helper functions to pad input and to count correct results.

[3]: def get_input_with_padding(batch, batch_size, max_length):
## Reformulate the batch into three batch tensors - default batch size batches the␣

→˓outer dimension
encoded = batch['encoded']
inputs = torch.squeeze(encoded['input_ids'], 1)
attention = torch.squeeze(encoded['attention_mask'], 1)
token_type = torch.squeeze(encoded['token_type_ids'], 1)
quality = list(map(int, batch['quality']))

if inputs.size()[0] != batch_size:
print("Input size = {} - padding".format(inputs.size()))
remainder = batch_size - inputs.size()[0]
zeros = torch.zeros( [remainder, max_length], dtype=torch.long )
inputs = torch.cat( [inputs, zeros] )
attention = torch.cat( [attention, zeros] )
token_type = torch.cat( [token_type, zeros] )

assert(inputs.size()[0] == batch_size and inputs.size()[1] == max_length)
assert(attention.size()[0] == batch_size and attention.size()[1] == max_length)
assert(token_type.size()[0] == batch_size and token_type.size()[1] == max_length)

return (inputs, attention, token_type), quality

def count(output, quality):
assert output.size(0) >= len(quality)
correct_count = 0
count = len(quality)

batch_predictions = [ row.argmax().item() for row in output ]

for a, b in zip(batch_predictions, quality):
if int(a)==int(b):

correct_count += 1

return correct_count, count

Data parallel inference

In the below cell, we use the data parallel approach for inference. In this approach, we load multiple models,
all of them running in parallel. Each model is loaded onto a single NeuronCore via the core placement API
(torch_neuron.experimental.neuron_cores_context()). We also set Neuron Runtime environment variable
NEURON_RT_MULTI_INSTANCE_SHARED_WEIGHTS to “TRUE” as required to use the Weight Sharing feature.

In the below implementation, we launch 16 models, thereby utilizing all the 16 cores on an inf1.6xlarge.

Note: Now if you try to decrease the num_cores in the below cells, please restart the notebook and run
!sudo rmmod neuron; sudo modprobe neuron step in cell 2 to clear the Neuron cores.

Since, we can run more than 1 model concurrently, the throughput for the system goes up. To achieve maximum gain
in throughput, we need to efficiently feed the models so as to keep them busy at all times. In the below setup, we use
parallel threads to feed data continuously to the models.

When running the cell below, you can monitor the Inferentia device activities by running neuron-top in another
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terminal. You will see that “Device Used Memory” is 1.6GB total, and the model instance loaded onto NeuronDevice
0 NeuronCore 0 uses the most device memory (272MB) while the other model instances loaded onto other NeuronCores
use less device memory (92MB). This shows the effect of using Shared Weights as the device memory usage is lower. If
you change NEURON_RT_MULTI_INSTANCE_SHARED_WEIGHTS to “FALSE” you will see that “Device Used Memory”
is 3.2GB, and the model instances loaded onto NeuronDevice 0 NeuronCore 0 and 1 use the most device memory
(360MB) while the other model instances now use 180MB each.

[5]: from bert_benchmark_utils import BertTestDataset, BertResults
import time
import functools
import os
import torch.neuron as torch_neuron
from concurrent import futures

# Setting up NeuronCore groups for inf1.6xlarge with 16 cores
num_cores = 16 # This value should be 4 on inf1.xlarge and inf1.2xlarge
os.environ['NEURON_RT_NUM_CORES'] = str(num_cores)
os.environ['NEURON_RT_MULTI_INSTANCE_SHARED_WEIGHTS'] = 'TRUE'
#os.environ['NEURON_RT_MULTI_INSTANCE_SHARED_WEIGHTS'] = 'FALSE'

max_length = 128
num_cores = 16
batch_size = 1

tsv_file="glue_mrpc_dev.tsv"

data_set = BertTestDataset( tsv_file=tsv_file, tokenizer=tokenizer, max_length=max_
→˓length )
data_loader = torch.utils.data.DataLoader(data_set, batch_size=batch_size, shuffle=True)

#Result aggregation class (code in bert_benchmark_utils.py)
results = BertResults(batch_size, num_cores)
def result_handler(output, result_id, start, end, input_dict):

correct_count, inference_count = count(output[0], input_dict.pop(result_id))
elapsed = end - start
results.add_result(correct_count, inference_count, [elapsed], [end], [start])

with torch_neuron.experimental.neuron_cores_context(start_nc=0, nc_count=num_cores):
model = torch.jit.load('bert_neuron.pt')

# Warm up the cores
z = torch.zeros( [batch_size, max_length], dtype=torch.long )
batch = (z, z, z)
for _ in range(num_cores*4):

model(*batch)

# Prepare the input data
batch_list = []
for batch in data_loader:

batch, quality = get_input_with_padding(batch, batch_size, max_length)
batch_list.append((batch, quality))

# One thread running a model on one core
(continues on next page)
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def one_thread(feed_data, quality):
start = time.time()
result = model(*feed_data)
end = time.time()
return result[0], quality, start, end

# Launch more threads than models/cores to keep them busy
processes = []
with futures.ThreadPoolExecutor(max_workers=num_cores*2) as executor:

# extra loops to help you see activities in neuron-top
for _ in range(10):

for input_id, (batch, quality) in enumerate(batch_list):
processes.append(executor.submit(one_thread, batch, quality))

results = BertResults(batch_size, num_cores)
for _ in futures.as_completed(processes):

(output, quality, start, end) = _.result()
correct_count, inference_count = count(output, quality)
results.add_result(correct_count, inference_count, [start - end], [start], [end])

with open("benchmark.txt", "w") as f:
results.report(f, window_size=1)

with open("benchmark.txt", "r") as f:
for line in f:

print(line)

[ ]:

Deploy a pretrained PyTorch BERT model from HuggingFace on Amazon SageMaker with Neuron
container

Overview

In this tutotial we will deploy on SageMaker a pretraine BERT Base model from HuggingFace Transformers, using the
AWS Deep Learning Containers. We will use the same model as shown in the Neuron Tutorial “PyTorch - HuggingFace
Pretrained BERT Tutorial”. We will compile the model and build a custom AWS Deep Learning Container, to include
the HuggingFace Transformers Library.

This Jupyter Notebook should run on a ml.c5.4xlarge SageMaker Notebook instance. You can set up your SageMaker
Notebook instance by following the Get Started with Amazon SageMaker Notebook Instances documentation.

We recommend increasing the size of the base root volume of you SM notebook instance, to accomodate
the models and containers built locally. A root volume of 10Gb should suffice.
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Install Dependencies:

This tutorial requires the following pip packages:

• torch-neuron

• neuron-cc[tensorflow]

• transformers

[ ]: %env TOKENIZERS_PARALLELISM=True #Supresses tokenizer warnings making errors easier to␣
→˓detect
!pip install --upgrade --no-cache-dir torch-neuron neuron-cc[tensorflow] torchvision␣
→˓torch --extra-index-url=https://pip.repos.neuron.amazonaws.com
!pip install --upgrade --no-cache-dir 'transformers==4.6.0'

Compile the model into an AWS Neuron optimized TorchScript

[ ]: import torch
import torch_neuron

from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig

[ ]: # Build tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased-finetuned-mrpc")
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased-finetuned-
→˓mrpc", return_dict=False)

# Setup some example inputs
sequence_0 = "The company HuggingFace is based in New York City"
sequence_1 = "Apples are especially bad for your health"
sequence_2 = "HuggingFace's headquarters are situated in Manhattan"

max_length=128
paraphrase = tokenizer.encode_plus(sequence_0, sequence_2, max_length=max_length,␣
→˓padding='max_length', truncation=True, return_tensors="pt")
not_paraphrase = tokenizer.encode_plus(sequence_0, sequence_1, max_length=max_length,␣
→˓padding='max_length', truncation=True, return_tensors="pt")

# Run the original PyTorch model on compilation exaple
paraphrase_classification_logits = model(**paraphrase)[0]

# Convert example inputs to a format that is compatible with TorchScript tracing
example_inputs_paraphrase = paraphrase['input_ids'], paraphrase['attention_mask'],␣
→˓paraphrase['token_type_ids']
example_inputs_not_paraphrase = not_paraphrase['input_ids'], not_paraphrase['attention_
→˓mask'], not_paraphrase['token_type_ids']

[ ]: %%time
# Run torch.neuron.trace to generate a TorchScript that is optimized by AWS Neuron
# This step may need 3-5 min
model_neuron = torch.neuron.trace(model, example_inputs_paraphrase, verbose=1, compiler_
→˓workdir='./compilation_artifacts')
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You may inspect model_neuron.graph to see which part is running on CPU versus running on the accelerator. All
native aten operators in the graph will be running on CPU.

[ ]: # See which part is running on CPU versus running on the accelerator.
print(model_neuron.graph)

Save the compiled model, so it can be packaged and sent to S3.

[ ]: # Save the TorchScript for later use
model_neuron.save('neuron_compiled_model.pt')

Package the pre-trained model and upload it to S3

To make the model available for the SageMaker deployment, you will TAR the serialized graph and upload it to the
default Amazon S3 bucket for your SageMaker session.

[ ]: # Now you'll create a model.tar.gz file to be used by SageMaker endpoint
!tar -czvf model.tar.gz neuron_compiled_model.pt

[ ]: import boto3
import time
from sagemaker.utils import name_from_base
import sagemaker

[ ]: # upload model to S3
role = sagemaker.get_execution_role()
sess=sagemaker.Session()
region=sess.boto_region_name
bucket=sess.default_bucket()
sm_client=boto3.client('sagemaker')

[ ]: model_key = '{}/model/model.tar.gz'.format('inf1_compiled_model')
model_path = 's3://{}/{}'.format(bucket, model_key)
boto3.resource('s3').Bucket(bucket).upload_file('model.tar.gz', model_key)
print("Uploaded model to S3:")
print(model_path)

Build and Push the container

The following shell code shows how to build the container image using docker build and push the container image to
ECR using docker push. The Dockerfile in this example is available in the container folder. Here’s an example of the
Dockerfile:

FROM 763104351884.dkr.ecr.us-east-1.amazonaws.com/pytorch-inference-neuron:1.7.1-neuron-
→˓py36-ubuntu18.04

# Install packages
RUN pip install "transformers==4.7.0"
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[ ]: !cat container/Dockerfile

Before running the next cell, make sure your SageMaker IAM role has access to ECR. If not, you can attache the
role AmazonEC2ContainerRegistryPowerUser to your IAM role ARN, which allows you to upload image layers to
ECR.

It takes 5 minutes to build docker images and upload image to ECR

[ ]: %%sh

# The name of our algorithm
algorithm_name=neuron-py36-inference

cd container

account=$(aws sts get-caller-identity --query Account --output text)

# Get the region defined in the current configuration (default to us-west-2 if none␣
→˓defined)
region=$(aws configure get region)
region=${region:-us-west-2}

fullname="${account}.dkr.ecr.${region}.amazonaws.com/${algorithm_name}:latest"

# If the repository doesn't exist in ECR, create it.

aws ecr describe-repositories --repository-names "${algorithm_name}" > /dev/null 2>&1

if [ $? -ne 0 ]
then

aws ecr create-repository --repository-name "${algorithm_name}" > /dev/null
fi

# Get the login command from ECR in order to pull down the SageMaker PyTorch image
aws ecr get-login-password --region us-east-1 | docker login --username AWS --password-
→˓stdin 763104351884.dkr.ecr.us-east-1.amazonaws.com
# Build the docker image locally with the image name and then push it to ECR
# with the full name.
docker build -t ${algorithm_name} . --build-arg REGION=${region}
docker tag ${algorithm_name} ${fullname}

# Get the login command from ECR and execute it directly
aws ecr get-login-password --region ${region} | docker login --username AWS --password-
→˓stdin ${account}.dkr.ecr.${region}.amazonaws.com
docker push ${fullname}
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Deploy Container and run inference based on the pretrained model

To deploy a pretrained PyTorch model, you’ll need to use the PyTorch estimator object to create a PyTorchModel object
and set a different entry_point.

You’ll use the PyTorchModel object to deploy a PyTorchPredictor. This creates a SageMaker Endpoint – a hosted
prediction service that we can use to perform inference.

[ ]: import sys

!{sys.executable} -m pip install Transformers

[ ]: import os
import boto3
import sagemaker

role = sagemaker.get_execution_role()
sess = sagemaker.Session()

bucket = sess.default_bucket()
prefix = "inf1_compiled_model/model"

# Get container name in ECR
client=boto3.client('sts')
account=client.get_caller_identity()['Account']

my_session=boto3.session.Session()
region=my_session.region_name

algorithm_name="neuron-py36-inference"
ecr_image='{}.dkr.ecr.{}.amazonaws.com/{}:latest'.format(account, region, algorithm_name)
print(ecr_image)

An implementation of model_fn is required for inference script. We are going to implement our own model_fn and
predict_fn for Hugging Face Bert, and use default implementations of input_fn and output_fn defined in sagemaker-
pytorch-containers.

In this example, the inference script is put in code folder. Run the next cell to see it:

[ ]: !pygmentize code/inference.py

Path of compiled pretrained model in S3:

[ ]: key = os.path.join(prefix, "model.tar.gz")
pretrained_model_data = "s3://{}/{}".format(bucket, key)
print(pretrained_model_data)

The model object is defined by using the SageMaker Python SDK’s PyTorchModel and pass in the model from the
estimator and the entry_point. The endpoint’s entry point for inference is defined by model_fn as seen in the previous
code block that prints out inference.py. The model_fn function will load the model and required tokenizer.

Note, image_uri must be user’s own ECR images.

[ ]: from sagemaker.pytorch.model import PyTorchModel

(continues on next page)
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pytorch_model = PyTorchModel(
model_data=pretrained_model_data,
role=role,
source_dir="code",
framework_version="1.7.1",
entry_point="inference.py",
image_uri=ecr_image

)

# Let SageMaker know that we've already compiled the model via neuron-cc
pytorch_model._is_compiled_model = True

The arguments to the deploy function allow us to set the number and type of instances that will be used for the Endpoint.

Here you will deploy the model to a single ml.inf1.2xlarge instance. It may take 6-10 min to deploy.

[ ]: %%time

predictor = pytorch_model.deploy(initial_instance_count=1, instance_type="ml.inf1.2xlarge
→˓")

[ ]: print(predictor.endpoint_name)

Since in the input_fn we declared that the incoming requests are json-encoded, we need to use a json serializer, to
encode the incoming data into a json string. Also, we declared the return content type to be json string, we Need to use
a json deserializer to parse the response.

[ ]: predictor.serializer = sagemaker.serializers.JSONSerializer()
predictor.deserializer = sagemaker.deserializers.JSONDeserializer()

Using a list of sentences, now SageMaker endpoint is invoked to get predictions.

[ ]: %%time
result = predictor.predict(

[
"Never allow the same bug to bite you twice.",
"The best part of Amazon SageMaker is that it makes machine learning easy.",

]
)
print(result)

[ ]: %%time
result = predictor.predict(

[
"The company HuggingFace is based in New York City",
"HuggingFace's headquarters are situated in Manhattan",

]
)
print(result)
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Benchmarking your endpoint

The following cells create a load test for your endpoint. You first define some helper functions: inference_latency
runs the endpoint request, collects cliend side latency and any errors, random_sentence builds random to be sent to
the endpoint.

[ ]: import numpy as np
import datetime
import math
import time
import boto3
import matplotlib.pyplot as plt
from joblib import Parallel, delayed
import numpy as np
from tqdm import tqdm
import random

[ ]: def inference_latency(model,*inputs):
"""
infetence_time is a simple method to return the latency of a model inference.

Parameters:
model: torch model onbject loaded using torch.jit.load
inputs: model() args

Returns:
latency in seconds

"""
error = False
start = time.time()
try:

results = model(*inputs)
except:

error = True
results = []

return {'latency':time.time() - start, 'error': error, 'result': results}

[ ]: def random_sentence():

s_nouns = ["A dude", "My mom", "The king", "Some guy", "A cat with rabies", "A sloth
→˓", "Your homie", "This cool guy my gardener met yesterday", "Superman"]

p_nouns = ["These dudes", "Both of my moms", "All the kings of the world", "Some guys
→˓", "All of a cattery's cats", "The multitude of sloths living under your bed", "Your␣
→˓homies", "Like, these, like, all these people", "Supermen"]

s_verbs = ["eats", "kicks", "gives", "treats", "meets with", "creates", "hacks",
→˓"configures", "spies on", "retards", "meows on", "flees from", "tries to automate",
→˓"explodes"]

p_verbs = ["eat", "kick", "give", "treat", "meet with", "create", "hack", "configure
→˓", "spy on", "retard", "meow on", "flee from", "try to automate", "explode"]

infinitives = ["to make a pie.", "for no apparent reason.", "because the sky is␣
→˓green.", "for a disease.", "to be able to make toast explode.", "to know more about␣
→˓archeology."]

(continues on next page)
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return (random.choice(s_nouns) + ' ' + random.choice(s_verbs) + ' ' + random.
→˓choice(s_nouns).lower() or random.choice(p_nouns).lower() + ' ' + random.
→˓choice(infinitives))

print([random_sentence(), random_sentence()])

The following cell creates number_of_clients concurrent threads to run number_of_runs requests. Once com-
pleted, a boto3 CloudWatch client will query for the server side latency metrics for comparison.

[ ]: # Defining Auxiliary variables
number_of_clients = 2
number_of_runs = 1000
t = tqdm(range(number_of_runs),position=0, leave=True)

# Starting parallel clients
cw_start = datetime.datetime.utcnow()

results = Parallel(n_jobs=number_of_clients,prefer="threads")(delayed(inference_
→˓latency)(predictor.predict,[random_sentence(), random_sentence()]) for mod in t)
avg_throughput = t.total/t.format_dict['elapsed']

cw_end = datetime.datetime.utcnow()

# Computing metrics and print
latencies = [res['latency'] for res in results]
errors = [res['error'] for res in results]
error_p = sum(errors)/len(errors) *100
p50 = np.quantile(latencies[-1000:],0.50) * 1000
p90 = np.quantile(latencies[-1000:],0.95) * 1000
p95 = np.quantile(latencies[-1000:],0.99) * 1000

print(f'Avg Throughput: :{avg_throughput:.1f}\n')
print(f'50th Percentile Latency:{p50:.1f} ms')
print(f'90th Percentile Latency:{p90:.1f} ms')
print(f'95th Percentile Latency:{p95:.1f} ms\n')
print(f'Errors percentage: {error_p:.1f} %\n')

# Querying CloudWatch
print('Getting Cloudwatch:')
cloudwatch = boto3.client('cloudwatch')
statistics=['SampleCount', 'Average', 'Minimum', 'Maximum']
extended=['p50', 'p90', 'p95', 'p100']

# Give 5 minute buffer to end
cw_end += datetime.timedelta(minutes=5)

# Period must be 1, 5, 10, 30, or multiple of 60
# Calculate closest multiple of 60 to the total elapsed time
factor = math.ceil((cw_end - cw_start).total_seconds() / 60)
period = factor * 60
print('Time elapsed: {} seconds'.format((cw_end - cw_start).total_seconds()))

(continues on next page)
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print('Using period of {} seconds\n'.format(period))

cloudwatch_ready = False
# Keep polling CloudWatch metrics until datapoints are available
while not cloudwatch_ready:
time.sleep(30)
print('Waiting 30 seconds ...')
# Must use default units of microseconds
model_latency_metrics = cloudwatch.get_metric_statistics(MetricName='ModelLatency',

Dimensions=[{'Name': 'EndpointName',
'Value': predictor.endpoint_

→˓name},
{'Name': 'VariantName',
'Value': "AllTraffic"}],

Namespace="AWS/SageMaker",
StartTime=cw_start,
EndTime=cw_end,
Period=period,
Statistics=statistics,
ExtendedStatistics=extended
)

# Should be 1000
if len(model_latency_metrics['Datapoints']) > 0:

print('{} latency datapoints ready'.format(model_latency_metrics['Datapoints'][0][
→˓'SampleCount']))

side_avg = model_latency_metrics['Datapoints'][0]['Average'] / number_of_runs
side_p50 = model_latency_metrics['Datapoints'][0]['ExtendedStatistics']['p50'] /␣

→˓number_of_runs
side_p90 = model_latency_metrics['Datapoints'][0]['ExtendedStatistics']['p90'] /␣

→˓number_of_runs
side_p95 = model_latency_metrics['Datapoints'][0]['ExtendedStatistics']['p95'] /␣

→˓number_of_runs
side_p100 = model_latency_metrics['Datapoints'][0]['ExtendedStatistics']['p100'] /␣

→˓number_of_runs

print(f'50th Percentile Latency:{side_p50:.1f} ms')
print(f'90th Percentile Latency:{side_p90:.1f} ms')
print(f'95th Percentile Latency:{side_p95:.1f} ms\n')

cloudwatch_ready = True
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Cleanup

Endpoints should be deleted when no longer in use, to avoid costs.

[ ]: predictor.delete_endpoint(predictor.endpoint)

[ ]:

This document is relevant for: Inf1

BERT TorchServe Tutorial

Table of Contents

• Overview

• Run the tutorial

• Setup TorchServe

• Run TorchServe

• Benchmark TorchServe

Overview

This tutorial demonstrates the use of TorchServe with Neuron, the SDK for Amazon Inf1 instances. By the end of this
tutorial, you will understand how TorchServe can be used to serve a model backed by EC2 Inf1 instances. We will use
a pretrained BERT-Base model to determine if one sentence is a paraphrase of another.

Verify that this tutorial is running in a virtual environement that was set up according to the Torch-
Neuronx Installation Guide <https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/setup/torch-
neuronx.html#setup-torch-neuronx> or Torch-Neuron Installation Guide <https://awsdocs-neuron.readthedocs-
hosted.com/en/latest/general/setup/torch-neuron.html#setup-torch-neuron>

Run the tutorial

Open a terminal, log into your remote instance, and activate a Pytorch virtual environment setup (see the Pytorch
Installation Guide). To complete this tutorial, you will need a compiled BERT model. If you have already completed
the HuggingFace Pretrained BERT tutorial [html] [notebook] then you already have the necessary file. Otherwise, you
can setup your environment as shown below and then run trace_bert_neuron.py to obtain a traced BERT model.

You should now have a compiled bert_neuron_b6.pt file, which is required going forward.

Open a shell on the instance you prepared earlier, create a new directory named torchserve. Copy your compiled
model from the previous tutorial into this new directory.

cd torchserve
python trace_bert_neuronx.py
ls
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bert_neuron_b6.pt

Prepare a new Python virtual environment with the necessary Neuron and TorchServe components. Use a virtual
environment to keep (most of) the various tutorial components isolated from the rest of the system in a controlled way.

pip install transformers==4.20.1 torchserve==0.7.0 torch-model-archiver==0.7.0 captum==0.
→˓6.0

Install the system requirements for TorchServe.

Amazon Linux 2 DLAMI Base

sudo yum install jq java-11-amazon-corretto-headless
sudo alternatives --config java
sudo alternatives --config javac

Ubuntu 20 DLAMI Base

sudo apt install openjdk-11-jdk -y

java -version

openjdk version "11.0.17" 2022-10-18
OpenJDK Runtime Environment (build 11.0.17+8-post-Ubuntu-1ubuntu218.04)
OpenJDK 64-Bit Server VM (build 11.0.17+8-post-Ubuntu-1ubuntu218.04, mixed mode, sharing)

javac -version

javac 11.0.17

Verify that TorchServe is now available.

torchserve --version

TorchServe Version is 0.7.0

Setup TorchServe

During this tutorial you will need to download a few files onto your instance. The simplest way to accomplish this is to
paste the download links provided above each file into a wget command. (We don’t provide the links directly because
they are subject to change.) For example, right-click and copy the download link for config.json shown below.

Listing 2.6: config.json

{
"model_name": "bert-base-cased-finetuned-mrpc",
"max_length": 128,
"batch_size": 6

}
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Now execute the following in your shell:

wget <paste link here>
ls

bert_neuron_b6.pt config.json

Download the custom handler script that will eventually respond to inference requests.

Listing 2.7: handler_bert.py

1 import os
2 import json
3 import sys
4 import logging
5 from abc import ABC
6

7 import torch
8 import torch_neuron
9

10 from transformers import AutoTokenizer
11 from ts.torch_handler.base_handler import BaseHandler
12

13

14 # one core per worker
15 os.environ['NEURON_RT_NUM_CORES'] = '1'
16

17 logger = logging.getLogger(__name__)
18

19 class BertEmbeddingHandler(BaseHandler, ABC):
20 """
21 Handler class for Bert Embedding computations.
22 """
23 def __init__(self):
24 super(BertEmbeddingHandler, self).__init__()
25 self.initialized = False
26

27 def initialize(self, ctx):
28 self.manifest = ctx.manifest
29 properties = ctx.system_properties
30 self.device = 'cpu'
31 model_dir = properties.get('model_dir')
32 serialized_file = self.manifest['model']['serializedFile']
33 model_pt_path = os.path.join(model_dir, serialized_file)
34

35 # point sys.path to our config file
36 with open('config.json') as fp:
37 config = json.load(fp)
38 self.max_length = config['max_length']
39 self.batch_size = config['batch_size']
40 self.classes = ['not paraphrase', 'paraphrase']
41

42 self.model = torch.jit.load(model_pt_path)
(continues on next page)
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43 logger.debug(f'Model loaded from {model_dir}')
44 self.model.to(self.device)
45 self.model.eval()
46

47 self.tokenizer = AutoTokenizer.from_pretrained(config['model_name'])
48 self.initialized = True
49

50 def preprocess(self, input_data):
51 """
52 Tokenization pre-processing
53 """
54

55 input_ids = []
56 attention_masks = []
57 token_type_ids = []
58 for row in input_data:
59 seq_0 = row['seq_0'].decode('utf-8')
60 seq_1 = row['seq_1'].decode('utf-8')
61 logger.debug(f'Received text: "{seq_0}", "{seq_1}"')
62

63 inputs = self.tokenizer.encode_plus(
64 seq_0,
65 seq_1,
66 max_length=self.max_length,
67 padding='max_length',
68 truncation=True,
69 return_tensors='pt'
70 )
71

72 input_ids.append(inputs['input_ids'])
73 attention_masks.append(inputs['attention_mask'])
74 token_type_ids.append(inputs['token_type_ids'])
75

76 batch = (torch.cat(input_ids, 0),
77 torch.cat(attention_masks, 0),
78 torch.cat(token_type_ids, 0))
79

80 return batch
81

82 def inference(self, inputs):
83 """
84 Predict the class of a text using a trained transformer model.
85 """
86

87 # sanity check dimensions
88 assert(len(inputs) == 3)
89 num_inferences = len(inputs[0])
90 assert(num_inferences <= self.batch_size)
91

92 # insert padding if we received a partial batch
93 padding = self.batch_size - num_inferences
94 if padding > 0:

(continues on next page)
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95 pad = torch.nn.ConstantPad1d((0, 0, 0, padding), value=0)
96 inputs = [pad(x) for x in inputs]
97

98 outputs = self.model(*inputs)[0]
99 predictions = []

100 for i in range(num_inferences):
101 prediction = self.classes[outputs[i].argmax().item()]
102 predictions.append([prediction])
103 logger.debug("Model predicted: '%s'", prediction)
104 return predictions
105

106 def postprocess(self, inference_output):
107 return inference_output

Next, we need to associate the handler script with the compiled model using torch-model-archiver. Run the
following commands in your terminal:

mkdir model_store
MAX_LENGTH=$(jq '.max_length' config.json)
BATCH_SIZE=$(jq '.batch_size' config.json)
MODEL_NAME=bert-max_length$MAX_LENGTH-batch_size$BATCH_SIZE
torch-model-archiver --model-name "$MODEL_NAME" --version 1.0 --serialized-file ./bert_
→˓neuron_b6.pt --handler "./handler_bert_neuronx.py" --extra-files "./config.json" --
→˓export-path model_store

Note: If you modify your model or a dependency, you will need to rerun the archiver command with the -f flag
appended to update the archive.

The result of the above will be a mar file inside the model_store directory.

ls model_store

bert-max_length128-batch_size6.mar

This file is essentially an archive associated with a fixed version of your model along with its dependencies (e.g. the
handler code).

Note: The version specified in the torch-model-archiver command can be appended to REST API requests to
access a specific version of your model. For example, if your model was hosted locally on port 8080 and named
“bert”, the latest version of your model would be available at http://localhost:8080/predictions/bert, while
version 1.0 would be accessible at http://localhost:8080/predictions/bert/1.0. We will see how to perform
inference using this API in Step 6.

Create a custom config file to set some parameters. This file will be used to configure the server at launch when we run
torchserve --start.

Listing 2.8: torchserve.config

# bind inference API to all network interfaces with SSL enabled
inference_address=http://0.0.0.0:8080

(continues on next page)
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default_workers_per_model=1

Note: This will cause TorchServe to bind on all interfaces. For security in real-world applications, you’ll probably
want to use port 8443 and enable SSL.

Run TorchServe

It’s time to start the server. Typically we’d want to launch this in a separate console, but for this demo we’ll just redirect
output to a file.

torchserve --start --ncs --model-store model_store --ts-config torchserve.config 2>&1 >
→˓torchserve.log

Verify that the server seems to have started okay.

curl http://127.0.0.1:8080/ping

{
"status": "Healthy"

}

Note: If you get an error when trying to ping the server, you may have tried before the server was fully launched.
Check torchserve.log for details.

Use the Management API to instruct TorchServe to load our model.

MAX_BATCH_DELAY=5000 # ms timeout before a partial batch is processed
INITIAL_WORKERS=2 # Number from table above
curl -X POST "http://localhost:8081/models?url=$MODEL_NAME.mar&batch_size=$BATCH_SIZE&
→˓initial_workers=$INITIAL_WORKERS&max_batch_delay=$MAX_BATCH_DELAY"

{
"status": "Model \"bert-max_length128-batch_size6\" Version: 1.0 registered with 4␣

→˓initial workers"
}

Note: Any additional attempts to configure the model after the initial curl request will cause the server to return a 409
error. You’ll need to stop/start/configure the server to realize any changes.

The MAX_BATCH_DELAY is a timeout value that determines how long to wait before processing a partial batch. This is
why the handler code needs to check the batch dimension and potentially add padding. TorchServe will instantiate the
number of model handlers indicated by INITIAL_WORKERS, so this value controls how many models we will load onto
Inferentia in parallel. This tutorial was performed on an inf1.xlarge instance (one Inferentia chip), so there are four
NeuronCores available. If you want to control worker scaling more dynamically, see the docs.
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Warning: If you attempt to load more models than NeuronCores available, one of two things will occur. Either
the extra models will fit in device memory but performance will suffer, or you will encounter an error on your initial
inference. You shouldn’t set INITIAL_WORKERS above the number of NeuronCores. However, you may want to
use fewer cores if you are using the NeuronCore Pipeline feature.

It looks like everything is running successfully at this point, so it’s time for an inference.

Create the infer_bert.py file below on your instance.

Listing 2.9: infer_bert.py

1 import json
2 import concurrent.futures
3 import requests
4

5 with open('config.json') as fp:
6 config = json.load(fp)
7 max_length = config['max_length']
8 batch_size = config['batch_size']
9 name = f'bert-max_length{max_length}-batch_size{batch_size}'

10

11 # dispatch requests in parallel
12 url = f'http://localhost:8080/predictions/{name}'
13 paraphrase = {'seq_0': "HuggingFace's headquarters are situated in Manhattan",
14 'seq_1': "The company HuggingFace is based in New York City"}
15 not_paraphrase = {'seq_0': paraphrase['seq_0'], 'seq_1': 'This is total nonsense.'}
16

17 with concurrent.futures.ThreadPoolExecutor(max_workers=batch_size) as executor:
18 def worker_thread(worker_index):
19 # we'll send half the requests as not_paraphrase examples for sanity
20 data = paraphrase if worker_index < batch_size//2 else not_paraphrase
21 try:
22 response = requests.post(url, data=data)
23

24 # Check if the response status code indicates success
25 if response.status_code == 200:
26 print(worker_index, response.json())
27 else:
28 # If the response is not successful, raise an exception with the status␣

→˓code and error message
29 error_message = response.json().get('message', 'Unknown Error')
30 raise Exception(f"Failed request with status code {response.status_code}:

→˓ {error_message}")
31 except Exception as e:
32 # Catch all other exceptions that may be raised
33 print(f"An unexpected error occurred: {e}")
34 raise
35

36 for worker_index in range(batch_size):
37 executor.submit(worker_thread, worker_index)

This script will send a batch_size number of requests to our model. In this example, we are using a model that
estimates the probability that one sentence is a paraphrase of another. The script sends positive examples in the first
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half of the batch and negative examples in the second half.

Execute the script in your terminal.

python infer_bert.py

1 ['paraphrase']
3 ['not paraphrase']
4 ['not paraphrase']
0 ['paraphrase']
5 ['not paraphrase']
2 ['paraphrase']

We can see that the first three threads (0, 1, 2) all report paraphrase, as expected. If we instead modify the script to
send an incomplete batch and then wait for the timeout to expire, the excess padding results will be discarded.

Benchmark TorchServe

We’ve seen how to perform a single batched inference, but how many inferences can we process per second? A separate
upcoming tutorial will document performance tuning to maximize throughput. In the meantime, we can still perform
a simple naïve stress test. The code below will spawn 64 worker threads, with each thread repeatedly sending a full
batch of data to process. A separate thread will periodically print throughput and latency measurements.

Listing 2.10: benchmark_bert.py

1 import os
2 import argparse
3 import time
4 import numpy as np
5 import requests
6 import sys
7 from concurrent import futures
8

9 import torch
10

11

12 parser = argparse.ArgumentParser()
13 parser.add_argument('--url', help='Torchserve model URL', type=str, default=f'http://127.

→˓0.0.1:8080/predictions/bert-max_length128-batch_size6')
14 parser.add_argument('--num_thread', type=int, default=64, help='Number of threads␣

→˓invoking the model URL')
15 parser.add_argument('--batch_size', type=int, default=6)
16 parser.add_argument('--sequence_length', type=int, default=128)
17 parser.add_argument('--latency_window_size', type=int, default=1000)
18 parser.add_argument('--throughput_time', type=int, default=300)
19 parser.add_argument('--throughput_interval', type=int, default=10)
20 args = parser.parse_args()
21

22 data = { 'seq_0': 'A completely made up sentence.',
23 'seq_1': 'Well, I suppose they are all made up.' }
24 live = True
25 num_infer = 0
26 latency_list = []

(continues on next page)
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27

28

29 def one_thread(pred, feed_data):
30 global latency_list
31 global num_infer
32 global live
33 session = requests.Session()
34 while True:
35 start = time.time()
36 result = session.post(pred, data=feed_data)
37 latency = time.time() - start
38 latency_list.append(latency)
39 num_infer += 1
40 if not live:
41 break
42

43

44 def current_performance():
45 last_num_infer = num_infer
46 for _ in range(args.throughput_time // args.throughput_interval):
47 current_num_infer = num_infer
48 throughput = (current_num_infer - last_num_infer) / args.throughput_interval
49 p50 = 0.0
50 p90 = 0.0
51 if latency_list:
52 p50 = np.percentile(latency_list[-args.latency_window_size:], 50)
53 p90 = np.percentile(latency_list[-args.latency_window_size:], 90)
54 print('pid {}: current throughput {}, latency p50={:.3f} p90={:.3f}'.format(os.

→˓getpid(), throughput, p50, p90))
55 sys.stdout.flush()
56 last_num_infer = current_num_infer
57 time.sleep(args.throughput_interval)
58 global live
59 live = False
60

61

62 with futures.ThreadPoolExecutor(max_workers=args.num_thread+1) as executor:
63 executor.submit(current_performance)
64 for _ in range(args.num_thread):
65 executor.submit(one_thread, args.url, data)

Run the benchmarking script.

python benchmark_bert.py

pid 28523: current throughput 0.0, latency p50=0.000 p90=0.000
pid 28523: current throughput 617.7, latency p50=0.092 p90=0.156
pid 28523: current throughput 697.3, latency p50=0.082 p90=0.154
pid 28523: current throughput 702.8, latency p50=0.081 p90=0.149
pid 28523: current throughput 699.1, latency p50=0.085 p90=0.147
pid 28523: current throughput 703.8, latency p50=0.083 p90=0.148
pid 28523: current throughput 699.3, latency p50=0.083 p90=0.148

(continues on next page)
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...

Congratulations! By now you should have successfully served a batched model over TorchServe.

You can now shutdown torchserve.

torchserve --stop

This document is relevant for: Inf1

Transformers MarianMT Tutorial

In this tutorial, you will deploy the HuggingFace MarianMT model for text translation.

This Jupyter notebook should be run on an inf1.6xlarge instance since you will be loading and compiling several large
models.

Verify that this Jupyter notebook is running the Python kernel environment that was set up according to the PyTorch
Installation Guide. You can select the kernel from the “Kernel -> Change Kernel” option on the top of this Jupyter
notebook page.

To generate text, you will be using the beam search algorithm to incrementally generate token candidates until the
full output text has been created. Unlike simple single-pass models, this algorithm divides the work into two distinct
phases:

• Encoder: Convert the input text into an encoded representation. (Executed once)

• Decoder: Use the encoded representation of the input text and the current output tokens to incrementally generate
the set of next best candidate tokens. (Executed many times)

In this tutorial you will perform the following steps:

• Compile: Compile both the Encoder and Decoder for Neuron using simplified interfaces for inference.

• Infer: Run on CPU and Neuron and compare results.

Finally, a completely unrolled decoder will be built which simplifies the implementation at the cost of performing
fixed-length inferences.

Install Dependencies:

This tutorial has the following dependencies:

• transformers==4.25.1

• torch-neuron

• sentencepiece

• neuron-cc[tensorflow]

The following will install the required transformers version. Note that encoder/decoder API changes across different
minor versions requires that you are specific about the version used. Also note that the torch-neuron version is pinned
due to transformer compatibility issues.

[ ]: !pip install sentencepiece transformers==4.26.1

2.1. PyTorch Neuron 193

https://huggingface.co/transformers/v4.0.1/model_doc/marian.html
../../../frameworks/torch/torch-neuron/setup/pytorch-install.html
../../../frameworks/torch/torch-neuron/setup/pytorch-install.html


AWS Neuron

Parameters

The parameters of a generative model can be tuned for different use-cases. In this example, you’ll tailor the parameters
to a single inference beam search for an on-demand inference use-case. See the MarianConfig for parameter details.

Rather than varying the encoder/decoder token sizes at runtime, you must define these parameters prior to compilation.
The encoder/decoder token sizes are important tunable parameters as a large token sequence will offer greater sentence
length flexibility but perform worse than a small token sequence.

To maximize performance on Neuron, the num_beams, max_encode_length and max_decoder_length should be
made as small as possible for the use-case.

For this tutorial you will use a model that translates sentences of up to 32 token from English to German.

[ ]: %env TOKENIZERS_PARALLELISM=True #Supresses tokenizer warnings making errors easier to␣
→˓detect
model_name = "Helsinki-NLP/opus-mt-en-de" # English -> German model
num_texts = 1 # Number of input texts to decode
num_beams = 4 # Number of beams per input text
max_encoder_length = 32 # Maximum input token length
max_decoder_length = 32 # Maximum output token length

CPU Model Inference

Start by executing the model on CPU to test its execution.

The following defines the inference function which will be used to compare the Neuron and CPU output. In this example
you will display all beam search sequences that were generated. For a real on-demand use case, set the num_beams to
1 to return only the top result.

[ ]: def infer(model, tokenizer, text):

# Truncate and pad the max length to ensure that the token size is compatible with␣
→˓fixed-sized encoder (Not necessary for pure CPU execution)

batch = tokenizer(text, max_length=max_decoder_length, truncation=True, padding='max_
→˓length', return_tensors="pt")

output = model.generate(**batch, max_length=max_decoder_length, num_beams=num_beams,␣
→˓num_return_sequences=num_beams)

results = [tokenizer.decode(t, skip_special_tokens=True) for t in output]

print('Texts:')
for i, summary in enumerate(results):

print(i + 1, summary)

Note that after loading the model, we also set the maximum length. This will later be used to limit the size of the
compiled model.

[ ]: from transformers import MarianMTModel, MarianTokenizer

model_cpu = MarianMTModel.from_pretrained(model_name)
model_cpu.config.max_length = max_decoder_length
model_cpu.eval()

tokenizer = MarianTokenizer.from_pretrained(model_name)
(continues on next page)
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sample_text = "I am a small frog."

[ ]: infer(model_cpu, tokenizer, sample_text)

Padded Model

In order to perform inference on Neuron, the model must be changed in a way that it supports tracing and fixed-
sized inputs. One way in which this is possible is to use a pad the model inputs to the maximum possible tensor
sizes. The benefit of using a padded model is that it supports variable length text generation up to a specified length
max_decoder_length. A consequence of padding is that it can negatively impact performance due to large data
transfers.

PaddedEncoder & PaddedDecoder Modules

Here you will define wrappers around the encoder and decoder portions of the generation model that are compatible
with torch.jit.trace as well as fixed-sized inputs.

The following are important features which are distinct from the default configuration:

1. Disabled return_dict. When this is enabled, the network uses dataclass type outputs which are not com-
patible with torch.jit.trace.

2. Disabled use_cache. When this option is enabled, the network expects a collection of cache tensors which grow
upon each iteration. Since Neuron requires fixed sized inputs, this must be disabled.

3. The GenerationMixin:beam_search implementation uses only the logits for the current iteration index from
the original decoder layer output. Since inputs must be padded, performance can be improved by selecting
only a subset of the hidden state prior to the final linear layer. For efficiency on Neuron, this reduction uses an
elementwise-multiply to mask out the unused hidden values and then sums along an axis.

4. Since a reduction step is insterted between the decoder output and the final logit calculation, the original model
attribute is not used. Instead the PaddedDecoder class combines the decoder, reducer, and linear layers into a
combined forward pass. In the original model there is a clear distinction between the decoder layer and the final
linear layer. These layers are fused together to get one large fully optimized graph.

[ ]: import torch
from torch.nn import functional as F

class PaddedEncoder(torch.nn.Module):

def __init__(self, model):
super().__init__()
self.encoder = model.model.encoder
self.main_input_name = 'input_ids'

def forward(self, input_ids, attention_mask):
return self.encoder(input_ids, attention_mask=attention_mask, return_dict=False)

class PaddedDecoder(torch.nn.Module):
(continues on next page)
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def __init__(self, model):
super().__init__()
self.weight = model.model.shared.weight.clone().detach()
self.bias = model.final_logits_bias.clone().detach()
self.decoder = model.model.decoder

def forward(self, input_ids, attention_mask, encoder_outputs, index):

# Invoke the decoder
hidden, = self.decoder(

input_ids=input_ids,
encoder_hidden_states=encoder_outputs,
encoder_attention_mask=attention_mask,
return_dict=False,
use_cache=False,

)

_, n_length, _ = hidden.shape

# Create selection mask
mask = torch.arange(n_length, dtype=torch.float32) == index
mask = mask.view(1, -1, 1)

# Broadcast mask
masked = torch.multiply(hidden, mask)

# Reduce along 1st dimension
hidden = torch.sum(masked, 1, keepdims=True)

# Compute final linear layer for token probabilities
logits = F.linear(

hidden,
self.weight,
bias=self.bias

)
return logits

PaddedGenerator - GenerationMixin Class

On text generation tasks, HuggingFace Transformers defines a GenerationMixin base class which provides standard
methods and algorithms to generate text. For this tutorial, you will be using the beam search algorithm on en-
coder/decoder architectures.

To be able to use these methods, you will be defining your own class derived from the GenerationMixin class to
run a beam search. This will invoke the encoder and decoder layers in a way that is compatible with fixed sized
inputs and traced modules. This means you must import the base class and the output objects (Seq2SeqLMOutput,
BaseModelOutput) used by the beam_search algorithm.

The GenerationMixin:generate method will use GenerationMixin:beam_search which requires that you to
define your own class implementation that invokes the PaddedEncoder and PaddedDecoder modules using padded
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inputs. The standard generator model implementation will not work by default because it is intended to infer with
variable-sized (growing) input tensors.

The from_model method is defined to create the PaddedGenerator from an existing pretrained generator class.

To invoke the Encoder and Decoder traced modules in a way that is compatible with the GenerationMixin:
beam_search implementation, the get_encoder, __call__, and prepare_inputs_for_generation methods are
overriden.

Lastly, the class defines methods for serialization so that the model can be easily saved and loaded.

[ ]: import os

from transformers import GenerationMixin, AutoConfig
from transformers.modeling_outputs import Seq2SeqLMOutput, BaseModelOutput
from transformers.modeling_utils import PreTrainedModel

class PaddedGenerator(PreTrainedModel, GenerationMixin):

@classmethod
def from_model(cls, model):

generator = cls(model.config)
generator.encoder = PaddedEncoder(model)
generator.decoder = PaddedDecoder(model)
return generator

def prepare_inputs_for_generation(
self,
input_ids,
encoder_outputs=None,
attention_mask=None,
**kwargs,

):
# Pad the inputs for Neuron
current_length = input_ids.shape[1]
pad_size = self.config.max_length - current_length
return dict(

input_ids=F.pad(input_ids, (0, pad_size)),
attention_mask=attention_mask,
encoder_outputs=encoder_outputs.last_hidden_state,
current_length=torch.tensor(current_length - 1),

)

def get_encoder(self):
def encode(input_ids, attention_mask, **kwargs):

output, = self.encoder(input_ids, attention_mask)
return BaseModelOutput(

last_hidden_state=output,
)

return encode

def forward(self, input_ids, attention_mask, encoder_outputs, current_length,␣
→˓**kwargs):

logits = self.decoder(input_ids, attention_mask, encoder_outputs, current_length)
(continues on next page)
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return Seq2SeqLMOutput(logits=logits)

@property
def device(self): # Attribute required by beam search

return torch.device('cpu')

def save_pretrained(self, directory):
if os.path.isfile(directory):

print(f"Provided path ({directory}) should be a directory, not a file")
return

os.makedirs(directory, exist_ok=True)
torch.jit.save(self.encoder, os.path.join(directory, 'encoder.pt'))
torch.jit.save(self.decoder, os.path.join(directory, 'decoder.pt'))
self.config.save_pretrained(directory)

@classmethod
def from_pretrained(cls, directory):

config = AutoConfig.from_pretrained(directory)
obj = cls(config)
obj.encoder = torch.jit.load(os.path.join(directory, 'encoder.pt'))
obj.decoder = torch.jit.load(os.path.join(directory, 'decoder.pt'))
setattr(obj.encoder, 'main_input_name', 'input_ids') # Attribute required by␣

→˓beam search
return obj

Padded CPU Inference

To start, it is important to ensure that the transformations we have made to the model were successful. Using the classes
defined above we can test that the padded model execution on CPU is identical to the original output also running on
CPU.

[ ]: padded_model_cpu = PaddedGenerator.from_model(model_cpu)
infer(padded_model_cpu, tokenizer, sample_text)

Padded Neuron Tracing & Inference

Now that the padded version of model is confirmed to produce the same outputs as the non-padded version, the model
can be compiled for Neuron.

[ ]: import torch
import torch_neuron

def trace(model, num_texts, num_beams, max_decoder_length, max_encoder_length):
"""
Traces the encoder and decoder modules for use on Neuron.

This function fixes the network to the given sizes. Once the model has been
(continues on next page)
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compiled to a given size, the inputs to these networks must always be of
fixed size.

Args:
model (PaddedGenerator): The padded generator to compile for Neuron
num_texts (int): The number of input texts to translate at once
num_beams (int): The number of beams to compute per text
max_decoder_length (int): The maximum number of tokens to be generated
max_encoder_length (int): The maximum number of input tokens that will be encoded

"""

# Trace the encoder
inputs = (

torch.ones((num_texts, max_encoder_length), dtype=torch.long),
torch.ones((num_texts, max_encoder_length), dtype=torch.long),

)
encoder = torch_neuron.trace(model.encoder, inputs)

# Trace the decoder (with expanded inputs)
batch_size = num_texts * num_beams
inputs = (

torch.ones((batch_size, max_decoder_length), dtype=torch.long),
torch.ones((batch_size, max_encoder_length), dtype=torch.long),
torch.ones((batch_size, max_encoder_length, model.config.d_model), dtype=torch.

→˓float),
torch.tensor(0),

)
decoder = torch_neuron.trace(model.decoder, inputs)

traced = PaddedGenerator(model.config)
traced.encoder = encoder
traced.decoder = decoder
setattr(encoder, 'main_input_name', 'input_ids') # Attribute required by beam search
return traced

[ ]: padded_model_neuron = trace(padded_model_cpu, num_texts, num_beams, max_decoder_length,␣
→˓max_encoder_length)

Comparing the Neuron execution to the original CPU implementation, you will see the exact same generated text.

[ ]: # CPU execution for comparison
infer(padded_model_neuron, tokenizer, sample_text)
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Padded Neuron Serialization

Finally, we can test that we can serialize and reload the model so that it can be used later in its precompiled format.

[ ]: padded_model_neuron.save_pretrained('NeuronPaddedMarianMT')
padded_model_loaded = PaddedGenerator.from_pretrained('NeuronPaddedMarianMT')
infer(padded_model_loaded, tokenizer, sample_text)

Greedy Unrolled Model

An unrolled version of the model can achieve better performance in some cases since all operations will be executed
on the Neuron hardware without returning to CPU. The consequence of this type of model is that since the generation
loop execution never returns to CPU, the entire sequence up to max_decoder_length is performed in a single forward
pass.

The following module performs greedy text generation. Unlike the original beam search text generation, this imple-
mentation always selects the most probable token and does not generate multiple result texts.

GreedyUnrolledGenerator Module

[ ]: class GreedyUnrolledGenerator(torch.nn.Module):

def __init__(self, model):
super().__init__()
self.config = model.config
self.model = model

def forward(self, input_ids, attention_mask):

# Generate the encoder state for the input tokens. This is only done once and␣
→˓the state is reused.

encoder_outputs, = self.model.model.encoder(input_ids, attention_mask=attention_
→˓mask, return_dict=False)

# Set the intial state for the decode loop. This will grow per decoder iteration
tokens = torch.full((input_ids.size(0), 2), self.config.decoder_start_token_id)

# Iteratively invoke the decoder on incrementally generated `tokens` to generate␣
→˓a `next_token`.

# Note that unlike the GeneratorMixin.generate function, there is no early-exit␣
→˓if the stop token

# has been reached. This will always run a fixed number of iterations.
for i in range(self.config.max_length):

hidden, = self.model.model.decoder(
input_ids=tokens,
encoder_hidden_states=encoder_outputs,
encoder_attention_mask=attention_mask,
return_dict=False,
use_cache=False,

) # size: [batch, current_length, vocab_size]
(continues on next page)
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logits = F.linear(
hidden[:, -1, :],
self.model.model.shared.weight,
bias=self.model.final_logits_bias

)
next_tokens = torch.argmax(logits, dim=1, keepdims=True)
tokens = torch.cat([tokens, next_tokens], dim=1)

return tokens

Greedy CPU Inference

The inference code must be updated since the generatemethod is no longer used. This is because the entire generative
inference loop occurs within the GreedyUnrolledGenerator.forward method.

[ ]: def infer_greedy(model, tokenizer, text):
batch = tokenizer(text, max_length=max_decoder_length, truncation=True, padding='max_

→˓length', return_tensors="pt")
inputs = batch['input_ids'], batch['attention_mask']
tokens = greedy_cpu(*inputs)
print('Texts:')
for i, t in enumerate(tokens):

result = tokenizer.decode(t, skip_special_tokens=True)
print(i + 1, result)

Like in previous section of this tutorial, first the greedy model is executed on CPU to validate that the correct results
were produced. In this example, the generated text matches the first result of the original beam search.

[ ]: model_cpu.config.max_length = 8 # This controls the number of decoder loops. Reduced to␣
→˓improve compilation speed.
greedy_cpu = GreedyUnrolledGenerator(model_cpu)
infer_greedy(greedy_cpu, tokenizer, sample_text)

Greedy Neuron Tracing & Inference

Similarly the tracing is simplified since the now the GreedyUnrolledGenerator.forward can be compiled as a
single unit.

For compilation efficiency, two changes will be made compared to normal compilaition:

• torch.jit.freeze is used because it can sometimes speed up compilation by in the case where a module is
re-used multiple times. In this case, it is more efficient because the self.model.model.decoder is used in a
loop.

• The torch_neuron.trace option fallback is set to False. This forces all operations to execute on Neuron.
Most of the time this is not recommended or efficient. In this case, it is more efficient because it means a single
subgraph is produced rather than many. Usually one subgraph would be produced per decoder iteration since
aten::embedding is executed in a loop. The aten::embedding operation is otherwise exected on CPU by
default since this is usually more efficient than executing on Neuron.
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You may notice that compilation will take significantly longer with the unrolled model since the model inserts new
operations into the compute graph for every single decoder iteration. This creates a much larger model graph even
though the weights are re-used.

[ ]: example = (
torch.ones((num_texts, max_encoder_length), dtype=torch.long),
torch.ones((num_texts, max_encoder_length), dtype=torch.long),

)
greedy_cpu.eval()
greedy_trace = torch.jit.trace(greedy_cpu, example)
greedy_frozen = torch.jit.freeze(greedy_trace)
greedy_neuron = torch_neuron.trace(greedy_frozen, example, fallback=False)

[ ]: infer_greedy(greedy_neuron, tokenizer, sample_text)

Greedy Neuron Serialization

Unlike the previous version of the model that used the GenerationMixin base class. This greedy version of the
model can be serialized using the regular torch.jit.save and torch.jit.load utilities since it is a pure torchscript
module.

[ ]: torch.jit.save(greedy_neuron, 'greedy_neuron.pt')
loaded_greedy_neuron = torch.jit.load('greedy_neuron.pt')
infer_greedy(loaded_greedy_neuron, tokenizer, sample_text)

Appendix

BART (Mask Filling Task)

These PaddedGenerator class can be applied to the BART model for the task of filling in mask tokens.

[ ]: from transformers import BartForConditionalGeneration, BartTokenizer
bart_name = "facebook/bart-large"
bart_model = BartForConditionalGeneration.from_pretrained(bart_name)
bart_model.config.max_length = max_decoder_length
bart_tokenizer = BartTokenizer.from_pretrained(bart_name)
bart_text = "UN Chief Says There Is No <mask> in Syria"

[ ]: # CPU Execution
infer(bart_model, bart_tokenizer, bart_text)

[ ]: # Neuron Execution
paddded_bart = PaddedGenerator.from_model(bart_model)
bart_neuron = trace(paddded_bart, num_texts, num_beams, max_decoder_length, max_encoder_
→˓length)
infer(bart_neuron, bart_tokenizer, bart_text)
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Pegasus (Summarization Task)

These PaddedGenerator class can be applied to the Pegasus model for summarization.

[ ]: from transformers import PegasusForConditionalGeneration, PegasusTokenizer
pegasus_name = 'google/pegasus-xsum'
pegasus_model = PegasusForConditionalGeneration.from_pretrained(pegasus_name)
pegasus_model.config.max_length = max_decoder_length
pegasus_tokenizer = PegasusTokenizer.from_pretrained(pegasus_name)
pegasus_text = "PG&E stated it scheduled the blackouts in response to forecasts for high␣
→˓winds amid dry conditions. The aim is to reduce the risk of wildfires."

[ ]: # CPU Execution
infer(pegasus_model, pegasus_tokenizer, pegasus_text)

[ ]: # Neuron Execution
paddded_pegasus = PaddedGenerator.from_model(pegasus_model)
pegasus_neuron = trace(paddded_pegasus, num_texts, num_beams, max_decoder_length, max_
→˓encoder_length)
infer(pegasus_neuron, pegasus_tokenizer, pegasus_text)

This document is relevant for: Inf1

This document is relevant for: Inf1

Utilizing Neuron Capabilities Tutorials

• BERT TorchServe tutorial [html]

• NeuronCore Pipeline tutorial [html] [notebook]

Using NeuronCore Pipeline with PyTorch

In this tutorial you compile a pretrained BERT base model from HuggingFace Transformers, using the NeuronCore
Pipeline feature of the AWS Neuron SDK. You benchmark model latency of the pipeline parallel mode and compare
with the usual data parallel (multi-worker) deployment.

This tutorial is intended to run in an inf1.6xlarge, running the latest AWS Deep Learning AMI (DLAMI). The
inf1.6xlarge instance size has AWS Inferentia chips for a total of 16 NeuronCores.

Verify that this Jupyter notebook is running the Python or Conda kernel environment that was set up according to the
PyTorch Installation Guide. You can select the kernel from the “Kernel -> Change Kernel” option on the top of this
Jupyter notebook page.

Note: Do not execute this tutorial using “Run -> Run all cells” option.
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Install Dependencies:

This tutorial requires the following pip packages:

• torch-neuron

• neuron-cc[tensorflow]

• transformers

Most of these packages will be installed when configuring your environment using the Neuron PyTorch setup guide.
The additional HuggingFace Transformers dependency must be installed here.

[ ]: %env TOKENIZERS_PARALLELISM=True #Supresses tokenizer warnings making errors easier to␣
→˓detect
!pip install --upgrade "transformers==4.6.0"

Compiling a BERT base model for a single NeuronCore

To run a HuggingFace BERTModel on Inferentia, you only need to add a single extra line of code to the usual Trans-
formers PyTorch implementation, after importing the torch_neuron framework.

Add the argument return_dict=False to the BERT transformers model so it can be traced with TorchScript. Torch-
Script is a way to create serializable and optimizable models from PyTorch code.

Enable padding to a maximum sequence length of 128, to test the model’s performance with a realistic payload size.
You can adapt this sequence length to your application’s requirement.

You can adapt the original example on the BertModel forward pass docstring according to the following cell

[ ]: import torch
import torch_neuron
from transformers import BertTokenizer, BertModel

from joblib import Parallel, delayed
import numpy as np
from tqdm import tqdm

import os
import time

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased',return_dict=False)

inputs = tokenizer("Hello, my dog is cute",return_tensors="pt",max_length=128,padding=
→˓'max_length',truncation=True)

The one extra line required is the call to torch.neuron.trace() method. This call compiles the model and returns the
forwad method of the torch nn.Model method, which you can use to run inference.

The compiled graph can be saved using the torch.jit.save function and restored using torch.jit.load function
for inference on Inf1 instances. During inference, the previously compiled artifacts will be loaded into the Neuron
Runtime for inference execution.
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[ ]: neuron_model = torch.neuron.trace(model,
example_inputs = (inputs['input_ids'],inputs[

→˓'attention_mask']),
verbose=1)

Running the BERT base model on a single NeuronCore

With the model already available in memory, you can time one execution and check for the latency on the single
inference call. You will load the model into Inferentia with a single inference call. A large “wall time” is expected
when you first run the next cell, running the cell twice will show the actual inference latency:

[ ]: %%time
# The following line tests inference and should be executed on Inf1 instance family.
outputs = neuron_model(*(inputs['input_ids'],inputs['attention_mask']))

You can also check for the throughput of the single model running on a single NeuronCore.

The sequential inference test (for loop) does not measure all the performance one can achieve in an instance with
multiple NeuronCores. To improve hardwar utilization you can run parallel inference requests over multiple model
workers, which you’ll test in the Data Parallel Bonus Section below.

[ ]: %%time
for _ in tqdm(range(100)):

outputs = neuron_model(*(inputs['input_ids'],inputs['attention_mask']))

Save the compiled model for later use:

[ ]: neuron_model.save('bert-base-uncased-neuron.pt')

Compiling a BERT base model for 16 NeuronCores

Our next step is to compile the same model for all 16 NeuronCores available in the inf1.6xlarge and check the perfor-
mance difference when running pipeline parallel inferences..

[ ]: import torch
import torch_neuron
from transformers import BertTokenizer, BertModel

from joblib import Parallel, delayed
import numpy as np
from tqdm import tqdm

import os
import time

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased',return_dict=False)

inputs = tokenizer("Hello, my dog is cute",return_tensors="pt",max_length=128,padding=
(continues on next page)
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→˓'max_length',truncation=True)

To enable pipeline mode during compilation, you need only to add the compiler flag --neuroncore-pipeline-cores
and set the number of desired cores. The cell below sets up a neuroncore_pipeline_cores string, which you can
set for the available number of NeuronCores on the instance: inf1.6xlarge has 16 NeuronCores in 4 Inferentia chips.

[ ]: # Number of Cores in the Pipeline Mode
neuroncore_pipeline_cores = 16 # This string should be '4' on an inf1.xlarge

# Compiling for neuroncore-pipeline-cores='16'
neuron_pipeline_model = torch.neuron.trace(model,

example_inputs = (inputs['input_ids'],inputs[
→˓'attention_mask']),

verbose=1,
compiler_args = ['--neuroncore-pipeline-cores

→˓', str(neuroncore_pipeline_cores)]
)

Running the BERT base model on 16 NeuronCores

Next, time one execution and check for the latency on the single inference call over 16 cores. You will load the model
into Inferentia with a single inference call. A large “wall time” is expected when you first run the next cell, running the
cell twice will show the actual inference latency:

[ ]: %%time
# The following line tests inference and should be executed on Inf1 instance family.
outputs = neuron_pipeline_model(*(inputs['input_ids'],inputs['attention_mask']))

Check also for the throughput of the single model running over a 16 NeuronCores.

The sequential inference test (for loop) does not measure all the performance one can achieve with Pipeline mode. As
the inference runs in streaming fashion, at least 15 cores are waiting for a new call until the last one processes the first
call. This results in low NeuronCore utilization. To improve hardware utilization you will require parallel inference
requests, which you’ll test in the next section.

[ ]: for _ in tqdm(range(100)):
outputs = neuron_pipeline_model(*(inputs['input_ids'],inputs['attention_mask']))

Load Testing the Pipeline Parallel Mode

To put the 16 NeuronCores group to test, a client has to run concurrent requests to the model. In this Notebook setup
you achieve it by creating a thread pool with Joblib.Parallel, with all workers on the pool runing one inference
call.

You can define a new method called inference_latency() so that you measure the amount of time each inference
calls take.

[ ]: def inference_latency(model,*inputs):
"""
infetence_time is a simple method to return the latency of a model inference.

(continues on next page)
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Parameters:
model: torch model onbject loaded using torch.jit.load
inputs: model() args

Returns:
latency in seconds

"""
start = time.time()
_ = model(*inputs)
return time.time() - start

Use tqdm to measure total throughput of your experiment, with a nice side-effect of “cool progress bar!”. The total
throughput is expected to be high, so set your experiment range to a large number, here 30k inferences.

To calculate the latency statistics over the returned 30k list of latencies use numpy.qunatile() method.

[ ]: t = tqdm(range(30000), position=0, leave=True)
latency = Parallel(n_jobs=12,prefer="threads")(delayed(inference_latency)(neuron_
→˓pipeline_model,*(inputs['input_ids'],inputs['attention_mask'])) for i in t)

p50 = np.quantile(latency[-10000:],0.50) * 1000
p95 = np.quantile(latency[-10000:],0.95) * 1000
p99 = np.quantile(latency[-10000:],0.99) * 1000
avg_throughput = t.total/t.format_dict['elapsed']
print(f'Avg Throughput: :{avg_throughput:.1f}')
print(f'50th Percentile Latency:{p50:.1f} ms')
print(f'95th Percentile Latency:{p95:.1f} ms')
print(f'99th Percentile Latency:{p99:.1f} ms')

Save compile model for later use:

[ ]: # Save the TorchScript graph
neuron_pipeline_model.save('bert-base-uncased-neuron-pipeline.pt')

Bonus Section - Load Testing Data Parallel Mode

[ ]: import torch
import torch_neuron
from transformers import BertTokenizer

from joblib import Parallel, delayed
import numpy as np
from tqdm import tqdm

import os
import time

def inference_latency(model,*inputs):
"""
infetence_time is a simple method to return the latency of a model inference.

(continues on next page)
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Parameters:
model: torch model onbject loaded using torch.jit.load
inputs: model() args

Returns:
latency in seconds

"""
start = time.time()
_ = model(*inputs)
return time.time() - start

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

inputs = tokenizer("Hello, my dog is cute",return_tensors="pt",max_length=128,padding=
→˓'max_length',truncation=True)

You use the 'NEURON_RT_NUM_CORES' environment variable to define how many Neuron cores to be used. Set the
environment variable to the number of individual workers you want to test in parallel.

torch_neuron will load one model per NeuronCore group until it runs out of cores. At that point, if the Python
process continues to spawn more model objest using torch.jit.load, torch_neuron will start stacking more than
one model per core, until the Inferentia chip memory is full.

Inferentia is able to run inference over all the loaded models, but only one at a time. The Neuron Runtime takes care
of dynamically switching the model context as requests come in, no extra worker process management required. Use
1 model per NeuronCore to achieve maximum performance.

The following cell creates a list with as many models as NeuronCore Groups and execute one single dummy inference
to load the models into Inferentia.

[ ]: import warnings
# Number of data parallel workers
number_of_workers=16 # This number should be 4 on an inf1.xlarge

# Setting up a data parallel group
os.environ['NEURON_RT_NUM_CORES'] = str(number_of_workers)

# Loading 'number_of_workers' amount of models in Python memory
model_list = [torch.jit.load('bert-base-uncased-neuron.pt') for _ in range(number_of_
→˓workers)]

# Dummy inference to load models to Inferentia
_ = [mod(*(inputs['input_ids'],inputs['attention_mask'])) for mod in model_list]

Adapt the call to joblib.Parallel() iterating over a concatenated version of the model_list, to run ‘round-robin’
calls to each of the model workers.

[ ]: t = tqdm(model_list*1500,position=0, leave=True)
latency = Parallel(n_jobs=number_of_workers,prefer="threads")(delayed(inference_
→˓latency)(mod,*(inputs['input_ids'],inputs['attention_mask'])) for mod in t)

(continues on next page)
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p50 = np.quantile(latency[-10000:],0.50) * 1000
p95 = np.quantile(latency[-10000:],0.95) * 1000
p99 = np.quantile(latency[-10000:],0.99) * 1000
avg_throughput = t.total/t.format_dict['elapsed']
print(f'Avg Throughput: :{avg_throughput:.1f}')
print(f'50th Percentile Latency:{p50:.1f} ms')
print(f'95th Percentile Latency:{p95:.1f} ms')
print(f'99th Percentile Latency:{p99:.1f} ms')

For this model, despite the larger number of workers, the per-worker latency increases when running a single model
per core, which in turn reduces the total throughput.

This behavior may not repeat if the model memory footprint or the input payload size changes, i.e batch size > 1. We
encourage you to experiment with the data parallel and pipeline parallel modes to optimize your application perfor-
mance.

This document is relevant for: Inf1

Computer Vision Tutorials

• ResNet-50 tutorial [html] [notebook]

• PyTorch YOLOv4 tutorial [html] [notebook]

Natural Language Processing (NLP) Tutorials

• HuggingFace pretrained BERT tutorial [html] [notebook]

• HuggingFace pretrained BERT tutorial with shared weights [html] [notebook]

• Bring your own HuggingFace pretrained BERT container to Sagemaker Tutorial [html] [notebook]

• LibTorch C++ tutorial [html]

• TorchServe tutorial [html]

• HuggingFace MarianMT tutorial [html] [notebook]

Utilizing Neuron Capabilities Tutorials

• BERT TorchServe tutorial [html]

• NeuronCore Pipeline tutorial [html] [notebook]

Note: To use Jupyter Notebook see:

• setup-jupyter-notebook-steps-troubleshooting

• running-jupyter-notebook-as-script

This document is relevant for: Inf1

This document is relevant for: Inf1
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Additional Examples (torch-neuron)

• AWS Neuron Samples GitHub Repository

This document is relevant for: Inf1

This document is relevant for: Inf1

API Reference Guide (torch-neuron)

This document is relevant for: Inf1

PyTorch-Neuron trace python API

The PyTorch-Neuron trace Python API provides a method to generate PyTorch models for execution on Inferentia,
which can be serialized as TorchScript. It is analogous to torch.jit.trace() function in PyTorch.

torch_neuron.trace(model, example_inputs, **kwargs)
The torch_neuron.trace() method sends operations to the Neuron-Compiler (neuron-cc) for compilation
and embeds compiled artifacts in a TorchScript graph.

Compilation can be done on any EC2 machine with sufficient memory and compute resources. c5.4xlarge or
larger is recommended.

Options can be passed to Neuron compiler via the compile function. See Neuron compiler CLI Reference Guide
(neuron-cc) for more information about compiler options.

This function partitions nodes into operations that are supported by Neuron and operations which are not.
Operations which are not supported by Neuron are run on CPU. Graph partitioning can be controlled by the
subgraph_builder_function, minimum_segment_size, and fallback parameters (See below). By de-
fault all supported operations are compiled and run on Neuron.

The compiled graph can be saved using the torch.jit.save() function and restored using torch.jit.
load() function for inference on Inf1 instances. During inference, the previously compiled artifacts will be
loaded into the Neuron Runtime for inference execution.

Required Arguments

Parameters
• model (Module,callable) – The functions that that will be run with example_inputs

arguments. The arguments and return types must compatible with torch.jit.trace().
When a Module is passed to torch_neuron.trace(), only the forward() method is run
and traced.

• example_inputs (tuple) – A tuple of example inputs that will be passed to the model
while tracing. The resulting trace can be run with inputs of different types and shapes as-
suming the traced operations support those types and shapes. This parameter may also be a
single torch.Tensor in which case it is automatically wrapped in a tuple.

Optional Keyword Arguments

Keyword Arguments
• compiler_args (list[str]) – List of strings representing neuron-cc compiler argu-

ments. Note that these arguments apply to all subgraphs generated by allowlist partition-
ing. For example, use compiler_args=['--neuroncore-pipeline-cores', '4'] to
set number of NeuronCores per subgraph to 4. See Neuron compiler CLI Reference Guide
(neuron-cc) for more information about compiler options.
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• compiler_timeout (int) – Timeout in seconds for waiting neuron-cc to complete. Ex-
ceeding this timeout will cause a subprocess.TimeoutExpired exception.

• compiler_workdir (str) – Work directory used by neuron-cc. Useful for debugging
and/or inspecting neuron-cc logs/IRs.

• subgraph_builder_function (callable) – A function which is evaluated on each node
during graph partitioning. This takes in a torch graph operator node and returns a bool value
of whether it should be included in the fused Neuron graph or not. By default the partitioner
selects all operators which are supported by Neuron.

• minimum_segment_size (int) – A parameter used during partitioning. This specifies the
minimum number of graph nodes which should be compiled into a Neuron graph (default=
2). If the number of nodes is smaller than this size, the operations will run on CPU.

• single_fusion_ratio_threshold (float) – A parameter used during partitioning. Dur-
ing partitioning, if a single partition contains a fraction of operations greater than this thresh-
old, only one graph partition will be compiled (default= 0.6). This is used to avoid compiling
many small Neuron graphs. To force compilation of all graphs to Neuron (even when they
are very small), a value of 1.0 can be used.

• fallback (bool) – A function parameter to turn off graph partitioning. Indicates whether
to attempt to fall back to CPU operations if an operation is not supported by Neuron. By
default this is True. If this is set to False and an operation is not supported by Neuron, this
will fail compilation and raise an AttributeError.

• dynamic_batch_size (bool) – A flag to allow Neuron graphs to consume variable sized
batches of data. Dynamic sizing is restricted to the 0th dimension of a tensor.

• optimizations (list) – A list of Optimization passes to apply to the model.

• separate_weights (bool) – A flag to enable compilation of models with over 1.9GB of
constant parameters. By default this flag is False. If this is set to True and the compiler
version is not new enough to support the flag, this will raise an NotImplementedError.

• **kwargs – All other keyword arguments will be forwarded directly to torch.jit.
trace(). This supports flags like strict=False in order to allow dictionary outputs.

Returns
The traced ScriptModulewith embedded compiled neuron sub-graphs. Operations in this mod-
ule will run on Neuron unless they are not supported by Neuron or manually partitioned to run
on CPU.

Note that in torch<1.8 This would return a ScriptFunction if the input was function type.

Return type
ScriptModule, ScriptFunction

class torch_neuron.Optimization

A set of optimization passes that can be applied to the model.

FLOAT32_TO_FLOAT16

A post-processing pass that converts all torch.float32 tensors to torch.float16 tensors. The advan-
tage to this optimization pass is that input/output tensors will be type cast. This reduces the amount of data
that will be copied to and from Inferentia hardware. The resulting traced model will accept both torch.
float32 and torch.float16 inputs where the model used torch.float32 inputs during tracing. It is
only beneficial to enable this optimization if the throughput of a model is highly dependent upon data trans-
fer speed. This optimization is not recommended if the final application will use torch.float32 inputs
since the torch.float16 type cast will occur on CPU during inference.
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Example Usage

Function Compilation

import torch
import torch_neuron

def foo(x, y):
return 2 * x + y

# Run `foo` with the provided inputs and record the tensor operations
traced_foo = torch.neuron.trace(foo, (torch.rand(3), torch.rand(3)))

# `traced_foo` can now be run with the TorchScript interpreter or saved
# and loaded in a Python-free environment
torch.jit.save(traced_foo, 'foo.pt')
traced_foo = torch.jit.load('foo.pt')

Module Compilation

import torch
import torch_neuron
import torch.nn as nn

class Net(nn.Module):
def __init__(self):

super(Net, self).__init__()
self.conv = nn.Conv2d(1, 1, 3)

def forward(self, x):
return self.conv(x) + 1

n = Net()
n.eval()

inputs = torch.rand(1, 1, 3, 3)

# Trace a specific method and construct `ScriptModule` with
# a single `forward` method
neuron_forward = torch.neuron.trace(n.forward, inputs)

# Trace a module (implicitly traces `forward`) and constructs a
# `ScriptModule` with a single `forward` method
neuron_net = torch.neuron.trace(n, inputs)
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Pre-Trained Model Compilation

The following is an example usage of the compilation Python API, with default compilation arguments, using a pre-
trained torch.nn.Module:

import torch
import torch_neuron
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image)

Compiling models with torch.jit.trace kwargs

This example uses the strict=False flag to compile a model with dictionary outputs. Similarly, any other keyword
argument of torch.jit.trace() can be passed directly to torch_neuron.trace() so that it is passed to the un-
derlying trace call.

import torch
import torch_neuron
import torch.nn as nn

class Model(nn.Module):
def __init__(self):

super(Model, self).__init__()
self.conv = nn.Conv2d(1, 1, 3)

def forward(self, x):
return {'conv': self.conv(x) + 1}

model = Model()
model.eval()

inputs = torch.rand(1, 1, 3, 3)

# use the strict=False kwarg to compile a model with dictionary outputs
# the model output format does not change
model_neuron = torch.neuron.trace(model, inputs, strict=False)
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Dynamic Batching

This example uses the optional dynamic_batch_size option in order to support variable sized batches at inference
time.

import torch
import torch_neuron
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input of batch size 1
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image, dynamic_batch_size=True)

# Execute with a batch of 7 images
batch = torch.rand([7, 3, 224, 224])
results = model_neuron(batch)

Manual Partitioning

The following example uses the optional subgraph_builder_function parameter to ensure that only a specific
convolution layer is compiled to Neuron. The remaining operations are executed on CPU.

import torch
import torch_neuron
import torch.nn as nn

class ExampleConvolutionLayer(nn.Module):
def __init__(self):

super().__init__()
self.conv = nn.Conv2d(1, 1, 3)

def forward(self, x):
return self.conv(x) + 1

class Model(nn.Module):
def __init__(self):

super().__init__()
self.layer = ExampleConvolutionLayer()

def forward(self, x):
return self.layer(x) * 100

def subgraph_builder_function(node) -> bool:
"""Select if the node will be included in the Neuron graph"""

# Node names are tuples of Module names.
if 'ExampleConvolutionLayer' in node.name:

return True
(continues on next page)
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(continued from previous page)

# Ignore all operations not in the example convolution layer
return False

model = Model()
model.eval()

inputs = torch.rand(1, 1, 3, 3)

# Log output shows that `aten::_convolution` and `aten::add` are compiled
# but `aten::mul` is not. This will seamlessly switch between Neuron/CPU
# execution in a single graph.
neuron_model = torch_neuron.trace(

model,
inputs,
subgraph_builder_function=subgraph_builder_function

)

Separate Weights

This example uses the optional separate_weights option in order to support compilation of models greater than
1.9GB.

import torch
import torch_neuron
from torchvision import models

# Load the model
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
#the models' output format does not change
model_neuron = torch.neuron.trace(model, image, separate_weights=True)

This document is relevant for: Inf1

This document is relevant for: Inf1

torch.neuron.DataParallel API

The torch.neuron.DataParallel() Python API implements data parallelism on ScriptModule models created
by the PyTorch-Neuron trace python API . This function is analogous to DataParallel in PyTorch. The Data Parallel
Inference on Torch Neuron application note provides an overview of how torch.neuron.DataParallel() can be
used to improve the performance of inference workloads on Inferentia.

torch.neuron.DataParallel(model, device_ids=None, dim=0)
Applies data parallelism by replicating the model on available NeuronCores and distributing data across the
different NeuronCores for parallelized inference.
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By default, DataParallel will use all available NeuronCores allocated for the current process for parallelism.
DataParallel will apply parallelism on dim=0 if dim is not specified.

DataParallel automatically enables dynamic batching on eligible models if dim=0. Dynamic batching can be
dsiabled using torch.neuron.DataParallel.disable_dynamic_batching(). If dynamic batching is not
enabled, the batch size at compilation-time must be equal to the batch size at inference-time divided by the
number of NeuronCores being used. Specifically, the following must be true when dynamic batching is disabled:
input.shape[dim] / len(device_ids) == compilation_input.shape[dim]. DataParallel will throw
a warning if dynamic batching cannot be enabled.

DataParallel will try load all of a model’s NEFFs onto a single NeuronCore, only if all of the NEFFs can fit on a
single NeuronCore. DataParallel does not currently support models that have been compiled with NeuronCore
Pipeline.

torch.neuron.DataParallel() requires PyTorch >= 1.8.

Required Arguments

Parameters
model (ScriptModule) – Model created by the PyTorch-Neuron trace python API to be paral-
lelized.

Optional Arguments

Parameters
• device_ids (list) – List of int or 'nc:#' that specify the NeuronCores to use for paral-

lelization (default: all NeuronCores). Refer to the device_ids note for a description of how
device_ids indexing works.

• dim (int) – Dimension along which the input tensor is scattered across NeuronCores (default
dim=0).

Attributes

Parameters
• num_workers (int) – Number of worker threads used for multithreaded inference (default:
2 * number of NeuronCores).

• split_size (int) – Size of the input chunks (default: max(1, input.shape[dim] //
number of NeuronCores)).

torch.neuron.DataParallel.disable_dynamic_batching()

Disables automatic dynamic batching on the DataParallel module. See Dynamic batching disabled for example
of how DataParallel can be used with dynamic batching disabled. Use as follows:

>>> model_parallel = torch.neuron.DataParallel(model_neuron)
>>> model_parallel.disable_dynamic_batching()

Note: device_ids uses per-process NeuronCore granularity and zero-based indexing. Per-process granularity means
that each Python process “sees” its own view of the world. Specifically, this means that device_ids only “sees” the
NeuronCores that are allocated for the current process. Zero-based indexing means that each Python process will index
its allocated NeuronCores starting at 0, regardless of the “global” index of the NeuronCores. Zero-based indexing
makes it possible to redeploy the exact same code unchanged in different process. This behavior is analogous to the
device_ids argument in the PyTorch DataParallel function.

As an example, assume DataParallel is run on an inf1.6xlarge, which contains four Inferentia chips each of which
contains four NeuronCores:
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• If NEURON_RT_VISIBLE_CORES is not set, a single process can access all 16 NeuronCores. Thus specify-
ing device_ids=["nc:0"] will correspond to chip0:core0 and device_ids=["nc:14"] will correspond to
chip3:core2.

• However, if two processes are launched where: process 1 has NEURON_RT_VISIBLE_CORES=0-6 and process
2 has NEURON_RT_VISIBLE_CORES=7-15, device_ids=["nc:14"] cannot be specified in either process. In-
stead, chip3:core2 can only be accessed in process 2. Additionally, chip3:core2 is specified in process 2 with
device_ids=["nc:7"]. Furthermore, in process 1, device_ids=["nc:0"]would correspond to chip0:core0;
in process 2 device_ids=["nc:0"] would correspond to chip1:core3.

Examples

The following sections provide example usages of the torch.neuron.DataParallel() module.

Default usage

The default DataParallel use mode will replicate the model on all available NeuronCores in the current process. The
inputs will be split on dim=0.

import torch
import torch_neuron
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image)

# Create the DataParallel module
model_parallel = torch.neuron.DataParallel(model_neuron)

# Create a batched input
batch_size = 5
image_batched = torch.rand([batch_size, 3, 224, 224])

# Run inference with a batched input
output = model_parallel(image_batched)
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Specifying NeuronCores

The following example uses the device_ids argument to use the first three NeuronCores for DataParallel inference.

import torch
import torch_neuron
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image)

# Create the DataParallel module, run on the first three NeuronCores
# Equivalent to model_parallel = torch.neuron.DataParallel(model_neuron, device_ids=[0,␣
→˓1, 2])
model_parallel = torch.neuron.DataParallel(model_neuron, device_ids=['nc:0', 'nc:1', 'nc:
→˓2'])

# Create a batched input
batch_size = 5
image_batched = torch.rand([batch_size, 3, 224, 224])

# Run inference with a batched input
output = model_parallel(image_batched)

DataParallel with dim != 0

In this example we run DataParallel inference using four NeuronCores and dim = 2. Because dim != 0, dynamic
batching is not enabled. Consequently, the DataParallel inference-time batch size must be four times the compile-time
batch size. DataParallel will generate a warning that dynamic batching is disabled because dim != 0.

import torch
import torch_neuron

# Create an example model
class Model(torch.nn.Module):

def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(3, 3, 3)

def forward(self, x):
return self.conv(x) + 1

model = Model()
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 8, 8])

(continues on next page)
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(continued from previous page)

model_neuron = torch.neuron.trace(model, image)

# Create the DataParallel module using 4 NeuronCores and dim = 2
model_parallel = torch.neuron.DataParallel(model_neuron, device_ids=[0, 1, 2, 3], dim=2)

# Create a batched input
# Note that image_batched.shape[dim] / len(device_ids) == image.shape[dim]
batch_size = 4 * 8
image_batched = torch.rand([1, 3, batch_size, 8])

# Run inference with a batched input
output = model_parallel(image_batched)

Dynamic batching

In the following example, we use the torch.neuron.DataParallel()module to run inference using several different
batch sizes without recompiling the Neuron model.

import torch
import torch_neuron
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image)

# Create the DataParallel module
model_parallel = torch.neuron.DataParallel(model_neuron)

# Create batched inputs and run inference on the same model
batch_sizes = [2, 3, 4, 5, 6]
for batch_size in batch_sizes:

image_batched = torch.rand([batch_size, 3, 224, 224])

# Run inference with a batched input
output = model_parallel(image_batched)
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Dynamic batching disabled

In the following example, we use torch.neuron.DataParallel.disable_dynamic_batching() to disable dy-
namic batching. We provide an example of a batch size that will not work when dynamic batching is disabled as well
as an example of a batch size that does work when dynamic batching is disabled.

import torch
import torch_neuron
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image)

# Create the DataParallel module and use 4 NeuronCores
model_parallel = torch.neuron.DataParallel(model_neuron, device_ids=[0, 1, 2, 3], dim=0)

# Disable dynamic batching
model_parallel.disable_dynamic_batching()

# Create a batched input (this won't work)
batch_size = 8
image_batched = torch.rand([batch_size, 3, 224, 224])

# This will fail because dynamic batching is disabled and
# image_batched.shape[dim] / len(device_ids) != image.shape[dim]
# output = model_parallel(image_batched)

# Create a batched input (this will work)
batch_size = 4
image_batched = torch.rand([batch_size, 3, 224, 224])

# This will work because
# image_batched.shape[dim] / len(device_ids) == image.shape[dim]
output = model_parallel(image_batched)

Full tutorial with torch.neuron.DataParallel

For an end-to-end tutorial that uses DataParallel, see the PyTorch Resnet Tutorial.

This document is relevant for: Inf1

This document is relevant for: Inf1
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PyTorch Neuron (torch-neuron) Core Placement API [Beta]

Warning: The following functionality is beta and will not be supported in future releases of the Neuron SDK.
This module serves only as a preview for future functionality. In future releases, equivalent functionality may be
moved directly to the torch_neuronmodule and will no longer be available in the torch_neuron.experimental
module.

Functions which enable placement of torch.jit.ScriptModule to specific NeuronCores. Two sets of functions are
provided which can be used interchangeably but have different performance characteristics and advantages:

• The multicore_context()& neuron_cores_context() functions are context managers that allow a model
to be placed on a given NeuronCore at torch.jit.load() time. These functions are the most efficient way of
loading a model since the model is loaded directly to a NeuronCore. The alternative functions described below
require that a model is unloaded from one core and then reloaded to another.

• The set_multicore() & set_neuron_cores() functions allow a model that has already been loaded to a
NeuronCore to be moved to a different NeuronCore. This functionality is less efficient than directly loading a
model to a NeuronCore within a context manager but allows device placement to be fully dynamic at runtime.
This is analogous to the torch.nn.Module.to() function for device placement.

Important: A prerequisite to enable placement functionality is that the loaded torch.jit.ScriptModule has
already been compiled with the torch_neuron.trace() API. Attempting to place a regular torch.nn.Module
onto a NeuronCore prior to compilation will do nothing.

torch_neuron.experimental.multicore_context()

A context which loads all Neuron subgraphs to all visible NeuronCores.

This loads each Neuron subgraph within a torch.jit.ScriptModule to multiple NeuronCores without re-
quiring multiple calls to torch.jit.load(). This allows a single torch.jit.ScriptModule to use multiple
NeuronCores for concurrent threadsafe inferences. Executions use a round-robin strategy to distribute across
NeuronCores.

Any calls to torch.jit.load() will cause any underlying Neuron subgraphs to load to the specified Neuron-
Cores within this context. This context manager only needs to be used during the model load. After loading,
inferences do not need to occur in this context in order to use the correct NeuronCores.

Note that this context is not threadsafe. Using multiple core placement contexts from multiple threads may not
correctly place models.

Raises
RuntimeError – If the Neuron runtime cannot be initialized.

Examples

Multiple Core Replication: Directly load a model to all visible NeuronCores. This allows a single torch.jit.
ScriptModule to use all NeuronCores by running round-robin executions.

>>> with torch_neuron.experimental.multicore_context():
>>> model = torch.jit.load('example_neuron_model.pt')
>>> model(example) # Executes on NeuronCore 0
>>> model(example) # Executes on NeuronCore 1
>>> model(example) # Executes on NeuronCore 2
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torch_neuron.experimental.neuron_cores_context(start_nc: int = -1, nc_count: int = -1)
A context which sets the NeuronCore start/count for all Neuron subgraphs.

Any calls to torch.jit.load() will cause any underlying Neuron subgraphs to load to the specified Neuron-
Cores within this context. This context manager only needs to be used during the model load. After loading,
inferences do not need to occur in this context in order to use the correct NeuronCores.

Note that this context is not threadsafe. Using multiple core placement contexts from multiple threads may not
correctly place models.

Parameters
• start_nc – The starting NeuronCore index where the Module is placed. The value -1

automatically loads to the optimal NeuronCore (least used). Note that this index is always
relative to NeuronCores visible to this process.

• nc_count – The number of NeuronCores to use. The value -1 will load a model to ex-
actly the number of cores required by that model (1 for most models, >1 when using Neu-
ronCore Pipeline). If nc_count is greater than the number of NeuronCores required by
the model, the model will be replicated across multiple NeuronCores. (replications =
floor(nc_count / cores_per_model))

Raises
• RuntimeError – If the Neuron runtime cannot be initialized.

• ValueError – If the nc_count is an invalid number of NeuronCores.

Examples

Single Load: Directly load a model from disk to the first visible NeuronCore.

>>> with torch_neuron.experimental.neuron_cores_context(start_nc=0, nc_count=1):
>>> model = torch.jit.load('example_neuron_model.pt')
>>> model(example) # Executes on NeuronCore 0
>>> model(example) # Executes on NeuronCore 0
>>> model(example) # Executes on NeuronCore 0

Multiple Core Replication: Directly load a model from disk to 2 NeuronCores. This allows a single torch.
jit.ScriptModule to use multiple NeuronCores by running round-robin executions.

>>> with torch_neuron.experimental.neuron_cores_context(start_nc=2, nc_count=2):
>>> model = torch.jit.load('example_neuron_model.pt')
>>> model(example) # Executes on NeuronCore 2
>>> model(example) # Executes on NeuronCore 3
>>> model(example) # Executes on NeuronCore 2

Multiple Model Load: Directly load 2 models from disk and pin them to separate NeuronCores. This causes
each torch.jit.ScriptModule to always execute on a specific NeuronCore.

>>> with torch_neuron.experimental.neuron_cores_context(start_nc=2):
>>> model1 = torch.jit.load('example_neuron_model.pt')
>>> with torch_neuron.experimental.neuron_cores_context(start_nc=0):
>>> model2 = torch.jit.load('example_neuron_model.pt')
>>> model1(example) # Executes on NeuronCore 2
>>> model1(example) # Executes on NeuronCore 2

(continues on next page)
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(continued from previous page)

>>> model2(example) # Executes on NeuronCore 0
>>> model2(example) # Executes on NeuronCore 0

torch_neuron.experimental.set_multicore(trace: torch.jit.ScriptModule)
Loads all Neuron subgraphs in a torch Module to all visible NeuronCores.

This loads each Neuron subgraph within a torch.jit.ScriptModule to multiple NeuronCores without re-
quiring multiple calls to torch.jit.load(). This allows a single torch.jit.ScriptModule to use multiple
NeuronCores for concurrent threadsafe inferences. Executions use a round-robin strategy to distribute across
NeuronCores.

This will unload the model from an existing NeuronCore if it is already loaded.

Requires Torch 1.8+

Parameters
trace – A torch module which contains one or more Neuron subgraphs.

Raises
RuntimeError – If the Neuron runtime cannot be initialized.

Examples

Multiple Core Replication: Move a model across all visible NeuronCores after loading. This allows a single
torch.jit.ScriptModule to use all NeuronCores by running round-robin executions.

>>> model = torch.jit.load('example_neuron_model.pt')
>>> torch_neuron.experimental.set_multicore(model)
>>> model(example) # Executes on NeuronCore 0
>>> model(example) # Executes on NeuronCore 1
>>> model(example) # Executes on NeuronCore 2

torch_neuron.experimental.set_neuron_cores(trace: torch.jit.ScriptModule, start_nc: int = -1, nc_count:
int = -1)

Set the NeuronCore start/count for all Neuron subgraphs in a torch Module.

This will unload the model from an existing NeuronCore if it is already loaded.

Requires Torch 1.8+

Parameters
• trace – A torch module which contains one or more Neuron subgraphs.

• start_nc – The starting NeuronCore index where the Module is placed. The value -1
automatically loads to the optimal NeuronCore (least used). Note that this index is always
relative to NeuronCores visible to this process.

• nc_count – The number of NeuronCores to use. The value -1 will load a model to ex-
actly the number of cores required by that model (1 for most models, >1 when using Neu-
ronCore Pipeline). If nc_count is greater than the number of NeuronCores required by
the model, the model will be replicated across multiple NeuronCores. (replications =
floor(nc_count / cores_per_model))

Raises
• RuntimeError – If the Neuron runtime cannot be initialized.

• ValueError – If the nc_count is an invalid number of NeuronCores.
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Examples

Single Load: Move a model to the first visible NeuronCore after loading.

>>> model = torch.jit.load('example_neuron_model.pt')
>>> torch_neuron.experimental.set_neuron_cores(model, start_nc=0, nc_count=1)
>>> model(example) # Executes on NeuronCore 0
>>> model(example) # Executes on NeuronCore 0
>>> model(example) # Executes on NeuronCore 0

Multiple Core Replication: Replicate a model to 2 NeuronCores after loading. This allows a single torch.jit.
ScriptModule to use multiple NeuronCores by running round-robin executions.

>>> model = torch.jit.load('example_neuron_model.pt')
>>> torch_neuron.experimental.set_neuron_cores(model, start_nc=2, nc_count=2)
>>> model(example) # Executes on NeuronCore 2
>>> model(example) # Executes on NeuronCore 3
>>> model(example) # Executes on NeuronCore 2

Multiple Model Load: Move and pin 2 models to separate NeuronCores. This causes each torch.jit.
ScriptModule to always execute on a specific NeuronCore.

>>> model1 = torch.jit.load('example_neuron_model.pt')
>>> torch_neuron.experimental.set_neuron_cores(model1, start_nc=2)
>>> model2 = torch.jit.load('example_neuron_model.pt')
>>> torch_neuron.experimental.set_neuron_cores(model2, start_nc=0)
>>> model1(example) # Executes on NeuronCore 2
>>> model1(example) # Executes on NeuronCore 2
>>> model2(example) # Executes on NeuronCore 0
>>> model2(example) # Executes on NeuronCore 0

This document is relevant for: Inf1

• PyTorch Neuron trace Python API

• torch.neuron.DataParallel API

• PyTorch Neuron (torch-neuron) Core Placement API [Beta]

This document is relevant for: Inf1

This document is relevant for: Inf1

Developer Guide (torch-neuron)

This document is relevant for: Inf1
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Running inference on variable input shapes with bucketing
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Introduction

With Inferentia, the shape of every input must be fixed at compile time. For applications that require multiple input
sizes, we recommend using padding or bucketing techniques. Padding requires you to compile your model with the
largest expected input size and pad every input to this maximum size. If the performance of your model using padding
is not within your targets, you can consider implementing bucketing.

This guide introduces bucketing, a technique to run inference on inputs with variable shapes on Inferentia. The fol-
lowing sections explain how bucketing can improve the performance of inference workloads on Inferentia. It covers an
overview of how bucketing works and provides examples of using bucketing in computer vision and natural language
processing applications.

Applications that benefit from bucketing

Bucketing refers to compiling your model multiple times with different target input shapes to create “bucketed models.”
Creating bucketed models provides an overview on selecting the input shapes that you use to create bucketed models.
At inference time, each input is padded until its shape matches the next largest bucket shape. The padded input is then
passed into the corresponding bucketed model for inference. By compiling the same model with multiple different
input shapes, the amount of input padding is reduced compared to padding every input to the maximum size in your
dataset. This technique minimizes the compute overhead and improves inference performance compared to padding
every image to the maximum shape in your dataset.

Bucketing works best when multiple different bucketed models are created to efficiently cover the full range of input
shapes. You can fine-tune the model performance by experimenting with different bucket sizes that correspond to the
distribution of input shapes in your dataset.

Bucketing can only be used if there is an upper bound on the shape of the inputs. If necessary, an upper bound on the
input shape can be enforced using resizing and other forms of preprocessing.

The upper bound on the number of bucketed models that you use is dictated by the total size of the compiled bucketed
models. Each Inferentia chip has 8GB of DRAM, or 2GB of DRAM per NeuronCore. An inf1.xlarge and inf1.2xlarge
have 1 Inferentia chip, an inf1.6xlarge has 4 Inferentia chips, and an inf1.24xlarge has 16 Inferentia chips. Thus,

2.1. PyTorch Neuron 225



AWS Neuron

you should limit the total size of all bucketed models to around 8GB per Inferentia chip or 2GB per NeuronCore.
The following formula provides an approximation for the number of compiled bucketed models you can fit on each
NeuronCore:

number-of-buckets = round(10^9 / number-of-weights-in-model)

We recommend using neuron-top to monitor the memory usage on your inf1 instance as you load multiple bucketed
models.

Implementing bucketing

Implementing bucketing consists of two main parts: creating multiple bucketed models at compile-time and running
inference using the bucketed models on (padded) inputs. The following sections describe how to implement bucketing
to run inference in applications that have variable input shapes.

Creating bucketed models

Before running inference, models should be compiled for different input shapes that are representative of the input
dataset. The input shapes that are used to compile the models determine the bucket shapes that are used during inference.
The bucket shapes should be chosen to minimize the amount of padding on each new input. Additionally, there should
always be a bucket that’s large enough to handle the maximum input shape in the dataset. The limit on the number of
compiled bucketed models that can be used is described in this section.

Running inference with bucketing

At inference time, each input should be padded to match the size of the next largest bucket, such that the height and
width (or sequence length) of the padded input equals the size of the bucket. Then, the padded input should be passed
into the corresponding bucket for inference. If necessary, it’s important to remove and/or crop any aberrant predictions
that occur in the padded region. For example, in object detection applications, bounding box predictions that occur in
the padded regions should be removed to avoid erroneous predictions.

Examples

The following sections provide examples of applying the bucketing technique to run inference in applications that have
variable input shapes.

Computer vision bucketing

As an example of implementing bucketing for computer vision models, consider an application where the height and
width of images in dataset are uniformly distributed between [400, 400] and [800, 800]. Given that every input shape
between [400, 400] and [800, 800] is equally likely, it could make sense to create bucketed models that divide up the
range of input shapes into equally sized chunks. For example, we could create bucketed models for the input shapes
[500, 500], [600, 600], [700, 700], and [800, 800].

As an example of running inference with bucketing, let’s assume that we created bucketed models for the input shapes
[500, 500], [600, 600], [700, 700], and [800, 800]. If we receive an input with shape [640, 640], we would pad the
input to the next largest bucket, [700, 700], and use this bucket for inference. If we receive an input with shape [440,
540], we would need to pad the input to the bucket size, [600, 600], and use this bucket for inference.
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As another example of creating bucketed models, consider a computer vision application where the dataset is not
uniformly distributed. As before, let’s assume the input shapes range between [400, 400] to [800, 800]. Now, let’s
assume the data shape distribution is bimodal, such that [540, 540] and [720, 720] are the two most common input
shapes. In this example, it might make sense to create bucketed models for input shapes [540, 540], [720, 720], and
[800, 800] to target the most common shapes while still including the entire range of input shapes.

End-to-end computer vision bucketing example

In this example, we run inference in a computer vision application that has variable shaped images that range in shape
from [400, 400] to [800, 800]. We create bucketed models for the input shapes [500, 500], [600, 600], [700, 700],
and [800, 800] to handle the variable input shapes.

import numpy as np
import torch
from torchvision import models
import torch_neuron

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Define the bucket sizes that will be used for compilation and inference
bucket_sizes = [(500, 500), (600, 600), (700, 700), (800, 800)]

# Create the bucketed models by compiling a model for each bucket size
buckets = {}
for bucket_size in bucket_sizes:

# Create an example input that is the desired bucket size
h, w = bucket_size
image = torch.rand([1, 3, h, w])

# Compile with the example input to create the bucketed model
model_neuron = torch.neuron.trace(model, image)

# Run a warm up inference to load the model into Inferentia memory
model_neuron(image)

# Add the bucketed model based on its bucket size
buckets[bucket_size] = model_neuron

def get_bucket_and_pad_image(image):
# Determine which bucket size to use
oh, ow = image.shape[-2:]
target_bucket = None
for bucket_size in bucket_sizes:

# Choose a bucket that's larger in both the height and width dimensions
if oh <= bucket_size[0] and ow <= bucket_size[1]:

target_bucket = bucket_size
break

# Pad the image to match the size of the bucket
(continues on next page)
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h_delta = target_bucket[0] - oh
w_delta = target_bucket[1] - ow

b_pad = h_delta # Bottom padding
l_pad = 0 # Left padding
t_pad = 0 # Top padding
r_pad = w_delta # Right padding

# Pad the height and width of the image
padding_amounts = (l_pad, r_pad, t_pad, b_pad)
image_padded = torch.nn.functional.pad(image, padding_amounts, value=0)

return image_padded, target_bucket

# Run inference on inputs with different shapes
for _ in range(10):

# Create an image with a random height and width in range [400, 400] to [800, 800]
h = int(np.random.uniform(low=400, high=800))
w = int(np.random.uniform(low=400, high=800))
image = torch.rand(1, 3, h, w)

# Determine bucket and pad the image
image_padded, target_bucket = get_bucket_and_pad_image(image)

# Use the corresponding bucket to run inference
output = buckets[target_bucket](image_padded)

Natural language processing bucketing

As an example of implementing bucketing for natural language processing models, consider an application where the
lengths of tokenized sequences in a dataset are uniformly distributed between 0 and 128 tokens. Given that every
tokenized sequence length between 0 and 128 is equally likely, it might make sense to create bucketed models that
divide up the range of tokenized sequence lengths into equally sized chunks. For example, we could create bucketed
models for tokenized sequence lengths 64 and 128.

As an example of running inference with bucketing, let’s assume that we created bucketed models for the input tokenized
sequence lengths 64 and 128. If we receive a tokenized sequence with length 55, we would need to pad it to the bucket
size 64 and use this bucket for inference. If we receive a tokenized sequence with length 112, we would need to pad it
to the bucket size 128 and use this bucket for inference.

End-to-end natural language processing bucketing example

In this example, we run inference in a natural language processing application that has variable length tokenized se-
quences that range from 0 to 128. We create bucketed models for lengths 64 and 128 to handle the variable input
lengths.

import numpy as np
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification

(continues on next page)
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import torch_neuron

# Build tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased-finetuned-mrpc")
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased-finetuned-
→˓mrpc", return_dict=False)
model.eval()

# Define the bucket sizes that will be used for compilation and inference
bucket_sizes = [64, 128]

# Create the bucketed models by compiling a model for each bucket size
buckets = {}
for bucket_size in bucket_sizes:

# Setup some example inputs
sequence_0 = "The company HuggingFace is based in New York City"
sequence_1 = "HuggingFace's headquarters are situated in Manhattan"

# Create an example input that is the desired bucket size
paraphrase = tokenizer.encode_plus(sequence_0,

sequence_1,
max_length=bucket_size,
padding='max_length',
truncation=True,
return_tensors="pt")

# Convert example inputs to a format that is compatible with TorchScript tracing
example_inputs_paraphrase = paraphrase['input_ids'], paraphrase['attention_mask'],␣

→˓paraphrase['token_type_ids']

# Compile with the example input to create the bucketed model
model_neuron = torch.neuron.trace(model, example_inputs_paraphrase)

# Run a warm up inference to load the model into Inferentia memory
model_neuron(*example_inputs_paraphrase)

# Add the bucketed model based on its bucket size
buckets[bucket_size] = model_neuron

def get_bucket_and_pad_paraphrase(paraphrase):
# Determine which bucket size to use
inputs = paraphrase['input_ids']
attention = paraphrase['attention_mask']
token_type = paraphrase['token_type_ids']
paraphrase_len = inputs.shape[1]
target_bucket = None
for bucket_size in bucket_sizes:

if paraphrase_len <= bucket_size:
target_bucket = bucket_size
break

(continues on next page)
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# Pad the paraphrase to match the size of the bucket
delta = target_bucket - paraphrase_len
zeros = torch.zeros([1, delta], dtype=torch.long)
inputs = torch.cat([inputs, zeros], dim=1)
attention = torch.cat([attention, zeros], dim=1)
token_type = torch.cat([token_type, zeros], dim=1)

paraphrase_padded = inputs, attention, token_type
return paraphrase_padded, target_bucket

# Create two sample sequences
sequence_0 = ("The only other bear similar in size to the polar bear is the "

"Kodiak bear, which is a subspecies of the brown bear. Adult male "
"polar bears weigh 350–700 kg and measure 2.4–3 meters in total "
"length. All bears are short-tailed, the polar bear's tail is "
"relatively the shortest amongst living bears.")

sequence_1 = ("Around the Beaufort Sea, however, mature males reportedly "
"average 450 kg. Adult females are roughly half the size of males "
"and normally weigh 150–250 kg, measuring 1.8–2.4 meters in length. "
"The legs are stocky and the ears and tail are small.")

# Run inference on inputs with different shapes
# We create the variable shapes by randomly cropping the sequences
for _ in range(10):

# Get random sequence lengths between 0 and 128
paraphrase_len = int(np.random.uniform(128))

# Crop the paraphrase
paraphrase_cropped = tokenizer.encode_plus(sequence_0,

sequence_1,
max_length=paraphrase_len,
padding='max_length',
truncation=True,
return_tensors="pt")

# Determine bucket and pad the paraphrase
paraphrase_padded, target_bucket = get_bucket_and_pad_paraphrase(paraphrase_cropped)

# Use the corresponding bucket to run inference
output = buckets[target_bucket](*paraphrase_padded)

This document is relevant for: Inf1

This document is relevant for: Inf1

230 Chapter 2. ML Frameworks



AWS Neuron

Data Parallel Inference on Torch Neuron
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Introduction

This guide introduces torch.neuron.DataParallel(), a Python API that implements data parallelism on
ScriptModule models created by the /neuron-guide/neuron-frameworks/pytorch-neuron/api-compilation-python-
api.rst. The following sections explain how data parallelism can improve the performance of inference workloads
on Inferentia, including how torch.neuron.DataParallel() uses dynamic batching to run inference on variable
input sizes. It covers an overview of the torch.neuron.DataParallel() module and provides a few example data
parallel applications.

Data parallel inference

Data Parallelism is a form of parallelization across multiple devices or cores, referred to as nodes. Each node contains
the same model and parameters, but data is distributed across the different nodes. By distributing the data across
multiple nodes, data parallelism reduces the total execution time of large batch size inputs compared to sequential
execution. Data parallelism works best for smaller models in latency sensitive applications that have large batch size
requirements.
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torch.neuron.DataParallel

To fully leverage the Inferentia hardware, we want to use all available NeuronCores. An inf1.xlarge and inf1.2xlarge
have four NeuronCores, an inf1.6xlarge has 16 NeuronCores, and an inf1.24xlarge has 64 NeuronCores. For maximum
performance on Inferentia hardware, we can use torch.neuron.DataParallel() to utilize all available Neuron-
Cores.

torch.neuron.DataParallel() implements data parallelism at the module level by replicating the Neuron model
on all available NeuronCores and distributing data across the different cores for parallelized inference. This function
is analogous to DataParallel in PyTorch. torch.neuron.DataParallel() requires PyTorch >= 1.8.

The following sections provide an overview of some of the features of torch.neuron.DataParallel() that enable
maximum performance on Inferentia.

NeuronCore selection

By default, DataParallel will try to use all NeuronCores allocated to the current process to fully saturate the Inferentia
hardware for maximum performance. It is more efficient to make the batch dimension divisible by the number of
NeuronCores. This will ensure that NeuronCores are not left idle during parallel inference and the Inferentia hardware
is fully utilized.

In some applications, it is advantageous to use a subset of the available NeuronCores for DataParallel inference. Dat-
aParallel has a device_ids argument that accepts a list of int or 'nc:#' that specify the NeuronCores to use for
parallelization. See Specifying NeuronCores for an example of how to use device_ids argument.

Batch dim

DataParallel accepts a dim argument that denotes the batch dimension used to split the input data for distributed infer-
ence. By default, DataParalell splits the inputs on dim = 0 if the dim argument is not specified. For applications with
a non-zero batch dim, the dim argument can be used to specify the inference-time input batch dimension. DataParallel
with dim ! = 0 provides an example of data parallel inference on inputs with batch dim = 2.

Dynamic batching

Batch size has a direct impact on model performance. The Inferentia chip is optimized to run with small batch sizes.
This means that a Neuron compiled model can outperform a GPU model, even if running single digit batch sizes.

As a general best practice, we recommend optimizing your model’s throughput by compiling the model with a small
batch size and gradually increasing it to find the peak throughput on Inferentia.

Dynamic batching is a feature that allows you to use tensor batch sizes that the Neuron model was not originally
compiled against. This is necessary because the underlying Inferentia hardware will always execute inferences with
the batch size used during compilation. Fixed batch size execution allows tuning the input batch size for optimal
performance. For example, batch size 1 may be best suited for an ultra-low latency on-demand inference application,
while batch size > 1 can be used to maximize throughput for offline inferencing. Dynamic batching is implemented by
slicing large input tensors into chunks that match the batch size used during the torch_neuron.trace() compilation
call.

The torch.neuron.DataParallel() class automatically enables dynamic batching on eligible models. This allows
us to run inference in applications that have inputs with a variable batch size without needing to recompile the model.
See Dynamic batching for an example of how DataParallel can be used to run inference on inputs with a dynamic batch
size without needing to recompile the model.
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Dynamic batching using small batch sizes can result in sub-optimal throughput because it involves slicing tensors into
chunks and iteratively sending data to the hardware. Using a larger batch size at compilation time can use the Inferentia
hardware more efficiently in order to maximize throughput. You can test the tradeoff between individual request latency
and total throughput by fine-tuning the input batch size.

Automatic batching in the DataParallel module can be disabled using the disable_dynamic_batching() function
as follows:

>>> model_parallel = torch.neuron.DataParallel(model_neuron)
>>> model_parallel.disable_dynamic_batching()

If dynamic batching is disabled, the compile-time batch size must be equal to the inference-time batch size divided by
the number of NeuronCores. DataParallel with dim != 0 and Dynamic batching disabled provide examples of running
DataParallel inference with dynamic batching disabled.

Performance optimizations

The DataParallel module has a num_workers attribute that can be used to specify the number of worker threads used
for multithreaded inference. By default, num_workers = 2 * number of NeuronCores. This value can be fine
tuned to optimize DataParallel performance.

DataParallel has a split_size attribute that dictates the size of the input chunks that are distributed to each Neuron-
Core. By default, split_size = max(1, input.shape[dim] // number of NeuronCores). This value can
be modified to optimally match the inference input chunk size with the compile-time batch size.

Examples

The following sections provide example usages of the torch.neuron.DataParallel() module.

Default usage

The default DataParallel use mode will replicate the model on all available NeuronCores in the current process. The
inputs will be split on dim=0.

import torch
import torch_neuron
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image)

# Create the DataParallel module
model_parallel = torch.neuron.DataParallel(model_neuron)

# Create a batched input
batch_size = 5
image_batched = torch.rand([batch_size, 3, 224, 224])

(continues on next page)
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# Run inference with a batched input
output = model_parallel(image_batched)

Specifying NeuronCores

The following example uses the device_ids argument to use the first three NeuronCores for DataParallel inference.

import torch
import torch_neuron
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image)

# Create the DataParallel module, run on the first three NeuronCores
# Equivalent to model_parallel = torch.neuron.DataParallel(model_neuron, device_ids=[0,␣
→˓1, 2])
model_parallel = torch.neuron.DataParallel(model_neuron, device_ids=['nc:0', 'nc:1', 'nc:
→˓2'])

# Create a batched input
batch_size = 5
image_batched = torch.rand([batch_size, 3, 224, 224])

# Run inference with a batched input
output = model_parallel(image_batched)

DataParallel with dim != 0

In this example we run DataParallel inference using four NeuronCores and dim = 2. Because dim != 0, dynamic
batching is not enabled. Consequently, the DataParallel inference-time batch size must be four times the compile-time
batch size. DataParallel will generate a warning that dynamic batching is disabled because dim != 0.

import torch
import torch_neuron

# Create an example model
class Model(torch.nn.Module):

def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(3, 3, 3)

def forward(self, x):
(continues on next page)
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return self.conv(x) + 1

model = Model()
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 8, 8])
model_neuron = torch.neuron.trace(model, image)

# Create the DataParallel module using 4 NeuronCores and dim = 2
model_parallel = torch.neuron.DataParallel(model_neuron, device_ids=[0, 1, 2, 3], dim=2)

# Create a batched input
# Note that image_batched.shape[dim] / len(device_ids) == image.shape[dim]
batch_size = 4 * 8
image_batched = torch.rand([1, 3, batch_size, 8])

# Run inference with a batched input
output = model_parallel(image_batched)

Dynamic batching

In the following example, we use the torch.neuron.DataParallel()module to run inference using several different
batch sizes without recompiling the Neuron model.

import torch
import torch_neuron
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image)

# Create the DataParallel module
model_parallel = torch.neuron.DataParallel(model_neuron)

# Create batched inputs and run inference on the same model
batch_sizes = [2, 3, 4, 5, 6]
for batch_size in batch_sizes:

image_batched = torch.rand([batch_size, 3, 224, 224])

# Run inference with a batched input
output = model_parallel(image_batched)
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Dynamic batching disabled

In the following example, we use torch.neuron.DataParallel.disable_dynamic_batching() to disable dy-
namic batching. We provide an example of a batch size that will not work when dynamic batching is disabled as well
as an example of a batch size that does work when dynamic batching is disabled.

import torch
import torch_neuron
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input
image = torch.rand([1, 3, 224, 224])
model_neuron = torch.neuron.trace(model, image)

# Create the DataParallel module and use 4 NeuronCores
model_parallel = torch.neuron.DataParallel(model_neuron, device_ids=[0, 1, 2, 3], dim=0)

# Disable dynamic batching
model_parallel.disable_dynamic_batching()

# Create a batched input (this won't work)
batch_size = 8
image_batched = torch.rand([batch_size, 3, 224, 224])

# This will fail because dynamic batching is disabled and
# image_batched.shape[dim] / len(device_ids) != image.shape[dim]
# output = model_parallel(image_batched)

# Create a batched input (this will work)
batch_size = 4
image_batched = torch.rand([batch_size, 3, 224, 224])

# This will work because
# image_batched.shape[dim] / len(device_ids) == image.shape[dim]
output = model_parallel(image_batched)

Full tutorial with torch.neuron.DataParallel

For an end-to-end tutorial that uses DataParallel, see the PyTorch Resnet Tutorial.

This document is relevant for: Inf1

This document is relevant for: Inf1
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Developer Guide - PyTorch Neuron (torch-neuron) LSTM Support

The torch-neuron package can support LSTM operations and yield high performance on both fixed-length and
variable-length sequences. Most network configurations can be supported, with the exception of those that require
PackedSequence usage outside of LSTM or pad_packed_sequence() operations. Neuron must guarantee that the
shapes can remain fixed throughout the network.

The following sections describe which scenarios can and cannot be supported.

Supported Usage

Fixed-Length Sequences

In normal usage of an LSTM, the inputs and outputs are expected to be a fixed size sequence length. This is the most
basic usage of an LSTM but may not be applicable to applications where the input sequence length may vary.

import torch
import torch_neuron

class Network(torch.nn.Module):

def __init__(self):
super().__init__()
self.lstm = torch.nn.LSTM(input_size=3, hidden_size=7)

def forward(self, inputs):
output, (ht, ct) = self.lstm(inputs)
return output, (ht, ct)

# Example Inputs
seq_len, batch_size, input_size = 5, 2, 3
inputs = torch.rand(seq_len, batch_size, input_size)

# Trace
torch_neuron.trace(Network(), (inputs,))

Packed Input, Padded Output, Pre-Sorted Inputs

A common usage of an LSTM is when the input sequence sizes vary according to an input sequence lengths (such as
tokens).

For example, the following sentences could result in two different sequence lengths after tokenization:

# Input
text = [
'Hello, sailor',
'Example',

]

# ... Tokenization ...

(continues on next page)
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# Result
tokens = [

[101, 7592, 1010, 11803, 102],
[101, 2742, 102, 0, 0],

]
lengths = [5, 3]

Because the lengths are different, the final LSTM state will be dependent upon the lengths of each sequence in the batch.
Torch provides a way to deal with these types of sequences by densely packing batches into a PackedSequence. The
most common way this is constructed is by using the pack_padded_sequence() utility function prior to feeding
inputs into the LSTM.

Packing the above sequences would result in the following data and batch size tensors.

data = [101, 101, 7592, 2742, 1010, 102, 11803, 102]
batch_sizes = [2, 2, 2, 1, 1]

In addition to correctly computing final LSTM state, using a packed sequence instead of a padded sequence also improves
model performance on CPU. On Neuron, where computation is fixed to the maximum length ahead of time, this is does
not improve performance.

When an LSTM is processing a PackedSequence, it must do so in a descending sorted length order. To ensure that
sequences are sorted, pack_padded_sequence() provides an enforce_sorted flag. When enforce_sorted is
True, the input is already expected to contain sequences sorted by length in a decreasing order along the batch dimen-
sion. Note that this must be enforced in the application-level code but is only relevant when batch size > 1.

The following network can compile successfully because the input and output to the network are guaranteed to be a
fixed shape. The input shape is expected to be a padded tensor and the output tensor is expected to be padded to the
maximum sequence length using the pad_packed_sequence() function call:

import torch
import torch_neuron

class Network(torch.nn.Module):

def __init__(self):
super().__init__()
self.lstm = torch.nn.LSTM(input_size=3, hidden_size=7)

def forward(self, inputs, lengths):
packed_input = torch.nn.utils.rnn.pack_padded_sequence(

inputs,
lengths=lengths,
enforce_sorted=True,

)
packed_result, (ht, ct) = self.lstm(packed_input)
padded_result, _ = torch.nn.utils.rnn.pad_packed_sequence(packed_result)
return padded_result, ht, ct

# Example Inputs
seq_len, batch_size, input_size = 5, 2, 3
inputs = torch.rand(seq_len, batch_size, input_size)
lengths = torch.tensor([seq_len] * batch_size)

(continues on next page)
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(continued from previous page)

# Trace
torch_neuron.trace(Network(), (inputs, lengths))

Packed Input, Padded Output, Unsorted Inputs

When enforce_sorted is False, the input will be sorted unconditionally. This causes some CPU overhead on
Neuron because unsupported operators will be inserted into the graph such as aten::sort and aten::scatter_.
The aten::lstm operation can still be supported, but it will be less efficient than when enforce_sorted is True.

The following code is able to be traced, but results in the sorting operations running on CPU. This is not problematic
in this case because the aten::sort and aten::scatter_ are executed on CPU at the very beginning of the graph
just prior to Neuron execution.

Like the previous example, the call to pad_packed_sequence() ensures that the output is a fixed-shape based on the
maximum sequence length.

import torch
import torch_neuron

class Network(torch.nn.Module):

def __init__(self):
super().__init__()
self.lstm = torch.nn.LSTM(input_size=3, hidden_size=7)

def forward(self, inputs, lengths):
packed_input = torch.nn.utils.rnn.pack_padded_sequence(

inputs,
lengths=lengths,
enforce_sorted=False,

)
packed_result, (ht, ct) = self.lstm(packed_input)
padded_result, _ = torch.nn.utils.rnn.pad_packed_sequence(packed_result)
return padded_result, ht, ct

# Example Inputs
seq_len, batch_size, input_size = 5, 2, 3
inputs = torch.rand(seq_len, batch_size, input_size)
lengths = torch.tensor([seq_len] * batch_size)

# Trace
trace = torch_neuron.trace(Network(), (inputs, lengths))
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Packed Inputs, Final Hidden & Cell State Only

When only the final LSTM hidden & cell state is used, it does not matter if the inputs are packed or unpacked since these
state tensors will not vary in size.

import torch
import torch_neuron

class Network(torch.nn.Module):

def __init__(self):
super().__init__()
self.lstm = torch.nn.LSTM(input_size=3, hidden_size=7)

def forward(self, inputs, lengths):
packed_input = torch.nn.utils.rnn.pack_padded_sequence(

inputs,
lengths=lengths,
enforce_sorted=True,

)
packed_output, (ht, ct) = self.lstm(packed_input)
return ht, ct

# Example Inputs
seq_len, batch_size, input_size = 5, 2, 3
inputs = torch.rand(seq_len, batch_size, input_size)
lengths = torch.tensor([seq_len] * batch_size)

# Trace
trace = torch_neuron.trace(Network(), (inputs, lengths))

Note that when the packed_output is unused, it does not need to be passed to the pad_packed_sequence() to
enable the LSTM to be compiled.

Unsupported Usage

Neuron does not support the use of a PackedSequence outside of the LSTM operation and the
pad_packed_sequence() operation. This is because the shape of a PackedSequence can vary depending on
the input data. This is incompatible with the Neuron restriction that all tensor sizes must be known at compilation time.
When a PackedSequence is used only by an LSTM or pad_packed_sequence() operation, Neuron can guarantee
the size of the intermediary tensors by padding on behalf of the application.

This means that If the PackedSequence is either used by a different operation or returned from the network this would
result in all of the LSTM operations to be executed on CPU or the network compilation will fail.
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PackedSequence Returned

The following is unsupported because the PackedSequence result of the LSTM is returned by the network:

class Network(torch.nn.Module):

def __init__(self):
super().__init__()
self.lstm = torch.nn.LSTM(input_size=3, hidden_size=7)

def forward(self, inputs, lengths):
packed_input = torch.nn.utils.rnn.pack_padded_sequence(

inputs,
lengths=lengths,
enforce_sorted=False,

)
packed_result, (ht, ct) = self.lstm(packed_input)
return packed_result.data, ht, ct

Behavior: In this case, compilation fails and the following warning is generated:

Operator "aten::lstm" consuming a PackedSequence input can only be supported when its␣
→˓corresponding PackedSequence output is unused or unpacked using "aten::_pad_packed_
→˓input". Found usage by "prim::Return"

Resolution: To avoid this error, the packed_result should be padded prior to being returned from the network by
using pad_packed_sequence()

Invalid PackedSequence Usage

The following is unsupported because the PackedSequence result of the LSTM is used by a non-LSTM operator:

class Network(torch.nn.Module):

def __init__(self):
super().__init__()
self.lstm = torch.nn.LSTM(input_size=3, hidden_size=7)

def forward(self, inputs, lengths):
packed_input = torch.nn.utils.rnn.pack_padded_sequence(

inputs,
lengths=lengths,
enforce_sorted=False,

)
packed_result, (ht, ct) = self.lstm(packed_input)
return torch.max(packed_result.data)

Behavior: In this case, compilation fails and the following warning is generated:

Operator "aten::lstm" consuming a PackedSequence input can only be supported when its␣
→˓corresponding PackedSequence output is unused or unpacked using "aten::_pad_packed_
→˓input". Found usage by "aten::max"
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Resolution: To avoid this error, the packed_result should be padded prior to being used in the max() from the
network by using pad_packed_sequence().

This document is relevant for: Inf1

This document is relevant for: Inf1

PyTorch Neuron (torch-neuron) Core Placement

This programming guide describes the available techniques and APIs to be able to allocate NeuronCores to a process and
place models onto specific NeuronCores. In order of precedence, the current recommendation is to use the following
placement techniques:

1. For most regular models, default core placement should be used in conjunction with NEURON_RT_NUM_CORES
(Default Core Allocation & Placement)

2. For more specific core placement for NeuronCore Pipelined models, then NEURONCORE_GROUP_SIZES should
be used (NEURONCORE_GROUP_SIZES).

3. Finally, for even more granular control, then the beta explicit placement APIs may be used (Explicit Core Place-
ment [Beta]).

Table of Contents

• PyTorch Neuron (torch-neuron) Core Placement

– NeuronCore Pipeline

– Default Core Allocation & Placement

∗ Example: Default

∗ Example: NEURON_RT_NUM_CORES

∗ Example: NEURON_RT_VISIBLE_CORES

∗ Example: Overlapping Models

∗ Example: Multiple Processes

– NEURONCORE_GROUP_SIZES

∗ Example: Single NeuronCore Group

∗ Example: Multiple NeuronCore Groups

∗ Issue: Overlapping Models with Differing Model Sizes

∗ Issue: Incompatible Model Sizes

∗ Issue: Multiple Model Copies

∗ Issue Summary

– Explicit Core Placement [Beta]

∗ Example: Manual Core Selection

∗ Example: Automatic Multicore

∗ Example: Explicit Replication

The following guide will assume a machine with 8 NeuronCores:
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• NeuronCores will use the notation nc0, nc1, etc.

• NeuronCore Groups will use the notation ncg0, ncg1 etc.

• Models will use the notation m0, m1 etc.

NeuronCores, NeuronCore Groups, and model allocations will be displayed in the following format:

Note that the actual cores that are visible to the process can be adjusted according to the NeuronX Runtime Configura-
tion.

NeuronCore Pipeline

A key concept to understand the intent behind certain core placement strategies is NeuronCore Pipelining (See Neuron-
Core Pipeline). NeuronCore Pipelining allows a model to be automatically split into pieces and executed on different
NeuronCores.

For most models only 1 NeuronCore will be required for execution. A model will only require more than one Neuron-
Core when using NeuronCore Pipeline. When model pipelining is enabled, the model is split between multiple Neu-
ronCores and data is transferred between them. For example, if the compiler flag --neuroncore-pipeline-cores
4 is used, this splits the model into 4 pieces to be executed on 4 separate NeuronCores.

Default Core Allocation & Placement

The most basic requirement of an inference application is to be able to place a single model on a single NeuronCore.
More complex applications may use multiple NeuronCores or even multiple processes each executing different models.
The important thing to note about designing an inference application is that a single NeuronCore will always be allocated
to a single process. Processes do not share NeuronCores. Different configurations can be used to ensure that an
application process has enough NeuronCores allocated to execute its model(s):

• Default: A process will attempt to take ownership of all NeuronCores visible on the instance. This should be
used when an instance is only running a single inference process since no other process will be allowed to take
ownership of any NeuronCores.

• NEURON_RT_NUM_CORES: Specify the number of NeuronCores to allocate to the process. This places no re-
strictions on which NeuronCores will be used, however, the resulting NeuronCores will always be contiguous.
This should be used in multi-process applications where each process should only use a subset of NeuronCores.

• NEURON_RT_VISIBLE_CORES: Specifies exactly which NeuronCores are allocated to the process by index. Sim-
ilar to NEURON_RT_NUM_CORES, this can be used in multi-process applications where each process should only
use a subset of NeuronCores. This provides more fined-grained controls over the exact NeuronCores that are
allocated to a given process.

• NEURONCORE_GROUP_SIZES: Specifies a number of NeuronCore Groups which are allocated to the process.
This is described in more detail in the NEURONCORE_GROUP_SIZES section.

See the NeuronX Runtime Configuration for more environment variable details.
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Example: Default

Python Script:

import torch
import torch_neuron

m0 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc0
m1 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc1

With no environment configuration, the process will take ownership of all NeuronCores. In this example, only two of
the NeuronCores are used by the process and the remaining are allocated but left idle.

Example: NEURON_RT_NUM_CORES

Environment Setup:

export NEURON_RT_NUM_CORES = '2'

Python Script:

import torch
import torch_neuron

m0 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc0
m1 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc1

Since there is no other process on the instance, only the first 2 NeuronCores will be acquired by the process. Models
load in a simple linear order to the least used NeuronCores.

Example: NEURON_RT_VISIBLE_CORES

Environment Setup:

export NEURON_RT_VISIBLE_CORES = '4-5'

Python Script:

import torch
import torch_neuron

m0 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc4
m1 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc5

Unlike NEURON_RT_NUM_CORES, setting the visible NeuronCores allows the process to take control of a specific con-
tiguous set. This allows an application to have a more fine-grained control of where models will be placed.
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Example: Overlapping Models

Environment Setup:

export NEURON_RT_VISIBLE_CORES = '0-1'

Python Script:

import torch
import torch_neuron

m0 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc0
m1 = torch.jit.load('model-with-2-neuron-pipeline-cores.pt') # Loads to nc0-nc1
m2 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc1

This shows how models may share NeuronCores but the default model placement will attempt to evenly distribute
NeuronCore usage rather than overlapping all models on a single NeuronCore.

Example: Multiple Processes

Environment Setup:

export NEURON_RT_NUM_CORES = '2'

Python Script:

import torch
import torch_neuron

m0 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc0
m1 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc1

In this example, if the script is run twice, the following allocations will be made:

Note that each process will take ownership of as many NeuronCores as is specified by the NEURON_RT_NUM_CORES
configuration.

NEURONCORE_GROUP_SIZES

Important: The use of explicit core placement should only be used when a specific performance goal is required. By
default torch-neuron places models on the least used NeuronCores. This should be optimal for most applications.

Secondly, NEURONCORE_GROUP_SIZES is being deprecated in a future release and should be avoided in favor of newer
placement methods. Use NEURON_RT_NUM_CORES or NEURON_RT_VISIBLE_CORES with default placement if possible
(See Default Core Allocation & Placement)

In the current release of NeuronSDK, the most well-supported method of placing models onto specific NeuronCores is
to use the NEURONCORE_GROUP_SIZES environment variable. This will define a set of “NeuronCore Groups” for the
application process.

NeuronCore Groups are contiguous sets of NeuronCores that are allocated to a given process. Creating groups allows
an application to ensure that a model has a defined set of NeuronCores that will always be allocated to it.
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Note that NeuronCore Groups can be used to allocate non-pipelined models (those requiring exactly 1 NeuronCore) to
specific NeuronCores but this is not the primary intended use. The intended use of NeuronCore Groups is to ensure
pipelined models (those requiring >1 NeuronCore) have exclusive access to a specific set of contiguous NeuronCores.

In the cases where models are being used without NeuronCore Pipeline, the general recommendation is to use default
placement (See Default Core Allocation & Placement).

The following section demonstrates how NEURONCORE_GROUP_SIZES can be used and the issues that may arise.

Example: Single NeuronCore Group

In the example where one model requires 4 NeuronCores, the correct environment configuration would be:

Environment Setup:

export NEURONCORE_GROUP_SIZES = '4'

Python Script:

import torch
import torch_neuron

m0 = torch.jit.load('model-with-4-neuron-pipeline-cores.pt') # Loads to nc0-nc3

This is the most basic usage of a NeuronCore Group. The environment setup causes the process to take control of 4
NeuronCores and then the script loads a model compiled with a NeuronCore Pipeline size of 4 to the first group.

Example: Multiple NeuronCore Groups

With more complicated configurations, the intended use of NEURONCORE_GROUP_SIZES is to create 1 Group per model
with the correct size to ensure that the models are placed on the intended NeuronCores. Similarly, the environment
would need to be configured to create a NeuronCore Group for each model:

Environment Setup:

export NEURONCORE_GROUP_SIZES = '3,4,1'

Python Script:

import torch
import torch_neuron

m0 = torch.jit.load('model-with-3-neuron-pipeline-cores.pt') # Loads to nc0-nc2
m1 = torch.jit.load('model-with-4-neuron-pipeline-cores.pt') # Loads to nc3-nc6
m2 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc7
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Issue: Overlapping Models with Differing Model Sizes

When multiple models are loaded to a single NeuronCore Group, this can cause unintended inefficiencies. A single
model is only intended to span a single NeuronCore Group. Applications with many models of varying sizes can be
restricted by NeuronCore Group configurations since the most optimal model layout may require more fine-grained
controls.

Environment Setup:

export NEURONCORE_GROUP_SIZES = '2,2'

Python Script:

import torch
import torch_neuron

m0 = torch.jit.load('model-with-2-neuron-pipeline-cores.pt') # Loads to nc0-nc1
m1 = torch.jit.load('model-with-2-neuron-pipeline-cores.pt') # Loads to nc2-nc3
m2 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc0
m3 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc2
m4 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc0

Here the NEURONCORE_GROUP_SIZES does not generate an optimal layout because placement strictly follows the layout
of NeuronCore Groups. A potentially more optimal layout would be to place m4 onto nc1. In this case, since a
pipelined model will not be able to have exclusive access to a set of NeuronCores, the default NeuronCore placement
(no NeuronCore Groups specified) would more evenly distribute the models.

Also note here that this is an example of where the order of model loads affects which model is assigned to which
NeuronCore Group. If the order of the load statements is changed, models may be assigned to different NeuronCore
Groups.

Issue: Incompatible Model Sizes

Another problem occurs when attempting to place a model which does not evenly fit into a single group:

Environment Setup:

export NEURONCORE_GROUP_SIZES = '2,2'

Python Script:

import torch
import torch_neuron

m0 = torch.jit.load('model-with-2-neuron-pipeline-cores.pt') # Loads to nc0-nc1
m1 = torch.jit.load('model-with-2-neuron-pipeline-cores.pt') # Loads to nc2-nc3
m2 = torch.jit.load('model-with-3-neuron-pipeline-cores.pt') # Loads to nc0-nc2

The model will be placed across NeuronCore Groups since there is no obvious group to assign the model to accord-
ing to the environment variable configuration. Depending on the individual model and application requirements, the
placement here may not be optimal.
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Issue: Multiple Model Copies

It is common in inference serving applications to use multiple replicas of a single model across different NeuronCores.
This allows the hardware to be fully utilized to maximize throughput. In this scenario, when using NeuronCore Groups,
the only way to replicate a model on multiple NeuronCores is to create a new model object. In the example below, 4
models loads are performed to place a model in each NeuronCore Group.

Environment Setup:

export NEURONCORE_GROUP_SIZES = '2,2,2,2'

Python Script:

import torch
import torch_neuron

models = list()
for _ in range(4):

model = torch.jit.load('model-with-2-neuron-pipeline-cores.pt')
models.append(model)

The largest consequence of this type of model allocation is that the application code is responsible for routing inference
requests to models. There are a variety of ways to implement the inference switching but in all cases routing logic
needs to be implemented in the application code.

Issue Summary

The use of NEURONCORE_GROUP_SIZES has the following problems:

• Variable Sized Models: Models which require crossing NeuronCore Group boundaries may be placed poorly.
This means group configuration limits the size of which models can be loaded.

• Model Load Order: Models are loaded to NeuronCore Groups greedily. This means that the order of model
loads can potentially negatively affect application performance by causing unintentional overlap.

• Implicit Placement: NeuronCore Groups cannot be explicitly chosen in the application code.

• Manual Replication: When loading multiple copies of a model to different NeuronCore Groups, this requires
that multiple model handles are used.

Explicit Core Placement [Beta]

To address the limitations of NEURONCORE_GROUP_SIZES, a new set of APIs has been added which allows specific
NeuronCores to be chosen by the application code. These can be found in the torch_neuron_core_placement_api
documentation.
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Example: Manual Core Selection

The most direct usage of the placement APIs is to manually select the start NeuronCore that each model is loaded to.
This will automatically use as many NeuronCores as is necessary for that model (1 for most models, >1 for NeuronCore
Pipelines models).

Environment Setup:

export NEURON_RT_NUM_CORES = '4'

Python Script:

import torch
import torch_neuron

# NOTE: Order of loads does NOT matter

with torch_neuron.experimental.neuron_cores_context(2):
m1 = torch.jit.load('model-with-2-neuron-pipeline-cores.pt') # Loads to nc2-nc3

with torch_neuron.experimental.neuron_cores_context(0):
m2 = torch.jit.load('model-with-3-neuron-pipeline-cores.pt') # Loads to nc0-nc2

with torch_neuron.experimental.neuron_cores_context(0):
m0 = torch.jit.load('model-with-2-neuron-pipeline-cores.pt') # Loads to nc0-nc1

with torch_neuron.experimental.neuron_cores_context(3):
m3 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads to nc3

Note that this directly solves the NEURONCORE_GROUP_SIZES issues of:

• Variable Sized Models: Now since models are directly placed on the NeuronCores requested by the application,
there is no disconnect between the model sizes and NeuronCore Group sizes.

• Model Load Order: Since the NeuronCores are explicitly selected, there is no need to be careful about the order
in which models are loaded since they can be placed deterministically regardless of the load order.

• Implicit Placement: Similarly, explicit placement means there is no chance that a model will end up being
allocated to an incorrect NeuronCore Group.

Example: Automatic Multicore

Using explicit core placement it is possible to replicate a model to multiple NeuronCores simultaneously. This means
that a single model object within python can utilize all available NeuronCores (or NeuronCores allocated to the process).

Environment Setup:

export NEURON_RT_NUM_CORES = '8'

Python Script:

import torch
import torch_neuron

with torch_neuron.experimental.multicore_context():
(continues on next page)
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(continued from previous page)

m0 = torch.jit.load('model-with-1-neuron-pipeline-cores.pt') # Loads replications␣
→˓to nc0-nc7

This addresses the last NEURONCORE_GROUP_SIZES issue of:

• Manual Replication: Since models can be automatically replicated to multiple NeuronCores, this means that
applications no longer need to implement routing logic and perform multiple loads.

This API has a secondary benefit that the exact same loading logic can be used on an inf1.xlarge or an inf1.
6xlarge. In either case, it will use all of the NeuronCores that are visible to the process. This means that no special
logic needs to be coded for different instance types.

Example: Explicit Replication

Replication is also possible with the neuron_cores_context() API. The number of replications is chosen by
replications = floor(nc_count / cores_per_model).

Environment Setup:

export NEURON_RT_NUM_CORES = '8'

Python Script:

import torch
import torch_neuron

with torch_neuron.experimental.neuron_cores_context(start_nc=2, nc_count=4):
m0 = torch.jit.load('model-with-2-neuron-pipeline-cores.pt') # Loads replications␣

→˓to nc2-nc5

This document is relevant for: Inf1

• Running Inference on Variable Input Shapes with Bucketing

• Data Parallel Inference on PyTorch Neuron

• Developer Guide - PyTorch Neuron (torch-neuron) LSTM Support

• PyTorch Neuron (torch-neuron) Core Placement

This document is relevant for: Inf1

This document is relevant for: Inf1

Misc (torch-neuron)

This document is relevant for: Inf1
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PyTorch Neuron (torch-neuron) Supported operators

Current operator lists may be generated with these commands inside python:

import torch.neuron
print(*torch.neuron.get_supported_operations(), sep='\n')

PyTorch Neuron release [package version 1.*.*.2.9.1.0, SDK 2.13.0]

Date: 08/28/2023

Added support for new operators:

• aten::clamp_min

• aten::clamp_max

PyTorch Neuron release [2.9.0.0]

Date: 03/28/2023

Added support for new operators:

• aten::tensordot

• aten::adaptive_avg_pool1d

• aten::prelu

• aten::reflection_pad2d

• aten::baddbmm

• aten::repeat

PyTorch Neuron release [2.5.0.0]

Date: 11/23/2022

Added support for new operators:

• aten::threshold

• aten::roll

• aten::instance_norm

• aten::amin

• aten::amax

• aten::new_empty

• aten::new_ones

• aten::tril

• aten::triu

• aten::zero_
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• aten::all

• aten::broadcast_tensors

• aten::broadcast_to

• aten::logical_and

• aten::logical_not

• aten::logical_or

• aten::logical_xor

• aten::_convolution_mode

Added limited support for new operators:

• LSTM Operations. See: Developer Guide - PyTorch Neuron (torch-neuron) LSTM Support

– aten::lstm

– aten::_pack_padded_sequence

– aten::_pad_packed_sequence

• aten::norm: Supported when p argument is one of (1, 2, inf, -inf, 'fro')

PyTorch Neuron release [2.2.0.0]

Date: 03/25/2022

Added support for new operators:

• aten::max_pool2d_with_indices: Fully supported (Was previously supported only when indices were un-
used).

PyTorch Neuron release [2.1.7.0]

Date: 01/20/2022

Added support for new operators:

• aten::bucketize

• aten::any

• aten::remainder

• aten::clip

• aten::repeat_interleave

• aten::tensor_split

• aten::split_with_sizes

• aten::isnan

• aten::embedding_renorm_

• aten::dot

• aten::mv

• aten::hardsigmoid

252 Chapter 2. ML Frameworks



AWS Neuron

• aten::hardswish

• aten::trunc

• aten::one_hot: Supported when num_classes is known at trace time.
The dynamic version of this operation when num_classes = -1 is not supported.

• aten::adaptive_max_pool1d

• aten::adaptive_max_pool2d

PyTorch Neuron Release [2.0.536.0]

• The following are operators with limited support on Neuron. Unlike fully supported operators, these operators
are not returned when using torch_neuron.get_supported_operations(). See each operator description
for conditional support:

– aten::max_pool2d_with_indices - Supported when indices outputs are not used by a downstream
operation. This allows the operation to be compiled to Neuron when it is equivalent to an aten::
max_pool2d.

– aten::max_pool3d_with_indices - Supported when indices outputs are not used by a downstream
operation. This allows the operation to be compiled to Neuron when it is equivalent to an aten::
max_pool3d.

– aten::where - Supported when used as a conditional selection (3-argument variant). Unsupported when
used to generate a dynamic list of indices (1-argument variant). See torch.where().

PyTorch Neuron Release [2.0.318.0]

Added support for new operators:

• aten::empty_like

• aten::log

• aten::type_as

• aten::movedim

• aten::einsum

• aten::argmax

• aten::min

• aten::argmin

• aten::abs

• aten::cos

• aten::sin

• aten::linear

• aten::pixel_shuffle

• aten::group_norm

• aten::_weight_norm
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PyTorch Neuron Release [1.5.21.0]

No change

PyTorch Neuron Release [1.5.7.0]

Added support for new operators:

• aten::erf

• prim::DictConstruct

PyTorch Neuron Release [1.4.1.0]

No change

PyTorch Neuron Release [1.3.5.0]

Added support for new operators:

• aten::numel

• aten::ones_like

• aten::reciprocal

• aten::topk

PyTorch Neuron Release [1.2.16.0]

No change

PyTorch Neuron Release [1.2.15.0]

No change

PyTorch Neuron Release [1.2.3.0]

Added support for new operators:

• aten::silu

• aten::zeros_like
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PyTorch Neuron Release [1.1.7.0]

Added support for new operators:

• aten::_shape_as_tensor

• aten::chunk

• aten::empty

• aten::masked_fill

PyTorch Neuron Release [1.0.24045.0]

Added support for new operators:

• aten::__and__

• aten::bmm

• aten::clone

• aten::expand_as

• aten::fill_

• aten::floor_divide

• aten::full

• aten::hardtanh

• aten::hardtanh_

• aten::le

• aten::leaky_relu

• aten::lt

• aten::mean

• aten::ne

• aten::softplus

• aten::unbind

• aten::upsample_bilinear2d

PyTorch Neuron Release [1.0.1720.00]

Added support for new operators:

• aten::constant_pad_nd

• aten::meshgrid
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PyTorch Neuron Release [1.0.1532.0]

Added support for new operators:

• aten::ones

PyTorch Neuron Release [1.0.1522.0]

No change

PyTorch Neuron Release [1.0.1386.0]

Added support for new operators:

• aten::ceil

• aten::clamp

• aten::eq

• aten::exp

• aten::expand_as

• aten::flip

• aten::full_like

• aten::ge

• aten::gt

• aten::log2

• aten::log_softmax

• aten::max

• aten::neg

• aten::relu

• aten::rsqrt

• aten::scalarImplicit

• aten::sqrt

• aten::squeeze

• aten::stack

• aten::sub

• aten::sum

• aten::true_divide

• aten::upsample_nearest2d

• prim::Constant

• prim::GetAttr

• prim::ImplicitTensorToNum
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• prim::ListConstruct

• prim::ListUnpack

• prim::NumToTensor

• prim::TupleConstruct

• prim::TupleUnpack

Please note, primitives are included in this list from this release.

PyTorch Neuron Release [1.0.1168.0]

Added support for new operators:

• aten::ScalarImplicit

PyTorch Neuron Release [1.0.1001.0]

Added support for new operators:

• aten::detach

• aten::floor

• aten::gelu

• aten::pow

• aten::sigmoid

• aten::split

Remove support for operators:

• aten::embedding: Does not meet performance criteria

• aten::erf: Error function does not meet accuracy criteria

• aten::tf_dtype_from_torch: Internal support function, not an operator

PyTorch Neuron Release [1.0.825.0]

No change

PyTorch Neuron Release [1.0.763.0]

Added support for new operators:

• aten::Int

• aten::arange

• aten::contiguous

• aten::div

• aten::embedding

• aten::erf
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• aten::expand

• aten::eye

• aten::index_select

• aten::layer_norm

• aten::matmul

• aten::mm

• aten::permute

• aten::reshape

• aten::rsub

• aten::select

• aten::size

• aten::slice

• aten::softmax

• aten::tf_dtype_from_torch

• aten::to

• aten::transpose

• aten::unsqueeze

• aten::view

• aten::zeros

Remove support for operators:

• aten::tf_broadcastable_slice: Internal support function, not an operator

• aten::tf_padding: Internal support function, not an operator

These operators were already supported previously:

• aten::_convolution

• aten::adaptive_avg_pool2d

• aten::add

• aten::add_

• aten::addmm

• aten::avg_pool2d

• aten::batch_norm

• aten::cat

• aten::dimension_value

• aten::dropout

• aten::flatten

• aten::max_pool2d

• aten::mul
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• aten::relu_

• aten::t

• aten::tanh

• aten::values

• prim::Constant

• prim::GetAttr

• prim::ListConstruct

• prim::ListUnpack

• prim::TupleConstruct

• prim::TupleUnpack

PyTorch Neuron Release [1.0.672.0]

No change

PyTorch Neuron Release [1.0.552.0]

Added support for new operators:

• aten::_convolution

• aten::adaptive_avg_pool2d

• aten::add

• aten::add_

• aten::addmm

• aten::avg_pool2d

• aten::batch_norm

• aten::cat

• aten::dimension_value

• aten::dropout

• aten::flatten

• aten::max_pool2d

• aten::mul

• aten::relu_

• aten::t

• aten::tanh

• aten::tf_broadcastable_slice

• aten::tf_padding

• aten::values
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• prim::Constant

• prim::GetAttr

• prim::ListConstruct

• prim::ListUnpack

• prim::TupleConstruct

• prim::TupleUnpack

This document is relevant for: Inf1

This document is relevant for: Inf1

Troubleshooting Guide for PyTorch Neuron (torch-neuron)

General Torch-Neuron issues

If you see an error about “Unknown builtin op: neuron::forward_1” like below, please ensure that import line “import
torch_neuron” (to register the Neuron custom operation) is in the inference script before using torch.jit.load.

Unknown builtin op: neuron::forward_1.
Could not find any similar ops to neuron::forward_1. This op may not exist or may not be␣
→˓currently supported in TorchScript.

TorchVision related issues

If you encounter an error like below, it is because latest torchvision version >= 0.7 is not compatible with Torch-Neuron
1.5.1. Please downgrade torchvision to version 0.6.1:

E AttributeError: module 'torch.jit' has no attribute '_script_if_tracing'

2GB protobuf limit related issues

If you encounter an error like below, it is because the model size is larger than 2GB. To compile such large models,
use the separate_weights=True flag. Note, ensure that you have the latest version of compiler installed to support
this flag. You can upgrade neuron-cc using python3 -m pip install neuron-cc[tensorflow] -U --force
--extra-index-url=https://pip.repos.neuron.amazonaws.com

E google.protobuf.message.DecodeError: Error parsing message with type 'tensorflow.
→˓GraphDef'
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torch.jit.trace issues

The /neuron-guide/neuron-frameworks/pytorch-neuron/api-compilation-python-api.rst uses the PyTorch torch.jit.
trace() function to generate ScriptModule models for execution on Inferentia. Due to that, to execute your PyTorch
model on Inferentia it must be torch-jit-traceable, otherwise you need to make sure your model is torch-jit-traceable.
You can try modifying your underlying PyTorch model code to make it traceable. If it’s not possible to change your
model code, you can write a wrapper around your model that makes it torch-jit-traceable to compile it for Inferentia.

Please visit torch.jit.trace() to review the properties that a model must have to be torch-jit-traceable. The
PyTorch-Neuron trace API torch_neuron.trace() accepts **kwargs for torch.jit.trace(). For example, you
can use the strict=False flag to compile models with dictionary outputs.

Compiling models with outputs that are not torch-jit-traceable

To enable compilation of models with non torch-jit-traceable outputs, you can use a technique that involves writing
a wrapper that converts the model’s output into a form that is torch-jit-traceable. You can then compile the wrapped
model for Inferentia using torch_neuron.trace().

The following example uses a wrapper to compile a model with non torch-jit-traceable outputs. This model cannot be
compiled for Inferentia in its current form because it outputs a list of tuples and tensors, which is not torch-jit-traceable.

import torch
import torch_neuron
import torch.nn as nn

class Model(nn.Module):
def __init__(self):

super(Model, self).__init__()
self.conv = nn.Conv2d(1, 1, 3)

def forward(self, x):
a = self.conv(x) + 1
b = self.conv(x) + 2
c = self.conv(x) + 3
# An output that is a list of tuples and tensors is not torch-traceable
return [(a, b), c]

model = Model()
model.eval()

inputs = torch.rand(1, 1, 3, 3)

# Try to compile the model
model_neuron = torch.neuron.trace(model, inputs) # ERROR: This cannot be traced, we must␣
→˓change the output format

To compile this model for Inferentia, we can write a wrapper around the model to convert its outputs into a tuple of
tensors, which is torch-jit-traceable.

class NeuronCompatibilityWrapper(nn.Module):
def __init__(self):

super(NeuronCompatibilityWrapper, self).__init__()
self.model = Model()

(continues on next page)
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(continued from previous page)

def forward(self, x):
out = self.model(x)
# An output that is a tuple of tuples and tensors is torch-jit-traceable
return tuple(out)

Now, we can successfully compile the model for Inferentia using the NeuronCompatibilityWrapper wrapper as
follows:

model = NeuronCompatibilityWrapper()
model.eval()

# Compile the traceable wrapped model
model_neuron = torch.neuron.trace(model, inputs)

If the model’s outputs must be in the original form, a second wrapper can be used to transform the outputs after
compilation for Inferentia. The following example uses the OutputFormatWrapper wrapper to convert the compiled
model’s output back into the original form of a list of tuples and tensors.

class OutputFormatWrapper(nn.Module):
def __init__(self):

super(OutputFormatWrapper, self).__init__()
self.traceable_model = NeuronCompatibilityWrapper()

def forward(self, x):
out = self.traceable_model(x)
# Return the output in the original format of Model()
return list(out)

model = OutputFormatWrapper()
model.eval()

# Compile the traceable wrapped model
model.traceable_model = torch.neuron.trace(model.traceable_model, inputs)

Compiling a submodule in a model that is not torch-jit-traceable

The following example shows how to compile a submodule that is part of a non torch-jit-traceable model. In this
example, the top-level model Outer uses a dynamic flag, which is not torch-jit-traceable. However, the submodule
Inner is torch-jit-traceable and can be compiled for Inferentia.

import torch
import torch_neuron
import torch.nn as nn

class Inner(nn.Module) :
def __init__(self):

super().__init__()
self.conv = nn.Conv2d(1, 1, 3)

def forward(self, x):
(continues on next page)
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(continued from previous page)

return self.conv(x) + 1

class Outer(nn.Module):
def __init__(self):

super().__init__()
self.inner = Inner()

def forward(self, x, add_offset: bool = False):
base = self.inner(x)
if add_offset:

return base + 1
return base

model = Outer()
inputs = torch.rand(1, 1, 3, 3)

# Compile the traceable wrapped submodule
model.inner = torch.neuron.trace(model.inner, inputs)

# TorchScript the model for serialization
script = torch.jit.script(model)
torch.jit.save(script, 'model.pt')

loaded = torch.jit.load('model.pt')

Alternatively, for usage scenarios in which the model configuration is static during inference, the dynamic flags can be
hardcoded in a wrapper to make the model torch-jit-traceable and enable compiling the entire model for Inferentia. In
this example, we assume the add_offset flag is always True during inference, so we can hardcode this conditional
path in the Static wrapper to remove the dynmaic behavior and compile the entire model for Inferentia.

class Static(nn.Module):
def __init__(self):

super().__init__()
self.outer = Outer()

def forward(self, x):
# hardcode `add_offset=True`
output = self.outer(x, add_offset=True)
return output

model = Static()

# We can now compile the entire model because `add_offset=True` is hardcoded in the␣
→˓Static wrapper
model_neuron = torch.neuron.trace(model, inputs)

This document is relevant for: Inf1

This document is relevant for: Inf1
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PyTorch Neuron (torch-neuron) release notes

Table of contents

• Known Issues and Limitations - Updated 03/21/2023

• PyTorch Neuron release [package ver. 1.*.*.2.11.6.0, SDK ver. 2.20.0]
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• PyTorch Neuron release [package ver. 1.*.*.2.9.74.0, SDK ver. 2.18.0]
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• [1.0.1168.0]

• [1.0.1001.0]

• [1.0.825.0]

• [1.0.763.0]

• [1.0.672.0]

• [1.0.627.0]

This document lists the release notes for the Pytorch-Neuron package.

Known Issues and Limitations - Updated 03/21/2023

Min & Max Accuracy

The index outputs of the aten::argmin, aten::argmax, aten::min, and aten::max operator implementations
are sensitive to precision. For models that contain these operators and have float32 inputs, we recommend using the
--fp32-cast=matmult --fast-math no-fast-relayout compiler option to avoid numerical imprecision issues.
Additionally, the aten::min and aten::max operator implementations do not currently support int64 inputs when
dim=0. For more information on precision and performance-accuracy tuning, see Mixed precision and performance-
accuracy tuning (neuron-cc).

Python 3.5

If you attempt to import torch.neuron from Python 3.5 you will see this error in 1.1.7.0 - please use Python 3.6 or
greater:

File "/tmp/install_test_env/lib/python3.5/site-packages/torch_neuron/__init__.py", line␣
→˓29

f'Invalid dependency version torch=={torch.__version__}. '
^

SyntaxError: invalid syntax

• Torchvision has dropped support for Python 3.5

• HuggingFace transformers has dropped support for Python 3.5

Torchvision

When versions of torchvision and torch are mismatched, this can result in exceptions when compiling
torchvision based models. Specific versions of torchvision are built against each release of torch. For example:

• torch==1.5.1 matches torchvision==0.6.1

• torch==1.7.1 matches torchvision==0.8.2

• etc.

Simultaneously installing both torch-neuron and torchvision is the recommended method of correctly resolving
versions.
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Dynamic Batching

Dynamic batching does not work properly for some models that use the aten::size operator. When this issue occurs,
the input batch sizes are not properly recorded at inference time, resulting in an error such as:

RuntimeError: The size of tensor a (X) must match the size of tensor b (Y) at non-
→˓singleton dimension 0.

This error typically occurs when aten::size operators are partitioned to CPU. We are investigating a fix for this issue.

PyTorch Neuron release [package ver. 1.*.*.2.11.6.0, SDK ver. 2.20.0]

Date: 09/16/2024

• Minor updates.

PyTorch Neuron release [package ver. 1.*.*.2.10.12.0, SDK ver. 2.19.0]

Date: 07/03/2024

• Minor updates.

PyTorch Neuron release [package ver. 1.*.*.2.9.74.0, SDK ver. 2.18.0]

Date: 04/01/2024

• Minor updates.

PyTorch Neuron release [package ver. 1.*.*.2.9.17.0, SDK ver. 2.16.0]

Date: 12/21/2023

• Minor updates.

PyTorch Neuron release [package ver. 1.*.*.2.9.6.0, SDK ver. 2.15.0]

Date: 10/26/2023

• Minor updates.

PyTorch Neuron release [package ver. 1.*.*.2.9.1.0, SDK ver. 2.13.0]

Date: 08/28/2023

• Added support for clamp_min/clamp_max ATEN operators.
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PyTorch Neuron release [package ver. 1.*.*.2.8.9.0, SDK ver. 2.12.0]

Date: 07/19/2023

• Minor updates.

PyTorch Neuron release [2.7.10.0]

Date: 06/14/2023

New in this release

• Added support for Python 3.10

Bug fixes

• torch.pow Operation now correctly handles mismatch between base and exponent data types

PyTorch Neuron release [2.7.1.0]

Date: 05/1/2023

• Minor updates.

PyTorch Neuron release [2.6.5.0]

Date: 03/28/2023

New in this release

• Added support for torch==1.13.1

• New releases of torch-neuron no longer include versions for torch==1.7 and torch==1.8

• Added support for Neuron runtime 2.12

• Added support for new operators:

– aten::tensordot

– aten::adaptive_avg_pool1d

– aten::prelu

– aten::reflection_pad2d

– aten::baddbmm

– aten::repeat

• Added a separate_weights flag to torch_neuron.trace() to support models that are larger than 2GB
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Bug fixes

• Fixed aten::_convolution with grouping for:

– torch.nn.Conv1d

– torch.nn.Conv3d

– torch.nn.ConvTranspose2d

• Fixed aten::linear to support 1d input tensors

• Fixed an issue where an input could not be directly returned from the network

PyTorch Neuron release [2.5.0.0]

Date: 11/23/2022

New in this release

• Added PyTorch 1.12 support

• Added Python 3.8 support

• Added new operators support. See PyTorch Neuron (torch-neuron) Supported operators

• Added support for aten::lstm. See: Developer Guide - PyTorch Neuron (torch-neuron) LSTM Support

• Improved logging:

– Improved error messages for specific compilation failure modes, including out-of-memory errors

– Added a warning to show the code location of prim::PythonOp operations

– Removed overly-verbose tracing messages

– Added improved error messages for neuron-cc and tensorflow dependency issues

– Added more debug information when an invalid dynamic batching configuration is used

• Added new beta explicit NeuronCore placement API. See: torch_neuron_core_placement_api

• Added new guide for NeuronCore placement. See: PyTorch Neuron (torch-neuron) Core Placement

• Improved torch_neuron.trace() performance when using large graphs

• Reduced host memory usage of loaded models in libtorchneuron.so

• Added single_fusion_ratio_threshold argument to torch_neuron.trace() to give more fine-grained
control of partitioned graphs
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Bug fixes

• Improved handling of tensor mutations which previously caused accuracy issues on certain models (i.e. yolor,
yolov5)

• Fixed an issue where inf and -inf values would cause unexpected NaN values. This could occur with newer
versions of transformers

• Fixed an issue where torch.neuron.DataParallel() would not fully utilize all NeuronCores for specific
batch sizes

• Fixed and improved operators:

– aten::upsample_bilinear2d: Improved error messages in cases where the operation cannot be sup-
ported

– aten::_convolution: Added support for output_padding argument

– aten::div: Added support for rounding_mode argument

– aten::sum: Fixed to handle non-numeric data types

– aten::expand: Fixed to handle scalar tensors

– aten::permute: Fixed to handle negative indices

– aten::min: Fixed to support more input types

– aten::max: Fixed to support more input types

– aten::max_pool2d: Fixed to support both 3-dimensional and 4-dimensional input tensors

– aten::Int: Fixed an issue where long values would incorrectly lose precision

– aten::constant_pad_nd: Fixed to correctly use non-0 padding values

– aten::pow: Fixed to support more input types & values

– aten::avg_pool2d: Added support for count_include_pad argument. Added support for ceil_mode
argument if padding isn’t specified

– aten::zero: Fixed to handle scalars correctly

– prim::Constant: Fixed an issue where -inf was incorrectly handled

– Improved handling of scalars in arithmetic operators

PyTorch Neuron release [2.3.0.0]

Date: 04/29/2022

New in this release

• Added support PyTorch 1.11.

• Updated PyTorch 1.10 to version 1.10.2.

• End of support for torch-neuron 1.5, see eol-pt-15.

• Added support for new operators:

– aten::masked_fill_

– aten::new_zeros
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– aten::frobenius_norm

Bug fixes

• Improved aten::gelu accuracy

• Updated aten::meshgrid to support optional indexing argument introduced in torch 1.10 , see PyTorch
issue 50276

PyTorch Neuron release [2.2.0.0]

Date: 03/25/2022

New in this release

• Added full support for aten::max_pool2d_with_indices - (Was previously supported only when indices
were unused).

• Added new torch-neuron packages compiled with -D_GLIBCXX_USE_CXX11_ABI=1, the new packages sup-
port PyTorch 1.8, PyTorch 1.9, and PyTorch 1.10. To install the additional packages compiled with
-D_GLIBCXX_USE_CXX11_ABI=1 please change the package repo index to https://pip.repos.neuron.
amazonaws.com (https://pip.repos.neuron.amazonaws.com/)/cxx11/

PyTorch Neuron release [2.1.7.0]

Date: 01/20/2022

New in this release

• Added PyTorch 1.10 support

• Added new operators support, see PyTorch Neuron (torch-neuron) Supported operators

• Updated aten::_convolution to support 2d group convolution

• Updated neuron::forward operators to allocate less dynamic memory. This can increase performance on
models with many input & output tensors.

• Updated neuron::forward to better handle batch sizes when dynamic_batch_size=True. This can increase
performance at inference time when the input batch size is exactly equal to the traced model batch size.

Bug fixes

• Added the ability to torch.jit.trace a torch.nn.Module where a submodule has already been traced with
torch_neuron.trace() on a CPU-type instance. Previously, if this had been executed on a CPU-type instance,
an initialization exception would have been thrown.

• Fixed aten::matmul behavior on 1-dimensional by n-dimensional multiplies. Previously, this would cause a
validation error.

• Fixed binary operator type promotion. Previously, in unusual situations, operators like aten::mul could produce
incorrect results due to invalid casting.
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• Fixed aten::select when index was -1. Previously, this would cause a validation error.

• Fixed aten::adaptive_avg_pool2d padding and striding behavior. Previously, this could generate incorrect
results with specific configurations.

• Fixed an issue where dictionary inputs could be incorrectly traced when the tensor values had gradients.

PyTorch Neuron release [2.0.536.0]

Date: 01/05/2022

New in this release

• Added new operator support for specific variants of operations (See PyTorch Neuron (torch-neuron) Supported
operators)

• Added optional optimizations keyword to torch_neuron.trace() which accepts a list of Optimization
passes.

PyTorch Neuron release [2.0.468.0]

Date: 12/15/2021

New in this release

• Added support for aten::cumsum operation.

• Fixed aten::expand to correctly handle adding new dimensions.

PyTorch Neuron release [2.0.392.0]

Date: 11/05/2021

• Updated Neuron Runtime (which is integrated within this package) to libnrt 2.2.18.0 to fix a container issue
that was preventing the use of containers when /dev/neuron0 was not present. See details here neuron-runtime-
release-notes.

PyTorch Neuron release [2.0.318.0]

Date: 10/27/2021
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New in this release

• PyTorch Neuron 1.x now support Neuron Runtime 2.x (libnrt.so shared library) only.

Important:
– You must update to the latest Neuron Driver (aws-neuron-dkms version 2.1 or newer) for proper func-

tionality of the new runtime library.

– Read Introducing Neuron Runtime 2.x (libnrt.so) application note that describes why are we making this
change and how this change will affect the Neuron SDK in detail.

– Read Migrate your application to Neuron Runtime 2.x (libnrt.so) for detailed information of how to migrate
your application.

• Introducing PyTorch 1.9.1 support (support for torch==1.9.1)

• Added torch_neuron.DataParallel, see ResNet-50 tutorial [html] and Data Parallel Inference on Torch
Neuron application note.

• Added support for tracing on GPUs

• Added support for ConvTranspose1d

• Added support for new operators:

– aten::empty_like

– aten::log

– aten::type_as

– aten::movedim

– aten::einsum

– aten::argmax

– aten::min

– aten::argmin

– aten::abs

– aten::cos

– aten::sin

– aten::linear

– aten::pixel_shuffle

– aten::group_norm

– aten::_weight_norm

• Added torch_neuron.is_available()
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Resolved Issues

• Fixed a performance issue when using both the dynamic_batch_size=True trace option and
--neuron-core-pipeline compiler option. Dynamic batching now uses OpenMP to execute pipeline
batches concurrently.

• Fixed torch_neuron.trace issues:

– Fixed a failure when the same submodule was traced with multiple inputs

– Fixed a failure where some operations would fail to be called with the correct arguments

– Fixed a failure where custom operators (torch plugins) would cause a trace failure

• Fixed variants of aten::upsample_bilinear2d when scale_factor=1

• Fixed variants of aten::expand using dim=-1

• Fixed variants of aten::stack using multiple different input data types

• Fixed variants of aten::max using indices outputs

[1.8.1.1.5.21.0]

Date: 08/12/2021

Summary

• Minor updates.

[1.8.1.1.5.7.0]

Date: 07/02/2021

Summary

• Added support for dictionary outputs using strict=False flag. See /neuron-guide/neuron-frameworks/pytorch-
neuron/troubleshooting-guide.rst.

• Updated aten::batch_norm to correctly implement the affine flag.

• Added support for aten::erf and prim::DictConstruct. See PyTorch Neuron (torch-neuron) Supported
operators.

• Added dynamic batch support. See /neuron-guide/neuron-frameworks/pytorch-neuron/api-compilation-python-
api.rst.
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[1.8.1.1.4.1.0]

Date: 5/28/2021

Summary

• Added support for PyTorch 1.8.1

– Models compatibility

∗ Models compiled with previous versions of PyTorch Neuron (<1.8.1) are compatible with PyTorch
Neuron 1.8.1.

∗ Models compiled with PyTorch Neuron 1.8.1 are not backward compatible with previous versions of
PyTorch Neuron (<1.8.1) .

– Updated tutorials to use Hugging Face Transformers 4.6.0.

– Added a new set of forward operators (forward_v2)

– Host memory allocation when loading the same model on multiple NeuronCores is significantly reduced

– Fixed an issue where models would not deallocate all memory within a python session after being garbage
collected.

– Fixed a TorchScript/C++ issue where loading the same model multiple times would not use multiple Neu-
ronCores by default.

• Fixed logging to no longer configure the root logger.

• Removed informative messages that were produced during compilations as warnings. The number of warnings
reduced significantly.

• Convolution operator support has been extended to include ConvTranspose2d variants.

• Reduce the amount of host memory usage during inference.

[1.7.1.1.3.5.0]

Date: 4/30/2021

Summary

• ResNext models now functional with new operator support

• Yolov5 support refer to https://github.com/aws/aws-neuron-sdk/issues/253 note https://github.com/ultralytics/
yolov5/pull/2953 which optimized YoloV5 for AWS Neuron

• Convolution operator support has been extended to include most Conv1d and Conv3d variants

• New operator support. Please see PyTorch Neuron (torch-neuron) Supported operators for the complete list of
operators.
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[1.7.1.1.2.16.0]

Date: 3/4/2021

Summary

• Minor enhancements.

[1.7.1.1.2.15.0]

Date: 2/24/2021

Summary

• Fix for CVE-2021-3177.

[1.7.1.1.2.3.0]

Date: 1/30/2021

Summary

• Made changes to allow models with -inf scalar constants to correctly compile

• Added new operator support. Please see PyTorch Neuron (torch-neuron) Supported operators for the complete
list of operators.

[1.1.7.0]

Date: 12/23/2020

Summary

• We are dropping support for Python 3.5 in this release

• torch.neuron.trace behavior will now throw a RuntimeError in the case that no operators are compiled for neuron
hardware

• torch.neuron.trace will now display compilation progress indicators (dots) as default behavior (neuron-cc must
updated to the December release to greater to see this feature)

• Added new operator support. Please see PyTorch Neuron (torch-neuron) Supported operators for the complete
list of operators.

• Extended the BERT pretrained tutorial to demonstrate execution on multiple cores and batch modification, up-
dated the tutorial to accomodate changes in the Hugging Face Transformers code for version 4.0

• Added a tutorial for torch-serve which extends the BERT tutorial

• Added support for PyTorch 1.7
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[1.0.1978.0]

Date: 11/17/2020

Summary

• Fixed bugs in comparison operators, and added remaining variantes (eq, ne, gt, ge, lt, le)

• Added support for prim::PythonOp - note that this must be run on CPU and not Neuron. We recommend you
replace this code with PyTorch operators if possible

• Support for a series of new operators. Please see PyTorch Neuron (torch-neuron) Supported operators for the
complete list of operators.

• Performance improvements to the runtime library

• Correction of a runtime library bug which caused models with large tensors to generate incorrect results in some
cases

[1.0.1721.0]

Date: 09/22/2020

Summary

• Various minor improvements to the Pytorch autopartitioner feature

• Support for the operators aten::constant_pad_nd, aten::meshgrid

• Improved performance on various torchvision models. Of note are resnet50 and vgg16

[1.0.1532.0]

Date: 08/08/2020

Summary

• Various minor improvements to the Pytorch autopartitioner feature

• Support for the aten:ones operator

[1.0.1522.0]

Date: 08/05/2020
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Summary

Various minor improvements.

[1.0.1386.0]

Date: 07/16/2020

Summary

This release adds auto-partitioning, model analysis and PyTorch 1.5.1 support, along with a number of new operators

Major New Features

• Support for Pytorch 1.5.1

• Introduce an automated operator device placement mechanism in torch.neuron.trace to run sub-graphs that con-
tain operators that are not supported by the neuron compiler in native PyTorch. This new mechanism is on by
default and can be turned off by adding argument fallback=False to the compiler arguments.

• Model analysis to find supported and unsupported operators in a model

Resolved Issues

[1.0.1168.0]

Date 6/11/2020

Summary

Major New Features

Resolved Issues

Known Issues and Limitations

[1.0.1001.0]

Date: 5/11/2020
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Summary

Additional PyTorch operator support and improved support for model saving and reloading.

Major New Features

• Added Neuron Compiler support for a number of previously unsupported PyTorch operators. Please see
:ref:`neuron-cc-ops-pytorch`for the complete list of operators.

• Add support for torch.neuron.trace on models which have previously been saved using torch.jit.save and then
reloaded.

Resolved Issues

Known Issues and Limitations

[1.0.825.0]

Date: 3/26/2020

Summary

Major New Features

Resolved Issues

Known Issues and limitations

[1.0.763.0]

Date: 2/27/2020

Summary

Added Neuron Compiler support for a number of previously unsupported PyTorch operators. Please see PyTorch
Neuron (torch-neuron) Supported operators for the complete list of operators.

Major new features

• None
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Resolved issues

• None

[1.0.672.0]

Date: 1/27/2020

Summary

Major new features

Resolved issues

• Python 3.5 and Python 3.7 are now supported.

Known issues and limitations

Other Notes

[1.0.627.0]

Date: 12/20/2019

Summary

This is the initial release of torch-neuron. It is not distributed on the DLAMI yet and needs to be installed from the
neuron pip repository.

Note that we are currently using a TensorFlow as an intermediate format to pass to our compiler. This does not affect
any runtime execution from PyTorch to Neuron Runtime and Inferentia. This is why the neuron-cc installation must
include [tensorflow] for PyTorch.

Major new features

Resolved issues

Known issues and limitations

Models TESTED

The following models have successfully run on neuron-inferentia systems

1. SqueezeNet

2. ResNet50

3. Wide ResNet50
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Pytorch Serving

In this initial version there is no specific serving support. Inference works correctly through Python on Inf1 instances
using the neuron runtime. Future releases will include support for production deployment and serving of models

Profiler support

Profiler support is not provided in this initial release and will be available in future releases

Automated partitioning

Automatic partitioning of graphs into supported and non-supported operations is not currently supported. A tutorial is
available to provide guidance on how to manually parition a model graph. Please see pytorch-manual-partitioning-jn-
tutorial

PyTorch dependency

Currently PyTorch support depends on a Neuron specific version of PyTorch v1.3.1. Future revisions will add support
for 1.4 and future releases.

Trace behavior

In order to trace a model it must be in evaluation mode. For examples please see /src/examples/pytorch/resnet50.ipynb

Six pip package is required

The Six package is required for the torch-neuron runtime, but it is not modeled in the package dependencies. This will
be fixed in a future release.

Multiple NeuronCore support

If the num-neuroncores options is used the number of cores must be manually set in the calling shell environment
variable for compilation and inference.

For example: Using the keyword argument compiler_args=[’—num-neuroncores’, ‘4’] in the trace call, requires NEU-
RONCORE_GROUP_SIZES=4 to be set in the environment at compile time and runtime

CPU execution

At compilation time a constant output is generated for the purposes of tracing. Running inference on a non neuron
instance will generate incorrect results. This must not be used. The following error message is generated to stderr:

Warning: Tensor output are ** NOT CALCULATED ** during CPU execution and only
indicate tensor shape
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Other notes

• Python version(s) supported:

– 3.6

• Linux distribution supported:

– DLAMI Ubuntu 18 and Amazon Linux 2 (using Python 3.6 Conda environments)

– Other AMIs based on Ubuntu 18

– For Amazon Linux 2 please install Conda and use Python 3.6 Conda environment

This document is relevant for: Inf1

• PyTorch Neuron (torch-neuron) Supported operators

• Troubleshooting Guide for PyTorch Neuron (torch-neuron)

• PyTorch Neuron (torch-neuron) release notes

This document is relevant for: Inf1

Setup (torch-neuron)

Tutorials (torch-neuron)

Computer Vision Tutorials

• ResNet-50 tutorial [html] [notebook]

• PyTorch YOLOv4 tutorial [html] [notebook]

Natural Language Processing (NLP) Tutorials

• HuggingFace pretrained BERT tutorial [html] [notebook]

• HuggingFace pretrained BERT tutorial with shared weights [html] [notebook]

• Bring your own HuggingFace pretrained BERT container to Sagemaker Tutorial [html] [notebook]

• LibTorch C++ tutorial [html]

• TorchServe tutorial [html]

• HuggingFace MarianMT tutorial [html] [notebook]

Utilizing Neuron Capabilities Tutorials

• BERT TorchServe tutorial [html]

• NeuronCore Pipeline tutorial [html] [notebook]

Note: To use Jupyter Notebook see:

• setup-jupyter-notebook-steps-troubleshooting

• running-jupyter-notebook-as-script
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Additional Examples (torch-neuron)

• AWS Neuron Samples GitHub Repository

API Reference Guide (torch-neuron)

• PyTorch Neuron trace Python API

• torch.neuron.DataParallel API

• PyTorch Neuron (torch-neuron) Core Placement API [Beta]

Developer Guide (torch-neuron)

• Running Inference on Variable Input Shapes with Bucketing

• Data Parallel Inference on PyTorch Neuron

• Developer Guide - PyTorch Neuron (torch-neuron) LSTM Support

• PyTorch Neuron (torch-neuron) Core Placement

Misc (torch-neuron)

• PyTorch Neuron (torch-neuron) Supported operators

• Troubleshooting Guide for PyTorch Neuron (torch-neuron)

• PyTorch Neuron (torch-neuron) release notes

This document is relevant for: Inf1

This document is relevant for: Trn1, Trn2

2.1.4 Training (torch-neuronx)

This document is relevant for: Trn1, Trn2

Tutorials for Training(torch-neuronx)

This document is relevant for: Trn1, Trn2

Hugging Face BERT Pretraining Tutorial (Data-Parallel)

This tutorial explains how to run Hugging Face BERT-Large model pretraining on Trainium using PyTorch Neuron
and data-parallel mode.

The Hugging Face BERT pretraining example demonstrates the steps required to perform single-node, multi-accelerator
PyTorch model training using the new AWS EC2 Trn1 (Trainium) instances and the AWS Neuron SDK. This tutorial
is an adaptation of an existing BERT example with the following important characteristics:

• Framework: PyTorch/XLA

• Model: Hugging Face BertForPreTraining

• Optimizer: AdamW, LAMB (Layerwise Adaptive Moments optimizer)
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• Scheduler: Hugging Face’s get_linear_schedule_with_warmup

• Allreduce occurs before optimizer step, after gradient accumulations (following DeepSpeed’s Smart Gradient
Accumulation)

• Training data types: Float32, full BFloat16 and Stochastic Rounding (SR), full BFloat16 with fp32 copy of
weights, PyTorch Autocast (Automatic Mixed Precision or AMP)

As done in the original BERT paper, BERT pretraining happens in two phases. In the first phase (phase 1) BERT
maximum sequence length is fixed at 128 tokens, while in phase 2 it is fixed at 512 tokens.

Neuron provides access to Trainium devices through an extension of PyTorch/XLA - a library that includes the familiar
PyTorch interface along with XLA-specific additions. For additional details relating to PyTorch/XLA, please refer to
the official PyTorch/XLA documentation.

Table of Contents

• Phase 1 BFloat16 BERT-Large pretraining with AdamW and stochastic rounding

– Setting up the training environment on trn1.32xlarge

– Downloading tokenized and sharded dataset files

– Number of workers

– BFloat16 and stochastic rounding in phase 1

– Pre-compilation

– Initiating a Training Job

– Monitoring Progress of the Training Job

– Monitoring Training Job Progress using neuron-top

– Monitoring Training Job Progress using TensorBoard

– Finishing the tutorial

• Phase 1 BERT-Large pretraining with Layerwise Adaptive Moments based optimizer (LAMB)

• Phase 1 BFloat16 BERT-Large pretraining with AdamW and FP32 copy of weights

• Phase 1 BERT-Large pretraining with AdamW and PyTorch Autocast (Automatic Mixed Precision or AMP)

• Phase 1 BERT-Large pretraining on two instances

• Phase 2 BERT-Large pretraining

– Training Environment

– Initiating a Training Job

• Tools

– neuron-ls

– neuron-top

– Generating tokenized and sharded dataset files

• Known issues and limitations

– BERT-large compilation limitations

– BERT-large pretraining with pretokenized dataset hangs when using xm.save
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– BERT-large two worker pretraining hangs or run out of host memory during checkpointing on
trn1.2xlarge

– BERT precompilation using neuron_parallel_compile hangs when using torchrun

• Troubleshooting

– ModuleNotFoundError: No module named ‘torch’ , ‘torch_xla’, ‘transformers’, etc

Note: Logs used in tutorials do not present latest performance numbers

For latest performance numbers visit Neuron performance

Phase 1 BFloat16 BERT-Large pretraining with AdamW and stochastic rounding

Setting up the training environment on trn1.32xlarge

The BERT training script dp_bert_large_hf_pretrain_hdf5.py (source) can run on a Trainium instance
(trn1.32xlarge) that contains the appropriate Neuron runtime and Python dependencies.

First, on a trn1.32xlarge instance, follow the installation instructions at:

Install PyTorch Neuron on Trn1

Please set the storage of instance to 512GB or more if you intent to run multiple experiments and save many checkpoints.

For all the commands below, make sure you are in the virtual environment that you have created above before you run
the commands:

source ~/aws_neuron_venv_pytorch/bin/activate

Next, clone the AWS Neuron Samples repository and install requirements in the BERT tutorial directory
aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain (directory link):

cd ~/
git clone https://github.com/aws-neuron/aws-neuron-samples.git

python3 -m pip install -r ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_
→˓pretrain/requirements.txt

Downloading tokenized and sharded dataset files

To download the tokenized and sharded dataset files needed for this tutorial, please run the following commands:

mkdir -p ~/examples_datasets/
pushd ~/examples_datasets/
aws s3 cp --no-progress s3://neuron-s3/training_datasets/bert_pretrain_wikicorpus_
→˓tokenized_hdf5/bert_pretrain_wikicorpus_tokenized_hdf5_seqlen128.tar . --no-sign-
→˓request
tar -xf bert_pretrain_wikicorpus_tokenized_hdf5_seqlen128.tar
rm bert_pretrain_wikicorpus_tokenized_hdf5_seqlen128.tar
aws s3 cp --no-progress s3://neuron-s3/training_datasets/bert_pretrain_wikicorpus_

(continues on next page)
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(continued from previous page)

→˓tokenized_hdf5/bert_pretrain_wikicorpus_tokenized_hdf5_seqlen512.tar . --no-sign-
→˓request
tar -xf bert_pretrain_wikicorpus_tokenized_hdf5_seqlen512.tar
rm bert_pretrain_wikicorpus_tokenized_hdf5_seqlen512.tar
popd

~/examples_datasets/bert_pretrain_wikicorpus_tokenized_hdf5_seqlen128 will now
have the tokenized and sharded dataset files for phase 1 pretraining and ~/examples_datasets/
bert_pretrain_wikicorpus_tokenized_hdf5_seqlen512 for phase 2 pretraining.

Number of workers

You will be using torchrun (PyTorch’s Elastic Launch) to run some of the commands in this tutorial. When run-
ning the training script, you can configure the number of NeuronCores to use for training by using torchrun’s
--nproc_per_node option. In this tutorial, we use 32 NeuronCores on trn1.32xlarge.

Note: Currently Neuron Runtime only support 1 and 2 worker configurations on trn1.2xlarge and 1, 2, 8, and 32-worker
configurations on trn1.32xlarge.

BFloat16 and stochastic rounding in phase 1

Phase 1 pretraining performance can be increased by using BFloat16 casting and stochastic rounding. BFloat16 cast-
ing and stochastic rounding can be enabled by moving the model to BFloat16 using model.to(torch.bfloat16)
expression in the training code and setting the environment variable NEURON_RT_STOCHASTIC_ROUNDING_EN=1,
both are done in BERT pretraining example dp_bert_large_hf_pretrain_hdf5.py by default. Also in the
BERT pretraining example, the loss is kept in FP32 to ensure smooth loss curve when loss averaging is used.
We also preserve the optimizer states in FP32 using a modified HuggingFace AdamW implementation in or-
der to match FP32 loss with BFloat16. To achieve maximum performance while maintaining loss convergence
characteristics, we are using batch size of 16 and gradient accumulation microsteps of 32 to maintain global
batch size of 16384 for phase 1. The batch size and gradient accumulation microstep changes can be set by
launching the BERT pretraining script dp_bert_large_hf_pretrain_hdf5.py with command-line arguments
--batch_size=16 --grad_accum_usteps=32, as seen in the following steps.

Another option with BFloat16 using PyTorch AutoCast (Automatic Mixed Precision or AMP) is covered in Phase 1
BERT-Large pretraining with AdamW and PyTorch Autocast (Automatic Mixed Precision or AMP).

Note: XLA_DOWNCAST_BF16 and XLA_USE_BF16 are deprecated starting in torch-xla 2.1, and their usage would result
in warnings. They will become no-operations in torch-xla 2.6. Please switch to using model.to(torch.bfloat16()
or AMP.
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Pre-compilation

PyTorch Neuron evaluates operations lazily during execution of the training loops, which means it builds a sym-
bolic graph in the background and the graph is executed in hardware only when the tensor is printed, transfered
to CPU, or xm.mark_step() is encountered (xm.mark_step() is implicitly called by pl.MpDeviceLoader/pl.
ParallelLoader). During execution of the training loops, PyTorch Neuron can build multiple graphs depending on
the number of conditional paths taken. For BERT-Large pretraining, PyTorch Neuron builds multiple unique graphs
that should be compiled before running on the NeuronCores. PyTorch Neuron will compile those graphs only if they
are not in the XLA in-memory cache or the persistent cache. To reduce the compilation time of these graphs, you can
pre-compile those graphs using the utility neuron_parallel_compile (provided by the libneuronxla package, a
transitive dependency of torch-neuronx) as shown:

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain
neuron_parallel_compile torchrun --nproc_per_node=32 \
dp_bert_large_hf_pretrain_hdf5.py \
--steps_this_run 10 \
--batch_size 16 \
--grad_accum_usteps 32 | tee compile_log.txt

This command performs a fast trial run of the training script to build graphs and then do parallel compilations on those
graphs using multiple processes of Neuron Compiler before populating the on-disk persistent cache with compiled
graphs. This helps make the actual training run faster because the compiled graphs will loaded from the persistent
cache. Currently it takes ~13 minutes to compile the BERT-Large model training step using the pre-compilation script
(compare to ~40 minute if not using the pre-compilation script). Note that the command above specifies 32 Neuron-
Cores for trn1.32xlarge via –nproc_per_node option.

The script run_dp_bert_large_hf_pretrain_bf16_s128.sh is provided in the same BERT tuto-
rial directory for convenience and you can simply run the script using neuron_parallel_compile ./
run_dp_bert_large_hf_pretrain_bf16_s128.sh to start the precompilation.

The pretokenized dataset is expected to be at ~/examples_datasets/bert_pretrain_wikicorpus_tokenized_hdf5_seqlen128/
by default (see above for downloading instructions) and can be changed via the --data_dir option.

Note: The trial run during pre-compilation currently outputs invalid loss numbers. Please disregard them.

Note: The command after neuron_parallel_compile should match the actual run command, except for the option
--steps_this_run which shortens the trial run just enough to allow the tool to build all the graphs needed for the
actual run.

If you interrupt the run and restart the execution without changing model configurations or training hyperparameters,
the new run will detect the cached graphs in the persistent cache (on-disk) and reload the compiled graphs for execution,
avoiding any recompilation time.

Changes made to the BERT model configuration (layers, hidden size, attention heads in the get_model function), batch
size (using --batch_size option), optimizer or number of workers may trigger graph recompilation. It is best to rerun
the pre-compilation step above if these changes are made.

You can adjust the following hyperparameters without changing the model and causing recompilation:

• Number of global steps to run (--steps_this_run option)

• Learning rate (--lr option)

• Gradient accumulation steps > 1 (--grad_accum_usteps option). If 1 then there’s no gradient accumulation
and the graphs change causing recompilation.
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Initiating a Training Job

After running the pre-compilation step, continue with the actual phase 1 pretraining by running the following set of
commands to launch 32 data parallel distributed training workers on trn1.32xlarge:

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain
torchrun --nproc_per_node=32 \
dp_bert_large_hf_pretrain_hdf5.py \
--batch_size 16 \
--grad_accum_usteps 32 | tee run_pretrain_log.txt

The script run_dp_bert_large_hf_pretrain_bf16_s128.sh is provided in the same BERT tutorial directory for
convenience and you can simply run the script to start the training.

The following messages indicate that the Neuron Runtime is initializing:

Using Neuron Runtime
Using Neuron Runtime
Using Neuron Runtime
Using Neuron Runtime
Using Neuron Runtime
...

A few moments later, you will see the Training Configuration and Model Configuration in the output:

--------TRAINING CONFIG----------
Namespace(batch_size=16, data_dir='~/examples_datasets/
bert_pretrain_wikicorpus_tokenized_hdf5_seqlen128/', debug=False,
enable_pt_autocast=False, grad_accum_usteps=32, local_rank=0, lr=0.0004,
max_pred_len=20, max_steps=28125, metrics_file='/tmp/test_dict.json',
minimal_ckpt=False, num_ckpts_to_keep=1, output_dir='./output',
phase1_end_step=28125, phase2=False, resume_ckpt=False, resume_step=-1,
seed=12349, seq_len=128, shards_per_ckpt=1, steps_this_run=28125, warmup_steps=2000)

--------MODEL CONFIG----------
BertConfig {
"_name_or_path": "bert-large-uncased",
"architectures": [
"BertForMaskedLM"
],
"attention_probs_dropout_prob": 0.1,
"classifier_dropout": null,
"gradient_checkpointing": false,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 1024,
"initializer_range": 0.02,
"intermediate_size": 4096,
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_type": "bert",
"num_attention_heads": 16,
"num_hidden_layers": 24,
"pad_token_id": 0,

(continues on next page)
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"position_embedding_type": "absolute",
"transformers_version": "4.15.0",
"type_vocab_size": 2,
"use_cache": true,
"vocab_size": 30522
}

As the worker processes begin training on the BERT dataset, you will begin to see training metrics and the learning rate
logged to the console approximately every training step. The metrics include average_loss, step_loss, and throughput:

LOG Thu Sep 29 22:30:10 2022 - (0, 78) step_loss : 9.1875 learning_rate : 1.56e-05 ␣
→˓throughput : 2873.14
LOG Thu Sep 29 22:30:16 2022 - (0, 79) step_loss : 8.9375 learning_rate : 1.58e-05 ␣
→˓throughput : 2878.09
LOG Thu Sep 29 22:30:22 2022 - (0, 80) step_loss : 9.0000 learning_rate : 1.60e-05 ␣
→˓throughput : 2875.31
LOG Thu Sep 29 22:30:27 2022 - (0, 81) step_loss : 9.0000 learning_rate : 1.62e-05 ␣
→˓throughput : 2877.35
LOG Thu Sep 29 22:30:33 2022 - (0, 82) step_loss : 8.8750 learning_rate : 1.64e-05 ␣
→˓throughput : 2872.55
LOG Thu Sep 29 22:30:39 2022 - (0, 83) step_loss : 9.0000 learning_rate : 1.66e-05 ␣
→˓throughput : 2876.17
LOG Thu Sep 29 22:30:44 2022 - (0, 84) step_loss : 9.1250 learning_rate : 1.68e-05 ␣
→˓throughput : 2872.48
LOG Thu Sep 29 22:30:50 2022 - (0, 85) step_loss : 9.0000 learning_rate : 1.70e-05 ␣
→˓throughput : 2873.39

By default, the training script will store all output files under ~/aws-neuron-samples/torch-neuronx/training/
dp_bert_hf_pretrain/output. The output files consist of the following:

• PyTorch model checkpoint files, with names containing the global step of the checkpoint (ckpt_2000.pt,
ckpt_4000.pt, etc.). Currently, the training script saves a checkpoint after every dataset shard. The fre-
quency of saving checkpoint can be reduced by increasing the number of dataset shards per checkpoint, us-
ing option --shards_per_ckpt. Furthermore, the number of checkpoints kept at a given time is limited by
--num_ckpts_to_keep option (currently default to 1).

• TensorBoard log files (each training run will store its logs in a subdirectory with prefix neuron_tblogs_).

Monitoring Progress of the Training Job

Using a single Trn1 instance with 32 NeuronCores, the current BERT phase 1 pretraining will finish in about 45 hours.
During this time, you will see the average loss metric begin at about 11.2 and ultimately converge to about 1.4.
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Monitoring Training Job Progress using neuron-top

With the training job still running, launch a second SSH connection into the trn1 instance, and use the neuron-top
command to examine the aggregate NeuronCore utilization. If you have not modified the --nproc_per_node option
in the run command, you should observe that all 32 NeuronCores are participating in the training job, with utilization
fluctuating around 80%.

Monitoring Training Job Progress using TensorBoard

The demo includes TensorBoard-compatible logging, which allows the learning rate and training met-
rics to be monitored in real-time. By default, the training script logs metrics to the following Ten-
sorBoard log directory ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain/output/
neuron_tblogs_<date/time>_<training configs>.

In order to view your training metrics in TensorBoard, first run the following commands in your SSH session:

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain
tensorboard --logdir ./output

Once running, open a new SSH connection to the instance and port-forward TCP port 6006 (ex: ssh -L 6006:127.
0.0.1:6006 user_name@remote_ip). Once the tunnel is established, TensorBoard can then be accessed via web
browser at the following URL: http://localhost:6006. Please note that you will not be able to access TensorBoard if you
disconnect your port-forwarding SSH session to the Trainium instance.
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Finishing the tutorial

Once you are ready, there are a couple of options for finishing the BERT pretraining demo:

1. Allow the training script to run to completion. If you would like to observe the training script run to com-
pletion, it is recommended to launch the training script from a terminal multiplexer such as tmux or screen,
and then detach the session so that the training script can run in the background. With this approach, you can
safely let the training script run unattended, without risk of an SSH disconnection causing the training job to stop
running.

2. Stop the training job early. To stop the training job early, press CTRL-C in the terminal window in which you
launched the training script. In some cases, if you manually cancel a job using CTRL-C and then later want to
run the job again, you might first need to execute sudo rmmod neuron; sudo modprobe neuron in order to
reload/reset the Neuron driver.

Phase 1 BERT-Large pretraining with Layerwise Adaptive Moments based optimizer (LAMB)

Sometimes, to reduce the training wall time, you can use higher learning rate and larger global batch size. The approach
is discussed in LARGE BATCH OPTIMIZATION FOR DEEP LEARNING: TRAINING BERT IN 76 MINUTES.
Tranium supports LAMB, and in this tutorial, we use publicly available XLA-friendly LAMB implemenation from
https://github.com/rwightman/pytorch-image-models/blob/master/timm/optim/lamb.py.

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain
torchrun --nproc_per_node=32 \
dp_bert_large_hf_pretrain_hdf5.py \
--max_steps 7032 \
--batch_size 8 \
--optimizer LAMB \
--lr 6e-3 \
--grad_accum_usteps 256 | tee run_pretrain_log.txt

The command-line argument --optimizer LAMB is needed, otherwise, the default optimizer AdamW will be used.
Besides, you need to use a set of hyper-parameters supporting the larger global batch size (GBS). In this case, we have
64k as GBS for LAMB and use a set of hyper-params similar to https://github.com/NVIDIA/DeepLearningExamples/
blob/master/PyTorch/LanguageModeling/BERT/README.md. Given higher GBS from LAMB than AdamW, it takes
fewer steps (roughly 7k) to achieve similar level of accuracy as AdamW, which takes more than 28k steps. In addi-
tion, you can also use different data types on top of LAMB. Below is an example using the BFloat16 and Stochastic
Roundings.

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain
torchrun --nproc_per_node=32 \
dp_bert_large_hf_pretrain_hdf5.py \
--max_steps 7032 \
--batch_size 16 \
--optimizer LAMB \
--lr 6e-3 \
--grad_accum_usteps 128 | tee run_pretrain_log.txt

The script run_dp_bert_large_hf_pretrain_bf16_s128_lamb.sh is provided in the same BERT tutorial direc-
tory for convenience and you can simply run the script to start the training.
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Phase 1 BFloat16 BERT-Large pretraining with AdamW and FP32 copy of weights

BFloat16 training can be achieved without stochastic rounding when a copy of weights is kept in FP32. To train BERT-
Large with AdamW and FP32 copy of weights, specify --optimizer=AdamW_FP32ParamsCopy option when calling
the BERT pretraining script (stochastic rounding is off):

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain
torchrun --nproc_per_node=32 dp_bert_large_hf_pretrain_hdf5.py \
--batch_size 16 \
--optimizer=AdamW_FP32ParamsCopy \
--grad_accum_usteps 32 |& tee run_pretrain_log.txt

The script run_dp_bert_large_hf_pretrain_bf16_s128.sh is provided in the same BERT tuto-
rial directory for convenience and you can simply run the script with fp32paramscopy option like ./
run_dp_bert_large_hf_pretrain_bf16_s128.sh fp32paramscopy to start the training with FP32 copy
of weights.

Phase 1 BERT-Large pretraining with AdamW and PyTorch Autocast (Automatic Mixed Precision or
AMP)

Besides the BFloat16 and stochastic rounding in phase 1 , you can also use [PyTorch Autocast for XLA (Automatic
Mixed Precision or AMP)](https://github.com/pytorch/xla/blob/master/docs/source/perf/amp.md), which automati-
cally converts operations to either a lower precision (like Bfloat16) or Float32. This generally provides better per-
formance over full Float32 due to higher compute density and lower memory footprint (trn1_training_perf). With the
BERT-Large pretraining scripts you can use AMP by specifying the --enable_pt_autocast option without enabling
stochatic rounding (NEURON_RT_STOCHASTIC_ROUNDING_EN is not set).

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain

torchrun --nproc_per_node=32 dp_bert_large_hf_pretrain_hdf5.py \
--batch_size 16 \
--enable_pt_autocast \
--grad_accum_usteps 32 | tee run_pretrain_log.txt

The script run_dp_bert_large_hf_pretrain_bf16_s128.sh is provided in the same BERT tu-
torial directory for convenience and you can simply run the script with amp option like ./
run_dp_bert_large_hf_pretrain_bf16_s128.sh amp to start the training with AMP.

Under the hood, --enable_pt_autocast would wrap only the forward pass and loss in the PyTorch autocasting
context. The backward pass is NOT in the PyTorch autocasting context. This converts compute operations such as
matrix multiply, convolution, activation, and pooling to lower precision such as BFloat16 while keeping numerically
sensitive operations such as softmax and cross-entropy in Float32. For information about operations that are autocasted,
please see [PyTorch Autocast for XLA AMP guide](https://github.com/pytorch/xla/blob/master/docs/source/perf/amp.
md#supported-operators).

with torch.autocast(enabled=flags.enable_pt_autocast, dtype=torch.bfloat16, device_type=
→˓'xla'):

outputs = model(input_ids=input_ids,
attention_mask=input_mask,
token_type_ids=segment_ids,
labels=masked_lm_labels,
next_sentence_label=next_sentence_labels)

loss = outputs.loss / flags.grad_accum_usteps
(continues on next page)
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loss.backward()
running_loss += loss.detach()

Phase 1 BERT-Large pretraining on two instances

If you have two trn1.32xlarge instances with EFA-enabled interfaces, using EFA-enabled security group, and setup
using Install PyTorch Neuron on Trn1, you can run multi-instance BERT-Large pretraining. The following example
demonstrate running BERT phase 1 pretraining on two instances. To ensure that the global batch size remains at 16384
for phase 1, the gradient accumulation microstep count is reduced by half when the number of instances is 2. NOTE: To
run on multiple instances, you will need to use trn1.32xlarge instances and using all 32 NeuronCores on each instance.

On the rank-0 Trn1 host (root), run with --node_rank=0 using torchrun utility, and --master_addr set to rank-0
host’s IP address:

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain
export FI_EFA_USE_DEVICE_RDMA=1
export FI_PROVIDER=efa
export BUCKET_CAP_MB=512
export XLA_TRANSFER_SEED_ASYNC=1
torchrun --nproc_per_node=32 --nnodes=2 --node_rank=0 --master_addr=<root IP> --master_
→˓port=2020 \
dp_bert_large_hf_pretrain_hdf5.py \
--batch_size 16 \
--grad_accum_usteps 16 |& tee run_pretrain_log.txt

On another Trn1 host, run with --node_rank=1, and --master_addr also set to rank-0 host’s IP address:

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain
export FI_EFA_USE_DEVICE_RDMA=1
export FI_PROVIDER=efa
export BUCKET_CAP_MB=512
export XLA_TRANSFER_SEED_ASYNC=1
torchrun --nproc_per_node=32 --nnodes=2 --node_rank=1 --master_addr=<root IP> --master_
→˓port=2020 \
dp_bert_large_hf_pretrain_hdf5.py \
--batch_size 16 \
--grad_accum_usteps 16 |& tee run_pretrain_log.txt

It is important to launch rank-0 worker with --node_rank=0 to avoid hang.

To train on multiple instances, it is recommended to use a ParallelCluster. For a ParallelCluster example, please see
Train a model on AWS Trn1 ParallelCluster.

292 Chapter 2. ML Frameworks

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start-nccl-base.html#nccl-start-base-setup
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples


AWS Neuron

Phase 2 BERT-Large pretraining

As mentioned above, BERT pretraining happens in two phases. In phase 1, the sequence length is 128. In phase 2, the
sequence length increases to 512. This additional training phase will further reduce the pretraining loss and improve
the metrics for the fine-tune tasks that usually follow. The setup is very similar to the phase 1, with some differences
in training environment and command line arguments highlighted below.

Training Environment

The following dataset and checkpoint are required:

• ~/examples_datasets/bert_pretrain_wikicorpus_tokenized_hdf5_seqlen512 is WikiCorpus train-
ing dataset that is preprocessed (tokenized and pre-masked) for phase 2.

• ~/examples/dp_bert_hf_pretrain/output/ckpt_<phase1_end_step>.pt is the final checkpoint
from phase 1. It’s generated automatically at the end of phase 1 pretraining. For convenience, one
can also download the example available at s3://neuron-s3/training_checkpoints/pytorch/
dp_bert_large_hf_pretrain/ckpt_28125.pt, which is collected after 28125 training steps in phase 1.
Phase 2 will continue training by loading this checkpoint. During its progression, phase 2 continues to generate
its own checkpoints in output directory, following the naming convention ckpt_<global_steps>.pt

Initiating a Training Job

To launch the phase 2 pretraining job with AdamW optimizer, run the same python script
dp_bert_large_hf_pretrain_hdf5.py as before except with different options for phase 2. For phase
2, we are using global batch size of 32768, with worker device batch size of 2 and gradient accu-
mulation microsteps of 512. The pretokenized dataset is expected to be at ~/examples_datasets/
bert_pretrain_wikicorpus_tokenized_hdf5_seqlen512/ following the setup steps above and is set via
--data_dir option.

cd ~/aws-neuron-samples/torch-neuronx/training/dp_bert_hf_pretrain
torchrun --nproc_per_node=32 dp_bert_large_hf_pretrain_hdf5.py \

--data_dir ~/examples_datasets/bert_pretrain_wikicorpus_tokenized_hdf5_seqlen512/ \
--lr 2.8e-4 \
--phase2 \
--resume_ckpt \
--phase1_end_step 28125 \
--batch_size 2 \
--grad_accum_usteps 512 \
--seq_len 512 \
--max_pred_len 80 \
--warmup_steps 781 \
--max_steps 1563 \
| tee run_pretrain_log_phase2.txt

The script run_dp_bert_large_hf_pretrain_bf16_s512_phase2.sh is provided in the same BERT tutorial di-
rectory for convenience and you can simply run the script to start the training with AdamW optimizer. Similarly, you
can use LAMB optimizer using the script run_dp_bert_large_hf_pretrain_bf16_s512_lamb_phase2.sh.

The output below is expected as the job is initiated. Step 28125 is the phase1_end_step in this run, which could be
different if phase1 training stops at a different global step.
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Worker 21 resuming from checkpoint ./output/ckpt_28125.pt at step 28125
Worker 23 resuming from checkpoint ./output/ckpt_28125.pt at step 28125
Worker 27 resuming from checkpoint ./output/ckpt_28125.pt at step 28125
Worker 26 resuming from checkpoint ./output/ckpt_28125.pt at step 28125
Worker 20 resuming from checkpoint ./output/ckpt_28125.pt at step 28125
Worker 22 resuming from checkpoint ./output/ckpt_28125.pt at step 28125

--------TRAINING CONFIG----------
Namespace(batch_size=2, data_dir='/home/ec2-user/examples_datasets/
bert_pretrain_wikicorpus_tokenized_hdf5_seqlen512/', debug=False,
enable_pt_autocast=False, grad_accum_usteps=512, local_rank=0, lr=0.0002,
max_pred_len=80, max_steps=28125, metrics_file='/tmp/test_dict.json',
minimal_ckpt=False, num_ckpts_to_keep=1, output_dir='./output',
phase1_end_step=28125, phase2=True, resume_ckpt=True, resume_step=-1,
seed=12349, seq_len=512, shards_per_ckpt=1, steps_this_run=32, warmup_steps=781)

--------MODEL CONFIG----------
BertConfig {
"_name_or_path": "bert-large-uncased",
"architectures": [
"BertForMaskedLM"

],
"attention_probs_dropout_prob": 0.1,
"classifier_dropout": null,
"gradient_checkpointing": false,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 1024,
"initializer_range": 0.02,
"intermediate_size": 4096,
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_type": "bert",
"num_attention_heads": 16,
"num_hidden_layers": 24,
"pad_token_id": 0,
"position_embedding_type": "absolute",
"transformers_version": "4.15.0",
"type_vocab_size": 2,
"use_cache": true,
"vocab_size": 30522

}

As the phase 2 training proceeds, similar metrics to phase 1 will appear on the console, showing the loss, learning rate,
and throughput:

LOG Tue Sep 27 20:56:35 2022 - (0, 26) step_loss : 4.3438 learning_rate : 6.66e-06 ␣
→˓throughput : 494.55
LOG Tue Sep 27 20:57:40 2022 - (0, 27) step_loss : 4.0938 learning_rate : 6.91e-06 ␣
→˓throughput : 495.67
LOG Tue Sep 27 20:58:46 2022 - (0, 28) step_loss : 4.1875 learning_rate : 7.17e-06 ␣
→˓throughput : 496.18
LOG Tue Sep 27 20:59:53 2022 - (0, 29) step_loss : 4.0000 learning_rate : 7.43e-06 ␣

(continues on next page)
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→˓throughput : 495.31
LOG Tue Sep 27 21:00:58 2022 - (0, 30) step_loss : 4.2500 learning_rate : 7.68e-06 ␣
→˓throughput : 495.60
LOG Tue Sep 27 21:02:05 2022 - (0, 31) step_loss : 4.3125 learning_rate : 7.94e-06 ␣
→˓throughput : 495.50
LOG Tue Sep 27 21:03:10 2022 - (0, 32) step_loss : 4.4688 learning_rate : 8.19e-06 ␣
→˓throughput : 496.02

Tools

While running the tutorial, try experimenting with the following Neuron tools, which help monitor and evaluate com-
pute utilization in real-time:

neuron-ls

The neuron-ls command describes the number of Neuron devices present in the system, along with the associated
NeuronCore count, memory, and PCI device information:

You will find that the Trn1 instance has 16 Neuron devices, each with 2 NeuronCores. This configuration allows you
to train the model using a total of 32 workers, one per NeuronCore, within a single instance.

Additional information regarding neuron-ls can be found in the neuron-ls user guide.
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neuron-top

The neuron-top command presents a high-level view of the Neuron environment, including the utilization of each of
the NeuronCores, any models that are currently loaded onto one or more NeuronCores, process IDs for any processes
that are leveraging the Neuron runtime, and basic system statistics relating to vCPU and memory usage.

Please note that neuron-top can either display aggregate NeuronCore utilization for ‘all’ processes (the default), or
alternatively display the NeuronCore utilization for a particular process. You can toggle through the aggregate and
per-process views using the a and d keys. The screenshot below illustrates the default aggregate view:

Please refer to the neuron-top user guide for additional details.

Generating tokenized and sharded dataset files

This section is for generating tokenized and sharded dataset files from WikiCorpus dataset. If you just want the pre-
genenerated dataset files, please see Downloading tokenized and sharded dataset files section above.

On a c5n.18xlarge instance launched with Deep Learning Conda AMI and 512GB disk space, you can generate the
preprocessed datasets from WikiCorpus dataset using NVidia’s DeepLearningExamples for BERT pretraining. The
preprocessing converts the WikiCorpus dataset to tokenized data and shard the data into multiple shards for parallel
loading. The full flow takes about 8.7 hours:

source activate pytorch_latest_p37
cd ~/
git clone https://github.com/NVIDIA/DeepLearningExamples.git
cd DeepLearningExamples
git checkout 81b9010096b6f9812e3977b607669f6ec8b16561
sudo mkdir -m a=rwx /workspace
cp -rf PyTorch/LanguageModeling/BERT /workspace/bert
cd /workspace

(continues on next page)
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git clone https://github.com/attardi/wikiextractor.git
cd wikiextractor
git checkout 6408a430fc504a38b04d37ce5e7fc740191dee16
cd /workspace/bert
# increase num processes and shards
ex -s "+%s/\(bertPrep\.py\)\( --action create_hdf5_files\)/\1 --n_processes 32 --n_test_
→˓shards 1024 --n_training_shards 1024\2" "+wq" data/create_datasets_from_start.sh
export BERT_PREP_WORKING_DIR=/workspace/data/
time ./data/create_datasets_from_start.sh wiki_only |& tee log

After execution is finished, phase 1 pre-tokenized and sharded dataset is located at:

/workspace/data/hdf5_lower_case_1_seq_len_128_max_pred_20_masked_lm_prob_0.
15_random_seed_12345_dupe_factor_5/wikicorpus_en/

Copy this entire directory to ~/examples_datasets/bert_pretrain_wikicorpus_tokenized_hdf5_seqlen128
of the trn1.32xlarge machine.

Phase 2 pre-tokenized dataset is located at:

/workspace/data/hdf5_lower_case_1_seq_len_512_max_pred_80_masked_lm_prob_0.
15_random_seed_12345_dupe_factor_5/wikicorpus_en/

Copy this entire directory to ~/examples_datasets/bert_pretrain_wikicorpus_tokenized_hdf5_seqlen512
of the trn1.32xlarge machine.

Known issues and limitations

BERT-large compilation limitations

Optimal BERT-large phase 1 (sequence length 128) batch size is currently 8 for FP32 and 16 for full BF16 with stochas-
tic rounding. Optimal BERT-large phase 2 (sequence length 512) batch size is currently 1 for FP32 and 2 for full BF16
with stochastic rounding.

BERT-large pretraining with pretokenized dataset hangs when using xm.save

Currently, BERT-large pretraining with pretokenized dataset hangs when xm.save is used outside of the main training
loop.

Loop through HDF5 sharded dataset files:
Train on one HDF5 sharded dataset file

Loop through batched samples:
Training iteration

Save checkpoint using xm.save

The reason is that xm.save has a synchronization point. However, the HDF5 shared data files do not have the same
number of training samples so the workers cannot all reach xm.save in the same iteration.

The workaround is to use xm._maybe_convert_to_cpu to ensure tensors are moved to CPU followed by torch.save
as done in the BERT-large pretraining tutorial:

cpu_data = xm._maybe_convert_to_cpu(data)
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BERT-large two worker pretraining hangs or run out of host memory during checkpointing on
trn1.2xlarge

On trn1.2xlarge, where there’s limited host memory and CPU resources, the BERT-large two worker pretraining may
hang or run out of host memory during checkpointing. This problem can be worked around by not saving optimizer
and LR scheduler states in the checkpoint. This is enabled by --minimal_ckpt option of the pretraining script.

BERT precompilation using neuron_parallel_compile hangs when using torchrun

We use neuron_parallel_compile in front of the short run command to do precompilation. However, the following
command hangs when running BERT parallel compilation with torchrun:

neuron_parallel_compile XLA_DOWNCAST_BF16=1 torchrun --nproc_per_node=32 --nnodes=1 dp_
→˓bert_large_hf_pretrain_hdf5.py --steps_this_run 5

...
Updating train metrics in provide results.json file
Current data: {'num_workers': 32, 'epoch': 0, 'steps': 5, 'microsteps': 320, 'loss': -
→˓22172234.0, 'train_time_minutes': 0.7424166639645894, 'throughput_average': 1839.
→˓0391805624324, 'throughput_peak': 1840.0107059878164, 'batch_size': 8, 'max_length':␣
→˓128}
Updating with data: {'num_workers': 32, 'epoch': 0, 'steps': 5, 'microsteps': 320, 'loss
→˓': -22172234.0, 'train_time_minutes': 0.7826640844345093, 'throughput_average': 1744.
→˓4691285659471, 'throughput_peak': 1745.4964663587539, 'batch_size': 8, 'max_length':␣
→˓128}
Checkpointing...
Checkpointing done...
(hangs)

The fix is to add xm.rendezvous at the end of training to ensure all workers sync up before exiting the script
dp_bert_large_pretrain_hdf5.py.

def _mp_fn(index, flags):
torch.set_default_tensor_type('torch.FloatTensor')
train_bert_hdf5(flags)
xm.rendezvous("_mp_fn finished")
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Troubleshooting

The following are troubleshooting tips related to this tutorial. See PyTorch Neuron on Trainium Troubleshooting Guide
for additional troubleshooting tips.

ModuleNotFoundError: No module named ‘torch’ , ‘torch_xla’, ‘transformers’, etc

If you encounter ‘ModuleNotFoundError’ messages while attempting to run the demo scripts, please ensure that you
have activated the appropriate Python virtualenv which contains all of the demo dependencies:

cd ~
source <python virtual environment path>/bin/activate

This document is relevant for: Trn1, Trn2

This document is relevant for: Trn1, Trn2

Multi-Layer Perceptron Training Tutorial

MNIST is a standard dataset for handwritten digit recognition. A multi-layer perceptron (MLP) model can be trained
with MNIST dataset to recognize hand-written digits. This tutorial starts with a 3-layer MLP training example in
PyTorch on CPU, then show how to modify it to run on Trainium using PyTorch Neuron. It also shows how to do
multiple worker data parallel MLP training.

Table of Contents

• Setup environment and download examples

• Multi-layer perceptron MNIST model

• Single-worker MLP training script in PyTorch on CPU

• Single-worker MLP training on Trainium

• Multi-worker data-parallel MLP training using torchrun

• Single-worker MLP evaluation on Trainium

• Known issues and limitations

Note: Logs used in tutorials do not present latest performance numbers

For latest performance numbers visit Neuron performance
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Setup environment and download examples

Before running the tutorial please follow the installation instructions at:

Install PyTorch Neuron on Trn1

Please set the storage of instance to 512GB or more if you also want to run through the BERT pretraining and GPT
pretraining tutorials.

For all the commands below, make sure you are in the virtual environment that you have created above before you run
the commands:

source ~/aws_neuron_venv_pytorch/bin/activate

Install needed dependencies in your environment by running:

pip install pillow

Torchvision package is needed for MNIST dataset and has already been installed as part of Install PyTorch Neuron
on Trn1. Installing Torchvision together with torch-neuronx ensures that the compatible version of Torchvision is
selected. For example, torchvision==0.12 is compatible with torch==1.11 and torchvision==0.13 is compatible with
torch==1.12.

To download the MNIST MLP examples, do:

git clone https://github.com/aws-neuron/aws-neuron-samples.git
cd aws-neuron-samples/torch-neuronx/training/mnist_mlp

Multi-layer perceptron MNIST model

In model.py, we define the multi-layer perceptron (MLP) MNIST model with 3 linear layers and ReLU activations,
followed by a log-softmax layer. This model will be used in multiple example scripts.

Single-worker MLP training script in PyTorch on CPU

We will show how to modify a training script that runs on other platform to run on Trainium.

We begin with a single-worker MLP training script for running on the host CPUs of the Trainium instance. The training
script imports the MLP model from model.py.

In this training script, we load the MNIST train dataset and, within the main() method, set the data loader to read
batches of 32 training examples and corresponding labels.

Next we instantiate the MLP model and move it to the device. We use device = 'cpu' to illustrate the use of device
in PyTorch. On GPU you would use device = 'cuda' instead.

We also instantiate the other two components of a neural network trainer: stochastic-gradient-descent (SGD) optimizer
and negative-log-likelihood (NLL) loss function (also known as cross-entropy loss).

After the optimizer and loss function, we create a training loop to iterate over the training samples and labels, performing
the following steps for each batch in each iteration:

• Zero gradients using:

optimizer.zero_grad()

• Move training samples and labels to device using the ‘tensor.to’ method.
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• Perform forward/prediction pass using

output = model(train_x)

• The prediction results are compared against the corresponding labels using the loss function to compute the loss

loss_fn(output, train_label)

• The loss is propagated back through the model using chain-rule to compute the weight gradients

loss.backward()

• The weights are updated with a change that is proportional to the computed weights gradients

optimizer.step()

At the end of training we compute the throughput, display the final loss and save the checkpoint.

Expected CPU output:

----------Training ---------------
Train throughput (iter/sec): 286.96994718801335
Final loss is 0.1040
----------End Training ---------------

Run the command below to execute this script:

python train_cpu.py

For a full tutorial on training in PyTorch, please see https://pytorch.org/tutorials/beginner/introyt/trainingyt.html.

Thus far we have used PyTorch without Trainium. Next, we will show how to change this script to run on Trainium.

Single-worker MLP training on Trainium

To run on Trainium, first we modify the CPU training script train_cpu.py to run with PyTorch Neuron torch_xla as
described in PyTorch Neuron for Trainium Getting Started Guide by changing the device:

import torch_xla.core.xla_model as xm
device = xm.xla_device()
# or
device = 'xla'

When the model is moved to the XLA device using model.to(device) method, subsequent operations on the model
are recorded for later execution. This is XLA’s lazy execution which is different from PyTorch’s eager execution. Within
the training loop, we must mark the graph to be optimized and run on XLA device (NeuronCore) using xm.mark_step()
(unless MpDeviceLoader is used as you will see in the next section). Without this mark, XLA cannot determine where
the graph ends. The collected computational graph also gets compiled and executed when you request the value of a
tensor such as by calling loss.item() or print(loss).

To save a checkpoint, it is recommended to use the xm.save() function instead of torch.save() to ensure states are
moved to CPU. xm.save() also prevents the “XRT memory handle not found” warning at the end of evaluation script
(if the checkpoint saved using torch.save() is used for evaluation).

The resulting script train.py can be executed as python3 train.py. Again, note that we import the MLP model
from model.py. When you examine the script, the comments that begin with ‘XLA’ indicate the changes required to
make the script compatible with torch_xla.
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Run the command below to execute this script:

python train.py

Expected output on trn1.32xlarge (start from a fresh compilation cache, located at /var/tmp/neuron-compile-cache by
default):

2022-04-12 16:15:00.000947: INFO ||NCC_WRAPPER||: No candidate found under /var/tmp/
→˓neuron-compile-cache/USER_neuroncc-1.0.47218.0+162039557/MODULE_18200615679846498221.
2022-04-12 16:15:00.000949: INFO ||NCC_WRAPPER||: Cache dir for the neff: /var/tmp/
→˓neuron-compile-cache/USER_neuroncc-1.0.47218.0+162039557/MODULE_18200615679846498221/
→˓MODULE_0_SyncTensorsGraph.318_18200615679846498221_ip-172-31-69-14.ec2.internal-
→˓8355221-28940-5dc775cd78aa2/83a0fd4a-b07e-4404-aa55-701ab3b2700c
........
Compiler status PASS
2022-04-12 16:18:05.000843: INFO ||NCC_WRAPPER||: Exiting with a successfully compiled␣
→˓graph
2022-04-12 16:18:05.000957: INFO ||NCC_WRAPPER||: No candidate found under /var/tmp/
→˓neuron-compile-cache/USER_neuroncc-1.0.47218.0+162039557/MODULE_5000680699473283909.
2022-04-12 16:18:05.000960: INFO ||NCC_WRAPPER||: Cache dir for the neff: /var/tmp/
→˓neuron-compile-cache/USER_neuroncc-1.0.47218.0+162039557/MODULE_5000680699473283909/
→˓MODULE_1_SyncTensorsGraph.390_5000680699473283909_ip-172-31-69-14.ec2.internal-8355221-
→˓28940-5dc7767e5fc69/7d0a2955-11b4-42e6-b536-6f0f02cc68df
.
Compiler status PASS
2022-04-12 16:18:12.000912: INFO ||NCC_WRAPPER||: Exiting with a successfully compiled␣
→˓graph
----------Training ---------------
Train throughput (iter/sec): 95.06756661972014
Final loss is 0.1979
----------End Training ---------------

If you re-run the training script a second time, you will see messages indicating that the compiled graphs are cached in
the persistent cache from the previous run and that the startup time is quicker:

(aws_neuron_venv_pytorch_p36) [ec2-user@ip-172-31-69-14 mnist_mlp]$ python train.py |&␣
→˓tee log_trainium
2022-04-12 16:21:58.000241: INFO ||NCC_WRAPPER||: Using a cached neff at /var/tmp/neuron-
→˓compile-cache/USER_neuroncc-1.0.47218.0+162039557/MODULE_18200615679846498221/MODULE_0_
→˓SyncTensorsGraph.318_18200615679846498221_ip-172-31-69-14.ec2.internal-8355221-28940-
→˓5dc775cd78aa2/83a0fd4a-b07e-4404-aa55-701ab3b2700c/MODULE_0_SyncTensorsGraph.318_
→˓18200615679846498221_ip-172-31-69-14.ec2.internal-8355221-28940-5dc775cd78aa2.neff.␣
→˓Exiting with a successfully compiled graph
2022-04-12 16:21:58.000342: INFO ||NCC_WRAPPER||: Using a cached neff at /var/tmp/neuron-
→˓compile-cache/USER_neuroncc-1.0.47218.0+162039557/MODULE_5000680699473283909/MODULE_1_
→˓SyncTensorsGraph.390_5000680699473283909_ip-172-31-69-14.ec2.internal-8355221-28940-
→˓5dc7767e5fc69/7d0a2955-11b4-42e6-b536-6f0f02cc68df/MODULE_1_SyncTensorsGraph.390_
→˓5000680699473283909_ip-172-31-69-14.ec2.internal-8355221-28940-5dc7767e5fc69.neff.␣
→˓Exiting with a successfully compiled graph
----------Training ---------------
Train throughput (iter/sec): 93.16748895384832
Final loss is 0.1979
----------End Training ---------------

Multiple graphs can be created during execution since there are differences between some iterations (first, steady state,
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last). After the first iteration, the graph for each iteration should remain the same from iteration to iteration. This allows
XLA runtime to execute a previous compiled graph that has been cached in XLA runtime cache.

If the inner training loop has some control-flows, for example for gradient accumulation, the number of compiled
graphs may increase due to the generation and consumption of intermediates as well as additional operations when the
conditional path is taken.

Multi-worker data-parallel MLP training using torchrun

Data parallel training allows you to replicate your script across multiple workers, each worker processing a proportional
portion of the dataset, in order to train faster.

The PyTorch distributed utility torchrun can be used to launch multiple processes in a server node for multi-worker
data parallel training.

To run multiple workers in data parallel configuration using torchrun, modify the single-worker training script
train.py as follows (below we use xm as alias for torch_xla.core.xla_model and xmp as alias for torch_xla.
distributed.xla_multiprocessing):

1. Import XLA backend for torch.distributed using import torch_xla.distributed.xla_backend.

2. Use torch.distributed.init_process_group('xla') to initialize PyTorch XLA runtime and Neuron
runtime.

3. Use XLA multiprocessing device loader (MpDeviceLoader) from torch_xla.distributed to wrap PyTorch
data loader.

4. Use xm.optimizer_step(optimizer) to perform allreduce and take optimizer step.

XLA MpDeviceLoader is optimized for XLA and is recommended for best performance. It also takes care of mark-
ing the step for execution (compile and execute the lazily collected operations for an iteration) so no separate xm.
mark_step() is needed.

The following are general best-practice changes needed to scale up the training:

1. Set the random seed to be the same across workers.

2. Scale up the learning rate by the number of workers. Use xm.xrt_world_size() to get the global number of
workers.

3. Add distributed sampler to allow different worker to sample different portions of dataset.

Also, the xm.save() function used to save checkpoint automatically saves only for the rank-0 worker’s parameters.

The resulting script is train_torchrun.py (note again that we import the MLP model from model.py):

Next we use the torchrun utility that is included with torch installation to run multiple processes, each using one
Logical NeuronCore. Use the option nproc_per_node to indicate the number of processes to launch. For example,
to run on two Logical NeuronCores on one Trn1/Trn2 instance only, do:

Run the command below to execute this script:

torchrun --nproc_per_node=2 train_torchrun.py

Note: Currently we only support: - 1 and 2 worker configurations on trn1.2xlarge (default Logic NeuronCores size
of 1) - 1, 2, 8, and 32-worker configurations on trn1.32xlarge (default Logic NeuronCores size of 1) - 1, 4, 16 and
64-worker configurations on trn2.48xlarge (default Logic NeuronCores size of 2)

Expected output on trn1.32xlarge (second run to avoid compilations):
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----------Training ---------------
----------Training ---------------
... (Info messages truncated)
Train throughput (iter/sec): 163.25353269069706
Train throughput (iter/sec): 163.23261047441036
Final loss is 0.3469
Final loss is 0.1129
----------End Training ---------------
----------End Training ---------------

In another example, we run on two trn1.32xlarge instances launched with EFA-enabled interfaces, using EFA-enabled
security group, and setup using Install PyTorch Neuron on Trn1. NOTE: To run on multiple instances, you will need
to use trn1.32xlarge instances and using all 32 NeuronCores on each instance.

On the rank-0 Trn1 host (root), run with --node_rank=0 using torchrun utility, and --master_addr set to rank-0
host’s IP address:

export FI_EFA_USE_DEVICE_RDMA=1
export FI_PROVIDER=efa
torchrun --nproc_per_node=32 --nnodes=2 --node_rank=0 --master_addr=<root IP> --master_
→˓port=2020 train_torchrun.py

On another Trn1 host, run with --node_rank=1, and --master_addr also set to rank-0 host’s IP address:

export FI_EFA_USE_DEVICE_RDMA=1
export FI_PROVIDER=efa
torchrun --nproc_per_node=32 --nnodes=2 --node_rank=1 --master_addr=<root IP> --master_
→˓port=2020 train_torchrun.py

It is important to launch rank-0 worker with --node_rank=0 to avoid hang.

For trn2.48xlarge, use --nproc_per_node=64 for 64 Logical NeuronCores default (each Logical NeuronCores using
two physical NeuronCores).

To train on multiple instances, it is recommended to use a ParallelCluster. For a ParallelCluster example, please see
Train a model on AWS Trn1 ParallelCluster.

Single-worker MLP evaluation on Trainium

After training, the final checkpoint is saved in checkpoints directory. You can run the evaluation step by running the
eval.py script in the same directory as the training script:

Run the command below to execute this script:

cd ~/aws-neuron-samples/torch-neuronx/training/mnist_mlp
python eval.py

This evaluation phase can be merged with the training script to check accuracy, for example at the end of every epoch.
It is kept separate for illustration purpose.

The evaluation script follow similar flow as the training script with the following differences:

• The input data used is the validation subset of the MNIST dataset.

• Only need to loop through the dataset once (no epochs).

• There’s only forward pass through the model, and no backward pass or optimizer update.
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• Compute the accuracy across validation set instead of loss per batch.

Expected results (after a second execution to eliminate warmup compilation time during first execution):

----------Evaluating---------------
Test throughput (iter/sec): 47.897945949832845
Accuracy: 0.9273833632469177
----------Done Evaluating---------------

If you get a lower accuracy than above, please check that the training is done with at least 4 epochs.

You can also use PyTorch NeuronX Tracing API for Inference in the evaluation loop. This can be achieved by the
following changes to the eval.py:

• Use device = 'cpu' instead of XLA device.

• Don’t use mark_step().

• Trace the model at the first iteration to freeze it and precompile for inference:

if idx == 0:
import torch_neuronx
model = torch_neuronx.trace(model, test_x)

However, note that the inference trace API fixed the input tensor shape, so that every input tensor will need to match
the size used during the tracing step. To ensure every batch from DataLoader has the same tensor shape, pass
drop_last=True option when instantiating DataLoader.

test_loader = DataLoader(test_dataset, batch_size=32, drop_last=True)

The script eval_using_trace.py can be compared against eval.py to show the above modifications. It can be
executed using:

Run the command below to execute this script:

python eval_using_trace.py

Expected results (note the large increase in performance when using trace API for inference):

----------Evaluating---------------
Test throughput (iter/sec): 409.0836291417652
Accuracy: 0.9288585186004639
----------Done Evaluating---------------

Known issues and limitations

MLP model is not optimized for performance. For the single-worker training, the performance can be improved by
using MpDeviceLoader which exists in the multiprocessing example. For example, by setting --nproc_per_node=1
in the torchrun example, you will see higher MLP performance.

(aws_neuron_venv_pytorch_p36) [ec2-user@ip-172-31-69-14 mnist_mlp]$ torchrun --nproc_per_
→˓node=1 train_torchrun.py

----------Training ---------------
... (Info messages truncated)
Train throughput (iter/sec): 192.43508922834008

(continues on next page)
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(continued from previous page)

Final loss is 0.2720
----------End Training ---------------

This document is relevant for: Trn1, Trn2

This document is relevant for: Trn1, Trn2

PyTorch Neuron for Trainium Hugging Face BERT MRPC task finetuning using Hugging Face Trainer
API

Note: Please use Hugging Face Optimum-Neuron<https://huggingface.co/docs/optimum-neuron/index> for best cov-
erage and support of Hugging Face models running on Trainium and Inferentia devices.

In this tutorial, we show how to run a Hugging Face script that uses Hugging Face Trainer API to do fine-tuning
on Trainium. The example follows the text-classification example which fine-tunes BERT-base model for sequence
classification on the GLUE benchmark.

Table of Contents

• Setup and compilation

• Single-worker training

• Multi-worker data-parallel training

• Converting BERT pretrained checkpoint to Hugging Face pretrained model format

• Older versions of transformers <4.27.0 or PyTorch Neuron <1.13.0

• Known issues and limitations

Note: Logs used in tutorials do not present latest performance numbers

For latest performance numbers visit Neuron performance

Setup and compilation

Before running the tutorial please follow the installation instructions at:

Install PyTorch Neuron on Trn1

Please set the storage of instance to 512GB or more if you also want to run through the BERT pretraining and GPT
pretraining tutorials.

For all the commands below, make sure you are in the virtual environment that you have created above before you run
the commands:

source ~/aws_neuron_venv_pytorch/bin/activate

First we install a recent version of HF transformers, scikit-learn and evaluate packages in our environment as well as
download the source matching the installed version. In this example, we use the text classification example from HF
transformers source:
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export HF_VER=4.52.0
export ACC_VER=1.7.0
pip install -U transformers==$HF_VER accelerate==$ACC_VER datasets evaluate scikit-learn
cd ~/
git clone https://github.com/huggingface/transformers --branch v$HF_VER

Single-worker training

We will run MRPC task fine-tuning following the example in README.md located in the path ~/transformers/
examples/pytorch/text-classification. In this part of the tutorial we will use the Hugging Face model hub’s
pretrained bert-large-uncased model.

Note: If you are using older versions of transformers <4.27.0 or PyTorch Neuron <1.13.0, please see section Older
versions of transformers <4.27.0 or PyTorch Neuron <1.13.0 for necessary workarounds.

We use BF16 mixed-precision casting using trainer API --bf16 option and compiler flag
--model-type=transformer to enable best performance. We also launch the run_glue.py script with torchrun
using --nproc_per_node=N option to specify the number of workers. Here we start of with 1 worker.

Note: With transformers version 4.44 and up, please use torchrun even for one worker (--nproc_per_node=1) to
avoid execution hang.

First, paste the following script into your terminal to create a “run.sh” file and change it to executable:

tee run.sh > /dev/null <<EOF
#!/usr/bin/env bash
set -eExuo
export TASK_NAME=mrpc
export NEURON_CC_FLAGS="--model-type=transformer"
NEURON_RT_STOCHASTIC_ROUNDING_EN=1 torchrun --nproc_per_node=1 ./run_glue.py \\
--model_name_or_path bert-large-uncased \\
--task_name \$TASK_NAME \\
--do_train \\
--do_eval \\
--bf16 \\
--use_cpu True \\
--max_seq_length 128 \\
--per_device_train_batch_size 8 \\
--learning_rate 2e-5 \\
--num_train_epochs 5 \\
--save_total_limit 1 \\
--overwrite_output_dir \\
--output_dir /tmp/\$TASK_NAME/ |& tee log_run
EOF

chmod +x run.sh

We optionally precompile the model and training script using neuron_parallel_compile to warm up the persistent graph
cache (Neuron Cache) such that the actual run has fewer compilations (faster run time):
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neuron_parallel_compile ./run.sh

Please ignore the results from this precompile run as it is only for extracting and compiling the XLA graphs.

Note: With both train and evaluation options (--do_train and --do_eval), you will encounter harmless error
ValueError: Target is multiclass but average='binary' when using neuron_parallel_compile.

Precompilation is optional and only needed to be done once unless hyperparameters such as batch size are modified.
After the optional precompilation, the actual run will be faster with minimal additional compilations.

./run.sh

If precompilation was not done, the first execution of ./run.sh will be slower due to serial compilations. Rerunning the
same script a second time would show quicker execution as the compiled graphs will be already cached in persistent
cache.

Multi-worker data-parallel training

The above script would run one worker on one Logical NeuronCore. To run on multiple Logical NeuronCores in data-
parallel configuration, launch the run_glue.py script with torchrun using --nproc_per_node=N option to specify
the number of workers (N=2 for trn1.2xlarge, and N=2, 8, or 32 for trn1.32xlarge).

Note: If you are using older versions of transformers <4.27.0 or PyTorch Neuron <1.13.0, please see section Older
versions of transformers <4.27.0 or PyTorch Neuron <1.13.0 for necessary workarounds.

The following example runs 2 workers. Paste the following script into your terminal to create a “run_2w.sh” file and
change it to executable:

tee run_2w.sh > /dev/null <<EOF
#!/usr/bin/env bash
set -eExuo
export TASK_NAME=mrpc
export NEURON_CC_FLAGS="--model-type=transformer"
NEURON_RT_STOCHASTIC_ROUNDING_EN=1 torchrun --nproc_per_node=2 ./run_glue.py \\
--model_name_or_path bert-large-uncased \\
--task_name \$TASK_NAME \\
--do_train \\
--do_eval \\
--bf16 \\
--use_cpu True \\
--max_seq_length 128 \\
--per_device_train_batch_size 8 \\
--learning_rate 2e-5 \\
--num_train_epochs 5 \\
--save_total_limit 1 \\
--overwrite_output_dir \\
--output_dir /tmp/\$TASK_NAME/ |& tee log_run_2w
EOF

chmod +x run_2w.sh
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Again, we optionally precompile the model and training script using neuron_parallel_compile to warm up the persistent
graph cache (Neuron Cache), ignoring the results from this precompile run as it is only for extracting and compiling
the XLA graphs:

neuron_parallel_compile ./run_2w.sh

Precompilation is optional and only needed to be done once unless hyperparameters such as batch size are modified.
After the optional precompilation, the actual run will be faster with minimal additional compilations.

./run_2w.sh

During run, you will now notice that the “Total train batch size” is now 16 and the “Total optimization steps” is now
half the number for one worker training.

Converting BERT pretrained checkpoint to Hugging Face pretrained model format

If you have a pretrained checkpoint (i.e., from the BERT phase 2 pretraining tutorial), you can run the script be-
low (saved as “convert.py”) to convert BERT pretrained saved checkpoint to Hugging Face pretrained model format.
An example phase 2 pretrained checkpoint can be downloaded from s3://neuron-s3/training_checkpoints/
pytorch/dp_bert_large_hf_pretrain/ckpt_29688.pt. Note that here we also use the bert-large-uncased
model configuration to match the BERT-Large model trained following BERT phase 2 pretraining tutorial.

tee convert.py > /dev/null <<EOF
import os
import sys
import argparse
import torch
import transformers
from transformers import (

BertForPreTraining,
)
import torch_xla.core.xla_model as xm
from transformers.utils import check_min_version
from transformers.utils.versions import require_version

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', type=str, default='bert-large-uncased', help=

→˓"Path to model identifier from huggingface.co/models")
parser.add_argument('--output_saved_model_path', type=str, default='./hf_saved_model

→˓', help="Directory to save the HF pretrained model format.")
parser.add_argument('--checkpoint_path', type=str, required=True, help="Path to␣

→˓pretrained checkpoint which needs to be converted to a HF pretrained model format")
args = parser.parse_args(sys.argv[1:])

model = BertForPreTraining.from_pretrained(args.model_name)
check_point = torch.load(args.checkpoint_path, map_location='cpu')
model.load_state_dict(check_point['model'], strict=False)
model.save_pretrained(args.output_saved_model_path, save_config=True, save_

→˓function=xm.save)
print("Done converting checkpoint {} to HuggingFace saved model in directory {}.".

→˓format(args.checkpoint_path, args.output_saved_model_path))
EOF
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Run the conversion script as:

python convert.py --checkpoint_path ckpt_29688.pt

After conversion, the new Hugging Face pretrained model is stored in the output directory specified by the
--output_saved_model_path option which is hf_saved_model by default. You will use this directory in the next
step.

Paste the following script into your terminal to create a “run_converted.sh” file and change it to executable: (note that
it uses the converted Hugging Face pretrained model in hf_saved_model directory):

tee run_converted.sh > /dev/null <<EOF
#!/usr/bin/env bash
set -eExuo
export TASK_NAME=mrpc
export NEURON_CC_FLAGS="--model-type=transformer"
NEURON_RT_STOCHASTIC_ROUNDING_EN=1 torchrun --nproc_per_node=2 ./run_glue.py \\
--model_name_or_path hf_saved_model \\
--tokenizer_name bert-large-uncased \\
--task_name \$TASK_NAME \\
--do_train \\
--do_eval \\
--bf16 \\
--use_cpu True \\
--max_seq_length 128 \\
--per_device_train_batch_size 8 \\
--learning_rate 2e-5 \\
--num_train_epochs 5 \\
--save_total_limit 1 \\
--overwrite_output_dir \\
--output_dir /tmp/\$TASK_NAME/ |& tee log_run_converted
EOF

chmod +x run_converted.sh

If it is the first time running with bert-large-uncased model or if hyperparameters have changed, then the optional
one-time precompilation step can save compilation time:

neuron_parallel_compile ./run_converted.sh

If you have run the single worker training in a previous section, then you can skip the precompilation step and just do:

./run_converted.sh

Older versions of transformers <4.27.0 or PyTorch Neuron <1.13.0

If using older versions of transformers package before 4.27.0 or PyTorch Neuron before 1.13.0, please edit the python
script run_glue.py and add the following lines after the Python imports. They set the compiler flag for transformer
model type and enable data parallel training using torchrun:

# Enable torchrun
import os
import torch

(continues on next page)
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(continued from previous page)

import torch_xla.distributed.xla_backend
from packaging import version
from transformers import __version__, Trainer
if version.parse(__version__) < version.parse("4.26.0") and os.environ.get("WORLD_SIZE"):

torch.distributed.init_process_group('xla')

# Disable DDP for torchrun
import contextlib
if version.parse(__version__) < version.parse("4.20.0"):

def _wrap_model(self, model, training=True):
model.no_sync = lambda: contextlib.nullcontext()
return model

else:
def _wrap_model(self, model, training=True, dataloader=None):

model.no_sync = lambda: contextlib.nullcontext()
return model

Trainer._wrap_model = _wrap_model

# Workaround for NaNs seen with transformers version >= 4.21.0
# https://github.com/aws-neuron/aws-neuron-sdk/issues/593
import transformers
if os.environ.get("XLA_USE_BF16") or os.environ.get("XLA_DOWNCAST_BF16"):

transformers.modeling_utils.get_parameter_dtype = lambda x: torch.bfloat16

Known issues and limitations

The following are currently known issues:

• During model evaluation, there can be small compilations for every evaluation step due to a known transformers
issue. The work-around is to set training arguments eval_do_concat_batches=False and apply the changes
in the PR which will be in a future release of transformers package (version 4.52 or later).

• With transformers==4.44.0, running one worker fine-tuning without torchrun would result in a hang. To
workaround and run one worker fine-tuning, use torchrun --nproc_per_node=1 <script>.

• With torch-neuronx 2.1, HF Trainer API’s use of XLA function xm.mesh_reduce causes "EOFError: Ran
out of input" or "_pickle.UnpicklingError: invalid load key, '!'" errors during Neuron Paral-
lel Compile. This is an issue with the trial execution of empty NEFFs and should not affect the normal execution
of the training script.

• Multi-worker training using Trainer API resulted in too many graph compilations for HF transform-
ers>=4.35: This is resolved with HF transformers>=4.37 with the additional workarounds as shown in `the
ticket<https://github.com/aws-neuron/aws-neuron-sdk/issues/813>`_.

• Long compilation times: this can be alleviated with neuron_parallel_compile tool to extract graphs from a
short trial run and compile them in parallel ahead of the actual run, as shown above.

• When precompiling using batch size of 16 on trn1.2xlarge, you will see ERROR ||PARALLEL_COMPILE||:
parallel compilation with neuronx-cc exited with error.Received error code: -9. To
workaround this error, please set NEURON_PARALLEL_COMPILE_MAX_RETRIES=1 in the environment.

• With release 2.6 and transformers==4.25.1, using neuron_parallel_compile tool to run run_glue.py
script with both train and evaluation options (--do_train and --do_eval), you will encounter harmless error
ValueError: Target is multiclass but average='binary'
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• Reduced accuracy for RoBerta-Large is seen with Neuron PyTorch 1.12 (release 2.6) in FP32 mode with
compiler BF16 autocast. The workaround is to set NEURON_CC_FLAGS=”–auto-cast none” or set NEU-
RON_RT_STOCHASTIC_ROUNDING_EN=1.

• When using DDP in PT 1.13, compilation of one graph will fail with “Killed” error message for
bert-large-uncased. For bert-base-cased, the final MRPC evaluation accuracy is 31% which is lower
than expected. These issues are being investigated and will be fixed in an upcoming release. For now, DDP is
disabled with the workaround shown above in Multi-worker Training.

• When using DDP in PT 1.13 with neuron_parallel_compile precompilation, you will hit an error Rank 1 has
393 params, while rank 0 has inconsistent 0 params.. To workaround this error, add the follow
code snippet at the top of run_glue.py to skip the problematic shape verification code during precompilation:

import os
if os.environ.get("NEURON_EXTRACT_GRAPHS_ONLY", None):

import torch.distributed as dist
_verify_param_shape_across_processes = lambda process_group, tensors, logger=None:␣

→˓True

• Variable input sizes: When fine-tune models such as dslim/bert-base-NER using the token-classification exam-
ple, you may encounter timeouts (lots of “socket.h:524 CCOM WARN Timeout waiting for RX” messages) and
execution hang. This occurs because NER dataset has different sample sizes, which causes many recompilations
and compiled graph (NEFF) reloads. Furthermore, different data parallel workers can execute different compiled
graph. This multiple-program multiple-data behavior is currently unsupported. To workaround this issue, please
pad to maximum length using the Trainer API option --pad_to_max_length.

• When running HuggingFace GPT fine-tuning with transformers version >= 4.21.0 and using XLA_USE_BF16=1
or XLA_DOWNCAST_BF16=1, you might see NaNs in the loss immediately at the first step. This issue
occurs due to large negative constants used to implement attention masking (https://github.com/huggingface/
transformers/pull/17306). To workaround this issue, please use transformers version <= 4.20.0.

• When using Trainer API option –bf16, you will see “RuntimeError: No CUDA GPUs are available”. To
workaround this error, please add “import torch; torch.cuda.is_bf16_supported = lambda: True” to the Python
script (i.e. run_glue.py). (Trainer API option –fp16 is not yet supported).

• When using latest HuggingFace transformers version, you may see “ValueError: Your setup doesn’t support
bf16/gpu.” To fix this, please use --use_cpu True in your scripts.

The following are resolved issues:

• Using neuron_parallel_compile tool to run run_glue.py script with both train and evaluation options
(--do_train and --do_eval), you will encounter INVALID_ARGUMENT error. To avoid this, only en-
able train for parallel compile (--do_train). This will cause compilations during evaluation step. The IN-
VALID_ARGUMENT error is fixed in release 2.6 together with latest transformers package version 4.25.1.

• When running HuggingFace BERT (any size) fine-tuning tutorial or pretraining tutorial with transformers ver-
sion >= 4.21.0 and < 4.25.1 and using XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1, you will see NaNs
in the loss immediately at the first step. More details on the issue can be found at pytorch/xla#4152. The
workaround is to use transformers version < 4.21.0 or >= 4.25.1, or add transformers.modeling_utils.
get_parameter_dtype = lambda x: torch.bfloat16 to your Python script (i.e. run_glue.py).

• Some recompilation is seen at the epoch boundary even after neuron_parallel_compile is used. This can be
fixed by using the same number of epochs both during precompilation and the actual run.

• When running multi-worker training, you may see the process getting killed at the time of model saving on
trn1.2xlarge. This happens because the transformers trainer.save_model api uses xm.save for saving mod-
els. This api is known to cause high host memory usage in multi-worker setting see Saving and Loading XLA
Tensors in . Coupled with a compilation at the same time results in a host OOM. To avoid this issue, we can: Pre-
compile all the graphs in multi-worker training. This can be done by running the multi-worker training first with
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neuron_parallel_compile <script> followed by the actual training. This would avoid the compilation at
model save during actual training.

This document is relevant for: Trn1, Trn2

This document is relevant for: Trn1, Trn2

Fine-tune T5 model on Trn1

Note: Update 01/03/24: This tutorial is currently broken and the AWS Neuron team is working on the fix.

In this tutorial, we show how to fine-tune a Hugging Face (HF) T5 model using HF trainer API. This example fine-tunes
a T5 model for a text-summarization task on CNN/DailyMail dataset.

Table of Contents

• Setup and compilation

• Single-worker training

• Multi-worker Training

• Known issues and limitations

Note: Logs used in tutorials do not present latest performance numbers

For latest performance numbers visit Neuron performance

Setup and compilation

Before running the tutorial please follow the installation instructions at:

Install PyTorch Neuron on Trn1

Please set the storage of instance to 512GB or more if you also want to run through the BERT pretraining and GPT
pretraining tutorials.

For all the commands below, make sure you are in the virtual environment that you have created above before you run
the commands:

source ~/aws_neuron_venv_pytorch/bin/activate

First we install a recent version of HF transformers, scikit-learn and evaluate packages in our environment as well as
download the source matching the installed version. In this example, we chose version 4.26.0 and the text summarization
example from HF transformers source:

export HF_VER=4.26.0
pip install -U transformers==$HF_VER datasets evaluate scikit-learn rouge_score␣
→˓pandas==1.4.0
cd ~/
git clone https://github.com/huggingface/transformers --branch v$HF_VER
cd ~/transformers/examples/pytorch/summarization
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Single-worker training

We will run text-summarization fine-tuning task following the example in README.md located in the path ~/trans-
formers/examples/pytorch/summarization.

We use full BF16 casting using XLA_USE_BF16=1 to enable best performance. First, paste the following script into
your terminal to create a “run.sh” file and change it to executable:

tee run.sh > /dev/null <<EOF
#!/bin/bash
set -eExuo
if [ \$NEURON_PARALLEL_COMPILE == "1" ]
then

XLA_USE_BF16=1 python3 ./run_summarization.py \
--model_name_or_path t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--do_train \
--do_eval \
--source_prefix "summarize: " \
--max_source_length 512 \
--per_device_train_batch_size 32 \
--per_device_eval_batch_size 4 \
--overwrite_output_dir \
--pad_to_max_length \
--max_steps 100 \
--max_eval_samples 100 \
--gradient_accumulation_steps=32 \
--output_dir /tmp/tst-summarization |& tee log_run

else
XLA_USE_BF16=1 python3 ./run_summarization.py \
--model_name_or_path t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--do_train \
--do_eval \
--source_prefix "summarize: " \
--max_source_length 512 \
--per_device_train_batch_size 32 \
--per_device_eval_batch_size 4 \
--overwrite_output_dir \
--pad_to_max_length \
--gradient_accumulation_steps=32 \
--output_dir /tmp/tst-summarization |& tee log_run

fi
EOF

chmod +x run.sh

We optionally precompile the model and training script using neuron_parallel_compile to warm up the persistent graph
cache (Neuron Cache) such that the actual run has fewer compilations (faster run time):

neuron_parallel_compile ./run.sh

Note: For these auto-regressive models, do not run the predict_with_generate method when doing the precompile
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step. This is because the neuron_parallel_compile utility will run the training script in graph extraction mode and
no actual execution of the graph will be done. Hence, the outputs at each step are invalid. Since the auto-regressive
generation at each step is dependent on output of previous step, the generate step would fail since the outputs from
previous steps are invalid.

Precompilation is optional and only needs to be done once unless hyperparameters such as batch size are modified.
After the optional precompilation, the actual run will be faster with minimal additional compilations.

./run.sh

If precompilation was not done, the first execution of ./run.sh will be slower due to serial compilations. Rerunning the
same script a second time would show quicker execution as the compiled graphs will be already cached in persistent
cache.

Running the above script will run the T5-small fine-tuning on a single process.

Note: As you may have noticed, we are not running the predict_with_generate as part of training. This is because,
predict_with_generate requires auto-regressive sampling where the inputs to the decoder are created by appending
outputs of previous steps. This causes the inputs to the decoder to change shape and thereby resulting in a new graph.
In other words, the current generate api provided by HF transformers leads to repeated compilations. We are working
on building a Neuron friendly version of generate api and it will be made available as part of future release. This
will enable us to run predict_with_generate as part of training script.

As a workaround, we can run the predict_with_generate on CPU after the model is trained. Once training is
completed, a trained checkpoint would be saved. We can load the trained model and run the predict_with_generate
to compute the final accuracy.

To do so, in run_summarization.py, add the following before transformers get imported. This can be done by adding
the below lines before all the imports:

import libneuronxla
# Disable configuring xla env
def _configure_env():

pass
libneuronxla.configure_environment = _configure_env

You can now run the following and it should run the predict method on CPU device.

NEURON_NUM_DEVICES=0 python3 ./run_summarization.py \
--model_name_or_path <CHECKPOINT_DIR> \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--do_predict \
--predict_with_generate \
--source_prefix "summarize: " \
--per_device_eval_batch_size 4 \
--max_source_length 512 \
--pad_to_max_length \
--no_cuda \
--output_dir /tmp/tst-summarization |& tee log_run

Note: To run on CPU, we need to make sure that NEURON_NUM_DEVICES is set to 0. This will make sure no
xla_devices are created and the trainer would use the default device (CPU).
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Multi-worker Training

The above script will run one worker on one NeuronCore. To run on multiple cores, first add these lines to top of
run_summarization.py to disable Distributed Data Parallel (DDP) when using torchrun (see Known issues and limita-
tions section below):

# Disable DDP for torchrun
from transformers import __version__, Trainer
Trainer._wrap_model = lambda self, model, training=True, dataloader=None: model

Then launch the run_summarization.py script with torchrun using –nproc_per_node=N option to specify the number
of workers (N=2 for trn1.2xlarge, and N=2, 8, or 32 for trn1.32xlarge). The following example runs 2 workers. Paste
the following script into your terminal to create a “run_2w.sh” file and change it to executable:

tee run_2w.sh > /dev/null <<EOF
#!/bin/bash
set -eExuo
if [ \$NEURON_PARALLEL_COMPILE == "1" ]
then

XLA_USE_BF16=1 torchrun --nproc_per_node=2 ./run_summarization.py \
--model_name_or_path t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--do_train \
--do_eval \
--source_prefix "summarize: " \
--max_source_length 512 \
--per_device_train_batch_size 32 \
--per_device_eval_batch_size 4 \
--overwrite_output_dir \
--pad_to_max_length \
--max_steps 100 \
--max_eval_samples 100 \
--gradient_accumulation_steps=32 \
--output_dir /tmp/tst-summarization |& tee log_run

else
XLA_USE_BF16=1 torchrun --nproc_per_node=2 ./run_summarization.py \
--model_name_or_path t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--do_train \
--do_eval \
--source_prefix "summarize: " \
--max_source_length 512 \
--per_device_train_batch_size 32 \
--per_device_eval_batch_size 4 \
--overwrite_output_dir \
--pad_to_max_length \
--gradient_accumulation_steps=32 \
--output_dir /tmp/tst-summarization |& tee log_run

fi
EOF

chmod +x run_2w.sh
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Again, we optionally precompile the model and training script using neuron_parallel_compile to warm up the persistent
graph cache (Neuron Cache), ignoring the results from this precompile run as it is only for extracting and compiling
the XLA graphs:

neuron_parallel_compile ./run_2w.sh

Precompilation is optional and only needs to be done once unless hyperparameters such as batch size are modified.
After the optional precompilation, the actual run will be faster with minimal additional compilations.

./run_2w.sh

During run, you will notice that the “Total train batch size” is now 8 and the “Total optimization steps” is now half the
number for one worker training. Also, if you open neuron-top in a separate terminal, you should see 2 cores been
utilized.

To train T5-large model, you can set the model_name_or_path argument to t5-large. Please note, currently running
t5-large on trn1-2xl machine can result in HOST OOM during compilation. Hence, it is recommended that you run a
t5-large model training on a trn1-32xl machine.

On a trn1-32xl machine, you can create a run_32w.sh on the terminal using the following commands:

tee run_32w.sh > /dev/null <<EOF
#!/bin/bash
set -eExuo
if [ \$NEURON_PARALLEL_COMPILE == "1" ]
then

XLA_USE_BF16=1 torchrun --nproc_per_node=32 ./run_summarization.py \
--model_name_or_path t5-large \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--do_train \
--do_eval \
--source_prefix "summarize: " \
--max_source_length 512 \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 4 \
--overwrite_output_dir \
--pad_to_max_length \
--max_steps 100 \
--max_eval_samples 100 \
--gradient_accumulation_steps=11 \
--output_dir /tmp/tst-summarization |& tee log_run

else
XLA_USE_BF16=1 torchrun --nproc_per_node=32 ./run_summarization.py \
--model_name_or_path t5-large \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--do_train \
--do_eval \
--source_prefix "summarize: " \
--max_source_length 512 \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 4 \
--overwrite_output_dir \
--pad_to_max_length \

(continues on next page)
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(continued from previous page)

--gradient_accumulation_steps=11 \
--output_dir /tmp/tst-summarization |& tee log_run

fi
EOF

chmod +x run_32w.sh

You can now follow the same steps as listed above. This script would run a t5-large model by launching a training script
using 32 data-parallel workers.

Known issues and limitations

The following are currently known issues:

• Long compilation times: this can be alleviated with neuron_parallel_compile tool to extract graphs from a
short trial run and compile them in parallel ahead of the actual run, as shown above.

• T5-Large compilation causing processes to get killed on trn1-2xl: It is recommended to t5-largemodel training
on a trn1-32xl machine, as it avoids CPU OOM and also provides faster training by making use of 32 data-parallel
workers.

This document is relevant for: Trn1, Trn2

This document is relevant for: Trn1, Trn2

ZeRO-1 Tutorial

What is ZeRO-1?

ZeRO-1 (Zero Redundancy Optimizer Stage 1, https://arxiv.org/abs/1910.02054) is an optimization technique for large-
scale deep learning models. It is a memory efficient variation of data parallelism. ZeRO leverages the aggregate com-
putation and memory resources of data parallelism to reduce the memory and compute requirements of each accelerator
used for model training. ZeRO reduces the memory consumption of each accelerator by partitioning the various model
training states (weights, gradients, and optimizer states) across the available devices in the distributed training hard-
ware. ZeRO is being implemented as incremental stages of optimizations. In stage 1, the optimizer states (e.g., for
Adam optimizer, 32-bit weights, and the first, and second moment estimates) are partitioned across the processes, so
that each process updates only its partition.
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We implemented an XLA-friendly version of ZeRO-1 and it has been merged in open-source PyTorch/XLA project.
Users can use it to enable ZeRO-1 algorithm by simply wrapping the origin optimizer as shown below.

# Before:
optimizer = torch.optim.Adam(model.parameters(), lr=0.0001)

# After
optimizer = ZeroRedundancyOptimizer(model.parameters(), torch.optim.Adam, lr=0.0001)

Then just call optimizer.step() directly, the wrapped optimizer will handle the distributed operations automatically.

The above code snippet illustrates the basic usage. Generally, users can use ZeRO-1 optimizer like a normal optimizer.
In addition, ZeroRedundancyOptimizer also provides other features: enable gradient clipping or use other data type
for wrapped optimizer. Note that though the most of optimizers can be used with ZeRO-1, optimizers that compute
norm for parameters (e.g. LAMB) might lead to accuracy disparities compared to using original local optimizer when
using ZeRO-1, because these optimizers cannot get full parameters but shards.

Usage

To enable ZeRO-1 optimizer, just import it and replace origin optimizer with ZeRO-1 wrapped version

from torch_xla.distributed.zero_redundancy_optimizer import ZeroRedundancyOptimizer
...
...

device = xm.xla_device()
model = model.to(device)

optimizer = ZeroRedundancyOptimizer(model.parameters(), AdamW, lr=0.001)

Then in training loop, just call optimizer.step() , note that we should not use xm.reduce_gradients() or xm.
optimizer_step() as gradient reduction will be handle by ZeRO-1.
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...
loss.backward()
xm.mark_step()
optimizer.step()
xm.mark_step()

ZeRO-1 optimizer also provides some additional features, user can pass these arguments to the wrapper constructor:

• Change optimizer_dtype to choose data dtype used by optimizer, default is torch.float32. For example,
when parameter data type is bfloat16, set optimizer_dtype to be float32 to enable ‘master weight’.

• Change grad_clipping to enable grad clipping, default is True.

• Change max_norm to determine the maximum norm value used by grad clipping, default is 1.0.

• Change use_grad_acc_hook to enable using buffers to store gradients, it will use the same data type as
optimizer_dtype to accumulate gradients. (Added in neuron 2.19.0 release).

• Change higher_cc_precision to force reduce-scatter operator to use the same data type as
optimizer_dtype, default is False. When use_grad_acc_hook is True, it has no effects. (Added in
neuron 2.19.0 release).

Note: ZeRO-1 optimizer now forces to use the same data type as parameters for all-gather operator. (Changed in neuron
2.19.0 release)

GPT2-XL Pretraining Tutorial

Table of contents

• Setup

• Dataset

• Training

• Known Issues, Work-arounds and Limitations

Setup

We use single Trn1.32xlarge instance. Follow Install PyTorch Neuron on Trn1 to setup the environment first. For all
the commands below, make sure you are in the virtual environment that you have created above before you run the
commands:

requirements.txt: We pin the following Hugging Face Library versions necessary for the tutorial

transformers==4.27.3
accelerate==0.17
tensorboard==2.12.2

source ~/aws_neuron_venv_pytorch/bin/activate

git clone https://github.com/aws-neuron/aws-neuron-samples.git
cd aws-neuron-samples/torch-neuronx/training/zero1_gpt2
python3 -m pip install -r requirements.txt
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The specific files you need for this tutorial:

• config_1p5B_gpt2.json: The model configuration used in the tutorial for GPT 2.7B Neo

• neuron_utils.py: includes utility functions and the logging tools

• run_clm_no_trainer.py: the main training script that runs the actual training

• run_clm.sh: the shell script to launch the training job

Dataset

For the dataset, we use the wikitext dataset, specifically wikitext-103-raw-v1, provided by the HuggingFace https:
//huggingface.co/datasets/wikitext. The data will be preprocessed the first time running through the training script and
then preprocessed data will be cached in the HuggingFace cache directory for any future training runs.

If the main process downloads the dataset, tokenizes the data and groups them together successfully, the expected
output would be as below at the beginning of the training.

***** Running training *****
Num examples = 114248
Num Epochs = 29
Instantaneous batch size per device = 1
Total train batch size (w. parallel, distributed & accumulation) = 32
Gradient Accumulation steps = 1
Total optimization steps = 100000

Training

The GPT2 python fine-tuning script is adapted from the example run_clm_no_trainer.py in https://github.com/
huggingface/transformers/tree/main/examples/pytorch/language-modeling. It incorporates the Accelerate https://
github.com/huggingface/accelerate. Given its beta stage, some modifications are needed, along with the bridge code
to XLA. Particularly, some workarounds to support Accelerate for the training script are listed in “Known Issues
Workarounds and Limitations” below.

In this example, we use GPT2-xl as example, and show the training steps with mixed precision (bfloat16 and float32)

• single node training:

# Run precompile and training
neuron_parallel_compile bash run_clm.sh MIXED wikitext-103-raw-v1
bash run_clm.sh MIXED wikitext-103-raw-v1

• multi-node training, run:

sbatch run_clm_compile.slurm

then

sbatch run_clm.slurm
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Known Issues, Work-arounds and Limitations

1. Error message: ValueError: invalid literal for int() with base 10: ''. Simply re-run the script
can solve this issue. This issue is already solved in the newer versions of transformers, see https://github.com/
huggingface/transformers/pull/22427.

2. Accelerator API workarounds:

• Error message: “Gradient accumulation is not supported on TPU. Please set gradient_accumulation_steps
to 1 and don’t pass in a GradientAccumulationPlugin object.” More context here: https://github.com/
huggingface/accelerate/pull/479. The training still works by commenting out the assertion and avoid using
the accumulation wrapper with accelerator.accumulate(model)

• Accelerator.prepare call: We have noticed that using the optimizer returned by this API are not directly
reusable. It is due to gaps in configuring accelerate API for XLA devices.

This document is relevant for: Trn1, Trn2

This document is relevant for: Trn1, Trn2

Analyze for Training Tutorial

This tutorial explains how to analyze a model for training support using via torch-neuronx.

Note: For analyzing models for inference support via torch-neuronx, please refer to torch_neuronx.analyze()

Setup

For this tutorial we’ll be using two scripts: supported.py and unsupported.py. Create these files by copy pasting
the below code to their respective files.

supported.py

import torch
import torch_xla.core.xla_model as xm

class NN(torch.nn.Module):
def __init__(self):

super().__init__()

self.layer1 = torch.nn.Linear(4,4)
self.nl1 = torch.nn.ReLU()
self.layer2 = torch.nn.Linear(4,2)
self.nl2 = torch.nn.Tanh()

def forward(self, x):
x = self.nl1(self.layer1(x))
return self.nl2(self.layer2(x))

def main():
device = xm.xla_device()

(continues on next page)
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model = NN().to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
loss_fn = torch.nn.MSELoss()

inp = torch.rand(4)
target = torch.tensor([1,0])

model.train()
for epoch in range(2):

optimizer.zero_grad()
inp = inp.to(device)
target = target.to(device)
output = model(inp)
loss = loss_fn(output,target)
loss.backward()
optimizer.step()
xm.mark_step()

if __name__ == '__main__':
main()

unsupported.py

import torch
import torch_xla.core.xla_model as xm

class UnsupportedModel(torch.nn.Module):
def __init__(self):

super().__init__()

def forward(self, x):
y = torch.fft.fft(x)
x = x + 10
return x * y

def main():
device = xm.xla_device()

model = UnsupportedModel().to(device)

inp = torch.rand(4)

model.train()
for epoch in range(1):

inp = inp.to(device)
output = model(inp)

xm.mark_step()

if __name__ == '__main__':
(continues on next page)
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main()

Running analyze via neuron_parallel_compile

To analyze a model, we supply the training script to the analyze command, which is shipped with
neuron_parallel_compile. The command is:

neuron_parallel_compile --command analyze python supported.py

This will generate a lot of output showing a lot of compilation statuses. Here’s a snippet of the output when running
the above command.

.2023-05-25 00:43:43.000394: 776642 INFO ||ANALYZE||: Compiling /tmp/model_analyis_
→˓graphs/compare_7841189860629745939_23.hlo.pb using following command: neuronx-cc␣
→˓compile --target=trn1 --framework XLA /tmp/model_analyis_graphs/compare_
→˓7841189860629745939_23.hlo.pb --verbose=35 --query-compute-placement
2023-05-25 00:43:43.000418: 776642 INFO ||ANALYZE||: Compiling /tmp/model_analyis_
→˓graphs/multiply_15640857564712679356_53.hlo.pb using following command: neuronx-cc␣
→˓compile --target=trn1 --framework XLA /tmp/model_analyis_graphs/multiply_
→˓15640857564712679356_53.hlo.pb --verbose=35 --query-compute-placement
.
Compiler status PASS
2023-05-25 00:43:43.000549: 776642 INFO ||ANALYZE||: Compiling /tmp/model_analyis_
→˓graphs/subtract_1927104012014828209_49.hlo.pb using following command: neuronx-cc␣
→˓compile --target=trn1 --framework XLA /tmp/model_analyis_graphs/subtract_
→˓1927104012014828209_49.hlo.pb --verbose=35 --query-compute-placement
...
Compiler status PASS

The analysis report will be generated as a JSON file. The location of the report is shown as the last log entry:

2023-05-25 00:43:49.000252: 776642 INFO ||ANALYZE||: Removing existing report /home/
→˓ubuntu/analyze_for_training/model_analysis_result/result.json
2023-05-25 00:43:49.000252: 776642 INFO ||ANALYZE||: Model analysis completed. Report -
→˓ /home/ubuntu/analyze_for_training/model_analysis_result/result.json

Note: Note that if a report is already present in the specified path, analyze will remove/overwrite it.

The report generated running the above command looks like:

{
"torch_neuronx_version": "1.13.0.1.6.1",
"neuronx_cc_version": "2.5.0.28+1be23f232",
"support_percentage": "100.00%",
"supported_operators": {

"aten": {
"aten::permute": 8,
"aten::add": 8,
"aten::mul": 8,
"aten::expand": 18,

(continues on next page)
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"aten::mm": 10,
"aten::mse_loss_backward": 12,
"aten::relu": 3,
"aten::threshold_backward": 4,
"aten::squeeze": 4,
"aten::view": 4,
"aten::pow": 2,
"aten::mse_loss": 2,
"aten::tanh": 2

}
},
"unsupported_operators": {

"aten": []
}

}

Note: Note that the torch_neuronx and neuronx_cc versions may be different from this example

Understanding analyze report for Unsupported Models

Default Verbosity

Let’s run analyze for unsupported.py

neuron_parallel_compile --command analyze python unsupported.py

Here is the report generated by the above command:

{
"torch_neuronx_version": "1.13.0.1.6.1",
"neuronx_cc_version": "2.5.0.28+1be23f232",
"support_percentage": "60.00%",
"supported_operators": {

"aten": {
"aten::add": 2,
"aten::mul": 1

}
},
"unsupported_operators": {

"aten": [
{

"kind": "aten::mul",
"failureAt": "neuronx-cc",
"call": "test2_unsup.py 24"

}
]

}
}
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In the list of unsupported operators we are provided the specific aten op that failed, and where that operator is in the
training script.

One thing to notice is that the support_percentage doesn’t exactly add up. This is because the
support_percentage is calculated based on the supported number of XLA/HLO instructions (explained more in
the next section). To see the specific XLA/HLO op lowerings, use the flag --analyze-verbosity 1, as the default
is 2.

The last thing is that a specific aten operator can be supported and unsupported simultaneously. In our example, this
can be seen with aten::mul. This is due to the configuration of the aten op. The below section will describe what
went wrong with the aten::mul op.

Lower Level Verbosity

Let’s run again with lower verbosity level:

neuron_parallel_compile --command analyze --analyze-verbosity 1 python unsupported.py

The report looks like:

{
"torch_neuronx_version": "1.13.0.1.6.1",
"neuronx_cc_version": "2.5.0.28+1be23f232",
"support_percentage": "60.00%",
"supported_operators": {

"aten": {
"aten::mul": 1,
"aten::add": 2

},
"xla": [

"f32[] multiply(f32[], f32[])",
"f32[4]{0} broadcast(f32[]), dimensions={}",
"f32[4]{0} add(f32[4]{0}, f32[4]{0})"

]
},
"unsupported_operators": {

"aten": [
{

"kind": "aten::mul",
"failureAt": "neuronx-cc",
"call": "test2_unsup.py 24"

}
],
"xla": [

{
"hlo_instruction": "c64[4]{0} convert(f32[4]{0})",
"aten_op": "aten::mul"

},
{

"hlo_instruction": "c64[4]{0} multiply(c64[4]{0}, c64[4]{0})",
"aten_op": "aten::mul"

}
]

(continues on next page)
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}
}

This report provides both the aten operator and the failed XLA/HLO instructions. There will be more HLO instructions
than aten ops since an aten op generally lowers to multiple HLO instructions. As a result, the support_percentage
field doesn’t exactly line up with the aten operator count, but does line up the XLA/HLO instruction count. This level of
verbosity is intended for use when you have the ability to modify the model’s HLO lowering, or generally have insight
into the HLO lowering.

As mentioned before, the aten::mul op appears to be both supported and unsupported. This is because the compiler
does not support a specific configuration of aten::mul, which can be seen more clearly with the HLO lowering. In
the above example, the aten::mul operator is unsupported since at least one parameter provided was a complex type
(C64), which is unsupported by neuronx-cc.

This concludes the tutorial. The API for analyze can be found within neuron_parallel_compile

This document is relevant for: Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

Neuron Custom C++ Operators in MLP Training

In this tutorial we’ll demonstrate how to prepare a PyTorch model that contains a custom operator (ie. CppExtension)
for Neuron compilation to run on Trainium EC2 instances. To learn more about Neuron CustomOps see Neuron Custom
C++ Operators [Beta]. For a deeper dive on MNIST or Multi-Layer Perceptron models, see the Multi-Layer Perceptron
Training Tutorial. This tutorial assumes the reader is familiar with PyTorch Custom Extensions.

Table of Contents

• Setup Environment and Download Examples

• Basic PyTorch Custom Relu Operator

• Multi-layer perceptron MNIST model

• Training the MLP model on CPU

• Neuron Relu CustomOp

• Training the MLP model on Trainium

Setup Environment and Download Examples

Before running the tutorial please follow the installation instructions at:

• pytorch-neuronx-install on Trn1

Note: The name of aws-neuronx-gpsimd-customop has been changed to aws-neuronx-gpsimd-customop-lib
as of the neuron 2.10 release.

Note: Custom C++ Operators are supported as of Neuron SDK Version 2.7 as a beta feature. As such this feature is
not installed by default, additional tooling and library packages (RPM and DEB) are required.
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For AL2023 only, the following packages need be installed as dependencies:

sudo yum install libnsl
sudo yum install libxcrypt-compat

On AL2 and AL2023, they can be installed with the following commands:

sudo yum remove python3-devel -y
sudo yum remove aws-neuronx-gpsimd-tools-0.* -y
sudo yum remove aws-neuronx-gpsimd-customop-lib-0.* -y

sudo yum install python3-devel -y
sudo yum install aws-neuronx-gpsimd-tools-0.* -y
sudo yum install aws-neuronx-gpsimd-customop-lib-0.* -y

On Ubuntu, they can be installed with the following commands:

sudo apt-get remove python3-dev -y
sudo apt-get remove aws-neuronx-gpsimd-tools=0.* -y
sudo apt-get remove aws-neuronx-gpsimd-customop-lib=0.* -y

sudo apt-get install python3-dev -y
sudo apt-get install aws-neuronx-gpsimd-tools=0.* -y
sudo apt-get install aws-neuronx-gpsimd-customop-lib=0.* -y

For all the commands below, make sure you are in the virtual environment that you have created above before you run
the commands:

source ~/aws_neuron_venv_pytorch/bin/activate

Install dependencies for PyTorch Custom Extensions in your environment by running:

pip install regex
pip install ninja

The ninja package is only needed for the reference CPU example. It is not needed by Neuron to run on Trainium
instances.

To download the source code for this tutorial, do:

git clone https://github.com/aws-neuron/aws-neuron-samples.git
cd aws-neuron-samples/torch-neuronx/training/customop_mlp

In the customop_mlp directory there are two subdirectories. The pytorch directory contains an example model and
training script using a custom operator that runs using the cpu device with standard PyTorch APIs and libraries (ie.
not specific to AWS/Neuron). The neuron directory contains a version of the same model and training script with the
custom operator ported to Neuron to run on trn1 using the XLA device.
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Basic PyTorch Custom Relu Operator

For the next few sections we’ll review the example model in the pytorch directory. This is a condensed and simplified
explanation of PyTorch C++ Extensions, for more details see the PyTorch documentation. In my_ops.pywe implement
a custom relu activation op as a torch autograd function so that we can use it in a training loop:

import torch

torch.ops.load_library('librelu.so')

class Relu(torch.autograd.Function):
@staticmethod
def forward(ctx, input):

ctx.save_for_backward(input)
return torch.ops.my_ops.relu_forward(input)

@staticmethod
def backward(ctx, grad):

input, = ctx.saved_tensors
return torch.ops.my_ops.relu_backward(grad, input), None

Notice that here we first load librelu.so using the load_library API. And then call the relu_forward and
relu_backward functions from our library within the relevant static methods.

We implemented these two library functions in the relu.cpp file:

torch::Tensor relu_forward(const torch::Tensor& t_in) {
...
t_out_acc[i][j] = t_in_acc[i][j] > 0.0 ? t_in_acc[i][j] : 0.0;
...

}

torch::Tensor relu_backward(const torch::Tensor& t_grad, const torch::Tensor& t_in) {
...
t_out_acc[i][j] = t_in_acc[i][j] > 0.0 ? t_grad_acc[i][j] : 0.0;
...

}

TORCH_LIBRARY(my_ops, m) {
m.def("relu_forward", &relu_forward);
m.def("relu_backward", &relu_backward);

}

And then built them into a library using the PyTorch Cpp Extension APIs in the build.py script:

torch.utils.cpp_extension.load(
name='librelu',
sources=['relu.cpp'],
is_python_module=False,
build_directory=os.getcwd()

)

Run python build.py to produce the librelu.so library.

2.1. PyTorch Neuron 329

https://pytorch.org/tutorials/advanced/cpp_extension.html


AWS Neuron

Multi-layer perceptron MNIST model

In model.py, we define the multi-layer perceptron (MLP) MNIST model with 3 linear layers and a custom ReLU
activation, followed by a log-softmax layer. Highlighted below are the relevant custom changes in the model.py file:

import torch
import torch.nn as nn
from torch.nn import functional as F
import my_ops

# Declare 3-layer MLP for MNIST dataset
class MLP(nn.Module):

def __init__(self, input_size = 28 * 28, output_size = 10, layers = [120, 84]):
super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, layers[0])
self.fc2 = nn.Linear(layers[0], layers[1])
self.fc3 = nn.Linear(layers[1], output_size)

def forward(self, x):
f1 = self.fc1(x)
r1 = my_ops.Relu.apply(f1)
f2 = self.fc2(r1)
r2 = my_ops.Relu.apply(f2)
f3 = self.fc3(r2)
return torch.log_softmax(f3, dim=1)

Training the MLP model on CPU

In the train_cpu.py script we load the MNIST train dataset, instantiate the MLP model, and use device='cpu' to
execute on the host CPU. Expected CPU output:

----------Training ---------------
Train throughput *(*iter/sec*)*: *286*.96994718801335
Final loss is *0*.1040
----------End Training ---------------

Neuron Relu CustomOp

Now switch over into the neuron directory. To migrate our PyTorch customOp to Neuron, we have to make a few
small changes. First, we create a new shape.cpp file to implement our shape function as required by XLA (see
Neuron Custom C++ Operators Developer Guide [Beta] for details). We also replace the TORCH_LIBRARY API with
NEURON_LIBRARY.

torch::Tensor relu_fwd_shape(torch::Tensor t_in) {
torch::Tensor t_out = torch::zeros(t_in.sizes(), torch::kFloat);
return t_out;

}

torch::Tensor relu_bwd_shape(torch::Tensor t_grad, torch::Tensor t_in) {
torch::Tensor t_out = torch::zeros(t_in.sizes(), torch::kFloat);

(continues on next page)
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return t_out;
}

NEURON_LIBRARY(my_ops, m) {
m.def("relu_forward", &relu_fwd_shape, "relu_forward");
m.def("relu_backward", &relu_bwd_shape, "relu_backward");

}

And then we build it using the torch_neuronx package in build.py:

from torch_neuronx.xla_impl import custom_op

custom_op.load(
name='relu',
compute_srcs=['relu.cpp'],
shape_srcs=['shape.cpp'],
build_directory=os.getcwd()

)

Notice that here we specify both the relu.cpp and shape.cpp files separately. This is because the shape functions
will be compiled with an x86 compiler and run on the host during the XLA compilation, and the compute functions
will be compiled for the NeuronCore accelerator and executed during the training loop. Running build.py produces
the same librelu.so as in the CPU example, but compiles the source code to execute on the NeuronCore.

In our my_ops.py file we just use the torch_neuronx API to load our new library and execute our customOp exactly
the same way we did before:

import torch
import torch_neuronx
from torch_neuronx.xla_impl import custom_op

custom_op.load_library('librelu.so')

class Relu(torch.autograd.Function):
@staticmethod
def forward(ctx, input):

ctx.save_for_backward(input)
return torch.ops.my_ops.relu_forward(input)

@staticmethod
def backward(ctx, grad):

input, = ctx.saved_tensors
return torch.ops.my_ops.relu_backward(grad, input), None
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Training the MLP model on Trainium

In the train.py script we modify the CPU training script train_cpu.py to run with PyTorch Neuron torch_xla.
Expected output on a trn1 instance:

----------Training ---------------
2023-02-02 22 (tel:2023020222):46:58.000299: INFO ||NCC_WRAPPER||: Using a cached neff␣
→˓at /var/tmp/neuron-compile-cache/USER_neuroncc-2.0.0.8683a0+c94c3936c/MODULE_
→˓4447837791278761679/MODULE_0_SyncTensorsGraph.329_4447837791278761679_ip-172-31-38-167.
→˓us-west-2.compute.internal-49ad7ade-14011-5f3bf523d8788/1650ba41-bcfd-4d15-9038-
→˓16d391c4a57c/MODULE_0_SyncTensorsGraph.329_4447837791278761679_ip-172-31-38-167.us-
→˓west-2.compute.internal-49ad7ade-14011-5f3bf523d8788.neff. Exiting with a successfully␣
→˓compiled graph
2023-02-02 22 (tel:2023020222):46:58.000433: INFO ||NCC_WRAPPER||: Using a cached neff␣
→˓at /var/tmp/neuron-compile-cache/USER_neuroncc-2.0.0.8683a0+c94c3936c/MODULE_
→˓16964505026440903899/MODULE_1_SyncTensorsGraph.401_16964505026440903899_ip-172-31-38-
→˓167.us-west-2.compute.internal-4d0cabba-14011-5f3bf529794a3/23d74230-59dd-4347-b247-
→˓fa98aed416bd/MODULE_1_SyncTensorsGraph.401_16964505026440903899_ip-172-31-38-167.us-
→˓west-2.compute.internal-4d0cabba-14011-5f3bf529794a3.neff. Exiting with a successfully␣
→˓compiled graph
Train throughput (iter/sec): 117.47151142662648
Final loss is 0.1970
----------End Training ---------------

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

Neuron Custom C++ Operators Performance Optimization

In this tutorial, we will build on the small MLP model shown in Neuron Custom C++ Operators in MLP Training and
demonstrate methods to optimize the performance of a custom C++ operator. We will be taking advantage of the TCM
accessor as well as the usage of multiple GPSIMD cores to enhance performance.

This tutorial assumes the reader has read and set up an environment described in Neuron Custom C++ Operators in
MLP Training.

Table of Contents

• Download Examples

• Model Configuration Adjustment

• Performance with Element-wise Accessor

• Performance with TCM Accessor

• Extending the example to utilize multiple GPSIMD cores
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Download Examples

To download the source code for this tutorial, do:

git clone https://github.com/aws-neuron/aws-neuron-samples.git
cd aws-neuron-samples/torch-neuronx/inference/customop_mlp

Note: We will be using an inference example in this tutorial in order to adhere to certain Custom C++ operator
restrictions when using multiple GPSIMD cores (see Custom Operators API Reference Guide [Beta] for details on
current restrictions).

Note: Custom C++ Operators are supported as of Neuron SDK Version 2.7 as a beta feature. As such this feature is
not installed by default, additional tooling and library packages (RPM and DEB) are required.

For AL2023 only, the following packages need be installed as dependencies:

sudo yum install libnsl
sudo yum install libxcrypt-compat

On AL2 and AL2023, they can be installed with the following commands:

sudo yum remove python3-devel -y
sudo yum remove aws-neuronx-gpsimd-tools-0.* -y
sudo yum remove aws-neuronx-gpsimd-customop-lib-0.* -y

sudo yum install python3-devel -y
sudo yum install aws-neuronx-gpsimd-tools-0.* -y
sudo yum install aws-neuronx-gpsimd-customop-lib-0.* -y

On Ubuntu, they can be installed with the following commands:

sudo apt-get remove python3-dev -y
sudo apt-get remove aws-neuronx-gpsimd-tools=0.* -y
sudo apt-get remove aws-neuronx-gpsimd-customop-lib=0.* -y

sudo apt-get install python3-dev -y
sudo apt-get install aws-neuronx-gpsimd-tools=0.* -y
sudo apt-get install aws-neuronx-gpsimd-customop-lib=0.* -y

Activate the virtual environment created in Neuron Custom C++ Operators in MLP Training,

source ~/aws_neuron_venv_pytorch/bin/activate

As a reminder, ninja should be already installed in the virtual environment. If not, install it for PyTorch Custom
Extensions in your environment by running:

pip install regex
pip install ninja
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Model Configuration Adjustment

For this tutorial, we will enlarge the size of the hidden layer from [120, 84] to [4096, 2048] in model.py.

import torch
import torch.nn as nn
from torch.nn import functional as F
import my_ops

# Declare 3-layer MLP for MNIST dataset
class MLP(nn.Module):

def __init__(self, input_size = 28 * 28, output_size = 10, layers = [4096, 2048]):
super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, layers[0])
self.fc2 = nn.Linear(layers[0], layers[1])
self.fc3 = nn.Linear(layers[1], output_size)

def forward(self, x):
f1 = self.fc1(x)
r1 = my_ops.Relu.apply(f1)
f2 = self.fc2(r1)
r2 = my_ops.Relu.apply(f2)
f3 = self.fc3(r2)
return torch.log_softmax(f3, dim=1)

Performance with Element-wise Accessor

The neuron directory contains the same code shown in Neuron Custom C++ Operators in MLP Training, where the
relu_forward is implemented with element-wise accessor. Go to neuron directory, run build.py then inference.
py, the expected output on a trn1 instance is,

Inf throughput (iter/sec): 8.098649744235592
----------End Inference ---------------

Performance with TCM Accessor

Now we switch to neuron-tcm folder. As mentioned in Custom Operators API Reference Guide [Beta], TCM accessors
provide faster read and write performance. We implement the relu_forward using TCM accessor in relu.cpp:

torch::Tensor relu_forward(const torch::Tensor& t_in) {
size_t num_elem = t_in.numel();
torch::Tensor t_out = torch::zeros(t_in.sizes(), torch::kFloat);

static constexpr size_t buffer_size = 1024;
float *tcm_buffer = (float*)torch::neuron::tcm_malloc(sizeof(float) * buffer_size);

if (tcm_buffer != nullptr) {
auto t_in_tcm_acc = t_in.tcm_accessor();
auto t_out_tcm_acc = t_out.tcm_accessor();

(continues on next page)
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for (size_t i = 0; i < num_elem; i += buffer_size) {
size_t remaining_elem = num_elem - i;
size_t copy_size = (remaining_elem > buffer_size) ? buffer_size : remaining_elem;

t_in_tcm_acc.tensor_to_tcm<float>(tcm_buffer, i, copy_size);
for (size_t j = 0; j < copy_size; j++) {

tcm_buffer[j] = tcm_buffer[j] > 0.0 ? tcm_buffer[j] : 0.0;
}
t_out_tcm_acc.tcm_to_tensor<float>(tcm_buffer, i, copy_size);
}

}
torch::neuron::tcm_free(tcm_buffer);
return t_out;

}

Run build.py then inference.py, the expected output on a trn1 instance is:

Inf throughput (iter/sec): 220.73800131604054
----------End Inference ---------------

Extending the example to utilize multiple GPSIMD cores

Now we switch to the neuron-multicore folder. We first enable the usage of multiple GPSIMD cores by
multicore=True in the build.py.

custom_op.load(
name='relu',
compute_srcs=['relu.cpp'],
shape_srcs=['shape.cpp'],
build_directory=os.getcwd(),
multicore=True,
verbose=True

)

After passing the flag, the kernel function relu_forward defined in relu.cpp will execute on all GPSIMD cores.
Thus we need to use cpu_id to partition the workload among all cores.

torch::Tensor relu_forward(const torch::Tensor& t_in) {
size_t num_elem = t_in.numel();
torch::Tensor t_out = get_dst_tensor();

uint32_t cpu_id = get_cpu_id();
uint32_t cpu_count = get_cpu_count();
uint32_t partition = num_elem / cpu_count;
if (cpu_id == cpu_count - 1) {

partition = num_elem - partition * (cpu_count - 1);
}

static constexpr size_t buffer_size = 1024;
float *tcm_buffer = (float*)torch::neuron::tcm_malloc(sizeof(float) * buffer_size);

(continues on next page)
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if (tcm_buffer != nullptr) {
auto t_in_tcm_acc = t_in.tcm_accessor();
auto t_out_tcm_acc = t_out.tcm_accessor();

for (size_t i = 0; i < partition; i += buffer_size) {
size_t remaining_elem = partition - i;
size_t copy_size = (remaining_elem > buffer_size) ? buffer_size : remaining_elem;

t_in_tcm_acc.tensor_to_tcm<float>(tcm_buffer, partition *cpu_id + i, copy_size);
for (size_t j = 0; j < copy_size; j++) {

tcm_buffer[j] = tcm_buffer[j] > 0.0 ? tcm_buffer[j] : 0.0;
}
t_out_tcm_acc.tcm_to_tensor<float>(tcm_buffer, partition *cpu_id + i, copy_size);
}

}
torch::neuron::tcm_free(tcm_buffer);
return t_out;

}

There are two things noteworthy in the code:

1. We use cpu_id and cpu_count to distribute the workload among all cores. Particularly, each cores performs
relu on a partition of the tensor, the offset is computed based on cpu_id.

2. The output of the operator is directly written to the tensor from get_dst_tensor(). The return t_out;
statement is ignored during execution.

Run build.py then inference.py, the expected output on a trn1 instance is:

Inf throughput (iter/sec): 269.936119707143
----------End Inference ---------------

Details of the API used in the sample here can be found in Custom Operators API Reference Guide [Beta].

This document is relevant for: Inf2, Trn1, Trn2

• Hugging Face BERT Pretraining Tutorial (Data-Parallel)

• Multi-Layer Perceptron Training Tutorial

• PyTorch Neuron for Trainium Hugging Face BERT MRPC task finetuning using Hugging Face Trainer API

• Fine-tune T5 model on Trn1

• ZeRO-1 Tutorial

• Analyze for Training Tutorial

• Neuron Custom C++ Operators in MLP Training

• Neuron Custom C++ Operators Performance Optimization

Note: To use Jupyter Notebook see:

• setup-jupyter-notebook-steps-troubleshooting

• running-jupyter-notebook-as-script

This document is relevant for: Trn1, Trn2
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This document is relevant for: Inf2, Trn1, Trn2

Additional Examples (torch-neuronx)

• AWS Neuron Reference for Nemo Megatron GitHub Repository

• AWS Neuron Samples for EKS

• AWS Neuron Samples for AWS ParallelCluster

• AWS Neuron Samples GitHub Repository

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Trn1, Trn2

API Reference Guide for Training (torch-neuronx)

This document is relevant for: Trn1, Trn2

PyTorch NeuronX neuron_parallel_compile CLI

PyTorch NeuronX performs just-in-time compilation of graphs during execution. At every step, a graph is traced.
If the traced graph varies from the previous executions, it is compiled by the neuron compiler. For large models, the
compilation time for each graph can be high. Moreover, because of JIT, we would compile all these graphs sequentially,
hence incurring huge compilation penalty.

To reduce this compilation time during execution, the neuron_parallel_compile utility is provided as part of Py-
Torch Neuron installation. The neuron_parallel_compilewill extract graphs from a trial run of your script, perform
parallel pre-compilation of the graphs, and populate the Neuron Persistent Cache on disk or in AWS S3 bucket with
compiled graphs. Your trial run should be limited to a few steps (eg.10-15), enough for the utility to extract the different
graphs needed for full execution. To run the utility:

neuron_parallel_compile <run commands>

Where <run commands> are the commands to run a short run (i.e. 10 steps) to trace training loops for pre-compilation.
The example for the run command is torchrun --nproc_per_node=2 <train script>, where train script accepts
--steps_this_run option to limit number of run steps:

neuron_parallel_compile torchrun --nproc_per_node=2 <train script> --steps_this_run=10

You may notice that the output from the model is invalid when you use neuron_parallel_compile. This is because
when you initiate your training run command with neuron_parallel_compile, the utility will run your command
with environment variables that puts your training script into graph extraction mode. In this mode, no real execution is
performed and the outputs are invalid. You will also see outputs similar to the following about the compile cache path
and the extracted graphs:

INFO ||NEURON_CACHE||: Compile cache path: /var/tmp/neuron-compile-cache
INFO ||NEURON_CC_WRAPPER||: Extracting graphs (/var/tmp/neuron-compile-cache/neuronxcc-2.
→˓0.0.22266a0+a69f71e55/MODULE_9219523464496887986+abb26765/model.hlo.pb) for ahead-of-
→˓time parallel compilation. No compilation was done.

After the trial execution ends and the graphs are extracted, neuron_parallel_compile would launch multiple com-
pilation processes in parallel to compile all these graphs. Compiled graphs (NEFFs) are inserted into the Neuron
Persistent Cache. You will also see outputs similar to the following about the compile cache path, the list of graphs
(HLOs) to be compiled, and the running statistics of compiled graphs (count of remaining graphs, locked graphs, failed
graphs, done compiled graphs).
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INFO ||NEURON_CACHE||: Compile cache path: /var/tmp/neuron-compile-cache
INFO ||NEURON_CACHE||: Current remaining items are 5, locked are 0, failed are 0, done␣
→˓are 0, total is 5
INFO ||NEURON_PARALLEL_COMPILE||: master grab hlos to compile: ['/var/tmp/neuron-compile-
→˓cache/neuronxcc-2.0.0.22266a0+a69f71e55/MODULE_8068656800389078395+abb26765/model.hlo.
→˓pb', '/var/tmp/neuron-compile-cache/neuronxcc-2.0.0.22266a0+a69f71e55/MODULE_
→˓17109392703413819652+abb26765/model.hlo.pb', '/var/tmp/neuron-compile-cache/neuronxcc-
→˓2.0.0.22266a0+a69f71e55/MODULE_9219523464496887986+abb26765/model.hlo.pb', '/var/tmp/
→˓neuron-compile-cache/neuronxcc-2.0.0.22266a0+a69f71e55/MODULE_
→˓16969875447143373016+abb26765/model.hlo.pb', '/var/tmp/neuron-compile-cache/neuronxcc-
→˓2.0.0.22266a0+a69f71e55/MODULE_3000743782456078279+abb26765/model.hlo.pb']
...
INFO ||NEURON_CACHE||: Current remaining items are 0, locked are 0, failed are 0, done␣
→˓are 5, total is 5

After all compilations are completed, a compilation summary is shown:

INFO: 2023-08-24 20:21:11.000895: 161136 INFO ||NEURON_PARALLEL_COMPILE||: {
INFO: "compilation_summary": {
INFO: "true": 2
INFO: },
INFO: "compilation_report": {
INFO: "/var/tmp/neuron-compile-cache/neuronxcc-2.0.0.22266a0+a69f71e55/MODULE_
→˓1970132581169579119+abb26765/model.hlo.pb": {
INFO: "status": true,
INFO: "retry": 0
INFO: },
INFO: "/var/tmp/neuron-compile-cache/neuronxcc-2.0.0.22266a0+a69f71e55/MODULE_
→˓16141953836240613513+abb26765/model.hlo.pb": {
INFO: "status": true,
INFO: "retry": 0
INFO: }
INFO: }
INFO: }
INFO: 2023-08-24 20:21:11.000895: 161136 INFO ||NEURON_PARALLEL_COMPILE||: Total␣
→˓graphs: 2
INFO: 2023-08-24 20:21:11.000895: 161136 INFO ||NEURON_PARALLEL_COMPILE||: Total␣
→˓successful compilations: 2
INFO: 2023-08-24 20:21:11.000895: 161136 INFO ||NEURON_PARALLEL_COMPILE||: Total␣
→˓failed compilations: 0

Now if you run your script (without neuron_parallel_compile), it will be faster since the compiled graphs are
already cached.

torchrun --nproc_per_node=2 <train script>

Note: Except for the option to limit number of run steps (such as --steps_this_run), the other options of <run
commands> must match between the pre-compilation and actual run. If this is not the case, you may see additional
compilations during training run because of new graphs getting generated, resulting in cache miss.

There may be additional compilations due to unreached execution paths (in case the execution path is not reached in
the first few steps of graph extraction), or changes in parameters such as number of data parallel workers.

Each precompilation command or actual script execution command above can be prefixed with
NEURON_COMPILE_CACHE_URL=<cache URL> or NEURON_CC_FLAGS="--cache_dir=<cache URL>" to specify a
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different cache location than the default (with --cache_dir taking precedence over NEURON_COMPILE_CACHE_URL
if both are specified). Alternatively, the cache URL can also be specify in Python code using:

os.environ['NEURON_CC_FLAGS'] = os.environ.get('NEURON_CC_FLAGS', '') + "--cache_dir=
→˓<cache URL>"

You need to specify the same cache URL for both the precompilation command (using neuron_parallel_compile)
and the actual script execution command if you want the previously compiled and cached graphs to be used for actual
script execution.

The environment variables below are available to help modify neuron_parallel_compile behavior:

NEURON_PARALLEL_COMPILE_MAX_RETRIES :

• Set the maximum number of retries when using Neuron Persistent Cache or neuron_parallel_compile. If set
to N, the tool will try compilation N more time(s) if the first graph compilation failed. Example: Set NEU-
RON_PARALLEL_COMPILE_MAX_RETRIES=1 when precompiling on trn1.2xlarge where there’s limited
host memory and CPU resources. Default is 0.

NEURON_IGNORE_TRAINING_SCRIPT_ERROR_AND_COMPILE :

• When using Neuron Persistent Cache or neuron_parallel_compile , if you want to ignore the error in train-
ing script and compile the accumulated HLO graphs, you can do so by setting this environment vari-
able. Example: If NEURON_IGNORE_TRAINING_SCRIPT_ERROR_AND_COMPILE=1 is set when using
neuron_parallel_compile, a crash in the training script would be ignored and the graphs collected up to the
crash would be compiled.

NEURON_COMPILE_CACHE_URL:

• Set the Neuron Persistent Cache URL or neuron_parallel_compile. If starts with s3://, it will use AWS S3 as
cache backend. Otherwise it will use local disk cache. Default is /var/tmp/neuron-compile-cache. If this
is specified together with cache_dir=<cache_url> option via NEURON_CC_FLAGS, the --cache_dir option
takes precedence.

Debugging with Neuron Persistent Cache

A graph compilation can fail because of a compilation error or an environment issue (for example, compilation is
interrupted by ctrl-C). The graph would be marked as failed and subsequent rerun would encounter message like below:

INFO ||NCC_WRAPPER||: Got a cached failed neff at /var/tmp/neuron-compile-cache/
→˓neuronxcc-2.8.0.25+a3ad0f342/MODULE_12486829708343293975+d41d8cd9/model.neff. Will␣
→˓skip compilation, please set --retry_failed_compilation for recompilation.

To retry compilation, add --retry_failed_compilation in NEURON_CC_FLAGS environment variable. This will
retry the compilation even if the graph was previously marked as failed compilation.

os.environ['NEURON_CC_FLAGS'] = os.environ.get('NEURON_CC_FLAGS', '') + ' --retry_failed_
→˓compilation'

See Neuron Persistent Cache for more information.
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Separate collection and compilation commands

For cases like finetuning, there could be multiple independent training tasks running on different nodes and sharing
many compilation graphs in common. neuron_parallel_compile provides commands to separate the graph col-
lection and compilation phases, so users can collect all graphs across different training sessions in advance to avoid
duplicate compilations.

To only collect the graphs from trial executions of training scripts into Neuron Persistent Cache:

neuron_parallel_compile --command collect <run_script>

To compile the graph previously collected using collect command and store compiled result (NEFFs) back into
Neuron Persistent Cache (make sure to use the same neuronx-cc compiler version as during the graph collection step):

``neuron_parallel_compile --command compile <run_script>``

Note: if --command is not specified, neuron_parallel_compile will do both collection and compilation phases by
default.

Cache maintenance commands

The following commands are available to help maintain the cache.

Warning: Make sure no running process is using the cache when you use clean or clear-locks command
because it can cause cache errors.

To clean cached files:

# WARNING: Make sure no running process is using the cache
neuron_parallel_compile --command clean

To clear file locks left behind when a neuron_parallel_compile execution was interrupted:

# WARNING: Make sure no running process is using the cache
neuron_parallel_compile --command clear-locks

Each command above can be prefixed with NEURON_COMPILE_CACHE_URL=<cache URL> or NEURON_CC_FLAGS=
"--cache_dir=<cache URL>" to specify a different cache location than the default.

Note: Currently there’s no automatic maintenance of cache size either on disk or in S3. Please delete files (i.e. older
compiler versions) as necessary to keep cache size within your limit.
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Analyze operations support

The analyze command checks the support of operations within the training script by checking each operator against
neuronx-cc. It is only supported for PyTorch models. The output of the tool will be available as result.json within the
output location.

neuron_parallel_compile --command analyze python3 training_script.py

Optional Arguments:

--analyze-output ANALYZE_OUTPUT_LOCATION Only supported for –command analyze. Path to lo-
cation where output will be persisted. Default: cwd/model_analysis_result

--analyze-verbosity {1,2} Only supported for –command analyze. Level of information to be in-
cluded within the output. 1: add XLA operator information into the results. 2: add aten metadata into
results. Default: 2

The tutorial for analyze can be found here

This document is relevant for: Trn1, Trn2

This document is relevant for: Trn1, Trn2

PyTorch NeuronX Environment Variables

Environment variables allow modifications to PyTorch NeuronX behavior without requiring code change to
user script. It is recommended to set them in code or just before invoking the python process, such as
NEURON_FRAMEWORK_DEBUG=1 python3 <script> to avoid inadvertently changing behavior for other scripts. En-
vironment variables specific to PyTorch Neuron are (beta ones are noted):

NEURON_CC_FLAGS

• Compiler options. Full compiler options are described in the mixed-precision-casting-options. Additional op-
tions for the Neuron Persistent Cache can be found in the Neuron Persistent Cache guide.

NEURON_FRAMEWORK_DEBUG

• Enable dumping of XLA graphs in both HLO format (intermediate representation) and text form for debugging.

NEURON_EXTRACT_GRAPHS_ONLY

• Dump the XLA graphs in HLO format (intermediate representation) and execute empty stubs with zero outputs
in order to allow multiple XLA graphs to be traced through a trial execution. Used automatically for ahead-of-
time graph extraction for parallel compilation in neuron_parallel_compile tool. This environment variable can
be checked in the training script to prevent checking of bad outputs during trial run.

NEURON_NUM_RECENT_MODELS_TO_KEEP

• Keep only N number of graphs loaded in Neuron runtime for each process, where N is the value this environment
variable is set to. Default is to keep all graphs loaded by a process.

NEURON_COMPILE_CACHE_URL

• Set the Neuron Persistent Cache URL or neuron_parallel_compile. If starts with s3://, it will use AWS S3 as
cache backend. Otherwise it will use local disk cache. Default is /var/tmp/neuron-compile-cache. If this
is specified together with cache_dir=<cache_url> option via NEURON_CC_FLAGS, the --cache_dir option
takes precedence.

NEURON_PARALLEL_COMPILE_MAX_RETRIES

2.1. PyTorch Neuron 341



AWS Neuron

• Set the maximum number of retries when using Neuron Persistent Cache or neuron_parallel_compile. If set
to N, the tool will try compilation N more time(s) if the first graph compilation failed. Example: Set NEU-
RON_PARALLEL_COMPILE_MAX_RETRIES=1 when precompiling on trn1.2xlarge where there’s limited
host memory and CPU resources. Default is 0.

NEURON_IGNORE_TRAINING_SCRIPT_ERROR_AND_COMPILE

• When using Neuron Persistent Cache or neuron_parallel_compile , if you want to ignore the error in train-
ing script and compile the accumulated HLO graphs, you can do so by setting this environment vari-
able. Example: If NEURON_IGNORE_TRAINING_SCRIPT_ERROR_AND_COMPILE=1 is set when using
neuron_parallel_compile, a crash in the training script would be ignored and the graphs collected up to the
crash would be compiled.

NEURON_PARALLEL_COMPILE_DUMP_RESULTS

• When set to 1, neuron_parallel_compile would report compilation time results in the final JSON output.

NEURON_FUSE_SOFTMAX

• Enable custom lowering for Softmax operation to enable compiler optimizations.

NEURON_CUSTOM_SILU

• Enable custom lowering for SILU operation to enable compiler optimizations.

NEURON_TRANSFER_WITH_STATIC_RING_OPS

• The list of torch.nn.Modules that will have all parameter input buffers marked as static to enable runtime opti-
mizations. The default is “Embedding,LayerNorm,Linear,Conv2d,BatchNorm2d” for torch-neuronx 1.13/2.1,
and “Embedding” for torch-neuronx 2.1 in SDK release 2.20, and empty for torch-neuronx 2.1+ in SDK
release 2.21.

NEURONCORE_NUM_DEVICES [Use only with xmp.spawn]
• Number of NeuronCores for setting up distributed data parallel training when using

torch_xla.distributed.xla_multiprocessing.spawn (xmp.spawn) utility only. See MNIST MLP training
with xmp.spawn for example. NOTE: Do not use this environment variable when using torchrun, which has
--nproc_per_node option instead for this purpose. torchrun is recommended for consistent experience on
one instance as well as across multiple instances.

NEURON_DUMP_HLO_SNAPSHOT [Beta] [Torch-NeuronX 1.13 only]
• Dump the inputs, outputs, and graph in HLO format of a graph execution in a snapshot file. This variable can be

set to 1, ON_NRT_ERROR, ON_NRT_ERROR_CPU, ON_NRT_ERROR_HYBRID to dump snapshots at every iteration
using CPU memory, or dump only on errors automatically using device, host, and both device and host memory
respectively.

NEURON_NC0_ONLY_SNAPSHOT [Beta] [Torch-NeuronX 1.13 only]
• Dump only the snapshot associated with Neuron Core 0 when NEURON_NC0_ONLY_SNAPSHOT=1 and the
NEURON_DUMP_HLO_SNAPSHOT flag is set.

NEURON_TRANSFER_ALL_PARAMETERS_WITH_STATIC_RING [Beta]
• When set to 1, mark all parameter transfers as static to enable runtime optimizations for torch.nn modules that

are wrapped as done in Megatron-LM. This setting is not needed if torch.nn modules are not wrapped.

BUCKET_CAP_MB [PyTorch XLA <=2.1]
• If there are many small gradient tensors, such as in BERT training, small allreduce sizes can limit performance.

To improve performance, you can try increasing the bucket size using BUCKET_CAP_MB environment variable,
which is set to 50MB by default. For example, BERT pretraining on multiple instances can see improved perfor-
mance with BUCKET_CAP_MB=512. NOTE: While this is supported in PyTorch Neuron 2.5, it is recommended
for users to switch to ALLREDUCE_GRADIENTS_BUCKET_SIZE_MB.
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ALLREDUCE_GRADIENTS_BUCKET_SIZE_MB [PyTorch XLA 2.5+]
• If there are many small gradient tensors, such as in BERT training, small allreduce sizes can

limit performance. To improve performance, you can try increasing the bucket size using
ALLREDUCE_GRADIENTS_BUCKET_SIZE_MB environment variable, which is set to 50MB by de-
fault. For example, BERT pretraining on multiple instances can see improved performance with
ALLREDUCE_GRADIENTS_BUCKET_SIZE_MB=512.

XLA_FLAGS [PyTorch XLA] [Torch-NeuronX 2.1+]
• When set to "--xla_dump_hlo_snapshots --xla_dump_to=<dir>", this environmental variable enables

dumping snapshots in <dir> directory. See Snapshotting With Torch-Neuronx 2.1 section for more information.

XLA_USE_DUMMY_STORE [PyTorch XLA]
• When set to 1 along with TORCH_DIST_INIT_BARRIER=0, PJRT process group initialization will use Dummy-

Store instead of TCPStore. This reduces the number of open file descriptors and enables scaling training up to a
large number of nodes.

XLA_USE_BF16 [PyTorch XLA <=2.1]
• When XLA_USE_BF16=1, PyTorch Neuron will automatically map both torch.float and torch.double tensors to

bfloat16 tensors and turn on Stochastic Rounding mode. This can both reduce memory footprint and improve
performance. Example: to enable bfloat16 autocasting and stochastic rounding, set XLA_USE_BF16=1 only,
as stochastic rounding mode is on by default when XLA_USE_BF16=1. If you would like to preserve some
tensors in float32, see XLA_DOWNCAST_BF16 below. NOTE: This is deprecated in PyTorch Neuron 2.5. See
migration_from_xla_downcast_bf16.

XLA_DOWNCAST_BF16 [PyTorch XLA <=2.1]
• When XLA_DOWNCAST_BF16=1, PyTorch Neuron will automatically map torch.float tensors to bfloat16 tensors,

torch.double tensors to float32 tensors and turn on Stochastic Rounding mode. This can both reduce memory foot-
print and improve performance, while preserving some tensors in float32. Example: to enable float to bfloat16
and double to float autocasting and stochastic rounding, set XLA_DOWNCAST_BF16=1 only, as stochastic
rounding mode is on by default when XLA_DOWNCAST_BF16=1. If you want to cast both torch.float and
torch.double to bfloat16, please see XLA_USE_BF16 above. NOTE: This is deprecated in PyTorch Neuron 2.5.
See migration_from_xla_downcast_bf16.

XLA_DISABLE_FUNCTIONALIZATION [PyTorch XLA 2.1+]
• When XLA_DISABLE_FUNCTIONALIZATION=0, PyTorch XLA will enable the functionalization feature which

makes graphs more compilable by removing mutations from functions. In PyTorch XLA 2.1 functional-
ization causes 15% performance degradations for BERT due to missing aliasing for gradient accumulation
https://github.com/pytorch/xla/issues/7174 so it is off by default (XLA_DISABLE_FUNCTIONALIZATION=1). En-
abling functionalization can improve convergence for LLaMA 70B with ZeRO1 (when used with release 2.19
compiler).

XLA_ENABLE_PARAM_ALIASING [PyTorch XLA]
• When XLA_ENABLE_PARAM_ALIASING=0, PyTorch Neuron will disable parameter aliasing in HLO graphs. This

can be useful for debug. However, it would lead to increased device memory usage due to extra allocation of
buffers (so higher chance of out-of-device memory errors) and decreased performance. When not set, parameter
aliasing is enabled by default.

NEURON_RT_STOCHASTIC_ROUNDING_EN [Neuron Runtime]
• When NEURON_RT_STOCHASTIC_ROUNDING_EN=1, PyTorch Neuron will use stochastic rounding instead of

round-nearest-even for all internal rounding operations when casting from FP32 to a reduced precision data
type (FP16, BF16, FP8, TF32). This feature has been shown to improve training convergence for reduced preci-
sion training jobs, such as when bfloat16 autocasting is enabled. This is set to 1 by default by PyTorch Neuron
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when XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1. To switch to round-nearest-even mode, please set
NEURON_RT_STOCHASTIC_ROUNDING_EN=0.

NEURON_RT_STOCHASTIC_ROUNDING_SEED [Neuron Runtime]
• Sets the seed for the random number generator used in stochastic rounding (see previous section). If this environ-

ment variable is not set, the seed is set to 0 by default. Please set NEURON_RT_STOCHASTIC_ROUNDING_SEED
to a fixed value to ensure reproducibility between runs.

NEURON_RT_VISIBLE_CORES [Neuron Runtime]
Integer range of specific NeuronCores needed by the process (for example, 0-3 specifies NeuronCores 0,
1, 2, and 3). You this environment variable when using torchrun to limit the launched processs to specific
consecutive NeuronCores. To ensure best performance, the multi-core jobs requiring N NeuronCores for
collective communication must be placed at the NeuronCore ID that starts at a multiple of N, where N is
the world size limited to 1, 2, 8, 32. For example, a process using 2 NeuronCores can be mapped to 2 free
NeuronCores starting at NeuronCore id 0, 2, 4, 6, etc, and a process using 8 NeuronCores can be mapped
to 8 free NeuronCores starting at NeuronCore id 0, 8, 16, 24.

Additional Neuron runtime environment variables are described in runtime configuration documentation.

Additional XLA runtime environment variables are described in PyTorch-XLA troubleshooting guide.

This document is relevant for: Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

Neuron Persistent Cache

PyTorch Neuron (torch-neuronx) uses torch-xla, and torch-xla operates in lazy mode. In other words, every
operation in training script is recorded in a graph. The graph is executed only when the results are requested by the
user when they use print or xm.mark_step. Requesting results tells torch-xla that the recorded graph needs to be
executed.

Before executing the graph on a Neuron device, torch-xla would call Neuron Compiler (neuronx-cc) to compile
the graph into Neuron specific graph. Then the graph is executed on the NeuronCore/s. Compiling the graph involves
running optimizations that can make use of the NeuronCore/s efficiently. Running these optimizations can be expensive
and can result in long compile times. To save the users from compiling these graphs at every iteration, torch-xla
maintains an in-memory cache called Just in Time (JIT) cache. When the user re-runs the same graph (eg. 2nd iteration
of the training run), torch-xla would check in this JIT cache and re-use the cached compilation result, thereby avoiding
the wait times.

Since the JIT cache is an in-memory cache, it needs to be constructed every time the training script is run. Hence, if
the user re-runs the training script, a new JIT cache is created. This causes a compilation for the first training graph.
To avoid such compilations across training runs, PyTorch Neuron (torch-neuronx) has built an on-disk Neuron
Persistent Cache. Since this cache is on-disk, its persistent across training runs. So now, when a graph is compiled
for the fist time, the compilation result is saved in Neuron Persistent Cache. When the user re-runs the training
script, since the JIT cache is not ready, it would send the graph for compilation. PyTorch Neuron (torch-neuronx)
would then check if the compiled result is present in the Neuron Persistent Cache, if yes, it would return with the
compiled result. This on-disk cache thereby avoids compilations across training runs. This cache is enabled by default
for Neuron’s PyTorch/XLA flow (training) as well as transformers-neuronx LLM inference package. The default cache
path is the directory /var/tmp/neuron-compile-cache.

Look at the diagram below on the end to end flow:

344 Chapter 2. ML Frameworks

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-runtime/nrt-configurable-parameters.html
https://github.com/pytorch/xla/blob/v1.10.0/TROUBLESHOOTING.md#user-content-environment-variables


AWS Neuron

As seen from the diagram, the operations are recorded in a graph in lazy mode and only when a mark_step is hit, the
graph is executed. Before execution, the graph passes through two caches to check if we have compiled the graph
sometime in the past. If yes, we reuse the compilation result and execute with it. This avoid duplicate compilations.
One thing to note, both JIT cache and Neuron Cache are complementary to each other. JIT cache prevents duplicate
compilation within a run and Neuron Cache prevents duplicate compilations across training runs. For example, within
a training script, we have a training loop that iterates through the dataset. The first iteration would trace a unique
graph and the following iteration would trace a graph that is similar to the first one. In this case, the subsequent
iterations would hit the JIT cache and reuse the result. However, to save users from compiling for the first iteration
graph, Neuron Persistent Cache would be used. In this case, the very first time when the script is run, the Neuron
Persistent Cache would be updated. Going forward when we re-run the training script, compilation results from
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Neuron Persistent Cache would be used.

To better understand how Neuron Persistent Cache works, consider the example below:

import torch
import torch_xla
import torch_xla.core.xla_model as xm
device = xm.xla_device()
t1 = torch.randn(3, 3).to(device)
t2 = t1 / 0.5
x = t2.cpu()

Running the above example produces the following logs:

2023-08-25 21:51:36.000433: INFO ||NCC_WRAPPER||: Compile cache path: /var/tmp/neuron-
→˓compile-cache
.
Compiler status PASS

Re-running the above script would fetch the graph from the neuron cache and you would see logs as follows:

2023-08-25 21:52:23.000451: INFO ||NCC_WRAPPER||: Compile cache path: /var/tmp/neuron-
→˓compile-cache
2023-08-25 21:52:23.000453: INFO ||NCC_WRAPPER||: Using a cached neff at /var/tmp/neuron-
→˓compile-cache/neuronxcc-2.8.0.25+a3ad0f342/MODULE_198775565831884870+d41d8cd9/model.
→˓neff. Exiting with a successfully compiled graph.

As you can see, the next run picks the compiled graph from cache, thereby saving the compilation time. The cache uses
hash of the Neuron compiler flags and XLA graph as the key. If the Neuron compiler version or XLA graph changes,
you will see recompilation. Examples of changes that would cause XLA graph change include:

• Model type and size

• Batch size

• Optimizer and optimizer hyperparameters

• Location of xm.mark_step()

To keep cache size small and to enable weights/parameters updates without recompilation, only the compute graphs
are cached when using transformers-neuronx (weights/parameters are inputs to the compute graphs) and training flow
using torch-neuronx’s XLA (weights/parameters are inputs and outputs of the compute graphs). Note that this caching
mechanism doesn’t apply to the torch-neuronx trace API where the weights/parameters are frozen and converted to
constants, then compiled together with the compute operations (traced graphs with frozen weights/parameters are not
cached).

All compilation results are saved in the cache. To disable the cache, you can pass --no_cache option via NEU-
RON_CC_FLAGS:

os.environ['NEURON_CC_FLAGS'] = os.environ.get('NEURON_CC_FLAGS', '') + ' --no_cache'

The default cache path is the directory /var/tmp/neuron-compile-cache. To change the cache’s location, pass
cache_dir=<cache_url> option via NEURON_CC_FLAGS or NEURON_COMPILE_CACHE_URL=<cache_url> environ-
ment variables:

os.environ['NEURON_CC_FLAGS'] = os.environ.get('NEURON_CC_FLAGS', '') + ' --cache_dir=
→˓<cache URL>'
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os.environ['NEURON_COMPILE_CACHE_URL'] = '<cache_URL>'

The cache URL specified using --cache_dir is prioritized over that specified using NEURON_COMPILE_CACHE_URL
if both are set. If <cache_url> starts with s3://, it will use the AWS S3 URL as the cache location, provided that
the corresponding S3 bucket exists and is both readable and writeable.

You can change the verbose level of the compiler by adding log_level to either WARNING, INFO or ERROR. This can
be done as follows:

os.environ['NEURON_CC_FLAGS'] = os.environ.get('NEURON_CC_FLAGS', '') + ' --log_
→˓level=INFO'

A graph compilation can fail because of a compilation error or an environment issue (for example, compilation is
interrupted by ctrl-C). The graph would be marked as failed and subsequent rerun would encounter message like below:

INFO ||NCC_WRAPPER||: Got a cached failed neff at /var/tmp/neuron-compile-cache/
→˓neuronxcc-2.8.0.25+a3ad0f342/MODULE_12486829708343293975+d41d8cd9/model.neff. Will␣
→˓skip compilation, please set --retry_failed_compilation for recompilation.

To retry compilation, add --retry_failed_compilation in NEURON_CC_FLAGS environment variable. When the
script is reran, all the previously failed compilations are recompiled and fresh results are saved in the cache.

os.environ['NEURON_CC_FLAGS'] = os.environ.get('NEURON_CC_FLAGS', '') + ' --retry_failed_
→˓compilation'

Note that all flags demonstrated above will be parsed by a tool called neuron_cc_wrapper, which is a wrapper over
Neuron Compiler CLI to provide caching mechanism. All these flags will not be passed into Neuron Compiler CLI.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

PyTorch NeuronX Profiling API

The profiler provides a method to generate a context manager to capture trace events at the operator or runtime level.

torch_neuronx.experimental.profiler.profile(port=9012, ms_duration=60000,
neuron_tensorboard_plugin_dir='logs/plugins/neuron',
profile_type='operator', auto_start=True,
delete_working=True)

The torch_neuronx.experimental.profiler.profile()method returns a profile context manager ob-
ject. This object doesn’t need to be used directly, as default options are set to auto capture events based on the
profile_type.

The context manager will wrap around the entire model and training/inference loop. The context-manager is
backwards-compatible with the torch_xla.debug.profiler``

Required Arguments

None

Optional Keyword Arguments

Keyword Arguments
• port (int) – Port to run the profiling GRPC server on. Default is 9012.
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• ms_duration (int) – This defines how long the profiler will capture the HLO artifacts from
the model to view in the profiler. The unit is in milliseconds. The default value is 60000 ms,
or 1 minute.

• neuron_tensorboard_plugin_dir (str) – The directory the neuron tensorboard plugin
will file write to. This will be logs/plugins/neuron by default/

• profile_type (str) – There is “trace” and “operator”. “trace” is the Torch Runtime Trace
Level, while “operator” is the Model Operator Trace Level. Default is “operator”

• auto_start (bool) – If set to true, the profiler will start profiling immediately. If set to
false, the profiler can be set to start at a later condition. Refer to profile.start() for
more details. Default is True.

• delete_working (bool) – If set to False turns off the deletion of temporary files. Default
True.

• traced_only (str) – This should be set to True if profiling a model that has been traced
with torch_neuronx.trace(). Default is False.

Returns
The traced profile

Return type
~profile

torch_neuronx.experimental.profiler.profile.start()

The torch_neuronx.experimental.profiler.profile.start() method starts the profiler if not started
(i.e when auto_start=False). This function does not take in any parameters, nor return anything.

Required Arguments

None

Optional Keyword Arguments

None

Returns
None

This document is relevant for: Inf2, Trn1, Trn2

API Reference Guide for Training (torch-neuronx)

• PyTorch NeuronX neuron_parallel_compile CLI

• Neuron Persistent Cache

• PyTorch NeuronX Environment Variables

• PyTorch NeuronX Profiling API

This document is relevant for: Trn1, Trn2

This document is relevant for: Trn1, Trn2

348 Chapter 2. ML Frameworks

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


AWS Neuron

Developer Guide (torch-neuronx)

This document is relevant for: Trn1, Trn2

Developer Guide for Training with PyTorch NeuronX

Table of Contents

• PyTorch NeuronX

– Neuron XLA device

• PyTorch NeuronX single-worker training/evaluation quick-start

• PyTorch NeuronX multi-worker data parallel training using torchrun

• Conversion from Distributed Data Parallel (DDP) application

• PyTorch NeuronX environment variables

• Neuron Persistent Cache for compiled graphs

• Number of graphs

• Full BF16 with stochastic rounding enabled

• BF16 in GPU-compatible mode without stochastic rounding enabled

• BF16 automatic mixed precision using PyTorch Autocast

• Tips and Best Practices

– Understand the lazy mode in PyTorch NeuronX

– Minimize the number of compilation-and-executions

– Aggregate the data transfers between host CPUs and devices

– Ensure common initial weights across workers

– Use PyTorch/XLA’s model save function

• FAQ

• Debugging and troubleshooting

Trainium is designed to speed up model training and reduce training cost. It is available on the Trn1 and Trn2 instances.
On Trn1, each Trainium accelerator has two NeuronCores (default two Logical NeuronCores), which are the main neural
network compute units. On Trn2, each Trainium accelerator has 8 NeuronCores (default 4 Logical NeuronCores). The
examples in this guide applies to Trn1 and can be extened to run Trn2.

PyTorch NeuronX enables PyTorch users to train their models on Trainium’s NeuronCores with little code change to
their training code. It is based on the PyTorch/XLA software package.

This guide helps you get started with single-worker training and distributed training using PyTorch Neuron.
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PyTorch NeuronX

Neuron XLA device

With PyTorch NeuronX the default XLA device is mapped to a Logical NeuronCore. By default, one Logical Neuron-
Core is configured by a process. To use the Neuron XLA device, specify the device as xm.xla_device() or 'xla':

import torch_xla.core.xla_model as xm
device = xm.xla_device()

or

device = 'xla'

PyTorch models and tensors can be mapped to the device as usual:

model.to(device)
tensor.to(device)

To move tensor back to CPU, do :

tensor.cpu()

or

tensor.to('cpu')

PyTorch NeuronX single-worker training/evaluation quick-start

PyTorch NeuronX uses XLA to enable conversion of PyTorch operations to Trainium instructions. To get started on
PyTorch NeuronX, first modify your training script to use XLA in the same manner as described in PyTorch/XLA
documentation and use XLA device:

import torch_xla.core.xla_model as xm

device = xm.xla_device()
# or
device = 'xla'

The Logical NeuronCore is mapped to an XLA device. On Trainium instance, the XLA device is automatically mapped
to the first available Logical NeuronCore. You can use NEURON_RT_VISIBLE_CORES to select specific Logical
NeuronCore to use.

By default the above steps will enable the training or evaluation script to run on one Logical NeuronCore. NOTE: Each
process is mapped to one NeuronCore.

Finally, add mark_step at the end of the training or evaluation step to compile and execute the training or evaluation
step:

xm.mark_step()

These changes can be placed in control-flows in order to keep the script the same between PyTorch Neuron and
CPU/GPU. For example, you can use an environment variable to disable XLA which would cause the script to run
in PyTorch native mode (using CPU on Trainium instances and GPU on GPU instances):
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device = 'cpu'
if not os.environ.get("DISABLE_XLA", None):

device = 'xla'

...

# end of training step
if not os.environ.get("DISABLE_XLA", None):

xm.mark_step()

More on the need for mark_step is at Understand the lazy mode in PyTorch Neuron.

For a full runnable example, please see the Single-worker MLP training on Trainium tutorial.

PyTorch NeuronX multi-worker data parallel training using torchrun

Data parallel training allows you to replicate your script across multiple workers, each worker processing a proportional
portion of the dataset, in order to train faster.

To run multiple workers in data parallel configuration, with each worker using one NeuronCore, first add additional
imports for parallel dataloader and multi-processing utilities:

import torch_xla.distributed.parallel_loader as pl

Next we initialize the Neuron distributed context using the XLA backend for torch.distributed:

import torch_xla.distributed.xla_backend
torch.distributed.init_process_group('xla')

Next, replace optimizer.step() function call with xm.optimizer_step(optimizer) which adds gradient syn-
chronization across workers before taking the optimizer step:

xm.optimizer_step(optimizer)

If you’re using a distributed dataloader, wrap your dataloader in the PyTorch/XLA’s MpDeviceLoader class which
provides buffering to hide CPU to device data load latency:

parallel_loader = pl.MpDeviceLoader(dataloader, device)

Within the training code, use xm.xrt_world_size() to get the world size, and xm.get_ordinal to get the global rank of
the current process.

Then run use PyTorch torchrun utility to run the script. For example, to run 32 worker data parallel training on
trn1.32xlarge:

torchrun --nproc_per_node=32 <script and options>

To run on multiple instances, make sure to use trn1.32xlarge instances and use all 32 NeuronCores on each instance.
For example, with two instances, on the rank-0 Trn1 host, run with –node_rank=0 using torchrun utility:

torchrun --nproc_per_node=32 --nnodes=2 --node_rank=0 --master_addr=<root IP> --master_
→˓port=<root port> <script and options>

On another Trn1 host, run with –node_rank=1 :
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torchrun --nproc_per_node=32 --nnodes=2 --node_rank=1 --master_addr=<root IP> --master_
→˓port=<root port> <script and options>

It is important to launch rank-0 worker with –node_rank=0 to avoid hang.

For trn2.48xlarge, use --nproc_per_node=64 for 64 Logical NeuronCores default (each Logical NeuronCores using
two physical NeuronCores).

To train on multiple instances, it is recommended to use a ParallelCluster. For a ParallelCluster example, please see
Train a model on AWS Trn1 ParallelCluster.

More information about torchrun can be found PyTorch documentation at https://pytorch.org/docs/stable/elastic/run.
html#launcher-api .

See the Multi-worker data-parallel MLP training using torchrun tutorial for a full example.

Conversion from Distributed Data Parallel (DDP) application

Distributed Data Parallel (DDP) in torch.distributed module is a wrapper to help convert a single-worker training to
distributed training. To convert from torch.distributed Distributed Data Parallel (DDP) application to PyTorch Neuron,
first convert the application back to single-worker training, which simply involves removing the DDP wrapper, for
example model = DDP(model, device_ids=[rank]). After this, follow the previous section to change to multi-
worker training.

PyTorch NeuronX environment variables

Environment variables allow modifications to PyTorch Neuron behavior without requiring code change to user script.
See PyTorch Neuron environment variables for more details.

Neuron Persistent Cache for compiled graphs

See Neuron Persistent Cache for compiled graphs

Number of graphs

PyTorch/XLA converts PyTorch’s eager mode execution to lazy-mode graph-based execution. During this process,
there can be multiple graphs compiled and executed if there are extra mark-steps or functions with implicit mark-steps.
Additionally, more graphs can be generated if there are different execution paths taken due to control-flows.

Full BF16 with stochastic rounding enabled

Previously, on torch-neuronx 2.1 and earlier, the environmental variables XLA_USE_BF16 or XLA_DOWNCAST_BF16 pro-
vided full casting to BF16 with stochastic rounding enabled by default. These environmental variables are deprecated in
torch-neuronx 2.5, although still functional with warnings. To replace XLA_USE_BF16 or XLA_DOWNCAST_BF16 with
stochastic rounding on Neuron, set NEURON_RT_STOCHASTIC_ROUNDING_EN=1 and use the torch.nn.Module.to
method to cast model floating-point parameters and buffers to data-type BF16 as follows:
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os.environ["NEURON_RT_STOCHASTIC_ROUNDING_EN"] = "1"

# model is created
model.to(torch.bfloat16)

Stochastic rounding is needed to enable faster convergence for full BF16 model.

If the loss is to be kept in FP32, initialize it with dtype=torch.float as follows:

running_loss = torch.zeros(1, dtype=torch.float).to(device)

Similarly, if the optimizer states are to be kept in FP32, convert the gradients to FP32 before optimizer computations:

grad = p.grad.data.float()

For a full example, please see the PyTorch Neuron BERT Pretraining Tutorial (Data-Parallel), which has been updated
to use torch.nn.Module.to instead of XLA_DOWNCAST_BF16.

BF16 in GPU-compatible mode without stochastic rounding enabled

Full BF16 training in GPU-compatible mode would enable faster convergence without the need for stochas-
tic rounding, but would require a FP32 copy of weights/parameters to be saved and used in the optimizer.
To enable BF16 in GPU-compatible mode without stochastic rounding enabled, use the torch.nn.Module.
to method to cast model floating-point parameters and buffers to data-type bfloat16 as follows without setting
NEURON_RT_STOCHASTIC_ROUNDING_EN=1:

# model is created
model.to(torch.bfloat16)

In the initializer of the optimizer, for example AdamW, you can add code like the following code snippet to make a
FP32 copy of weights:

# keep a copy of weights in highprec
self.param_groups_highprec = []
for group in self.param_groups:

params = group['params']
param_groups_highprec = [p.data.float() for p in params]
self.param_groups_highprec.append({'params': param_groups_highprec})

In the PyTorch Neuron BERT Pretraining Tutorial (Data-Parallel), this mode can be enabled by pas-
ing --optimizer=AdamW_FP32ParamsCopy option to dp_bert_large_hf_pretrain_hdf5.py and setting
NEURON_RT_STOCHASTIC_ROUNDING_EN=0 (or leave it unset).

BF16 automatic mixed precision using PyTorch Autocast

By default, the compiler automatically casts internal FP32 operations to BF16. You can disable this and allow PyTorch’s
BF16 automatic mixed precision function (torch.autocast) to do the casting of certain operations to operate in BF16.

To enable PyTorch’s BF16 mixed-precision, first turn off the Neuron compiler auto-cast:

os.environ["NEURON_CC_FLAGS"] = "--auto-cast=none"

Next, per recommendation from official PyTorch torch.autocast documentation, place only the forward-pass of the
training step in the torch.autocast scope with xla device type:
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with torch.autocast(dtype=torch.bfloat16, device_type='xla'):
# forward pass

The device type is XLA because we are using PyTorch-XLA’s autocast backend. The PyTorch-XLA autocast mode
source code lists which operations are casted to lower precision BF16 (“lower precision fp cast policy” section), which
are maintained in FP32 (“fp32 cast policy”), and which are promoted to the widest input types (“promote” section).

Example showing the original training code snippet:

def train_loop_fn(train_loader):
for i, data in enumerate(train_loader):

inputs = data[0]
labels = data[3]
outputs = model(inputs, labels=labels)
loss = outputs.loss/ flags.grad_acc_steps
loss.backward()
optimizer.step()
xm.mark_step()

The following shows the training loop modified to use BF16 autocast:

os.environ["NEURON_CC_FLAGS"] = "--auto-cast=none"

def train_loop_fn(train_loader):
for i, data in enumerate(train_loader):

torch.cuda.is_bf16_supported = lambda: True
with torch.autocast(dtype=torch.bfloat16, device_type='xla'):

inputs = data[0]
labels = data[3]
outputs = model(inputs, labels=labels)

loss = outputs.loss/ flags.grad_acc_steps
loss.backward()
optimizer.step()
xm.mark_step()

For a full example of BF16 mixed-precision, see PyTorch Neuron BERT Pretraining Tutorial (Data-Parallel).

See official PyTorch documentation for more details about torch.autocast .

Tips and Best Practices

Understand the lazy mode in PyTorch NeuronX

One significant difference between PyTorch NeuronX and native PyTorch is that the PyTorch NeuronX system runs in
lazy mode while the native PyTorch runs in eager mode. Tensors in lazy mode are placeholders for building the com-
putational graph until they are materialized after the compilation and evaluation are complete. The PyTorch NeuronX
system builds the computational graph on the fly when you call PyTorch APIs to build the computation using tensors
and operators. The computational graph gets compiled and executed when xm.mark_step() is called explicitly or
implicitly by pl.MpDeviceLoader/pl.ParallelLoader, or when you explicitly request the value of a tensor such
as by calling loss.item() or print(loss).
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Minimize the number of compilation-and-executions

For best performance, you should keep in mind the possible ways to initiate compilation-and-executions as described
in Understand the lazy mode in PyTorch/XLA and should try to minimize the number of compilation-and-executions.
Ideally, only one compilation-and-execution is necessary per training iteration and is initiated automatically by pl.
MpDeviceLoader/pl.ParallelLoader. The MpDeviceLoader is optimized for XLA and should always be used
if possible for best performance. During training, you might want to examine some intermediate results such as loss
values. In such case, the printing of lazy tensors should be wrapped using xm.add_step_closure() to avoid unnec-
essary compilation-and-executions.

Aggregate the data transfers between host CPUs and devices

For best performance, you may try to aggregate the data transfers between host CPUs and devices. For example,
increasing the value for batches_per_execution argument when instantiating MpDeviceLoader can help increase per-
formance for certain where there’s frequent host-device traffic like ViT as described in a blog. NOTE: Increasing
batches_per_execution value would delay the mark-step for multiple batches specified by this value, increasing graph
size and could lead to out-of-memory (device OOM) error.

Ensure common initial weights across workers

To achieve best accuracy during data parallel training, all workers need to have the same initial parameter states. This
can be achieved by using the same seed across the workers. In the case of HuggingFace library, the set_seed function
can be used. (https://github.com/pytorch/xla/issues/3216).

Use PyTorch/XLA’s model save function

To avoid problems with saving and loading checkpoints, make sure you use PyTorch/XLA’s model save function to
properly checkpoint your model. For more information about the function, see torch_xla.core.xla_model.save in the
PyTorch on XLA Devices documentation.

When training using multiple devices, xla_model.save can result in high host memory usage. If you see such
high usage causing the host to run out of memory, please use torch_xla.utils.serialization.save . This would save the
model in a serialized manner. When saved using the serialization.save api, the model should be loaded using
serialization.load api. More information on this here: Saving and Loading Tensors

FAQ

Debugging and troubleshooting

To debug on PyTorch Neuron, please follow the debug guide.

This document is relevant for: Trn1, Trn2

This document is relevant for: Trn1, Trn2
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How to debug models in PyTorch NeuronX
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• Printing metrics

• Printing tensors

• Use mark_step

• Using Eager Debug Mode

• Profiling model run

• Snapshotting With Torch-Neuronx 2.1

• Snapshotting with Torch-Neuronx 1.13

– Snapshot FAQs:

Torch-XLA evaluates operations lazily, which means it builds a symbolic graph in the background and the graph is
executed in hardware only when the users request (print) for the output or a mark_step is encountered. To effectively
debug training scripts with torch-xla, please use one of the approaches mentioned below:

Printing metrics

Torch-xla provides a utility that records metrics of different sections of the code. These metrics can help figure out
things like: How much time is spent in compilation? How much time is spent in execution? To check the metrics:

1. Import metrics: import torch_xla.debug.metrics as met

2. Print metrics at the end of the step: print(met.metrics_report())

Printing metrics should produce an output that looks like this:

Metric: CompileTime
TotalSamples: 1
Accumulator: 09s969ms486.408us
Percentiles: 1%=09s969ms486.408us; 5%=09s969ms486.408us; 10%=09s969ms486.408us; 20

→˓%=09s969ms486.408us; 50%=09s969ms486.408us; 80%=09s969ms486.408us; 90%=09s969ms486.
→˓408us; 95%=09s969ms486.408us; 99%=09s969ms486.408us
.....
Metric: ExecuteTime
TotalSamples: 1
Accumulator: 186ms062.970us
Percentiles: 1%=186ms062.970us; 5%=186ms062.970us; 10%=186ms062.970us; 20%=186ms062.

→˓970us; 50%=186ms062.970us; 80%=186ms062.970us; 90%=186ms062.970us; 95%=186ms062.970us;␣
→˓99%=186ms062.970us
....
Metric: TensorsGraphSize
TotalSamples: 1
Accumulator: 9.00
Percentiles: 1%=9.00; 5%=9.00; 10%=9.00; 20%=9.00; 50%=9.00; 80%=9.00; 90%=9.00; 95%=9.

→˓00; 99%=9.00
Metric: TransferFromServerTime
TotalSamples: 2

(continues on next page)
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Accumulator: 010ms130.597us
ValueRate: 549ms937.108us / second
Rate: 108.372 / second
Percentiles: 1%=004ms948.602us; 5%=004ms948.602us; 10%=004ms948.602us; 20%=004ms948.

→˓602us; 50%=006ms181.995us; 80%=006ms181.995us; 90%=006ms181.995us; 95%=006ms181.995us;␣
→˓99%=006ms181.995us
Metric: TransferToServerTime
TotalSamples: 6
Accumulator: 061ms698.791us
ValueRate: 007ms731.182us / second
Rate: 0.665369 / second
Percentiles: 1%=006ms848.579us; 5%=006ms848.579us; 10%=006ms848.579us; 20%=007ms129.

→˓666us; 50%=008ms940.718us; 80%=008ms496.166us; 90%=024ms636.413us; 95%=024ms636.413us;␣
→˓99%=024ms636.413us
Metric: TransferToServerTransformTime
TotalSamples: 6
Accumulator: 011ms835.717us
ValueRate: 001ms200.844us / second
Rate: 0.664936 / second
Percentiles: 1%=108.403us; 5%=108.403us; 10%=108.403us; 20%=115.676us; 50%=167.399us;␣

→˓80%=516.659us; 90%=010ms790.400us; 95%=010ms790.400us; 99%=010ms790.400us
.....
Counter: xla::_copy_from
Value: 7

Counter: xla::addmm
Value: 2

Counter: xla::empty
Value: 5

Counter: xla::t
Value: 2

....
Metric: XrtCompile
TotalSamples: 1
Accumulator: 09s946ms607.609us
Mean: 09s946ms607.609us
StdDev: 000.000us
Percentiles: 25%=09s946ms607.609us; 50%=09s946ms607.609us; 80%=09s946ms607.609us; 90

→˓%=09s946ms607.609us; 95%=09s946ms607.609us; 99%=09s946ms607.609us
Metric: XrtExecute
TotalSamples: 1
Accumulator: 176ms932.067us
Mean: 176ms932.067us
StdDev: 000.000us
Percentiles: 25%=176ms932.067us; 50%=176ms932.067us; 80%=176ms932.067us; 90%=176ms932.

→˓067us; 95%=176ms932.067us; 99%=176ms932.067us
Metric: XrtReadLiteral
TotalSamples: 2
Accumulator: 608.578us
Mean: 304.289us
StdDev: 067.464us
Rate: 106.899 / second
Percentiles: 25%=236.825us; 50%=371.753us; 80%=371.753us; 90%=371.753us; 95%=371.753us;

(continues on next page)
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→˓ 99%=371.753us

As seen, you can get useful information about graph compile times/execution times. You can also know which operators
are present in the graph, which operators are run on the CPU and which operators are run on an XLA device. For
example, operators that have a prefix aten:: would run on the CPU, since they do not have xla lowering. All operators
with prefix xla:: would run on an XLA device. Note: aten operators that do not have xla lowering would result in
a graph fragmentation and might end up slowing down the entire execution. If you encounter such operators, create a
request for operator support.

Printing tensors

Users can print tensors in their script as below:

import os
import torch
import torch_xla
import torch_xla.core.xla_model as xm

device = xm.xla_device()
input1 = torch.randn(2,10).to(device)
# Defining 2 linear layers
linear1 = torch.nn.Linear(10,30).to(device)
linear2 = torch.nn.Linear(30,20).to(device)

# Running forward
output1 = linear1(input1)
output2 = linear2(output1)
print(output2)

Since torch-xla evaluates operations lazily, when you try to print output2 , the graph associated with the tensor would
be evaluated. When a graph is evaluated, it is first compiled for the device and executed on the selected device. Note:
Each tensor would have a graph associated with it and can result in graph compilations and executions. For example,
in the above script, if you try to print output1 , a new graph is cut and you would see another evaluation. To avoid
multiple evaluations, you can make use of mark_step (next section).

Use mark_step

Torch-XLA provides an api called mark_step which evaluates a graph collected up to that point. While this is similar
to printing of an output tensor wherein a graph is also evaluated, there is a difference. When an output tensor is printed,
only the graph associated with that specific tensor is evaluated, whereas mark_step enables all the output tensors up to
mark_step call to be evaluated in a single graph. Hence, any tensor print after mark_step would be effectively free
of cost as the tensor values are already evaluated. Consider the example below:

import os
import torch
import torch_xla
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met

device = xm.xla_device()
(continues on next page)
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input1 = torch.randn(2,10).to(device)
# Defining 2 linear layers
linear1 = torch.nn.Linear(10,30).to(device)
linear2 = torch.nn.Linear(30,20).to(device)

# Running forward
output1 = linear1(input1)
output2 = linear2(output1)
xm.mark_step()
print(output2)
print(output1)
# Printing the metrics to check if compilation and execution occurred
print(met.metrics_report())

In the printed metrics, the number of compiles and executions is only 1, even though 2 tensors are printed. Hence, to
avoid multiple graph evaluations, it is recommended that you visualize tensors after a mark_step . You can also make
use of the add_step_closure api for this purpose. With this api, you pass in the tensors that needs to be visualized/printed.
The added tensors would then be preserved in the graph and can be printed as part of the callback function passed to
the api. Here is a sample usage: https://github.com/pytorch/xla/blob/master/test/test_train_mp_mnist.py#L133

Note: Graph compilations can take time as the compiler optimizes the graph to run on device.

Using Eager Debug Mode

Eager debug mode provides a convenient utility to step through the code and evaluate operators one by one for correct-
ness. Eager debug mode is useful to inspect your models the way you would do in eager-mode frameworks like PyTorch
and Tensorflow. With Eager Debug Mode operations are executed eagerly. As soon as an operation is registered with
torch-xla, it would be sent for compilation and execution. Since compiling a single operation, the time spent would be
minimal. Moreover, the chances of hitting the framework compilation cache increases as models would have repeated
operations throughout. Consider example 1 below:

# Example 1

import os
# You need to set this env variable before importing torch-xla
# to run in eager debug mode.
os.environ["NEURON_USE_EAGER_DEBUG_MODE"] = "1"

import torch
import torch_xla
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met

device = xm.xla_device()
input1 = torch.randn(2,10).to(device)
# Defining 2 linear layers
linear1 = torch.nn.Linear(10,30).to(device)
linear2 = torch.nn.Linear(30,20).to(device)

# Running forward
output1 = linear1(input1)
output2 = linear2(output1)

(continues on next page)
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# Printing the metrics to check if compilation and execution occurred
# Here, in the metrics you should notice that the XRTCompile and XRTExecute
# value is non-zero, even though no tensor is printed. This is because, each
# operation is executed eagerly.
print(met.metrics_report())

print(output2)
print(output1)
# Printing the metrics to check if compilation and execution occurred.
# Here the XRTCompile count should be same as the previous count.
# In other words, printing tensors did not incur any extra compile
# and execution of the graph
print(met.metrics_report())

As seen from the above scripts, each operator is evaluated eagerly and there is no extra compilation when output
tensors are printed. Moreover, together with the on-disk Neuron persistent cache, eager debug mode only incurs one
time compilation cost when the ops is first run. When the script is run again, the compiled ops will be pulled from
the persistent cache. Any changes you make to the training script would result in the re-compilation of only the newly
inserted operations. This is because each operation is compiled independently. Consider example 2 below:

# Example 2

import os
# You need to set this env variable before importing torch-xla
# to run in eager debug mode.
os.environ["NEURON_USE_EAGER_DEBUG_MODE"] = "1"

import torch
import torch_xla
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met

os.environ['NEURON_CC_FLAGS'] = "--log_level=INFO"

device = xm.xla_device()
input1 = torch.randn(2,10).to(device)
# Defining 2 linear layers
linear1 = torch.nn.Linear(10,30).to(device)
linear2 = torch.nn.Linear(30,20).to(device)
linear3 = torch.nn.Linear(20,30).to(device)
linear4 = torch.nn.Linear(30,20).to(device)

# Running forward
output1 = linear1(input1)
output2 = linear2(output1)
output3 = linear3(output2)

# Note the number of compiles at this point and compare
# with the compiles in the next metrics print
print(met.metrics_report())

(continues on next page)
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output4 = linear4(output3)
print(met.metrics_report())

Running the above example 2 script after running example 1 script, you may notice that from the start until the state-
ment output2 = linear2(output1) , all the graphs would hit the persistent cache. Executing the line output3
= linear3(output2) would result in a new compilation for linear3 layer only because the layer configuration is
new. Now, when we run output4 = linear4(output3) , you would observe no new compilation happens. This is
because the graph for linear4 is same as the graph for linear2 and hence the compiled graph for linear2 is reused
for linear4 by the framework’s internal cache.

Eager debug mode avoids the wait times involved with tensor printing because of larger graph compilation. It is designed
only for debugging purposes, so when the training script is ready, please remove the NEURON_USE_EAGER_DEBUG_MODE
environment variable from the script in order to obtain optimal performance.

By default, in eager debug mode the logging level in the Neuron compiler is set to error mode. Hence, no logs would
be generated unless there is an error. Before your first print, if there are many operations that needs to be compiled,
there might be a small delay. In case you want to check the logs, switch on the INFO logs for compiler using:

os.environ["NEURON_CC_FLAGS"] = "--log_level=INFO"

Profiling model run

Profiling model run can help to identify different bottlenecks and resolve issues faster. You can profile different sections
of the code to see which block is the slowest. To profile model run, you can follow the steps below:

1. Add: import torch_xla.debug.profiler as xp

2. Start server. This can be done by adding the following line after creating xla device: server = xp.
start_server(9012)

3. In a separate terminal, start tensorboard. The logdir should be in the same directory from which you run the
script.

Open the tensorboard on a browser. Go to profile section in the top right. Note: you may have to install the
profile plugin using: pip install tensorboard-plugin-profile

4. When you click on the profile, it should give an option to capture profile. Clicking on capture profile produces
the following pop-up.
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In the URL enter: localhost:9012 . Port in this URL should be same as the one you gave when starting the
server in the script.

5. Once done, click capture and it should automatically load the following page:

6. To check the profile for different blocks of code, head to trace_viewer under Tools (on the left column).
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7. It should show a profile that looks like this:

Note: By default, torch-xla would time different blocks of code inside the library. However, you can also profile block
of code in your scripts. This can be done by adding the code within a xp.Trace context as follows:

....
for epoch in range(total_epochs):

inputs = torch.randn(1,10).to(device)
labels = torch.tensor([1]).to(device)
with xp.Trace("model_build"):

loss = model(inputs, labels)
(continues on next page)
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with xp.Trace("loss_backward"):
loss.backward()

....

It should produce a profile that has the model_build and loss_backward section timed. This way you can time any
block of script for debugging.

Note: If you are running your training script in a docker container, to view the tensorboard, you should launch the
docker container using flag: --network host eg. docker run --network host my_image:my_tag

Snapshotting With Torch-Neuronx 2.1

Snapshotting models can be used to dump debug information that can then be sent to the Neuron team. Neuron execution
relies on a series of compiled graphs. Internally, graph HLOs are used as an intermediate representation which is then
compiled. Then, during execution, the graph inputs are passed to the Neuron runtime, which produces outputs using
the compiled graph. Snapshotting saves the inputs to a graph execution, executes the graphs, saves the outputs of the
execution, and then bundles and dumps the inputs, outputs and graph HLO in one file. This is illustrated here:
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This feature can be enabled using the following environment variables, which can be set at the beginning of your script
as follows (./dump is the snapshot dump directory that will be created):

....
os.environ["XLA_FLAGS"] = "--xla_dump_hlo_snapshots --xla_dump_to=./dump"
....

This environment variable will produce snapshots in the ./dump folder with the extension .
decomposed_hlo_snapshot at every iteration for every process. For example, files that look like the following
would be produced.

SyncTensorsGraph.27737-process000000-executable000003-device000000-execution000496.
→˓inputs.decomposed_hlo_snapshot

Note that NEURON_FRAMEWORK_DEBUG does not need to be set, as in torch-neuronx 1.13. Also note that
NEURON_DUMP_HLO_SNAPSHOT and NEURON_NC0_ONLY_SNAPSHOT environment variables used in torch-neuronx 1.13
are now no longer used to control snapshot dumping.

Snapshots can take up a large amount of disk space. To avoid running out of disk space, you can limit the snapshoting
for a certain rank, such as rank 0. The following example code would work with torchrun utility which sets the RANK
environment variable for each process:

if os.environ.get("RANK", "0") == "0":
os.environ["XLA_FLAGS"]="--xla_dump_hlo_snapshots --xla_dump_to=./dump"

or if not using torchrun:

import torch_xla.core.xla_model as xm

....
if xm.is_master_ordinal():

os.environ["XLA_FLAGS"]="--xla_dump_hlo_snapshots --xla_dump_to=./dump"
....
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Torch-NeuronX 2.1+ provides a register_hlo_snapshot_callback API to allow more control over when to dump
the snapshot. By default, Torch-NeuronX 2.1+ includes the following callback function:

def _dump_hlo_snapshot_callback(name: str, addressable_device_index: int, execution_
→˓count: int) -> str:
return 'inputs'

As the return value is always ‘inputs’, the backend will always dump snapshot files containing HLO and input data
only. Recognized return value keywords are ‘inputs’ and ‘outputs’. If the return value is an empty string ‘’, then the
backend will skip this dump. If the return value is ‘inputs outputs’, then the backend will dump two snapshot files for
each execution, one holding inputs, and another one holding outputs.

To implement selective dumping, we can make use of the callback function’s parameters name, address-
able_device_index, execution_count , where:

• name is a string that stands for the HLO graph’s name.

• addressable_device_index is an integer that refers to the index of the addressable Neuron device as one
NEFF can load onto multiple addressable Neuron devices (NeuronCores) for SPMD executions. Note that this
is not the same as the worker process rank in multi-process execution, in which RANK/xm.get_ordinal() or
LOCAL_RANK/xm.get_local_ordinal() should be used. See examples above.

• execution_count is an integer that indicates the value of an internal execution counter that increments by one
for each execution of a compiled graph when HloSnapshot dumping is requested. Note that each compiled graph
maintains multiple execution counters, one for each addressable device that it loads onto.

For example, the following will dump snapshot files containing outputs at execution #2 (Note that this is graph execution
number, not the iteration or step; for iteration or step, see the next example):

def callback(name, addressable_device_index, execution_count):
if execution_count == 2:

return 'outputs'
else:

return ''

import libneuronxla
old_callback = libneuronxla.register_hlo_snapshot_callback(callback)

Callback functions can be use to dump at a certain condition, such as when the global step count equal a value:

step = 0
def callback(name, addressable_device_index, execution_count):

if step == 5:
return 'inputs'

else:
return ''

import libneuronxla
old_callback = libneuronxla.register_hlo_snapshot_callback(callback)

...
for epoch in range(EPOCHS):

for idx, (train_x, train_label) in enumerate(train_loader):
step += 1

...
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Note: Snapshot dumping triggered by a runtime error such as NaN is not yet available. It will be available in a feature
release.

Snapshotting with Torch-Neuronx 1.13

Note: If you are using Torch-NeuronX 2.1, please see Snapshotting With Torch-Neuronx 2.1

With Torch-Neuronx 1.13, the snapshotting feature can be enabled using the following environment variables, which
can be set at the beginning of your script as follows.

....
os.environ["XLA_FLAGS"] = " --xla_dump_to=dump"
os.environ["NEURON_FRAMEWORK_DEBUG"] = "1"
os.environ["NEURON_DUMP_HLO_SNAPSHOT"] = "1"
....

This set of environment variables will produce snapshots under the dump folder with the extensions .hlo.snapshot.
pb or .decomposed_hlo_snapshot at every iteration. For example a file that looks like the following would be
produced.

dump/module_SyncTensorsGraph.387.pid_12643.execution_7496.hlo_snapshot.pb

The dumping environment variable can be set and unset at specific iterations as shown in the following example.

....
for step in range(STEPS):

if step == 20:
os.environ["NEURON_DUMP_HLO_SNAPSHOT"] = "1"

else:
os.environ.pop('NEURON_DUMP_HLO_SNAPSHOT', None)

train_x = torch.randn(BATCH_SIZE, 28, 28)
train_x = train_x.to(device)
loss = model(train_x)
loss.backward()
optimizer.step()
xm.mark_step()

....

Additionally, we provide capabilities to snapshot graphs automatically. The environment variables above can be set as
follows:

....
os.environ["XLA_FLAGS"] = " --xla_dump_to=dump"
os.environ["NEURON_FRAMEWORK_DEBUG"] = "1"
os.environ["NEURON_DUMP_HLO_SNAPSHOT"] = "ON_NRT_ERROR"
....

When unexpected errors such as a graph execution producing NaNs occurs, snapshots will be automatically pro-
duced and execution will be terminated. Occasionally, for larger models, automatic snapshotting may not capture
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snapshots due to the device memory being exhausted. In this case, the above flag can be set to os.environ[
"NEURON_DUMP_HLO_SNAPSHOT"] = "ON_NRT_ERROR_HYBRID", this will allocate memory for inputs on both the
device and host memory. In some additional cases, this may still go out of memory and may need to be set to os.
environ["NEURON_DUMP_HLO_SNAPSHOT"] = "ON_NRT_ERROR_CPU" to avoid allocating any memory on the de-
vice at all for automatic snapshotting.

Snapshot FAQs:

When should I use this features?
This feature should be used when debugging errors that requires interfacing with and providing debug data to the
Neuron team. Snapshotting may be redundant and unnecessary in some situations. For example, when only the model
weights are necessary for debugging, methods such as checkpointing may be more convenient to use.

What sort of data is captured with these snapshots?
The type of data captured by these snapshots may include model graphs in HLO form, weights/parameters, optimizer
states, intermediate tensors and gradients. This data may be considered sensitive and this should be taken into account
before sending the data to the Neuron team.

What is the size of these snapshots?
The size of snapshots can be significant for larger models such as GPT or BERT with several GBs worth of data for
larger graphs, so it is recommended to check that sufficient disk space exists before using snapshotting. In addition,
limiting the amount of snapshots taken in a run will help to preserve disk space.

Will snapshotting add overhead to my execution?
Snapshotting does add a small overhead to the execution in most cases. This overhead can be significant if snapshots
are dumped at every iteration. In order to alleviate some of this overhead, in the case that snapshotting is not necessary
on all cores the following environment variable can be set to collect snapshots only on the first core in torch-neuronx
1.13:

....
os.environ["NEURON_NC0_ONLY_SNAPSHOT"] = "1"
....

In torch-neuronx 2.1, use RANK environmental variable when using torchrun or xm.is_master_ordinal() to limit
dumping to the first process (see above):

....
if os.environ.get("RANK", "0") == "0":

os.environ["XLA_FLAGS"]="--xla_dump_hlo_snapshots --xla_dump_to=./dump"
....

or (not using torchrun):

import torch_xla.core.xla_model as xm

....
if xm.is_master_ordinal():

os.environ["XLA_FLAGS"]="--xla_dump_hlo_snapshots --xla_dump_to=./dump"
....

In addition, checkpointing in tandem with snapshotting can be useful to reduce overhead. A checkpoint close to the
problem iteration can be captured, then execution resumed with snapshots enabled.

How can I share snapshots with the Neuron team?
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These snapshots can be shared with the Neuron team via S3 bucket.

This document is relevant for: Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

Developer Guide for Profiling with PyTorch NeuronX
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• Using Named Blocks for the Trace

Introduction

The Neuron PyTorch profiler is a context manager wrapping around the entire model and training loop. Specifically this
is the context manager: torch_neuronx.experimental.profiler.profile. This is a wrapper of the XLA Debug
Profiler which we imported earlier as import torch_xla.debug.profiler as xp, and is backwards-compatible.
Here are the parameters of the profiler context manager:

1. port: Port to run the profiling GRPC server on. Default is 9012.

2. profile_type: There is “trace” and “operator”. “trace” is the Torch Runtime Trace Level, while “operator” is
the Model Operator Trace Level.

3. ms_duration: This defines how long the profiler will capture the HLO artifacts from the model to view in the
profiler. The unit is in milliseconds.

4. neuron_tensorboard_plugin_dir: The directory the neuron tensorboard plugin will file write to (NB: As-
sumes that the tensorboard logdir=”log/”)

5. delete_working: If set to False turns off the deletion of temporary files (default True)

We move the model to the xla device inside the context manager. This is important, as this allows the profiler to collect
the operations and processes from the neuronx-cc compiler artifacts. If the model is moved to the xla device outside
of the context manager, the profiling won’t work.

Note: The warnings about the XLA_IR_DEBUG and XLA_HLO_DEBUG env vars not being set can be ignored for the most
part. This warning only comes into play when compiling the model for Neuron outside of the profiler context manager.

After running this script, notice a ./logs directory has been created. It contains the TensorBoard logs including the
profiler views.
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Example used in this guide

We will use the following code sample to describe in detail how to use the Neuron PyTorch profiling API.

Prerequisites

1. Initial Trn1 setup for PyTorch (torch-neuronx) has been done

Environment

#activate python virtual environment and install tensorboard_plugin_neuron
source ~/aws_neuron_venv_pytorch_p38/bin/activate
pip install tensorboard_plugin_neuronx

#create work directory for the Neuron Profiling tutorials
mkdir -p ~/neuron_profiling_tensorboard_examples
cd ~/neuron_profiling_tensorboard_examples

Setup

Create a new working directory:

mkdir simple_demo
cd simple_demo

Save the following code as demo.py:

import os

import torch
import torch.nn as nn
import torch.nn.functional as F

# XLA imports
import torch_xla
import torch_xla.core.xla_model as xm
import torch_xla.debug.profiler as xp

import torch_neuronx
from torch_neuronx.experimental import profiler

os.environ["NEURON_CC_FLAGS"] = "--cache_dir=./compiler_cache"

# Global constants
EPOCHS = 10

# Declare 3-layer MLP Model
class MLP(nn.Module):
def __init__(self, input_size = 10, output_size = 2, layers = [5, 5]):

(continues on next page)
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super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, layers[0])
self.fc2 = nn.Linear(layers[0], layers[1])
self.fc3 = nn.Linear(layers[1], output_size)

def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return F.log_softmax(x, dim=1)

def main():
# Fix the random number generator seeds for reproducibility
torch.manual_seed(0)

# XLA: Specify XLA device (defaults to a NeuronCore on Trn1 instance)
device = xm.xla_device()

# Start the proflier context-manager
with torch_neuronx.experimental.profiler.profile(

port=9012,
profile_type='trace',
ms_duration=15000 ) as profiler:

# IMPORTANT: the model has to be transferred to XLA within
# the context manager, otherwise profiling won't work
model = MLP().to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
loss_fn = torch.nn.NLLLoss()

# start training loop
print('----------Training ---------------')
model.train()
for epoch in range(EPOCHS):

optimizer.zero_grad()
train_x = torch.randn(1,10).to(device)
train_label = torch.tensor([1]).to(device)

#forward
loss = loss_fn(model(train_x), train_label)

#back
loss.backward()
optimizer.step()

# XLA: collect ops and run them in XLA runtime
xm.mark_step()

print('----------End Training ---------------')

if __name__ == '__main__':

(continues on next page)
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main()

Then run it!

python demo.py

Viewing the Trace on TensorBoard

To view the TensorBoard logs, run tensorboard --logdir=./logs

Note: Depending on TensorBoard version --load_fast=false might be an additional parameter to add to view the
trace.

Take note of the port (usually 6006) and enter localhost:<port> into the local browser (assuming port forwarding
is set up properly):

Once localhost:<port> is entered, verify that the “NEURON” view is shown:

If “NEURON” isn’t shown on the top left hand side, select “NEURON” from the drop down on the top right hand side

On the Left Hand Side, there are two dropdown menus: Run & Tool.
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The Run dropdown would contain the Torch Runtime Trace and Operator Level Trace views; however since we only ran
the “trace” (i.e Torch Runtime Trace Level), we’ll only see that log. The Torch Runtime Trace views are simply dates
in year_month_day_hour_minute_second_millisecond format. The Tool Dropdown only contains the “trace“
option.

The trace view should look like this:

Let’s zoom into the following section of the trace:
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After zooming in the trace should look like this:

Notice on the top, there is a StepMarker process followed by NeuronDevice Execution process. This correlates to
the xm.mark_step() call which executes the collected graph of our model on Neuron. For the Operator Level Trace
(“operator”), we’ll be profiling the model operators that occur on Neuron. In other words, the profiler will zoom into
the NeuronDevice Execution process, if the user specifies profile_type='trace'.

374 Chapter 2. ML Frameworks



AWS Neuron

Using Named Blocks for the Trace

What we’ve produced so far is the default behavior of the profiler, however it would be more useful to profile specific
blocks of our code to narrow down onto performance bottlenecks. To do this, use xp.Trace context manager. Replace
the respective code in the training loop with the following:

...
optimizer.zero_grad()
train_x = torch.randn(1,10).to(device)
train_label = torch.tensor([1]).to(device)

with xp.Trace("model_build"):
loss = loss_fn(model(train_x), train_label)

with xp.Trace("loss_backward"):
loss.backward()

with xp.Trace("optimizer_step"):
optimizer.step()

# XLA: collect ops and run them in XLA runtime
xm.mark_step()
...

Run the script, and follow the same TensorBoard steps. Afterwards, the trace should look like this:
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As seen, the model_build, loss_backward and optimizer_step sections have been profiled.

Note: If you are running your training script in a docker container, to view the tensorboard, you should launch the
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docker container using flag: —network host eg. docker run —network host my_image:my_tag

This document is relevant for: Inf2, Trn1, Trn2

Developer Guide

• Developer Guide for Training with PyTorch NeuronX

• How to debug models in PyTorch NeuronX

• Developer Guide for Profiling with PyTorch NeuronX

This document is relevant for: Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

Misc (Training - torch-neuronx)

This document is relevant for: Inf2, Trn1, Trn2

PyTorch Neuron (torch-neuronx) - Supported Operators

Table of Contents

• Operator support

Operator support

The following list the aten operators supported by torch-neuronx.

aten::_s_where
aten::_softmax
aten::_softmax_backward_data
aten::_unsafe_view
aten::add
aten::addcdiv_
aten::addcmul
aten::addmm
aten::bernoulli_
aten::bmm
aten::constant_pad_nd
aten::div
aten::embedding
aten::embedding_dense_backward
aten::empty
aten::expand
aten::fill_
aten::index_select

continues on next page
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Table 2.1 – continued from previous page
aten::_log_softmax
aten::_log_softmax_backward_data
aten::lt
aten::mm
aten::mul
aten::native_batch_norm
aten::native_batch_norm_backward
aten::neg
aten::permute
aten::relu
aten::rsub
aten::select
aten::slice
aten::sqrt
aten::sum
aten::t
aten::tanh
aten::tanh_backward
aten::threshold_backward
aten::transpose
aten::unsqueeze
aten::view
aten::zero_

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

How to prepare trn1.32xlarge for multi-node execution

EFA is a low latency transport that is used for inter-node communication. Multi-node jobs, such as distributed training,
requires EFA to be enabled on every participating trn1/trn1n 32xlarge instance. Please note that EFA is currently not
available on the smaller instances sizes and they cannot be used for running multi-node jobs.

trn1.32xlarge has 8 EFA devices, trn1n.32xlarge has 16 EFA devices. The rest of the document will refer to
trn1.32xlarge but everything in the document also applies to trn1n.32xlarge except for the different number of EFA
devices.

Launching an instance

Before launching trn1 you need to create a security group that allows EFA traffic between the instances. Follow Step1
here: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html#efa-start-security and note the newly
created security group ID. It will be used on the next step.

Determine the region, the AMI, the key and the subnet that will be used to launch trn1.

At the moment launching Trn1 instances with EFA support from the console is not recommended. The instances must
be launched using AWS CLI. To launch trn1.32xlarge instance:

export AMI=<ami>
export SUBNET=<subnet id>

(continues on next page)
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export SG=<security group created on the previous step>
export REG=<AWS region>
export KEY=<the key>

aws ec2 run-instances --region ${REG} \
--image-id ${AMI} --instance-type trn1.32xlarge \
--key-name ${KEY} \
--tag-specifications "ResourceType=instance,Tags=[{Key=Name,Value=\"friendly name\"}]" \
--network-interfaces \
"NetworkCardIndex=0,DeviceIndex=0,Groups=${SG},SubnetId=${SUBNET},InterfaceType=efa" \
"NetworkCardIndex=1,DeviceIndex=1,Groups=${SG},SubnetId=${SUBNET},InterfaceType=efa" \
"NetworkCardIndex=2,DeviceIndex=1,Groups=${SG},SubnetId=${SUBNET},InterfaceType=efa" \
"NetworkCardIndex=3,DeviceIndex=1,Groups=${SG},SubnetId=${SUBNET},InterfaceType=efa" \
"NetworkCardIndex=4,DeviceIndex=1,Groups=${SG},SubnetId=${SUBNET},InterfaceType=efa" \
"NetworkCardIndex=5,DeviceIndex=1,Groups=${SG},SubnetId=${SUBNET},InterfaceType=efa" \
"NetworkCardIndex=6,DeviceIndex=1,Groups=${SG},SubnetId=${SUBNET},InterfaceType=efa" \
"NetworkCardIndex=7,DeviceIndex=1,Groups=${SG},SubnetId=${SUBNET},InterfaceType=efa"

Note that one of the cards is assigned DeviceIndex 0 and the rest are assigned DeviceIndex 1. Cloud-init will configure
instance routing to route outgoing traffic prioritized by the device index field. I.e the outbound traffic will always
egress from the interface with DeviceIndex 0. That avoids network connectivity problems when multiple interfaces are
attached to the same subnet.

To launch trn1n.32xlarge instance:

export AMI=<ami>
export SUBNET=<subnet id>
export SG=<security group created on the previous step>
export REG=<AWS region>
export KEY=<the key>

aws ec2 run-instances --region ${REG} \
--image-id ${AMI} --instance-type trn1.32xlarge \
--key-name ${KEY} \
--tag-specifications "ResourceType=instance,Tags=[{Key=Name,Value=\"friendly name\"}]" \
--network-interfaces \

NetworkCardIndex=0,DeviceIndex=0,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=1,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=2,DeviceIndex=2,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=3,DeviceIndex=3,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=4,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=5,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=6,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=7,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=8,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=9,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=10,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=11,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=12,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=13,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=14,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa \
NetworkCardIndex=15,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa
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Assigning public IP address

Multi-interface instances are not assigned public IP automatically. If you require access to the newly launched trn1
from the Internet you need to assign Elastic IP to the interface with DeviceIndex = 0. To find the right interface either
parse the output of the instance launch command or use describe-instances command:

$ aws ec2 describe-instances --instance-ids i-01b17afa1e6021d6c
{

"Reservations": [
{

"Groups": [],
"Instances": [

{
"AmiLaunchIndex": 0,
"ImageId": "ami-01257e71ecb2f431c",
"InstanceId": "i-01b17afa1e6021d6c",
"InstanceType": "trn1.32xlarge",
.........
"NetworkInterfaces": [

{
"Attachment": {

"AttachTime": "2023-05-19T17:37:26.000Z",
"AttachmentId": "eni-attach-03730388baedd4b96",
"DeleteOnTermination": true,
"DeviceIndex": 0,
"Status": "attached",
"NetworkCardIndex": 4

},
"Description": "",
.........
"InterfaceType": "efa"

},
{

"Attachment": {
"AttachTime": "2023-05-19T17:37:26.000Z",
"AttachmentId": "eni-attach-0e1242371cd2532df",
"DeleteOnTermination": true,
"DeviceIndex": 0,
"Status": "attached",
"NetworkCardIndex": 3

},
"Description": "",
................

}
]

}

The second entry in “NetworkInterfaces” in this example has “DeviceIndex” 0 and should be used to attach EIP.
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Software installation

The software required for EFA operation is distributed via aws-efa-installer package. The package is preinstalled on
Neuron DLAMI. If you’d like to install the latest or if you are using your own AMI follow these steps:

curl -O https://efa-installer.amazonaws.com/aws-efa-installer-latest.tar.gz
wget https://efa-installer.amazonaws.com/aws-efa-installer.key && gpg --import aws-efa-
→˓installer.key
cat aws-efa-installer.key | gpg --fingerprint
wget https://efa-installer.amazonaws.com/aws-efa-installer-latest.tar.gz.sig && gpg --
→˓verify ./aws-efa-installer-latest.tar.gz.sig
tar -xvf aws-efa-installer-latest.tar.gz
cd aws-efa-installer && sudo bash efa_installer.sh --yes
cd
sudo rm -rf aws-efa-installer-latest.tar.gz aws-efa-installer

Containers

aws-efa-installer package must be installed on the instance. That installs both the efa kernel module and the libraries.
The libraries must be accessible to an application running inside a container. This can be accomplished by either
installing aws-efa-installer package inside the container or by making on the instance library installation path available
inside a container.

If installing aws-efa-installer package inside a container pass the flag that disables the kernel module installation:

sudo bash efa_installer.sh --yes --skip-kmod

The location of the libraries is distribution specific:

/opt/amazon/efa/lib # Ubuntu
/opt/amazon/efa/lib64 # AL2

Application execution environment

When running an application make sure the following environment variables are set:

FI_PROVIDER=efa
FI_EFA_USE_DEVICE_RDMA=1
FI_EFA_FORK_SAFE=1 # only required when running on AL2

Appendix - trn1 instance launch example script

#!/bin/bash

set -e

# AWS CLI v2 Installation instructions for Linux:
# curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip"
# unzip awscliv2.zip

(continues on next page)
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# sudo ./aws/install
# $ aws --version
# aws-cli/2.11.20 Python/3.11.3 Linux/5.15.0-1034-aws exe/x86_64.ubuntu.20 prompt/off
# Someone with AWS console admin privileges can create an access key ID and secret for␣
→˓this:
# Configure credentials: aws configure

# Search the AWS AMIs for the most recent "Deep Learning Base Neuron AMI (Ubuntu 20.04)
→˓<Latest_Date>"
# This one is 2023-05-17 - ami-01257e71ecb2f431c
AMI= ... # the ami
KEYNAME= ... # your key
SG= ... # the security group
SUBNET= ... # the subnet
REGION=us-west-2

# Launch instances
echo "Starting instances..."
output=$(aws ec2 --region $REGION run-instances \
--tag-specifications 'ResourceType=instance,Tags=[{Key=Name,Value=_Trainium-Big}]' \
--count 1 \
--image-id $AMI \
--instance-type trn1.32xlarge \
--key-name $KEYNAME \
--network-interfaces "NetworkCardIndex=0,DeviceIndex=0,Groups=$SG,SubnetId=$SUBNET,
→˓InterfaceType=efa" \
"NetworkCardIndex=1,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa" \
"NetworkCardIndex=2,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa" \
"NetworkCardIndex=3,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa" \
"NetworkCardIndex=4,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa" \
"NetworkCardIndex=5,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa" \
"NetworkCardIndex=6,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa" \
"NetworkCardIndex=7,DeviceIndex=1,Groups=$SG,SubnetId=$SUBNET,InterfaceType=efa")

# Parse the output to get the instance IDs
instance_ids=$(echo $output | jq -r .Instances[].InstanceId)
echo "Got created instance IDs: $instance_ids"

# Loop through each instance ID
public_ips=""
for instance_id in $instance_ids; do

echo "Waiting for instance $instance_id to be running..."
aws ec2 wait instance-running --instance-ids $instance_id --region $REGION

echo "Creating SSH public IP newtork inteface for instance $instance_id..."
interface_id=""
INSTANCE_INFO=$(aws ec2 describe-instances --region $REGION --instance-ids $instance_

→˓id)
OUTPUT=$(echo "$INSTANCE_INFO" | jq -r '.Reservations[0].Instances[0].

→˓NetworkInterfaces[] | "\(.Attachment.DeviceIndex),\(.NetworkInterfaceId)"')
echo $OUTPUT

(continues on next page)
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for pair in $OUTPUT; do
IFS="," read -r device_idx ni_id <<< $pair
if [ "$device_idx" == "0" ]; then

interface_id=$ni_id
break

fi
done
if [ "$interface_id" == "" ]; then

exit -1
fi
echo $interface_id

echo "Checking for unassociated Elastic IPs..."
unassociated_eips=$(aws ec2 describe-addresses --region $REGION | jq -r '.Addresses[]␣

→˓| select(.AssociationId == null) | .AllocationId')
if [[ -z "$unassociated_eips" ]]; then

echo "No unassociated Elastic IPs found. Allocating new Elastic IP..."
eip_output=$(aws ec2 allocate-address --domain vpc --region $REGION)
eip_id=$(echo $eip_output | jq -r .AllocationId)
echo "Allocated Elastic IP ID: $eip_id"
eip_public_ip=$(echo $eip_output | jq -r .PublicIp)
echo "Allocated Elastic IP Public IP: $eip_public_ip"
echo "Note that this newly allocated Elasic IP will persist even after the␣

→˓instance termination"
echo "If the Elastic IP is not going to be reused do not forget to delete it"

else
# use the first unassociated Elastic IP found
eip_id=$(echo "$unassociated_eips" | head -n 1)
echo "Found unassociated Elastic IP ID: $eip_id"
eip_public_ip=$(aws ec2 describe-addresses --allocation-ids $eip_id --region

→˓$REGION | jq -r .Addresses[0].PublicIp)
echo "Elastic IP Public IP: $eip_public_ip"

fi
public_ips+="${eip_public_ip} "

echo "Associating Elastic IP with network interface $interface_id..."
aws ec2 associate-address --allocation-id $eip_id --network-interface-id $interface_id␣

→˓--region $REGION
echo "Associated Elastic IP with network interface."

done

echo "The instance has been launched.\nYou can now SSH into $public_ips with key
→˓$KEYNAME.\n"

Note: if you face connectivity issues after launching trn1\trn1n 32xlarge instance on Ubuntu, please follow the trou-
bleshooting instructions mentioned here.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Trn1, Trn2
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PyTorch Neuron (torch-neuronx) for Training Troubleshooting Guide

Table of contents

• General Troubleshooting

• Possible Error Conditions

– Eager debug mode fails with “urllib3.exceptions.URLSchemeUnknown: Not supported URL scheme
http+unix”

– Eager debug mode fails with “TypeError: HTTPConnection.request() got an unexpected keyword ar-
gument ‘chunked’”

– Non-Fatal Error OpKernel (‘op: “TPU*” device_type: “CPU”’)

– XLA runtime error: “Invalid argument: Cannot assign a device for operation”

– Error: “Could not start gRPC server”

– Failed compilation result in the cache

– Compilation errors when placing NeuronCache home directory on NFS/EFS/FSx mounted drive

– Compilation error: “Expect ap datatype to be of type float32 float16 bfloat16 uint8”

– NeuronCore(s) not available - Requested:1 Available:0

– TDRV error “TDRV:exec_consume_infer_status_notification”

– TDRV error “TDRV:tdrv_one_tmpbuf_reserve Number of ONE TMPBUF pages requested exceeded
the max number of pages allowed (requested: <N>, max allowed: 16).”

– Could not open the ndX, close device failed, TDRV not initialized

– Multiworker execution hangs during NCCL init

– NRT init error “One or more engines are running. Please restart device by reloading driver”

– NRT error “ERROR TDRV:kbl_model_add Attempting to load an incompatible model!”

– NRT error “ERROR HAL:aws_hal_sprot_config_remap_entry SPROT remap destination address
must be aligned size”

– NCCL warning : “NCCL WARN Timeout waiting for RX (waited 120 sec) - retrying”

– RPC error: “RPC failed with status = ‘UNAVAILABLE: Socket closed’”

– Error “Assertion `listp->slotinfo[cnt].gen <= GL(dl_tls_generation)’ failed” followed by ‘RPC failed
with status = “UNAVAILABLE: Connection reset by peer”’

– RPC connection error: “RPC failed with status = UNAVAILABLE: Connection reset by peer” not
preceded by any error

– Runtime errors “Missing infer_status notification” followed by “inference timeout”

– Protobuf Error “TypeError: Descriptors cannot not be created directly.”

– TDRV error “Timestamp program stop timeout”

– Compiler error “module ‘numpy’ has no attribute ‘asscalar’”

– Import errors ‘generic_type: type “IrValue” is already registered!’ or ‘generic_type: type
“XlaBuilder” is already registered!’
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– Import error “import _XLAC ImportError: <>/site-packages/_XLAC.cpython-38-x86_64-linux-
gnu.so: undefined symbol”

– Network Connectivity Issue on trn1/trn1n 32xlarge with Ubuntu

– “Too many open files” when running training job

– “undefined symbol”

This document shows common issues users may encounter while using PyTorch-Neuron and provides guidance how
to resolve or work-around them.

General Troubleshooting

For setting up EFA that is needed for multi-node training, please see How to prepare trn1.32xlarge for multi-node
execution

For XLA-related troubleshooting notes see How to debug models in PyTorch Neuron and PyTorch-XLA troubleshooting
guide.

If your multi-worker training run is interrupted, you may need to kill all the python processes (WARNING: this kills
all python processes and reload the driver):

killall -9 python
killall -9 python3
sudo rmmod neuron; sudo modprobe neuron

To turn on RT debug:

os.environ["NEURON_RT_LOG_LEVEL"] = "INFO"

To turn on Neuron NCCL debug:

os.environ["NCCL_DEBUG"] = "WARN"
os.environ["NCCL_DEBUG_SUBSYS"] = "ALL"

If some process crashed during training, you can enable core dumps using ulimit command:

ulimit -S -c unlimited

To see the type of signals that would cause core dumps, see https://www.man7.org/linux/man-pages/man7/signal.7.
html.

Note that core dumps take significant amount of storage, so make sure there is enough free disk space before enabling
core dumps.

On Ubuntu, if Apport is not running, core dump file name is by default “core” in the local directory. To change file
location and name format, modify /proc/sys/kernel/core_pattern (see https://www.kernel.org/doc/html/latest/
admin-guide/sysctl/kernel.html#core-pattern for pattern info). For example, to dump to /tmp with executable filename
and process ID:

echo '/tmp/core.%e.%p' | sudo tee /proc/sys/kernel/core_pattern

For containers, install appropriate dependencies during docker build (“apt-get update && apt-get -y install build-
essential gdb”) and start the container with --ulimit core=-1 to enable core dump and -v /tmp/:/tmp/ to ensure
core dumps to /tmp are preserved when container is stopped or deleted. Dependencies can also be installed after
container is started.
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On Ubuntu, core dumps can also handled by Apport which is disabled by default. To enable Apport, run sudo service
apport start. The /proc/sys/kernel/core_pattern is updated by Apport service. After a crash, look in /var/
log/apport.log for the core dump file name, which should be in located in /var/lib/apport/coredump/.

Once you have the core dump, you can use gdb to debug further (for Python applications, <executable> is python or
python3):

gdb <executable> <core file>

If some process (i.e. XRT server) is killed due to out-of-memory on host (i.e. you see Out of memory: Killed
process <PID> in /var/log/syslog or output of dmesg), there won’t be any core dump generated. However, you
can change to it to kernel panic mode to trigger core dump by setting /proc/sys/vm/panic_on_oom to value of 1 on
the host or from inside container.

On the host where you need sudo (this change will be reflected inside the container also):

echo 1 | sudo tee /proc/sys/vm/panic_on_oom

From inside container where sudo doesn’t work (this change will be reflected on the host also):

echo 1 > /proc/sys/vm/panic_on_oom

Possible Error Conditions

Eager debug mode fails with “urllib3.exceptions.URLSchemeUnknown: Not supported URL scheme
http+unix”

When running with eager debug mode (NEURON_USE_EAGER_DEBUG_MODE=1) using torch-neuronx and
neuronx-cc from releases 2.19.1 and 2.20, you may see the following error:

urllib3.exceptions.URLSchemeUnknown: Not supported URL scheme http+unix

This error is due to requests version >= 2.32. While neuronx-cc pins requests package version be less than 2.32,
installing other packages like transformers could bring in a newer version of requests. To work-around this, you
can pin requests to version 2.31.0 with the following command, which also include urllib3 pinning due to a related
issue noted in the next note:

pip install requests==2.31.0 urllib3==1.26.20

Eager debug mode fails with “TypeError: HTTPConnection.request() got an unexpected keyword
argument ‘chunked’”

When running with eager debug mode (NEURON_USE_EAGER_DEBUG_MODE=1) using torch-neuronx and
neuronx-cc from releases 2.19.1 and 2.20, you may see the following error:

TypeError: HTTPConnection.request() got an unexpected keyword argument 'chunked'

This error is due to urllib3 version >= 2.* and can be a dependency of requests < 2.32. To work-around this, you
can pin urllib3 to version 1.26.20 with the following command (which also include requests pinning due a related
issue noted the previous note):

pip install requests==2.31.0 urllib3==1.26.20
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Non-Fatal Error OpKernel (‘op: “TPU*” device_type: “CPU”’)

During execution using PyTorch Neuron, you may see these non-fatal error messages:

E tensorflow/core/framework/op_kernel.cc:1676] OpKernel ('op: "TPURoundRobin" device_
→˓type: "CPU"') for unknown op: TPURoundRobin
E tensorflow/core/framework/op_kernel.cc:1676] OpKernel ('op: "TpuHandleToProtoKey"␣
→˓device_type: "CPU"') for unknown op: TpuHandleToProtoKey

They don’t affect operation of the PyTorch Neuron and can be ignored.

XLA runtime error: “Invalid argument: Cannot assign a device for operation”

RuntimeError: tensorflow/compiler/xla/xla_client/xrt_computation_client.cc:490 : Check␣
→˓failed: session->session()->Run(session_work->feed_inputs, session_work->outputs_
→˓handles, &outputs) == ::tensorflow::Status::OK() (INVALID_ARGUMENT: Cannot assign a␣
→˓device for operation XRTAllocateFromTensor: {{node XRTAllocateFromTensor}} was␣
→˓explicitly assigned to /job:localservice/replica:0/task:0/device:TPU:0 but available␣
→˓devices are [ /job:localservice/replica:0/task:0/device:CPU:0, /job:localservice/
→˓replica:0/task:0/device:TPU_SYSTEM:0, /job:localservice/replica:0/task:0/device:XLA_
→˓CPU:0 ]. Make sure the device specification refers to a valid device.

[[XRTAllocateFromTensor]] vs. OK)
*** Begin stack trace ***

tensorflow::CurrentStackTrace()

xla::util::MultiWait::Complete(std::function<void ()> const&)

clone
*** End stack trace ***

The above error indicates that the framework was not able to initialize the neuron runtime. If you get the above error,
check for the following:

1. No other process is taking the neuron cores. If yes, you may have to kill that process.

2. If no process is running, try reloading the driver using sudo rmmod neuron; sudo modprobe neuron

Error: “Could not start gRPC server”

If you get “Could not start gRPC server” error, please check if there are any leftover python processes from a previous
interrupted run and terminate them before restarting run.

E0207 17:22:12.592127280 30834 server_chttp2.cc:40] {"created":"@1644254532.
→˓592081429","description":"No address added out of total 1 resolved","file":"external/
→˓com_github_grpc_grpc/src/core/ext/t
ransport/chttp2/server/chttp2_server.cc","file_line":395,"referenced_errors":[{"created":
→˓"@1644254532.592078907","description":"Failed to add any wildcard listeners","file":
→˓"external/com_github_grpc_grpc/s
rc/core/lib/iomgr/tcp_server_posix.cc","file_line":342,"referenced_errors":[{"created":
→˓"@1644254532.592072626","description":"Unable to configure socket","fd":10,"file":
→˓"external/com_github_grpc_grpc/src/c
ore/lib/iomgr/tcp_server_utils_posix_common.cc","file_line":216,"referenced_errors":[{

(continues on next page)
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→˓"created":"@1644254532.592068939","description":"Address already in use","errno":98,
→˓"file":"external/com_github_grpc_grpc/src/core/lib/iomgr/tcp_server_utils_posix_common.
→˓cc","file_line":189,"os_error":"Address already in use","syscall":"bind"}]},{"created":
→˓"@1644254532.592078512","description":"Unable to configure socket"
,"fd":10,"file":"external/com_github_grpc_grpc/src/core/lib/iomgr/tcp_server_utils_posix_
→˓common.cc","file_line":216,"referenced_errors":[{"created":"@1644254532.592077123",
→˓"description":"Address already in
use","errno":98,"file":"external/com_github_grpc_grpc/src/core/lib/iomgr/tcp_server_
→˓utils_posix_common.cc","file_line":189,"os_error":"Address already in use","syscall":
→˓"bind"}]}]}]}
2022-02-07 17:22:12.592170: E tensorflow/core/distributed_runtime/rpc/grpc_server_lib.cc:
→˓545] Unknown: Could not start gRPC server

Failed compilation result in the cache

All compilation results are by default saved in Neuron Persistent Cache. If the Neuron Compiler fails to compile
a graph, we save the failed result in the cache. The reason for doing so is, if the user tries to run the same script, we
want the users to error out early rather than wait for the compilation to progress and see an error at the later stage.
However, there could be certain cases under which a failed compilation may be do you some environment issues. One
possible reason of failure could be, during compilation the process went out of memory. This can happen if you are
running multiple processes in parallel such that not enough memory is available for compilation of graph. Failure due
to such reasons can be easily mitigated by re-running the compilation. In case, you want to retry a failed compilation,
you can do that by passing --retry_failed_compilation as follows:

os.environ['NEURON_CC_FLAGS'] = os.environ.get('NEURON_CC_FLAGS', '') + ' --retry_failed_
→˓compilation'

This would retry the compilation and would replace a failed result in the cache with a successful compilation result.

Compilation errors when placing NeuronCache home directory on NFS/EFS/FSx mounted drive

Currently, NeuronCache default root directory is /var/tmp which is local to the instance you are running on. You
can modify the location of the NeuronCache root directory using NEURON_CC_FLAGS='--cache_dir=<root dir>'.
However, when the NeuronCache directory is placed in a directory that is part of a NFS mounted drive shared among
multiple instances, you may encounter file errors such as file not found, file corruption, or KeyError when running
multi-instance training:

KeyError: 'neff_cache2/neuron-compile-cache/USER_neuroncc-1.0.48875.0+7437fbf18/MODULE_
→˓7223055628515330524/MODULE_0_SyncTensorsGraph.14_7223055628515330524_compute1-dy-
→˓training-2-1-e859998e-3035-5df63dab5ce63'

This is a result of limitations to file locking on NFS. EFS/FSx also exhibit similar limitation. The workaround is to setup
separate NeuronCache root directories for each worker instance, such as NEURON_CC_FLAGS="--cache_dir=$HOME/
neuron_cache/bert/`hostname`", where the home directory is shared among worker instances as in ParallelClus-
ter.

Consider the use case of a ParallelCluster with SLURM cluster management. The home directory of the head node
is shared via NFS with worker instances. Also, SLURM would terminate the idle worker instances when the cluster
is configured as dynamic auto-scaling cluster, and the default cache in the terminated worker instance’s /var/tmp is
deleted. So to persist the cache across runs separated by a cluster idle period, we use the workaround above to create
separate NeuronCache root directories for each worker instance. For example, see BERT ParallelCluster script.

388 Chapter 2. ML Frameworks

https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/training/dp_bert_hf_pretrain/run_dp_bert_large_hf_pretrain_bf16_s128.sh#L42


AWS Neuron

Compilation error: “Expect ap datatype to be of type float32 float16 bfloat16 uint8”

If an XLA example fails to run because of failed compilation and one of the error messages is “Expect ap datatype to
be of type float32 float16 bfloat16 uint8”, then please set the environment variable XLA_USE_32BIT_LONG=1 in your
script:

os.environ['XLA_USE_32BIT_LONG'] = '1'

11/18/2021 04:51:25 PM WARNING 34567 [StaticProfiler]: matmul-based transposes inserted␣
→˓by penguin takes up 93.66 percent of all matmul computation
terminate called after throwing an instance of 'std::runtime_error'
what(): === BIR verification failed ===

Reason: Expect ap datatype to be of type float32 float16 bfloat16 uint8
Instruction: I-545-0
Opcode: Matmult
Input index: 0
Argument AP:
Access Pattern: [[1,8],[1,1],[1,1]]
Offset: 0
Memory Location: {compare.85-t604_i0}@SB<0,0>(8x2)#Internal DebugInfo: <compare.
→˓85||uint16||UNDEF||[8, 1, 1]>

NeuronCore(s) not available - Requested:1 Available:0

When you see “NeuronCore(s) not available” please terminate processes that may be holding the NeuronCores and
terminate any neuron-top sessions that are running. Also check if someone else is using the system. Then do “sudo
rmmod neuron; sudo modprobe neuron” to reload the driver.

2021-Nov-15 15:21:28.0231 7245:7245 ERROR NRT:nrt_allocate_neuron_cores NeuronCore(s)␣
→˓not available - Requested:nc1-nc1 Available:0
2021-11-15 15:21:28.231864: F ./tensorflow/compiler/xla/service/neuron/neuron_runtime.h:
→˓1037] Check failed: status == NRT_SUCCESS NEURONPOC : nrt_init failed. Status = 1

Often when you run multi-worker training, there can be many python processes leftover after a run is interrupted. To
kill all python processes, run the follow (WARNING: this kills all python processes on the system) then reload the
driver:

killall -9 python
killall -9 python3
sudo rmmod neuron; sudo modprobe neuron

TDRV error “TDRV:exec_consume_infer_status_notification”

If you see TDRV error “TDRV:exec_consume_infer_status_notification”, try reloading the driver using sudo
modprobe -r neuron; sudo modprobe neuron;.

2022-Mar-10 18:51:19.07392022-Mar-10 18:51:19.0739 17821:17931 ERROR TDRV:exec_consume_
→˓infer_status_notifications 17822:18046 ERROR TDRV:exec_consume_infer_status_
→˓notifications Unexpected number of CC notifications: mod->cc_op_count=1, cc_start_
→˓cnt=0, cc_end_cnt=0Unexpected number of CC notifications: mod->cc_op_count=1, cc_

(continues on next page)
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→˓start_cnt=0, cc_end_cnt=0

2022-Mar-10 18:51:19.07392022-Mar-10 18:51:19.0739 17821:17931 ERROR TDRV:exec_consume_
→˓infer_status_notifications 17822:18046 ERROR TDRV:exec_consume_infer_status_
→˓notifications (NON-FATAL, Ignoring) inference timeout (180000 ms) on Neuron Device 0␣
→˓NC 0, waiting for cc status notifications.

(NON-FATAL, Ignoring) inference timeout (180000 ms) on Neuron Device 0 NC 1, waiting for␣
→˓cc status notifications.

TDRV error “TDRV:tdrv_one_tmpbuf_reserve Number of ONE TMPBUF pages requested exceeded
the max number of pages allowed (requested: <N>, max allowed: 16).”

If you see the TDRV error “TDRV:tdrv_one_tmpbuf_reserve Number of ONE TMPBUF pages requested exceeded
the max number of pages allowed (requested: <N>, max allowed: 16)”, it maybe due to model tensors requiring more
device memory then available. A solution is to try training with a smaller data batch size.

ERROR TDRV:tdrv_one_tmpbuf_reserve Number of ONE TMPBUF pages requested␣
→˓exceeded the max number of pages allowed (requested: 28, max allowed: 16).
ERROR TDRV:copy_and_stage_mr Failed to reserve one tmpbuf memory
ERROR TDRV:kbl_model_add copy_and_stage_mr() error
W tensorflow/core/distributed_runtime/rpc/grpc_remote_master.cc:157] RPC failed with␣
→˓status = "UNAVAILABLE: Socket closed" and grpc_error_string = "{"created":"@1669183391.
→˓155135683","description":"Error received from peer ipv4:172.31.58.24:43941","file":
→˓"external/com_github_grpc_grpc/src/core/lib/surface/call.cc","file_line":1056,"grpc_
→˓message":"Socket closed","grpc_status":14}", maybe retrying the RPC

Could not open the ndX, close device failed, TDRV not initialized

If you see error messages stating “Could not open the ndX” (where X is an integer from 0..15), please run neuron-ls
and ensure that you are able to see all 16 Neuron devices in the output. If one or more devices are missing please report
the issue to aws-neuron-support@amazon.com with the instance ID and a screen capture of neuron-ls output.

2021-Nov-11 15:33:20.0161 7912:7912 ERROR TDRV:tdrv_init_mla_phase1 ␣
→˓ Could not open the nd0
2021-Nov-11 15:33:20.0161 7912:7912 ERROR TDRV:tdrv_destroy_one_mla ␣
→˓ close device failed
2021-Nov-11 15:33:20.0161 7912:7912 ERROR TDRV:tdrv_destroy ␣
→˓ TDRV not initialized
2021-Nov-11 15:33:20.0161 7912:7912 ERROR NRT:nrt_init ␣
→˓ Failed to initialize devices, error:1
2021-11-11 15:33:20.161331: F ./tensorflow/compiler/xla/service/neuron/neuron_runtime.h:
→˓1033] Check failed: status == NRT_SUCCESS NEURONPOC : nrt_init failed. Status = 1
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Multiworker execution hangs during NCCL init

When your multi-worker execution hangs during NCCL init, you can try to reserve the port used by environment
variable NEURON_RT_ROOT_COMM_ID by (here we use host:port localhost:48620 as an example but you can use any
free port and root node’s host IP):

sudo sysctl -w net.ipv4.ip_local_reserved_ports=48620

Then set the environment variable NEURON_RT_ROOT_COMM_ID in your script:

os.environ["NEURON_RT_ROOT_COMM_ID"] = "localhost:48620"

NRT init error “One or more engines are running. Please restart device by reloading driver”

If you see an error stating “One or more engines are running. Please restart device by reloading driver” please follow
the instruction and reload the driver using “sudo modprobe -r neuron; sudo modprobe neuron;”.

2021-Nov-15 20:23:27.0280 3793:3793 ERROR TDRV:tpb_eng_init_hals_v2 CRITICAL HW ERROR:␣
→˓One or more engines are running. Please restart device by reloading driver:
sudo modprobe -r neuron; sudo modprobe neuron;
2021-Nov-15 20:23:27.0280 3793:3793 ERROR TDRV:tdrv_init_one_mla_phase2 nd0 nc0 HAL init␣
→˓failed. error:1

NRT error “ERROR TDRV:kbl_model_add Attempting to load an incompatible model!”

If you see an NRT error “ERROR TDRV:kbl_model_add Attempting to load an incompatible model!” this means that
the compiler neuronx-cc used to compile the model is too old. See installation instruction to update to latest compiler.

NRT error “ERROR HAL:aws_hal_sprot_config_remap_entry SPROT remap destination address
must be aligned size”

If you see an NRT error “ERROR HAL:aws_hal_sprot_config_remap_entry SPROT remap destination address must
be aligned size”, please check the kernel version and upgrade it to the distribution’s latest kernel.

For example, on Ubuntu 18.04.6 LTS, the kernel version 4.15.0-66-generic is known to cause this error when running
MLP tutorial. This is due to a known bug in the kernel in aligned memory allocation. To fix this issue, please upgrade
your kernel to latest version (i.e. 4.15.0-171-generic):

uname -a
sudo apt-get update
sudo apt-get upgrade
sudo apt-get dist-upgrade

Please reboot after the upgrade. Use “uname -a” to check kernel version again after reboot.
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NCCL warning : “NCCL WARN Timeout waiting for RX (waited 120 sec) - retrying”

When running multi-worker training, if a graph has collective communication operator like an all_reduce, it requires
all the workers involved in the collective communication to load the graph in the runtime at approximately same time.
If any of the worker doesn’t load the graph within a 120 sec window from the first model load by any of the worker,
you would see warnings like NCCL WARN Timeout waiting for RX (waited 120 sec) - retrying. When
you see such warnings check for the following in the log messages:

1. One of the workers is compiling a graph: In multi-worker training, there is a chance that each worker builds a slightly
different graph. This would result in cache miss and can result in compilation. Since the compilations during training
run are serialized, the first worker can compile and load the graph with collective communication. It would then wait
for 120 secs for other works to join. If they don’t show up because they are compiling their own graphs, first worker
would start throwing a warning message as above. The warning in this case is non-fatal and would go away once all
workers have compiled their respective graphs and then loaded them. To identify this scenario, look for No candidate
found under .... logs around the warning. You should also see ..... which indicates compilation is in progress.

2. Server on one of the nodes crashed: In distributed training across multiple nodes, if the server on one node crashed,
the workers on other nodes would keep waiting on model load and you would see above timeout logs on those nodes.
To identify if the server crashed, check if you see the following error on any of the nodes:

`RPC failed with status = "UNAVAILABLE: Socket closed" and grpc_error_string = "{"created
→˓":"@1664146011.016500243","description":"Error received from peer ipv4:10.1.24.109:
→˓37379","file":"external/com_github_grpc_grpc/src/core/lib/surface/call.cc","file_line":
→˓1056,"grpc_message":"Socket closed","grpc_status":14}", maybe retrying the RPC`

If you see the above error, then it means there is a server crash and you need to cancel the traning run.

RPC error: “RPC failed with status = ‘UNAVAILABLE: Socket closed’”

When you see the above error, it means that the xrt server crashed. When you see such an error, look for the following:

1. Check for any error logs before the RPC error. That should indicate the root cause of server crash. Note: The
actual error log might be buried because of all the RPC error logs that swamp the logs.

2. Sometimes the server can crash because of host OOM. This can happen when we are loading and saving check-
points. In such cases, you only see RPC errors and no other log. You can check if any instance is going out of
memory by using tools like dmesg

Error “Assertion `listp->slotinfo[cnt].gen <= GL(dl_tls_generation)’ failed” followed by ‘RPC failed
with status = “UNAVAILABLE: Connection reset by peer”’

The error “Assertion `listp->slotinfo[cnt].gen <= GL(dl_tls_generation)’ failed” is intermittent and occurs when using
glibc 2.26. To find out the glibc version you have, you can run ldd --version. The workaround is to use Ubuntu 20
where glibc is 2.27.

INFO: Inconsistency detected by ld.so: ../elf/dl-tls.c: 488: _dl_allocate_tls_init:␣
→˓Assertion `listp->slotinfo[cnt].gen <= GL(dl_tls_generation)' failed!
INFO: 2022-10-03 02:16:04.488054: W tensorflow/core/distributed_runtime/rpc/grpc_remote_
→˓master.cc:157] RPC failed with status = "UNAVAILABLE: Connection reset by peer" and␣
→˓grpc_error_string = "{"created":"@1664763364.487962663","description":"Error received␣
→˓from peer ipv4:10.0.9.150:41677","file":"external/com_github_grpc_grpc/src/core/lib/
→˓surface/call.cc","file_line":1056,"grpc_message":"Connection reset by peer","grpc_
→˓status":14}", maybe retrying the RPC
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RPC connection error: “RPC failed with status = UNAVAILABLE: Connection reset by peer” not
preceded by any error

This error may not be preceded by another error like shown in the previous section. In this case, the RPC connection
error usually happens when we do distributed training across multiple nodes. When you see such error, please wait for
a few minutes. It might be because some node is taking time to setup and hence the other node is not able to connect
to it just yet. Once, all nodes are up, training should resume.

Runtime errors “Missing infer_status notification” followed by “inference timeout”

If you get a timeout error like below:

ERROR TDRV:exec_consume_tpb_status_notifications Missing infer_status notification:␣
→˓(end:4)
ERROR TDRV:exec_consume_infer_status_notifications (FATAL-RT-UNDEFINED-STATE) inference␣
→˓timeout (600000 ms) on Neuron Device 4 NC 1, waiting for execution completion␣
→˓notification

It maybe due to long graph execution time causing synchronization delays exceeding the default timeout. Please try
increasing the timeout to larger value using NEURON_RT_EXEC_TIMEOUT (unit in seconds) and see if the problem is
resolved.

Protobuf Error “TypeError: Descriptors cannot not be created directly.”

If you install torch-neuronx after neuronx-cc, you may get the Protobuf error “TypeError: Descriptors cannot not be
created directly.”. To fix this, please reinstall neuronx-cc using “pip install –force-reinstall neuronx-cc”.

Traceback (most recent call last):
File "./run_glue.py", line 570, in <module>
main()

File "./run_glue.py", line 478, in main
data_collator=data_collator,

File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/
→˓transformers/trainer.py", line 399, in __init__

callbacks, self.model, self.tokenizer, self.optimizer, self.lr_scheduler
File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/

→˓transformers/trainer_callback.py", line 292, in __init__
self.add_callback(cb)

File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/
→˓transformers/trainer_callback.py", line 309, in add_callback

cb = callback() if isinstance(callback, type) else callback
File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/

→˓transformers/integrations.py", line 390, in __init__
from torch.utils.tensorboard import SummaryWriter # noqa: F401

File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/
→˓torch/utils/tensorboard/__init__.py", line 10, in <module>

from .writer import FileWriter, SummaryWriter # noqa: F401
File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/

→˓torch/utils/tensorboard/writer.py", line 9, in <module>
from tensorboard.compat.proto.event_pb2 import SessionLog

File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/
(continues on next page)
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→˓tensorboard/compat/proto/event_pb2.py", line 17, in <module>
from tensorboard.compat.proto import summary_pb2 as tensorboard_dot_compat_dot_proto_

→˓dot_summary__pb2
File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/

→˓tensorboard/compat/proto/summary_pb2.py", line 17, in <module>
from tensorboard.compat.proto import tensor_pb2 as tensorboard_dot_compat_dot_proto_

→˓dot_tensor__pb2
File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/

→˓tensorboard/compat/proto/tensor_pb2.py", line 16, in <module>
from tensorboard.compat.proto import resource_handle_pb2 as tensorboard_dot_compat_

→˓dot_proto_dot_resource__handle__pb2
File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/

→˓tensorboard/compat/proto/resource_handle_pb2.py", line 16, in <module>
from tensorboard.compat.proto import tensor_shape_pb2 as tensorboard_dot_compat_dot_

→˓proto_dot_tensor__shape__pb2
File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/

→˓tensorboard/compat/proto/tensor_shape_pb2.py", line 42, in <module>
serialized_options=None, file=DESCRIPTOR),

File "/home/ec2-user/aws_neuron_venv_pytorch_p37_exp/lib64/python3.7/site-packages/
→˓google/protobuf/descriptor.py", line 560, in __new__

_message.Message._CheckCalledFromGeneratedFile()
TypeError: Descriptors cannot not be created directly.
If this call came from a _pb2.py file, your generated code is out of date and must be␣
→˓regenerated with protoc >= 3.19.0.
If you cannot immediately regenerate your protos, some other possible workarounds are:
1. Downgrade the protobuf package to 3.20.x or lower.
2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python␣
→˓parsing and will be much slower).

TDRV error “Timestamp program stop timeout”

If you see TDRV error “Timestamp program stop timeout”, i.e. when rerunning a training script after it was interrupted,
try first reloading the driver using sudo modprobe -r neuron; sudo modprobe neuron; (make sure neuron-top
and/or neuron-monitor are not running).

2022-Aug-31 04:59:21.0546 117717:117717 ERROR TDRV:tsync_wait_eng_stop ␣
→˓ nd0 nc0 Timestamp program stop timeout (1000 ms)
2022-Aug-31 04:59:21.0546 117717:117717 ERROR TDRV:tsync_wait_nc_stop ␣
→˓ nd0 nc0 Error while waiting for timestamp program to end on TPB eng 0
2022-Aug-31 04:59:21.0546 117717:117717 ERROR TDRV:tsync_timestamps_finish ␣
→˓ nd0 nc0 Failed to stop neuron core
2022-Aug-31 04:59:21.0546 117717:117717 ERROR TDRV:tdrv_tsync_timestamps ␣
→˓ nd0 nc0 Failed to end timestamp sync programs
2022-Aug-31 04:59:22.0768 117717:117717 ERROR TDRV:tdrv_destroy ␣
→˓ TDRV not initialized
2022-Aug-31 04:59:22.0768 117717:117717 ERROR NRT:nrt_init ␣
→˓ Failed to initialize devices, error:5
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Compiler error “module ‘numpy’ has no attribute ‘asscalar’”

When you have a newer version of numpy in the Python environment, compilations may fail with the “error mod-
ule ‘numpy’ has no attribute ‘asscalar’”. Please note the neuronx-cc has the following dependency on numpy
“numpy<=1.20.0,>=1.13.3”. To workaround this error, please do “pip install –force-reinstall neuronx-cc” to reinstall
neuronx-cc with the proper dependencies.

ERROR 227874 [neuronx-cc]:␣
→˓***************************************************************
ERROR 227874 [neuronx-cc]: An Internal Compiler Error has occurred
ERROR 227874 [neuronx-cc]:␣
→˓***************************************************************
ERROR 227874 [neuronx-cc]:
ERROR 227874 [neuronx-cc]: Error message: module 'numpy' has no attribute 'asscalar'
ERROR 227874 [neuronx-cc]:
ERROR 227874 [neuronx-cc]: Error class: AttributeError
ERROR 227874 [neuronx-cc]: Error location: Unknown
ERROR 227874 [neuronx-cc]: Version information:
ERROR 227874 [neuronx-cc]: NeuronX Compiler version 2.1.0.76+2909d26a2
ERROR 227874 [neuronx-cc]:
ERROR 227874 [neuronx-cc]: HWM version 2.1.0.7-64eaede08
ERROR 227874 [neuronx-cc]: NEFF version Dynamic
ERROR 227874 [neuronx-cc]: TVM not available
ERROR 227874 [neuronx-cc]: NumPy version 1.23.3
ERROR 227874 [neuronx-cc]: MXNet not available
ERROR 227874 [neuronx-cc]:

Import errors ‘generic_type: type “IrValue” is already registered!’ or ‘generic_type: type
“XlaBuilder” is already registered!’

When you encounter a PyTorch import error ‘import _XLAC . . . generic_type: type “IrValue” is already registered!’
or ‘import _XLAC . . . generic_type: type “XlaBuilder” is already registered!’, please check that TensorFlow and/or
JAX are not installed in the Python environment. If they are installed, please uninstall them.

Import error “import _XLAC ImportError: <>/site-packages/_XLAC.cpython-38-x86_64-linux-gnu.so:
undefined symbol”

When you encounter a PyTorch import error “import _XLAC ImportError:
<>/site-packages/_XLAC.cpython-38-x86_64-linux-gnu.so: undefined symbol” during execution, please check:

1. TensorFlow and/or JAX are not installed in the Python environment. If they are installed, please uninstall
them.

2. The installed PyTorch (torch) package major/minor versions match the installed torch-neuronx package’s
major/minor versions (ie. 1.11). If they don’t match, please install the version of PyTorch that matches
torch-neuronx.

Traceback (most recent call last):
File "/opt/ml/mlp_train.py", line 11, in <module>
import torch_xla.core.xla_model as xm

File "/usr/local/lib/python3.8/site-packages/torch_xla/__init__.py", line 117, in
→˓<module>

(continues on next page)
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(continued from previous page)

import _XLAC
ImportError: /usr/local/lib/python3.8/site-packages/_XLAC.cpython-38-x86_64-linux-gnu.so:
→˓ undefined symbol: _ZNK3c1010TensorImpl7stridesEv

NaNs seen with transformers version >= 4.21.0 when running HF BERT fine-tuning or pretraining
with XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1

When running HuggingFace BERT (any size) fine-tuning tutorial or pretraining tutorial with transformers version >=
4.21.0 and using XLA_USE_BF16=1 or XLA_DOWNCAST_BF16=1, you will see NaNs in the loss immediately at
the first step. More details on the issue can be found at pytorch/xla#4152. The workaround is to use 4.20.0 or earlier (the
tutorials currently recommend version 4.15.0) or add transformers.modeling_utils.get_parameter_dtype =
lambda x: torch.bfloat16 to the Python script.

Network Connectivity Issue on trn1/trn1n 32xlarge with Ubuntu

Description
Ubuntu distributions have network connectivity issues when multiple interfaces are connected to the same subnet.
trn1/trn1n 32xlarge comes with 8/16 network interfaces. (To launch trn1/trn1n with 8/16 interfaces please follow here)

AWS publishes a package that installs a helper service to address the issue. This service runs at the startup, creates the
appropriate netplan files, updates the netplan and the the instance networking and terminates.

Note that the following fix is only required on instances launched using generic Ubuntu AMIs. Neuron AMIs and
instances launched via ParalleCluster do not require the fix.

Patch to fix networking on a multi-interface instance

wget -O /tmp/aws-ubuntu-eni-helper.deb 'https://github.com/aws-samples/aws-efa-nccl-
→˓baseami-pipeline/blob/master/nvidia-efa-ami_base/networking/aws-ubuntu-eni-helper_0.3-
→˓1_all.deb?raw=true'
sudo apt install /tmp/aws-ubuntu-eni-helper.deb -y
sudo systemctl enable aws-ubuntu-eni-helper.service
sudo systemctl start aws-ubuntu-eni-helper.service

How to apply the patch?
The following steps could be followed to resolve this issue:

• Launch trn1.32xl from AWS console (starts with single interface, does not suffer from the multi-interface
issue)

• Apply the patch on this newly launched single-interface instance

• Create a new AMI from this instance

• Launch an 8 or 16 interface instance using that AMI.

Note: The patch installs and enables the service but does not run it. This is intentional. The service will run at the
startup when the AMI is used to launch a multi-interface instance.

FAQs
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Note: Neuron DLAMI has the patch installed, users are always encouraged to launch the instances using the DLAMI
which does not require any fix. Please refer to the Set Up Guide to know how to launch an instance using DLAMI.

“Too many open files” when running training job

When running a large model training with several workers, it can result in errors like the following.

2023-Jun-14 19:05:29.0312 4112959:4113326 [23] bootstrap.cc:106 CCOM WARN Call to accept␣
→˓failed : Too many open files
2023-Jun-14 19:05:29.0312 4112959:4113263 [14] include/socket.h:438 CCOM WARN Net :␣
→˓Socket creation failed : Too many open files
2023-Jun-14 19:05:29.0312 4112959:4113326 ERROR ENC:ncclBootstrapRecv ␣
→˓ failed neuronBootstrapRecv request to NCCL
2023-Jun-14 19:05:29.0312 4112959:4113249 [12] bootstrap.cc:106 CCOM WARN Call to accept␣
→˓failed : Too many open files
2023-Jun-14 19:05:29.0312 4112959:4113263 ERROR ENC:ncclBootstrapSend ␣
→˓ failed neuronBootstrapSend request to NCCL2023-Jun-14 19:05:29.03122023-Jun-14 19:
→˓05:29.0312 4112959:4113270 [15] bootstrap.cc:106 CCOM WARN Call to accept failed : Too␣
→˓many open files

This can result when the default OS limits is low. The hard and soft limits can be set on OS using the following
commands or by manually opening and setting the limits.

sudo sed -i 'H;1h;$!d;x;/hard *nofile/!s/$/\n* hard nofile 65536/' /etc/security/limits.
→˓conf
sudo sed -i 'H;1h;$!d;x;/soft *nofile/!s/$/\n* soft nofile 65536/' /etc/security/limits.
→˓conf
sudo sed -i 's/^#*\(\*\|\s*\*\)\s*soft\s*nofile\s*[0-9]\+$/\1 soft nofile 65536/' /etc/
→˓security/limits.conf
sudo sed -i 's/^#*\(\*\|\s*\*\)\s*hard\s*nofile\s*[0-9]\+$/\1 hard nofile 65536/' /etc/
→˓security/limits.conf
sudo sed -i 's/^#*\(\*\|\s*\*\)\s*soft\s*nofile\s*[0-9]\+$/\1 soft nofile 65536/' /etc/
→˓security/limits.d/01_efa.conf || true
sudo sed -i 's/^#*\(\*\|\s*\*\)\s*hard\s*nofile\s*[0-9]\+$/\1 hard nofile 65536/' /etc/
→˓security/limits.d/01_efa.conf || true

The 01_efa.conf file is created as part of the EFA installation and needs to be updated. If EFA driver is not installed
the file 01_efa.conf doesn’t exist and the sed commands will fail with No such file or directory. If there are other files
under limits.d with file limits they need to be updated as well.

“undefined symbol”

To maintain compatibility with the packages vended publicly in Pypi, AWS Neuron python packages contain binary
extensions that are compiled with the pre-2011 libstdc++ application binary interface (ABI). If a custom version of
a package - such as torch - is compiled using a modern compiler, it can result in “undefined symbol” errors due to
mismatches between the package and AWS Neuron package.

To support this situation, we provide alternative versions of AWS Neuron packages that are compiled according to the
newer 2011 ABI. For information on how to use these packages, see pytorch-install-cxx11.

This document is relevant for: Trn1, Trn2
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• PyTorch Neuron (torch-neuronx) - Supported Operators

• How to prepare trn1.32xlarge for multi-node execution

• PyTorch Neuron (torch-neuronx) for Training Troubleshooting Guide

• PyTorch Neuron (torch-neuronx) release notes

This document is relevant for: Inf2, Trn1, Trn2

Setup (torch-neuronx)

Tutorials

• Hugging Face BERT Pretraining Tutorial (Data-Parallel)

• Multi-Layer Perceptron Training Tutorial

• PyTorch Neuron for Trainium Hugging Face BERT MRPC task finetuning using Hugging Face Trainer API

• Fine-tune T5 model on Trn1

• ZeRO-1 Tutorial

• Analyze for Training Tutorial

• Neuron Custom C++ Operators in MLP Training

• Neuron Custom C++ Operators Performance Optimization

Note: To use Jupyter Notebook see:

• setup-jupyter-notebook-steps-troubleshooting

• running-jupyter-notebook-as-script

Additional Examples

• AWS Neuron Reference for Nemo Megatron GitHub Repository

• AWS Neuron Samples for EKS

• AWS Neuron Samples for AWS ParallelCluster

• AWS Neuron Samples GitHub Repository

API Reference Guide

• PyTorch NeuronX neuron_parallel_compile CLI

• Neuron Persistent Cache

• PyTorch NeuronX Environment Variables

• PyTorch NeuronX Profiling API

398 Chapter 2. ML Frameworks

https://github.com/aws-neuron/neuronx-nemo-megatron
https://github.com/aws-neuron/aws-neuron-eks-samples
https://github.com/aws-neuron/aws-neuron-parallelcluster-samples
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training


AWS Neuron

Developer Guide

• Developer Guide for Training with PyTorch NeuronX

• How to debug models in PyTorch NeuronX

• Developer Guide for Profiling with PyTorch NeuronX

Misc

• PyTorch Neuron (torch-neuronx) - Supported Operators

• How to prepare trn1.32xlarge for multi-node execution

• PyTorch Neuron (torch-neuronx) for Training Troubleshooting Guide

• PyTorch Neuron (torch-neuronx) release notes

This document is relevant for: Trn1, Trn2

2.1.5 PyTorch NeuronX

PyTorch NeuronX for training on Trn1 and Trn2 Pytorch NeuronX for inference on Inf2, Trn1, and Trn2

2.1.6 PyTorch Neuron

PyTorch Neuron for inference on Inf1 This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

2.2 JAX Neuron (beta)

JAX Neuron is a software package containing Neuron-specific JAX features, such as the Neuron NKI JAX interface. It
also serves as a meta-package for providing a tested combination of the jax-neuronx, jax, jaxlib, libneuronxla
, and neuronx-cc packages.

This document is relevant for: Inf2, Trn1, Trn2

2.2.1 JAX Neuron plugin Setup

The JAX Neuron plugin is a set of modularized JAX plugin packages integrating AWS Trainium and Inferentia machine
learning accelerators into JAX as pluggable devices. It includes the following Python packages, all hosted on the AWS
Neuron pip repository.

• libneuronxla: A package containing Neuron’s integration into JAX’s runtime PJRT, built using the PJRT C-
API plugin mechanism. Installing this package enables using Trainium and Inferentia natively as JAX devices.

• jax-neuronx: A package containing Neuron-specific JAX features, such as the Neuron NKI JAX inter-
face. It also serves as a meta-package for providing a tested combination of the jax-neuronx, jax, jaxlib,
libneuronxla, and neuronx-cc packages. Making proper use of the features provided in jax-neuronx will
unleash the full potential of Trainium and Inferentia.
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Note: If you are facing a connectivity issue during the model loading process on a Trn1 instance with Ubuntu, that
could probably be because of Ubuntu limitations with multiple interfaces. To solve this problem, please follow the
steps mentioned here.

Users are highly encouraged to use DLAMI to launch the instances, since DLAMIs come with the required fix.

Launch the Instance

• To launch an instance, follow the instructions at launch an Amazon EC2 Instance. Make sure to select the correct
instance type on the EC2 console.

• For more information about instance sizes and pricing, see Amazon EC2 Trn1 Instances and Amazon EC2 Inf2
Instances

• Select Ubuntu Server 22 AMI.

• When launching a Trn1, adjust your primary EBS volume size to a minimum of 512GB.

• After launching the instance, follow the instructions in Connect to your instance to connect to the instance.

Install Drivers and Tools

Ubuntu

# Configure Linux for Neuron repository updates
. /etc/os-release
sudo tee /etc/apt/sources.list.d/neuron.list > /dev/null <<EOF
deb https://apt.repos.neuron.amazonaws.com ${VERSION_CODENAME} main
EOF
wget -qO - https://apt.repos.neuron.amazonaws.com/GPG-PUB-KEY-AMAZON-AWS-NEURON.PUB |␣
→˓sudo apt-key add -

# Update OS packages
sudo apt-get update -y

# Install OS headers
sudo apt-get install linux-headers-$(uname -r) -y

# Install git
sudo apt-get install git -y

# install Neuron Driver
sudo apt-get install aws-neuronx-dkms=2.* -y

# Install Neuron Runtime
sudo apt-get install aws-neuronx-collectives=2.* -y
sudo apt-get install aws-neuronx-runtime-lib=2.* -y

# Install Neuron Tools
sudo apt-get install aws-neuronx-tools=2.* -y

# Add PATH
export PATH=/opt/aws/neuron/bin:$PATH
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Amazon Linux 2023

# Configure Linux for Neuron repository updates
sudo tee /etc/yum.repos.d/neuron.repo > /dev/null <<EOF
[neuron]
name=Neuron YUM Repository
baseurl=https://yum.repos.neuron.amazonaws.com
enabled=1
metadata_expire=0
EOF
sudo rpm --import https://yum.repos.neuron.amazonaws.com/GPG-PUB-KEY-AMAZON-AWS-NEURON.
→˓PUB

# Update OS packages
sudo yum update -y

# Install OS headers
sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r) -y

# Install git
sudo yum install git -y

# install Neuron Driver
sudo yum install aws-neuronx-dkms-2.* -y

# Install Neuron Runtime
sudo yum install aws-neuronx-collectives-2.* -y
sudo yum install aws-neuronx-runtime-lib-2.* -y

# Install Neuron Tools
sudo yum install aws-neuronx-tools-2.* -y

# Add PATH
export PATH=/opt/aws/neuron/bin:$PATH

Install the JAX Neuron Plugin

We provide two methods for installing the JAX Neuron plugin. The first is to install the jax-neuronx meta-
package from the AWS Neuron pip repository. This method provides a production-ready JAX environment where
jax-neuronx’s major dependencies, namely jax, jaxlib, libneuronxla, and neuronx-cc, have undergone thor-
ough testing by the AWS Neuron team and will have their versions pinned during installation.

python3 -m pip install jax-neuronx[stable] --extra-index-url=https://pip.repos.neuron.
→˓amazonaws.com

The second is to install packages jax, jaxlib, libneuronxla, and neuronx-cc separately, with jax-neuronx being
an optional addition. Because libneuronxla supports a broad range of jaxlib versions through the PJRT C-API
mechanism, this method provides flexibility when choosing jax and jaxlib versions, enabling JAX users to bring the
JAX Neuron plugin into their own JAX environments.

python3 -m pip install jax==0.4.31 jaxlib==0.4.31 jax-neuronx libneuronxla neuronx-cc==2.
→˓* --extra-index-url=https://pip.repos.neuron.amazonaws.com

We can now run some simple JAX programs on the Trainium or Inferentia accelerators.
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~$ python3 -c 'import jax; print(jax.numpy.multiply(1, 1))'
Platform 'neuron' is experimental and not all JAX functionality may be correctly␣
→˓supported!
.
Compiler status PASS
1

Compatibility between packages jaxlib and libneuronxla can be determined from PJRT C-API version. For more
information, see PJRT integration guide.

To determine compatible JAX versions, you can use the libneuronxla.supported_clients API for querying
known supported client packages and their versions.

Help on function supported_clients in module libneuronxla.version:

supported_clients()
Return a description of supported client (jaxlib, torch-xla, etc.) versions,
as a list of strings formatted as `"<package> <version> (PJRT C-API <c-api version>)

→˓"`.
For example,
>>> import libneuronxla
>>> libneuronxla.supported_clients()
['jaxlib 0.4.31 (PJRT C-API 0.54)', 'torch_xla 2.2.0 (PJRT C-API 0.35)', 'torch_xla␣

→˓2.3.0 (PJRT C-API 0.46)']

Note that the list of supported client packages and versions covers known versions only and may be incomplete. More
versions could be supported, including Google’s future jaxlib releases, assuming the PJRT C-API stays compatible
with the current release of libneuronxla. As a result, we avoid specifying any dependency relationship between
libneuronxla and jaxlib. This provides more freedom when coordinating jax and libneuronxla installations.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

2.2.2 JAX NeuronX Known Issues

• Threefry RNG algorithm is not completely supported. Use rbg algorithm instead. This can be configured by
setting the following config option jax.config.update("jax_default_prng_impl", "rbg")

• For JAX versions older than 0.4.34, caching does not work out of the box. Use the following to enable caching
support,

import jax
import jax_neuronx
from jax._src import compilation_cache

compilation_cache.set_cache_dir('./cache_directory')

• For JAX versions older than 0.4.34, Buffer donation does not work out of the box. Add the follow-
ing snippet to your script to enable it - jax._src.interpreters.mlir._platforms_with_donation.
append('neuron')

• jax.random.randint does not produce expected distribution of randint values. Run it on CPU instead.

• Dynamic loops are not supported for jax.lax.while_loop. Only static while loops are supported.
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• jax.lax.cond is not supported.

• Host callbacks are not supported. As a result APIs based on callbacks from jax.debug and jax.
experimental.checkify are not supported.

• Mesh configurations which use non-connected Neuron cores might crash during execution. You might observe
compilation or Neuron runtime errors for such configurations. Device connectivity can be determined by using
neuron-ls --topology.

• Not all dtypes supported by JAX work on Neuron. Check Data Types for supported data types.

• jax.dlpack is not supported.

• jax.experimental.sparse is not supported.

• jax.lax.sort only supports comparators with LE, GE, LT and GT operations.

• jax.lax.reduce_precision is not supported.

• Certain operations (for example, rng weight initialization) might result in slow compilations. Try
to run such operations on the CPU backend or by setting the following environment variable
NEURON_RUN_TRIVIAL_COMPUTATION_ON_CPU=1.

• Neuron only supports float8_e4m3 and float8_e5m2 for FP8 dtypes.

• Complex dtypes (jnp.complex64 and jnp.complex128) are not supported.

• Variadic reductions are not supported.

• Out of bound access for scatter/gather operations can result in runtime errors.

• Dot operations on int dtypes are not supported.

• lax.DotAlgorithmPreset is not always respected. Dot operations occur in operand dtypes. This is a config-
urable parameter for jax.lax.dot and jax.lax.dot_general.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

2.2.3 API Reference Guide for JAX Neuronx

This document is relevant for: Inf2, Trn1, Trn2

JAX NeuronX Environment Variables

Environment variables allow modifications to JAX NeuronX behavior without requiring code change to user script. It is
recommended to set them in code or just before invoking the python process, such as NEURON_RT_VISIBLE_CORES=8
python3 <script> to avoid inadvertently changing behavior for other scripts. Environment variables specific to JAX
Neuronx are:

NEURON_CC_FLAGS

• Compiler options. Full compiler options are described in the mixed-precision-casting-options.

XLA_FLAGS

• When set to "--xla_dump_hlo_snapshots --xla_dump_to=<dir>", this environmental variable enables
dumping snapshots in <dir> directory. See Snapshotting With Torch-Neuronx 2.1 section for more information.
The snapshotting interface for JAX and Pytorch are identical.
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• When set to "--xla_dump_hlo_as_text --xla_dump_hlo_as_proto --xla_dump_to=<dir>
--xla_dump_hlo_pass_re='.*'", this environmental variable enables dumping HLOs in proto and
text formats after each XLA pass. The dumped *.hlo.pb files are in HloProto format.

NEURON_FORCE_PJRT_PLUGIN_REGISTRATION

• When NEURON_FORCE_PJRT_PLUGIN_REGISTRATION=1, the Neuron PJRT plugin will be registered in JAX
regardless of the instance type.

NEURON_RUN_TRIVIAL_COMPUTATION_ON_CPU

• When NEURON_RUN_TRIVIAL_COMPUTATION_ON_CPU=1, the Neuron PJRT plugin will compile and execute
“trivial” computations on CPU instead of Neuron cores. A “trivial” computation is defined as an HLO program
that does not contain any collective-compute instructions. The HLO program will be compiled by the XLA CPU
compiler and outputs of the computation will be allocated on Neuron cores. The following HLO instructions are
considered as collective-compute instructions.

– all-gather

– all-gather-done

– all-gather-start

– all-reduce-done

– all-reduce-start

– all-to-all

– collective-permute

– partition-id

– replica-id

– recv

– recv-done

– reduce-scatter

– send

– send-done

NEURON_PJRT_PROCESSES_NUM_DEVICES

• Should be set to a comma-separated list stating the number of NeuronCores used by each worker process. It
is used to construct a global device array with its size equal to the sum of the list. This gets reported to the
XLA PJRT runtime when requested. Must be set for multi-process executions. It can be used in conjunc-
tion with NEURON_RT_VISIBLE_CORES to expose a limited number of NeuronCores to each worker process.
If NEURON_RT_VISIBLE_CORES is not set, it should be set to available number of NeuronCores on the host.
NEURON_PJRT_PROCESSES_NUM_DEVICES must be less than or equal to NEURON_RT_VISIBLE_CORES.

NEURON_PJRT_PROCESS_INDEX

• An integer stating the index (or rank) of the current worker process. This is required for multi-process environ-
ments where all workers need to know information on all participating processes. Must be set for multi-process
executions. The value should be between 0 and NEURON_PJRT_PROCESS_INDEX - 1.

NEURON_RT_STOCHASTIC_ROUNDING_EN [Neuron Runtime]
• When NEURON_RT_STOCHASTIC_ROUNDING_EN=1, JAX Neuron will use stochastic rounding instead of round-

nearest-even for all internal rounding operations when casting from FP32 to a reduced precision data type (FP16,
BF16, FP8, TF32). This feature has been shown to improve training convergence for reduced precision training
jobs. To switch to round-nearest-even mode, set NEURON_RT_STOCHASTIC_ROUNDING_EN=0.
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NEURON_RT_STOCHASTIC_ROUNDING_SEED [Neuron Runtime]
• Sets the seed for the random number generator used in stochastic rounding (see previous section). If this environ-

ment variable is not set, the seed is set to 0 by default. Please set NEURON_RT_STOCHASTIC_ROUNDING_SEED
to a fixed value to ensure reproducibility between runs.

NEURON_RT_VISIBLE_CORES [Neuron Runtime]
• Integer range of specific NeuronCores needed by the process (for example, 0-3 specifies NeuronCores 0, 1, 2, and

3). Use this environment variable when launching processes to limit the launched process to specific consecutive
NeuronCores.

Additional Neuron runtime environment variables are described in NeuronX Runtime Configuration.

This document is relevant for: Inf2, Trn1, Trn2

• JAX NeuronX Environment Variables

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

2.2.4 JAX NeuronX (jax-neuronx) release notes

Table of Contents

• Release [0.6.0.1.0.*]

• Release [0.5.3.1.0.*]

• Release [0.1.3]

• Release [0.1.2]

• Release [0.1.1]

JAX NeuronX is a software package containing Neuron-specific JAX features, such as the Neuron NKI JAX interface.
It also serves as a meta-package for providing a tested combination of the jax-neuronx, jax, jaxlib, libneuronxla
, and neuronx-cc packages.

Release [0.6.0.1.0.*]

Date: 06/20/2025

Summary

• This release supports JAX versions up to 0.6.0.

• Known issues are listed within JAX NeuronX Known Issues.
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Release [0.5.3.1.0.*]

Date: 05/20/2025

Summary

• This release supports JAX versions up to 0.5.3.

• jax_neuronx.nki_call is no longer supported. Use neuronxcc.nki.jit instead.

• Known issues are listed within JAX NeuronX Known Issues.

Release [0.1.3]

Date: 04/03/2025

Summary

• This release supports JAX versions up to 0.5.0.

• Known issues are listed within JAX NeuronX Known Issues.

Release [0.1.2]

Date: 12/20/2024

Summary

This release supports JAX versions up to 0.4.35.

What’s new in this release

• Support for JAX versions up to 0.4.35.

• Support for JAX caching API for versions 0.4.30+.

Release [0.1.1]

Date: 09/16/2024
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Summary

This is the initial beta release of JAX NeuronX that contains Neuron-specific JAX features, such as the Neuron NKI
JAX interface

What’s new in this release

Announcing the first JAX NeuronX release

• JAX interface for Neuron NKI

This document is relevant for: Inf1, Inf2, Trn1, Trn2

• JAX Neuron plugin Setup

• JAX NeuronX Known Issues

• API Reference Guide for JAX Neuronx

• JAX NeuronX (jax-neuronx) release notes

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1

2.3 TensorFlow Neuron

TensorFlow Neuron unlocks high-performance and cost-effective deep learning acceleration on AWS Trainium-based
and Inferentia-based Amazon EC2 instances.

TensorFlow Neuron enables native TensorFlow models to be accelerated on Neuron devices, so you can use your
existing framework application and get started easily with minimal code changes.

This document is relevant for: Inf1, Inf2, Trn1

2.3.1 Tensorflow Neuron Setup

Tensorflow Neuron (tensorflow-neuronx) Setup for Inf2, Trn1/Trn1n Instances Tensorflow Neuron
(tensorflow-neuron) Setup for Inf1 Instances This document is relevant for: Inf1, Inf2, Trn1

This document is relevant for: Inf2, Trn1

2.3.2 Inference on Inf2 & Trn1/Trn1n (tensorflow-neuronx)

This document is relevant for: Inf2, Trn1
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Tutorials (tensorflow-neuronx)

Running Huggingface Roberta-Base with TensorFlow-NeuronX

This tutorial demonstrates how to compile the Huggingface roberta-base model and infer on a trn1.2xlarge instance
with tensorflow-neuronx. To compile larger models like roberta-large, please consider using an inf2 instance.

Setup

To run this tutorial please follow the instructions for TensorFlow-NeuronX Setup and the Jupyter Notebook Quickstart
and set your kernel to “Python (tensorflow-neuronx)”.

Next, install some additional dependencies.

[ ]: %env TOKENIZERS_PARALLELISM=True #Supresses tokenizer warnings making errors easier to␣
→˓detect
!pip install transformers

Download From Huggingface and Compile for AWS-Neuron

[ ]: import tensorflow as tf
import tensorflow_neuronx as tfnx
from transformers import RobertaTokenizer, TFRobertaModel
from transformers import BertTokenizer, TFBertModel

# Create a wrapper for the roberta model that will accept inputs as a list
# instead of a dictionary. This will allow the compiled model to be saved
# to disk with the model.save() fucntion.
class RobertaWrapper(tf.keras.Model):

def __init__(self, model):
super().__init__()
self.model = model

def __call__(self, example_inputs):
return self.model({'input_ids' : example_inputs[0], 'attention_mask' : example_

→˓inputs[1]})

tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
model = RobertaWrapper(TFRobertaModel.from_pretrained('roberta-base'))

batch_size = 16

# create example inputs with a batch size of 16
text = ["Paris is the <mask> of France."] * batch_size
encoded_input = tokenizer(text, return_tensors='tf', padding='max_length', max_length=64)

# turn inputs into a list
example_input = [encoded_input['input_ids'], encoded_input['attention_mask']]

#compile
model_neuron = tfnx.trace(model, example_input)

(continues on next page)
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(continued from previous page)

print("Running on neuron:", model_neuron(example_input))

# save the model to disk to save recompilation time for next usage
model_neuron.save('./roberta-neuron-b16')

Run Basic Inference Benchmarking

[ ]: import numpy as np
import concurrent.futures
import time

reloaded_neuron_model = tf.keras.models.load_model('./roberta-neuron-b16')
print("Reloaded model running on neuron:", reloaded_neuron_model(example_input))

num_threads = 4
num_inferences = 1000

latency_list = []
def inference_with_latency_calculation(example_input):

global latency_list
start = time.time()
result = reloaded_neuron_model(example_input)
end = time.time()
latency_list.append((end-start) * 1000)
return result

start = time.time()
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:

futures = []
for i in range(num_inferences):

futures.append(executor.submit(inference_with_latency_calculation, example_
→˓input))

for future in concurrent.futures.as_completed(futures):
get_result = future.result()

end = time.time()

total_time = end - start

print(f"Throughput was {(num_inferences * batch_size)/total_time} samples per second.")
print(f"Latency p50 was {np.percentile(latency_list, 50)} ms")
print(f"Latency p90 was {np.percentile(latency_list, 90)} ms")
print(f"Latency p99 was {np.percentile(latency_list, 99)} ms")

This document is relevant for: Inf2, Trn1
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Using NEURON_RT_VISIBLE_CORES with TensorFlow Serving

TensorFlow serving allows customers to scale-up inference workloads across a network. TensorFlow Neuron Serving
uses the same API as normal TensorFlow Serving with two differences: (a) the saved model must be compiled for
neuron and (b) the entry point is a different binary named tensorflow_model_server_neuronx. Follow the steps
below to install the package using apt-get or yum. This will be pre-installed in a future release.

Install TensorFlow Model Server and Serving API

Follow the steps in the install-neuronx-tensorflow.

Then ensure you install using either apt-get or yum.

sudo apt-get install tensorflow-model-server-neuronx

or

sudo yum install tensorflow-model-server-neuronx

Also, you would need TensorFlow Serving API (use –no-deps to prevent installation of regular tensorflow).

pip install --no-deps tensorflow_serving_api

For the example image preprocessing using Keras preprocessing, the Python Imaging Library Pillow is required:

pip install pillow

To workaround h5py issue https://github.com/aws/aws-neuron-sdk/issues/220:

pip install "h5py<3.0.0"

Export and Compile Saved Model

The following example shows graph construction followed by the addition of Neuron compilation step before exporting
to saved model.

import tensorflow as tf
import tensorflow_neuronx as tfnx
import numpy as np

tf.keras.backend.set_learning_phase(0)
tf.keras.backend.set_image_data_format('channels_last')
image_sizes = [224, 224]
model = tf.keras.applications.ResNet50(weights='imagenet')
example_inputs = tf.random.uniform([1, *image_sizes, 3], dtype=tf.float32)

model_neuron = tfnx.trace(model, example_inputs)
# run the model once to define the forward pass and allow for saving
model_neuron(example_inputs)
tf.keras.models.save_model(model_neuron, './resnet50_neuron/1')
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Serving Saved Model

User can now serve the saved model with the tensorflow_model_server_neuron binary. To utilize multiple Neuron-
Cores, it is recommended to launch multiple tensorflow model servers that listen to the same gRPC port:

export NEURON_RT_VISIBLE_CORES=0 # important to set this environment variable before␣
→˓launching model servers
tensorflow_model_server_neuron --model_name=resnet50_neuron \

--model_base_path=$(pwd)/resnet50_neuron/ --port=8500

# then to run another server on a different neuron core open another
# window and run this, except this time set NEURON_RT_VISIBLE_CORES=1
# you can keep doing this up to the number of Neuron Cores on your machine

export NEURON_RT_VISIBLE_CORES=1
tensorflow_model_server_neuron --model_name=resnet50_neuron \

--model_base_path=$(pwd)/resnet50_neuron/ --port=8500

The compiled model is staged in neuron DRAM by the server to prepare for inference.

Generate inference requests to the model server

Now run inferences via GRPC as shown in the following sample client code:

import numpy as np
import grpc
import tensorflow as tf
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.resnet50 import preprocess_input
from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2_grpc
from tensorflow.keras.applications.resnet50 import decode_predictions

tf.keras.backend.set_image_data_format('channels_last')

if __name__ == '__main__':
channel = grpc.insecure_channel('localhost:8500')
stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
img_file = tf.keras.utils.get_file(

"./kitten_small.jpg",
"https://raw.githubusercontent.com/awslabs/mxnet-model-server/master/docs/images/

→˓kitten_small.jpg")
img = image.load_img(img_file, target_size=(224, 224))
img_array = preprocess_input(image.img_to_array(img)[None, ...])
request = predict_pb2.PredictRequest()
request.model_spec.name = 'resnet50_neuron'
request.inputs['input_1'].CopyFrom(

tf.make_tensor_proto(img_array, shape=img_array.shape))
result = stub.Predict(request)
prediction = tf.make_ndarray(result.outputs['output_1'])
print(decode_predictions(prediction))

This document is relevant for: Inf2, Trn1
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• HuggingFace Roberta-Base [html] [notebook]

• Using NEURON_RT_VISIBLE_CORES with TensorFlow Serving

Note: To use Jupyter Notebook see:

• setup-jupyter-notebook-steps-troubleshooting

• running-jupyter-notebook-as-script

This document is relevant for: Inf2, Trn1

This document is relevant for: Inf2, Trn1

API Reference Guide (tensorflow-neuronx)

This document is relevant for: Inf2, Trn1

TensorFlow 2.x (tensorflow-neuronx) Tracing API

The Neuron tracing API enables tracing TensorFlow 2.x models for deployment on trn1 and inf2 AWS machine learning
accelerators.

Method

tensorflow_neuronx.trace

Description

Trace a keras.Model or a Python callable that can be decorated by tf.function, and return an AWS-Neuron-
optimized keras.Model that can execute on trn1 and inf2 AWS machine learning accelerators. Tracing is ideal for
keras.Model that accepts a list of tf.Tensor objects and returns a list of tf.Tensor objects. It is expected that users
will provide example inputs, and the trace function will execute func symbolically and convert it to a keras.Model.

The returned keras.Modelwill support inference only. Attributes or variables held by the original function or keras.
Model will be dropped.

The returned keras.Model can be exported as SavedModel and served using TensorFlow Serving. Please see
tensorflow-serving for more information about exporting to saved model and serving using TensorFlow Serving.

The returned keras.Model has an .on_neuron_ratio attribute which shows the percentage of ops mapped to neuron
hardware. This calculation ignores PlaceholerOp, IdentityOp, ReadVariableOp and NoOp.

Options can be passed to Neuron compiler via the environment variable NEURON_CC_FLAGS. For example, the syntax
env NEURON_CC_FLAGS="--workdir ./artifacts" directs the Neuron compiler to dump artifacts in the artifacts
directory for debugging. See Neuron Compiler CLI Reference Guide (neuronx-cc) for more information about compiler
options.
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Arguments

• func: The keras.Model or function to be traced.

• example_inputs: A tf.Tensor or a tuple/list/dict of tf.Tensor objects for tracing the function. When
example_inputs is a tf.Tensor or a list of tf.Tensor objects, we expect func to have calling sig-
nature func(example_inputs). Otherwise, the expectation is that inference on func is done by call-
ing func(*example_inputs) when example_inputs is a tuple, or func(**example_inputs) when
example_inputs is a dict. The case where func accepts mixed positional and keyword arguments is cur-
rently unsupported.

• subgraph_builder_function: (Optional) A callable with signature

subgraph_builder_function(node : NodeDef) -> bool (NodeDef is defined in tensor-
flow/core/framework/node_def.proto)

that is used as a call-back function to determine which part of the tensorflow GraphDef given by tracing func
will be placed on Machine Learning Accelerators.

If subgraph_builder_function is not provided, then trace will automatically place operations on Machine
Learning Accelerators or on CPU to maximize the execution efficiency.

If it is provided, and subgraph_builder_function(node) returns True, and placing node on Machine Learn-
ing Accelerators will not cause deadlocks during execution, then trace will place node on Machine Learning
Accelerators. If subgraph_builder_function(node) returns False, then trace will place node on CPU.

Special Flags

These are flags that get passed directly to the Neuron tracing API (rather than the Neuron Compiler). The flags are still
passed via the environment variable NEURON_CC_FLAGS.

• workdir: example usage - NEURON_CC_FLAGS='--workdir ./artifacts' will create a folder named arti-
facts in the current directory and save artifacts that can be used for debug.

• dynamic-batch-size: example usage - NEURON_CC_FLAGS='--dynamic-batch-size'A flag to allow Neuron
graphs to consume variable sized batches of data. Dynamic sizing is restricted to the 0th dimension of a tensor.

• extract-weights (Beta): example usage - NEURON_CC_FLAGS='--extract-weights trn1.2xlarge' will
reduce the compiled model’s protobuf size by taking the weights out of the protobuf. Useful for compil-
ing large models that would exceed the 2GB protobuf size limit. This feature is in beta. Model perfor-
mance is not guaranteed and the flag does not work in combination with --neuroncore-pipeline-cores,
--dynamic-batch-size, models with multiple NEFFs, and models that are 16GB or greater. Compiles mod-
els for different neuron instances depending on the instance type passed. Supports all trn1 and inf2 instance types
except for trn1n.

Returns

• An AWS-Neuron-optimized keras.Model.
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Example Usage

import tensorflow as tf
import tensorflow_neuronx as tfnx

input0 = tf.keras.layers.Input(3)
dense0 = tf.keras.layers.Dense(3)(input0)
model = tf.keras.Model(inputs=[input0], outputs=[dense0])
example_inputs = tf.random.uniform([1, 3])
model_neuron = tfnx.trace(model, example_inputs) # trace
# check to see how much of the model was compiled successfully
print(model_neuron.on_neuron_ratio)

model_dir = './model_neuron'
model_neuron.save(model_dir)
model_neuron_reloaded = tf.keras.models.load_model(model_dir)

Example Usage with Manual Device Placement Using subgraph_builder_function

import tensorflow as tf
import tensorflow_neuronx as tfnx

input0 = tf.keras.layers.Input(3)
dense0 = tf.keras.layers.Dense(3)(input0)
reshape0 = tf.keras.layers.Reshape([1, 3])(dense0)
output0 = tf.keras.layers.Dense(2)(reshape0)
model = tf.keras.Model(inputs=[input0], outputs=[output0])
example_inputs = tf.random.uniform([1, 3])

def subgraph_builder_function(node):
return node.op == 'MatMul'

model_neuron = tfnx.trace(
model, example_inputs,
subgraph_builder_function=subgraph_builder_function,

)

This document is relevant for: Inf2, Trn1

This document is relevant for: Inf2, Trn1

TensorFlow 2.x (tensorflow-neuronx) Auto Multicore Replication (Beta)

The Neuron auto multicore replication Python API enables modifying TensorFlow 2.x models trace by
`tensorflow_neuronx.trace` so that they can be automatically replicated across multiple cores.

Table of contents

• TensorFlow 2.x (tensorflow-neuron TF2.x) Auto Multicore Replication Python API (Beta)
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• TensorFlow Neuron TF2.x (tensorflow-neuronx TF2.x) Auto Multicore Replication CLI (Beta)

TensorFlow 2.x (tensorflow-neuron TF2.x) Auto Multicore Replication Python API (Beta)

Method

tensorflow.neuron.auto_multicore on models traced by tensorflow_neuronx.trace

Description

Converts an existing AWS-Neuron-optimized keras.Model and returns an auto-replication tagged AWS-Multicore-
Neuron-optimized keras.Model that can execute on AWS Machine Learning Accelerators. Like the traced model, the
returned keras.Model will support inference only. Attributes or variables held by the original function or keras.
Model will be dropped.

The auto model replication feature in TensorFlow-Neuron enables you to create a model once and the model parallel
replication would happen automatically. The desired number of cores can be less than the total available NeuronCores
on an trn1 or inf2 instance but not less than 1. This reduces framework memory usage as you are not loading the same
model multiple times manually. Calls to the returned model will execute the call on each core in a round-robin fashion.

The returned keras.Model can be exported as SavedModel and served using TensorFlow Serving. Please see
tensorflow-serving for more information about exporting to saved model and serving using TensorFlow Serving.

Note that the automatic replication will only work on models compiled with pipeline size 1: via
--neuroncore-pipeline-cores=1. If auto replication is not enabled, the model will default to replicate on
up to 4 cores.

See Neuron Compiler CLI Reference Guide (neuronx-cc) for more information about compiler options.

Arguments

• func: The keras.Model or function to be traced.

• example_inputs: A tf.Tensor or a tuple/list/dict of tf.Tensor objects for tracing the function. When
example_inputs is a tf.Tensor or a list of tf.Tensor objects, we expect func to have calling sig-
nature func(example_inputs). Otherwise, the expectation is that inference on func is done by call-
ing func(*example_inputs) when example_inputs is a tuple, or func(**example_inputs) when
example_inputs is a dict. The case where func accepts mixed positional and keyword arguments is cur-
rently unsupported.

• num_cores: The desired number of cores where the model will be automatically replicated across

Returns

• An AWS-Multicore-Neuron-optimized keras.Model.
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Example Python API Usage for TF2.x traced models:

import tensorflow as tf
import tensorflow.neuron as tfn
import tensorflow_neuronx as tfnx

input0 = tf.keras.layers.Input(3)
dense0 = tf.keras.layers.Dense(3)(input0)
inputs = [input0]
outputs = [dense0]
model = tf.keras.Model(inputs=inputs, outputs=outputs)
input0_tensor = tf.random.uniform([1, 3])
model_neuron = tfnx.trace(model, input0_tensor)

# a trn1.2xlarge has 2 neuron cores
num_cores = 2
multicore_model = tfn.auto_multicore(model_neuron, input0_tensor, num_cores=num_cores)
multicore_model(input0_tensor)

Example Python API Usage for TF2.x saved models:

from tensorflow.python import saved_model

input0_tensor = tf.random.uniform([1, 3])
num_cores = 4
reload_model = saved_model.load(model_dir)
multicore_model = tfn.auto_multicore(reload_model, input0_tensor, num_cores=num_cores)

TensorFlow Neuron TF2.x (tensorflow-neuronx TF2.x) Auto Multicore Replication CLI (Beta)

The Neuron auto multicore replication CLI enables modifying Tensorflow 2.x traced saved models so that they can be
automatically replicated across multiple cores. By performing this call on Tensorflow Saved Models, we can support
Tensorflow-Serving without significant modifications to the code.

Method

tf-neuron-auto-multicore MODEL_DIR --num_cores NUM_CORES --new_model_dir NEW_MODEL_DIR

Arguments

• MODEL_DIR: The directory of a saved AWS-Neuron-optimized keras.Model.

• NUM_CORES: The desired number of cores where the model will be automatically replicated across

• NEW_MODEL_DIR: The directory of where the AWS-Multicore-Neuron-optimized keras.Model will be
saved
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Example CLI Usage for Tensorflow-Serving saved models:

tf-neuron-auto-multicore ./resnet --num_cores 8 --new_model_dir ./modified_resnet

This document is relevant for: Inf2, Trn1

This document is relevant for: Inf2, Trn1

TensorFlow 2.x (tensorflow-neuronx) analyze_model API

Method

tensorflow_neuronx.analyze_model

Description

Analyzes a keras.Model or a Python callable that can be decorated by tf.function for it’s compatibility with
Neuron. It displays supported vs. unsupported operators in the model as well as percentages and counts of each
operator and returns a dictionary with operator statistics.

Arguments

• func: The keras.Model or function to be analyzed.

• example_inputs: A tf.Tensor or a tuple/list/dict of tf.Tensor objects for tracing the function. When
example_inputs is a tf.Tensor or a list of tf.Tensor objects, we expect func to have calling sig-
nature func(example_inputs). Otherwise, the expectation is that inference on func is done by call-
ing func(*example_inputs) when example_inputs is a tuple, or func(**example_inputs) when
example_inputs is a dict. The case where func accepts mixed positional and keyword arguments is cur-
rently unsupported.

Returns

• A results dict with these keys: ``’percent_supported’, ‘supported_count’,

‘total_count’, ‘supported_operators’, ‘unsupported_operators’, ‘operators’, ‘operator_count’``.

Example Usage

import tensorflow as tf
import tensorflow_neuron as tfnx

input0 = tf.keras.layers.Input(3)
dense0 = tf.keras.layers.Dense(3)(input0)
model = tf.keras.Model(inputs=[input0], outputs=[dense0])
example_inputs = tf.random.uniform([1, 3])
results = tfnx.analyze_model(model, example_inputs)
print(results)

(continues on next page)
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(continued from previous page)

# expected output
'''
BiasAdd

MatMul
100.00% of all operations (2 of 2) are supported
{'percent_supported': 100.0, 'supported_count': 2, 'total_count': 2,
'supported_operators': {'BiasAdd', 'MatMul'}, 'unsupported_operators': [],
'operators': ['BiasAdd', 'MatMul'], 'operator_count': {'MatMul': 1, 'BiasAdd': 1}}
'''

This document is relevant for: Inf2, Trn1

• TensorFlow 2.x (tensorflow-neuronx) Tracing API

• TensorFlow 2.x (tensorflow-neuronx) Auto Multicore Replication (Beta)

• TensorFlow 2.x (tensorflow-neuronx) analyze_model API

This document is relevant for: Inf2, Trn1

This document is relevant for: Inf2, Trn1

Misc (tensorflow-neuronx)

This document is relevant for: Inf2, Trn1, Trn2

TensorFlow 2.x (tensorflow-neuronx) Release Notes

Table of contents

• tensorflow-neuronx 2.x release [2.1.0]

• tensorflow-neuronx 2.10 release [2.0.0]

• tensorflow-neuronx 2.10 release [1.0.0]

This document lists the release notes for the tensorflow-neuronx 2.x packages.

tensorflow-neuronx 2.x release [2.1.0]

Date: 09/15/2023

• Minor updates

Date: 05/1/2023

• Added support for tracing models larger than 2 GB through the environment variable
NEURON_CC_FLAGS='--extract-weights INSTANCE_TYPE' for all trn1 and inf2 instance types.

• tensorflow-neuronx now supports tensorflow 2.7, 2.8, and 2.9 (In addition to the already supported 2.10).

• Neuron release 2.10 release will be the last release that will include support for tensorflow-neuronx version 2.7.
Future Neuron releases will not include tensorflow-neuronx version 2.7.
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tensorflow-neuronx 2.10 release [2.0.0]

Date: 03/28/2023

The second release of tensorflow-neuronx 2.10 includes the following features:

• Dynamic batching

The following features are not included in this release:

• Support for tracing models larger than 2 GB

tensorflow-neuronx 2.10 release [1.0.0]

Date: 2/24/2023

The initial release of tensorflow-neuronx 2.10 includes the following features:

• Initial support for TensorFlow 2.10 inference on Inf2 and Trn1

• Trace API (tensorflow_neuronx.trace)

• Automatic partitioning of model into CPU vs NeuronCore parts

• Automatic data parallel on multiple NeuronCores (beta)

• Python 3.7, 3.8 and 3.9 support

• HuggingFace Roberta tutorial

The following features are not included in this release:

• Dynamic batching

• Support for tracing models larger than 2 GB

This document is relevant for: Inf2, Trn1, Trn2

• TensorFlow 2.x (tensorflow-neuronx) Release Notes

This document is relevant for: Inf2, Trn1

Setup (tensorflow-neuronx)

Tutorials (tensorflow-neuronx)

• HuggingFace Roberta-Base [html] [notebook]

• Using NEURON_RT_VISIBLE_CORES with TensorFlow Serving

Note: To use Jupyter Notebook see:

• setup-jupyter-notebook-steps-troubleshooting

• running-jupyter-notebook-as-script
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API Reference Guide (tensorflow-neuronx)

• TensorFlow 2.x (tensorflow-neuronx) Tracing API

• TensorFlow 2.x (tensorflow-neuronx) Auto Multicore Replication (Beta)

• TensorFlow 2.x (tensorflow-neuronx) analyze_model API

Misc (tensorflow-neuronx)

• TensorFlow 2.x (tensorflow-neuronx) Release Notes

This document is relevant for: Inf2, Trn1

This document is relevant for: Inf1

2.3.3 Inference on Inf1 (tensorflow-neuron)

This document is relevant for: Inf1

Tutorials (tensorflow-neuron)

This document is relevant for: Inf1

Natural Language Processing (NLP) Tutorials (tensorflow-neuron)

• Tensorflow 2.x - HuggingFace DistilBERT with Tensorflow2 Neuron [html] [notebook]

This document is relevant for: Inf1

[Broken] Running TensorFlow BERT-Large with AWS Neuron

This example shows a Neuron compatible BERT-Large implementation that is functionally equivalent to open source
BERT-Large model. This demo uses TensorFlow-Neuron, BERT-Large weights fine tuned for MRPC and also shows
the performance achieved by the Inf1 instance. For users who want to use public BERT SavedModels please also follow
the steps described Using public BERT SavedModels.

Launch EC2 instances

For this demo, launch two EC2 instances :

• a c5.4xlarge instance for compiling the BERT-Large Model and

• an inf1.xlarge instance for running inference

For both of these instances choose the latest Ubuntu 18 Deep Learning AMI (DLAMI).
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Compiling Neuron compatible BERT-Large

First connect to a c5.4xlarge instance and update tensorflow-neuron and neuron-cc

Update compilation EC2 instance

Update to the latest neuron software by executing the instructions at install-neuron-tensorflow.

Note: if your tensorflow-neuron version on the inference instance is lower than 1.15.0.1.0.1333.0, you will need to run
this demo on inf1.2xlarge instead of inf1.xlarge.

Compile open source BERT-Large saved model using Neuron compatible BERT-Large implementa-
tion

Neuron software works with TensorFlow saved models. Users should bring their own BERT-Large saved model for
this section. This demo will run inference for the MRPC task and the saved model should be fine tuned for MRPC.
Users who need additional help to fine-tune the model for MRPC or to create a saved model can refer to Appendix 1.

In the same environment and directory bert_demo scripts, run the following :

git clone https://github.com/aws/aws-neuron-sdk
cd ~/aws-neuron-sdk/src/examples/tensorflow/bert_demo/
export BERT_LARGE_SAVED_MODEL="/path/to/user/bert-large/savedmodel"
pip install tensorflow_neuron==1.15.5.2.8.9.0 --extra-index-url=https://pip.repos.neuron.
→˓amazonaws.com/
pip install neuron_cc==1.13.5.0 --extra-index-url=https://pip.repos.neuron.amazonaws.com
python bert_model.py --input_saved_model $BERT_LARGE_SAVED_MODEL --output_saved_model ./
→˓bert-saved-model-neuron --batch_size=6 --aggressive_optimizations

This compiles BERT-Large pointed to by $BERT_LARGE_SAVED_MODEL for an input size of 128 and batch size
of 6. The compilation output is stored in bert-saved-model-neuron. Copy this to your Inf1 instance for inferencing.

The bert_model.py script encapsulates all the steps necessary for this process. For details on what is done by
bert_model.py please refer to Appendix 2.

Running the inference demo

Connect to your inf1.xlarge instance and update tensorflow-neuron, aws-neuron-runtime and aws-neuron-tools.

Update inference EC2 instance

Update to the latest neuron software by executing the instructions at install-neuron-tensorflow.
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Launching the BERT-Large demo server

Copy the compiled model (bert-saved-model-neuron) from your c5.4xlarge to your inf1.xlarge instance. Place the
model in the same directory as the bert_demo scripts. Then from the same conda environment launch the BERT-Large
demo server :

cd ~/aws-neuron-sdk/src/examples/tensorflow/bert_demo/
pip install tensorflow_neuron==1.15.5.2.8.9.0 --extra-index-url=https://pip.repos.neuron.
→˓amazonaws.com/
python bert_server.py --dir bert-saved-model-neuron --batch 6 --parallel 4

This loads 4 BERT-Large models, one into each of the 4 NeuronCores found in an inf1.xlarge instance. For each of the
4 models, the BERT-Large demo server opportunistically stitches together asynchronous requests into batch 6 requests.
When there are insufficient pending requests, the server creates dummy requests for batching.

Wait for the bert_server to finish loading the BERT-Large models to Inferentia memory. When it is ready to accept
requests it will print the inferences per second once every second. This reflects the number of real inferences only.
Dummy requests created for batching are not credited to inferentia performance. Once the inferences are done you can
send a keyboard interrupt to print out the average throughput of your run.

Sending requests to server from multiple clients

Wait until the bert demo server is ready to accept requests. Then on the same inf1.xlarge instance, launch a separate
linux terminal. From the bert_demo directory execute the following commands :

source activate aws_neuron_tensorflow_p36
cd ~/aws-neuron-sdk/src/examples/tensorflow/bert_demo/
for i in {1..96}; do python bert_client.py --cycle 128 & done

This spins up 96 clients, each of which sends 128 inference requests.

Printing latency metrics

After all your requests have been sent to your server you can run the following command:

python latency_printer.py

Using public BERT SavedModels

We are now providing a compilation script that has better compatibility with various flavors of BERT SavedModels
generated from https://github.com/google-research/bert. Here are the current limitations:

1. You did not change modeling.py

2. BERT SavedModel is generated using estimator.export_saved_model

3. BERT SavedModel uses fixed sequence length 128 (you may check by saved_model_cli show --dir /
path/to/user/bert/savedmodel --all)

4. neuron-cc version is at least 1.0.12000.0

5. aws-neuron-runtime version is at least 1.0.7000.0

6. The --batch_size argument specified in this script is at most 4

422 Chapter 2. ML Frameworks

https://github.com/google-research/bert
https://github.com/google-research/bert/blob/master/modeling.py


AWS Neuron

Example usage is shown below:

export BERT_LARGE_SAVED_MODEL="/path/to/user/bert-large/savedmodel"
cd ~/aws-neuron-sdk/src/examples/tensorflow/bert_demo/
python bert_no_model.py --input_saved_model $BERT_LARGE_SAVED_MODEL --output_saved_model␣
→˓./bert-saved-model-neuron --batch_size=1

Appendix 1

Users who need help finetuning BERT-Large for MRPC and creating a saved model may follow the instructions here.

Connect to the c5.4xlarge compilation EC2 instance you started above and download these three items :

1. clone this github repo.

2. download GLUE data as described here. Do not run the finetuning command.

3. download a desired pre-trained BERT-Large checkpoint from here. This is the model we will fine tune.

Next edit run_classifier.py in the cloned bert repo to apply the patch described in the following git diff.

diff --git a/run_classifier.py b/run_classifier.py
index 817b147..c9426bc 100644
--- a/run_classifier.py
+++ b/run_classifier.py
@@ -955,6 +955,18 @@ def main(_):

drop_remainder=predict_drop_remainder)

result = estimator.predict(input_fn=predict_input_fn)
+ features = {
+ "input_ids": tf.placeholder(shape=[None, FLAGS.max_seq_length], dtype=tf.int32,␣
→˓name='input_ids'),
+ "input_mask": tf.placeholder(shape=[None, FLAGS.max_seq_length], dtype=tf.int32,
→˓ name='input_mask'),
+ "segment_ids": tf.placeholder(shape=[None, FLAGS.max_seq_length], dtype=tf.
→˓int32, name='segment_ids'),
+ "label_ids": tf.placeholder(shape=[None], dtype=tf.int32, name='label_ids'),
+ "is_real_example": tf.placeholder(shape=[None], dtype=tf.int32, name='is_real_
→˓example'),
+ }
+ serving_input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn(features)
+ estimator._export_to_tpu = False ## !!important to add this
+ estimator.export_saved_model(
+ export_dir_base='./bert_classifier_saved_model',
+ serving_input_receiver_fn=serving_input_fn)

output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv")
with tf.gfile.GFile(output_predict_file, "w") as writer:

NOTE : Users who are interested may refer to this link for additional background information on the patch but it is not
necessary for running this demo.

Then from the bert_demo directory run the following :
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source activate aws_neuron_tensorflow_p36
cd ~/aws-neuron-sdk/src/examples/tensorflow/bert_demo/
export BERT_REPO_DIR="/path/to/cloned/bert/repo/directory"
export GLUE_DIR="/path/to/glue/data/directory"
export BERT_BASE_DIR="/path/to/pre-trained/bert-large/checkpoint/directory"
./tune_save.sh

The a saved model will be created in $BERT_REPO_DIR/bert-saved-model/random_number/. Where, ran-
dom_number is a random number generated for every run. Use this saved model to continue with the rest of the
demo.

Appendix 2

For all BERT variants, we currently need to augment the standard Neuron compilation process for performance tuning.
In the future, we intend to automate this tuning process. This would allow users to use the standard Neuron compilation
process, which requires only a one line change in user source code. The standard compilation process is described
/src/examples/mxnet/resnet50/resnet50.ipynb.

The augmented Neuron compilation process is encapsulated by the bert_model.py script, which performs the following
things :

1. Define a Neuron compatible implementation of BERT-Large. For inference, this is functionally equivalent to the
open source BERT-Large. The changes needed to create a Neuron compatible BERT-Large implementation is
described in Appendix 3.

2. Extract BERT-Large weights from the open source saved model pointed to by –input_saved_model and associates
it with the Neuron compatible model

3. Invoke TensorFlow-Neuron to compile the Neuron compatible model for Inferentia using the newly associated
weights

4. Finally, the compiled model is saved into the location given by –output_saved_model

Appendix 3

The Neuron compatible implementation of BERT-Large is functionally equivalent to the open source version when
used for inference. However, the detailed implementation does differ and here are the list of changes :

1. Data Type Casting : If the original BERT-Large an FP32 model, bert_model.py contains manually defined cast
operators to enable mixed-precision. FP16 is used for multi-head attention and fully-connected layers, and fp32
everywhere else. This will be automated in a future release.

2. Remove Unused Operators: A model typically contains training operators that are not used in inference, including
a subset of the reshape operators. Those operators do not affect inference functionality and have been removed.

3. Reimplementation of Selected Operators : A number of operators (mainly mask operators), has been reimple-
mented to bypass a known compiler issue. This will be fixed in a planned future release.

4. Manually Partition Embedding Ops to CPU : The embedding portion of BERT-Large has been partitioned man-
ually to a subgraph that is executed on the host CPU, without noticable performance impact. In near future, we
plan to implement this through compiler auto-partitioning without the need for user intervention.

This document is relevant for: Inf1
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Running Huggingface DistilBERT with TensorFlow-Neuron

In this tutorial you will compile and deploy DistilBERT version of HuggingFace Transformers BERT for Inferentia
using TensorFlow-Neuron. The full list of HuggingFace’s pretrained BERT models can be found in the BERT sec-
tion on this page https://huggingface.co/transformers/pretrained_models.html. you can also read about HuggingFace’s
pipeline feature here: https://huggingface.co/transformers/main_classes/pipelines.html

This Jupyter notebook should be run on an instance which is inf1.6xlarge or larger, but in real life scenario the compi-
lation should be done on a compute instance and the deployment on inf1 instance to save costs.

Setup

To run this tutorial please follow the instructions for TensorFlow-Neuron Setup and the Jupyter Notebook Quickstart
and set your kernel to “Python (tensorflow-neuron)” .

Next, install some additional dependencies.

[ ]: %env TOKENIZERS_PARALLELISM=True #Supresses tokenizer warnings making errors easier to␣
→˓detect
!pip install transformers==4.30.2
!pip install ipywidgets

Download From Huggingface and Compile for AWS-Neuron

[ ]: import tensorflow as tf
import tensorflow_neuron as tfn
from transformers import DistilBertTokenizer, TFDistilBertModel

# Create a wrapper for the roberta model that will accept inputs as a list
# instead of a dictionary. This will allow the compiled model to be saved
# to disk with the model.save() fucntion.
class DistilBertWrapper(tf.keras.Model):

def __init__(self, model):
super().__init__()
self.model = model

def __call__(self, example_inputs):
return self.model({'input_ids' : example_inputs[0], 'attention_mask' : example_

→˓inputs[1]})

tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased-finetuned-sst-2-
→˓english')
model = DistilBertWrapper(TFDistilBertModel.from_pretrained('distilbert-base-uncased-
→˓finetuned-sst-2-english'))

batch_size = 16

# create example inputs with a batch size of 16
text = ["Paris is the <mask> of France."] * batch_size
encoded_input = tokenizer(text, return_tensors='tf', padding='max_length', max_length=64)

(continues on next page)
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(continued from previous page)

# turn inputs into a list
example_input = [encoded_input['input_ids'], encoded_input['attention_mask']]

#compile
model_neuron = tfn.trace(model, example_input)

print("Running on neuron:", model_neuron(example_input))

# save the model to disk to save recompilation time for next usage
model_neuron.save('./distilbert-neuron-b16')

Run Basic Inference Benchmarking

[ ]: import numpy as np
import concurrent.futures
import time

reloaded_neuron_model = tf.keras.models.load_model('./distilbert-neuron-b16')
print("Reloaded model running on neuron:", reloaded_neuron_model(example_input))

num_threads = 4
num_inferences = 1000

latency_list = []
def inference_with_latency_calculation(example_input):

global latency_list
start = time.time()
result = reloaded_neuron_model(example_input)
end = time.time()
latency_list.append((end-start) * 1000)
return result

start = time.time()
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:

futures = []
for i in range(num_inferences):

futures.append(executor.submit(inference_with_latency_calculation, example_
→˓input))

for future in concurrent.futures.as_completed(futures):
get_result = future.result()

end = time.time()

total_time = end - start
throughput = (num_inferences * batch_size)/total_time

print(f"Throughput was {throughput} samples per second.")
print(f"Latency p50 was {np.percentile(latency_list, 50)} ms")
print(f"Latency p90 was {np.percentile(latency_list, 90)} ms")
print(f"Latency p95 was {np.percentile(latency_list, 95)} ms")
print(f"Latency p99 was {np.percentile(latency_list, 99)} ms")

(continues on next page)
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(continued from previous page)

assert(throughput >= 1930.0)

[ ]:

This document is relevant for: Inf1

This document is relevant for: Inf1

Utilizing Neuron Capabilities Tutorials (tensorflow-neuron)

• Using NEURON_RT_VISIBLE_CORES with TensorFlow Serving [html]

This document is relevant for: Inf1

Natural Language Processing (NLP) Tutorials

• Tensorflow 2.x - HuggingFace Pipelines distilBERT with Tensorflow2 Neuron [html] [notebook]

Utilizing Neuron Capabilities Tutorials

• Tensorflow 2.x - Using NEURON_RT_VISIBLE_CORES with TensorFlow Serving [html]

Note: To use Jupyter Notebook see:

• setup-jupyter-notebook-steps-troubleshooting

• running-jupyter-notebook-as-script

This document is relevant for: Inf1

This document is relevant for: Inf1

Additional Examples (tensorflow-neuron)

• AWS Neuron Samples GitHub Repository

This document is relevant for: Inf1

This document is relevant for: Inf1

API Reference Guide (tensorflow-neuron)

This document is relevant for: Inf1
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TensorFlow 2.x (tensorflow-neuron) Tracing API

The Neuron tracing API enables tracing TensorFlow 2.x models for deployment on AWS Machine Learning Accelera-
tors.

Method

tensorflow.neuron.trace

Description

Trace a keras.Model or a Python callable that can be decorated by tf.function, and return an AWS-Neuron-
optimized keras.Model that can execute on AWS Machine Learning Accelerators. Tracing is ideal for keras.Model
that accepts a list of tf.Tensor objects and returns a list of tf.Tensor objects. It is expected that users will provide
example inputs, and the trace function will execute func symbolically and convert it to a keras.Model.

The returned keras.Modelwill support inference only. Attributes or variables held by the original function or keras.
Model will be dropped.

The returned keras.Model can be exported as SavedModel and served using TensorFlow Serving. Please see
tensorflow-serving for more information about exporting to saved model and serving using TensorFlow Serving.

The returned keras.Model has an .on_neuron_ratio attribute which shows the percentage of ops mapped to neuron
hardware. This calculation ignores PlaceholerOp, IdentityOp, ReadVariableOp and NoOp.

Options can be passed to Neuron compiler via the environment variable NEURON_CC_FLAGS. For example, the syntax
env NEURON_CC_FLAGS="--neuroncore-pipeline-cores=4" directs Neuron compiler to compile each subgraph
to fit in the specified number of NeuronCores. This number can be less than the total available NeuronCores on an Inf1
instance. See Neuron compiler CLI Reference Guide (neuron-cc) for more information about compiler options.

Arguments

• func: The keras.Model or function to be traced.

• example_inputs: A tf.Tensor or a tuple/list/dict of tf.Tensor objects for tracing the function. When
example_inputs is a tf.Tensor or a list of tf.Tensor objects, we expect func to have calling sig-
nature func(example_inputs). Otherwise, the expectation is that inference on func is done by call-
ing func(*example_inputs) when example_inputs is a tuple, or func(**example_inputs) when
example_inputs is a dict. The case where func accepts mixed positional and keyword arguments is cur-
rently unsupported.

• subgraph_builder_function: (Optional) A callable with signature

subgraph_builder_function(node : NodeDef) -> bool (NodeDef is defined in tensor-
flow/core/framework/node_def.proto)

that is used as a call-back function to determine which part of the tensorflow GraphDef given by tracing func
will be placed on Machine Learning Accelerators.

If subgraph_builder_function is not provided, then trace will automatically place operations on Machine
Learning Accelerators or on CPU to maximize the execution efficiency.

If it is provided, and subgraph_builder_function(node) returns True, and placing node on Machine Learn-
ing Accelerators will not cause deadlocks during execution, then trace will place node on Machine Learning
Accelerators. If subgraph_builder_function(node) returns False, then trace will place node on CPU.
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Special Flags

These are flags that get passed directly to the Neuron tracing API (rather than the Neuron Compiler). The flags are still
passed via the environment variable NEURON_CC_FLAGS.

• workdir: example usage - NEURON_CC_FLAGS='--workdir ./artifacts' will create a folder named arti-
facts in the current directory and save artifacts that can be used for debug.

• dynamic-batch-size: example usage - NEURON_CC_FLAGS='--dynamic-batch-size'A flag to allow Neuron
graphs to consume variable sized batches of data. Dynamic sizing is restricted to the 0th dimension of a tensor.

• extract-weights (Beta): example usage - NEURON_CC_FLAGS='--extract-weights inf1.2xlarge' will
reduce the compiled model’s protobuf size by taking the weights out of the protobuf. Useful for compil-
ing large models that would exceed the 2GB protobuf size limit. This feature is in beta. Model perfor-
mance is not guaranteed and the flag does not work in combination with --neuroncore-pipeline-cores,
--dynamic-batch-size, models with multiple NEFFs, and models that are 4GB or greater. Compiles models
for different neuron instances depending on the instance type passed. Supports all inf1 instance types.

Returns

• An AWS-Neuron-optimized keras.Model.

Example Usage

import tensorflow as tf
import tensorflow.neuron as tfn

input0 = tf.keras.layers.Input(3)
dense0 = tf.keras.layers.Dense(3)(input0)
model = tf.keras.Model(inputs=[input0], outputs=[dense0])
example_inputs = tf.random.uniform([1, 3])
model_neuron = tfn.trace(model, example_inputs) # trace
# check to see how much of the model was compiled successfully
print(model_neuron.on_neuron_ratio)

model_dir = './model_neuron'
model_neuron.save(model_dir)
model_neuron_reloaded = tf.keras.models.load_model(model_dir)

Example Usage with Manual Device Placement Using subgraph_builder_function

import tensorflow as tf
import tensorflow.neuron as tfn

input0 = tf.keras.layers.Input(3)
dense0 = tf.keras.layers.Dense(3)(input0)
reshape0 = tf.keras.layers.Reshape([1, 3])(dense0)
output0 = tf.keras.layers.Dense(2)(reshape0)
model = tf.keras.Model(inputs=[input0], outputs=[output0])
example_inputs = tf.random.uniform([1, 3])

(continues on next page)
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(continued from previous page)

def subgraph_builder_function(node):
return node.op == 'MatMul'

model_neuron = tfn.trace(
model, example_inputs,
subgraph_builder_function=subgraph_builder_function,

)

Important: Although the old API tensorflow.neuron.saved_model.compile is still available under tensorflow-
neuron 2.x, it supports only the limited capabilities of tensorflow.neuron.trace and will be deprecated in future
releases.

This document is relevant for: Inf1

This document is relevant for: Inf1

TensorFlow 2.x (tensorflow-neuron) analyze_model API

Method

tensorflow.neuron.analyze_model

Description

Analyzes a keras.Model or a Python callable that can be decorated by tf.function for it’s compatibility with
Neuron. It displays supported vs. unsupported operators in the model as well as percentages and counts of each
operator and returns a dictionary with operator statistics.

Arguments

• func: The keras.Model or function to be analyzed.

• example_inputs: A tf.Tensor or a tuple/list/dict of tf.Tensor objects for tracing the function. When
example_inputs is a tf.Tensor or a list of tf.Tensor objects, we expect func to have calling sig-
nature func(example_inputs). Otherwise, the expectation is that inference on func is done by call-
ing func(*example_inputs) when example_inputs is a tuple, or func(**example_inputs) when
example_inputs is a dict. The case where func accepts mixed positional and keyword arguments is cur-
rently unsupported.
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Returns

• A results dict with these keys: ``’percent_supported’, ‘supported_count’,

‘total_count’, ‘supported_operators’, ‘unsupported_operators’, ‘operators’, ‘operator_count’``.

Example Usage

import tensorflow as tf
import tensorflow.neuron as tfn

input0 = tf.keras.layers.Input(3)
dense0 = tf.keras.layers.Dense(3)(input0)
model = tf.keras.Model(inputs=[input0], outputs=[dense0])
example_inputs = tf.random.uniform([1, 3])
results = tfn.analyze_model(model, example_inputs)
print(results)

# expected output
'''
BiasAdd

MatMul
100.00% of all operations (2 of 2) are supported
{'percent_supported': 100.0, 'supported_count': 2, 'total_count': 2,
'supported_operators': {'BiasAdd', 'MatMul'}, 'unsupported_operators': [],
'operators': ['BiasAdd', 'MatMul'], 'operator_count': {'MatMul': 1, 'BiasAdd': 1}}
'''

This document is relevant for: Inf1

This document is relevant for: Inf1

TensorFlow 2.x (tensorflow-neuron) Auto Multicore Replication (Beta)

The Neuron auto multicore replication Python API enables modifying TensorFlow 2.x traced models so that they can
be automatically replicated across multiple cores. For Tensorflow-Serving models and TensorFlow 1.x models, see
TensorFlow Neuron TF2.x (tensorflow-neuronx TF2.x) Auto Multicore Replication CLI (Beta)

Table of contents

• TensorFlow 2.x (tensorflow-neuron TF2.x) Auto Multicore Replication Python API (Beta)

• TensorFlow Neuron 2.x (tensorflow-neuron) Auto Multicore Replication CLI (Beta)
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TensorFlow 2.x (tensorflow-neuron TF2.x) Auto Multicore Replication Python API (Beta)

Method

tensorflow.neuron.auto_multicore

Description

Converts an existing AWS-Neuron-optimized keras.Model and returns an auto-replication tagged AWS-Multicore-
Neuron-optimized keras.Model that can execute on AWS Machine Learning Accelerators. Like the traced model, the
returned keras.Model will support inference only. Attributes or variables held by the original function or keras.
Model will be dropped.

The auto model replication feature in TensorFlow-Neuron enables you to create a model once and the model parallel
replication would happen automatically. The desired number of cores can be less than the total available NeuronCores
on an Inf1 instance but not less than 1. This reduces framework memory usage as you are not loading the same model
multiple times manually. Calls to the returned model will execute the call on each core in a round-robin fashion.

The returned keras.Model can be exported as SavedModel and served using TensorFlow Serving. Please see
tensorflow-serving for more information about exporting to saved model and serving using TensorFlow Serving.

Note that the automatic replication will only work on models compiled with pipeline size 1: via
--neuroncore-pipeline-cores=1. If auto replication is not enabled, the model will default to replicate on
up to 4 cores.

See Neuron compiler CLI Reference Guide (neuron-cc) for more information about compiler options.

Arguments

• func: The keras.Model or function to be traced.

• example_inputs: A tf.Tensor or a tuple/list/dict of tf.Tensor objects for tracing the function. When
example_inputs is a tf.Tensor or a list of tf.Tensor objects, we expect func to have calling sig-
nature func(example_inputs). Otherwise, the expectation is that inference on func is done by call-
ing func(*example_inputs) when example_inputs is a tuple, or func(**example_inputs) when
example_inputs is a dict. The case where func accepts mixed positional and keyword arguments is cur-
rently unsupported.

• num_cores: The desired number of cores where the model will be automatically replicated across

Returns

• An AWS-Multicore-Neuron-optimized keras.Model.
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Example Python API Usage for TF2.x traced models:

input0 = tf.keras.layers.Input(3)
dense0 = tf.keras.layers.Dense(3)(input0)
inputs = [input0]
outputs = [dense0]
model = tf.keras.Model(inputs=inputs, outputs=outputs)
input0_tensor = tf.random.uniform([1, 3])
model_neuron = tfn.trace(model, input0_tensor)

num_cores = 4
multicore_model = tfn.auto_multicore(model_neuron, input0_tensor, num_cores=num_cores)
multicore_model(input0_tensor)

Example Python API Usage for TF2.x saved models:

from tensorflow.python import saved_model

input0_tensor = tf.random.uniform([1, 3])
num_cores = 4
reload_model = saved_model.load(model_dir)
multicore_model = tfn.auto_multicore(reload_model, input0_tensor, num_cores=num_cores)

TensorFlow Neuron 2.x (tensorflow-neuron) Auto Multicore Replication CLI (Beta)

The Neuron auto multicore replication CLI enables modifying TensorFlow 1.x and Tensorflow 2.x traced saved models
so that they can be automatically replicated across multiple cores. By performing this call on Tensorflow Saved Models,
we can support both Tensorflow-Serving and Tensorflow 1.x without significant modifications to the code. Note that
the python API does not support Tensorflow 1.x.

Method

tf-neuron-auto-multicore MODEL_DIR --num_cores NUM_CORES --new_model_dir NEW_MODEL_DIR

Arguments

• MODEL_DIR: The directory of a saved AWS-Neuron-optimized keras.Model.

• NUM_CORES: The desired number of cores where the model will be automatically replicated across

• NEW_MODEL_DIR: The directory of where the AWS-Multicore-Neuron-optimized keras.Model will be
saved

This document is relevant for: Inf1

• TensorFlow 2.x (tensorflow-neuron) Tracing API

• TensorFlow 2.x (tensorflow-neuron) analyze_model API

• TensorFlow 2.x (tensorflow-neuron) Auto Multicore Replication (Beta)
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This document is relevant for: Inf1

This document is relevant for: Inf1

Misc (tensorflow-neuron)

This document is relevant for: Inf1

TensorFlow 2.x (tensorflow-neuron) Release Notes

Table of contents

• Known Issues and Limitations - updated 08/12/2021

• tensorflow-neuron 2.x release [2.12.2.0]

• tensorflow-neuron 2.x release [2.11.4.0]

• tensorflow-neuron 2.x release [2.10.19.0]

• tensorflow-neuron 2.x release [2.10.8.0]

• tensorflow-neuron 2.x release [2.10.2.0]

• tensorflow-neuron 2.x release [2.10.1.0]

• tensorflow-neuron 2.x release [2.9.3.0]

• tensorflow-neuron 2.x release [2.8.9.0]

• tensorflow-neuron 2.x release [2.8.1.0]

• tensorflow-neuron 2.x release [2.7.4.0]

• tensorflow-neuron 2.x release [2.7.3.0]

• tensorflow-neuron 2.x release [2.6.5.0]

• tensorflow-neuron 2.x release [2.6.0.0]

• tensorflow-neuron 2.x release [2.4.0.0]

• tensorflow-neuron 2.x release [2.3.0.0]

• tensorflow-neuron 2.x release [2.2.0.0]

• tensorflow-neuron 2.x release [2.1.14.0]

• tensorflow-neuron 2.x release [2.1.13.0]

• tensorflow-neuron 2.x release [2.1.6.0]

• tensorflow-neuron 2.x release [2.0.4.0]

• tensorflow-neuron 2.x release [2.0.3.0]

• tensorflow-neuron 2.x release [1.6.8.0]

This document lists the release notes for the tensorflow-neuron 2.x packages.
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Known Issues and Limitations - updated 08/12/2021

• Support on serialized TensorFlow 2.x custom operators is currently limited. Serializing some operators registered
from tensorflow-text through TensorFlow Hub is going to cause failure in tensorflow.neuron.trace.

• Memory leak exists on latest releases of TensorFlow Neuron for versions 2.1, 2.2, 2.3, and 2.4.

• Issue: When compiling large models, user might run out of memory and encounter this fatal error.

terminate called after throwing an instance of 'std::bad_alloc'

Solution: run compilation on a c5.4xlarge instance type or larger.

• Issue: When upgrading tensorflow-neuron with pip install tensorflow-neuron --upgrade, the fol-
lowing error message may appear, which is caused by pip version being too low.

Could not find a version that satisfies the requirement tensorflow<1.16.0,>=1.15.0 (from␣
→˓tensorflow-neuron)

Solution: run a pip install pip --upgrade before upgrading tensorflow-neuron.

• Issue: Some Keras routines throws the following error:

AttributeError: 'str' object has no attribute 'decode'.

Solution: Please downgrade h5py by pip install ‘h5py<3’. This is caused by https://github.com/TensorFlow/
TensorFlow/issues/44467.

tensorflow-neuron 2.x release [2.12.2.0]

Date: 09/16/2024

• Minor updates.

tensorflow-neuron 2.x release [2.11.4.0]

Date: 07/03/2024

• Minor updates.

tensorflow-neuron 2.x release [2.10.19.0]

Date: 04/01/2024

• Minor updates.

2.3. TensorFlow Neuron 435

https://tfhub.dev/
https://github.com/TensorFlow/TensorFlow/issues/44467
https://github.com/TensorFlow/TensorFlow/issues/44467


AWS Neuron

tensorflow-neuron 2.x release [2.10.8.0]

Date: 12/21/2023

• Minor updates.

tensorflow-neuron 2.x release [2.10.2.0]

Date: 10/15/2023

• Minor updates.

tensorflow-neuron 2.x release [2.10.1.0]

Date: 09/15/2023

• Minor updates.

tensorflow-neuron 2.x release [2.9.3.0]

Date: 7/19/2023

• Minor updates.

tensorflow-neuron 2.x release [2.8.9.0]

Date: 06/14/2023

• Added Python 3.10 support.

tensorflow-neuron 2.x release [2.8.1.0]

Date: 05/01/2023

• Added support for tracing models larger than 2 GB through the environment variable
NEURON_CC_FLAGS='--extract-weights INSTANCE_TYPE' for all inf1 instance types.

• Neuron release 2.10 release will be the last release that will include support for tensorflow-neuron version 2.7.
Future Neuron releases will not include tensorflow-neuron version 2.7.

tensorflow-neuron 2.x release [2.7.4.0]

Date: 04/19/2023

• Minor updates.
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tensorflow-neuron 2.x release [2.7.3.0]

Date: 03/28/2023

• Introduce the tfn.analyze_model function that displays information about the supported and unsupported
operators of a traceable model.

• Introduce the on_neuron_ratio attribute of AWS Optimized Neuron Models returned by tfn.trace, which
is the percentage of ops on neuron after compilation.

tensorflow-neuron 2.x release [2.6.5.0]

Date: 02/24/2023

• Minor updates.

tensorflow-neuron 2.x release [2.6.0.0]

Date: 2/24/2023

• Minor bug fixes.

tensorflow-neuron 2.x release [2.4.0.0]

Date: 11/22/2022

• Beta support for tracing models larger than 2 GB through environment variable
NEURON_CC_FLAGS='--extract-weights'.

• Introduce tfn.auto_multicore Python API to enable automatic data parallel on multiple NeuronCores.

• Introduce tf-neuron-auto-multicore tool to enable automatic data parallel on multiple NeuronCores.

• Deprecated the NEURONCORE_GROUP_SIZES environment variable.

• Minor bug fixes.

tensorflow-neuron 2.x release [2.3.0.0]

Date: 04/29/2022

• Added support for Tensorflow 2.8.0.

• Added support for Slice operator

• The graph partitioner now prefers to place less compute intensive operators on CPU if the model already contains
a large amount of compute intensive operators.

• Fixed Github issue #408, the fix solves data type handling bug in tfn.trace when the model contains Conv2D
operators.
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tensorflow-neuron 2.x release [2.2.0.0]

Date: 03/25/2022

• Updated TensorFlow 2.5 to version 2.5.3.

• Added support for TensorFlow 2.6 and 2.7.

• Added a warning message when calling tfn.saved_model.compile API. In tensorflow-neuron 2.x you should
call tensorflow.neuron.trace. tfn.saved_model.compile API supports only partial functionality of tensor-
flow.neuron.trace and will be deprecated in the future.

tensorflow-neuron 2.x release [2.1.14.0]

Date: 02/17/2022

• Fixed a bug in TensorFlow Neuron versions 2.1, 2.2. 2.3 and 2.4. The fixed bug was causing a memory leak of
128 bytes for each inference.

• Improved warning message when calling deprecated compilation API under tensorflow-neuron 2.x.

tensorflow-neuron 2.x release [2.1.13.0]

Date: 02/16/2022

• Fixed a bug that caused a memory leak. The memory leak was approximately 128b for each inference and exists
in all versions of TensorFlow Neuron versions part of Neuron 1.16.0 to Neuron 1.17.0 releases. see pre-release-
content for exact versions included in each release. This release only addresses the leak in TensorFlow Neuron
2.5. Future release of TensorFlow Neuron will fix the leak in other versions as well (2.1, 2.2, 2.3, 2.4).

tensorflow-neuron 2.x release [2.1.6.0]

Date: 01/20/2022

• Updated TensorFlow 2.5 to version 2.5.2.

• Enhanced auto data parallel (e.g. when using NEURONCORE_GROUP_SIZES=X,Y,Z,W) to support edge
cases.

• Fixed a bug that may cause tensorflow-neuron to generate in some cases scalar gather instruction with incorrect
arguments.

tensorflow-neuron 2.x release [2.0.4.0]

Date: 11/05/2021

• Updated Neuron Runtime (which is integrated within this package) to libnrt 2.2.18.0 to fix a container issue
that was preventing the use of containers when /dev/neuron0 was not present. See details here neuron-runtime-
release-notes.
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tensorflow-neuron 2.x release [2.0.3.0]

Date: 10/27/2021

New in this release

• TensorFlow 2.x (tensorflow-neuron) now support Neuron Runtime 2.x (libnrt.so shared library) only.

Important:
– You must update to the latest Neuron Driver (aws-neuron-dkms version 2.1 or newer) for proper

functionality of the new runtime library.

– Read Introducing Neuron Runtime 2.x (libnrt.so) application note that describes why are we mak-
ing this change and how this change will affect the Neuron SDK in detail.

– Read Migrate your application to Neuron Runtime 2.x (libnrt.so) for detailed information of how
to migrate your application.

• Updated TensorFlow 2.3.x from TensorFlow 2.3.3 to TensorFlow 2.3.4.

• Updated TensorFlow 2.4.x from TensorFlow 2.4.2 to TensorFlow 2.4.3.

• Updated TensorFlow 2.5.x from TensorFlow 2.5.0 to TensorFlow 2.5.1.

Resolved Issues

• Fix bug that can cause illegal compiler optimizations

• Fix bug that can cause dynamic-shape operators be placed on Neuron

tensorflow-neuron 2.x release [1.6.8.0]

Date: 08/12/2021

New in this release

• First release of TensorFlow 2.x integration, Neuron support now TensorFlow versions 2.1.4, 2.2.3, 2.3.3, 2.4.2,
and 2.5.0.

• New public API tensorflow.neuron.trace: trace a TensorFlow 2.x keras.Model or a Python callable that can be
decorated by tf.function, and return an AWS-Neuron-optimized keras.Model that can execute on AWS Machine
Learning Accelerators.

Please note that TensorFlow 1.x SavedModel compilation API tensorflow.neuron.saved_model.compile is
not supported in tensorflow-neuron 2.x . It continues to function in tensorflow-neuron 1.15.x .

• Included versions:

– tensorflow-neuron-2.5.0.1.6.8.0

– tensorflow-neuron-2.4.2.1.6.8.0

– tensorflow-neuron-2.3.3.1.6.8.0
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– tensorflow-neuron-2.2.3.1.6.8.0

– tensorflow-neuron-2.1.4.1.6.8.0

This document is relevant for: Inf1

This document is relevant for: Inf1

TensorFlow 2.x (tensorflow-neuron) Accelerated (torch-neuron) Python APIs and Graph Ops

This page lists TensorFlow 2.x Python APIs and graph operators that are accelerated by AWS Neuron. The lists are not
exhaustive. TensorFlow 2.x Python APIs or graph operators that are not listed here may still be accelerated if they are
composed of accelerated primitives, or they will be executed on CPU without significant acceleration. The TensorFlow
Neuron integration contains an automatic operator-device-placement mechanism that strives to maximize the execution
efficiency of your deep learning models on AWS Machine Learning ASIC instances.

Accelerated Python APIs

Module Accelerated Python API Comments
tf tf.abs

tf.add
tf.add_n
tf.broadcast_static_shape
tf.cast
tf.constant
tf.convert_to_tensor
tf.cumsum axis must be a compile-time con-

stant.
tf.einsum
tf.erf
tf.exp
tf.identity
tf.matmul Uses float16/bfloat16 matmul with

float32 accumulation.
tf.maximum
tf.minimum
tf.multiply
tf.negative
tf.range start, limit and delta argu-

ments must be compile-time con-
stants.

tf.realdiv
tf.reciprocal
tf.reduce_all axis must be a compile-time con-

stant.
tf.reduce_any axis must be a compile-time con-

stant.
tf.reduce_max axis must be a compile-time con-

stant.
tf.reduce_min axis must be a compile-time con-

stant.
continues on next page
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Table 2.2 – continued from previous page
Module Accelerated Python API Comments

tf.reduce_prod axis must be a compile-time con-
stant.

tf.reduce_sum axis must be a compile-time con-
stant.

tf.reshape shape argument must be a compile-
time constant.

tf.rsqrt
tf.scalar_mul
tf.shape
tf.shape_n
tf.sigmoid
tf.size
tf.slice size must be a compile-time con-

stant. In addition,
either begin must be a compile-
time constant or
size must be non-negative.

tf.sqrt
tf.square
tf.squared_difference
tf.squeeze
tf.stack
tf.stop_gradient
tf.strided_slice
tf.tanh
tf.tensordot
tf.to_bfloat16
tf.to_float
tf.truediv

tf.layers tf.layers.
batch_normalization
tf.layers.dense
tf.layers.flatten

tf.nn tf.nn.batch_normalization
tf.nn.bias_add
tf.nn.dropout Always treated as tf.identity

during inference.
tf.nn.fused_batch_norm
tf.nn.leaky_relu
tf.nn.relu
tf.nn.relu6
tf.nn.relu_layer
tf.nn.softmax
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Accelerated graph operators

Add
AddN
AddV2
BatchMatMul
BatchMatMulV2
BiasAdd
Cast
Const
Cumsum
Einsum
Erf
Exp
ExpandDims
FusedBatchNorm
FusedBatchNormV2
FusedBatchNormV3
Greater
Identity
LeakyRelu
MatMul
Max
Maximum
Minimum
Mean
Mul
Neg
Pack
RealDiv
Relu
Relu6
Reshape
Rsqrt
Sigmoid
Softmax
Split
SplitV
Sqrt
Square
SquaredDifference
Squeeze
StridedSlice
Sub
Sum
Tanh
Transpose
Unpack

The lists share many commonalities with Available TensorFlow Ops. Portions of this page are modifications based on
work created and shared by Google and used according to terms described in the Creative Commons 4.0 Attribution
License.

This document is relevant for: Inf1
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• TensorFlow 2.x (tensorflow-neuron) Release Notes

• TensorFlow 2.x (tensorflow-neuron) Accelerated (torch-neuron) Python APIs and Graph Ops

This document is relevant for: Inf1

Setup (tensorflow-neuron)

Tutorials (tensorflow-neuron)

Natural Language Processing (NLP) Tutorials

• Tensorflow 2.x - HuggingFace Pipelines distilBERT with Tensorflow2 Neuron [html] [notebook]

Utilizing Neuron Capabilities Tutorials

• Tensorflow 2.x - Using NEURON_RT_VISIBLE_CORES with TensorFlow Serving [html]

Note: To use Jupyter Notebook see:

• setup-jupyter-notebook-steps-troubleshooting

• running-jupyter-notebook-as-script

Additional Examples (tensorflow-neuron)

• AWS Neuron Samples GitHub Repository

API Reference Guide (tensorflow-neuron)

• TensorFlow 2.x (tensorflow-neuron) Tracing API

• TensorFlow 2.x (tensorflow-neuron) analyze_model API

• TensorFlow 2.x (tensorflow-neuron) Auto Multicore Replication (Beta)

Misc (tensorflow-neuron)

• TensorFlow 2.x (tensorflow-neuron) Release Notes

• TensorFlow 2.x (tensorflow-neuron) Accelerated (torch-neuron) Python APIs and Graph Ops

This document is relevant for: Inf1

Tensorflow NeuronX for Inference on Inf2 & Trn1 / Trn1n Tensorflow Neuron for Inference on Inf1
This document is relevant for: Inf1, Inf2, Trn1
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CHAPTER

THREE

NEURONX DISTRIBUTED (NXD)

This document is relevant for: Trn1, Trn2

3.1 NxD Training

This document is relevant for: Trn1, Trn2

3.1.1 Overview

Table of contents

• NxD Training

• Using NxD Training

– Configuration File

– PyTorch Lightning APIs

– NxD Core Primitives

NxD Training

The NeuronX Distributed Training (NxD Training) library is a collection of open-source tools and libraries designed
to empower customers to train PyTorch models on AWS Trainium instances. It combines both ease-of-use and access
to features built on top of NxD Core library. Except for a few Trainium specific features, NxD Training is compatible
with training platforms like NVIDIA’s NeMo.

Specifically, NxD Training offers the following features and productivity flows:

• Training Workflows: Developers benefit from turnkey support for multiple workflows such as model Pre-
training, Supervised Finetuning (SFT), and Parameter Efficient Finetuning (PEFT) using Low Rank Adapters
(LoRA)1. For these workflows, precision types supported include (a) FP32 for both baseline and for master
weights when using ZeRO-1, and (b) BF16 combined with stochastic rounding.

• Distributed Strategies: Splitting training workload over multiple nodes shortens the job duration. This is made
possible through distributed strategies that are the techniques used to shard large scale models across multiple
Neuron Cores. NxD Training Distributed Strategies are implemented in the NxD Core library and include: Data

1 Supported through NxD Core.
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Parallelism, Tensor-parallelism, Sequence-Parallelism, Pipeline-parallelism (including 1F1B pipeline schedule
and interleaved pipeline schedule), and ZeRO-1.

• Data Science Modules: The integration of datasets, dataloaders, tokenizers and other data wrangling tools makes
it easy to prepare and use large-scale training data.

• Data Engineering Modules: Integrated Experiment Manager allows for saving training outputs through check-
pointing and evaluating results through enhanced logging. It comes with multiple options for optimally load-
ing/saving checkpoints such as sharded checkpoints, last-K checkpoints, asynchronous checkpoints, auto-resume
from checkpoints and storage in S3 buckets.

• PyTorch Lightning: NxD Training is integrated with training frameworks like like PyTorch Lightning that help
with organizing training code.

• Models: Users can start on NxD Training with ready-to-use samples based on HuggingFace and Megatron-LM
model formats. It has support for advanced LLM architecture blocks such as Grouped Query Attention layer.

• SW Releases: NxD Training code is available on GitHub, both as pip wheel and source code.

Fig. 3.1: NxD Training

Using NxD Training

ML developers often need access to training code at different levels of abstraction. As shown in figure, using NxD
Training is possible using three interfaces:

• High-level YAML configuration file used in conjunction with models in NxD Training’s model hub

• PyTorch Lightning (PTL) APIs and Trainer in conjunction with NxD Core primitives

• NxD Core foundational API, also refered to as NxD Core primitives

All three usage mechanisms employ the underlying NxD Core library either directly through programming interfaces
or configuration files and developers can choose the method that meets their needs.
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Fig. 3.2: Using NxD Training through (a) Configuration Files (b) PyTorch Lightning APIs, and (c) NxD Core primitives

Configuration File

NxD Training supports a top-level access for distributed training using YAML based configuration files. This option
is available for models that are available in the model hub or custom ones enabled after following the steps listed in
model integration guide inside NxD Training. With this usage model, only the configuration parameters inside the
YAML file need to be set and no further code changes are necessary. This facilitates easy experimentation with various
configuration settings and automating the workflow. Figure below shows the major settings available inside YAML
configuration file and more details on how to exercise these options are in YAML Configuration Settings. Existing users
of NeuronX NeMo Megatron (NNM) or NVIDIA NeMo can review NNM and NeMo migration guides, respectively,
to map the configuration parameters to NxD Training.

Fig. 3.3: Top level settings for NxD Training through configuration file
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PyTorch Lightning APIs

PyTorch Lightning is a library that abstracts out model training workflows and eliminates the boilerplate code to setup
training loops. Through its inheritable classes for training loops, data and customizable callbacks for checkpointing
and distributed strategies, developers can set training workflows in a standardized and compact manner.

As shown in user interfaces to NxD Training, Figure (b), overall training scripts can be built using PyTorch Light-
ning and making use of NxD Core library. This requires overriding the base classes of PyTorch Lightning such as
LightningModule, DataModule; configuring optimizer and LR scheduler;setting appropriate callbacks; and launch-
ing the Trainer. For more details, refer to NxD Core’s PyTorch Lightning developer guide and sample tutorial.

NxD Core Primitives

NxD Core primitives are basic APIs that can be stitched together to build complete training workflows for AWS
Trainium instances. Addtionally, these primitives are required for integrating a new custom model into NxD Train-
ing or using the model directly via NxD Core library.

NxD Core library has support for all the essential training features - model sharding, handling collective communi-
cations, memory reduction, checkpointing, optimizer setting and profiling. For example, tensor parallelism through
NxD Core is achieved by converting the linear layers, common in attention modules of transformer-architecture based
models, to parallel layers. For pipeline parallelism, NxD Core offers ability for both manual and automatic selection of
pipeline cut points in the model graph. Additional options for sequence parallelism and activation recomputation help
with memory reduction. For all these parallelism options, NxD Core library automatically ensures efficient manage-
ment of all the required collective communications across Neuron Cores.

Exact details on how these capabilities can be exercised are described in NxD Core developer guide. For background
information and description of NxD Core primitives, users are referred to NxD Core’s app notes, and API guide,
respectively. Following these steps, once a new model is onboarded using NxD Core APIs, its training workflow can
be streamlined using NxD Training’s experiment manager and data science/engineering modules.

This document is relevant for: Trn1, Trn2

This document is relevant for: Trn1, Trn2

3.1.2 Setup

Neuronx Distributed Training framework is built on top of NeuronxDistributed (NxD) , NeMo libraries and PyTorch-
Lightning. The guide below will provide a step-by-step instructions on how to setup the environment to run training
using NeuronX Distributed Training framework. Alternatively, you can use the Neuronx Distributed Training virtual
environment found in the Neuron DLAMI without running any of these setup steps. See Neuron DLAMI User Guide.
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• Building Apex

• Installing the requirements

• Installing Neuronx Distributed Training framework

• Common failures during installation
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Setup a python Virtual Environment

Let’s first setup a virtual env for our development. This can be done using the command below:

python3 -m venv env
source env/bin/activate

Installing Neuron Dependencies

Install the neuron packages using the command:

pip install -U pip
pip install --upgrade neuronx-cc==2.* torch-neuronx torchvision neuronx_distributed --
→˓extra-index-url https://pip.repos.neuron.amazonaws.com

Building Apex

NxD Training uses the NeMo toolkit, which requires you to install additional dependencies. One of these dependencies
is the Apex library. The NeMo toolkit uses this library for several fused module implementations.

Note: NeMo used to use Apex for all distributed training APIs. Since we are using NxD for the same purpose, the use
of Apex for this framework is very minimal. It’s been added as a dependency since some of the minor imports inside
NeMo will break without it. Hence, when building Apex, we build a slim CPU version using the instructions below:

1. Clone Apex repo

git clone https://github.com/NVIDIA/apex.git
cd apex
git checkout 23.05

2. Replace the contents of the setup.py with the following contents:

import sys
import warnings
import os
from packaging.version import parse, Version

from setuptools import setup, find_packages
import subprocess

import torch
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_
→˓HOME, load

setup(
name="apex",
version="0.1",
packages=find_packages(

exclude=("build", "csrc", "include", "tests", "dist", "docs", "tests", "examples
→˓", "apex.egg-info",)

(continues on next page)
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(continued from previous page)

),
install_requires=["packaging>20.6",],
description="PyTorch Extensions written by NVIDIA",

)

3. Install python dependencies:

pip install packaging wheel

4. Build the wheel using the command:

python setup.py bdist_wheel

5. After this, you should see the wheel at dist/. You can use this for installation in the next section.

6. Come out of the apex directory using cd ...

Installing the requirements

Download the requirements.txt using the command:

wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed-training/master/
→˓requirements.txt

We can now install the dependencies of the library using the following command:

pip install -r requirements.txt ~/apex/dist/apex-0.1-py3-none-any.whl

After installing the requirements, we need to patch some of the installations so run

wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed-training/master/
→˓install_setup.sh
chmod +x install_setup.sh
./install_setup.sh

You may see some warnings related to the installations, but those can be ignored.

Installing Neuronx Distributed Training framework

To install the library, one can run the following command:

pip install neuronx_distributed_training --extra-index-url https://pip.repos.neuron.
→˓amazonaws.com
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Common failures during installation

This section goes over the common failures one can see during setup and how to resolve them.

1. ``ModuleNotFoundError: No module named ‘Cython’``
You may have to install Cython explicitly using pip install Cython

2. Error while building ``youtokentome``
If you get an error that says Python.h file not found, you may have to install python-dev and recreate the
virtual env. To install python-dev, you can use the command: sudo apt-get install python-dev

3. Mismatched torch and torch-xla version
When you see an error that looks like:

ImportError: env/lib/python3.10/site-packages/_XLAC.cpython-310-x86_64-linux-gnu.so:␣
→˓undefined symbol: _ZN3c109TupleTypeC1ESt6vectorINS_4Type24SingletonOrSharedTypePtrIS2_
→˓EESaIS4_EENS_8optionalINS_13QualifiedNameEEESt10shared_ptrINS_14FunctionSchemaEE

It indicates that the major versions of torch and torch-xla don't match.

Note: If you install torch again, make sure to install the corresponding torchvision version else that would have a
conflict.

4. Torch vision version error
The below error indicates incorrect torchvision version. If installing torch=2.1, install torchvision=0.16
(This link shows which version of torchvision is compatible with which version of torch).

ValueError: Could not find the operator torchvision::nms. Please make sure you have␣
→˓already registered the operator
and (if registered from C++) loaded it via torch.ops.load_library.`

5. Matplotlib lock error
If you see the below error:

TimeoutError: Lock error: Matplotlib failed to acquire the following lock file

This error means there is some contention in compute/worker nodes to access the␣
→˓matlotlib cache, and hence the timeout
error. To resolve this error, add or run ``python -c 'import matplotlib.pyplot as plt'``␣
→˓command as part of your setup.
This will create a matplotlib cache and avoid the race condition.

This document is relevant for: Trn1, Trn2

This document is relevant for: Trn1, Trn2
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3.1.3 App Notes

This document is relevant for: Trn1, Trn2

Introducing NxD Training

Table of contents

• What are we introducing?

• I currently use NeuronX Distributed (NxD Core). How does NxD Training release affect me?

• Should the current Neuron NeMo Megatron (NNM) users continue to use NNM?

• I am new to Neuron and have training workloads, what toolkits or libraries should I use?

• Additional Resources

What are we introducing?

Starting with the Neuron 2.20 release, we are introducing NxD Training. In doing so, we are expanding Neu-
ronX Distributed library (previously called NxD that will now be called NxD Core) to NxD Training with data sci-
ence/engineering modules, and end to end examples. NxD Training is a PyTorch based distributed training library
that enables customers to train large-scale models. Some key distributed strategies supported by NxD Training include
3D-parallelism (data parallelism, tensor parallelism and pipeline parallelism) and ZeRO-1 (where optimizer states are
partitioned across workers).

NxD Training supports model training workflows like pretraining, supervised finetuning (SFT) and parameter efficient
finetuning (PEFT) using Low-Rank Adapter (LoRA) techniques1. For developers, NxD Training offers both API level
access through NxD Core and PyTorch Lightning and an intuitive interface via YAML based configuration files. NxD
Training offers a flexible approach that enables customers to leverage only the functionalities that align with their
unique workflows and seamlessly integrate their machine learning training software at the appropriate level within
NxD Training, ensuring a user experience tailored to their specific requirements. This is a beta preview version of NxD
Training and feedback from the developer community is strongly encouraged for upcoming releases.

I currently use NeuronX Distributed (NxD Core). How does NxD Training release affect me?

Existing NxD Core customers can continue to use NxD Core APIs available under NxD Training. If workflows based
on NxD Core meet your needs, you do not need to do anything different with NxD Training’s introduction. NxD Core
APIs and functionalities for NxD Core continue to be available to you as before. You can choose to install NxD Core
only and skip all subsequent installation steps for NxD Training. However, NxD Training has additional support for
YAML based configuration, a model hub and integration with PyTorch Lightning. If these capabilities are of interest
to you, you may choose to evaluate and start using NxD Training.

1 Supported through NxD Core.
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Should the current Neuron NeMo Megatron (NNM) users continue to use NNM?

NxD Training offers same capabilities as Neuron NeMo Megatron (NNM). Additionally, NNM will go into maintenance
mode in the next release. If you are currently using NNM, the introduction of NxD Training toolkit means that you
should start evaluating NxD Training for your training needs. With its YAML interface, NxD Training is very close in
terms of usability to NNM and NeMo. Migrating from NNM to NxD Training should involve a relatively minor effort
and instructions for doing so are provided here.

I am new to Neuron and have training workloads, what toolkits or libraries should I use?

If you are starting with Neuron and looking for solutions to your model pretraining or finetuning needs, then NxD
Training is the recommended toolkit for you. Please start from NxD Training page for overview, installation and usage
instructions.

Additional Resources

Multiple NxD Training resources on getting started, using it and getting required support are listed below. If you
encounter issues or have product related questions, please refer to FAQs and troubleshooting guides. Additionally,
please feel free to reach out to us using resources in Support section.

How to get started

Release notes

Main section

Troubleshooting

Support

This document is relevant for: Trn1, Trn2

This document is relevant for: Trn1, Trn2

Tensor Parallelism Overview

Tensor Parallelism is a technique in which a tensor is split into N chunks along a particular dimension such that each
device only holds 1/N chunk of the tensor. Computation is performed using this partial chunk so as to get partial output.
These partial outputs are collected from all devices ensuring the correctness of the computation is maintained.

Taking a general matrix multiplication as an example, let’s say we have C = AB. We can split B along the column
dimension into [B0 B1 B2 . . . Bn] and each device holds a column. We then multiply A with each column in B on each
device, we will get [AB0 AB1 AB2 . . . ABn]. At this moment, each device still holds partial results, e.g. device rank 0
holds AB0. To make sure the result is correct, we need to all-gather the partial result and concatenate the tensor along
the column dimension. In this way, we are able to distribute the tensor over devices while making sure the computation
flow remains correct.
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Fig and TP explanation is borrowed from https://colossalai.org/docs/concepts/paradigms_of_parallelism/
#tensor-parallel

Similarly we can perform the partition along the row dimensions and create a RowParallel Linear layer. In RowPar-
allelLinear layer, we partition the weight matrix along the row dimension. Let’s say we have C = AB. We can split B
along the row dimension into [B0 B1 B2 . . . Bn] and each device holds a row. We then multiply each column of A
on each device, we will get [A0B0 A1B1 A2B2 . . . AnBn]. At this moment, each device still holds partial results,
e.g. device rank 0 holds A0B0. To make sure the result is correct, we need to all-reduce sum the partial result from all
devices to produce the final output.

Using this principle of sharded linear layers, we can construct MLPs of arbitrary depth until the need to operate on the
whole output tensor, in which case we would have to construct the output but gathering it from all devices.
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Here is an illustration from the Megatron-LM paper In the above case, as you can see two linear layers are implemented
using Column Parallel and Row Parallel linear layers, wherein the ColumnParallel Linear shards along the columns
and then it is followed by RowParallel Linear layer which takes in parallel inputs (sharded outputs from ColumnPar-
allelLinear). Consider the example shown in the above diagram, Z = (XA)B. In this case we split the first matrix
multiplication over column dimension such that each device after first matrix multiplication holds partial result of
Y0=XA0,Y1=XA1 and so on. For the second matrix multiplication, we partition the weight matrix over row dimen-
sion and since the inputs are already columns sharded and we can multiply them to produce partial outputs. These
outputs finally requires an all-reduce sum, since we want to sum up the single column*row result.

Tensor Parallelism for Transformers:

A transformer block
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Fig: Taken from Megatron-LM paper.

As seen from the figure above, a simple self attention block has the QKV linear layer followed by MLP. Using the
same Column and Row Parallel linear layers, we can partition the self-attention block across devices thereby reducing
the memory footprint on each device, since each device now only holds partial parameters. This weight distribution
strategy allows us to scale large model training across devices.

This document is relevant for: Trn1, Trn2

This document is relevant for: Trn1, Trn2

Pipeline Parallelism Overview

Pipeline parallelism is a technique used in deep learning model training to improve efficiency and reduce the training
time of large neural networks. Currently NeuronxDistributed’s pipeline parallelism is built specially for transformer
based models, where each Neuron core will be assigned with a subset of transformer layers. Pipelining is a technique
to achieve true parallelization in pipeline parallelism, by having the Neuron cores compute simultaneously on different
data samples, and to overcome the performance loss due to sequential computation. When you use pipeline parallelism,
training job is executed in a pipelined fashion over microbatches to maximize device usage.

Model partitioning

In NeuronxDistributed, we use Pytorch’s FX to trace the model and do partition on the FX IR. User simply needs to
specify where to cut the pipeline stages, and our algorithm will cut the pipeline stages and assign the corresponding
modules to each Neuron core automatically. Currently we require user to provide model partition decision but auto-
partition will be supported in the future. Here is an example of simple partition with 5 linear layers

# original NN module
class MyModule(torch.nn.Module):

def __init__(self):
super().__init__()
self.linears = torch.nn.ModuleList([torch.nn.Linear(4, 4) for _ in range(5)])

def forward(self, x):
for lin in self.linears:

x = lin(x)
return x

m = MyModule()
gm = torch.fx.symbolic_trace(m)
print(gm)
"""
GraphModule(
(linears): Module(

(0): Linear(in_features=4, out_features=4, bias=True)
(1): Linear(in_features=4, out_features=4, bias=True)
(2): Linear(in_features=4, out_features=4, bias=True)
(3): Linear(in_features=4, out_features=4, bias=True)
(4): Linear(in_features=4, out_features=4, bias=True)

)
)

def forward(self, x):
(continues on next page)
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(continued from previous page)

linears_0 = getattr(self.linears, "0")(x); x = None
linears_1 = getattr(self.linears, "1")(linears_0); linears_0 = None
linears_2 = getattr(self.linears, "2")(linears_1); linears_1 = None
linears_3 = getattr(self.linears, "3")(linears_2); linears_2 = None
linears_4 = getattr(self.linears, "4")(linears_3); linears_3 = None
return linears_4

"""

If user decide to cut the pipeline stage at the 3nd linear call, after partition there will be 2 submodules, where submod_0
contains first 3 linear layers and submod_1 contains last 2 linear layers.

After Split module
GraphModule(
(submod_0): GraphModule(

(linears_0): Linear(in_features=4, out_features=4, bias=True)
(linears_1): Linear(in_features=4, out_features=4, bias=True)
(linears_2): Linear(in_features=4, out_features=4, bias=True)

)
(submod_1): GraphModule(

(linears_3): Linear(in_features=4, out_features=4, bias=True)
(linears_4): Linear(in_features=4, out_features=4, bias=True)

)
)

def forward(self, x):
submod_0 = self.submod_0(x); x = None
submod_1 = self.submod_1(submod_0); submod_0 = None
return submod_1

Pipeline Execution Schedule

Pipelining is based on splitting a mini-batch into microbatches, which are fed into the training pipeline one-by-one
and follow an execution schedule defined by the library runtime. A microbatch is a smaller subset of a given training
mini-batch. The pipeline schedule determines which microbatch is executed by which device for every time slot.

For example, depending on the pipeline schedule and the model partition, Neuron core i might perform (forward or
backward) computation on microbatch b while Neuron core i+1 performs computation on microbatch b+1, thereby
keeping both Neuron cores active at the same time. An example taken from Megatron paper is showed as below

This document is relevant for: Trn1, Trn2

This document is relevant for: Trn1, Trn2
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Activation Memory Reduction

There are three major contributors to high device memory utilization: Parameters, Optimizer states and Activation
Memory. To reduce the size of parameter/optimizer states memory, one can use parallelism techniques like Tensor-
parallelism, Pipeline-paralleism or Zero1. However, as the hidden size and sequence length increases, the size of the
activation memory keeps growing linearly with hidden size and quadraticly with sequence length.

The total activation memory without any parallelism comes to about:

Activations memory per layer = sbh
(︂
34 +

5𝑎𝑠

ℎ

)︂
where,

• a: Number of attention heads

• b: microbatch size

• h: hidden dimension size

• s: sequence length

When we use tensor-parallelism, it not only helps to reduce the parameter and optimizer states size on each device, but
it also helps to reduce the activation memory. For a transformer model, where we apply the tensor-parallel sharding on
the attention block (more info here), the activation memory within the attention block also drops by a factor of tensor-
parallel degree (t). However, since the layernorms and dropouts (which are outside these attention blocks) are not
parallelised and they are replicated on each device. These layernorms and dropouts are computationally inexpensive,
however, they increase the overall activation memory on each device. Moreover, since we only parallelize within the
attention block or within the MLP block (h -> 4h projection), the inputs to the QKV multiplies and the MLP are still
unsharded. This overall adds to about 10sbh of total activation memory. To reduce this activation memory, one can
use 2 methods:

• Sequence-Parallelism

• Activation Recomputation

Sequence Parallelism

Sequence-Parallelism was proposed by Shenggui and et.al . The authors propose to parallelize the compute along
all the sequence dimension in an attempt the reduce increasing the memory pressure due to high sequence-lengths.
Sequence-parallelism can be combined with tensor-parallelism to reduce the activation memory pressure due to in-
creasing sequence-lengths.

Tensor-parallelism parallelizes the parts of the transformer which are computationally heavy, however, it leaves the
layer-norms, dropouts and some MLP block intact. The activation memory for this block adds up to a factor of 10sbh.
Vijay Korthikanti et.al noticed that the compute in the non-tensor parallel region is independent in the sequence di-
mension. This property can be leveraged to shard the compute along the sequence dimension. The main advantage of
sharding these non-tensor parallel block is reducing the activation memory. We can use the same tensor-parallel degree
to partition, thereby reducing the overall activation memory by a factor of t. However, this partitioning comes at a cost.
Since we are partitionining the non-tensor parallel region along sequence dimnesion, we have to collect the activations
before we feed to the tensor-parallel block. This requires an introduction of all-gather collective operation which would
gather the activations along the sequence dimension. Similarly, after the tensor-parallel block, since we would have to
split the activations along the sequence dimension and distribute among the devices. Since, the tensor-parallel block
in the transformer module already uses an all-reduce (Row-parallel linear layer used for MLP), we can replace the
all-reduce operation with a reduce-scatter operation.
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libraries/nxd-training/app_notes/images/sequence_parallel.png

Ref: Reducing Activation Recomputation in Large Transformer Models

In the figure, g is all-gather operation and g¯ is the reduce-scatter operation. g and g¯ are conjugates and in the backward
pass, g¯ becomes an all-gather operation and g becomes the reduce-scatter operation. At first glance, it appears that
sequence-parallelism when combined with tensor-parallelism introduces an extra communication operation, however,
in a ring all-reduce, the op is broken down into all-gather and reduce-scatter. Hence, the bandwidth required for
sequence-parallelism is same as tensor-parallelism only. Hence, we are not losing out on compute but end up saving
the activation memory per device. The final activation memory when sequence-parallelism is combined with tensor-
parallelism:

Activations memory per layer = sbh
(︂
10

𝑡
+

24

𝑡
+

5𝑎𝑠

ℎ𝑡

)︂
=

sbh
𝑡

(︂
34 +

5𝑎𝑠

ℎ

)︂

Activation Recomputation

The total required memory in the above equation can still be high as we increase the sequence length and hidden
size. We would have to keep increasing the tensor-parallel degree to accommodate this requirement. Increasing the
tensor-parallel degree might soon start producing diminishing returns as the model would start becoming bandwidth
bottlenecked because of the extra collective communication operations. Activation recomputation can help to alleviate
this problem. In this method, we recompute a part of the forward pass during the backward pass, thereby avoiding
the need to save the activations during the forward pass. Activation recomputation is a trade-off between duplicate
computation vs memory. It allows you to save on memory at the cost of extra recompute. This trade-off becomes
valuable when we can fit larger models at the expense of recomputing forward pass activations.

Ideally one can recompute the entire forward pass, there by resulting in an activation memory of 2sbh per transformer
layer. This method is called Full-activation checkpointing. This memory can further go down by a factor of t if we use
tensor-parallelism. In the activation memory equation, we have a quadratic term of 5abs^2. As the sequence length,
this term will grow at a much faster rate. This quadratic term comes from the softmax computation. Vijay Korthikanti
et.al propose Selective activation checkpointing where they only recompute the softmax and attention computation and
thereby avoid saving the activations coming from softmax and attention computation. This completely gets rid of the
quadratic term and brings down the activation memory per layer to 34sbh/t. The LLama-7B example in this tutorial
used selective activation checkpointing.

This document is relevant for: Trn1, Trn2

• Introducing NxD Training

• Tensor Parallelism Overview

• Pipeline Parallelism Overview

• Activation Memory Reduction

This document is relevant for: Trn1, Trn2

This document is relevant for: Trn1, Trn2
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3.1.4 API Reference Guide

This document is relevant for: Trn1, Trn2

YAML Configuration Settings

The library allows configuring a bunch of parameters in the YAML file to run large scale training. The important
categories and parameters are highlighted below. At the top level, we have the following keys:

name:
# Name of the experiment

model_source:
# Model source code, could be megatron or hf

seed:
# Random seed to be used for the entire experiment

trainer:
# Settings to configure the PyTorch-Lightning trainer

exp_manager:
# Settings to configure logging/checkpointing

distributed_strategy:
# Settings to configure how the model is to be distributed across devices

data:
# Settings to configure the dataset/dataloader

model:
# Settings to configure the model architecture and the optimizer

precision:
# Settings to configure the model precision

compiler_flags:
# Neuron compiler flags to be used

compiler_cache_url:
# Cache to be used to save the compiled artifacts

aync_exec_max_inflight_requests:
# Used to configure the runtime queue

bucket_size_collectives:
# Collectives are batched into tensors of this size (in MBs)

neuron_rt_exec_timeout:
# Runtime timeout

neuron_experimental_compress_rg:
# To use compress replica group

Trainer

Neuronx Distributed Trainer framework is built on top of PyTorch-Lightning and this key allows users to configure the
trainer.

devices: 32
num_nodes: 1
max_epochs: -1
max_steps: 20000
log_every_n_steps: 1
val_check_interval: 20000

(continues on next page)
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check_val_every_n_epoch: null
num_sanity_val_steps: 0
limit_val_batches: 1
limit_test_batches: 1
gradient_clip_val: 1.0
lnc: 2
sequential_move_factor: 11

Note: All the above trainer parameters follow the exact same definition of the PyTorch-Lightning Trainer. More
information about each of them can be found here.

devices
Number of devices to be used for training. If using torchrun, this is equal to nproc_per_node * num_nodes.

• Type: integer

• Required: True

lnc
Neuron-specific setting that specifies the logical-to-physical Neuron Core mapping ratio. This parameter determines
the number of physical Neuron cores used for each logical Neuron Core.

Values:

• lnc: 1 - Each node exposes 128 logical devices, with a 1:1 mapping between logical and physical Neuron Cores.

• lnc: 2 - Implements a 2:1 mapping between logical and physical Neuron Cores.

– Type: integer

– Required: False

– Default: None (must be explicitly set)

num_nodes
Number of nodes to be used for training

• Type: integer

• Required: True

max_epochs
Maximum number of epochs to run. A value of -1 means that the number of training steps would be inferred from
max_steps

• Type: integer

• Required: True

log_every_n_steps
How often to log loss values

• Default value: 1

• Type: integer

• Required: True
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val_check_interval
How often to run validation step. Using this parameter one can run validation step after X training steps.

• Type: integer

• Required: True

check_val_every_n_epoch
Another parameter that controls the frequency of validation step. Using this parameter, one can run valiation step after
X epochs.

• Type: integer

• Required: True

num_sanity_val_steps
How many sanity validation steps to run. Keeping it to 0 would not run validation step at the start of training.

• Type: integer

• Required: True

limit_val_batches
Number of batches to run validation step on.

• Type: integer

• Required: True

gradient_clip_val
Float value to clip gradients at.

• Type: float

• Required: True

sequential_move_factor
Number of ranks/devices participating in initializing the model weights in parallel. Useful to reduce init time when
using TP-PP config. The value can be increased upto the number of trainer.devices being used.

• Default value: 11

• Type: integer

• Required: False

Experiment Manager

This setting is mainly for configuring different aspects of experiment management like checkpointing, experiment
logging directory, which parameters to log and how often to log, etc.

log_local_rank_0_only: True
create_tensorboard_logger: True
explicit_log_dir: null
exp_dir: null
name: megatron_llama
resume_if_exists: True
resume_ignore_no_checkpoint: True

(continues on next page)
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create_checkpoint_callback: True
checkpoint_callback_params:

monitor: step
save_top_k: 1
mode: max
save_last: False
filename: 'megatron_llama--{step}-{consumed_samples}'
every_n_train_steps: 200
use_master_weights_in_ckpt: False

log_parameter_norm: True
log_gradient_norm: True
enable_recovery_time_instrumentation: False
save_xser: True
load_xser: True
async_checkpointing: False
resume_from_checkpoint: null

log_local_rank_0_only
Log only on rank 0. The recommended setting should be True

• Type: bool

• Default: False

• Required: False

create_tensorboard_logger
Setting this True would log the loss and other parameters to tensorboard.

• Type: bool

• Default: False

• Required: False

exp_log_dir
Explicitly specify the logging directory. Otherwise, the framework would save to current directory as default.

• Type: str

• Default: null

• Required: False

resume_if_exists
Set this to True to resume from an existing checkpoint. This config will be useful when we want to auto-resume from
a failed training job.

• Type: bool

• Default: False

• Required: False

resume_ignore_no_checkpoint
Experiment manager errors out if resume_if_exists is True and no checkpoint could be found. This be-
haviour can be disabled, in which case exp_manager will print a message and continue without restoring, by setting
resume_ignore_no_checkpoint to True.
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• Type: bool

• Default: False

• Required: False

checkpoint_callback_params.save_top_k
How many checkpoints to keep around. Example: If set to 1, only 1 checkpoint at any given time would be kept around.
The framework would automatically keep deleting checkpoints.

• Type: int

• Required: True

checkpoint_callback_params.every_n_train_steps
How often we want to checkpoint.

• Type: int

• Required: True

checkpoint_callback_params.use_master_weights_in_ckpt
Whether or not to save master weights when checkpointing.

• Type: bool

• Default: False

• Required: False

log_parameter_norm
Set this to log parameter norm across model parallel ranks.

• Type: bool

• Default: False

• Required: False

log_gradient_norm
Set this to log gradient norm across model parallel ranks.

• Type: bool

• Default: False

• Required: False

enable_recovery_time_instrumentation
Set this if you don’t want to default to not printing the detailing timing for recovery.

• Type: bool

• Default: False

• Required: False

save_xser
Set this to save with torch xla serialization to reduce time saving, it’s recommended to enable xser for significantly
faster save/load. Note that if the checkpoint is saved with xser, it can only be loaded with xser, vice versa.

• Type: bool

• Default: False
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• Required: False

load_xser
Set this to load with torch xla serialization to reduce time saving, it’s recommended to enable xser for significantly
faster save/load. Note that if the checkpoint is saved with xser, it can only be loaded with xser, vice versa.

• Type: bool

• Default: False

• Required: False

async_checkpointing
Set this if you want to use async checkpointing. Under the hood the library uses the async checkpointing feature
provided by NeuronxDistributed’s save API.

• Type: bool

• Default: False

• Required: False

resume_from_checkpoint
Set this as the checkpoint file to load from. Check the SFT/DPO/ORPO example config under conf on how to use it.

• Type: str

• Default: null

• Required: False

ckpt_ptl_version
Set this only if your checkpoint does not contain the pytorch-lightning version in it. This version is the pytorch-lightning
version the checkpoint was saved with.

• Type: str

• Default: “2.5.0”

• Required: False

Distributed Strategy

tensor_model_parallel_size: 8
pipeline_model_parallel_size: 1
virtual_pipeline_model_parallel_size: 1
zero1: True
sequence_parallel: True
kv_replicator: 4

This setting allows users to configure the sharding strategy to be used for distributing the model across workers.

tensor_model_parallel_size
Tensor parallel degree to be used for sharding models.

• Type: int

• Required: True
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pipeline_model_parallel_size
Pipeline parallel degree to be used for sharding models.

• Type: int

• Required: True

virtual_pipeline_model_parallel_size
Interleaved pipeline parallel degree. Use a value of 1 if no pipeline parallelism is used.

• Type: int

• Required: True

context_parallel_size
Context parallel degree to be used for sharding sequence. When context_parallel_size is greater than 1, fusions.
ring_attention must be set to True.

• Type: int

• Required: False

• Default: 1

zero1
Wraps the optimizer with zero1.

• Type: bool

• Required: True

sequence_parallel
To shard along the sequence dimension. Sequence Parallel is always used in conjuction with tensor parallel. The
sequence dimension will be sharded with the same degree as the tensor_model_parallel_size.

• Type: bool

• Required: True

kv_replicator
This parameter is used together with qkv_linear parameter. It is used to configure the GQAQKVLinear module

• Type: bool

• Required: True

Data

This is where we configure the dataset/dataloader. This config is dependent on the dataloader/dataset been used. Users
can add custom keys in this config and read inside the CustomDataModule using cfg.data. Currently the library adds
support for 3 kinds of data modules: MegatronDataModule, ModelAlignmentDataModule and HFDataModule. To
learn about the config parameters of MegatronDataModule please check the megatron_llama_7B_config.yaml,
for ModelAlignmentDataModule check the megatron_llama2_7B_SFT_config.yaml and for HFDataModule, re-
fer to hf_llama3_8B_config.yaml.

The parameters that are common across all the configs are documented below.

micro_batch_size: 1
global_batch_size: 1024
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micro_batch_size
The batch is distributed across multiple data parallel ranks and within each rank, we accumulate gradients. Micro batch
size is the size that is used for each of those gradient calculation steps.

• Type: int

• Required: True

global_batch_size
This config along with micro-batchsize decides the gradient accumulation number automatically.

• Type: int

• Required: True

Model

This is where we can configure the model architecture. When building custom models, this config can be used to
parameterize the custom model. The below parameters are taken from an example of the Megatron model config.
Depending on the model and required parameters, this config can change.

HF Model

Let’s start with the config for the HF model:

# model architecture
model_config: /home/ubuntu/config.json
encoder_seq_length: 4096
max_position_embeddings: ${.encoder_seq_length}
num_layers: 4
hidden_size: 4096
qkv_linear: False

# Miscellaneous
use_cpu_initialization: True

## Activation Checkpointing
activations_checkpoint_granularity: selective
activations_checkpoint_recompute: [CoreAttention]

fusions:
softmax: True
flash_attention: False

do_layer_norm_weight_decay: False

optim:
name: adamw_fp32OptState
lr: 3e-4
weight_decay: 0.01
capturable: False
betas:
- 0.9

(continues on next page)
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- 0.999
sched:

name: LinearAnnealingWithWarmUp
warmup_steps: 100
max_steps: ${trainer.max_steps}

model_config
Points to the config.json path required by the transformersmodel implementation. One such example of config.
json is here

• Type: str

• Required: True

encoder_seq_length
Setting the sequence length for the training job. This parameter is common for all models supported in the library.

• Type: int

• Required: True

num_layers
This config will override the number of layers inside the config.json in the model_config. This is exposed so that
one can quickly increase/decrease the size of the model. This parameter is common for all models supported in the
library.

• Type: int

• Required: True

hidden_size
This config will override the hidden_size inside the config.json in the model_config. This parameter is common
for all models supported in the library.

• Type: int

• Required: True

qkv_linear
This needs to be set if users want to use the GQAQKVLinear module

• Type: bool

• Required: True

fuse_qkv
This is set if users want to use fused q, k and v tensors in GQAQKVLinear module Using fuse_qkv can improve
throughput. This parameter is True by default.

• Type: bool

• Required: False

transpose_nki_inputs
This is set if users want to transpose the inputs to NKI FlashAttention function. To be used only when fusions.
flash_attention is True. Using transpose_nki_inputs with fusions.flash_attention can improve
throughput. This parameter is True by default for all models, unless used otherwise.

• Type: bool
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• Required: False

pipeline_cuts
This is set as a list of layer names if users want to specify manual cut points for pipeline parallelism. One example is
[‘model.layers.10’, ‘model.layers.20’] in the case of PP=3.

• Type: List[str]

• Required: False

Note: When using this param, the number of pipeline cuts should always be pipeline_model_parallel_size-1.

use_cpu_initialization
Setting this flag to True will initialize the weights on CPU and then move to device. It is recommended to set this flag
to True. This parameter is common for all models supported in the library.

• Type: bool

• Required: True

activations_checkpoint_granularity
This flag controls which module needs to be recomputed during the backward pass.

Values:

• selective - Enables selective recomputation of specified
modules in activations_checkpoint_recompute during the backward pass.

• full - Saves activations at layer boundaries and recomputes the entire layer during the backward pass.

• null - Disables activation checkpointing.

More information on activation recompute can be found in this link. This parameter is common for all models supported
in the library.

• Type: str

• Possible Values: selective, full, null

• Required: True

activations_checkpoint_recompute This config specifies which modules to recompute when using selective acti-
vation checkpointing. It accepts a list of module names as strings or null.

• Type: list[str] or null

• Required: False

fusions.softmax
Setting this flag to True will replace the torch.nn.Softmax with a fused custom Softmax operator. This parameter
is common for all models supported in the library.

• Type: bool

• Required: True

fusions.flash_attention
Setting this flag to True will insert the flash attention module for both forward and backward. This parameter is
common for all models supported in the library.

• Type: bool
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• Required: True

fusions.ring_attention
Setting this flag to True will use the ring attention module for both forward and backward. This parameter must be
true when context_parallel_size is greater than 1.

• Type: bool

• Required: False

fusions.do_layer_norm_weight_decay
Setting this flag to True will add layer norm weight decay. This parameter is common for all models supported in the
library.

• Type: bool

• Required: True

optim
This is where the optimizers can be set. We can configure the optimizers supported by NeMo. All the optimzers can be
configured according to the parameters specified here.

• Type: config

• Possible Values: adamw, adamw_fp32OptState, sgd, adam, adadelta, adamax,

• adagrad, rmsprop, rprop, novograd, adafactor

• Required: True

optim.sched
This is where the LR schedulers can be set. We can configure the schedulers supported by NeMo. All the schedulers
can be configured according to the parameters specified here.

• Type: config

• Possible Values: LinearAnnealingWithWarmUp, CosineAnnealing, WarmupPolicy,

• WarmupHoldPolicy, SquareAnnealing, NoamAnnealing, WarmupAnnealing,

• StepLR, rprop, ExponentialLR

• Required: True

Megatron Model

The library enables a megatron transformer model which can be configured from the yaml file. The different available
parameters are documented below after the following reference example.

# model architecture
encoder_seq_length: 4096
max_position_embeddings: ${.encoder_seq_length}
num_layers: 32
hidden_size: 4096
ffn_hidden_size: 11008
num_attention_heads: 32
num_kv_heads: 32
init_method_std: 0.021
hidden_dropout: 0

(continues on next page)
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attention_dropout: 0
ffn_dropout: 0
apply_query_key_layer_scaling: True
normalization: 'rmsnorm'
layernorm_epsilon: 1e-5
do_layer_norm_weight_decay: False # True means weight decay on all params
make_vocab_size_divisible_by: 8 # Pad the vocab size to be divisible by this value for␣
→˓computation efficiency.
persist_layer_norm: True # Use of persistent fused layer norm kernel.
share_embeddings_and_output_weights: False # Untie embedding and output layer weights.
position_embedding_type: 'rope' # Position embedding type. Options ['learned_absolute',
→˓'rope]
rotary_percentage: 1 # If using position_embedding_type=rope, then the per head dim is␣
→˓multiplied by this.
activation: 'swiglu' # ['swiglu', 'gelu']
has_bias: False
# Miscellaneous
use_cpu_initialization: True

## Activation Checkpointing
activations_checkpoint_granularity: selective # 'selective' or 'full'

fusions:
softmax: True
flash_attention: False # Use NKI flash attention

optim:
name: adamw
lr: 3e-4
weight_decay: 0.1
capturable: True
betas:
- 0.9
- 0.95
sched:
name: CosineAnnealing
warmup_steps: 2000
constant_steps: 0
min_lr: 3.0e-5

Note: For common config, please refer to the HF Model section above.

ffn_hidden_size
Transformer FFN hidden size.

• Type: int

• Required: True

num_attention_heads
Number of Q attention heads.
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• Type: int

• Required: True

num_kv_heads
Number of KV heads. This is where we can configure Q and KV differently to create GQA modules.

• Type: int

• Required: True

init_method_std
Standard deviation to use when we init layers of the transformer model.

• Type: float

• Required: True

hidden_dropout
Dropout probability for hidden state transformer.

• Type: float

• Required: True

attention_dropout
Dropout probability in the attention layer.

• Type: float

• Required: True

ffn_dropout
Dropout probability in the feed-forward layer.

• Type: float

• Required: True

apply_query_key_layer_scaling
Scale Q * K^T by (1 / layer-number).

• Type: bool

• Required: True

normalization
Normalization layer to use.

• Type: str

• Possible Values: rmsnorm, layernorm

• Required: True

layernorm_epsilon
Epsilon value for layernorm.

• Type: float

• Required: True
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share_embeddings_and_output_weights
Setting this parameter to True will tie the vocab embedding weight with the final MLP weight.

• Type: bool

• Required: True

make_vocab_size_divisible_by
So lets say your vocab size is 31999 and you set this value to 4, the framework would pad the vocab-size such that it
becomes divisible by 4. In this case the close divisible value is 32K.

• Type: int

• Required: True

position_embedding_type
Type of position embedding to be used.

• Type: str

• Possible Values: learned_absolute, rope

• Required: True

rotary_percentage
If using position_embedding_type=rope, then the per head dim is multiplied by this factor.

• Type: float

• Required: True

activation
Users can specify the activation function to be used in the model.

• Type: str

• Possible Values: swiglu, gelu

• Required: True

has_bias
Setting this parameter to True will add bias to each of the linear layers in the model.

• Type: bool

• Required: True

Precision

This config can help to decide the dtype of the model/optimizer.

precision:
type: 'mixed_precision' # ['bf16SR', 'fp32', 'autocast', 'mixed_precision', 'mixed_

→˓precisionSR', 'manual']
# Set the following only if precision type is manual, otherwise they will be␣

→˓automatically set.
master_weights: False
fp32_grad_acc: False
xla_use_bf16: '0'

(continues on next page)
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xla_downcast_bf16: '0'
neuron_rt_stochastic_rounding_en: '0'
parallel_layers_reduce_dtype: 'bf16'

Note: Only if the precision type is manual, master_weights , fp32_grad_acc, xla_use_bf16,
xla_downcast_bf16, neuron_rt_stochastic_rounding_en will be picked up from the config. These param-
eters are for more finer control of precision. It is recommended to use mixed_precision config for better accuracy.

type
mixed_precision
The mixed_precision config uses the zero1 optimizer. It performs grad accumulation, grad cc, and keeps
the master copy of the weights in fp32. It also sets the xla_downcast_bf16 environment variable to 1 and
disables stochastic rounding.

mixed_precisionSR
mixed_precisionSR is a superset of the mixed_precision config with stochastic rounding enabled.

bf16SR
bf16SR config will perform all operations in bf16 and relies on stochastic rounding feature for accuracy gains.

autocast
autocast config will follow the exact same precision strategy followed by torch.autocast.

Note: Autocast is not supported in this release.

manual
To gain control of the different precision nobs, one can set the precision type to manual and con-
trol parameters like - master_weights , fp32_grad_acc, xla_use_bf16, xla_downcast_bf16 and
neuron_rt_stochastic_rounding_en.

parallel_layers_reduce_dtype
This config will perform reduce collectives (all-reduce and reduce-scatter) within parallel layers in the specified pre-
cision. If fp32 precision type is used, then we implicitly set reduce dtype to fp32. Otherwise it will be defaulted to
bf16 in all other cases unless specified.

Model Alignment Specific

You can configure fine-tuning (SFT) or model alignment (DPO/ORPO) through the YAML file, along with parameter-
efficient fine-tuning using LoRA.

model_alignment_strategy:
# DPO specific config
dpo:

kl_beta: 0.01
loss_type: sigmoid
max_prompt_length: 2048
precompute_ref_log_probs: True
truncation_mode: keep_start

(continues on next page)
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# Alternatively, you can also use SFT specific config
sft:

packing: True

# Alternatively, can also use ORPO specific config
orpo:

beta: 0.01
max_prompt_length: 2048
truncation_mode: keep_start

# Parameter-efficient finetuning - LoRA config
peft:

lora_rank: 16
lora_alpha: 32
lora_dropout: 0.05
lora_bias: "none"
lora_verbose: True
target_modules: ["qkv_proj"]

model_alignment_strategy
Set only when using finetuning specific algorithms (SFT, DPO, etc) and related hyperparameters DPO-
specific parameters.

dpo
kl_beta
KL-divergence beta to control divergence of policy model from reference model

• Type: float

• Default: 0.01

• Required: True

loss_type
Currently support sigmoid version of optimized DPO loss

• Type: str

• Default: sigmoid
• Required: True

max_prompt_length
Set maximum length of prompt in the concatenated prompt and (chosen/rejected) response
input

• Type: integer

• Required: True

precompute_ref_log_probs
To enable precomputation of reference model log probabilities using pre-fit hook, False is
not supported currently

• Type: bool
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• Required: True

truncation_mode
To define how to truncate if size (prompt+response) exceeds seq_length options:
[“keep_start”, “keep_end”]

• Type: str

• Default: keep_start`
• Required: True

SFT-specific parameters.

sft
packing
Appends multiple records in a single record until seq length supported by model, if false
uses pad tokens to reach seq length. Setting it to True increases throughput but might
impact accuracy.

• Type: bool

• Default: False

• Required: False

Odds Ratio Preference Optimization (ORPO) specific parameters.

orpo
beta
KL-divergence beta to control divergence of policy model from reference model

• Type: float

• Default: 0.01

• Required: True

max_prompt_length
Set maximum length of prompt in the concatenated prompt and (chosen/rejected) response
input

• Type: integer

• Required: True

truncation_mode
To define how to truncate if size (prompt+response) exceeds seq_length options:
[“keep_start”, “keep_end”]

• Type: str

• Default: keep_start`
• Required: True

peft
Configuration options for Parameter-Efficient Fine-Tuning (PEFT) methods, specifically
LoRA settings.

lora_rank
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Rank of LoRA; determines the number of trainable parameters Higher rank allows for more
expressive adaptations but increases memory usage

• Type: int

• Default: 16

• Required: True

lora_alpha
Scaling factor for LoRA updates; affects the magnitude of LoRA adaptations.

• Type: int

• Default: 32

• Required: True

lora_dropout
Dropout rate for LoRA layers to prevent overfitting.

• Type: float

• Default: 0.05

• Required: False

lora_bias
Bias type for LoRA. Determines which biases are trainable. Can be ‘none’, ‘all’ or
‘lora_only’

• Type: str

• Default: “none”

• Required: False

lora_verbose
Enables detailed LoRA-related logging during training.

• Type: bool

• Default: False

• Required: False

target_modules
List of model layers to apply LoRA.

• Type: list[str]

• Default: [“qkv_proj”] (for Llama)

• Required: True

This document is relevant for: Trn1, Trn2

• YAML Configuration Settings

This document is relevant for: Trn1, Trn2

This document is relevant for: Trn1, Trn2
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3.1.5 Developer Guide

This section will go over a variety of developer guides to help users get started with the Neuronx Distributed Training
library.

This document is relevant for: Trn1, Trn2

Integrating a New Model

The NeuronX Distributed Training library is a modular framework that allows users to integrate their new modules
with the framework while still utilizing the other modules provided by the library. In this section, we showcase how to
integrate a new model with the library.

Table of contents

• Model Building (torch.nn.Module)

• Model Integration

– Build a Lightning Module

– Plug into training.py

– Create config file

– Launching e2e training

Model Building (torch.nn.Module)

Users can create a torch.nn.Module using the tensor-parallel APIs provided by the NeuronxDistributed library. Let’s
take an example of the GPT-NeoX model built inside NxD examples. We can copy the model file and treat it as a new
model to onboard using the framework.

Note: To understand more about how to build models using Tensor-parallel APIs check the Developer guide here.

Model Integration

Once we have built the model, the next step is to integrate with the training framework. This can be done using the
following steps:

Build a Lightning Module

Neuronx Distributed Training framework provides a BaseModelModule that implements the majority of the training
APIs. Users can subclass this base module and implement few APIs that set up the model. Here is an example to setup
the GPT-NeoX model example. Create a new file called new_model_module.py and add the following content.

from transformers import GPTNeoXConfig
import neuronx_distributed as nxd
from neuronx_distributed.parallel_layers.layer_norm import LayerNorm
from neuronx_distributed_training.lightning_modules.model.base import BaseModelModule

(continues on next page)
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from neuronx_distributed_training.utils.model_utils import get_param_groups_by_weight_
→˓decay
from modeling_gpt_neox_nxd import GPTNeoXForCausalLMNxD

class MyNewModel(BaseModelModule):

def _get_model(self,):
model_name = "EleutherAI/gpt-neox-20b"
config = GPTNeoXConfig.from_pretrained(model_name)
config.use_cache = False
# Note: We can modify the model by reading parameters from self.config.model.
# We would have to expose those config in the self.config.model accordingly.
# Couple of examples are here, where we have exposed num_layers and hidden_size.
if self.config.model.get('num_layers', -1) != -1:

config.num_hidden_layers = self.config.model.get('num_layers')
if self.config.model.get('hidden_size', -1) != -1:

config.hidden_size = self.config.model.get('hidden_size')
# This is because the GPT-Neox implementation requires this in the config.
config.sequence_parallel_enabled = self.config.distributed_strategy.get(

→˓"sequence_parallel", False)
return GPTNeoXForCausalLMNxD(config)

def build_model(self):
# This API is where we build the model object, and return the model.
# However, in addition to returning the model, users need to
# configure the nxd config too for pipeline parallelism and
# activation checkpointing. Here is an example:
if self.config.model.get("activations_checkpoint_granularity", None) ==

→˓"selective":
# Here just to showcase how to recompute modules, we are using
# GPTNeoXMLPNxD, users can add their own custom modules
self.nxd_config["activation_checkpoint_config"] = GPTNeoXMLPNxD

elif self.config.model.get("activations_checkpoint_granularity", None) == "full":
self.nxd_config["activation_checkpoint_config"] = "full"

# Read more about configuring pipeline parallel config here:
# https://awsdocs-neuron.readthedocs-hosted.com/en/latest/libraries/neuronx-

→˓distributed/pp_developer_guide.html#pp-developer-guide
self.nxd_config["pipeline_config"].update(

{
"transformer_layer_cls": GPTNeoXLayerNxD,
"output_loss_value_spec": (True, False),
"input_names": ["input_ids", "attention_mask", "labels"],
"leaf_module_cls": [LayerNorm.__name__],

}
)
return nxd.initialize_parallel_model(self.nxd_config, self._get_model)

def setup_optimizer_param_groups(self):
# Depending on what weight decay we need, users can configure
# the params groups accordingly.
no_decay = ["bias"]

(continues on next page)
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if self.config.model.get("do_layer_norm_weight_decay", False):
no_decay.append("LayerNorm")

self._optimizer_param_groups = get_param_groups_by_weight_decay(self.model, no_
→˓decay)

def init_weights(self,):
"""
This API is mainly to tell the framework how each layer needs
to be initialized. This is required because NxD's PP API would
use this to initialize the layers after model partition.
Any layer that is unique to the model needs to be added here.
"""
if isinstance(module, LayerNorm):

module.weight.data.fill_(1.0)
# The BaseModelModule already initializes the ColumnParallel, RowParallel
# ParallelEmbedding layers.
super().init_weights()

Plug into training.py

Once the new model is created, we can then plug this into the training.py script under examples folder. We can
modify the training.py script as follows:

...
# Assuming we are using the same DataModule we used for LLama example.
data_module = HFDataModule(cfg, trainer)
from new_model_module import MyNewModel
model = MyNewModel(cfg, trainer)

trainer.fit(model, datamodule=data_module)

The rest of the code can remain the same. The trainer will now use the MyNewModel for fetching the model code and
run e2e training.

Create config file

Next we can create a config file under conf to be used for this new model. We can start with a copy of
hf_llama_7B_config.yaml. Let’s call this config file my_new_config.yaml. We can remove the key model.
model_config as we are not using it inside our MyNewModel. We can edit the distributed_strategy config
depending on what we need.

Note: For the dataset, we are using the same dataset that the llama example is using. To configure a new dataset,
please check the Integrating a new dataset/dataloader section
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Launching e2e training

We can now launch training using the new model. This can be done using the following command:

CONF=my_new_config.yaml ./train.sh

This document is relevant for: Trn1, Trn2

This document is relevant for: Trn1, Trn2

Integrating a new dataset/dataloader

In this section, we showcase how to integrate a new dataset/dataloader with the library.

Table of contents

• Building Dataset module

• Building DataModule

– Plug into training.py

– Create config file

– Launching e2e training

Building Dataset module

One can use the guide on PyTorch docs to create a Dataset class.

Building DataModule

To configure the dataloader, one needs to create a DataModule class. Neuronx Distributed Training library pro-
vides a BaseDataModule which one can use to implement their new DataModule. Create a new file called
new_data_module.py and add the following content.

from neuronx_distributed_training.lightning_modules.data.base import BaseDataModule

class NewDataModule(BaseDataModule):
def __init__(self, cfg, trainer):

"""
DataModule class for configuring the dataset/dataloader

Args:
cfg: `data` cfg in the yaml file.
trainer: PyTorch-Lightning trainer.

"""
super().__init__(cfg, trainer)
# Users can use the cfg argument to pass down
# arguments from the yaml file to the DataModule.

(continues on next page)
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def get_batch_length(self, batch):
"""
Returns the length of the batch.
"""
return len(batch["input_ids"])

def process_global_batch(self, global_batch, global_batch_size=None):
""" Any custom processing of batches can be done here.

Args:
global_batch: list of inputs, eg.[tokens, labels]
global_batch_size: Length of tokens and labels

"""
return global_batch

def train_dataloader(self):
"""
This API should return a torch.utils.data.dataloader.DataLoader object
"""
...

def val_dataloader(self):
"""
This API should return a torch.utils.data.dataloader.DataLoader object
"""
...

def test_dataloader(self):
"""
This API should return a torch.utils.data.dataloader.DataLoader object
"""
...

Plug into training.py

Once the new data module is created, we can then plug this into the training.py script under examples folder. We
can modify the training.py script as follows:

...
# Assuming we are using the same ModelModule we used for LLama example.
from new_data_module import NewDataModule
data_module = NewDataModule(cfg, trainer)
model = HFLLamaModule(cfg, trainer)

trainer.fit(model, datamodule=data_module)

The rest of the code can remain the same. The trainer will now use the NewDataModule for fetching the dataloader
and run e2e training.
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Create config file

Next, we can create a config file under conf to be used for this new dataloader. We can start with a copy of
hf_llama_7B_config.yaml. Let’s call this config file my_new_config.yaml. We can edit the data key to con-
figure the DataModule

Note: For the model, we are using the same model that the llama example is using. To configure a new model, please
check the Integrating a New Model section.

Launching e2e training

We can now launch training using the new data_module. This can be done using the following command:

CONF=my_new_config.yaml ./train.sh

This document is relevant for: Trn1, Trn2

This document is relevant for: Trn1, Trn2

Registering an optimizer and LR scheduler

A new optimizer or LR scheduler can be registered with the framework and enabled from the config.

Table of contents

• Setting up the optimizer

• Setting up the LR scheduler

Setting up the optimizer

One can write their own optimizer class. One such example is the AdamW_FP32OptimParams.

The inputs to the optimizer can be exposed in the config YAML file. To do this, we need to create a Params class as
shown below:

from dataclasses import dataclass
from typing import Any, Dict, Optional, Tuple

from omegaconf import MISSING

@dataclass
class OptimizerParams:

"""
All the params listed below can be configured from the YAML file
"""

lr: Optional[float] = MISSING
betas: Tuple[float, float] = (0.9, 0.999)

(continues on next page)
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eps: float = 1e-08
weight_decay: float = 0
amsgrad: bool = False

Once we create the optimizer and the optimizer params class, we can now register the optimizer with the framework
using the following code:

from nemo.core.optim import register_optimizer

# `adamw_fp32OptState` would be the name in the optim config of the YAML file.
register_optimizer("adamw_fp32OptState", AdamW_FP32OptimParams, OptimizerParams)

This registration can be done inside the training.py file which resides in examples folder.

Once the registration is done, we can now expose the OptimizerParams under optim config of the YAML file.

Setting up the LR scheduler

One can write their own LR scheduler and register with the framework. One such example of LR scheduler is shown
below:

from functools import partial

from torch.optim.lr_scheduler import LambdaLR
from transformers.optimization import _get_linear_schedule_with_warmup_lr_lambda

class LinearAnnealingWithWarmUp(LambdaLR):
def __init__(self, optimizer, warmup_steps, max_steps, last_epoch=-1):

lr_lambda = partial(
_get_linear_schedule_with_warmup_lr_lambda,
num_warmup_steps=warmup_steps,
num_training_steps=max_steps,

)
super().__init__(optimizer, lr_lambda, last_epoch)

Once we build this LR scheduler, we can expose the arguments to the config YAML file. Before that, we need to write
up a LRSchedulerParams class. Here is an example for the same:

from nemo.core.config.schedulers import SchedulerParams

class LinearAnnealingWithWarmupParams(SchedulerParams):
warmup_steps: int = 0
max_steps: int = 0

Once the LR scheduler and the SchedulerParams class are set, we can now register the scheduler with the framework
as below:

from nemo.core.optim.lr_scheduler import register_scheduler

# Here, `LinearAnnealingWithWarmUp` is the name of the scheduler we would use in the␣
(continues on next page)
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→˓config YAML file
register_scheduler("LinearAnnealingWithWarmUp", LinearAnnealingWithWarmUp,␣
→˓LinearAnnealingWithWarmupParams)

This registration can be done inside the training.py file which resides under examples folder.

Once the registration is done, we can now expose the LinearAnnealingWithWarmupParams under sched config of
the YAML file.

This document is relevant for: Trn1, Trn2

This document is relevant for: Trn1, Trn2

Migrating from Neuron-NeMo-Megatron to Neuronx Distributed Training

In this section, we go over the changes one would have to make if they are migrating their training workload from
Neuronx-NeMo-Megatron (NNM) to Neuronx Distributed Training (NxDT) framework.

Table of contents

• Config migration

• Model code

• Checkpointing Save/Load

• Config Mapping

Config migration

NxDT is a framework built on top of NeMo and NeuronxDistributed (NxD) and supports megatron-style model. The
megatron model implementation is ported over from NNM. Hence, most of the config YAMLs from NNM can be
migrated to use NxDT.

When building NxDT for the sake of modularity, we grouped certain parameters together, eg. distributed_strategy has
all the configuration for model parallelism, data config now holds all the parameters required to configure the dataset.

At a high level, there are some differences with the NNM config, which are highlighted below:

1. The overall config structure has changed. For simplicity and ease of understanding, the config parameters are
grouped according to their high level use case. For example, previously all the distributed config parameters
used to reside inside model config, now it’s been moved to a distributed_config of its own. Similarly data
config is moved out to have clear separation between model and data.

2. Environment variables like neuron_cc_flags and neuron_compile_cache_url can be set from the config
itself. There is no need to set the environment variables. The rationale is to avoid having to configure training
scripts from multiple places.

3. Activation Checkpointing: NxDT only supports selective and full activation checkpointing. The
selective checkpointing is done only for the CoreAttention block (in case of llama3-8K we recompute
the MLP block, too) and full activation checkpointing is done only at a layer boundary. NxDT doesn’t sup-
port config parameters like activations_checkpoint_method, activations_checkpoint_num_layers,
num_micro_batches_with_partial_activation_checkpoints, activations_checkpoint_layers_per_pipeline,
disable_layer_norm_checkpointing. Please remove these parameters from your config.yaml file.
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Note: If you plan to add more modules that need to be recomputed, one would have to override the checkpointing
config inside ModelModule (refer to build_model API at Build a Lightning Module) and add the modules that need
to be recomputed.

4. Tokenizer: The tokenizer which used to reside under model is now moved to data. This is done so that all
data related configuration can reside at one place.

5. accumulate_grad_batches: This param is removed since it should always be 1. Gradient accumulation is
handled by setting the global_batch_size and micro_batch_size along with data-parallel degree.

6. pre_process and post_process:: These two parameters were added to the model to decide if the embed-
ding lookup needs to be added at the start and if a pooler layer needs to be added at the end. This has been set
by default for all decoder models and hence the config param is no longer exposed.

7. Mixed precision config: NxDT no longer exposes NeMo mixed precision parameters:
native_amp_init_scale, native_amp_growth_interval, hysteresis, fp32_residual_connection,
fp16_lm_cross_entropy. All these parameters are specific to the GPU mixed precision strategy, which
Neuron doesn’t support, or they are not applicable. Neuron has a different way to enable mixed precision
training through master_weights and fp32_grad_accumulation.

8. megatron_amp_o2: This parameter is not supported.

9. Fusions: Neuron doesn’t support fusion parameters like grad_div_ar_fusion,
gradient_accumulation_fusion, bias_activation_fusion, bias_dropout_add_fusion,
masked_softmax_fusion. All of these fusions are built for GPU and require CUDA kernels which
cannot run on Trn1. Neuron would have its own set of kernels and when we support them, we would enable
those parameters from the config.

Note: If there is a need to support these configs, please create a feature request with exact needs and we shall work on
it.

For detailed mapping, please check the Config Mapping.

Model code

There are the following differences in the model code:

1. NNM used Apex to get all the distributed parallel layers and schedules. Since NxDT uses NxD as the base
library, all the parallel layers/parallel state are coming from NxD. Eg. apex.parallel_state is replaced with
nxd.parallel_layers.parallel_state.

2. NNM explicitly creates a module for each pipeline-parallel (PP) rank, however, NxDT uses NxD which does the
partitioning under the hood. Hence, users no longer have to worry about creating a rank specific module. They
can create one single model and NxD’s PP wrapper takes care of sharding for each PP rank. Hence, all the code
related to pipeline parallelism inside model code is removed. The model code assumes there is no PP and just
uses TP layers from NxD.

Note: For the tracer to work efficiently, we configure the pipeline parallel config inside the BaseModelModule class
inside lightning_modules/model.

3. In NNM, megatron module had to explicitly handle gradient reduction for shared weights across PP ranks. In
NxDT, since we are using NxD’s PP wrapper, all that is handled for the user.
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4. For activation checkpointing, NNM had explicit recompute functions which handled the custom forward API.
With NxDT, NxD’s Activation Checkpoint wrapper handles the recompute of the modules. Users just have to
configure the activation_checkpoint_config inside nxd_config here.

Checkpointing Save/Load

NxDT supports all the checkpointing features which NNM supports. This includes async checkpointing, auto-resume,
etc. There are some differences in the format of the checkpoint. This is because NxDT uses NxD’s checkpoint api.
The key differences are listed below:

1. NNM combines the model weights, optimizers and other state_dicts into a single state_dict and dump a file of
the format: tp_rank_0*_pp_rank_00*/model_optim_rng.ckpt. However, with NxDT, we save the model
state_dict and the optimizer separately. The model statedict is saved in a folder of the form: model/
dp_rank_00_tp_rank_00_pp_rank_00.pt and the optimizer is saved into a separate folder as: optim/
dp_rank_00_tp_rank_00_pp_rank_00.pt. This is mainly done so that when we use zero1, each DP rank
can save its own optimizer shard.

2. In NNM, if we are using pipeline parallelism, each pipeline stage creates an independent model. So lets say we
have a model with 32 layers and we use PP=4, then NNM would create 4 chunks with layers 0-7. So each PP
rank would have model_state_dict with keys going from layer-0-7. However, in NxDT, the model is created
as a whole and then sharded. So the layer numbers are preserved.

3. There are checkpoint conversion scripts provided under examples/ of NxDT repository to convert the existing
NNM checkpoints to NxDT format in case of migrating in the middle of training.

python nnm_nxdt_ckpt_converter.py --tp 8 --pp 4 --n_layers 32 --nnm_ckpt_path {path_to_
→˓ckpt}/ckpt/nnm --nxdt_ckpt_path {path_to_ckpt}/nnm-converted-nxdt-ckpt/ --enable_
→˓parallel_processing True --num_parallel_processes 8

Config Mapping

Here is a detailed mapping for all the parameters in the config file. For the below mapping, we chose the Llama-7B
example across NNM and NxDT frameworks. The same mapping is also true for other models.

NNM param NxDT param mapping Comments
name name
restore_from_path Not supported This config was not fully supported in NNM, either.
trainer
devices devices
num_nodes num_nodes
accelerator Not required We made the default as TPU which maps to Neuron in-

ternally, so users no longer have to add it.
precision replaced by

precision_config
There is a separate precision config to control the preci-
sion of model and optimizer.

logger Replaced by default We made the NNM logger default in NxDT.
enable_checkpointing Separate exp_manager

config
All checkpointing is controlled by exp_manager config.

replace_sampler_ddp Not supported Had to be always False in NNM, made it default in
NxDT. No setting required.

max_epochs max_epochs
max_steps max_steps

continues on next page
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Table 3.1 – continued from previous page
NNM param NxDT param mapping Comments
log_every_n_steps log_every_n_steps
val_check_interval val_check_interval
limit_val_batches limit_val_batches
limit_test_batches limit_test_batches
accumulate_grad_batches Removed This is automatically configured based on

global_batchsize, micro-batchsize and distributed
config.

gradient_clip_val gradient_clip_val
benchmark Not supported
enable_model_summary Not supported
exp_manager
log_local_rank_0_only log_local_rank_0_only
cre-
ate_tensorboard_logger

cre-
ate_tensorboard_logger

explicit_log_dir explicit_log_dir
exp_dir exp_dir
name name
create_wandb_logger Not supported This was not supported under NNM, either. We have

removed this argument from NxDT.
wandb_logger_kwargs Not supported
resume_if_exists resume_if_exists
re-
sume_ignore_no_checkpoint

re-
sume_ignore_no_checkpoint

cre-
ate_checkpoint_callback

cre-
ate_checkpoint_callback

check-
point_callback_params

check-
point_callback_params

model
ten-
sor_model_parallel_size

distributed_strategy.
tensor_model_parallel_size

All the parallelism config are moved to dis-
tributed_strategy config.

pipeline_model_parallel_sizedistributed_strategy.
pipeline_model_parallel_size

vir-
tual_pipeline_model_parallel_size

distributed_strategy.
virtual_pipeline_model_parallel_size

sequence_parallel distributed_strategy.
sequence_parallel

wrap_with_zero distributed_strategy.
zero1

micro_batch_size data.
micro_batch_size

All the dataset/dataloader/tokenizer configurations are
now part of a separate config called data.

global_batch_size data.
global_batch_size

tokenizer data.tokenizer
data Moved to data at the same

level as model
The entire data key now controls a DataModule and
is placed at the same level as model key in the config
structure.

encoder_seq_length encoder_seq_length
max_position_embeddings max_position_embeddings
make_vocab_size_divisible_bymake_vocab_size_divisible_by

continues on next page
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Table 3.1 – continued from previous page
NNM param NxDT param mapping Comments
pre_process Not supported NxDT by default adds embedding layer at the start of the

transformer block.
post_process Not supported NxDT by default adds a LM-head at the end of the trans-

former block.
persist_layer_norm persist_layer_norm
share_embeddings_and_output_weightsshare_embeddings_and_output_weights
position_embedding_type position_embedding_type
rotary_percentage rotary_percentage
transformer_block_type transformer_block_type
has_bias has_bias
native_amp_init_scale Not required
na-
tive_amp_growth_interval

Not required GPU optimizations which were not supported in NNM,
have been removed from NxDT. Most of these fusion
ops, the neuron compiler handles on its own. For Atten-
tion and Softmax, Neuron uses NKI kernels and custom
ops to implement them.

hysteresis Not required
fp32_residual_connection Not required
fp16_lm_cross_entropy Not required
megatron_amp_O2 Not required
grad_div_ar_fusion Not required
gradi-
ent_accumulation_fusion

Not required

bias_activation_fusion Not required
bias_dropout_add_fusion Not required
masked_softmax_fusion fusions.softmax
seed Seed is moved out of

model and at the same
level as model

resume_from_checkpoint exp_manager.
resume_from_checkpoint

use_cpu_initialization use_cpu_initialization
onnx_safe Not supported This was not supported under NNM, either. We have

removed this argument from NxDT.
apex_transformer_log_level Not supported
gradient_as_bucket_view Not supported
sync_batch_comm Not supported
log_parameter_norm exp_manager.

log_gradient_norm
log_gradient_norm exp_manager.

log_gradient_norm
flexi-
ble_pipeline_parallel_stages

Not supported

activa-
tions_checkpoint_granularity

activa-
tions_checkpoint_granularity

Currently, NxDT checkpoints the attention module in
case of selective and a single layer in case of full check-
pointing.

activa-
tions_checkpoint_method

Not supported

activa-
tions_checkpoint_num_layers

Not supported

continues on next page
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Table 3.1 – continued from previous page
NNM param NxDT param mapping Comments
num_micro_batches_with_partial_activation_checkpointsNot supported
activa-
tions_checkpoint_layers_per_pipeline

Not supported

dis-
able_layer_norm_checkpointing

Not supported

zero_use_master_weight Supported via precision
config

See manual precision config.

zero_use_fp32_grad_accum Supported via precision
config

See manual precision config.

transformer_engine Not supported This is specifically built for NVIDIA GPUs.
fp8 Not supported fp8 training is not supported on Neuron (both NNM and

NxDT).
fp8_e4m3 Not supported fp8 training is not supported on Neuron (both NNM and

NxDT).
fp8_hybrid Not supported fp8 training is not supported on Neuron (both NNM and

NxDT).
fp8_margin Not supported fp8 training is not supported on Neuron (both NNM and

NxDT).
use_emha Not supported fp8 training is not supported on Neuron (both NNM and

NxDT).
convert_to_hf Supported via separate

script
nsys_profile Not supported This is specifically built for NVIDIA GPUs.
optim optim
en-
able_recovery_time_instrumentation

exp_manager.
enable_recovery_time_instrumentation

async_checkpointing exp_manager.
async_checkpointing

Note: For parameters that are not supported by NxDT, please create a feature request with specific use-case for the
parameter, if needed.

This document is relevant for: Trn1, Trn2

This document is relevant for: Trn1, Trn2

NxD Training Compatibility with NeMo

NxD Training (NxDT) is built on top of NeMo-1.14. The framework reuses modules from NeMo and exposes them
via similar config interface.

Note: At the moment, NxDT only allows running training of decoder LLM models.

This document goes over steps on how to run the NeMo training workloads inside NxDT.

Table of contents
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• Model Integration

• Dataloader Integration

• Optimizer/LR Scheduler Integration

• Optimal Partitioning

• Fusions/kernels

• Checkpoint Saving/loading

• Config Mapping

Model Integration

Model already Exists in NxDT Model Hub:
If the model you want to train is already included in the NxDT model hub, and the training workflow (e.g., pre-training,
fine-tuning) is supported in NxDT, you need to modify NeMo YAML configuration file to the NxDT YAML file. Follow
the mapping table in the Config Mapping.

Custom/New Model
If your model is not part of the NxDT model hub, please use the guide Integrating a New Model.

Dataloader Integration

Dataloader already exposed via one of the NxDT configs
In this case, please map the NeMo YAML config parameters to NxDT config parameters using the mapping table
provided here Config Mapping.

Custom/New Dataloader
If the dataloader is not part of the hub, please use the guide Integrating a new dataset/dataloader.

Optimizer/LR Scheduler Integration

Since NxDT is built on top of NeMo, all the optimizers/LR schedulers provided by NeMo can be enabled from the
config.

Optimal Partitioning

NxDT is built on top of NxD Core primitives and exposes different model parallelism techniques. All of them can be
configured using the distributed_strategy config.
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Fusions/kernels

All the fused kernels available inside the NeMo config are not available in NxDT. This is because fused kernels in
NeMo are built specifically for GPUs. Neuron have a different set of kernels that can be enabled from the config. Also,
since Neuron uses a graph based approach, the compiler can optimize some of the modules and do fusions wherever
required.

Checkpoint Saving/loading

1. NeMo combines the model weights, optimizers and other state_dicts into a single state_dict and dumps a
file of the format: tp_rank_0*_pp_rank_00*/model_optim_rng.ckpt. However, with NxDT, we save the
model state_dict and the optimizer separately. The model statedict is saved in a folder of the form: model/
dp_rank_00_tp_rank_00_pp_rank_00.pt and the optimizer is saved into a separate folder as: optim/
dp_rank_00_tp_rank_00_pp_rank_00.pt. This is mainly done so that when we use zero1, each DP rank
can save its own optimizer shard.

2. NxDT doesn’t support .nemo style checkpoint saving. If users have a .nemo checkpoint, they would have to
unpack it themselves and build a checkpoint conversion script to load the checkpoint into NxDT.

3. In NeMo, if we are using pipeline parallel, each pipeline stage creates an independent model. So lets say we have
a model with 32 layers and we use PP=4, then NeMo would create 4 chunks with layers 0-7. So each PP rank
would have a model_state_dict with keys going from layer-0-7. However, in NxDT, the model is created as
a whole and then sharded. So the layer numbers are preserved.

4. One would have to write up a checkpoint conversion script similar to the checkpoint conversion from NeMo to
NxDT.

For a more detailed mapping of NeMo parameters to NxDT parameters, follow the guide Config Mapping.

Config Mapping

Here is a detailed mapping for all the parameters in the config file. For the below mapping, we chose the Llama example
across both NeMo and NxDT frameworks. The same mapping is also true for other models.

NeMo param NxDT param mapping Comments
name name
restore_from_path Not supported
trainer
devices devices
num_nodes num_nodes
accelerator Not required We made the default as TPU which maps to Neuron in-

ternally, so users no longer have to add it.
precision replaced by

precision_config
There is a separate precision config to control the preci-
sion of model and optimizer.

logger Not required We set default value of logger to False.
enable_checkpointing Separate exp_manager

config
All checkpointing is controlled by exp_manager config.

use_distributed_sampler Not supported
max_epochs max_epochs
max_steps max_steps
log_every_n_steps log_every_n_steps
val_check_interval val_check_interval

continues on next page
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Table 3.2 – continued from previous page
NeMo param NxDT param mapping Comments
limit_val_batches limit_val_batches
limit_test_batches limit_test_batches
accumulate_grad_batches Removed This is automatically configured based on

global_batchsize, micro-batchsize and distributed
config.

gradient_clip_val gradient_clip_val
benchmark Not supported
enable_model_summary Not supported
exp_manager
log_local_rank_0_only log_local_rank_0_only
cre-
ate_tensorboard_logger

cre-
ate_tensorboard_logger

explicit_log_dir explicit_log_dir
exp_dir exp_dir
name name
create_wandb_logger Not supported This was not supported under NNM, either. We have

removed this argument from NxDT.
wandb_logger_kwargs Not supported
resume_if_exists resume_if_exists
re-
sume_ignore_no_checkpoint

re-
sume_ignore_no_checkpoint

cre-
ate_checkpoint_callback

cre-
ate_checkpoint_callback

check-
point_callback_params

check-
point_callback_params

model
mcore_gpt Not supported NxDT has its own implementation of mega-

tron_gpt_model which is based on v1.14 version
of NeMo

ten-
sor_model_parallel_size

distributed_strategy.
tensor_model_parallel_size

All the parallelism config are moved to dis-
tributed_strategy config

pipeline_model_parallel_sizedistributed_strategy.
pipeline_model_parallel_size

vir-
tual_pipeline_model_parallel_size

distributed_strategy.
virtual_pipeline_model_parallel_size

sequence_parallel distributed_strategy.
sequence_parallel

micro_batch_size data.
micro_batch_size

All the dataset/dataloader/tokenizer configuration are
now part of a separate config called data

global_batch_size data.
global_batch_size

tokenizer data.tokenizer
data Moved to data at the same

level as model
The entire data key now controls a DataModule and
is placed at the same level as model key in the config
structure.

encoder_seq_length encoder_seq_length
max_position_embeddings max_position_embeddings
make_vocab_size_divisible_bymake_vocab_size_divisible_by
pre_process Not supported NxDT by default adds embedding layer at the start of the

transformer block.
continues on next page
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Table 3.2 – continued from previous page
NeMo param NxDT param mapping Comments
post_process Not supported NxDT by default adds a LM-head at the end of the trans-

former block.
persist_layer_norm persist_layer_norm
share_embeddings_and_output_weightsshare_embeddings_and_output_weights
position_embedding_type position_embedding_type
rotary_percentage rotary_percentage
transformer_block_type transformer_block_type
has_bias has_bias
num_query_groups Not required query group attention can be configured using

num_kv_heads parameter.
native_amp_init_scale Not Required
na-
tive_amp_growth_interval

Not Required GPU optimizations which were not supported in NNM,
have been removed from NxDT. Most of these fusion
ops, the neuron compiler handles on its own. For Atten-
tion and Softmax, Neuron uses NKI kernels and custom
ops to implement them

hysteresis Not Required
fp32_residual_connection Not Required
fp16_lm_cross_entropy Not Required
megatron_amp_O2 Not Required
grad_div_ar_fusion Not Required
gradi-
ent_accumulation_fusion

Not Required

bias_activation_fusion Not Required
bias_dropout_add_fusion Not Required
masked_softmax_fusion fusions.softmax
seed seed is moved out of

model and at the same
level as model

resume_from_checkpoint exp_manager.
resume_from_checkpoint

use_cpu_initialization use_cpu_initialization
onnx_safe Not supported This was not supported under NNM too, we have re-

moved this argument from NxDT.
apex_transformer_log_level Not supported
gradient_as_bucket_view Not supported
sync_batch_comm Not supported
activa-
tions_checkpoint_granularity

activa-
tions_checkpoint_granularity

By default NxDT checkpoints attention module in case
of selective and a single layer in case of full checkpoint-
ing.

activa-
tions_checkpoint_method

Not supported

activa-
tions_checkpoint_num_layers

Not supported

num_micro_batches_with_partial_activation_checkpointsNot supported
activa-
tions_checkpoint_layers_per_pipeline

Not supported

dis-
able_layer_norm_checkpointing

Not supported

transformer_engine Not supported This is specifically built for NVIDIA GPUs.
continues on next page
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Table 3.2 – continued from previous page
NeMo param NxDT param mapping Comments
fp8 Not supported fp8 training is not supported on Neuron (both NNM and

NxDT).
fp8_e4m3 Not supported
fp8_hybrid Not supported
fp8_margin Not supported
use_emha Not supported
nsys_profile Not supported This is specifically built for NVIDIA GPUs.
optim optim

Note: For parameters that are not supported by NxDT, please create a feature request with specific use-case for the
parameter, if needed.

This document is relevant for: Trn1, Trn2

This document is relevant for: Trn1, Trn2

This document is relevant for: Trn1, Trn2

3.1.6 Tutorials

This section will go over tutorials to help users get started with NxD Training library.

This document is relevant for: Trn1, Trn2

Megatron GPT Pretraining

In this example, we will compile and train a Megatron GPT model on a single instance or on multiple instances using
ParallelCluster with the NxD Training library. The example has the following main sections:

Table of contents

• Setting up the environment

– ParallelCluster Setup

– Install Dependencies

• Download the dataset

• Pre-compile the model

• Training the model

• Monitoring Training

– Tensorboard monitoring

– neuron-top / neuron-monitor / neuron-ls

• Troubleshooting Guide
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Setting up the environment

ParallelCluster Setup

In this example, we will use 8 instances with ParallelCluster, please follow the instructions here to create a cluster:
Train your model on ParallelCluster

ParallelCluster automates the creation of trn1 clusters, and provides the SLURM job management system for scheduling
and managing distributed training jobs. Please note that the home directory on your ParallelCluster head node will be
shared with all of the worker nodes via NFS.

Install Dependencies

Once you have launched a trn1 instance or ParallelCluster, please follow this guide on how to install the latest Neuron
packages: PyTorch Neuron Setup Guide.

Next, we will need to install NxD Training and its dependencies. Please see the following installation guide for installing
NxD Training: NxDT Installation Guide

Download the dataset

This tutorial makes use of a preprocessed Wikipedia dataset that is stored in S3. The dataset can be downloaded to
your cluster or instance by running the following commands on the head node or your trn1 instance:

export DATA_DIR=~/examples_datasets/gpt2
mkdir -p ${DATA_DIR} && cd ${DATA_DIR}
wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json
wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt
aws s3 cp s3://neuron-s3/training_datasets/gpt/wikipedia/my-gpt2_text_document.bin . --
→˓no-sign-request
aws s3 cp s3://neuron-s3/training_datasets/gpt/wikipedia/my-gpt2_text_document.idx . --
→˓no-sign-request
aws s3 cp s3://neuron-s3/training_datasets/gpt/wikipedia/license.txt . --no-sign-request

Pre-compile the model

By default, PyTorch Neuron uses a just in time (JIT) compilation flow that sequentially compiles all of the neural
network compute graphs as they are encountered during a training job. The compiled graphs are cached in a local
compiler cache so that subsequent training jobs can leverage the compiled graphs and avoid compilation (so long as
the graph signatures and Neuron version have not changed).

An alternative to the JIT flow is to use the included neuron_parallel_compile command to perform ahead of time
(AOT) compilation. In the AOT compilation flow, the compute graphs are first identified and extracted during a short
simulated training run, and the extracted graphs are then compiled and cached using parallel compilation, which is
considerably faster than the JIT flow.

First, clone the open-source neuronx-distributed-training library

git clone https://github.com/aws-neuron/neuronx-distributed-training
cd neuronx-distributed-training/examples
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Now, ensure that you are using the proper config file in the conf/ directory. In the train.sh file, ensure that
the CONF_FILE variable is properly set to the config for the model you want to use. In our case, it will be
megatron_gpt_config. The default config here is a 6.7B parameter model, but users can also add their own conf/
*.yaml files and run different configs and hyperparameters if desired. Please see Config Overview for examples and
usage for the .yaml config files.

Next, run the following commands to launch an AOT pre-compilation job on your instance:

export COMPILE=1
./train.sh

The compile output and logs will be shown directly in the terminal and you will see a message similar to this:

2024-08-11 23:04:08.000738: INFO ||PARALLEL_COMPILE||: Total graphs: 22
2024-08-11 23:04:08.000738: INFO ||PARALLEL_COMPILE||: Total successful compilations: 22
2024-08-11 23:04:08.000738: INFO ||PARALLEL_COMPILE||: Total failed compilations: 0

Then, you know your compilation has successfully completed.

Note: The number of graphs will differ based on package versions, models, and other factors. This is just an example.

If you are using ParallelCluster, then you will need to update the conf/megatron_gpt_config.yaml with

num_nodes: 8

Then to run the compile job:

export COMPILE=1
sbatch --exclusive \

--nodes 8 \
--cpus-per-task 128 \
--wrap="srun ./train.sh"

Once you have launched the precompilation job, run the squeue command to view the SLURM job queue on your
cluster. If you have not recently run a job on your cluster, it may take 4-5 minutes for the requested trn1.32xlarge nodes
to be launched and initialized. Once the job is running, squeue should show output similar to the following:

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
10 compute1 wrap ubuntu R 5:11 8 compute1-dy-queue1-i1-[0-7]

You can view the output of the precompilation job by examining the file named slurm-ZZ.out, where ZZ represents
the JOBID of your job in the squeue output above.

tail -f slurm-10.out

Once the precompilation job is complete, just like the above output you should see a message similar to the following
in the logs:

2024-08-11 23:04:08.000738: INFO ||PARALLEL_COMPILE||: Total graphs: 22
2024-08-11 23:04:08.000738: INFO ||PARALLEL_COMPILE||: Total successful compilations: 22
2024-08-11 23:04:08.000738: INFO ||PARALLEL_COMPILE||: Total failed compilations: 0

At this point, you can press CTRL-C to exit the tail command.
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Training the model

The pre-training job is launched almost exactly the same as the compile job. We now turn off the COMPILE environment
variable and run the same training script to start pre-training.

On a single instance:

export COMPILE=0
./train.sh

If you are using ParallelCluster:

export COMPILE=0
sbatch --exclusive \

--nodes 8 \
--cpus-per-task 128 \
--wrap="srun ./train.sh"

As outlined above, you can again use the squeue command to view the job queue, and also monitor the job in the same
way with the tail command to see the training logs. Once the model is loaded onto the Trainium accelerators and
training has commenced, you will begin to see output indicating the job progress:

Example:

Epoch 0: 0%| | 189/301501 [59:12<1573:03:24, 18.79s/it, loss=7.75, v_num=3-16,
→˓ reduced_train_loss=7.560, global_step=188.0, consumed_samples=24064.0]
Epoch 0: 0%| | 190/301501 [59:30<1572:41:13, 18.79s/it, loss=7.74, v_num=3-16,
→˓ reduced_train_loss=7.560, global_step=189.0, consumed_samples=24192.0]
Epoch 0: 0%| | 191/301501 [59:48<1572:21:28, 18.79s/it, loss=7.73, v_num=3-16,
→˓ reduced_train_loss=7.910, global_step=190.0, consumed_samples=24320.0]

Monitoring Training

Tensorboard monitoring

In addition to the text-based job monitoring described in the previous section, you can also use standard tools such
as TensorBoard to monitor training job progress. To view an ongoing training job in TensorBoard, you first need to
identify the experiment directory associated with your ongoing job. This will typically be the most recently created di-
rectory under ~/neuronx-distributed-training/examples/nemo_experiments/megatron_gpt/. Once you
have identifed the directory, cd into it, and then launch TensorBoard:

cd ~/neuronx-distributed-training/examples/nemo_experiments/megatron_gpt/
tensorboard --logdir ./

With TensorBoard running, you can then view the TensorBoard dashboard by browsing to http://localhost:6006
on your local machine. If you cannot access TensorBoard at this address, please make sure that you have port-forwarded
TCP port 6006 when SSH’ing into the head node,

ssh -i YOUR_KEY.pem ubuntu@HEAD_NODE_IP_ADDRESS -L 6006:127.0.0.1:6006
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neuron-top / neuron-monitor / neuron-ls

The neuron-top tool can be used to view useful information about NeuronCore utilization, vCPU and RAM utilization,
and loaded graphs on a per-node basis. To use neuron-top during on ongoing training job, first SSH into one of your
compute nodes from the head node (if using ParallelCluster), and then run neuron-top:

ssh compute1-dy-queue1-i1-1 # to determine which compute nodes are in use, run the␣
→˓squeue command
neuron-top

Similarly, once you are logged into one of the active compute nodes, you can also use other Neuron tools such as neuron-
monitor and neuron-ls to capture performance and utilization statistics and to understand NeuronCore allocation.

Troubleshooting Guide

For issues with NxD Training, please see: NxD Training Known Issues

For ParallelCluster issues see: AWS ParallelCluster Troubleshooting

This document is relevant for: Trn1, Trn2

This document is relevant for: Trn1, Trn2

HuggingFace Llama3.1/Llama3-8B Pretraining

In this example, we will compile and train a HF Llama3.1/Llama3-8B model on a single instance with the NxD
Training (NxDT) library. The example has the following main sections:

Table of contents

• Setting up the environment

– Install Dependencies

• Download the dataset

• Pre-compile the model

• Training the model

• Monitoring Training

– Tensorboard monitoring

– neuron-top / neuron-monitor / neuron-ls

• Troubleshooting Guide
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Setting up the environment

Install Dependencies

Once you have launched a Trn1 instance, please follow this guide on how to install the latest Neuron packages: PyTorch
Neuron Setup Guide.

Next, we will need to install NxDT and its dependencies. Please see the following installation guide for installing NxDT:
NxDT Installation Guide

Download the dataset

Let’s download training-data scripts for our experiments

wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/llama/get_dataset.py

To tokenize the data, we must request the tokenizer from Hugging Face and Meta by following the instructions at the
following link: HuggingFace Llama 3 8B Model .

Use of the Llama models is governed by the Meta license. In order to download the model weights and tokenizer,
please visit the above website and accept their License before requesting access. After access has been granted, you
may use the following python3 script along with your own hugging face token to download and save the tokenizer.

from huggingface_hub import login
from transformers import AutoTokenizer

login(token='your_own_hugging_face_token')

tokenizer = AutoTokenizer.from_pretrained('meta-llama/Meta-Llama-3-8B')

tokenizer.save_pretrained(".")

For Llama3.1/Llama3, make sure your base directory has the following files:

'./tokenizer_config.json', './special_tokens_map.json', './tokenizer.json'

Next let’s download and pre-process the dataset:

mkdir ~/examples_datasets/ && cd ~/examples_datasets/
python3 ~/get_dataset.py --llama-version 3

Note: In case you see an error of the following form when downloading data: huggingface_hub.utils.
_validators.HFValidationError: Repo id must be in the form 'repo_name' or 'namespace/
repo_name'. Use `repo_type` argument if needed. This could be because of a stale cache. Try deleting the
cache using:

sudo rm -rf ~/.cache/
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Pre-compile the model

By default, PyTorch Neuron uses a just in time (JIT) compilation flow that sequentially compiles all of the neural
network compute graphs as they are encountered during a training job. The compiled graphs are cached in a local
compiler cache so that subsequent training jobs can leverage the compiled graphs and avoid compilation (so long as
the graph signatures and Neuron version have not changed).

An alternative to the JIT flow is to use the included neuron_parallel_compile command to perform ahead of time
(AOT) compilation. In the AOT compilation flow, the compute graphs are first identified and extracted during a short
simulated training run, and the extracted graphs are then compiled and cached using parallel compilation, which is
considerably faster than the JIT flow.

First, clone the open-source neuronx-distributed-training library

git clone https://github.com/aws-neuron/neuronx-distributed-training
cd neuronx-distributed-training/examples

Now, ensure that you are using the proper config file in the conf/ directory. In the train.sh file, ensure that
the CONF_FILE variable is properly set to the config for the model you want to use. In our case, it will be
hf_llama3_8B_config. The default config here is a 8B parameter model, but users can also add their own conf/
*.yaml files and run different configs and hyperparameters if desired. Please see Config Overview for examples and
usage for the .yaml config files.

Next, run the following commands to launch an AOT pre-compilation job on your instance:

export COMPILE=1
./train.sh

The compile output and logs will be shown directly in the terminal and you will see a message similar to this:

2024-08-11 23:04:08.000738: INFO ||PARALLEL_COMPILE||: Total graphs: 22
2024-08-11 23:04:08.000738: INFO ||PARALLEL_COMPILE||: Total successful compilations: 22
2024-08-11 23:04:08.000738: INFO ||PARALLEL_COMPILE||: Total failed compilations: 0

Then, you know your compilation has successfully completed.

Note: The number of graphs will differ based on package versions, models, and other factors. This is just an example.

Training the model

The pre-training job is launched almost exactly the same as the compile job. We now turn off the COMPILE environment
variable and run the same training script to start pre-training.

On a single instance:

export COMPILE=0
./train.sh

Once the model is loaded onto the Trainium accelerators and training has commenced, you will begin to see output
indicating the job progress:

Example:
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Epoch 0: 0%| | 189/301501 [59:12<1573:03:24, 18.79s/it, loss=7.75, v_num=3-16,
→˓ reduced_train_loss=7.560, global_step=188.0, consumed_samples=24064.0]
Epoch 0: 0%| | 190/301501 [59:30<1572:41:13, 18.79s/it, loss=7.74, v_num=3-16,
→˓ reduced_train_loss=7.560, global_step=189.0, consumed_samples=24192.0]
Epoch 0: 0%| | 191/301501 [59:48<1572:21:28, 18.79s/it, loss=7.73, v_num=3-16,
→˓ reduced_train_loss=7.910, global_step=190.0, consumed_samples=24320.0]

Monitoring Training

Tensorboard monitoring

In addition to the text-based job monitoring described in the previous section, you can also use standard tools such
as TensorBoard to monitor training job progress. To view an ongoing training job in TensorBoard, you first need to
identify the experiment directory associated with your ongoing job. This will typically be the most recently created di-
rectory under ~/neuronx-distributed-training/examples/nemo_experiments/hf_llama3_8B/. Once you
have identifed the directory, cd into it, and then launch TensorBoard:

cd ~/neuronx-distributed-training/examples/nemo_experiments/hf_llama3_8B/
tensorboard --logdir ./

With TensorBoard running, you can then view the TensorBoard dashboard by browsing to http://localhost:6006
on your local machine. If you cannot access TensorBoard at this address, please make sure that you have port-forwarded
TCP port 6006 when SSH’ing into the head node,

ssh -i YOUR_KEY.pem ubuntu@HEAD_NODE_IP_ADDRESS -L 6006:127.0.0.1:6006

neuron-top / neuron-monitor / neuron-ls

The neuron-top tool can be used to view useful information about NeuronCore utilization, vCPU and RAM utilization,
and loaded graphs on a per-node basis. To use neuron-top during on ongoing training job, run neuron-top:

ssh compute1-dy-queue1-i1-1 # to determine which compute nodes are in use, run the␣
→˓squeue command
neuron-top

Similarly, once you are logged into one of the active compute nodes, you can also use other Neuron tools such as neuron-
monitor and neuron-ls to capture performance and utilization statistics and to understand NeuronCore allocation.

Troubleshooting Guide

For issues with NxDT, please see: NxDT Known Issues

This document is relevant for: Trn1, Trn2

This document is relevant for: Trn1, Trn2
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HuggingFace Llama3.1/Llama3-8B Supervised Fine-tuning

In this example, we will compile and finetune pre-trained HF Llama3.1/Llama3-8B model on a single instance with the
NxD Training library. The pre-trained Llama3-8B model serves as the foundation, and we will build upon this solid
base by fine-tuning the model to adapt it to a specific task or dataset. The example has the following main sections:

Table of contents

• Setting up the environment

– Install Dependencies

• SFT-YAML Configuration Overview

• Download the dataset

• Download pretrained model checkpoint and tokenizer

– Checkpoint Conversion

• Pre-compile the model

• Training the model

• Monitoring Training

– Tensorboard monitoring

– neuron-top / neuron-monitor / neuron-ls

• Troubleshooting Guide

Setting up the environment

Install Dependencies

Please follow this guide on how to install the latest Neuron packages: PyTorch Neuron Setup Guide.

Next, we will need to install NxD Training and its dependencies. Please see the following installation guide for installing
NxD Training: NxD Training Installation Guide.

SFT-YAML Configuration Overview

You can configure a variety of SFT-specific and model parameters for finetuning through the YAML file.

exp_manager:
resume_from_checkpoint: /pretrained_ckpt

data:
train_dir: /example_datasets/llama3_8b/training.jsonl
val_dir: /example_datasets/llama3_8b/validation.json
dev_choose_samples: 2250
seq_length: 4096
alignment_strategy:

sft:
(continues on next page)
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(continued from previous page)

packing: True
tokenizer:

type: /llama3_tokenizer

model:
weight_init_only: True

exp_manager
resume_from_checkpoint
Manually set the checkpoint file (pretrained checkpoint) to load from

• Type: str

• Default: /pretrained_ckpt
• Required: True (start with pretrained checkpoint)

data
train_dir
SFT training data - jsonl or arrow file

As for SFT we use HF style ModelAlignment dataloader, we also use HF style data file paths

• Type: str

• Required: True

val_dir
SFT validation data - jsonl or arrow file

As for SFT we use HF style ModelAlignment dataloader, we also use HF style data file paths

• Type: str

• Required: False

dev_choose_samples
If set, will use that many number of records from the head of the dataset instead of using all.
Set to null to use full dataset

• Type: integer

• Default: null

• Required: False

seq_length
Set sequence length for the training job.

• Type: integer

• Required: True

alignment_strategy
Set only when using finetuning specific algorithms (SFT, DPO, etc) and related hyperparame-
ters SFT-specific parameters.
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sft
packing
Appends multiple records in a single record until seq length supported by model,
if false uses pad tokens to reach seq length. Setting it to True increases throughput
but might impact accuracy.

• Type: bool

• Default: False

• Required: False

tokenizer
type
Set tokenizer path/type

• Type: str

• Default: /llama3_tokenizer
• Required: True

model
weight_init_only
Load only model states and ignore the optim states from ckpt directory

• Type: bool

• Default: True

Download the dataset

This tutorial makes use of a preprocessed version of databricks-dolly instruction-following dataset that is stored in S3.
The dataset can be downloaded to your cluster or instance by running the following AWS CLI commands on the head
node or your Trn1 instance:

export DATA_DIR=~/examples_datasets/llama3_8b
mkdir -p ${DATA_DIR} && cd ${DATA_DIR}
aws s3 cp s3://neuron-s3/training_datasets/llama/sft/training.jsonl . --no-sign-request
aws s3 cp s3://neuron-s3/training_datasets/llama/sft/validation.jsonl . --no-sign-
→˓request

Download pretrained model checkpoint and tokenizer

In this tutorial, we will use a pretrained Llama3-8B checkpoint from the original repository. Follow the steps to down-
load tokenizer and model checkpoint from the pretraining stage: https://llama.meta.com/llama-downloads/

Alternatively, the model checkpoint and tokenizer can also be downloaded from HuggingFace by following this guide

You can also directly download and covert the HuggingFace model checkpoint using Direct HuggingFace Model Con-
version

Create a folder llama3_tokenizer and copy the tokenizer contents to it.

Modify the following paths in YAML file based on your specific directory configuration:

1. model.model_config
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2. exp_manager.resume_from_checkpoint

3. tokenizer.type

4. train_dir and val_dir

You can use your custom model, pretrained checkpoint and tokenizer by modifying the hf_llama3_8B_SFT_config.
yaml file.

Checkpoint Conversion

Follow this Checkpoint Conversion Guide to convert the HF-style Llama3-8B checkpoint to NxDT supported format
and store it in pretrained_ckpt directory. Modify the config parameter exp_manager.resume_from_checkpoint
path to the converted pretrained checkpoint path.

Pre-compile the model

By default, PyTorch Neuron uses a just in time (JIT) compilation flow that sequentially compiles all of the neural
network compute graphs as they are encountered during a training job. The compiled graphs are cached in a local
compiler cache so that subsequent training jobs can leverage the compiled graphs and avoid compilation (so long as
the graph signatures and Neuron version have not changed).

An alternative to the JIT flow is to use the included neuron_parallel_compile command to perform ahead of time
(AOT) compilation. In the AOT compilation flow, the compute graphs are first identified and extracted during a short
simulated training run, and the extracted graphs are then compiled and cached using parallel compilation, which is
considerably faster than the JIT flow.

First, clone the open-source neuronx-distributed-training library

git clone https://github.com/aws-neuron/neuronx-distributed-training
cd neuronx-distributed-training/examples

Now, ensure that you are using the proper config file in the conf/ directory. In the train.sh file, ensure that
the CONF_FILE variable is properly set to the config for the model you want to use. In our case, it will be
hf_llama3_8B_SFT_config. The default config here is a 8B parameter model, but users can also add their own
conf/*.yaml files and run different configs and hyperparameters if desired. Please see Config Overview for examples
and usage for the .yaml config files.

Next, run the following commands to launch an AOT pre-compilation job on your instance:

export COMPILE=1
./train.sh

The compile output and logs will be shown directly in the terminal and you will see logs similar to this:

2024-08-11 23:04:08.000738: INFO ||PARALLEL_COMPILE||: Total graphs: 22
2024-08-11 23:04:08.000738: INFO ||PARALLEL_COMPILE||: Total successful compilations: 22
2024-08-11 23:04:08.000738: INFO ||PARALLEL_COMPILE||: Total failed compilations: 0

Then, you know your compilation has successfully completed.

Note: The number of graphs will differ based on package versions, models, and other factors. This is just an example.
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Training the model

The fine-tuning job is launched almost exactly in the same way as the compile job. We now turn off the COMPILE
environment variable and run the same training script to start pre-training.

On a single instance:

export COMPILE=0
./train.sh

Once the model is loaded onto the Trainium accelerators and training has commenced, you will begin to see output
indicating the job progress:

Example:

Epoch 0: 0%| | 189/301501 [59:12<1573:03:24, 18.79s/it, loss=7.75, v_num=3-16,
→˓ reduced_train_loss=7.560, global_step=188.0, consumed_samples=24064.0]
Epoch 0: 0%| | 190/301501 [59:30<1572:41:13, 18.79s/it, loss=7.74, v_num=3-16,
→˓ reduced_train_loss=7.560, global_step=189.0, consumed_samples=24192.0]
Epoch 0: 0%| | 191/301501 [59:48<1572:21:28, 18.79s/it, loss=7.73, v_num=3-16,
→˓ reduced_train_loss=7.910, global_step=190.0, consumed_samples=24320.0]

Monitoring Training

Tensorboard monitoring

In addition to the text-based job monitoring described in the previous section, you can also use standard tools such
as TensorBoard to monitor training job progress. To view an ongoing training job in TensorBoard, you first need to
identify the experiment directory associated with your ongoing job. This will typically be the most recently created di-
rectory under ~/neuronx-distributed-training/examples/nemo_experiments/hf_llama3_8B/. Once you
have identifed the directory, cd into it, and then launch TensorBoard:

cd ~/neuronx-distributed-training/examples/nemo_experiments/hf_llama3_8B/
tensorboard --logdir ./

With TensorBoard running, you can then view the TensorBoard dashboard by browsing to http://localhost:6006
on your local machine. If you cannot access TensorBoard at this address, please make sure that you have port-forwarded
TCP port 6006 when SSH’ing into the head node,

ssh -i YOUR_KEY.pem ubuntu@HEAD_NODE_IP_ADDRESS -L 6006:127.0.0.1:6006

neuron-top / neuron-monitor / neuron-ls

The neuron-top tool can be used to view useful information about NeuronCore utilization, vCPU and RAM utilization,
and loaded graphs on a per-node basis. To use neuron-top during on ongoing training job, run neuron-top:

ssh compute1-dy-queue1-i1-1 # to determine which compute nodes are in use, run the␣
→˓squeue command
neuron-top

Similarly, once you are logged into one of the active compute nodes, you can also use other Neuron tools such as neuron-
monitor and neuron-ls to capture performance and utilization statistics and to understand NeuronCore allocation.
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Troubleshooting Guide

For issues with NxD Training, please see: NxD Training Known Issues

This document is relevant for: Trn1, Trn2

This document is relevant for: Trn1, Trn2

HuggingFace Llama3.1/Llama3-8B Efficient Supervised Fine-tuning with LoRA (Beta)

In this example, we will compile and finetune pre-trained HF Llama3.1/Llama3-8B model with LoRA adaptors on a
single instance with the NxD Training (NxDT) library. LoRA or Low Rank Adaptation allows for parameter-efficient
fine-tuning (PEFT) by adding small trainable rank decomposition matrices to specified layer of the model, significantly
reducing memory usage and training time compared to dense fine-tuning. The pre-trained Llama3-8B model serves
as the foundation, and we will build upon this by fine-tuning the model to adapt it to a specific task or dataset. The
example has the following main sections:

Table of contents

• Setting up the environment

– Install Dependencies

• Download the dataset

• Download pretrained model checkpoint and tokenizer

– Checkpoint Conversion

• LoRA SFT-YAML Configuration Overview

• Pre-compile the model

• Training the model

• Monitoring Training

– Tensorboard monitoring

– neuron-top / neuron-monitor / neuron-ls

• Troubleshooting Guide

Setting up the environment

Install Dependencies

First, you can launch a Trn1 instance by following the Neuron DLAMI guide: Neuron DLAMI User Guide.

Once you have launched a Trn1 instance, follow this guide on how to install the latest Neuron packages: PyTorch
Neuron Setup Guide.

Next, we will need to install NxDT and its dependencies. Please see the following installation guide for installing NxDT:
NxDT Installation Guide.

508 Chapter 3. NeuronX Distributed (NxD)

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/dlami/index.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/setup/torch-neuronx.html#setup-torch-neuronx
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/setup/torch-neuronx.html#setup-torch-neuronx


AWS Neuron

Download the dataset

This tutorial makes use of a preprocessed version of databricks-dolly instruction-following dataset that is stored in S3.
The dataset can be downloaded to your cluster or instance by running the following AWS CLI commands on the head
node or your Trn1 instance:

export DATA_DIR=~/examples_datasets/llama3_8b
mkdir -p ${DATA_DIR} && cd ${DATA_DIR}
aws s3 cp s3://neuron-s3/training_datasets/llama/sft/training.jsonl . --no-sign-request
aws s3 cp s3://neuron-s3/training_datasets/llama/sft/validation.jsonl . --no-sign-
→˓request

Then, download the config.json file:

For Llama-3-8B:

wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/llama/tp_zero1_llama_hf_pretrain/8B_config_llama3/config.json ~/

Download pretrained model checkpoint and tokenizer

In this tutorial, we will use a pretrained Llama3-8B checkpoint from the original repository. Follow the steps to down-
load tokenizer and model checkpoint from the pretraining stage: https://llama.meta.com/llama-downloads/.

Alternatively, the model checkpoint and tokenizer can also be downloaded from HuggingFace by following this guide.

You can also directly download and covert the HuggingFace model checkpoint using Direct HuggingFace Model Con-
version.

If you choose to download the weights from HuggingFace with your own token, you can create a python script to run
such as:

import transformers

tokenizer_path="llama3_tokenizer"
model_weights_path="llama3-8B_hf_weights"
model_id = "meta-llama/Meta-Llama-3-8B"

t = transformers.AutoTokenizer.from_pretrained(model_id)
t.save_pretrained(tokenizer_path)

m = transformers.AutoModelForCausalLM.from_pretrained(model_id)
m.save_pretrained(model_weights_path)

Create a folder llama3_tokenizer and copy the tokenizer contents to it.

Modify the following paths in YAML file based on your specific directory configuration:

1. model.model_config

2. exp_manager.resume_from_checkpoint

3. tokenizer.type

4. train_dir and val_dir

You can use your custom model, pretrained checkpoint and tokenizer by modifying the
hf_llama3_8B_SFT_lora_config.yaml file.
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Checkpoint Conversion

Follow this Checkpoint Conversion Guide to convert the HF-style Llama3-8B checkpoint to NxDT supported format
and store it in pretrained_ckpt directory. Modify the config parameter exp_manager.resume_from_checkpoint
path to the converted pretrained checkpoint path.

LoRA SFT-YAML Configuration Overview

You can configure a variety of SFT, DPO, PEFT-specfic and model parameters for finetuning using the YAML file.

exp_manager:
resume_from_checkpoint: /pretrained_ckpt

data:
train_dir: /example_datasets/llama3_8b/training.jsonl
val_dir: /example_datasets/llama3_8b/validation.json
dev_choose_samples: 2250
seq_length: 4096
tokenizer:

type: /llama3_tokenizer

model:
weight_init_only: True

model_alignment_strategy:
sft:

packing: True
peft:

lora_rank: 16
lora_alpha: 32
lora_dropout: 0.05
lora_bias: "none"
lora_verbose: True
target_modules: ["qkv_proj"]

exp_manager
resume_from_checkpoint
Manually set the checkpoint file (pretrained checkpoint) to load from

• Type: str

• Default: /pretrained_ckpt
• Required: True (start with pretrained checkpoint)

data
train_dir
SFT training data - jsonl or arrow file

For SFT, we use HF style ModelAlignment dataloader, we also use HF style data file paths

• Type: str

• Required: True
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val_dir
SFT validation data - jsonl or arrow file

For SFT, we use HF style ModelAlignment dataloader, we also use HF style data file paths

• Type: str

• Required: False

dev_choose_samples
If set, will use that many number of records from the head of the dataset instead of using all.
Set to null to use full dataset

• Type: integer

• Default: null

• Required: False

seq_length
Set sequence length for the training job.

• Type: integer

• Required: True

tokenizer
type
Set tokenizer path/type

• Type: str

• Default: /llama3_tokenizer
• Required: True

model
weight_init_only
Load only model states and ignore the optim states from ckpt directory

• Type: bool

• Default: True

model_alignment_strategy
Set only when using finetuning specific algorithms (SFT, DPO, etc) and parameter-efficient
fine-tuning methods like LoRA (Low-Rank Adaptation).

sft
Supervised Fine-Tuning (SFT) specific parameters.

packing
Appends multiple records in a single record until seq length supported by model,
if false uses pad tokens to reach seq length. Setting it to True increases throughput
but might impact accuracy.

• Type: bool

• Default: False

• Required: False
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peft
Configuration options for Parameter-Efficient Fine-Tuning (PEFT) methods,
specifically LoRA settings.

lora_rank
Rank of LoRA; determines the number of trainable parameters Higher rank allows
for more expressive adaptations but increases memory usage

• Type: int

• Default: 16

• Required: True

lora_alpha
Scaling factor for LoRA updates; affects the magnitude of LoRA adaptations.

• Type: int

• Default: 32

• Required: True

lora_dropout
Dropout rate for LoRA layers to prevent overfitting.

• Type: float

• Default: 0.05

• Required: False

lora_bias
Bias type for LoRA. Determines which biases are trainable. Can be ‘none’, ‘all’
or ‘lora_only’

• Type: str

• Default: “none”

• Required: False

lora_verbose
Enables detailed LoRA-related logging during training.

• Type: bool

• Default: False

• Required: False

target_modules
List of model layers to apply LoRA.

• Type: list[str]

• Default: [“qkv_proj”] (for Llama)

• Required: True
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Pre-compile the model

By default, PyTorch Neuron uses a just in time (JIT) compilation flow that sequentially compiles all of the neural
network compute graphs as they are encountered during a training job. The compiled graphs are cached in a local
compiler cache so that subsequent training jobs can leverage the compiled graphs and avoid compilation (so long as
the graph signatures and Neuron version have not changed).

An alternative to the JIT flow is to use the included neuron_parallel_compile command to perform ahead of time
(AOT) compilation. In the AOT compilation flow, the compute graphs are first identified and extracted during a short
simulated training run, and the extracted graphs are then compiled and cached using parallel compilation, which is
considerably faster than the JIT flow.

First, clone the open-source neuronx-distributed-training library

git clone https://github.com/aws-neuron/neuronx-distributed-training
cd neuronx-distributed-training/examples

Now, ensure that you are using the proper config file in the conf/ directory. In the train.sh file, ensure that
the CONF_FILE variable is properly set to the config for the model you want to use. In our case, it will be
hf_llama3_8B_SFT_lora_config. The default config here is a 8B parameter model, but users can also add their own
conf/*.yaml files and run different configs and hyperparameters if desired. Please see Config Overview for examples
and usage for the .yaml config files.

Next, run the following commands to launch an AOT pre-compilation job on your instance:

cd ~/neuronx-distributed-training/examples
export COMPILE=1
./train.sh

The compile output and logs will be shown directly in the terminal and you will see logs similar to this:

2024-08-11 23:04:08.000738: INFO ||PARALLEL_COMPILE||: Total graphs: 22
2024-08-11 23:04:08.000738: INFO ||PARALLEL_COMPILE||: Total successful compilations: 22
2024-08-11 23:04:08.000738: INFO ||PARALLEL_COMPILE||: Total failed compilations: 0

Then, you know your compilation has successfully completed.

Note: The number of graphs will differ based on package versions, models, and other factors. This is just an example.

Training the model

The fine-tuning job is launched almost exactly in the same way as the compile job. We now turn off the COMPILE
environment variable and run the same training script to start pre-training.

On a single instance:

export COMPILE=0
./train.sh

Once the model is loaded onto the Trainium accelerators and training has commenced, you will begin to see output
indicating the job progress:

Example:
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Epoch 0: 0%| | 189/301501 [59:12<1573:03:24, 18.79s/it, loss=7.75, v_num=3-16,
→˓ reduced_train_loss=7.560, global_step=188.0, consumed_samples=24064.0]
Epoch 0: 0%| | 190/301501 [59:30<1572:41:13, 18.79s/it, loss=7.74, v_num=3-16,
→˓ reduced_train_loss=7.560, global_step=189.0, consumed_samples=24192.0]
Epoch 0: 0%| | 191/301501 [59:48<1572:21:28, 18.79s/it, loss=7.73, v_num=3-16,
→˓ reduced_train_loss=7.910, global_step=190.0, consumed_samples=24320.0]

Monitoring Training

Tensorboard monitoring

In addition to the text-based job monitoring described in the previous section, you can also use standard tools such
as TensorBoard to monitor training job progress. To view an ongoing training job in TensorBoard, you first need to
identify the experiment directory associated with your ongoing job. This will typically be the most recently created di-
rectory under ~/neuronx-distributed-training/examples/nemo_experiments/hf_llama3_8B/. Once you
have identifed the directory, cd into it, and then launch TensorBoard:

cd ~/neuronx-distributed-training/examples/nemo_experiments/hf_llama3_8B/
tensorboard --logdir ./

With TensorBoard running, you can then view the TensorBoard dashboard by browsing to http://localhost:6006
on your local machine. If you cannot access TensorBoard at this address, please make sure that you have port-forwarded
TCP port 6006 when SSH’ing into the head node,

ssh -i YOUR_KEY.pem ubuntu@HEAD_NODE_IP_ADDRESS -L 6006:127.0.0.1:6006

neuron-top / neuron-monitor / neuron-ls

The neuron-top tool can be used to view useful information about NeuronCore utilization, vCPU and RAM utilization,
and loaded graphs on a per-node basis. To use neuron-top during on ongoing training job, run neuron-top:

ssh compute1-dy-queue1-i1-1 # to determine which compute nodes are in use, run the␣
→˓squeue command
neuron-top

Similarly, once you are logged into one of the active compute nodes, you can also use other Neuron tools such as neuron-
monitor and neuron-ls to capture performance and utilization statistics and to understand NeuronCore allocation.

Troubleshooting Guide

For issues with NxDT, please see: NxDT Known Issues

This document is relevant for: Trn1, Trn2

This document is relevant for: Trn1, Trn2
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HF Llama3.1/Llama3-8B Direct Preference Optimization (DPO) and Odds Ratio Preference Optimiza-
tion (ORPO) based Fine-tuning (Beta)

In this example, we will show how to compile and finetune a pre-trained HF Llama3.1/Llama3-8B model on a single
instance with the NxD Training (NxDT) library using Direct Preference Optimization (DPO) and Odds Ratio Pref-
erence Optimization (ORPO) based fine-tuning. The pre-trained Llama3-8B model serves as the foundation, and we
will build upon this base by fine-tuning and aligning the model to adapt it to a specific task or dataset. The example
has the following main sections:

Table of contents

• Setting up the environment

– Install Dependencies

• DPO-YAML Configuration Overview

• ORPO-YAML Configuration Overview

• Download the dataset

• Convert data to DPO-specific Preference data format

• Download pretrained model checkpoint and tokenizer

– Checkpoint Conversion

• Pre-compile the model

• Training the model

• Monitoring Training

– Tensorboard monitoring

– neuron-top / neuron-monitor / neuron-ls

• Troubleshooting Guide

Setting up the environment

Install Dependencies

Once you have launched a Trn1 instance, Please follow this guide on how to install the latest Neuron packages: PyTorch
Neuron Setup Guide.

Next, we will need to install NxDT and its dependencies. Please see the following installation guide for installing NxDT:
NxDT Installation Guide.

We can download the requirements_dpo.txt and install using the command:

wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed-training/master/
→˓requirements_dpo.txt
pip install -r requirements_dpo.txt
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DPO-YAML Configuration Overview

You can configure a variety of DPO-specific and model parameters for finetuning through the YAML file.

exp_manager:
resume_from_checkpoint: /pretrained_ckpt

data:
train_dir: /example_datasets/llama3_8b/data_dpo.jsonl
val_dir: null
dev_choose_samples: null
seq_length: 4096
tokenizer:

type: /llama3_tokenizer

model:
weight_init_only: True

model_alignment_strategy:
dpo:

kl_beta: 0.01
loss_type: sigmoid
max_prompt_length: 2048
precompute_ref_log_probs: True
truncation_mode: keep_start

exp_manager
resume_from_checkpoint
Manually set the checkpoint file (pretrained/post-SFT checkpoint) to load from

• Type: str

• Default: /pretrained_ckpt
• Required: True (start with pretrained checkpoint)

data
train_dir
DPO training data - jsonl or arrow file

As for DPO we use HF style ModelAlignment dataloader, we also use HF style data file paths

• Type: str

• Required: True

val_dir
DPO validation data - jsonl or arrow file

As for DPO we use HF style ModelAlignment dataloader, we also use HF style data file paths

• Type: str

• Required: False

dev_choose_samples
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If set, will use that many number of records from the head of the dataset instead of using all. Set to
null to use full dataset

• Type: integer

• Default: null

• Required: False

seq_length
Set sequence length for the training job. For DPO, it is total sequence length of prompt and (cho-
sen/rejected) response concatenated together

• Type: integer

• Required: True

tokenizer
type
Set tokenizer path/type

• Type: str

• Default: /llama3_tokenizer
• Required: True

model
weight_init_only
Load only model states and ignore the optim states from ckpt directory

• Type: bool

• Default: True

model_alignment_strategy
Set only when using finetuning specific algorithms (SFT, DPO, etc) and and parameter-efficient fine-
tuning methods like LoRA (Low-Rank Adaptation).

dpo
Direct Preference Optimization (DPO) specific parameters.

kl_beta
KL-divergence beta to control divergence of policy model from reference model

• Type: float

• Default: 0.01

• Required: True

loss_type
Currently support sigmoid version of optimized DPO loss

• Type: str

• Default: sigmoid
• Required: True
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max_prompt_length
Set maximum length of prompt in the concatenated prompt and (chosen/rejected) re-
sponse input

• Type: integer

• Required: True

precompute_ref_log_probs
To enable precomputation of reference model log probabilities using pre-fit hook, False
is not supported currently

• Type: bool

• Required: True

truncation_mode
To define how to truncate if size (prompt+response) exceeds seq_length options:
[“keep_start”, “keep_end”]

• Type: str

• Default: keep_start`
• Required: True

ORPO-YAML Configuration Overview

Here we show the ORPO-specific model parameters which can be configured for finetuning through the YAML file.
And below we explain the parameters that are new as compared to DPO-specific parameters.

exp_manager:
checkpoint_callback_params:

every_n_train_steps: 10
resume_from_checkpoint: /pretrained_ckpt

data:
train_dir: /example_datasets/llama3_8b/data_orpo.jsonl
val_dir: null
dev_choose_samples: null
seq_length: 4096
tokenizer:

type: /llama3_tokenizer

model:
encoder_seq_len: 4096
weight_init_only: True
optim:

lr: 1.5e-4
sched:

name: CosineAnnealing

model_alignment_strategy:
orpo:

beta: 0.1
(continues on next page)
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max_prompt_length: 2048
truncation_mode: keep_start

exp_manager
checkpoint_callback_params.every_n_train_steps
How often we want to checkpoint.

• Type: int

• Required: True

model
encoder_seq_length
Setting the sequence length for the training job. This parameter is common for all models supported
in the library.

• Type: int

• Required: True

optim.sched
This is where the LR schedulers can be set. We can configure the schedulers supported by NeMo. All
the schedulers can be configured according to the parameters specified here.

• Type: config

• Possible Values: LinearAnnealingWithWarmUp, CosineAnnealing, WarmupPolicy,

• WarmupHoldPolicy, SquareAnnealing, NoamAnnealing, WarmupAnnealing,

• StepLR, rprop, ExponentialLR

• Required: True

model_alignment_strategy
Set only when using finetuning specific algorithms (SFT, DPO, ORPO, etc) and parameter-efficient
fine-tuning methods like LoRA (Low-Rank Adaptation).

orpo
Odds Ratio Preference Optimization (ORPO) specific parameters.

beta
KL-divergence beta to control divergence of policy model from reference model

• Type: float

• Default: 0.01

• Required: True
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Download the dataset

The DPO (& ORPO) tutorial makes use of the same preprocessed version of intel-orca_dpo_pairs preference dataset
that is stored in S3. The dataset can be downloaded to your cluster or instance by running the following AWS CLI
commands on the head node or your Trn1 instance:

export DATA_DIR=~/examples_datasets/llama3_8b
mkdir -p ${DATA_DIR} && cd ${DATA_DIR}
aws s3 cp s3://neuron-s3/training_datasets/llama/dpo/data_dpo.jsonl . --no-sign-request

Then, download the config.json file:

For Llama-3.1-8B:

wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/llama/tp_zero1_llama_hf_pretrain/8B_config_llama3.1/config.json ~/

For Llama-3-8B:

wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/llama/tp_zero1_llama_hf_pretrain/8B_config_llama3/config.json ~/

Convert data to DPO-specific Preference data format

If you directly downloaded the Intel ORCA_dpo_pairs dataset, then you need to convert the data into preference dataset
format using the script below.

Note: For different datasets with different field names, make necessary changes to the script accordingly.

from datasets import load_dataset
from transformers import AutoTokenizer

def preference_data_format(example):

system = "<|im_start|>\n" + example['system'] + "<|im_end|>\n"

# Format instruction
prompt = "<|im_start|> " + example['question'] + "<|im_end|>\n<|im_start|>assistant\n

→˓"

# Format chosen answer
chosen = example['chosen'] + "<|im_end|>\n"

# Format rejected answer
rejected = example['rejected'] + "<|im_end|>\n"

return {
"prompt": system + prompt,
"chosen": chosen,
"rejected": rejected,

}
(continues on next page)
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# Particular dataset with following fields: "system", "question", "chosen", "rejected"
dataset = load_dataset("json", data_files="orca_rlhf.jsonl", split="train")

# Save columns
original_columns = dataset.column_names

# Format dataset
dataset = dataset.map(

preference_data_format,
remove_columns=original_columns
)

# save converted preference dataset
dataset.to_json("data_dpo.jsonl")

Download pretrained model checkpoint and tokenizer

In this tutorial, we will use a pretrained Llama3-8B checkpoint (post-SFT checkpoint preferred) from the original
repository. Follow the steps to download tokenizer and model checkpoint from the pretraining stage: https://llama.
meta.com/llama-downloads/

Alternatively, the model checkpoint and tokenizer can also be downloaded from HuggingFace by following this guide

You can also directly download and covert the HuggingFace model checkpoint using Direct HuggingFace Model Con-
version

Create a folder llama3_tokenizer and copy the tokenizer contents to it.

Modify the following paths in YAML file based on your specific directory configuration:

1. model.model_config

2. exp_manager.resume_from_checkpoint

3. tokenizer.type

4. train_dir and val_dir

You can use your Llama model, pretrained checkpoint and tokenizer by modifying the hf_llama3_8B_<DPO/
ORPO>_config.yaml file.

Checkpoint Conversion

Follow this Checkpoint Conversion Guide to convert the HF-style Llama3-8B checkpoint to NxDT supported format
and store it in pretrained_ckpt directory. Modify the config parameter exp_manager.resume_from_checkpoint
path to the converted pretrained checkpoint path.
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Pre-compile the model

By default, PyTorch Neuron uses a just in time (JIT) compilation flow that sequentially compiles all of the neural
network compute graphs as they are encountered during a training job. The compiled graphs are cached in a local
compiler cache so that subsequent training jobs can leverage the compiled graphs and avoid compilation (so long as
the graph signatures and Neuron version have not changed).

An alternative to the JIT flow is to use the included neuron_parallel_compile command to perform ahead of time
(AOT) compilation. In the AOT compilation flow, the compute graphs are first identified and extracted during a short
simulated training run, and the extracted graphs are then compiled and cached using parallel compilation, which is
considerably faster than the JIT flow.

First, clone the open-source neuronx-distributed-training library

Now, ensure that you are using the proper config file in the conf/ directory. In the train.sh file, ensure that
the CONF_FILE variable is properly set to the config for the model you want to use. In our case, it will be
hf_llama3_8B_<DPO/ORPO>_config.yaml. The default config here is a 8B parameter model, but users can also add
their own conf/*.yaml files and run different configs and hyperparameters if desired. Please see Config Overview for
examples and usage for the .yaml config files.

Next, run the following commands to launch an AOT pre-compilation job on your instance:

export COMPILE=1
export CONF_FILE=hf_llama3_8B_<DPO/ORPO>_config
./train.sh

The compile output and logs will be shown directly in the terminal and you will see logs similar to this:

2024-10-24 18:49:49.000950: INFO ||NEURON_PARALLEL_COMPILE||: Total graphs: 32
2024-10-24 18:49:49.000950: INFO ||NEURON_PARALLEL_COMPILE||: Total successful␣
→˓compilations: 32
2024-10-24 18:49:49.000950: INFO ||NEURON_PARALLEL_COMPILE||: Total failed compilations:␣
→˓0

Then, you know your compilation has successfully completed.

Note: The number of graphs will differ based on package versions, models, and other factors. This is just an example.

Training the model

The fine-tuning job is launched almost exactly in the same way as the compile job. We now turn off the COMPILE
environment variable and run the same training script to start pre-training.

On a single instance:

export COMPILE=0
export CONF_FILE=hf_llama3_8B_<DPO/ORPO>_config
./train.sh

Once the model is loaded onto the Trainium accelerators and training has commenced, you will begin to see output
indicating the job progress:

Example:
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Epoch 0: 5%|^a– | 3/62 [02:59<58:44, 0.02it/s, v_num=8-06, reduced_train_
→˓loss=6.930, chosen_rewards=-0.81, rejected_rewards=-0.675, lr=2.73e-5, parameter_
→˓norm=1.95e+3, global_step=1.000, consumed_samples=32.00, throughput=0.108, throughput_
→˓peak=0.0677, gradient_norm=8.600]
Epoch 0: 6%|^a–‹ | 4/62 [03:24<49:27, 0.02it/s, v_num=8-06, reduced_train_
→˓loss=6.790, chosen_rewards=-0.628, rejected_rewards=-0.64, lr=5.45e-5, parameter_
→˓norm=1.95e+3, global_step=3.000, consumed_samples=64.00, throughput=0.181, throughput_
→˓peak=0.146, gradient_norm=6.590]
Epoch 0: 8%|^a–Š | 5/62 [03:50<43:42, 0.02it/s, v_num=8-06, reduced_train_
→˓loss=6.790, chosen_rewards=-0.628, rejected_rewards=-0.64, lr=5.45e-5, parameter_
→˓norm=1.95e+3, global_step=3.000, consumed_samples=64.00, throughput=0.181, throughput_
→˓peak=0.146, gradient_norm=6.590]

Note: The values in the above logs will differ based on config used, package versions, models, and other factors. This
is just an example.

Monitoring Training

Tensorboard monitoring

In addition to the text-based job monitoring described in the previous section, you can also use standard tools such
as TensorBoard to monitor training job progress. To view an ongoing training job in TensorBoard, you first need to
identify the experiment directory associated with your ongoing job. This will typically be the most recently created di-
rectory under ~/neuronx-distributed-training/examples/nemo_experiments/hf_llama3_8B/. Once you
have identifed the directory, cd into it, and then launch TensorBoard:

cd ~/neuronx-distributed-training/examples/nemo_experiments/hf_llama3_8B/
tensorboard --logdir ./

With TensorBoard running, you can then view the TensorBoard dashboard by browsing to http://localhost:6006
on your local machine. If you cannot access TensorBoard at this address, please make sure that you have port-forwarded
TCP port 6006 when SSH’ing into the head node,

ssh -i YOUR_KEY.pem ubuntu@HEAD_NODE_IP_ADDRESS -L 6006:127.0.0.1:6006

neuron-top / neuron-monitor / neuron-ls

The neuron-top tool can be used to view useful information about NeuronCore utilization, vCPU and RAM utilization,
and loaded graphs on a per-node basis. To use neuron-top during on ongoing training job, run neuron-top:

ssh compute1-dy-queue1-i1-1 # to determine which compute nodes are in use, run the␣
→˓squeue command
neuron-top

Similarly, once you are logged into one of the active compute nodes, you can also use other Neuron tools such as neuron-
monitor and neuron-ls to capture performance and utilization statistics and to understand NeuronCore allocation.
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Troubleshooting Guide

For issues with NxDT, please see: NxDT Known Issues

This document is relevant for: Trn1, Trn2

This document is relevant for: Trn1, Trn2

HuggingFace Llama3.1/Llama3-70B Pretraining

In this example, we will compile and train a HuggingFace Llama3.1/Llama3-70B model on multiple trn1 or newly
launched trn2 instances using ParallelCluster with the NxD Training (NxDT) library. The example has the following
main sections:

Table of contents

• Setting up the environment

– ParallelCluster Setup

– Install Dependencies

• Download the dataset

• Pre-compile the model

• Training the model

• Monitoring Training

– Tensorboard monitoring

– neuron-top / neuron-monitor / neuron-ls

• Continual Pre-training with Downloaded Meta Model Weights

– Download the model and convert the state_dict to NxDT checkpoint format

– Start the continual training job by loading converted checkpoints

• Pretraining with Context Paralellism

• Troubleshooting Guide

Setting up the environment

ParallelCluster Setup

In this example, we will use 16 trn1.32xlarge instances or 8 trn2.48xlarge instances with ParallelCluster. Please follow
the instructions here to create a cluster: Train your model on ParallelCluster

ParallelCluster automates the creation of trainium clusters, and provides the Slurm job management system for schedul-
ing and managing distributed training jobs. Please note that the home directory on your ParallelCluster head node will
be shared with all of the worker nodes via NFS.
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Install Dependencies

Once you have launched ParallelCluster, please follow this guide on how to install the latest Neuron packages: PyTorch
Neuron Setup Guide.

Next, we will need to install NxDT and its dependencies. Please see the following installation guide for installing NxDT:
NxDT Installation Guide

Download the dataset

Let’s download training-data scripts for our experiments

wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/llama/get_dataset.py

Then download config.json file:

For Llama-3.1-70B:

wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/llama/tp_pp_llama_hf_pretrain/70B_config_llama3.1/config.json ~/

For Llama-3-70B:

wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/llama/tp_pp_llama_hf_pretrain/70B_config_llama3/config.json ~/

To tokenize the data, we must request the tokenizer from Hugging Face and Meta by following the instructions at the
following link: HuggingFace Llama 3.1 70B Model .

Use of the Llama models is governed by the Meta license. In order to download the model weights and tokenizer,
please visit the above website and accept their License before requesting access. After access has been granted, you
may use the following python3 script along with your own hugging face token to download and save the tokenizer.

from huggingface_hub import login
from transformers import AutoTokenizer

login(token='your_own_hugging_face_token')

tokenizer = AutoTokenizer.from_pretrained('meta-llama/Meta-Llama-3.1-70B')
# For llama3 uncomment line below
# tokenizer = AutoTokenizer.from_pretrained('meta-llama/Meta-Llama-3-70B')

tokenizer.save_pretrained(".")

For Llama3.1/Llama3, make sure your base directory has the following files:

'./tokenizer_config.json', './special_tokens_map.json', './tokenizer.json'

Next, let’s download and pre-process the dataset:

mkdir ~/examples_datasets/
python3 get_dataset.py --llama-version 3
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Note: In case you see an error of the following form when downloading data: huggingface_hub.utils.
_validators.HFValidationError: Repo id must be in the form 'repo_name' or 'namespace/
repo_name'. Use `repo_type` argument if needed. This could be because of a stale cache. Try deleting the
cache using:

sudo rm -rf ~/.cache/

Pre-compile the model

By default, PyTorch Neuron uses a just in time (JIT) compilation flow that sequentially compiles all of the neural
network compute graphs as they are encountered during a training job. The compiled graphs are cached in a local
compiler cache so that subsequent training jobs can leverage the compiled graphs and avoid compilation (so long as
the graph signatures and Neuron version have not changed).

An alternative to the JIT flow is to use the included neuron_parallel_compile command to perform ahead of time
(AOT) compilation. In the AOT compilation flow, the compute graphs are first identified and extracted during a short
simulated training run, and the extracted graphs are then compiled and cached using parallel compilation, which is
considerably faster than the JIT flow.

First, clone the open-source neuronx-distributed-training library

git clone https://github.com/aws-neuron/neuronx-distributed-training
cd neuronx-distributed-training/examples

Now, ensure that you are using the proper config file in the conf/ directory. In the train.sh file, ensure that
the CONF_FILE variable is properly set to the config for the model you want to use. In our case, it will be
hf_llama3_70B_config.yaml for training on trn1 cluster, and hf_llama3_70B_trn2_config.yaml for trn2.

In this tutorial, we will train Llama3-70B model on multiple compute nodes. For training on trn1, please make sure
hf_llama3_70B_config has the right configuration:

trainer:
devices: 32
num_nodes: 16

For pretraining on trn2, hf_llama3_70B_trn2_config would contain:

trainer:
devices: 64
lnc: 2 # default for trn2 workloads
num_nodes: 8

On trn2 instances, the configuration lnc: 2 indicates that there is a 2-to-1 mapping between logical Neuron Core (lnc)
and physical Neuron Core. Another supported configuration is lnc: 1, in which case each node would expose 128
logical devices.

The default config here is a 70B parameter model, but users can also add their own conf/*.yaml files and run different
configs and hyperparameters if desired. Please see Config Overview for examples and usage for the .yaml config files.

On trn1 cluster, run the following commands to launch an AOT pre-compilation job on your instance:

export COMPILE=1
export CONF_FILE=hf_llama3_70B_config
sbatch --exclusive \

--nodes 16 \
(continues on next page)
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--cpus-per-task 128 \
--wrap="srun ./train.sh"

On trn2 cluster, run the following:

export COMPILE=1
export CONF_FILE=hf_llama3_70B_trn2_config
sbatch --exclusive \

--nodes 8 \
--cpus-per-task 128 \
--wrap="srun ./train.sh"

Once you have launched the precompilation job, run the squeue command to view the Slurm job queue on your cluster.
If you have not recently run a job on your cluster, it may take 4-5 minutes for the requested trn1.32xlarge or trn2.48xlarge
nodes nodes to be launched and initialized. Once the job is running, squeue should show output similar to the following:

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
7 compute1 wrap ubuntu R 5:11 16 compute1-st-queue1-i1-[1-16]

You can view the output of the precompilation job by examining the file named slurm-ZZ.out, where ZZ represents
the JOBID of your job in the squeue output above.

tail -f slurm-7.out

Once the precompilation job is complete, just like the above output you should see a message similar to the following
in the logs:

2024-11-07 09:57:13.000144: 39810 INFO ||NEURON_PARALLEL_COMPILE||: Total graphs: 36
2024-11-07 09:57:13.000144: 39810 INFO ||NEURON_PARALLEL_COMPILE||: Total successful␣
→˓compilations: 36
2024-11-07 09:57:13.000144: 39810 INFO ||NEURON_PARALLEL_COMPILE||: Total failed␣
→˓compilations: 0

At this point, you can press CTRL-C to exit the tail command.

Note: The number of graphs will differ based on package versions, models, and other factors. This is just an example.

Training the model

You can launch pre-training job similar to compilation by using the same training script but now turning off the COMPILE
environment variable

On trn1 ParallelCluster:

export COMPILE=0
export CONF_FILE=hf_llama3_70B_config
sbatch --exclusive \

--nodes 16 \
--cpus-per-task 128 \
--wrap="srun ./train.sh"

On trn2 ParallelCluster:
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export COMPILE=0
export CONF_FILE=hf_llama3_70B_trn2_config
sbatch --exclusive \

--nodes 8 \
--cpus-per-task 128 \
--wrap="srun ./train.sh"

As outlined above, you can again use the squeue command to view the job queue, and also monitor the job in the same
way with the tail command to see the training logs. Once the model is loaded onto the Trainium accelerators and
training has commenced, you will begin to see output indicating the job progress:

Example:

Epoch 0: 3%| | 3/91 [16:05<7:52:06, 321.89s/it, loss=6.7, v_num=2, reduced_
→˓train_loss=13.40, lr=7.5e-9, parameter_norm=5536.0, global_step=1.000, consumed_
→˓samples=2048.0]
Epoch 0: 3%| | 3/91 [16:05<7:52:06, 321.89s/it, loss=4.47, v_num=2, reduced_
→˓train_loss=13.40, lr=7.5e-9, parameter_norm=5536.0, global_step=2.000, consumed_
→˓samples=3072.0]
Epoch 0: 4%| | 4/91 [21:20<7:44:18, 320.22s/it, loss=4.47, v_num=2, reduced_
→˓train_loss=13.40, lr=7.5e-9, parameter_norm=5536.0, global_step=2.000, consumed_
→˓samples=3072.0]
Epoch 0: 4%| | 4/91 [21:20<7:44:18, 320.22s/it, loss=3.35, v_num=2, reduced_
→˓train_loss=13.40, lr=7.5e-9, parameter_norm=5536.0, global_step=3.000, consumed_
→˓samples=4096.0]

Note: The convergence is for demonstration and would differ based on instance type, model, and other factors.

Monitoring Training

Tensorboard monitoring

In addition to the text-based job monitoring described in the previous section, you can also use tools such as Tensor-
Board to monitor training job progress. To view an ongoing training job in TensorBoard, you first need to identify the
experiment directory associated with your ongoing job. This will typically be the most recently created directory under
~/neuronx-distributed-training/examples/nemo_experiments/hf_llama/. Once you have identifed the
directory, cd into it, and then launch TensorBoard:

cd ~/neuronx-distributed-training/examples/nemo_experiments/hf_llama/8/
tensorboard --logdir ./

With TensorBoard running, you can then view the TensorBoard dashboard by browsing to http://localhost:6006
on your local machine. If you cannot access TensorBoard at this address, please make sure that you have port-forwarded
TCP port 6006 when SSH’ing into the head node,

ssh -i YOUR_KEY.pem ubuntu@HEAD_NODE_IP_ADDRESS -L 6006:127.0.0.1:6006
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neuron-top / neuron-monitor / neuron-ls

The neuron-top tool can be used to view useful information about NeuronCore utilization, vCPU and RAM utilization,
and loaded graphs on a per-node basis. To use neuron-top during on ongoing training job, run neuron-top:

ssh compute1-st-queue1-i1-1 # to determine which compute nodes are in use, run the␣
→˓squeue command
neuron-top

Similarly, once you are logged into one of the active compute nodes, you can also use other Neuron tools such as neuron-
monitor and neuron-ls to capture performance and utilization statistics and to understand NeuronCore allocation.

Continual Pre-training with Downloaded Meta Model Weights

If you want to perform contiual pre-training using the model weights provided by Meta, follow these steps:

Ensure you have the config.json file, which should have been downloaded as described in the Download the dataset
section.

Download the model and convert the state_dict to NxDT checkpoint format

Get the conversion scripts described in the Checkpoint Conversion. Mention the hf_model_name argument to specify
the HuggingFace model identifier for the model you want to download and convert the checkpoint to NxDT format.

Run the following to download the model and convert the state_dict to NxDT sharded checkpoint.

On trn1 cluster:

python3 ./checkpoint_converter_scripts/checkpoint_converter.py \
--model_style hf \
--hf_model_name meta-llama/Meta-Llama-3-70B \
--hw_backend trn1 \
--tp_size 32 --pp_size 8 --n_layers 80 \
--output_dir /fsx/pretrained_weight/ \
--convert_from_full_state --save_xser True \
--kv_size_multiplier 4 --qkv_linear True \
--config ~/config.json

On trn2 cluster:

python3 ./checkpoint_converter_scripts/checkpoint_converter.py \
--model_style hf \
--hf_model_name meta-llama/Meta-Llama-3-70B \
--hw_backend trn2 \
--tp_size 32 --pp_size 4 --n_layers 80 \
--output_dir /fsx/pretrained_weight/ \
--convert_from_full_state --save_xser True \
--kv_size_multiplier 4 --qkv_linear True \
--config ~/config.json

Note: This conversion process requires larger host memory. Please run it on a trn1.32xlarge or trn2.48xlarge compute
node. In this example, the converted model is stored on FSx for Lustre to be accessed by all compute nodes.
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Start the continual training job by loading converted checkpoints

In order to start the continual training job with loading this converted model as initial weights, please update the config
file (hf_llama3_70B_config.yaml or hf_llama3_70B_trn2_config.yaml) as below:

exp_manager:
.
.
resume_from_checkpoint: /fsx/pretrained_weight/ # manually set the checkpoint file to␣

→˓load from
.
.
model:
# Miscellaneous
use_cpu_initialization: False # Init weights on the CPU (slow for large models)
weight_init_only: True

Compared to initial pre-training loss value, you should see lower loss value when the training starts with Meta’s model
weights. Logs for one such sample run look like below.

Epoch 0: 3%| | 3/91 [16:09<7:53:59, 323.17s/it, loss=0.834, v_num=7, reduced_
→˓train_loss=1.670, lr=7.5e-9, parameter_norm=4736.0, global_step=1.000, consumed_
→˓samples=2048.0]
Epoch 0: 3%| | 3/91 [16:09<7:53:59, 323.17s/it, loss=0.556, v_num=7, reduced_
→˓train_loss=1.670, lr=7.5e-9, parameter_norm=4736.0, global_step=2.000, consumed_
→˓samples=3072.0]
Epoch 0: 4%| | 4/91 [21:25<7:46:02, 321.41s/it, loss=0.556, v_num=7, reduced_
→˓train_loss=1.670, lr=7.5e-9, parameter_norm=4736.0, global_step=2.000, consumed_
→˓samples=3072.0]
Epoch 0: 4%| | 4/91 [21:25<7:46:02, 321.41s/it, loss=0.417, v_num=7, reduced_
→˓train_loss=1.670, lr=7.5e-9, parameter_norm=4736.0, global_step=3.000, consumed_
→˓samples=4096.0]

Pretraining with Context Paralellism

To run pretraining with context parallelism, use the following yaml config file: hf_llama3_70B_CP_config.yaml.
This YAML file has the following changes to enable context parallelism:

distributed_strategy:
context_parallel_size: 2

fusions:
flash_attention: False
ring_attention: True

distributed_strategy
context_parallel_size
Context parallel degree to be used for sharding sequence.

• Type: int

• Required: False

• Default: 1
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fusions
ring_attention
Setting this flag to True will use the ring attention module for both forward and backward. This parameter must
be true when context parallel is `context_parallel_size is greater than 1.

• Type: bool

• Required: False

In the config file, context_parallel_size is set to the desired degree, and as context parallelism leverages ring
attention instead of flash attention, we set ring_attention: True, and flash_attention: False.

Context parallelism currently supports sequence lengths up to 32k and is supported on TRN1.

Compile with:

export COMPILE=1
export CONF_FILE=hf_llama3_70B_CP_config
sbatch --exclusive \

--nodes 16 \
--cpus-per-task 128 \
--wrap="srun ./train.sh"

and pre-training with:

export COMPILE=0
export CONF_FILE=hf_llama3_70B_CP_config
sbatch --exclusive \

--nodes 16 \
--cpus-per-task 128 \
--wrap="srun ./train.sh"

Troubleshooting Guide

For issues with NxDT, please see: NxDT Known Issues

This document is relevant for: Trn1, Trn2

This document is relevant for: Trn1, Trn2

Checkpoint Conversion

Table of Contents

• Supported Model Architectures

• Conversion Scenarios and Usage

– Key Arguments

• Conversion Example

• Direct HuggingFace Model Conversion

– Troubleshooting
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The NxD Training library provides a versatile checkpoint conversion functionality, allowing seamless transition be-
tween different model styles. This tutorial aims to provide a comprehensive guide through the various use cases and
demonstrate how to perform the checkpoint conversions.

Supported Model Architectures

The checkpoint conversion functionality supports conversion of the following model styles to/from NxDT checkpoints:

1. HuggingFace (HF) style models
2. Megatron style models

Extends support for both GQA (Llama-3) and non-GQA models (Llama-2).

Conversion Scenarios and Usage

The tool supports the following conversion scenarios. It internally uses NeuronxDistributed (NxD) to convert
to/from checkpoints. Run the following commands from the /examples/checkpoint_conversion_scripts/ di-
rectory:

Note:
1. Important: You must set the --hw_backend argument correctly for your hardware. The sample commands

below use trn1.

• Set --hw_backend trn1 for Trainium (Trn1) hardware

• Set --hw_backend trn2 for Trainium 2 (Trn2) hardware

All example commands in this tutorial use trn1. If you’re using Trn2, remember to replace trn1 with trn2 in every
command.

2. Ensure that the model configuration config.json file is present, as it is required for checkpoint conversions. It is
suggested to use specific json files like examples . If not present, you will need to create it.

3. If your HF/custom checkpoint has multiple .bin or .pt or .pth files then merge and convert to a single file
before conversion.

For conversion of non-GQA based models (e.g. Llama2), just set the --qkv_linear argument to False.

1. HF style model:
a. HF to NxDT checkpoint:

Command:

python3 checkpoint_converter.py --model_style hf --hw_backend trn1 --input_dir /
→˓home/ubuntu/pretrained_llama_3_8B_hf/pytorch_model.bin --output_dir /home/
→˓ubuntu/converted_hf_style_hf_to_nxdt_tp8pp4/ --save_xser True --config /home/
→˓ubuntu/pretrained_llama_3_8B_hf/config.json --tp_size 8 --pp_size 4 --n_
→˓layers 32 --kv_size_multiplier 1 --qkv_linear True --convert_from_full_state

This converts an HF-style checkpoint to an NxDT checkpoint.

b. NxDT to HF checkpoint:
Command:
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python3 checkpoint_converter.py --model_style hf --hw_backend trn1 --input_
→˓dir ~/examples/nemo_experiments/hf_llama3_8B_SFT/2024-07-19_23-07-40/
→˓checkpoints/hf_llama3_8B--step=5-consumed_samples=160.0.ckpt/model --
→˓output_dir ~/converted_hf_style_nxdt_to_hf_tp8pp4/ --load_xser True --
→˓config ~/config.json --tp_size 8 --pp_size 4 --kv_size_multiplier 1 --qkv_
→˓linear True --convert_to_full_state

This converts an NxDT checkpoint to an HF-style checkpoint.

2. Megatron style model (non-GQA models: e.g., Llama-2, and GQA models: e.g., Llama-3):
a. HF to NxDT Megatron checkpoint:

Command:

python3 checkpoint_converter.py --model_style megatron --hw_backend trn1 --
→˓input_dir ~/megatron-tp8pp4-nxdt-to-hf4/checkpoint.pt --output_dir ~/meg_
→˓nxdt_hf3_nxdt3 --config ~/llama_gqa/config.json --save_xser True --tp_
→˓size 8 --pp_size 4 --n_layers 32 --kv_size_multiplier 1 --qkv_linear True␣
→˓--convert_from_full_state

This converts an HF-style checkpoint to an NxDT Megatron-style checkpoint.

b. NxDT Megatron checkpoint to HF:

Command:

python3 checkpoint_converter.py --model_style megatron --hw_backend trn1 --
→˓input_dir ~/examples/nemo_experiments/megatron_llama/2024-07-23_21-07-30/
→˓checkpoints/megatron_llama--step=5-consumed_samples=5120.0.ckpt/model --
→˓output_dir ~/megatron-tp8pp4-nxdt-to-hf4 --load_xser True --config ~/
→˓llama_gqa/config.json --tp_size 8 --pp_size 4 --kv_size_multiplier 1 --
→˓qkv_linear True --convert_to_full_state

This converts an NxDT Megatron-style checkpoint to an HF-style checkpoint (GQA-based model,
see: --qkv_linear set to True).

Key Arguments

The checkpoint_converter.py script supports the following key arguments:

• --model_style: Specifies the model style, either hf (HuggingFace: default) or megatron

• --hw_backend: (required) Specifies the hardware backend either trn1 or trn2

• --input_dir: (required) directory containing the input checkpoint

• --hf_model_name: (optional) HuggingFace model identifier for directly converting models hosted on Hugging-
Face

• --output_dir: (required) directory to save the converted checkpoint directory

• --save_xser: Saves the checkpoint with torch_xla serialization

• --load_xser: Loads the checkpoint with torch_xla serialization

• --convert_from_full_state: Converts full model checkpoint to sharded model checkpoint

• --convert_to_full_state: Converts sharded model checkpoint to full model checkpoint
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• --config: path to the model configuration file (create json file if not present)

• --tp_size: tensor parallelism degree

• --pp_size: pipeline parallelism degree

• --n_layers: number of layers in the model

• --kv_size_multiplier: key-value size multiplier

• --qkv_linear: boolean to specify GQA/non-GQA models

• --fuse_qkv: boolean to specify fused QKV in GQA models

We recommend enabling xser for significantly faster save and load times. Note that if the checkpoint is saved with xser,
it can only be loaded with xser, and vice versa.

Conversion Example

Assuming you have a pre-trained HF-style Llama3-8B model checkpoint looking similar to:

input_dir: /hf/checkpoint/pytorch_model.bin

$ ls /hf/checkpoint

-rw-r--r-- 1 user group 123 Aug 27 2024 pytorch_model.bin

Convert the HF-style checkpoint to an NxDT checkpoint on a single instance:

python3 checkpoint_converter.py --model_style hf --hw_backend trn1 --input_dir /hf/
→˓checkpoint/pytorch_model.bin --output_dir /nxdt/checkpoint --save_xser True --convert_
→˓from_full_state --config /path/to/config.json --tp_size 8 --pp_size 4 --n_layers 32 --
→˓kv_size_multiplier 1 --qkv_linear True --convert_from_full_state

This command will create an NxDT checkpoint in output_dir: /nxdt/checkpoint and it will be sharded with
(tp=8, pp=4) like:

$ ls /nxdt/checkpoint/model

-rw-r--r-- 1 user group 123 Aug 27 2024 dp_rank_00_tp_rank_00_pp_rank_00.pt
-rw-r--r-- 1 user group 456 Aug 27 2024 dp_rank_00_tp_rank_01_pp_rank_00.pt
...........................................................................
-rw-r--r-- 1 user group 789 Aug 27 2024 dp_rank_00_tp_rank_07_pp_rank_02.pt
-rw-r--r-- 1 user group 122 Aug 27 2024 dp_rank_00_tp_rank_07_pp_rank_03.pt

Direct HuggingFace Model Conversion

Using the --hf_model_name argument allows users to directly convert checkpoint files hosted on HuggingFace with-
out the need for manual downloading or merging of checkpoint files.

To use this feature, you can specify the HuggingFace model identifier using the --hf_model_name argument. The
script will then download the model and convert it directly to the NxDT format.

Note:
1. When using --hf_model_name, do not specify --input_dir. These arguments are mutually exclusive.
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2. If both --hf_model_name and --input_dir are specified, the script will prioritize --input_dir and ignore
--hf_model_name

3. You will be prompted to enter your HuggingFace API token. If you don’t have one, you can create it at https:
//huggingface.co/settings/tokens.

4. Ensure you have sufficient disk space to download and process the model.

Example usage:

python3 checkpoint_converter.py --model_style hf --hw_backend trn1 --hf_model_name "meta-
→˓llama/Llama-2-7b-hf" --output_dir /path/to/output --save_xser True --config /path/to/
→˓config.json --tp_size 8 --pp_size 4 --n_layers 32 --kv_size_multiplier 1 --qkv_linear␣
→˓False --convert_from_full_state

This command will download the Llama-2-7b model from HuggingFace. Convert it to NxDT format, and save it in the
specified output directory.

Troubleshooting

• If you encounter an error related to HuggingFace authentication, ensure you’re using a valid API token.

• If the download fails, check your internet connection and verify that the model identifier is correct.

This document is relevant for: Trn1, Trn2

• Megatron GPT Pretraining

• HuggingFace Llama3.1/Llama3-8B Pretraining

• HuggingFace Llama3.1/Llama3-8B Supervised Fine-tuning

• HuggingFace Llama3.1/Llama3-8B Efficient Supervised Fine-tuning with LoRA (Beta)

• HF Llama3.1/Llama3-8B Direct Preference Optimization (DPO) and Odds Ratio Preference Optimization
(ORPO) based Fine-tuning (Beta)

• HuggingFace Llama3.1/Llama3-70B Pretraining

• Checkpoint Conversion

This document is relevant for: Trn1, Trn2

This document is relevant for: Trn1, Trn2

3.1.7 Misc.

This document is relevant for: Inf1, Inf2, Trn1, Trn2
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NxD Training Release Notes (neuronx-distributed-training)

Table of contents

• NeuronX Distributed Training [1.4.1]

• NeuronX Distributed Training [1.4.0]

• NeuronX Distributed Training [1.3.0]

• NeuronX Distributed Training [1.2.0]

• NeuronX Distributed Training [1.1.1]

• NeuronX Distributed Training [1.1.0]

• NeuronX Distributed Training [1.0.1]

• NeuronX Distributed Training [1.0.0]

This document lists the release notes for Neuronx Distributed Training library.

NeuronX Distributed Training [1.4.1]

Date: 06/30/2025

Features in this release

• Fixed an installation issue.

NeuronX Distributed Training [1.4.0]

Date: 06/24/2025

Features in this release

• Added support for PyTorch 2.7.

NeuronX Distributed Training [1.3.0]

Date: 05/16/2025

Features in this release

• (Beta release) Added autocast for HF based Llama3 8B and Llama3 70B models

• (Beta release) Added support for context parallel sequence lengths up to 32k on TRN1

• Added support for ORPO

• Added support for nemo-toolkit 2.1

• Added support for Transformers 4.48.0

• Added support for PyTorch-Lightning 2.5.0

• Added support for PyTorch 2.6
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NeuronX Distributed Training [1.2.0]

Date: 04/03/2025

Features in this release

• Added support for LoRA supervised fine-tuning.

• Added option to configure collectives data types.

• Minor fixes to reduce the amount of logs during training.

• Removes –llm-training flag by default in all configs, except llama2. Note: this flag should not be enabled when
using the Neuron Kernel Interface.

NeuronX Distributed Training [1.1.1]

Date: 1/14/2025

Features in this release

• Added a flag in Llama3/3.1 70B config to control the dtype of reduce-scatter operations in Column/Row Parallel
linear layers.

NeuronX Distributed Training [1.1.0]

Date: 12/20/2024

Features in this release

• Added support for HuggingFace Llama3/3.1 70B with trn2 instances

• Added support for custom pipeline parallel cuts in HuggingFace Llama3

• Added support for PyTorch 2.5

• Added support for DPO post-training model alignment

• Added support for Mixtral 8x7B Megatron and HuggingFace models

• Added option in checkpoint converter to download and convert checkpoints using HuggingFace model identifier

• Fix the validation loss to properly compute the average loss across the validation epoch

• Minor bug fixes for error logging and imports

Known Issues and Limitations

• Autocast option may not properly cast all inputs to bf16, recommended to use mixed precision option (currently
is default) in configs for best results

• With PT2.5, some of the key workloads like Llama3-8B training may show a reduced performance when using
–llm-training compiler flag as compared to PT2.1.

In such a case, try removing –llm-training flag from compiler_flags in the config.yaml
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NeuronX Distributed Training [1.0.1]

Date: 11/20/2024

Features in this release

• Added support for transformers 4.36.0

NeuronX Distributed Training [1.0.0]

Date: 09/16/2024

Features in this release

This is the first release of NxD Training (NxDT), NxDT is a PyTorch-based library that adds support for user-friendly
distributed training experience through a YAML configuration file compatible with NeMo„ allowing users to easily set
up their training workflows. At the same time, NxDT maintains flexibility, enabling users to choose between using the
YAML configuration file, PyTorch Lightning Trainer, or writing their own custom training script using the NxD Core.
The library supports PyTorch model classes including Hugging Face and Megatron-LM. Additionally, it leverages
NeMo’s data engineering and data science modules enabling end-to-end training workflows on NxDT, and providing
a compatability with NeMo through minimal changes to the YAML configuration file for models that are already
supported in NxDT. Furthermore, the functionality of the Neuron NeMo Megatron (NNM) library is now part of
NxDT, ensuring a smooth migration path from NNM to NxDT.

This release of NxDT includes:

• Installation through neuronx-distributed-training package.

• Open Source Github repository: https://github.com/aws-neuron/neuronx-distributed-training

• Support for YAML based interface allowing users to configure training from a config file.

• Support for 3D-parallelism, sequence-parallelism and zero1.

• Support for megatron-model and hugging-face based Llama model.

• Support flash attention kernel.

• Support for async checkpointing and s3 checkpointing.

• Examples to pretrain and fine-tune Llama model

Known Issues and Limitations

• Model checkpointing saves sharded checkpoints. Users will have to write a script to combine the shards

• Validation/Evaluation with interleaved pipeline feature is not supported.

• NxDT shows slightly higher memory utilization as compared to NxD based examples.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Trn1, Trn2
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Known Issues and Workarounds

This section covers the common failures that one can see while working with Neuronx Distributed Training library.
Some of the failures regarding installation have been documented in Common failures during installation.

Table of contents

• Shared weights error

• HOST OOM issues

– During checkpoint saving

– During async_checkpointing

– During Dataloading

• ImportError: helpers

• Matplotlib error

• Flash Attention not supported for megatron-style models

Shared weights error

Tieing weights is not supported when using pipeline parallelism. This means currently, the
share_embeddings_and_output_weights parameter is not supported when using pipeline parallelism. It
would produce an error that looks like this

File "/home/ubuntu/aws_neuron_venv_pytorch/lib/python3.8/site-packages/neuronx_
→˓distributed/pipeline/model.py", line 625, in _reduce_shared_weights
assert p.grad is not None, f"Found shared weight {n} has None grad"
AssertionError: Found shared weight language_model_embedding_word_embeddings.weight has␣
→˓None grad

Please set this flag to False when using pipeline parallelism.

HOST OOM issues

You would see an error log that looks like this without any other error above it.

WARNING:torch.distributed.elastic.agent.server.api:Received 15 death signal, shutting␣
→˓down workers
WARNING:torch.distributed.elastic.multiprocessing.api:Sending process 3721028 closing␣
→˓signal SIGTERM
WARNING:torch.distributed.elastic.multiprocessing.api:Sending process 3721029 closing␣
→˓signal SIGTERM
WARNING:torch.distributed.elastic.multiprocessing.api:Sending process 3721030 closing␣
→˓signal SIGTERM
WARNING:torch.distributed.elastic.multiprocessing.api:Sending process 3721031 closing␣
→˓signal SIGTERM

You can confirm HOST OOM by checking sudo dmesg on the Trn1 node. HOST OOM can occur because of multiple
reasons:
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During checkpoint saving

If you see the above error immediately after a checkpoint saving log, this indicates that the entire checkpoint is copied
to CPU. In this case, please check if the save_xser parameter is set to True. This mode will ensure each worker saves
only one tensor at a time to disk. Setting this to False will make all the workers copy the entire checkpoint to CPU
and can result in HOST OOM.

During async_checkpointing

async_checkpointing when used with a low number of nodes can cause HOST OOM as it increases memory pressure
per node. When we use more nodes, the memory pressure gets divided among the nodes and hence you would get an
OOM.

On a high level, async checkpointing copies data from device memory to host memory, then launch a new process to
save host memory to storage, and let the main process continue with the training. Since we launch a new process, it
requires a lot more extra host memory, because the launched process has the exact copy of memory space of the parent
process. Let’s use the following example to demonstrate how much memory we would need. For a llama2 70b training
using tp32 on 32 nodes, we launch 32 processes on each node. As baseline, each process uses 5 GB of host memory.
There is also the XRT server, which uses 110 GB of host memory, so in total 270 GB host memory is used (5*32
+ 110). If we enable async_checkpointing on this setting, the final memory usage can reach as high as 482 GB
because of the following reasons:

1. Each training process needs to allocate memory to hold the model. The model weights for llama2 70B would require
280GB of memory to store the weights. The optimizer state would require twice as much memory. So total amount
of host memory is 840 GB. Because we used all ranks for saving, the 840GB of data was evenly distributed among
1,024 processes (32 x 32), which means 0.84 GB of memory per process, or 26 GB of memory per instance. So each
process’s host memory usage is 5.8GB.

2. Second, each training process will fork a process for saving. The forked process will have a copy of parent’s memory.
In practice, linux uses a Copy-On-Write mechanism to save memory usage, but still in theory the actual memory usage
of the child process can reach 5.8 GB combined. When async_checkpointing is enabled, we have 64 processes
each using 5.8 GB of memory, and the XRT server uses 110 GB of memory. Therefore the total memory usage will be
482GB (64 * 5.8 + 110).

Hence with 32 nodes, we are already on the edge (each Trn1 node has 512GB of host memory) and we could OOM at
32 nodes. For a more stable run, enabling async_checkpointing at 64 nodes is recommended.

During Dataloading

Another common reason for HOST OOM is loading too much data onto CPU. For pipeline-parallel processing, the library
loads the entire global batch onto CPU and then moves it one-by-one to device. If we have a large batchsize with each
batch taking space, it can lead to HOST OOM.

ImportError: helpers

If you see an error that looks like:

ImportError: cannot import name 'helpers' from 'nemo.collections.nlp.data.language_
→˓modeling.megatron' (/usr/local/lib/python3.8/dist-packages/nemo/collections/nlp/data/
→˓language_modeling/megatron/__init__.py)

This could be because the helpers.cpp didn’t get built correctly at the time of execution. We can pre-built it by running
the following code:
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import sys
import types

import torch

if torch.__version__.startswith("2"):
string_classes = str
inf = torch.inf

else:
string_classes = None
inf = None

# conditionally modify the import
def modify_torch_six_import():

if string_classes is not None:
try:

if "torch._six" not in sys.modules:
# Create and add dummy module to sys.modules
six_module = types.ModuleType("torch._six")
six_module.string_classes = string_classes
six_module.inf = inf
sys.modules["torch._six"] = six_module

except Exception as e:
raise RuntimeError(f"Failed to override torch._six import: {e}")

modify_torch_six_import()
from nemo.collections.nlp.data.language_modeling.megatron.dataset_utils import compile_
→˓helper
compile_helper()

Alternatively, if you see

ImportError: /shared/username/aws_neuron_venv_pytorch/lib/python3.10/site-packages/nemo/
→˓collections/nlp/data/language_modeling/megatron/helpers.cpython-310-x86_64-linux-gnu.
→˓so: file too short

A current workaround for this case is to delete the .so file and run the above snippet explicitly.

Matplotlib error

If you see an error that looks like:

TimeoutError: Lock error: Matplotlib failed to acquire the following lock file

It means there is some contention in compute/worker nodes to access the matlotlib cache, and hence the lock error. To
resolve this add or run python -c 'import matplotlib.pyplot as plt' as part of your setup. This will create
a matplotlib cache and avoid the race condition.

3.1. NxD Training 541



AWS Neuron

Flash Attention not supported for megatron-style models

Flash attention kernel is supported only for HF-style models and will be added for megatron-style models in one of the
future releases.

This document is relevant for: Trn1, Trn2

• NxD Training Release Notes (neuronx-distributed-training)

• Known Issues and Workarounds

This document is relevant for: Trn1, Trn2

NxD Training is a PyTorch library for end-to-end distributed training.
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• Integrating a New Model
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• HuggingFace Llama3.1/Llama3-8B Efficient Supervised Fine-tuning with LoRA (Beta)

• HF Llama3.1/Llama3-8B Direct Preference Optimization (DPO) and Odds Ratio Preference Optimization
(ORPO) based Fine-tuning (Beta)

• HuggingFace Llama3.1/Llama3-70B Pretraining

• Checkpoint Conversion
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App Notes

• Introducing NxD Training

• Tensor Parallelism Overview

• Pipeline Parallelism Overview

• Activation Memory Reduction

Misc

• Known Issues and Workarounds

This document is relevant for: Trn1, Trn2

3.2 NxD Inference

3.2.1 Overview

• NxD Inference Overview

NxD Inference Overview

Table of contents

• Overview

• Using NxD Inference Library

Overview

NxD Inference (where NxD stands for NeuronX Distributed) is an open-source PyTorch-based inference library that
simplifies deep learning model deployment on AWS Inferentia and Trainium instances. Introduced with Neuron SDK
2.21 release, it offers advanced inference capabilities, including features such as continuous batching and speculative
decoding for high performance inference. Additionally, it supports inference engine for vLLM for seamless integration
with the majority of customers’ production deployment systems. ML developers can use NxD Inference library at
different levels of abstraction that fits their inference use case.

NxD Inference(NxDI) library offers the following benefits:

• Production ready models: NxD Inference provides production ready models like Llama-3.1, DBRX, and Mix-
tral that you can quickly deploy for high performance inference.

• LLM Inference Features: NxD Inference provides support for various LLM inference features like KV Cache,
Multi-Head Attention (MHA), Grouped Query Attention (GQA), Flash Attention, Quantization, MoE , Contin-
uous Batching and Speculative Decoding enabling high performance inference.

• Modular Design: Inference features in NxDI like KV Caching are implemented with a modular design, allowing
developers to easily incorporate them into new models or customize and extend them.
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• Distributed Strategies: NxD Inference enables distributing inference workload of large models across multiple
NeuronCores in a single instance using Tensor parallelism and Sequence Parallelism. Pipeline parallelism and
multi-node inference will be supported in future Neuron releases.

• Support for NKI Kernels: NxD Inference provides support for integrating custom NKI kernels on Trainium
and Inferentia instances.

• Open Source and SW Release: NxD Inference library is provided as pip wheel and corresponding source code
is made available on GitHub . We encourage developers to contribute new model implementations or feature
optimizations to the NxDI library by submitting a pull request.

Fig. 3.4: NxD Inference High level Overview

Using NxD Inference Library

ML developers can use NxD Inference library at different levels of abstraction. As shown in the below diagram Fig.
3.5, developers can use NxDI library in 3 different ways.

• Deploy production ready models with vLLM: NxDI supports production ready models like Llama-3.1, DBRX
and Mixtral that can be easily deployed directly through vLLM. Customers can integrate their inference scripts
directly with vLLM API.

• Deploy production ready models with NxDI: For customers who are not using vLLM, they can integrate
with NxDI models directly for use cases such as static batching. For continuous batching, customers can also
integrate with NxDI API to implement a custom model server with scheduler(other than vLLM) . See Fig. 3.5
b) for reference.

• Integrate with Inference modules and NxD Core primitives: As described in Fig. 3.5 c), customers who are
looking to onboard new models which are not in NxDI model hub can integrate with inference modules and NxD
Core primitives. In addition, customers who are looking to integrate with model servers other than vLLM can
also integrate directly with NxD Inference modules and NxD core primitives.
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Fig. 3.5: Using NxD Inference through various abstractions
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3.2.2 NxD Inference Setup Guide

The NeuronX Distributed (NxD) Inference framework is built on top of NxD Core. Follow the steps in this guide to
set up your environment to run inference using the NxD Inference framework.

Table of contents

• Option 1: Launch an instance using a Neuron DLAMI

• Option 2: Use a Neuron Deep Learning Container (DLC)

• Option 3: Manually Install NxD Inference

– Setup a Neuron Environment

– Install NxD Inference

• Verify NxD Inference Installation

Option 1: Launch an instance using a Neuron DLAMI

Neuron Deep Learning AMIs (DLAMIs) are Amazon Machine Images (AMIs) that come with the Neuron SDK pre-
installed. To quickly get started with NxD Inference, you can launch an EC2 instance with the multi-framework DLAMI,
which includes NxD Inference and its dependencies. For more information, see the Neuron Multi-Framework DLAMI
Guide and Neuron DLAMI User Guide.

After you launch an instance, you can run the following command to activate the NxD Inference virtual environment.

source /opt/aws_neuronx_venv_pytorch_2_6_nxd_inference/bin/activate

Option 2: Use a Neuron Deep Learning Container (DLC)

Neuron Deep Learning Containers (DLCs) are Docker images that come with the Neuron SDK pre-installed. To run
NxD Inference in a Docker container, use the Neuronx PyTorch Inference Containers. For more information, see Neuron
Containers.

Option 3: Manually Install NxD Inference

Follow these instructions to manually install NxD Inference on an instance.

Note: For information about which Python versions are compatible with the Neuron SDK, see Release Artifacts.
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Setup a Neuron Environment

Before you install NxD Inference, you must install the Neuron SDK and its dependencies, including PyTorch Neuron
(torch-neuronx). Follow instructions for one of the following operating systems:

• PyTorch NeuronX Setup on Ubuntu 22

• PyTorch NeuronX Setup on Amazon Linux 2023

Install NxD Inference

Run this command to install NxD Inference.

source aws_neuron_venv_pytorch/bin/activate
pip install -U pip
pip install --upgrade neuronx-cc==2.* neuronx-distributed-inference --extra-index-url␣
→˓https://pip.repos.neuron.amazonaws.com

Verify NxD Inference Installation

To verify that NxD Inference installed successfully, check that you can run the inference_demo console script.

inference_demo --help

3.2.3 API Reference Guides

NxD Inference API Reference

NeuronX Distributed (NxD) Inference (neuronx-distributed-inference) is an open-source PyTorch-based in-
ference library that simplifies deep learning model deployment on AWS Inferentia and Trainium instances. Neuronx
Distributed Inference includes a model hub and modules that users can reference to implement their own models on
Neuron.

This API guide describes API and configuration functions and parameters that you can use when you directly interact
with the NxD Inference library.

Note: NxD Inference also supports integration with vLLM. When you use vLLM, you can use the
override_neuron_config attribute to override defaults using the NeuronConfig parameters described in this API
guide. For more information about vLLM integration, see vLLM User Guide for NxD Inference.

Table of contents

• Configuration

– NeuronConfig

– InferenceConfig

– MoENeuronConfig

– FusedSpecNeuronConfig
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• Generation

– HuggingFaceGenerationAdapter

• Models

– NeuronApplicationBase

– NeuronBaseForCausalLM

– NeuronBaseModel

– ModelWrapper

Configuration

NxD Inference defines configuration objects that enable you to control how a model is compiled and used for inference.
When you compile a model, its configuration is serialized to a JSON file in the compiled checkpoint, so you can
distribute the compiled checkpoint to additional Neuron instances without needing to compile on each instance.

NxD Inference supports loading HuggingFace model checkpoints and configurations. When you run a model from a
HuggingFace checkpoint, NxD Inference loads the model configuration from the model’s PretrainedConfig.

NeuronConfig

NeuronConfig contains compile-time configuration options for inference on Neuron.

Initialization

Pass the NeuronConfig attributes as keyword args.

Functions

• NeuronConfig(**kwargs) - Initializes a NeuronConfig with attributes from kwargs.

Attributes

• General configuration

– batch_size - The number of inputs to process in a single request. Defaults to 1.

– padding_side - The padding side. Defaults to right.

– seq_len - The sequence length, which is typically the sum of max_context_length and
max_new_tokens. This value is the maximum sequence size that the model can process in a single re-
quest. Defaults to 128.

– max_context_length - The maximum context length. Default to the seq_len.

– max_new_tokens - The maximum number of tokens to generate in a single request. Default to the differ-
ence between seq_len and max_context_length. If the difference is zero, then max_new_tokens is set
to None.

– max_length - The maximum length to process. Default to the seq_len.
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– n_active_tokens - The number of active tokens to track. Defaults to the seq_len.

– n_positions - The number of positions to track. Defaults to the seq_len.

– torch_dtype - The torch data type to use for computation. Choose from the following options. Defaults
to torch.bfloat16.

∗ torch.bfloat16

∗ torch.float16

∗ torch.float32

– rpl_reduce_dtype - The torch data type to use for all_reduce operations in RowParallelLinear layers.
Defaults to None and does the reduction in the input tensors dtype.

– cast_type - The type of casting strategy to use when loading model parameters. Can be set to config
(default) which casts all parameters to torch_dtype, or as-declared which casts all parameters to the
dtype they were defined with.

– async_mode - Whether to use asynchronous mode for inference. Defaults to false.

– save_sharded_checkpoint - Whether to save the sharded weights in the compiled checkpoint. If this
option is disabled, NxD Inference shards the weights during model load. Defaults to true.

– logical_nc_config - The Logical NeuronCore Configuration (LNC). On Trn1 and Inf2, this defaults
to 1. On Trn2, this defaults to 2. You can also configure LNC with the NEURON_LOGICAL_NC_CONFIG
environment variable. For more information about LNC, see Logical NeuronCore configuration.

∗ Note: If you use Trn2 with NxD Inference v0.1 (Neuron 2.21), you must specify LNC=2 by setting
logical_neuron_cores=2 in NeuronConfig. The logical_neuron_cores attribute is deprecated
in NxD Inference v0.2 and later.

– skip_sharding - Whether to skip weight sharding during compilation. You can use this option if the
compiled checkpoint path already includes sharded weights for the model. Defaults to false.

– weights_to_skip_layout_optimization - The list of weight names to skip during weight layout op-
timization.

– skip_warmup - Whether to skip warmup during model load. To improve the performance of the first
request sent to a model, NxD Inference warms up the model during load. Defaults to false.

• Distributed configuration

– tp_degree - The number of Neuron cores to parallelize across using tensor parallelism. Defaults to 1.

∗ The number of attention heads needs to be divisible by the tensor-parallelism degree.

∗ The total data size of model weights and key-value caches needs to be smaller than the tensor-
parallelism degree multiplied by the amount of HBM memory per Neuron core.

· On trn2, each Neuron core has 24GB of memory (with logical_nc_config set to 2).

· On inf2/trn1, each Neuron core has 16GB of memory.

∗ The Neuron runtime supports the following tensor-parallelism degrees:

· trn2: 1, 2, 4, 8, 16, 32, and 64 (with logical_nc_config set to 2)

· inf2: 1, 2, 4, 8, and 24

· trn1: 1, 2, 8, 16, and 32

• Attention

– flash_decoding_enabled - Whether to enable flash decoding. Defaults to false.
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– fused_qkv - Whether to fuse the query (Q), key (K), and value (V) weights in the models attention layers.
This option improves performance by using larger matrices. Defaults to false.

– sequence_parallel_enabled - Whether to use sequence parallelism, which splits tensors along the
sequence dimension. Defaults to false. Sequence parallel requires context sequence length to be divisible
with tensor parallelism degree. Once enabled, sequence parallelism is only applied to context encoding.

– qk_layernorm - Whether to enable QK layer normalization. Defaults to false.

– attention_dtype - The torch data type to use for all operations in attention. Defaults to None and infers
the dtype based on the dtype of the hidden_states passed to attention.

• On-device sampling

– on_device_sampling_config - The on-device sampling configuration to use. Specify this config to
enable on-device sampling. This config is an OnDeviceSamplingConfig, which has the following at-
tributes:

∗ do_sample - Whether to use multinomial sampling (true) or greedy sampling (false). Defaults to
false.

∗ top_k - The top-k value to use for sampling. Defaults to 1.

∗ dynamic - Whether to enable dynamic sampling. With dynamic sampling, you can pass different
top_k, top_p, and temperature values to the forward call to configure sampling for each input in
a batch. Defaults to false.

∗ deterministic - Whether to enable deterministic sampling. Defaults to false.

∗ global_topk - The global topK value to use. Defaults to 256.

• Bucketing

– enable_bucketing - Whether to enable bucketing. Defaults to false. You can specify the buckets to
use with the context_encoding_buckets and token_generation_buckets attributes. If you don’t
specify the buckets to use, NxDI automatically selects buckets based on the following logic.

∗ Context encoding: Powers of two between 128 and the max context length.

· Note: Max context length is equivalent to sequence length by default.

∗ Token generation: Powers of two between 128 and the maximum sequence length.

– context_encoding_buckets - The list of bucket sizes to use for the context encoding model.

– token_generation_buckets - The list of bucket sizes to use for the token generation model.

• Quantization

– quantized - Whether the model weights are quantized. Defaults to false.

– quantized_checkpoints_path - The path to the quantized checkpoint. To quantize the model and save
it to this path, use NeuronApplicationBase’s save_quantized_state_dict function. Specify one of the
following:

∗ A folder path. During quantization, NxD Inference saves the quantized model in safetensors format to
this folder. To use a quantized model from a folder, it can be in safetensors or pickle format.

∗ A file path to a quantized model file in pickle format.

– quantization_dtype - The data type to use for quantization. Choose from the following options. De-
faults to int8.

∗ int8 - 8 bit int.

∗ f8e4m3 - 8-bit float with greater precision and less range.

550 Chapter 3. NeuronX Distributed (NxD)



AWS Neuron

· Important: To use f8e4m3 for quantization, you must set the XLA_HANDLE_SPECIAL_SCALAR
environment variable to 1.

∗ f8e5m2 - 8-bit float with greater range and less precision.

– quantization_type - The type of quantization to use. Choose from the following options. Defaults to
per_tensor_symmetric.

∗ per_tensor_symmetric

∗ per_channel_symmetric

– modules_to_not_convert - Specify a list of modules to be not quantized. Also, required when running
inference on custom quantized models(using external libraries) where certain layers are left in full precision.
Example: [“lm_head”, “layers.0.self_attn”, “layers.1.mlp”, . . . ]. Defaults to None (meaning all modules
will be quantized)

– draft_model_modules_to_not_convert - Specify a list of modules in full precision when working
with fused speculation. If no layers are required, add all layers in the list. Example: [“lm_head”, “lay-
ers.0.self_attn”, “layers.1.mlp”, . . . ]. This is only required in the case of fused speculation.

• KV cache quantization

– kv_cache_quant - Whether to quantize the KV cache. When enabled, the model quantizes the KV cache
to the torch.float8_e4m3fn data type. Defaults to false.

∗ Important: To use kv_cache_quant, you must set the XLA_HANDLE_SPECIAL_SCALAR environment
variable to 1.

• Kernels

– attn_kernel_enabled - Whether to enable the flash attention kernel when supported. Defaults to false.
Flash attention is automatically enabled by default for certain conditions, see NeuronAttentionBase.
get_flash_attention_strategy in neuronx_distributed_inference.modules.attention.attention_base.
Even explicitly enabled flash attention with NeuronConfig(attn_kernel_enabled=True) will be dis-
abled for use cases where enabling it would be less efficient.

– qkv_kernel_enabled - Whether to enable the fused QKV kernel. To use this option, you must set
fused_qkv to true and torch_dtype to torch.bfloat16. Defaults to false.

– mlp_kernel_enabled - Whether to enable the MLP kernel. To use this option, you must set torch_dtype
to torch.bfloat16. Defaults to false.

– quantized_mlp_kernel_enabled - Whether to enable the quantized MLP kernel, which uses FP8 com-
pute to improve performance. To use this option, you must set mlp_kernel_enabled to true. Defaults
to false.

– rmsnorm_quantize_kernel_enabled - Whether to enable the quantized RMS norm kernel. Defaults to
false.

• Continuous batching

– is_continuous_batching - Whether to enable continuous batching. Defaults to false.

– max_batch_size - The maximum batch size to use for continuous batching. Defaults to batch_size.

– ctx_batch_size - The maximum batch size to use for the context encoding model in continuous batching.
Defaults to batch_size.

– tkg_batch_size - The maximum batch size to use for the token generation model in continuous batching.
Defaults to batch_size.

• Speculative decoding
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– speculation_length - The number of tokens to generate with the draft model before checking work with
the primary model. Set this value to a positive integer to enable speculation. Defaults to 0.

– spec_batch_size - The batch size to use for speculation. Defaults to batch_size.

– enable_eagle_speculation - Whether to enable EAGLE speculation, where the previous hidden state
is passed to a specialized target model to improve performance. Defaults to false.

– enable_eagle_draft_input_norm - Whether to perform input normalization in the EAGLE draft
model. Defaults to false.

– enable_fused_speculation - Whether to enable fused speculation, where the target and draft model
are fused into a single compiled model to improve performance. Fused speculation is enabled by default if
enable_eagle_speculation is true. Otherwise, this defaults to false.

• Medusa decoding - Medusa is a speculation method that uses multiple smaller LM heads to perform speculation.

– is_medusa - Whether to use Medusa decoding. Defaults to false

– medusa_speculation_length - The number of tokens to generate with the Medusa heads before check-
ing work with the primary model. Set this value to a positive integer. Defaults to 0.

– num_medusa_heads - The number of LM heads to use for Medusa. Defaults to 0.

– medusa_tree - The Medusa tree to use. For an example, see medusa_mc_sim_7b_63.json in the
examples folder.

• Multi-LoRA serving

– lora_config - The multi-lora serving configuration to use. Defaults to none. Specify this config to enable
multi-LoRA serving. This config is LoraServingConfig, which has the following attributes:

∗ max_loras - The maximum number of concurrent LoRA adapters in device memory. Defaults to 1.

∗ lora_ckpt_paths - The checkpoint paths for LoRA adapters with key-value pairs. The key is the
adapter ID and the value is the local path of the LoRA adapter checkpoint.

∗ lora_memory_transpose - Transpose memory layout to optimize inference performance. Defaults
to True.

∗ lora_shard_linear_layer - Shard the linear layer across TP group to reduce memory consumption
at the cost of communication overehead. Defaults to False.

• Compilation configuration

– cc_pipeline_tiling_factor - The pipeline tiling factor to use for collectives. Defaults to 2.

• Debugging

– output_logits - Whether to return model logits from the Neuron device when using on-device sampling.
With on-device sampling, the model samples the logits on-device to return a singular token, and the model
output includes only the tokens (without the logits) to improve performance. The output_logits feature
enables you to output the logits alongside the token, which enables you to run logit validation and investigate
the model output. Note: This feature impacts performance and shouldn’t be used in production; this should
only be used for testing and debugging model logits.
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InferenceConfig

InferenceConfig contains a NeuronConfig and model configuration attributes.

Initialization

You can pass attributes through keyword args, or provide a load_config hook that is called during initialization to
load the configuration attributes.

InferenceConfig is compatible with HuggingFace transformers. To use a model from HuggingFace transformers,
you can populate an InferenceConfig with the attributes from the model’s PretrainedConfig, which is stored in config.
json in the model checkpoint.

from neuronx_distributed_inference.models.llama import (
LlamaInferenceConfig,
LlamaNeuronConfig

)
from neuronx_distributed_inference.utils.hf_adapter import load_pretrained_config

model_path = "/home/ubuntu/models/Meta-Llama-3.1-8B"

neuron_config = LlamaNeuronConfig()
config = LlamaInferenceConfig(

neuron_config,
load_config=load_pretrained_config(model_path),

)

Attributes

An InferenceConfig includes neuron_config and any other attributes that you set during initialization.

• neuron_config - The NeuronConfig for this inference config.

• fused_spec_config - The FusedSpecNeuronConfig for this inference config. Provide a fused spec config if
using fused speculation.

• load_config - The load_config hook to run during initialization. You can provide a load config hook to
load configuration attributes from another source. To load from a HuggingFace PretrainedConfig, pass the load
config hook returned by load_pretrained_config. The load_pretrained_config hook provider takes the
model path as its argument.

InferenceConfig also supports an attribute map, which lets you configure additional names or aliases for attributes.
When you get or set an attribute by an alias, you retrieve or modify the value of the original attribute. When you
initialize an InferenceConfig from a HuggingFace PretrainedConfig, it automatically inherits the attribute map from
that PretrainedConfig.
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Functions

• InferenceConfig(neuron_config, load_config=None, **kwargs) - Initializes an InferenceConfig.

• load_config(self) - Loads the config attributes. This function does nothing by default; subclasses can
override it to provide a model-specific implementation. This function is called during initialization unless a
load_config hook is provided.

• get_required_attributes(self) - Returns the list of attribute names that must be present in this config for
it to validate during initialization. This function returns an empty list by default; subclasses can override it to
require model-specific attributes to be present.

• validate_config(self) - Checks that the config is valid. This function is called during initialization. By
default, this function checks that the attributes returned by get_required_attributes are present. Subclasses
can override this function to implement model-specific validation.

• save(self, model_path) - Serializes the config to a JSON file, neuron_config.json in the given model
path.

• to_json_file(self, json_file) - Serializes the config to the given JSON file.

• to_json_string(self) - Serializes the config to a string in JSON format.

• load(cls, model_path, **kwargs) - Loads the config from the neuron_config.json file in the given
model path. You can specify kwargs to override attributes in the config.

• from_json_file(cls, json_file, **kwargs) - Loads the config from the given JSON file. You can spec-
ify kwargs to override attributes in the config.

• from_json_string(cls, json_string, **kwargs) - Loads the config from the given JSON string. You
can specify kwargs to override attributes in the config.

• get_neuron_config_cls(cls) - Returns the NeuronConfig class type to use for this InferenceConfig. This
function returns NeuronConfig by default; subclasses can override this function to configure a specific Neuron-
Config subclass to use.

MoENeuronConfig

A NeuronConfig subclass for mixture-of-experts (MoE) models. This config includes attributes specific to MoE mod-
els. MoE model configurations, such as DbrxNeuronConfig, are subclasses of MoENeuronConfig.

Initialization

Pass the attributes as keyword args.

Functions

• MoENeuronConfig(**kwargs) - Initializes an MoENeuronConfig with attributes from kwargs.
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Attributes

• capacity_factor - The capacity factor to use when allocating tokens across experts. When an expert is at
capacity, tokens allocated to that expert are dropped until that expert has capacity again. Defaults to None, which
means that NxDI waits until an expert has capacity, and no tokens are dropped.

• glu_mlp - Whether to use a Gated Linear Unit in the MLP. Defaults to false.

FusedSpecNeuronConfig

A configuration for a model that uses fused speculation, which is a speculative decoding feature where the target
and draft models are compiled into a combined model to improve performance. For more information, see Fused
Speculation.

Attributes

• worker_cls - The model class to use for fused speculation. This class should be a subclass of NeuronBase-
Model.

• draft_config - The InferenceConfig for the draft model.

• draft_model_path - The path to the draft model checkpoint.

Generation

HuggingFaceGenerationAdapter

NxD Inference supports running inference with the HuggingFace generate inference. To use HuggingFace-style gen-
eration, create a HuggingFaceGenerationAdapter that wraps a Neuron application model. Then, you can call generate
on the adapted model.

generation_model = HuggingFaceGenerationAdapter(neuron_model)
outputs = generation_model.generate(

inputs.input_ids,
attention_mask=inputs.attention_mask,
generation_config=generation_config

)

Models

NxD Inference provides a model hub with production ready models. You can use these existing models to run inference,
or use them as reference implementations when you develop your own models on Neuron. All model inherit from base
classes that provide a basic set of functionality that is common to all models.
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NeuronApplicationBase

NeuronApplicationBase is the base class for all application models, including NeuronBaseForCausalLM. NeuronAp-
plicationBase provides functions to compile and load models. This class extends torch.nn.Module. Application
models are the entry point to running inference with NxD Inference. You can extend this class to define new applica-
tion models that implement use cases in addition to causal LM.

Attributes

• config - The InferenceConfig for this model.

• neuron_config - The NeuronConfig for this model.

• model_path - The model path for this model.

• models - The list of models that make up this application model. These models are instances of ModelWrapper.
Add models to this list to compile them with compile.

• is_compiled - Whether this model is compiled.

• is_loaded_to_neuron - Whether this model is loaded to the Neuron device.

Functions

• NeuronApplicationBase(self, model_path, config=None, neuron_config=None) - Initializes an
application model from the given model path, and optionally the given InferenceConfig (config) and Neu-
ronConfig (neuron_config). If no InferenceConfig is provided, this function loads the config from the given
model path.

• compile(self, compiled_model_path, debug=False) - Compiles this model for Neuron and saves the
compiled model to the given path. This function compiles all models added to self.models. This function also
shards the weights for the model. To produce HLO files that have source annotations enabled for debugging, set
debug to True. When debug is enabled, HLOs contain following attributes for each computation: op_type,
op_name, source_file, and source_line.

• load(self, compiled_model_path) - Loads the compiled model from the given path to the Neuron device.
This function also loads the model weights to the Neuron device.

• load_weights(self, compiled_model_path) - Loads the model weights from the given path to the Neuron
device. You can call this function to load new weights without reloading the entire model.

• shard_weights(self, compiled_model_path) - Shards the model’s weights and serializes the sharded
weights to the given path.

• forward(self, **kwargs) - The forward function for this application model. This function must be imple-
mented by subclasses.

• validate_config(cls, config) - Checks whether the config is valid for this model. By default, this function
requires that neuron_config is present. This function can be implemented by subclasses to provide model-
specific validation.

• get_compiler_args(self) - Returns the Neuron compiler arguments to use when compiling this model. By
default, this returns no compiler arguments. This function can be implemented by subclasses to use model-
specific compiler args.

• to_cpu(self) - Allows inference to be run entirely on CPU. Use this in place of the compile and load func-
tions. Note that CPU inference doesn’t currently work for configurations that use kernels.
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• get_state_dict(cls, model_path, config) - Gets the state dict for this model. By default,
this function loads the state dict from the given model path. This function calls the class’
convert_hf_to_neuron_state_dict function to convert the state dict according to the specific model. Sub-
classes can override this function to provide custom state dict loading.

– When loading the state dict, this function replaces keys that start with the class’
_STATE_DICT_MODEL_PREFIX value with the class’ _NEW_STATE_DICT_MODEL_PREFIX value.
Subclasses can set these values to update the state dict keys accordingly.

• convert_hf_to_neuron_state_dict - Converts a state dict from HF format to the format expected by Neu-
ron. By default, this function returns the state dict without modifying it; subclasses can override this to provide
custom conversion for each model.

• save_quantized_state_dict(cls, model_path, config) - Quantizes the model’s state dict and saves
the quantized checkpoint to the quantized_checkpoint_path from the given config’s NeuronConfig.

• generate_quantized_state_dict(cls, model_path, config) - Generates the quantized state dict for
this model. This function loads the HuggingFace model from the given model path in order to quantize the
model. Then, this function passes the quantized model to prepare_quantized_state_dict to generate the
state dict. Subclasses can override this function to customize quantization.

• prepare_quantized_state_dict(cls, hf_model_quant) - Prepares the quantized state dict for the
model. By default, this function converts the state dict from qint8 to int8. Subclasses can override this function
to customize quantization.

• load_hf_model(model_path) - Loads the equivalent HuggingFace model from the given model path. Sub-
classes must implement this function to use quantization or to generate expected outputs when evaluating accu-
racy with accuracy.py.

• reset(self) - Resets the model state. By default, this function does nothing; subclasses can implement it to
provide custom behavior.

NeuronBaseForCausalLM

NeuronBaseForCausalLM is the base application class that you use to generate text with causal language models. This
class extends NeuronApplicationBase. You can extend this class to run text generation in custom models.

Attributes

• kv_cache_populated - Whether the KV cache is populated.

Functions

• NeuronBaseForCausalLM(self, *args, **kwargs) - Initializes the NeuronApplicationBase and config-
ures the models used in this LM application, including context encoding, token gen, and others, based on the
given NeuronConfig.

• forward(self, input_ids=None, seq_ids=None, attention_mask=None, position_ids=None,
sampling_params=None, prev_hidden=None, past_key_values=None, inputs_embeds=None,
labels=None, use_cache=None, output_attentions=None, output_hidden_states=None,
medusa_args=None, return_dict=None, input_capture_hook=None) - The forward function for
causal LM. This function routes the forward pass to the correct sub-model (such as context encoding or token
generation) based on the current model state. If an input_capture_hook function is provided, the forward
function calls the hook with the model inputs as arguments.
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• reset(self) - Resets the model for a new batch of inference. After the model is reset, a subsequent run will
invoke the context encoding model.

• reset_kv_cache(self) - Resets the KV cache by replacing its key values with zeroes.

NeuronBaseModel

NeuronBaseModel is the base class for all models. This class extends torch.nn.Module. In instances of Neuron-
BaseModel, you define the modules, such as attention, MLP, and decoder layers, that make up a model. You can extend
this class to define custom decoder models.

Attributes

• sampler - The sampler to use for on-device sampling.

• kv_mgr - The KV cache manager to use to manage the KV cache.

• sequence_dimension - The dimension for sequence parallelism.

Functions

• NeuronBaseModel(config, optimize_inference=True) - Initializes the Neuron model from the given
config. If optimize_inference is true, then this initializes a KV cache manager and sampler (if on-device
sampling).

• setup_attr_for_model(self, config) - Initializes the following attributes for the model. These attributes
are used by modules within the model. Subclasses must implement this function to set these attributes from the
config.

– on_device_sampling

– tp_degree

– hidden_size

– num_attention_heads

– num_key_value_heads

– max_batch_size

– buckets

• init_model(self, config) - Initializes the following modules for the model. Subclasses must implement
this function.

– embed_tokens

– layers

– norm

– lm_head

• forward(self, input_ids, attention_mask, position_ids, seq_ids,
accepted_indices=None, current_length=None, medusa_mask=None, scatter_index=None)
- The forward function for this model.

558 Chapter 3. NeuronX Distributed (NxD)



AWS Neuron

ModelWrapper

Wraps a model to prepare it for compilation. Neuron applications, such as NeuronBaseForCausalLM, use this class to
prepare a model for compilation. ModelWrapper defines the inputs to use when tracing the model during compilation.

To define a custom model with additional model inputs, you can extend ModelWrapper and override the
input_generator function, which defines the inputs for tracing.

Functions

• ModelWrapper(config, model_cls, tag, compiler_args) - Initializes a model wrapper from a given
config and model class. This model class is used to compile the model with the given compiler args. The tag is
used to identify the compiled model in the application.

• input_generator(self) - Returns a list of input tensors to use to trace the model for compilation. When
you trace and compile a model, the trace captures only the code paths that are run with these inputs. To sup-
port different inputs and code paths based on configuration options, provide configuration-specific inputs in
input_generator.

Use the NxD Inference (neuronx-distributed-inference) API Reference Guides to learn how to use NxD Infer-
ence.

• NxD Inference API Reference

3.2.4 Developer Guides

NxD Inference Features Configuration Guide

NxD Inference (neuronx-distributed-inference) is an open-source PyTorch-based inference library that sim-
plifies deep learning model deployment on AWS Inferentia and Trainium instances. Neuronx Distributed Inference
includes a model hub and modules that users can reference to implement their own models on Neuron.

Table of contents

• Checkpoint compatibility with HuggingFace Transformers

• Checkpoint support

• Compiling models

• Neuron Persistent Cache

• Serialization support

• Logical NeuronCore Configuration (LNC) support

• Tensor-parallelism support

– Examples

• Sequence Parallelism

• Compile-time Configurations

• Hugging Face generate() API support

– Example
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• On-device Sampling Support

– Dynamic Sampling

– Greedy Sampling

– Multinomial (Top-K) Sampling

– Top-P Support in On-Device Sampling

– Temperature Support in On-Device Sampling

• QKV Weight Fusion

• Bucketing

– Automatic Bucketing

– Configuring Specific Buckets

• Quantization

– Model Weight Quantization

– KV Cache Quantization

• Speculative Decoding

– Speculative Decoding with a Draft model

– Medusa Speculative Decoding

– EAGLE Speculative Decoding

• MoE model architecture support

• Grouped-query attention (GQA) support

• Asyncronous Runtime Support

• Prefix Caching Support

– Bucketing with Prefix Caching

• Multi-LoRA Serving

– Enable multi-LoRA serving

– Maximum number of LoRA adapters supported

• Disaggregated Inference [BETA]

Checkpoint compatibility with HuggingFace Transformers

Models included in the NxD Inference model hub are checkpoint-compatible with HuggingFace Transformers. Sup-
porting other checkpoint formats in NxD Inference is possible through converting the obtained checkpoint to the stan-
dard HuggingFace Transformers checkpoint format.
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Checkpoint support

NxD Inference supports older PyTorch binary checkpoints and newer safetensors checkpoints. For improved load speed
and reduced host memory consumption, we recommend to always use safetensors by default. Both regular and sharded
variants of checkpoints are supported.

NxD Inference supports weights stored in the model path in the following formats:

Format Sharded File name
Safetensors No model.safetensors
Safetensors Yes model.safetensors.index.json
Pickle No pytorch_model.bin
Pickle Yes pytorch_model.bin.index.json

If your weights are in another format, you must convert them to one of these formats before you can compile and load
the model to Neuron. See the following references for more information about these formats:

• Safetensors:

– https://github.com/huggingface/safetensors

– https://huggingface.co/docs/safetensors/en/convert-weights

• Pickle:

– https://docs.python.org/3/library/pickle.html

Compiling models

To run a model on Neuron with NxD Inference, you compile Python code into a NEFF file (Neuron Executable File
Format), which you can load to Neuron devices using the Neuron Runtime.

When you call compile(), NxD Inference does the following:

1. Trace the Python code to produce an HLO file.

2. Use the Neuron Compiler to compile the HLO file into a NEFF.

During the trace process, the model code is traced based on a given sample tensor for each input. As a result, model
code should avoid dynamic logic that depends on the input values in a tensor, because NxD Inference compiles only
the code path that is traced for the sample input tensor.

# Configure, initialize, and compile a model.
model = NeuronLlamaForCausalLM(model_path, config)
model.compile(compiled_model_path)

Neuron Persistent Cache

The Neuron Persistent Cache is enabled by default for NxD Inference library. Model artifacts which have been compiled
once will be cached and reused on successive runs when possible. Model artifacts will only be reused when compiling
with the same compiler version (neuronx-cc), model configurations, and compiler flags. Neuron Persistent Cache also
includes other features, such as using an S3 bucket as the cache backend. For more detailed information, see the
Persistent cache documentation
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Serialization support

When you compile a model with NxD Inference, the library serializes the model to a given folder. After you have a
serialized model, you can load it directly to a Neuron device without needing to compile again.

The compile function does not serialize sharded weights by default, and you can enable this functionality with the
save_sharded_checkpoint flag in NeuronConfig. For more information on weights sharding, see NxD Inference
Weights Sharding Guide.

Logical NeuronCore Configuration (LNC) support

On Trn2 instances, Neuron supports Logical NeuronCore (LNC) configuration, which combines multiple physical
NeuronCores into a single logical NeuronCore. On Trn2 instances, the Neuron SDK is optimized for LNC=2, which
means each NeuronCore visible to the Neuron SDK is two physical NeuronCores.

NxD Inference automatically chooses the correct LNC configuration based on the target platform. To override
the default LNC configuration, you can set the NEURON_LOGICAL_NC_CONFIG environment variable, or set the
logical_nc_config flag in NeuronConfig.

neuron_config = NeuronConfig(logical_nc_config=2)

For more information about logical NeuronCore support, see Logical NeuronCore configuration.

Tensor-parallelism support

For transformer decoders used in large language models, tensor-parallelism is necessary as it provides a way to shard
the models’ large weight matrices onto multiple NeuronCores, and having NeuronCores working on the same ma-
trix multiply operation collaboratively. neuronx-distributed-inference’s tensor-parallelism support makes heavy use of
collective operations such as all-reduce, which is supported natively by the Neuron runtime.

There are some principles for setting tensor-parallelism degree (number of NeuronCores participating in sharded matrix
multiply operations) for Neuron-optimized transformer decoder models.

1. The number of attention heads needs to be divisible by the tensor-parallelism degree.

2. The total data size of model weights and key-value caches needs to be smaller than the tensor-parallelism degree
multiplied by the amount of memory per Neuron core.

1. On Trn2, each Neuron core has 24GB of memory (with LNC2).

2. On Inf2/Trn1, each Neuron core has 16GB of memory.

3. The Neuron runtime supports the following tensor-parallelism degrees:

1. Trn2: 1, 2, 4, 8, 16, 32, and 64 (with LNC2)

2. Inf2: 1, 2, 4, 8, and 24

3. Trn1: 1, 2, 8, 16, and 32
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Examples

1. meta-llama/Meta-Llama-3.1-8B has 32 attention heads, and when running at batch size 1 and bfloat16 pre-
cision, the model requires about 16GB memory. Therefore, a trn1.2xlarge with 32GB device memory is
sufficient.

2. meta-llama/Meta-Llama-3.1-70B has 64 attention heads, and when running at batch size 1 and bfloat16
precision, the model requires about 148GB memory. Therefore, it can run on 16 NeuronCores on one trn1.
32xlarge using 256GB device memory.

Sequence Parallelism

Sequence parallelism splits tensors across the sequence dimension to improve performance. You can enable sequence
parallelism by setting sequence_parallel_enabled=True in NeuronConfig.

neuron_config = NeuronConfig(sequence_parallel_enabled=True)

Compile-time Configurations

NxD Inference models support a variety of compile-time configurations you can use to tune model performance. For
more information, see the NxD Inference API Reference.

Hugging Face generate() API support

NxD Inference models support the HuggingFace generate() API via the HuggingFaceGenerationAdapter class.
This adapter wraps a Neuron model to provide the HuggingFace generation interface.

NxD Inference’s supports the following HuggingFace generation modes:

• Greedy decoding — num_beams=1 and do_sample=False.

• Multinomial sampling — num_beams=1 and do_sample=True.

• Assisted (speculative) decoding — assistant_model or prompt_lookup_num_tokens are specified.

NxD Inference doesn’t currently support other HuggingFace generation modes such beam-search sampling.

Note: When you call generate, the number of prompts must match the batch_size for the model, which is an
attribute of NeuronConfig.

neuron_config = NeuronConfig(batch_size=2)

Example

The following example demonstrates how to wrap a model with HuggingFaceGenerationAdapter to call generate().

from neuronx_distributed_inference.utils.hf_adapter import HuggingFaceGenerationAdapter

# Init Neuron model, HuggingFace tokenizer, HuggingFace and generation config.

# Run generation with HuggingFaceGenerationAdapter.
(continues on next page)
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(continued from previous page)

generation_model = HuggingFaceGenerationAdapter(model)
inputs = tokenizer(prompts, padding=True, return_tensors="pt")
outputs = generation_model.generate(

inputs.input_ids,
generation_config=generation_config,
attention_mask=inputs.attention_mask,
max_length=model.neuron_config.max_length,
**kwargs,

)

output_tokens = tokenizer.batch_decode(
outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False

)

print("Generated outputs:")
for i, output_token in enumerate(output_tokens):

print(f"Output {i}: {output_token}")

On-device Sampling Support

On-device sampling performs sampling logic on the Neuron device (rather than on the CPU) to achieve better perfor-
mance. To enable on device sampling, provide an OnDeviceSamplingConfig for the on_device_sampling_config
attribute in NeuronConfig.

on_device_sampling_config = OnDeviceSamplingConfig(global_topk=256)
neuron_config = NeuronConfig(on_device_sampling_config=on_device_sampling_config)

Dynamic Sampling

With dynamic sampling, you can pass different top_k, top_p, and temperature values to the forward call to con-
figure sampling for each input in a batch. To enable dynamic sampling, provide an OnDeviceSamplingConfig with
dynamic=True.

on_device_sampling_config = OnDeviceSamplingConfig(dynamic=True)
neuron_config = NeuronConfig(on_device_sampling_config=on_device_sampling_config)

To use dynamic sampling, pass a sampling_params tensor to the forward function of the model. The
sampling_params tensor has shape [batch_size, 3], where the three values per batch are top_k, top_p, and
temperature.

The following example demonstrates how to create sampling_params for a batch with two inputs. In the first input,
top_k=50, top_p=0.5, and temperature=0.75. In the second input, top_k=5, top_p=1.0, and temperature=1.
0.

sampling_params = torch.tensor([[50, 0.5, 0.75], [5, 1.0, 1.0]])
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Greedy Sampling

By default, on-device sampling uses greedy sampling, where the model picks the highest scoring token.

Multinomial (Top-K) Sampling

With multinomial (top-k) sampling, the model picks one of the top k-highest scoring tokens. To use on-device multi-
nomial sampling, you must enable dynamic sampling. You can configure the default top_k attribute in the OnDevice-
SamplingConfig, or you can specify the top_k value in each call to the model’s forward function.

on_device_sampling_config = OnDeviceSamplingConfig(top_k=5)

Top-P Support in On-Device Sampling

To use top-p in on-device sampling, enable dynamic sampling, and specify top_p values in the sampling_params.

Temperature Support in On-Device Sampling

To adjust temperature in on-device sampling, enable dynamic sampling, and specify temperature values in the
sampling_params.

QKV Weight Fusion

QKV weight fusion concatenates a model’s query, key and value weight matrices to achieve better performance, because
larger matrices allow for more efficient data movement and compute. You can enable QKV weight fusion by setting
fused_qkv=True in the NeuronConfig.

neuron_config = NeuronConfig(fused_qkv=True)

Bucketing

LLM inference is a generation process that can produce variable length sequences. This poses a problem since the
Neuron compiler produces executables which expect statically shaped inputs and outputs. To make LLMs work with
different shapes, NxD Inference supports buckets and applies padding wherever it is required. When you run infer-
ence, NxD Inference automatically chooses the smallest bucket that fits the input for optimal performance. For more
information about bucketing, see torch-neuronx-autobucketing-devguide.

Automatic Bucketing

When automatic bucketing is enabled, NxD Inference automatically chooses buckets for each model according to the
following logic:

• Context encoding: Powers of two between 128 and the max context length.

– Note: Max context length is equivalent to sequence length by default.

• Token generation: Powers of two between 128 and the maximum sequence length.

To enable automatic bucketing, set enable_bucketing=True in NeuronConfig.
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neuron_config = NeuronConfig(enable_bucketing=True)

Configuring Specific Buckets

You can configure specific buckets to further optimize inference based on the input and output length distribution that
you expect to process with your model. In NeuronConfig, set enable_bucketing=True, and provide a list of bucket
sizes in context_encoding_buckets and/or token_generation_buckets.

neuron_config = NeuronConfig(
enable_bucketing=True,
context_encoding_buckets=[1024, 2048, 4096],
token_generation_buckets=[8192]

)

Quantization

NxD Inference supports quantization, where model weights and data are converted to a smaller data type to reduce
memory bandwidth usage, which improves model performance.

Note: Quantization slightly reduces accuracy due to using data types with lower precision and/or lower range.

Model Weight Quantization

NxD Inference supports quantizing model weights to the following data types:

• INT8 (int8) - 8 bit int.

• FP8 - 8 bit float.

– f8e4m3 - 8-bit float with greater precision and less range.

∗ Important: To use f8e4m3 for quantization, you must set the XLA_HANDLE_SPECIAL_SCALAR envi-
ronment variable to 1.

– f8e5m2 - 8-bit float with greater range and less precision.

NxD Inference supports the following quantization methods, which you specify with quantization_type in NeuronCon-
fig:

• per_tensor_symmetric

• per_channel_symmetric

Example

The following example demonstrates how to quantize a model to INT8. To quantize a model to a different data type,
change the quantization_dtype config attribute in NeuronConfig.

from neuronx_distributed_inference.models.config import NeuronConfig
from neuronx_distributed_inference.models.llama.modeling_llama import (

LlamaInferenceConfig,
NeuronLlamaForCausalLM

(continues on next page)
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)
from neuronx_distributed_inference.utils.hf_adapter import load_pretrained_config

model_path = "/home/ubuntu/models/Llama-3.1-8B"
quantized_model_path = "/home/ubuntu/models/Llama-3.1-8B-quantized"

neuron_config = NeuronConfig(
quantized=True,
quantized_checkpoints_path=quantized_model_path,
quantization_dtype="int8",
quantization_type="per_tensor_symmetric"

)

config = LlamaInferenceConfig(
neuron_config,
load_config=load_pretrained_config(model_path)

)

# Quantize the model and save it to `quantized_checkpoints_path`.
NeuronLlamaForCausalLM.save_quantized_state_dict(model_path, config)

# Compile, load, and use the model.
model = NeuronLlamaForCausalLM(model_path, config)

KV Cache Quantization

NxD Inference supports KV cache quantization, where the model’s KV cache is quantized to a smaller data type. When
enabled, the model quantizes the KV cache to the torch.float8_e4m3fn data type. Before using the KV cache, the
model dequantizes the KV cache to the data type specified by torch_dtype in NeuronConfig.

To enable KV cache quantization, set kv_cache_quant=True in NeuronConfig.

neuron_config = NeuronConfig(kv_cache_quant=True)

• Important: To use KV cache quantization, you must set the XLA_HANDLE_SPECIAL_SCALAR environment vari-
able to 1.

Speculative Decoding

Speculative decoding is a performance optimization technique where a smaller draft LLM model predicts the next
tokens, and the larger target LLM model verifies those predictions. NxD Inference supports the following speculative
decoding implementations:

1. Speculative decoding with a draft model, where a separate draft model predicts the next n tokens for the target
model. Each model is compiled independently.

2. Medusa speculative decoding, where several small model heads predict next tokens, and the target model verifies
all predictions at the same time.

3. EAGLE speculative decoding, where the draft model uses additional context from the target model to improve
generation efficiency. NxD Inference supports EAGLE v1 with a flat draft structure.
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Speculative Decoding with a Draft model

To use speculative decoding with a draft model, you configure, compile, and load a draft model in addition
to the main target model. To enable speculative decoding with a draft model, set speculation_length and
trace_tokengen_model=False in the target model’s NeuronConfig. The draft model’s NeuronConfig should use
the same configuration but with these additional attributes reset to their defaults.

Speculative decoding with a draft model currently supports only batch sizes of 1.

Example

The following example demonstrates using Llama-3.2 3B as a draft model for Llama-3.1 70B. The speculation length
is set to 5 tokens.

import copy

from transformers import AutoTokenizer, GenerationConfig

from neuronx_distributed_inference.models.config import NeuronConfig
from neuronx_distributed_inference.models.llama.modeling_llama import (

LlamaInferenceConfig,
NeuronLlamaForCausalLM

)
from neuronx_distributed_inference.utils.accuracy import get_generate_outputs
from neuronx_distributed_inference.utils.hf_adapter import load_pretrained_config

prompts = ["I believe the meaning of life is"]

model_path = "/home/ubuntu/models/Llama-3.1-70B"
draft_model_path = "/home/ubuntu/models/Llama-3.2-3B"
compiled_model_path = "/home/ubuntu/neuron_models/Llama-3.1-70B"
compiled_draft_model_path = "/home/ubuntu/neuron_models/Llama-3.2-3B"

# Initialize target model.
neuron_config = NeuronConfig(

speculation_length=5,
trace_tokengen_model=False

)
config = LlamaInferenceConfig(

neuron_config,
load_config=load_pretrained_config(model_path)

)
model = NeuronLlamaForCausalLM(model_path, config)

# Initialize draft model.
draft_neuron_config = copy.deepcopy(neuron_config)
draft_neuron_config.speculation_length **=** 0
draft_neuron_config.trace_tokengen_model **=** True
draft_config = LlamaInferenceConfig(

draft_neuron_config,
load_config=load_pretrained_config(draft_model_path)

)
draft_model = NeuronLlamaForCausalLM(draft_model_path, draft_config)

(continues on next page)
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# Compile and save models.
model.compile(compiled_model_path)
draft_model.compile(compiled_draft_model_path)

# Load models to the Neuron device.
model.load(compiled_model_path)
draft_model.load(compiled_draft_model_path)

# Load tokenizer and generation config.
tokenizer **=** AutoTokenizer.from_pretrained(model_path, padding_side**=**neuron_config.
→˓padding_side)
generation_config = GenerationConfig.from_pretrained(model_path)

# Run generation.
_, output_tokens = get_generate_outputs(

model,
prompts,
tokenizer,
is_hf=False,
draft_model=draft_model,
generation_config=generation_config

)

print("Generated outputs:")
for i, output_token in enumerate(output_tokens):

print(f"Output {i}: {output_token}")

Medusa Speculative Decoding

To use Medusa speculative decoding, you must use a model that is specifically fine-tuned for Medusa speculation, such
as text-generation-inference/Mistral-7B-Instruct-v0.2-medusa. You must also provide a Medusa tree. For an example
Medusa tree, see medusa_mc_sim_7b_63.json in the examples folder in NeuronX Distributed Inference.

To enable Medusa, set is_medusa=True, set the medusa_speculation_length, set the num_medusa_heads, and
specify the medusa_tree.

def load_json_file(json_path):
with open(json_path, "r") as f:

return json.load(f)

medusa_tree = load_json_file("medusa_mc_sim_7b_63.json")

neuron_config = NeuronConfig(
is_medusa=True,
medusa_speculation_length=64,
num_medusa_heads=4,
medusa_tree=medusa_tree

)

To run generation with a Medusa model and the HuggingFace generate() API, set the assistant_model to the
target model.
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For more information about Medusa speculative decoding, see the official implementation on GitHub: https://github.
com/FasterDecoding/Medusa.

Medusa speculative decoding currently supports only batch sizes of 1.

EAGLE Speculative Decoding

NxD Inference supports EAGLE v1 speculative decoding with a flat draft structure.

EAGLE Checkpoint Compatibility

To use EAGLE speculative decoding, you must use a draft model that is specifically fine-tuned for EAGLE speculation.
Additionally, to use EAGLE with NxD Inference, the draft model must include the LM head weights from the target
model. These weights are shared between the draft and target model.

Because NxD Inference uses a flat draft structure, it predicts only one token per draft iteration. Although NxD Inference
doesn’t support EAGLE with a tree structure, you can train an EAGLE checkpoint in the same way. Note that depending
on your use case and dataset, you might see lower acceptance rate with the flat draft structure compared with using a
tree structure.

NxD Inference supports EAGLE models with or without input normalization. By default, NxD Inference expects
that the EAGLE model doesn’t use input normalization. To use an EAGLE model with input normalization, set
enable_eagle_draft_input_norm to True in NeuronConfig.

You can find links to pretrained EAGLE draft model checkpoints for various popular models in the official EAGLE
repository on GitHub: https://github.com/SafeAILab/EAGLE. However, these pretrained EAGLE model checkpoints
don’t include the LM head weights from the target model. To use these pretrained checkpoints with NxD Inference,
you must first copy the LM head weights from the target to the draft model.

The following code demonstrates how to perform this operation for a Llama-3.1-70B-Instruct target model and the
corresponding EAGLE draft:

import json
import os

import torch
from safetensors import safe_open
from safetensors.torch import save_file

target_model_path = "Meta-Llama-3.1-70B-Instruct"
draft_model_path = "Llama-3.1-70B-Instruct-EAGLE-Draft"

DRAFT_MODEL_SAFETENSORS_NAME = "model.safetensors"
LM_HEAD_WEIGHT_TENSOR_NAME = "lm_head.weight"
TARGET_MODEL_SAFETENSORS_INDEX_NAME = "model.safetensors.index.json"

def find_lm_head_safetensors_location(model_dir):
model_index_location_path = os.path.join(model_dir, TARGET_MODEL_SAFETENSORS_INDEX_

→˓NAME)

with open(model_index_location_path, 'r') as f:
model_index_locations = json.load(f)

lm_head_safetensors_name = model_index_locations["weight_map"][LM_HEAD_WEIGHT_TENSOR_
(continues on next page)
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→˓NAME]

return lm_head_safetensors_name

# Find the target model `lm_head.weight` location in safetensors
target_lm_head_safetensors_name = find_lm_head_safetensors_location(target_model_path)
target_lm_head_safetensors_path = os.path.join(target_model_path, target_lm_head_
→˓safetensors_name)

# Open the target model.safetensor containing `lm_head.weight`
with safe_open(target_lm_head_safetensors_path, framework="pt") as f:

target_lm_head = f.get_tensor(LM_HEAD_WEIGHT_TENSOR_NAME)

# Collect all tensors in the draft model
draft_model_safetensors_path = os.path.join(draft_model_path, DRAFT_MODEL_SAFETENSORS_
→˓NAME)
tensors = {}
with safe_open(draft_model_safetensors_path, framework="pt") as f:

for key in f.keys():
tensors[key] = f.get_tensor(key)

# Add the LM head weights and save out the new draft model.safetensors file
tensors[LM_HEAD_WEIGHT_TENSOR_NAME] = target_lm_head.type(torch.float16)
save_file(tensors, draft_model_safetensors_path)

Fused Speculation

EAGLE speculation uses a feature called fused speculation, where the draft model and target model are fused into a sin-
gle compiled model to improve performance. Fused speculation uses a different config called FusedSpecNeuronConfig,
which specifies the model class. draft config, and draft model path to fuse with the target model.

Example

import copy

from neuronx_distributed_inference.models.config import (
FusedSpecNeuronConfig,
NeuronConfig,
OnDeviceSamplingConfig

)
from neuronx_distributed_inference.models.llama.modeling_llama import (

NeuronLlamaForCausalLM,
NeuronLlamaModel

)
from neuronx_distributed_inference.utils.accuracy import get_generate_outputs
from neuronx_distributed_inference.utils.hf_adapter import load_pretrained_config
from transformers import AutoTokenizer, GenerationConfig

prompt = "The future of AI is"
(continues on next page)
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model_path = "/home/ubuntu/models/Llama-3.1-70B-Instruct"
draft_model_path = "/home/ubuntu/models/Llama-3.1-70B-Instruct-EAGLE-Draft"
compiled_model_path = "/home/ubuntu/neuron_models/Llama-3.1-70B-Instruct-EAGLE"
max_sequence_length = 1024

# Initialize on-device sampling configuration.
on_device_sampling_config = OnDeviceSamplingConfig(

temperature=0.7,
top_k=50,
top_p=1.0,

)

# Initialize model configuration.
neuron_config = NeuronConfig(

# Neuron supports EAGLE batch sizes greater than 1.
# We set batch size to 1 in this tutorial due to a
# limitation in the transformers library for
# generation with speculative decoding.
# For more information, see: https://github.com/huggingface/transformers/issues/32165
batch_size = 1,
enable_eagle_speculation=True,
enable_fused_speculation=True,
max_context_length=max_sequence_length,
max_length=max_sequence_length,
on_device_sampling_config=on_device_sampling_config,
seq_len=max_sequence_length,
speculation_length=5,
# For best performance, set to the maximum tensor
# parallelism of your Neuron instance type.
tp_degree=32,
trace_tokengen_model=False

)

config = NeuronLlamaForCausalLM.get_config_cls()(
neuron_config, load_config=load_pretrained_config(model_path)

)

# Initialize draft model configuration and set EAGLE-specific values.
draft_neuron_config = copy.deepcopy(neuron_config)
draft_neuron_config.trace_tokengen_model = True
draft_neuron_config.enable_fused_speculation = False
draft_neuron_config.is_eagle_draft = True
draft_neuron_config.sequence_parallel_enabled = False

draft_config = NeuronLlamaForCausalLM.get_config_cls()(
draft_neuron_config, load_config=load_pretrained_config(draft_model_path))

# Initialize fused speculation configuration.
fused_spec_config = FusedSpecNeuronConfig(

NeuronLlamaForCausalLM._model_cls,
draft_config=draft_config,

(continues on next page)
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draft_model_path=draft_model_path,
)
config.fused_spec_config = fused_spec_config

# Initialize model from configuration.
model = NeuronLlamaForCausalLM(model_path, config)

# Compile and save model.
model.compile(compiled_model_path)

# Load model to the Neuron device.
model.load(compiled_model_path)

# Load tokenizer and generation config.
tokenizer = AutoTokenizer.from_pretrained(model_path, padding_side=neuron_config.padding_
→˓side)
generation_config = GenerationConfig.from_pretrained(model_path)
generation_config.max_length = 1024
# pad_token_id is required for Hugging Face assisted sampling.
generation_config.pad_token_id = tokenizer.eos_token_id

# Run generation and print outputs.
_, output_tokens = get_generate_outputs(

model,
[prompt],
tokenizer,
is_hf=False,
# draft_model is not set here due to fused speculation.
draft_model=None,
generation_config=generation_config

)

print("Generated output:")
for _, output in enumerate(output_tokens):

print(output)

MoE model architecture support

NxD Inference supports mixture-of-experts (MoE) models. The library includes ready-to-use modeling code for Mix-
tral and DBRX. These models are built using reusable MoE modules from NeuronX Distributed Core: RouterTopK,
ExpertMLPs, and MoE. You can use these modules to onboard additional MoE models.

NxD Inference also provides a helper function, initialize_moe_module, which you can use to initialize an MoE
model’s MLP module from these MoE modules. For examples of how to use this helper function, see the decoder layer
module implementation in the Mixtral and DBRX modeling code.
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Grouped-query attention (GQA) support

NxD Inference provides a reusable attention module, NeuronAttentionBase, which you can use when onboarding mod-
els. This module is also used in NxD Inference modeling code like Llama and Mixtral.

NxD Inference supports the following sharding strategies for the KV cache used in the attention module:

• CONVERT_TO_MHA — Transforms a GQA attention mechanism into a traditional MHA mechanism by replicating
the K/V heads to evenly match the corresponding Q heads. This consumes more memory than would otherwise
be used with other sharding mechanisms but works in all cases.

• REPLICATE_TO_TP_DEGREE — Transforms a GQA attention mechanism such that there is exactlyone K/V head
per tp_degree through replication e.g. 8 K/V heads with tp_degree=32 results in 32 K/V heads. This is more
memory efficient but does not work for all configurations. Q heads are padded interleaved to retain correct
alignment between Q and K/V heads.

The NeuronAttentionBase module uses REPLICATE_TO_TP_DEGREE by default. If the TP degree isn’t divisible by the
number of KV heads, NeuronAttentionBase uses CONVERT_TO_MHA.

Asyncronous Runtime Support

NxD Inference offers certain model configurations to be run with Asyncronous Runtime Mode (Async mode). Async
mode allows NxD Inference to parallelize CPU logic with Neuron (NEFF) logic. As a result, any CPU overheads within
NxDI that exist between sequential model executions (ex. autoregressive loop in LLMs) are almost fully eliminated.
This reduces latency anywhere from 5% to 20% based on the model configuration.

This feature can be enabled with by setting async_mode to True in NeuronConfig.

To use Async mode, a model configuration must meet the following prerequisites: - On-device sampling is enabled. -
If speculation is enabled, fused speculation must also be enabled.

It is highly recommended to set async_mode to True for every other case, since it offers a latency reduction. Further-
more, this feature is a purely runtime feature, so if you have a previously compiled model, and its configuration doesn’t
fall under the unsupported case, async_mode will likely be able to improve performance.

Note: If you are using vLLM, this feature works independently of vLLM’s Async Engine. As a result, async_mode
can be enabled whether vLLM is used or not.

Prefix Caching Support

Prefix caching is a performance optimization technique where prompts in multiple requests sharing the same prefix
can reuse the previously computed KV cache. When context encoding a prompt that starts with a previously computed
prefix, the encoding of the prefix tokens will be skipped and the corresponding KV Cache will be fetched and used
for encoding the rest of the tokens (suffix). The performance benefit comes from the time saved by re-using the KV
Cache instead of re-encoding the prefix tokens. NxD Inference supports prefix caching during context encoding. To
store KV cache and match to prefix efficiently, NxD Inference uses block KV Cache layout for prefix caching. NxD
Inference does not implement its own cache eviction, memory management, or prefix hashing for matches. Instead, it
requires external management of the block KV cache and expects active block tables and slot mappings to be provided
with each generation request. This feature integrates with vLLM by enabling automatic prefix caching, which manages
the block tables, handles automatic prefix matching across prompts, and performs cache evictions. More on automatic
prefix caching support on vLLM can be found here.

To enable prefix caching with NxD Inference, set is_prefix_caching=True in NeuronConfig along with configu-
rations for block KV cache layout.
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neuron_config = NeuronConfig(
is_prefix_caching=True,
is_block_kv_layout=True,
pa_num_blocks=1024,
pa_block_size=32,

)

is_block_kv_layout=True and is_prefix_caching=True are set in NeuronConfig to enable block KV Cache
layout and enable prefix caching. The first two dimensions of the KV cache are set to the number of blocks and block
size, respectively. These configurations are specified using pa_num_blocks and pa_block_size in NeuronCon-
fig. For optimal performance with Neuron, it’s recommended to set pa_block_size=32. The minimum required
pa_num_blocks to be initialized is (batch_size * max_model_len) / pa_block_size However, it is recom-
mended to initialize more blocks than the required minimum to accommodate caching of common prefixes. The higher
the number of blocks, the greater the likelihood of cache hits, as fewer cache evictions will occur. NxD Inference
does not currently provide an automated solution to determine the maximum number of KV Cache blocks that can be
initialized in HBM without exceeding available memory space. Customers are advised to experiment with increasing
the number of blocks that balances the cache hit rate and memory taken. Any memory taken by increasing the cache
will impact the batch sizes and sequence lengths that can be supported, so customers are sugggested to pick the correct
number of blocks considering these trade offs and the specific inference workload they plan to run in production.

NxD Inference does not use paged attention for prefix caching. Instead, it follows a different process: first gathering
the block KV cache using the block table, then converting it to a flat KV cache layout, computing attention, and
finally scattering the computed cache back to the block KV cache layout. This approach introduces overhead during
token generation requests due to layout conversions, which can negatively impact performance as the max_model_len
increases.

Bucketing with Prefix Caching

Prefix caching handles both the prefix (cache hit) and suffix (no cache hit) portions of input prompts during context
encoding. A two-dimensional bucketing system has been introduced to support context encoding when prefix caching
is enabled. This system uses separate dimensions corresponding to the prefix and suffix (non cache-hit portion) of the
input prompts. In contrast, token generation still uses one-dimensional bucketing based on the maximum sequence
length.

When bucketing is enabled, NxD Inference creates prefill (suffix) buckets (covering suffix portion) starting with powers
of 2, ranging from 512 up to the maximum context length. The prefix buckets mirror the prefill buckets, with one key
difference: a special prefix bucket of size 0 is added to handle requests with no cache hits. NxD Inference then creates
a two-dimensional grid of all prefill and prefix bucket combinations, which represents the effective set of buckets
during context encoding. During request processing, NxD Inference first identifies the smallest prefill bucket that can
accommodate the largest suffix portion of the input prompts. If prefill padding is needed, NxD Inference prioritizes
moving tokens from the prefix’s end to the prefill bucket before adding padding. It then determines the smallest prefix
bucket that can fit the largest prefix across prompts. These two dimensions together determine the final (prefill, prefix)
bucket combination used to serve the context encoding request.

You can configure specific buckets to optimize inference based on the expected distribution of prefix lengths, in-
put lengths, and output lengths for your model. In NeuronConfig, set enable_bucketing=True, and provide
a list of bucket sizes in context_encoding_buckets, prefix_buckets and/or token_generation_buckets.
context_encoding_buckets corresponds to prefill buckets when prefix caching is enabled.

neuron_config = NeuronConfig(
enable_bucketing=True,
context_encoding_buckets=[512, 1024, 2048],
prefix_buckets=[512, 1024]

(continues on next page)
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token_generation_buckets=[2048]
)

Examples

For context_encoding_buckets=[512, 1024, 2048] and prefix_buckets=[512, 1024]

For requests with:

• Input prompt of size 1000 with no prefix, NxDI uses prefill bucket as 1024 and prefix bucket as 0.

• Input prompt of size 800 with 128 as the prefix size, and remaining 672 as the suffix size, NxDI first selects 1024
as the prefill bucket. Remaining 352 prefill slots are filled up by moving entire prefix to the suffix part. So prefill
bucket of 1024 and prefix bucket as 0 is used here.

• Input prompt of size 900 with 640 as the prefix size, and remaining 260 as the suffix size, NxDI first selects 512
as the prefill bucket. Remaining 252 prefill slots are filled up by moving 252 tokens from the end of prefix to the
suffix part. Effective prefix length now becomes 388, so prefill bucket of 512 and prefix bucket as 512 is used.

• Input prompt of size 1600 with 1280 as the prefix size and remaining 320 as the suffix size, NxDI selects 512 as
the prefill bucket. Remaining 192 prefill slots are filled up by moving 192 tokens from the end of prefix to the
suffix part. Effective prefix length now becomes 1088 which is larger than the largest prefix bucket of 1024. This
leads to exception during the request processing.

The two-dimensional bucketing system exponentially increases the number of context encoding buckets. Therefore,
users should exercise caution when using auto-bucketing with large context lengths. It is recommended to limit the
granularity of prefix buckets based on your specific workload requirements.

For detailed examples of prefix caching with NxD Inference and vLLM, see nxdi-trn2-llama3.3-70b-apc-tutorial.

Multi-LoRA Serving

NxD Inference supports serving with multiple LoRA adapters and users can specify different LoRA adapters for their
requests at runtime. It also supports multi-LoRA serving with vLLM as the frontend. NxD Inference currently supports
loading of LoRA adapters at server startup for dense models like Llama-3.3-70B. Dynamic loading of LoRA adapters
at runtime is not currently supported and will be supported in a future Neuron release.

Enable multi-LoRA serving

To enable multi-LoRA serving, provide a LoraServingConfig for lora_config attribute in NeuronConfig.

lora_config = LoraServingConfig(
max_loras=max_loras,
lora_ckpt_paths=lora_ckpt_paths,

)
neuron_config = NeuronConfig(lora_config=lora_config)

Refer to NxD Inference API Reference for more details of LoraServingConfig.

NxD Inference primarily supports the format of LoRA adapters from Huggingface PEFT. Each checkpoint path is a
folder that contains a checkpoint file (.safetensors, .bin, or .pt) and a configuration json file (.json). In addition, NxD
inference also supports LoRA adapters trained from NxD LoRA finetuning. Each checkpoint path is a checkpoint file
(.pt) that includes both LoRA adapter weights and the configuration.
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NxD Inference assumes all the LoRA adapters for multi-LoRA serving are available locally during compilation and
their weights are loaded on neuron devices during serving. When uploading a LoRA adapter checkpoint to NxDI for
multi-LoRA serving, the user is requried to name the adapter with a unique adapter ID, which will be used by users to
specify the LoRA adapter for serving at runtime and by NxDI for model compilation.

The number of the multiple LoRA adapters for serving is specified by max_loras. The set of LoRA adapters in NxD
Inference are specified by lora_ckpt_paths, which is a dictionary with a key-value pair for each LoRA adapter. The
key is the adapter ID named by the user and the value is the local path of the LoRA adapter checkpoint. For detailed
examples of multi-LoRA serving in NxDI, see Tutorial: Multi-LoRA serving for Llama-3.1-8B on Trn2 instances.

Maximum number of LoRA adapters supported

The LoRA adapter size is much smaller than the base model, but its weights still consumes non-negligible on-device
memory. The maximum number of LoRA adapters that can be concurrently supported in NxD Inference depends on
the base model, the LoRA rank, the reserved memory size for LoRA adapters, and how the LoRA adapters are sharded
across TP groups.

Suppose Trn1 instance is used for multi-LoRA serving and the reserved memory size on each neuron core for LoRA
adapters is 2GB. Each LoRA adapter has two parts, LoRA A and LoRA B, and only one of them can be partitioned with
tensor parallelism and the other is just Linear layer. We analyze the maximum number of LoRA adapters supported in
NxD inference under two cases: the linear layer is duplicated and the linear layer is sharded. These two cases can be
specified by lora_shard_linear_layer in LoraServingConfig.

When the linear layer is duplicated

The weight size of a LoRA adapter on each device is around half of the total LoRA adapter size in this case. When
the base model is Llama3.1 8B, the LoRA adapter checkpoint size with LoRA rank 16 in BF16 is around 170MB.
Because 2GB / (170MB / 2) = 23, the maximum number of concurrent LoRA adapters is 23. When the base
model is Llama3.3 70B, the LoRA adapter checkpoint size with LoRA rank 16 in BF16 is around 830MB and
we can set max_loras=4. We analyze the maximum number of LoRA adapters supported in NxD inference un-
der two cases: the linear layer is duplicated and the linear layer is sharded. These two cases can be specified by
lora_shard_linear_layer in LoraServingConfig.

Model Reserved Memory size LoRA rank Maximum LoRAs
Llama3.1 8B 2GB 16 23
Llama3.1 8B 2GB 32 12
Llama3.3 70B 2GB 16 4
Llama3.3 70B 2GB 32 2

When the linear layer is sharded

The linear layer in a LoRA adapter is sharded across neuron cores in a TP group at the cost of Allgather communication
overehead in this case. The weight size of a LoRA adapter on each device is 1/TP_DEGREE of the total LoRA adapter
size.

Model Reserved Memory size LoRA rank TP degree Maximum LoRAs
Llama3.1 8B 2GB 16 32 376
Llama3.1 8B 2GB 32 32 188
Llama3.3 70B 2GB 16 32 77
Llama3.3 70B 2GB 32 32 38
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Disaggregated Inference [BETA]

Disaggregated Inference is an LLM serving architecture separates the prefill and decode phases of inference onto
different hardware resources. Separating the compute intensive prefill phase from the memory bandwidth intensive
decode phase can improve the LLM serving experience by

1. Removing prefill interruptions to decode from continuous batching to reduce inter token latency (ITL). These gains
can be used to achieve higher throughput by running with a higher decode batch size while staying under Service Level
Objectives (SLO).

2. Adapt to changing traffic patterns while still remaining under application SLOs.

3. Enable independent scaling of resources and parallelism strategies for prefill (compute bound) and decode (mem-
ory bound).

See the Disaggregated Inference Developer Guide and the Disaggregated Inference Tutorial

NxD Inference - Production Ready Models

Neuronx Distributed Inference provides production ready models that you can directly use for seamless deployment.
You can view the source code for all supported models in the NxD Inference GitHub repository.

Note: If you are looking to deploy a custom model integration, you can follow the model onboarding guide. You
can refer to the source code for supported models in the NxD Inference GitHub repository and make custom changes
required for your use case.

Table of contents

• Using Models to Run Inference

– Using vLLM

– Integrating Directly with NxD Inference

• Supported Model Architectures

– Llama (Text)

– Llama (Multimodal)

– Mixtral

– DBRX

– Qwen2.5
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Using Models to Run Inference

You can run models through vLLM or integrate directly with NxD Inference.

Using vLLM

If you are using vLLM for production deployment, we recommend that you use the vLLM API to integrate with NxD
Inference. The vLLM API automatically chooses the correct model and config classes based on the model’s config file.
For more information, refer to the vLLM User Guide for NxD Inference.

Integrating Directly with NxD Inference

To use NxD Inference directly, you construct model and configuration classes. For more information about which
model and configuration classes to use for each model, see Supported Model Architectures. To see an example of how
to run inference directly with NxD Inference, see the generation_demo.py script.

Supported Model Architectures

NxD Inference currently provides support for the following model architectures.

Llama (Text)

NxD Inference supports Llama text models. The Llama model architecture supports all Llama text models, including
Llama 2, Llama 3, Llama 3.1, Llama 3.2, and Llama 3.3. You can also use the Llama model architecture to run any
model based on Llama, such as Mistral.

Neuron Classes

• Neuron config class: MoENeuronConfig

• Inference config class: MixtralInferenceConfig

• Causal LM model class: NeuronMixtralForCausalLM

Compatible Checkpoint Examples

• https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct (requires Trn2)

• https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct

• https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct

• https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

• https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
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Llama (Multimodal)

NxD Inference supports Llama 3.2 multimodal models. You can use HuggingFace checkpoints or the original Meta
checkpoints. To use the Meta checkpoint, you must first convert the checkpoint to Neuron format. For more information
about how to run Llama3.2 multimodal inference, and for details about how to convert the original Meta checkpoints
to run on NxD Inference, see Tutorial: Deploying Llama3.2 Multimodal Models.

Neuron Classes

• Neuron config class: MultimodalVisionNeuronConfig

• Inference config class: MllamaInferenceConfig

• Causal LM model class: NeuronMllamaForCausalLM

Compatible Checkpoint Examples

• https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct

• https://huggingface.co/meta-llama/Llama-3.2-90B-Vision-Instruct

Mixtral

NxD Inference supports models based on the Mixtral model architecture, which uses mixture-of-experts (MoE) archi-
tecture.

Neuron Classes

• Neuron config class: MoENeuronConfig

• Inference config class: MixtralInferenceConfig

• Causal LM model class: NeuronMixtralForCausalLM

Compatible Checkpoint Examples

• https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1

DBRX

NxD Inference supports models based on the DBRX model architecture, which uses mixture-of-experts (MoE) archi-
tecture.
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Neuron Classes

• Neuron config class: DbrxNeuronConfig

• Inference config class: DbrxInferenceConfig

• Causal LM model class: NeuronDbrxForCausalLM

Compatible Checkpoint Examples

• https://huggingface.co/databricks/dbrx-instruct

Qwen2.5

NxD Inference supports models based on the Qwen2.5 model architecture.

Neuron Classes

• Neuron config class: Qwen2NeuronConfig

• Inference config class: Qwen2InferenceConfig

• Causal LM model class: NeuronQwen2ForCausalLM

Compatible Checkpoint Examples

• https://huggingface.co/Qwen/Qwen2.5-72B-Instruct

• https://huggingface.co/Qwen/Qwen2.5-32B-Instruct

• https://huggingface.co/Qwen/Qwen2.5-14B-Instruct (Not tested, but expected to work out of the box)

• https://huggingface.co/Qwen/Qwen2.5-7B-Instruct

• https://huggingface.co/Qwen/Qwen2.5-3B-Instruct (Not tested, but expected to work out of the box)

• https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct (Not tested, but expected to work out of the box)

• https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct

Onboarding models to run on NxD Inference

This guide covers how to onboard a model to get it to run on NxD Inference for the first time. To learn more about how
to optimize a model on Neuron, see the NxD Inference Features Configuration Guide.

Table of contents

• Overview

– 1. Define a NeuronConfig class

– 2. Define an InferenceConfig class

– 3. Define a Neuron model
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Overview

This guide demonstrates how to adapt an existing PyTorch model to run on Neuron with the NeuronX Distributed
(NxD) Inference library. At a high-level, you will do the following:

1. Define configuration classes. NxD Inference models include a NeuronConfig, which defines Neuron-specific
configuration parameters, and an InferenceConfig, which defines model configuration parameters. When adapt-
ing a model that works with HuggingFace, InferenceConfig is synonymous to PretrainedConfig.

2. Define model classes. When you define model classes, you replace linear layers with parallel layers that are
optimized for distributed inference on Neuron. NxD Inference also provides modules for attention, KV cache
management, and more, which you can use to write model classes that work with Neuron. Model classes are
compiled to run effectively on Neuron.

3. Define application heads. Application heads orchestrate passing inputs to the correct compiled model. Applica-
tion heads also provide the interface to compile and load the model.

4. Convert weights to a supported format. NxD Inference supports safetensors and pickle formats.

1. Define a NeuronConfig class

Define a Neuron configuration class, which extends NeuronConfig. NeuronConfig includes Neuron-specific config-
uration parameters. In the config class for your model, you can define any additional Neuron-specific configuration
parameters that your model requires.

• For MoE models, you can extend MoENeuronConfig instead of NeuronConfig. This class includes configuration
parameters specific to MoE models.

from neuronx_distributed_inference.models.config import NeuronConfig

class NeuronLlamaConfig(NeuronConfig):
def __init__(self, **kwargs):

super().__init__(**kwargs)
# Set any args/defaults

582 Chapter 3. NeuronX Distributed (NxD)



AWS Neuron

2. Define an InferenceConfig class

Define an inference configuration class, which extends InferenceConfig. InferenceConfig includes model parameters,
such as those from a HuggingFace PretrainedConfig (like LlamaConfig). When users initialize your config, they can
provide required attributes directly, or they can populate the config from a HuggingFace PretrainedConfig. You can
also override get_required_attributes to enforce that certain attributes are present.

from neuronx_distributed_inference.models.config import InferenceConfig, NeuronConfig

class LlamaInferenceConfig(InferenceConfig):
def get_required_attributes(self) -> List[str]:

return [
"hidden_size",
"num_attention_heads",
"num_hidden_layers",
"num_key_value_heads",
"pad_token_id",
"vocab_size",
"max_position_embeddings",
"rope_theta",
"rms_norm_eps",
"hidden_act",

]

@classmethod
def get_neuron_config_cls(cls) -> Type[NeuronConfig]:

return NeuronLlamaConfig

3. Define a Neuron model

Define a Neuron model. This class is a subclass of NeuronBaseModel, which is a PyTorch module.

1. In this class, you provide implementations for setup_attr_for_model(self, config) and
init_model(self, config).

1. In setup_attr_for_model, set values for the following attributes. You can set these attributes from
values in config and config.neuron_config.

1. self.on_device_sampling

2. self.tp_degree

3. self.hidden_size

4. self.num_attention_heads

5. self.num_key_value_heads

6. self.max_batch_size

7. self.buckets

2. In init_model, initialize the modules that make up the model.

1. For attention modules, extend NeuronAttentionBase, which provides a group query attention (GQA)
implementation adapted to Neuron.
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2. Replace linear layers (such as in attention and MLP) with Neuron parallel layers (RowParallelLinear
and ColumnParallelLinear).

1. For more information about RowParallelLinear and ColumnParallelLinear layers, see Tensor Par-
allelism Overview.

3. Replace embeddings with Neuron parallel embeddings (ParallelEmbedding).

4. Replace any other modules that require Neuron-specific implementations.

Note: This example demonstrates a simplified version of NeuronLlamaModel from from the NxDI model hub.

from torch import nn
from transformers.activations import ACT2FN

from neuronx_distributed.parallel_layers import parallel_state
from neuronx_distributed.parallel_layers.layers import ColumnParallelLinear,␣
→˓RowParallelLinear, ParallelEmbedding

from neuronx_distributed_inference.models.model_base import NeuronBaseModel
from neuronx_distributed_inference.modules.attention.attention_base import␣
→˓NeuronAttentionBase
from neuronx_distributed_inference.modules.attention.utils import RotaryEmbedding
from neuronx_distributed_inference.modules.custom_calls import CustomRMSNorm

class NeuronLlamaMLP(nn.Module):
"""
This class just replace the linear layers (gate_proj, up_proj and down_proj) with␣

→˓column and row parallel layers
"""

def __init__(self, config: InferenceConfig):
super().__init__()
self.config = config
self.neuron_config = config.neuron_config
self.tp_degree = config.neuron_config.tp_degree
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.act_fn = ACT2FN[config.hidden_act]

self.gate_proj = ColumnParallelLinear(
self.hidden_size,
self.intermediate_size,
bias=False,
gather_output=False,
dtype=config.neuron_config.torch_dtype,
pad=True,

)
self.up_proj = ColumnParallelLinear(

self.hidden_size,
self.intermediate_size,
bias=False,
gather_output=False,
dtype=config.neuron_config.torch_dtype,
pad=True,

(continues on next page)
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(continued from previous page)

)
self.down_proj = RowParallelLinear(

self.intermediate_size,
self.hidden_size,
bias=False,
input_is_parallel=True,
dtype=config.neuron_config.torch_dtype,
pad=True,

)

def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))

class NeuronLlamaAttention(NeuronAttentionBase):
"""
Compared with LlamaAttention, this class just
1. replaces the q_proj, k_proj, v_proj with column parallel layer
2. replaces the o_proj with row parallel layer
3. update self.num_head to be self.num_head / tp_degree
4. update self.num_key_value_heads to be self.num_key_value_heads / tp_degree
5. update forward() method to adjust to changes from self.num_head
"""

def __init__(self, config: InferenceConfig):
super().__init__()

self.config = config
self.neuron_config = config.neuron_config
self.hidden_size = config.hidden_size
self.num_attention_heads = config.num_attention_heads
self.num_key_value_heads = config.num_key_value_heads
self.head_dim = self.hidden_size // self.num_attention_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.padding_side = config.neuron_config.padding_side
self.torch_dtype = config.neuron_config.torch_dtype

self.tp_degree = parallel_state.get_tensor_model_parallel_size()

self.fused_qkv = config.neuron_config.fused_qkv
self.clip_qkv = None

self.init_gqa_properties()
self.init_rope()

def init_rope(self):
self.rotary_emb = RotaryEmbedding(

self.head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.rope_theta,

)

(continues on next page)
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class NeuronLlamaDecoderLayer(nn.Module):
"""
Just replace the attention with the NXD version, and MLP with the NXD version
"""

def __init__(self, config: InferenceConfig):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = NeuronLlamaAttention(config)
self.mlp = NeuronLlamaMLP(config)
self.input_layernorm = CustomRMSNorm(

config.hidden_size,
eps=config.rms_norm_eps,

)
self.post_attention_layernorm = CustomRMSNorm(

config.hidden_size,
eps=config.rms_norm_eps,

)

def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
**kwargs,

) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)

# Self Attention
attn_outs = self.self_attn(

hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
**kwargs,

)

hidden_states, present_key_value = attn_outs
hidden_states = residual + hidden_states

# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states

return (hidden_states, present_key_value)

(continues on next page)
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class NeuronLlamaModel(NeuronBaseModel):
"""
The neuron version of the LlamaModel
"""

def setup_attr_for_model(self, config: InferenceConfig):
# Needed for init_inference_optimization()
self.on_device_sampling = config.neuron_config.on_device_sampling_config is not␣

→˓None
self.tp_degree = config.neuron_config.tp_degree
self.hidden_size = config.hidden_size
self.num_attention_heads = config.num_attention_heads
self.num_key_value_heads = config.num_key_value_heads
self.max_batch_size = config.neuron_config.max_batch_size
self.buckets = config.neuron_config.buckets

def init_model(self, config: InferenceConfig):
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size

self.embed_tokens = ParallelEmbedding(
config.vocab_size,
config.hidden_size,
self.padding_idx,
dtype=config.neuron_config.torch_dtype,
shard_across_embedding=True,
# We choose to shard across embedding dimension because this stops XLA from␣

→˓introducing
# rank specific constant parameters into the HLO. We could shard across␣

→˓vocab, but that
# would require us to use non SPMD parallel_model_trace.
pad=True,

)
self.lm_head = ColumnParallelLinear(

config.hidden_size,
config.vocab_size,
bias=False,
pad=True,

)

self.layers = nn.ModuleList(
[NeuronLlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)]

)
self.norm = CustomRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
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4. Define an application/task head

Define an application/task head. Applications includes causal LM, classification, and so on. This class extends a task-
specific Neuron application head class (such as NeuronBaseForCausalLM), or the general NeuronApplicationHead
class.

1. In this class, you provide an value for _model_cls which is the Neuron model class you defined.

2. You can also override any other functions as needed for your model, such as get_compiler_args(self) or
convert_hf_to_neuron_state_dict(model_state_dict, neuron_config).

Note: This example demonstrates a simplified version of NeuronLlamaForCausalLM from the NxD Inference model
hub.

class NeuronLlamaForCausalLM(NeuronBaseForCausalLM):
_model_cls = NeuronLlamaModel

@classmethod
def get_config_cls(cls):

return LlamaInferenceConfig

NxD Inference offers Asyncronous Runtime Support as an alternative method to executing NEFFs in parallel with CPU
Logic. To evaluate if your task can utilize async_mode, the following questions must be answered:

1. Does your task repeatedly execute a model for a single user request? If not, then async_mode won’t offer
any benefits.

• Example: The Auto Regressive loops used in LLMs perform repeated execution of models for a given
prompt, which can get some benefits from async mode.

2. Does the output of one execution get passed onto the next execution without manipulation? If not, then
async_mode is incompatible.

• NOTE: It might be possible to address this by moving some manipulation logic within the neff.

• Example: For LLMs using on-device-sampling, we pass in the token generated as output as input to
the next step in the auto regressive loop directly. Without on-device-sampling, the sampling logic will
rely on logits as output, which is a data dependent compute pattern that is incompatible with async
mode.

3. Is there sufficient CPU logic that is independent of the previous outputs? If not, then async_mode likely
won’t offer major benefits.

• Example: In production workloads, these are typically server overheads (scheduling, logging, etc.),
but this could also be some pre/post processing steps in the model execution pipeline.

Based on the answers above, async_mode will need to be set accordingly, and/or, be configured to work correctly with
the application.

5. Convert weights to a supported format

NxD Inference supports weights stored in the model path in the following formats:

Format Sharded File name
Safetensors No model.safetensors
Safetensors Yes model.safetensors.index.json
Pickle No pytorch_model.bin
Pickle Yes pytorch_model.bin.index.json
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If your weights are in another format, you must convert them to one of these formats before you can compile and load
the model to Neuron. See the following references for more information about these formats:

• Safetensors:

– https://github.com/huggingface/safetensors

– https://huggingface.co/docs/safetensors/en/convert-weights

• Pickle:

– https://docs.python.org/3/library/pickle.html

Integrating Onboarded Model with vLLM

After completing the model onboarding in NxDI using the steps outlined in this guide, you can follow these steps to
run that model through vLLM.

1. Register your application/task head class in vLLM within _NEURON_SUPPORTED_MODELS (see vllm/
model_executor/model_loader/neuronx_distributed.py).

2. Use the local directory as model_name_or_path within vLLM which contains the model weights and the con-
fig.json file that works with your model’s InferenceConfig class.

3. Pass in any custom NeuronConfig attributes by using the override_neuron_config attribute while initializing
the vLLM engine.

4. Run offline/online inference to get the model working with vLLM.

Evaluating Models on Neuron

NxD Inference provides tools that you can use to evaluate the accuracy and performance of the models that you onboard
to Neuron.

Logit Matching

The logit matching evaluation tool verifies that output logits are within certain tolerances of expected logits. With
this evaluation tool, NxD Inference runs generation on the Neuron device. Then, it compares the output logits against
expected logits, which you can provide or generate with the HuggingFace model on CPU.

During logit validation, if the output tokens diverge, then this process runs generation on Neuron again, using the tokens
up to the point where it diverged. This process is performed repeatedly each time the output diverges, until the entire
output matches. This process uses greedy sampling to choose the most likely token at each index.

Once all tokens match, this process compares the logits generated on Neuron with the expected logits. If all logits are
within expected tolerances, this accuracy check passes. Divergence difference tolerance is used to compare the logits at
the token that diverges. Absolute and relative tolerance are used to compare the values of the logits for the top k highest
scoring tokens. For best results, use a lower relative tolerance for smaller k values, and a higher relative tolerance for
larger k values. A top k of None means to compare logits for all possible tokens at each index.

Logit matching uses the following tolerances by default, and you can customize these tolerances.

• Divergence difference tolerance: 0.001

• Absolute tolerance:

– Top k = 5: 1e-5

– Top k = 50: 1e-5
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– Top k = 1000: 1e-5

– Top k = None: 1e-5

• Relative tolerance:

– Top k = 5: 0.01

– Top k = 50: 0.02

– Top k = 1000: 0.03

– Top k = None: 0.05

If all logits are within expected thresholds, this accuracy check passes.

• Note: Logit matching cannot be used with on-device sampling.

• Note: Generating HuggingFace model outputs on CPU can take a significant amount of time for larger models
or large sequence lengths.

Example (check_accuracy_logits API)

from neuronx_distributed_inference.utils.accuracy import check_accuracy_logits

# Init Neuron model, HuggingFace tokenizer, and HuggingFace generation config.

check_accuracy_logits(
model,
tokenizer,
generation_config,

)

Token Matching

The token matching evaluation tool verifies that output tokens match expected tokens. With this evaluation tool, Neu-
ronx Distributed Inference runs generation on the Neuron device. Then, it compares the output against expected tokens,
which you can provide or generate with the HuggingFace model on CPU. If all tokens match, this accuracy check passes.

• Warning: Token mismatches are acceptable in many scenarios, especially with large models or large sequence
lengths. This tool should only be used for small models and small sequence lengths.

• Note: Generating HuggingFace model outputs on CPU can take a significant amount of time for larger models
or large sequence lengths.

Example (check_accuracy API)

from neuronx_distributed_inference.utils.accuracy import check_accuracy

# Init Neuron model, HuggingFace tokenizer, and HuggingFace generation config.

check_accuracy(
model,
tokenizer,

(continues on next page)
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generation_config,
)

Benchmarking

NxD Inference provides a benchmarking tool that evaluates the latency and throughput of a Neuron model and its
sub-models (context encoding, token generation, etc.).

Example (benchmark_sampling API)

from neuronx_distributed_inference.utils.benchmark import benchmark_sampling

# Init Neuron model and HuggingFace generation config.

benchmark_sampling(model, generation_config)

Example benchmarking result

{
"e2e_model": {

"latency_ms_p50": 28890.24031162262,
"latency_ms_p90": 28977.734088897705,
"latency_ms_p95": 28983.17071199417,
"latency_ms_p99": 29032.21325159073,
"latency_ms_p100": 29044.473886489868,
"latency_ms_avg": 28879.499554634094,
"throughput": 283.66142510545984

},
"context_encoding_model": {

"latency_ms_p50": 705.0175666809082,
"latency_ms_p90": 705.3698301315308,
"latency_ms_p95": 705.6618571281433,
"latency_ms_p99": 705.8443236351013,
"latency_ms_p100": 705.8899402618408,
"latency_ms_avg": 705.0377488136292,
"throughput": 5809.618005408024

},
"token_generation_model": {

"latency_ms_p50": 27.20165252685547,
"latency_ms_p90": 27.295589447021484,
"latency_ms_p95": 27.324914932250977,
"latency_ms_p99": 27.655515670776367,
"latency_ms_p100": 32.74345397949219,
"latency_ms_avg": 27.19622969277793,
"throughput": 147.22298324644066

}
}
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Profiling Models

Neuron provides a profiling tool, neuron-profile, which you can use to analyze the performance of a compiled
Neuron model. For more information, see Neuron Profile User Guide.

Evaluating Models with the Inference Demo Script

NxD Inference provides an inference_demo console script, which you can run from the environment where you
install neuronx_distributed_inference.

Note: Before you can use a custom model with the inference_demo, you must add it to the MODEL_TYPES dictionary
in inference_demo.py.

This script provides the following arguments to configure evaluation tools:

• --check-accuracy-mode - Provide one of the following values:

– token-matching - Perform a token matching accuracy check.

– logit-matching - Perform a logit matching accuracy check.

– skip-accuracy-check - Do not perform an accuracy check.

• --num-tokens-to-check - The number of tokens to check when performing token matching or logit matching.

• --expected-outputs-path - The path to a file that contains tokens or logits to compare against for the accuracy
check. This file must contain an object saved with torch.save().

• --benchmark - Run benchmarking.

• --on-cpu - Run inference on CPU. To simulate tensor parallelism, initialize inference_demo.py with
torchrun.

Debugging Models on Neuron

When you debug models on Neuron, you can enable debug logging to view information about inputs and outputs of
the NeuronBaseForCausalLM forward function, which calls the NeuronBaseModel’s forward function.

import logging

logging.getLogger().setLevel(logging.DEBUG)

Because the forward function of NeuronBaseModel is compiled, you cannot use log/print statements to debug code
that is called from this forward function (or any other compiled code).

Debugging Neuron modeling code on CPU isn’t yet supported.
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Writing Tests on Neuron

NxD Inference provides tools to help you write unit and integration tests that validate your model works as expected.
For more information, see Testing modeling code with NxD Inference.

vLLM User Guide for NxD Inference

vLLM is a popular library for LLM inference and serving utilizing advanced inference features such as continuous
batching. This guide describes how to utilize AWS Inferentia and AWS Trainium AI accelerators in vLLM by using
NxD Inference (neuronx-distributed-inference).

Table of contents

• Overview

• Supported Models

• Setup

– Prerequisite: Launch an instance and install drivers and tools

– Installing the AWS Neuron fork of vLLM

– Installing vLLM from vLLM main repository

• Usage

– Neuron Framework Selection

– Quickstart

– Model Configuration

– Scheduling and K/V Cache

– Decoding

– Quantization

– Loading pre-compiled models / Serialization Support

– Prefix Caching

– Disaggregated Inference

• Examples

– Offline Inference Example

– Online Inference Example
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Overview

NxD Inference integrates into vLLM by extending the model execution components responsible for loading and invok-
ing models used in vLLM’s LLMEngine (see https://docs.vllm.ai/en/latest/design/arch_overview.html#llm-engine for
more details on vLLM architecture). This means input processing, scheduling and output processing follow the default
vLLM behavior.

Currently, we support continuous batching and streaming generation in the NxD Inference vLLM integration. We are
working with the vLLM community to enable support for other vLLM features like PagedAttention and Chunked Prefill
on Neuron instances through NxD Inference in upcoming releases.

Supported Models

Refer to Supported Model Architectures for a list of models supported in vLLM through NxD Inference.

If you are adding your own model to NxD Inference, please see Integrating Onboarded Model with vLLM for instruc-
tions on how to setup vLLM integration for it.

Setup

Before installing vLLM with the instructions below, you need to install the Neuron SDK.

Prerequisite: Launch an instance and install drivers and tools

Before installing vLLM with the instructions below, you will first need to launch an Inferentia or Trainium instance
and install the necessary Neuron drivers and tools. Refer to these setup instructions for different ways to prepare your
environment, including using Neuron DLAMIs and Neuron DLCs for quick setups.

Installing the AWS Neuron fork of vLLM

We maintain a fork of vLLM that supports the latest features for NxD Inference.

Quickstart using Docker

Users can now use a preconfigured Deep Learning Container (DLC) with the AWS Neuron fork of vLLM pre-
installed. Refer to the vllm-inference-neuronx container on https://github.com/aws-neuron/deep-learning-containers
to get started.

Manually install from source

To manually install the AWS fork from source, use the following commands:

git clone -b neuron-2.24-vllm-v0.7.2 https://github.com/aws-neuron/upstreaming-to-vllm.
→˓git
cd upstreaming-to-vllm
pip install -r requirements-neuron.txt
VLLM_TARGET_DEVICE="neuron" pip install -e .
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Note: The current AWS Neuron fork of vLLM (neuron-2.24-vllm-v0.7.2) is based on vLLM 0.7.2 as some of
the new features in 2.24 release like prefix caching are only tested with vLLM 0.7.2. We intend to upgrade and support
the latest vLLM version in future Neuron releases.

Note: Starting in release 2.24, the Neuron initialization in vLLM code no longer enables sequence parallel by
default. This is to ensure better compatibility with models and configurations where sequence parallelism is not
well supported. If you previously relied on the Neuron vLLM code to specify sequence parallel, you may now
see increased TTFT times. To re-enable sequence parallelism, you can pass --override-neuron-config "{\
"sequence_parallel_enabled\":true}".

Installing vLLM from vLLM main repository

A prior version of Neuron SDK 2.23 NxD Inference support was upstreamed onto vLLM v0.9.0. Additional details
can be found in vLLM docs here.

To install the official vLLM repository with Neuron support, use the following commands. Only Neuron SDK 2.23
and prior features are currently available in the official vLLM repository. See Neuron SDK 2.23 artifacts here. It
is recommended to re-install neuronx-distributed and neuronx-distributed-inference libraries after installing vLLM to
avoid dependency version incompatibilities.

git clone -b releases/v0.9.0 https://github.com/vllm-project/vllm.git
cd vllm
pip install -U -r requirements/neuron.txt
VLLM_TARGET_DEVICE="neuron" pip install -e .

pip install neuronx-distributed==0.12.12111
pip install neuronx-distributed-inference==0.3.5591

Usage

Neuron Framework Selection

Note: The Neuron integration for vLLM supports both Transformers NeuronX and NxD Inference libraries. Set the
VLLM_NEURON_FRAMEWORK environment variable to neuronx-distributed-inference to use the NxD Inference
library. Set the VLLM_NEURON_FRAMEWORK environment variable to transformers-neuronx to use the Transformers
NeuronX library. Make sure you have the corresponding library installed before running vLLM. If you have both
libraries installed, and the VLLM_NEURON_FRAMEWORK environment variable is not set, the NxD Inference library will
be used by default.

If you are migrating from Transformers NeuronX to NxD Inference, you can refer to this Migration Guide for additional
support.
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Quickstart

Here is a quick and minimal example to get running.

import os
os.environ['VLLM_NEURON_FRAMEWORK'] = "neuronx-distributed-inference"

from vllm import LLM, SamplingParams
llm = LLM(

model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
max_num_seqs=8,
max_model_len=128,
device="neuron",
tensor_parallel_size=2)

prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",

]
# note that top_k must be set to lower than the global_top_k defined in
# the neuronx_distributed_inference.models.config.OnDeviceSamplingConfig
sampling_params = SamplingParams(top_k=10, temperature=0.8, top_p=0.95)

outputs = llm.generate(prompts, sampling_params)

for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

Model Configuration

NxD Inference models provide many configuration options. When using NxD Inference through vLLM, we configure
the model with a default configuration that sets the required fields from vLLM settings. It is recommended that you do
not override these configuration settings unless you need it.

neuron_config = dict(
tp_degree=parallel_config.tensor_parallel_size,
ctx_batch_size=1,
batch_size=scheduler_config.max_num_seqs,
max_context_length=scheduler_config.max_model_len,
seq_len=scheduler_config.max_model_len,
enable_bucketing=True,
is_continuous_batching=True,
quantized=False,
torch_dtype=TORCH_DTYPE_TO_NEURON_AMP[model_config.dtype],
padding_side="right"

)

If you want to add or change any settings, you can use vLLM’s override_neuron_config setting. You provide the
settings you want to override as dictionary (or JSON object when starting vLLM from the CLI) containing basic types
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e.g. to disable auto bucketing (for illustration), use

override_neuron_config={
"enable_bucketing":False,

}

or when launching vLLM from the CLI

--override-neuron-config "{\"enable_bucketing\":false}"

For more information on NxD Inference features, see NxD Inference Features Configuration Guide and NxD Inference
API Reference.

Scheduling and K/V Cache

We currently use a contiguous memory layout for the K/V cache instead of PagedAttention support in NxD Inference.
We integrated into vLLMs block manager by setting the block size to the maximum length supported by the model and
allocating one block per maximum number of sequences configured. However, the vLLM scheduler currently does not
introspect the blocks associated to each sequence when (re-)scheduling running sequences. It requires an additional
free block regardless of space available in the current block resulting in preemption. This would lead to a large increase
in latency for the preempted sequence because it would be rescheduled in the context encoding phase. Since we ensure
each block is big enough to fit the maximum model length, preemption is never needed in our current integration.
Therefore, we disabled the preemption checks done by the scheduler in our fork. This significantly improves E2E
performance of the Neuron integration.

Decoding

On-device sampling is enabled by default, which performs sampling logic on the Neuron devices rather than passing
the generated logits back to CPU and sample through vLLM. This allows us to use Neuron hardware to accelerate
sampling and reduce the amount of data transferred between devices leading to improved latency.

However, on-device sampling comes with some limitations. Currently, we only support the following sampling param-
eters: temperature, top_k and top_p parameters. Other sampling parameters (https://docs.vllm.ai/en/latest/dev/
sampling_params.html) are currently not supported through on-device sampling.

When on-device sampling is enabled, we handle the following special cases:

• When top_k is set to -1, we limit top_k to 256 instead.

• When temperature is set to 0, we use greedy decoding to remain compatible with existing conventions. This
is the same as setting top_k to 1.

By default, on-device sampling utilizes a greedy decoding strategy to select tokens with the highest probabilities. You
can enable a different on-device sampling strategy by passing a on_device_sampling_config using the override
neuron config feature (see Model Configuration). It is strongly recommended to make use of the global_top_k
configuration limiting the maximum value of top_k a user can request for improved performance.
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Quantization

NxD Inference supports quantization but has not yet been integrated with vLLMs configuration for quantization. If
you want to use quantization, do not set vLLM’s --quantization setting to neuron_quant. Keep it unset and
use the Neuron configuration of the model to configure quantization of the NxD Inference model directly. For more
information on how to configure and use quantization with NxD Inference incl. requirements on checkpoints, refer to
Quantization in the NxD Inference Feature Guide.

Loading pre-compiled models / Serialization Support

Tracing and compiling the model can take a non-trivial amount of time depending on model size e.g. a small-ish model
of 15GB might take around 15min to compile. Exact times depend on multiple factors. Doing this on each server
start would lead to unacceptable application startup times. Therefore, we support storing and loading the traced and
compiled models.

Both are controlled through the NEURON_COMPILED_ARTIFACTS variable. When pointed to a path that con-
tains a pre-compiled model, we load the pre-compiled model directly, and any differing model configurations
passed in to the vllm API will not trigger re-compilation. If loading from the NEURON_COMPILED_ARTIFACTS
path fails, then we will recompile the model with the provided configurations and store the results in the pro-
vided location. If NEURON_COMPILED_ARTIFACTS is not set, we will compile the model and store it under a
neuron-compiled-artifacts subdirectory in the directory of your model checkpoint.

Prefix Caching

Starting in Neuron SDK 2.24, prefix caching is supported on the AWS Neuron fork of vLLM. Prefix caching allows
developers to improve TTFT by re-using the KV Cache of the common shared prompts across inference requests. See
Prefix Caching for more information on how to enable prefix caching with vLLM.

Disaggregated Inference

Starting in Neuron SDK 2.24, disaggregated inference is supported on the AWS Neuron fork of vLLM. This feature
allows different hardware resources to separately perform the compute intensive prefill phase and the memory band-
width intensive decode phase of inference, thereby removing the prefill-decode interference and improving Goodput.
See Disaggregated Inference for more information on how to use disaggregated inference with vLLM.

Examples

For a list of examples for using vLLM with Neuron, refer to upstreaming-to-vllm/examples /offline_inference/ folder.
Look for example scripts with the neuron_ prefix. We provide examples for use cases such as automatic prefix caching,
disaggregated inference, speculative decoding with a draft model, speculative decoding using EAGLE, multimodal
models, multi-LoRA, quantization, and more.

For more in depth NxD Inference tutorials that include vLLM deployment steps, refer to Tutorials.

The following examples use meta-llama/Llama-3.1-8B-Instruct on a Trn1.32xlarge instance.

If you have access to the model checkpoint locally, replace meta-llama/Llama-3.1-8B-Instruct with the path to
your local copy. Otherwise, you need to request access through HuggingFace and login via huggingface-cli login using
a HuggingFace user access token before running the examples.

If you use a different instance type, you need to adjust the tp_degree according to the number of Neuron Cores
available on your instance type (for more information see: Tensor-parallelism support).
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Offline Inference Example

Here is an example for running offline inference. Bucketing is only disabled to demonstrate how to override Neuron
configuration values. Keeping it enabled generally delivers better performance.

import os
os.environ['VLLM_NEURON_FRAMEWORK'] = "neuronx-distributed-inference"

from vllm import LLM, SamplingParams

# Sample prompts.
prompts = [

"The president of the United States is",
"The capital of France is",
"The future of AI is",

]
# Create a sampling params object.
sampling_params = SamplingParams(top_k=1)

# Create an LLM.
llm = LLM(

model="meta-llama/Llama-3.1-8B-Instruct",
max_num_seqs=4,
max_model_len=128,
override_neuron_config={

"enable_bucketing":False,
},
device="neuron",
tensor_parallel_size=32)

outputs = llm.generate(prompts, sampling_params)

for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

Online Inference Example

You can start an OpenAI API compatible server with the same settings as the offline example by running the following
command:

VLLM_NEURON_FRAMEWORK='neuronx-distributed-inference' python -m vllm.entrypoints.openai.
→˓api_server \

--model="meta-llama/Llama-3.1-8B-Instruct" \
--max-num-seqs=4 \
--max-model-len=128 \
--tensor-parallel-size=8 \
--port=8080 \
--device "neuron" \
--override-neuron-config "{\"enable_bucketing\":false}"
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In addition to the sampling parameters supported by OpenAI, we also support top_k. You can change the sampling
parameters and enable or disable streaming.

from openai import OpenAI

# Client Setup
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"

client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,

)

models = client.models.list()
model_name = models.data[0].id

# Sampling Parameters
max_tokens = 1024
temperature = 1.0
top_p = 1.0
top_k = 50
stream = False

# Chat Completion Request
prompt = "Hello, my name is Llama "
response = client.chat.completions.create(

model=model_name,
messages=[{"role": "user", "content": prompt}],
max_tokens=int(max_tokens),
temperature=float(temperature),
top_p=float(top_p),
stream=stream,
extra_body={'top_k': top_k}

)

# Parse the response
generated_text = ""
if stream:

for chunk in response:
if chunk.choices[0].delta.content is not None:

generated_text += chunk.choices[0].delta.content
else:

generated_text = response.choices[0].message.content

print(generated_text)
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Testing modeling code with NxD Inference

To ensure that your model is accurate and performant, we recommend that you write tests for your modules, functions,
and models. Run your tests each time you make a code change to check that your modeling code continues to work as
expected.

Table of contents

• Testing models on Neuron

• Testing modules and functions on Neuron

– Building modules to run on Neuron

– Building functions to run on Neuron

– Validating module and function accuracy on Neuron

– Examples

Testing models on Neuron

NxD Inference provides utilities that you can use to test the performance and accuracy of a full model end-to-end.
The check_accuracy_logits tool validates the accuracy of a Neuron model’s output logits over the full sequence length.
NxD Inference also includes a benchmarking tool, benchmark_sampling, that you can use to evaluate the performance
of your model and its submodels. You can use these utilities to define integration tests that validate your model. For
more information, see Evaluating Models on Neuron.

Testing modules and functions on Neuron

NxD Inference provides common test utilities to help you validate that modules and functions run correctly on Neuron.
The build_module and build_function utilities help you convert modules and functions into Neuron models. Then,
you can use the validate_accuracy function to validate that the Neuron model is accurate for given inputs. You can
use these utilities to write unit tests for your modeling code.

Building modules to run on Neuron

neuronx_distributed_inference.utils.testing.build_module(
module_cls,
example_inputs: List[Tuple[torch.Tensor]],
module_init_kwargs: Dict = {},
tp_degree: int = 1,
compiler_args: Optional[str] = None,
compiler_workdir: Optional[str] = None,
checkpoint_path: Optional[str] = None,

)

Builds a module into a Neuron model. This function traces the module using the example inputs, which is a list of
tuples where each item is a tensor. Then, it compiles the traced module to produce a Neuron model. Arguments:

• module_cls: The module class to compile.
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• example_inputs: The list of example inputs to use to trace the module. This list must contain exactly one tuple
of tensors.

• tp_degree: The TP degree to use. Defaults to 1.

• module_init_kwargs: The kwargs to pass when initializing the module.

• compiler_args: The compiler args to use.

• compiler_workdir: Where to save compiler artifacts. Defaults to a tmp folder with a UUID for uniqueness.

• checkpoint_path: The path to the checkpoint to load. By default, this function saves the module state dict to
use as the checkpoint.

Building functions to run on Neuron

neuronx_distributed_inference.utils.testing.build_function(
func: Callable,
example_inputs: List[Tuple[torch.Tensor]],
tp_degree: int = 1,
compiler_args: Optional[str] = None,
compiler_workdir: Optional[str] = None,

)

Builds a function into a Neuron model. You can use build_function to test an individual function, such as a top_k
sampling function.

See build_module for more information about common arguments. If the function has non-tensor inputs, you must
convert it to a function that only takes tensor inputs. You can use partial to do this, where you provide the non-tensor
inputs as constants in the partial function. This step is necessary because all inputs must be tensors in a Neuron model.

import torch

from neuronx_distributed_inference.utils.testing import build_module

def top_k(input: torch.Tensor, k: int, dim: int):
return torch.topk(input, k, dim)

top_k_partial = partial(top_k, 1, 0)
model = build_fuction(top_k_partial, example_inputs=[(torch.rand(4)),])
output = model(torch.rand(4))

Validating module and function accuracy on Neuron

neuronx_distributed_inference.utils.testing.validate_accuracy(
neuron_model,
inputs: List[Tuple],
expected_outputs: Optional[List] = None,
cpu_callable: Optional[Callable] = None,
assert_close_kwargs: Dict = {},

)
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Validates the accuracy of a Neuron model. This function tests that the model produces expected outputs, which you can
provide and/or produce on CPU. To compare outputs, this function uses torch_neuronx.testing.assert_close.
If the output isn’t similar, this function raises an AssertionError. Arguments:

• neuron_model: The Neuron model to validate.

• inputs: The list of inputs to use to run the model. Each input is passed to the model’s forward function.

• expected_outputs: The list of expected outputs for each input. If not provided, this function compares against
the CPU output for each input.

• cpu_callable: The callable to use to produce output on CPU.

• assert_close_kwargs: The kwargs to pass to torch_neuronx.testing.assert_close.

Examples

Example: Basic module test

This example demonstrates how to validate the accuracy of a basic module with a single linear layer. In this example,
we initialize the module separately on Neuron and CPU (using the distributed arg in ExampleModule). This flag
enables us run a parallel linear layer on Neuron and compare it to a standard linear layer on CPU.

import torch

from neuronx_distributed_inference.utils.testing import build_module, validate_accuracy

# Module to test.
class ExampleModule(torch.nn.Module):

def __init__(self, distributed):
super().__init__()
if distributed:

self.linear = ColumnParallelLinear(
input_size=SAMPLE_SIZE,
output_size=SAMPLE_SIZE,
bias=False,
dtype=torch.float32,

)
else:

self.linear = torch.nn.Linear(
in_features=SAMPLE_SIZE,
out_features=SAMPLE_SIZE,
bias=False,
dtype=torch.float32,

)

def forward(self, x):
return self.linear(x)

def test_validate_accuracy_basic_module():
inputs = [(torch.arange(0, SAMPLE_SIZE, dtype=torch.float32),)]
example_inputs = [(torch.zeros((SAMPLE_SIZE), dtype=torch.float32),)]

(continues on next page)
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(continued from previous page)

module_cpu = ExampleModule(distributed=False)
neuron_model = build_module(ExampleModule, example_inputs, module_init_kwargs={

→˓"distributed": True})

validate_accuracy(neuron_model, inputs, cpu_callable=module_cpu)

Example: Basic function test

This example demonstrates how to validate the accuracy of a basic function with tensor args.

import torch

from neuronx_distributed_inference.utils.testing import build_function, validate_accuracy

def example_sum(tensor):
return torch.sum(tensor)

def test_validate_accuracy_basic_function():
inputs = [(torch.tensor([1, 2, 3], dtype=torch.float32),)]
example_inputs = [(torch.zeros((3), dtype=torch.float32),)]

neuron_model = build_function(example_sum, example_inputs)
validate_accuracy(neuron_model, inputs, cpu_callable=example_sum)

Additional examples

For additional examples of build_module, build_function, and validate_accuracy, see the testing.py unit tests.

Migrating from NxD Core inference examples to NxD Inference

We have migrated the NeuronX Distributed Core examples/inference folder to a separate package, NeuronX Distributed
(NxD) Inference (neuronx-distributed-inference), so you can import and use it as a proper library. This new
library, NxD Inference, includes production ready models that you can deploy out of the box with model inference
backends, such as vLLM. This library also provides modules that you can use to implement your own models to run
with the Neuron SDK.

If you use the inference examples from NxD Core, follow this guide to migrate to NxD Inference. For more information
about NxD Inference and to see examples of how to use it, see NxD Inference Features Configuration Guide, NxD
Inference Tutorials, and the generation_demo.py script.

Warning: Previous inference examples (including Llama 2, Llama 3, Mixtral, and DBRX) in the NxD Core
GitHub repository were removed in Neuron Release 2.23. The models and example code are implemented in the
NxD Inference library, so you can easily integrate them with your inference scripts. If you use these examples in
NxD Core, we recommend that you update your inference scripts to use the NxD Inference model hub instead. If
your use case requires you to directly integrate with the NxD Core library (and not NxD Inference) then you can
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continue to use the NxD Core library directly. For an example of how to integrate with NxD Core directly, see the
newer Llama3.2 1B sample added in Neuron Release 2.23. For more information, see announce-eos-nxd-examples.

Table of contents

• Changes

– 1. New config interface

– 2. New base application interface

– 3. New generation inference

– 4. New quantization interface

– 5. Inference demo script (replaces runners)

Changes

1. New config interface

NxD Inference includes a new model config interface, InferenceConfig, where NeuronConfig is an attribute within
the model config, and the model config no longer extends HuggingFace’s PretrainedConfig. NxDI includes an adapter
for loading an HuggingFace’s config into this model config. The configurations are serialized into a file named
neuron_config.json.

This change means that the config structure is inverted compared to the NxD examples folder.
• To access the model config (similar to HuggingFace’s PreTrainedConfig), use config (or model.config, self.
config).

• To access the NeuronConfig, use config.neuron_config (or model.neuron_config, self.
neuron_config).

To onboard a custom model, you define config classes that extend InferenceConfig and NeuronConfig. The following
example from DBRX shows how to define a DBRX-specific NeuronConfig (NeuronDbrxConfig) and InferenceConfig
(DbrxInferenceConfig). DbrxInferenceConfig that defines required config attributes and specifies that NeuronDbrx-
Config is the NeuronConfig class. The required attributes are typically set by loading a PretrainedConfig (in this case,
HuggingFace’s DbrxConfig) into the InferenceConfig. Alternatively, a user can manually provide these attributes to
avoid depending on an HuggingFace config class.

class NeuronDbrxConfig(MoENeuronConfig):
def __init__(self, **kwargs):

super().__init__(**kwargs)
self.fused_qkv = True

class DbrxInferenceConfig(InferenceConfig):
def get_required_attributes(self) -> List[str]:

return [
"d_model",
"n_heads",
"max_seq_len",
"emb_pdrop",

(continues on next page)
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(continued from previous page)

"resid_pdrop",
"pad_token_id",
"vocab_size",
"attn_config",
"ffn_config",

]

@classmethod
def get_neuron_config_cls(cls):

return NeuronDbrxConfig

Note: NeuronDbrxConfig extends MoENeuronConfig, which is a subclass of NeuronConfig that includes attributes
that are specific to mixture-of-experts (MoE) models.

To load the config from an HuggingFace checkpoint or a compiled checkpoint, pass
load_pretrained_config(path) as the load_config hook when you create the InferenceConfig.

from neuronx_distributed_inference.utils.hf_adapter import load_pretrained_config

neuron_config = DbrxNeuronConfig() # Provide args
config = DbrxInferenceConfig(

neuron_config,
load_config=load_pretrained_config(model_path),

)

To serialize the config, call save(path).

config.save(compiled_model_path)

To deserialize the config, call load(path).

config = DbrxInferenceConfig.load(compiled_model_path)

NeuronConfig also supports nested configs now. For example, see the OnDeviceSamplingConfig class and its integra-
tion into NeuronConfig.
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2. New base application interface

NeuronApplicationBase takes general purpose features from NeuronBaseForCausalLM, such as compile and load, and
makes them available in a new abstract base class. You can extend this base class to define other types of application
heads, such as for image classification.

3. New generation inference

The Neuron model classes no longer extend HuggingFace’s PretrainedModel, so they no longer include a HuggingFace
generate() function. Additionally, GenerationConfig arguments are no longer passed through the model config. To
run HuggingFace generation in NxD Inference, wrap the Neuron model in a HuggingFaceGenerationAdapter, and pass
a GenerationConfig when you call generate().

from transformers import GenerationConfig

from neuronx_distributed_inference.utils.hf_adapter import HuggingFaceGenerationAdapter

# Init config, model, and tokenizer.

generation_config = GenerationConfig.from_pretrained(model_path)
generation_config_kwargs = {

"do_sample": True,
"top_k": 1,
"pad_token_id": generation_config.eos_token_id,
"max_length": neuron_config.max_length,

}
generation_config.update(**generation_config_kwargs)

inputs = tokenizer(prompts, padding=True, return_tensors="pt")
generation_model = HuggingFaceGenerationAdapter(model)
outputs = generation_model.generate(

inputs.input_ids,
generation_config=generation_config,
attention_mask=inputs.attention_mask,

)

4. New quantization interface

This new base class also includes an interface for quantization, which was previously part of the
run_llama_quantized.py example in the old NxD examples folder. The following example saves a quan-
tized checkpoint for a Llama model. In this example, the config includes a neuron_config with quantization
enabled.

NeuronLlamaForCausalLM.save_quantized_state_dict(model_path, config)
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5. Inference demo script (replaces runners)

In place of runner.py and various run_x.py examples, NxD-I provides an inference_demo console script. When
you run the script, you provide a model path and configuration parameters to use for inference. This script includes
benchmarking and accuracy checking features that you can use verify that your models and modules work correctly.

The following example demonstrates how to run Llama-3-8b with token matching and benchmarking enabled.

inference_demo \
--model-type llama \
--task-type causal-lm \
run \
--model-path /home/ubuntu/model_hf/Llama-3.1-8b/ \
--compiled-model-path /home/ubuntu/traced_model/Llama-3.1-8b/ \
--torch-dtype bfloat16 \
--tp-degree 32 \
--batch-size 2 \
--max-context-length 32 \
--seq-len 64 \
--on-device-sampling \
--enable-bucketing \
--top-k 1 \
--do-sample \
--pad-token-id 2 \
--prompt "I believe the meaning of life is" \
--prompt "The color of the sky is" \
--check-accuracy-mode token-matching \
--benchmark

For additional examples, see the neuronx-distributed-inference GitHub repository: https://github.com/
aws-neuron/neuronx-distributed-inference.

Migrating from Transformers NeuronX to NeuronX Distributed(NxD) Inference

Table of contents

• How is writing modeling code different in NxD Inference?

• How can I migrate from Transformers NeuronX to use NxD Inference with vLLM?

– Update Environment Variable to force vLLM to use NxD Inference

– Compiling and loading the model

– Features currently not supported in NxD Inference through vLLM

• Serialization support

– Tranformers NeuronX

– NeuronX Distributed Inference

• Models supported in Transformers NeuronX and NxD Inference model hubs

• Onboarding custom or private models with NxD Inference
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For customers who are currently using Transformers NeuronX, this migration guide explains the steps involved in
migrating from Transformers NeuronX to NxD Inference library.

How is writing modeling code different in NxD Inference?

In Transformers NeuronX, you write modeling code in HLO format using a Python HLO interface. In NeuronX Dis-
tributed Inference, you write modeling code in native PyTorch and Python, and the library converts it to HLO for you.
This change makes it easier to develop models to run on Neuron, because you can start from existing Pytorch or Python
modeling code.

How can I migrate from Transformers NeuronX to use NxD Inference with vLLM?

Transformers NeuronX library currently supports Llama and Mistral model architectures with vLLM integration. If
you are using one of these models, like Llama 3.1, Llama 3, Llama 2, or Mistral-7b-V2, you can migrate to use NxD
Inference library with vLLM using the following steps:

Update Environment Variable to force vLLM to use NxD Inference

As vLLM currently supports both Transformers NeuronX and NeuronX Distributed Inference libraries for the Llama
and Mistral models, you need to update the following environment variable in the inference scripts to force vLLM to
use NxD Inference.

# Force vLLM framework to use neuronx-distributed-inference
os.environ['VLLM_NEURON_FRAMEWORK'] = "neuronx-distributed-inference"

Compiling and loading the model

Transformers NeuronX uses Neuron Persistent Cache to load a pre-compiled model so that there is no additional delay
in compilation when loading the model on vLLM. NxD Inference currently does not support Neuron Persistent Cache
but provides the following way to load a pre-compiled model in NeuronX Distributed Inference.

For production use cases where customer wants to avoid compiling the model in NxD Inference for the first time, users
can set the environment variable NEURON_COMPILED_ARTIFACTS which points to pre-compiled artifacts directory to
avoid the compilation time. If the artifacts are not present within the specified directory, then compilation of the model
would be triggered as a fallback mechanism and will store the artifacts by default in neuron-compiled-artifacts/
{unique_hash}/

Features currently not supported in NxD Inference through vLLM

NxD Inference doesn’t yet support the following features that TNx supports in vLLM integration.

• Multi-Node Inference

• Persistent Cache

• concurrency > 1 support for speculation

Users can use exactly the same set of parameters to test out vLLM with NxD Inference library as they specify with
Transformers NeuronX with the exception of override_neuron_config . Both Transformers NeuronX and NxD
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Inference allows overriding available NeuronConfig, but not all NeuronConfig parameters that are available with Trans-
formers NeuronX are still valid/applicable in NxD Inference. Refer to the Neuron Config Migration to migrate your
override_neuron_config params from Transformers NeuronX to NxD Inference.

Serialization support

In both libraries, you serialize the compiled model, so you can use the model in subsequent runs without compiling it
each time.

In Transformers NeuronX, the save function does not serialize sharded weights by default, and you can enable this
functionality with the sharded_weights flag. In NeuronX Distributed Inference, the compile function serializes
sharded weights by default, and you can disable this functionality with the save_sharded_checkpoint flag in
NeuronConfig.

Tranformers NeuronX

# Create and compile the Neuron model
neuron_config = NeuronConfig()
model_neuron = LlamaForSampling.from_pretrained(

'openlm-research/open_llama_3b',
batch_size=1,
tp_degree=8,
n_positions=128,
neuron_config=neuron_config

)

# Compile the model.
model_neuron.to_neuron()

# Save the presharded weights and compiled artifacts to a directory.
model_neuron.save('llama-artifacts', sharded_weights=True)

NeuronX Distributed Inference

model_path = "/home/ubuntu/models/open_llama_3b"
compiled_model_path = "/home/ubuntu/compiled_models/open_llama_3b"

neuron_config = NeuronConfig(
batch_size=1,
tp_degree=8,
seq_len=128

)

config = LlamaInferenceConfig(
neuron_config,
load_config=load_pretrained_config(model_path)

)

model = NeuronLlamaForCausalLM(model_path, config)

(continues on next page)
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# Compile the model, shard the weights, and save to the given path.
model.compile(compiled_model_path)

Models supported in Transformers NeuronX and NxD Inference model hubs

The following table depicts the list of models currently supported by TNx and their status in the NxD Inference library.
For a more detailed list of models currently supported in NeuronX Distributed Inference, please refer to NxD Inference
model hub guide

Model Transformers NeuronX (TNx) NxD Inference (NxDI)
supported in
TNx

vLLM Support
(TNx)

supported in
NxDI

vLLM Support (NxD Infer-
ence)

BLOOM Yes No No No
GPT2 Yes No No No
GPT-J Yes No No No
GPT-Neox Yes No No No
Llama 2 Yes Yes Yes Yes
Llama 3 Yes Yes Yes Yes
Llama 3.1 Yes Yes Yes Yes
Llama 3.2 (1B and
3B)

Yes Yes Yes Yes

Llama 3.2 (11B and
90B)

No No Yes Yes

Mistral-V2 Yes Yes Yes Yes
Mixtral Yes No Yes Yes
DBRX No No Yes Yes

Onboarding custom or private models with NxD Inference

If you need model support for one of the models not currently supported in NxD Inference or if you have a private
model that you currently implemented support in Transformers Neuronx, you need to implement the model using NxD
Inference library. You can use the Onboarding models to run on NxD Inference guide.

Neuron Config Migration

There are differences in Neuron Config parameters in Transformers NeuronX and NxD Inference libraries. If you use
TNx directly without vLLM, or if you use the override_neuron_config param in vLLM with TNx, then you must
update config parameters according to the following table.

Transformers NeuronX pa-
rameter

NxD Inference parameter Notes

sparse_attn N/A
quant.quant_dtype quantization_dtype To use quantization, set quantized

to True, and provide the
quantized_checkpoints_path where
the quantized model is stored (or will be
stored).

continues on next page
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Table 3.3 – continued from previous page
Transformers NeuronX pa-
rameter

NxD Inference parameter Notes

quant.dequant_dtype torch_dtype NxD Inference uses the inference dtype as
the dequant dtype.

quant.quantize_method quantization_type
quant.quantize_attn N/A
quant.no_quantize_list N/A
kv_cache_quant.quant_dtype N/A NxD Inference uses FP8

(torch.float8_e4m3fn) for KV cache quanti-
zation. To use KV cache quantization, set
kv_cache_quant to True.

kv_cache_quant.dequant_dtype torch_dtype NxD Inference uses the inference dtype as
the dequant dtype.

kv_cache_quant.quantize_method N/A NxD Inference uses direct cast.
continu-
ous_batching.max_num_seqs

max_batch_size To use continuous batching, set
is_continous_batching to True,
and set tkg_batch_size to the max batch
size.

continu-
ous_batching.max_model_len

seq_len

continu-
ous_batching.optimized_paged_attention

N/A

continuous_batching.block_size N/A
continu-
ous_batching.num_blocks

N/A

attention_layout N/A NxD Inference uses BHSD layout.
collectives_layout N/A NxD Inference uses BHSD layout.
cache_layout N/A NxD Inference uses BHSD layout.
padding_side padding_side NxD Inference defaults to padding on the

right side.
group_query_attention N/A
sequence_parallel_norm sequence_parallel_enabled
se-
quence_parallel_norm_threshold

N/A

bf16_rms_norm N/A NxD Inference upcasts RMS norm inputs to
fp32.

on_device_embedding N/A
on_device_generation on_device_sampling_config
on_device_generation.max_length seq_len NxD Inference uses the model’s sequence

length.
on_device_generation.do_sample on_device_sampling_config.do_sample
on_device_generation.top_k on_device_sampling_config.top_k NxD Inference supports top_k through dy-

namic sampling. Pass the top_k values to the
model inputs.

on_device_generation.top_p N/A NxD Inference supports top_p through dy-
namic sampling. Pass the top_p values to the
model inputs.

on_device_generation.temperature N/A NxD Inference supports temperature
through dynamic sampling. Pass the
temperature values to the model inputs.

continues on next page
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Table 3.3 – continued from previous page
Transformers NeuronX pa-
rameter

NxD Inference parameter Notes

on_device_generation.top_p_min_tokensN/A NxD Inference defaults to a minimum of 1
token.

on_device_generation.global_top_kon_device_sampling_config.global_topk
on_device_generation.eos_token_idN/A NxD Inference sampling treats EOS like any

other token.
on_device_generation.dynamic on_device_sampling_config.dynamic
on_device_generation.deterministicon_device_sampling_config.deterministic
on_device_generation.per_batch_lineN/A
all_reduce_dtype rpl_reduce_dtype NxD Inference applies this dtype to only the

all_reduce in attention’s o_proj layer.
cast_logits_dtype N/A
fuse_qkv fused_qkv
qkv_tiling N/A
weight_tiling N/A
mlp_in_weight_tiling_permute_orderN/A
mlp_out_weight_tiling_permute_orderN/A
mlp_out_weight_transpose N/A
log_softmax_scores N/A
shard_over_sequence flash_decoding_enabled
duplicate_q_weight_sos N/A
output_all_logits N/A
fused_rmsnorm_qkv qkv_kernel_enabled
fused_rmsnorm_mlp mlp_kernel_enabled
attn_output_transposed N/A
compilation_worker_count N/A

LLM Inference Benchmarking guide

This guide gives an overview of the metrics that are tracked for LLM Inference and guidelines in using LLMPerf library
to benchmark for LLM Inference.

Table of contents

• LLM Inference metrics

• Using LLMPerf to benchmark LLM Inference performance

– Using the relevant HF tokenizer

– Excluding TTFT in TPOT calculation

– Benchmarking Data parallel inference with multiple model copies
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LLM Inference metrics

Following are the essential metrics for monitoring LLM inference server performance.

Metric Description
Time To First Token
(TTFT)

Average time taken for the LLM to process the prompt and output the first output token
to the user. This is typically measured in milli seconds.

Time per Output Token
(TPOT)

Average time taken for LLM to generate an output token for an inference request. This is
typically measured in milli seconds. This metric is also referred as Inter Token Latency
(ITL) or Per Token Latency(PTL)

End-to-End Response
Latency

Time taken for the LLM to generate the entire response, including all output tokens. This
metric is computed as end-to-end latency = (TTFT) + (TPOT) * (Number of output to-
kens).

Output Token
Throughput

Number of output tokens generated per second by the inference server across all concur-
rent users and requests.

Using LLMPerf to benchmark LLM Inference performance

LLMPerf is an open source library to benchmark LLM Inference performance. However, there are few changes that
need to be applied to LLMPerf to accurately benchmark and reproduce the metrics that are published by Neuron.

All the changes outlined below are provided as a patch file that you can easily download and apply. We will work in
upstreaming these changes to public LLMPerf in the future.

Using the relevant HF tokenizer

In public LLMPerf, hf-internal-testing tokenizer is used by default for all the models that can impact accuracy
of performance. Instead, there is a change to pass the tokenizer config of the model from Hugging Face which is being
benchmarked for Neuron.

Excluding TTFT in TPOT calculation

LLMPerf includes TTFT in Time per Output Token(or Inter Token Latency) calculation. As TPOT and TTFT are two
different metrics, a change is done to LLMPerf to exclude TTFT from TPOT calculation to keep it consistent with how
other industry standard performance benchmarks are done.

Following are the instructions to apply the patch to the LLMPerf library.

• Step 1: Get the Neuron git patch file

Download the neuron_perf.patch file into the llmperf directory.

• Step 2: Apply the git patch

Run git apply neuron_perf.patch. Confirm changes with git diff.
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Benchmarking Data parallel inference with multiple model copies

To measure performance with data parallel inference by using multiple model copies, we need to make additional
changes to LLMPerf by applying the following patch:

• Step 1: Get the Neuron git patch file for data parallel inference

Download the llmperf_dp.patch file into the llmperf directory.

• Step 2: Apply the git patch

Run git apply llmperf_dp.patch. Confirm changes with git diff.

This patch enables data parallelism by allowing requests to be distributed across multiple model server endpoints. When
multiple addresses are specified in OPENAI_API_BASE (e.g. “http://server1;http://server2;http://server3”), each re-
quest will be routed to a different server either randomly or in round-robin fashion, allowing concurrent processing
across multiple model servers.

Accuracy Evaluation of Models on Neuron Using Open Source Datasets

This guide demonstrates how to evaluate accuracy of models on Trainium and Inferentia instances using open source
datasets. This approach expands on the accuracy evaluation using logits and enables you to evaluate accuracy using
open source datasets like MMLU and GSM8K for tasks such as instruction following and mathematical reasoning.

Under the hood, this accuracy suite uses vLLM server to serve the model and can use benchmarking clients such as
lm-eval and LongBench to evaluate on their supported datasets. In future we will add support for other benchmarking
clients.

The code used in this guide is located at https://github.com/aws-neuron/aws-neuron-samples/tree/master/
inference-benchmarking/

For a tutorial that you can follow and run on a trainium or inferentia instance please look at Evaluating Accuracy of
Llama-3.1-70B on Neuron using open source datasets.

Configuration Setup

Creating the Configuration File

Create a test_config.yaml file that defines your server settings and accuracy test configurations:

server:
name: "test-model-server"
model_path: "/path/to/model"
model_s3_path: "s3://bucket/path/to/model"
max_seq_len: 2048
context_encoding_len: 1024
tp_degree: 2
n_vllm_threads: 16
server_port: 8000
continuous_batch_size: 2

test:
accuracy:
mmlu_test:
client: "lm_eval"

(continues on next page)
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datasets: ["mmlu"]
max_concurrent_requests: 1
timeout: 3600
client_params:
limit: 100

longbench_test:
client: "longbench"
datasets: ["qasper", "multifieldqa"]
max_concurrent_requests: 1
timeout: 7200
client_params:
max_length: 4096

Configuration Parameters

Server Configuration

Parameter Description
name Identifier for your model server
model_path Local path to model files
model_s3_path S3 location of model files
max_seq_len Maximum sequence length
context_encoding_len Length of context encoding
tp_degree Tensor parallelism degree
n_vllm_threads Number of vLLM threads
server_port Server port number
continuous_batch_size Size of continuous batches

if model_s3_path is specified, the model will be downloaded into model_path, otherwise model should already exist
in model_path.

Accuracy Test Configuration

Parameter Description
client Evaluation framework (e.g., “lm_eval”, “longbench”)
datasets List of datasets for evaluation from the supported set by the client
max_concurrent_requests Maximum parallel requests
timeout Maximum execution time (seconds)
client_params Client-specific parameters
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Running Evaluations

Execute accuracy tests using the CLI command:

python accuracy.py --config test_config.yaml

For more detailed information and advanced configurations, please refer to: - lm-eval Documentation - LongBench
Documentation

These resources provide comprehensive guides on client-specific parameters and advanced evaluation scenarios.

Custom Quantization

Overview

This document gives an overview of customizable quantization feature in the NxD Inference. Users can specify which
modules should not be converted during quantization, allowing custom quantized model inference. Users can take an
un-quantized model and apply selective quantization to specific layers while keeping others in full precision.

The document also explains how to use external libraries like llmcompressor, including quantization config setup
and applying necessary patches. It also covers running inference with quantized models and specifying unconverted
modules through either command-line arguments or NeuronConfig kwargs.

Quantization

Custom quantization allows users to have fine-grained control over which layers of the model are quantized. This
can be particularly useful for maintaining model accuracy while still benefiting from the reduced memory footprint
of quantization. For more detailed information on quantization techniques and implementation, please refer to the
quantization feature guide.

Quantize Using NxD

Quantization can significantly reduce the model size and inference time, making it more suitable for deployment of
large models that typically cannot fit on a single instance. However, not all layers of the model benefit equally from
quantization.

• Some layers, especially those involved in critical computations like normalizations or certain types of activations,
may see a significant drop in accuracy if quantized. Leaving these layers in full precision helps maintain the
overall performance of the model.

• Quantization can also introduce small errors in each layer’s computation. When these errors accumulate through
the network, they can lead to a noticeable degradation in performance. Keeping certain layers in full precision
can mitigate this accumulation.

To leverage the customizable quantization feature in NxD, follow the steps below. This process involves importing
necessary libraries, defining the model and output paths, specifying modules to not convert, and utilizing a quantization
function to create a quantized model.

import torch
from typing import Optional, List
from transformers import AutoModelForCausalLM, AutoTokenizer
from neuronx_distributed_inference.modules.checkpoint import prune_state_dict,save_state_
→˓dict_safetensors

(continues on next page)
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from neuronx_distributed.quantization.quantization_utils import quantize_pytorch_model_
→˓per_channel_symmetric, convert_qint8_to_int8_state_dict

model_path = "/<model_path/llama-3.1-405b-instruct-4layers/"
output_path = "<save_quantized_checkpoints>"

modules_to_not_convert = [
"lm_head",
"layers.0.self_attn",
"layers.1.self_attn",
"layers.2.self_attn",
"layers.1.mlp"

]

def quantize(model: torch.nn.Module, dtype=torch.qint8, modules_to_not_convert:␣
→˓Optional[List[str]] = None) -> torch.nn.Module:

quant_model = quantize_pytorch_model_per_channel_symmetric(model,dtype=dtype,␣
→˓modules_to_not_convert=modules_to_not_convert)

model_quant_sd = quant_model.state_dict()
convert_qint8_to_int8_state_dict(model_quant_sd)
quantized_state_dict = prune_state_dict(model_quant_sd)
return quantized_state_dict

model = AutoModelForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)

state_dict = quantize(model,torch.float8_e4m3fn,modules_to_not_convert)

save_state_dict_safetensors(state_dict=state_dict,state_dict_dir=output_path)
tokenizer.save_pretrained(output_path)

Quantize using external libraries

In addition to the built-in quantization features of NxD, users can also leverage external libraries for more flexible and
advanced quantization options. One such library is llmcompressor, which offers a robust set of tools for quantizing
models. To use the llmcompressor library for quantization, follow the steps below.

This process involves importing necessary libraries, specifying modules to not convert, setting up a quantization recipe,
and applying the quantization to create a quantized model. llmcompressor gives us a range from -/+448, so it is impor-
tant to ensure the scale range is set from -/+240 if you need to run inference on the quantized model later using NxD
Inference. Values outside the range of -/+240 on Neuron devices result in NaNs.

The LLaMA model is an example where not all layers are quantized.

• By keeping the attention layers, first and last MLP layers, and the LM head in full precision, the model maintains
high accuracy in tasks like language generation and comprehension.

• Quantizing the remaining layers (e.g., intermediate MLP layers) reduces the model size and inference time with-
out significantly compromising performance.

• This strategy allows for a balanced trade-off between model efficiency and accuracy, making the model suitable
for high performance deployment.
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import torch
from llmcompressor.transformers import oneshot, SparseAutoModelForCausalLM
from transformers import AutoTokenizer
from compressed_tensors.quantization.utils.helpers import calculate_range
from compressed_tensors.quantization.quant_args import QuantizationType
import compressed_tensors.quantization.utils.helpers as helpers

model_path = "/<model_path>/llama-3.1-405b-instruct-4layers/"
output_path = "<save_quantized_checkpoints>"

modules_to_not_convert = ['lm_head',
"model.layers.0.mlp.down_proj",
"model.layers.0.mlp.gate_proj",
"model.layers.0.mlp.up_proj",
"model.layers.3.mlp.down_proj",
"model.layers.3.mlp.gate_proj",
"model.layers.3.mlp.up_proj",
"model.layers.0.self_attn.k_proj",
"model.layers.0.self_attn.o_proj",
"model.layers.0.self_attn.q_proj",
"model.layers.0.self_attn.v_proj",
"model.layers.1.self_attn.k_proj",
"model.layers.1.self_attn.o_proj",
"model.layers.1.self_attn.q_proj",
"model.layers.1.self_attn.v_proj",
"model.layers.2.self_attn.k_proj",
"model.layers.2.self_attn.o_proj",
"model.layers.2.self_attn.q_proj",
"model.layers.2.self_attn.v_proj",
"model.layers.3.self_attn.k_proj",
"model.layers.3.self_attn.o_proj",
"model.layers.3.self_attn.q_proj",
"model.layers.3.self_attn.v_proj"]

recipe = f"""
quant_stage:

quant_modifiers:
QuantizationModifier:

ignore: {modules_to_not_convert}
config_groups:

group_0:
weights:

num_bits: 8
type: float
strategy: channel
dynamic: false
symmetric: true

input_activations:
num_bits: 8
type: float
strategy: token
dynamic: true
symmetric: true

(continues on next page)
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targets: ["Linear"]
"""

model = SparseAutoModelForCausalLM.from_pretrained(
model_path, torch_dtype="auto"

)

# Monkey patch to rescale weights from -/+448 to -/+240
original_calculate_range = helpers.calculate_range
def calculate_range(*args, **kwargs):

q_min, q_max = original_calculate_range(*args, **kwargs)
if args[0].type == QuantizationType.FLOAT and args[0].num_bits == 8:

return torch.tensor(-240.0, device=args[1]), torch.tensor(240.0, device=args[1])
return q_min, q_max

# Patch it
helpers.calculate_range = calculate_range
oneshot(model=model, recipe=recipe)

for name, module in model.named_modules():
if hasattr(module, 'weight_scale'):

module.weight_scale.data = module.weight_scale.data.to(torch.float32)

tokenizer = AutoTokenizer.from_pretrained(model_path)

model.save_pretrained(output_path)
tokenizer.save_pretrained(output_path)

Quantization Commands

To utilize the quantization commands in NxD Inference, users can follow the instructions below. These commands
cover the required flags to enable running inference with quantized models.

First Quantize then Inference

If you have a model in full precision and need to quantize it on the CPU first before using it for inference, you can set
the following flags to enable quantization during inference:

inference_demo --model-type llama --task-type causal-lm run \
--model-path /your_model_path/ \
--compiled-model-path /save_to_path/ \
--torch-dtype bfloat16 \
--tp-degree 32 \
--batch-size 1 \
--max-context-length 1024 \
--quantized \
--quantization-dtype f8e4m3 \
--quantization-type per_channel_symmetric \
--quantized-checkpoints-path /save_to_path/ \
--seq-len 2048 \

(continues on next page)
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--fused-qkv \
--pad-token-id 2 \
--on-device-sampling \
--sequence-parallel-enabled \
--attn-kernel-enabled \
--prompt "I believe the meaning of life is" \
--is-continuous-batching \
--enable-fused-speculation \
--enable-eagle-speculation \
--speculation-length 4 \
--draft-model-path /your_draft_model_path \
--modules-to-not-convert-file /path/modules_to_not_convert.json

Inference Using Already quantized checkpoint

To utilize the quantization commands in NxD, users can follow the instructions below. These commands cover the
required flags to enable running inference with quantized models. The modules-to-not-convert-file allows you
to specify the list of modules to not quantize, useful for quantizing models that explicitly require having some modules
left in their original precision.

How to Use

• Pass modules_to_not_convert using Inference Demo

inference_demo --model-type llama --task-type causal-lm run \
--model-path <path> \
--compiled-model-path <path> \
--torch-dtype bfloat16 \
--tp-degree <value> \
--batch-size <value> \
--max-context-length <value> \
--seq-len <value> \
--on-device-sampling \
--mlp-kernel-enabled \
--quantized-mlp-kernel-enabled \
--quantization-dtype <dtype> \
--quantization-type <type> \
--prompt "I believe the meaning of life is" \
--modules-to-not-convert-file /<your_path>/modules_to_not_convert.json

• Pass modules_to_not_convert using NeuronConfig kwargs

neuron_config = NeuronConfig(
tp_degree=32,
batch_size=2,
max_context_length=32,
seq_len=64,
on_device_sampling_config=OnDeviceSamplingConfig(top_k=1),
enable_bucketing=True,
flash_decoding_enabled=False,

(continues on next page)
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modules_to_not_convert=["lm_head", "layers.0.self_attn", "layers.1.mlp", ...],
draft_model_modules_to_not_convert=["lm_head", "layers.0.self_attn", "layers.1.mlp",␣

→˓..., "fc"]
)

Note: If you are creating different NeuronConfig for draft and target models, you only need to pass the
modules_to_not_convert list for both.

JSON File Structure

The JSON structure is a crucial component for specifying which modules should not be converted during the quanti-
zation if you are using inference demo. This section provides detailed examples of how to format the JSON file. The
JSON structure depends on whether fused speculation is used.

1. Basic Structure

For simple cases:

{
"modules_to_not_convert": [

"lm_head",
"layers.0.self_attn",
"layers.1.self_attn",
"layers.2.self_attn",
"layers.3.self_attn",
"layers.0.mlp",
"layers.3.mlp"

]}

OR

{
"model": {

"modules_to_not_convert": [
"lm_head",
"layers.0.self_attn",
"layers.1.self_attn",
"layers.2.self_attn",
"layers.3.self_attn",
"layers.0.mlp",
"layers.3.mlp"

]
}}

1. With Fused Speculation

{
"model": {

"modules_to_not_convert": [
"lm_head",
"layers.0.self_attn",

(continues on next page)
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"layers.1.self_attn",
"layers.2.self_attn",
"layers.3.self_attn",
"layers.0.mlp",
"layers.3.mlp"

]
},
"draft_model": {

"modules_to_not_convert": [
"lm_head",
"layers.0.self_attn",
"layers.0.mlp",
"fc"

]
}}

Important Notes

• Make sure to assign partial names in modules to avoid conversion, as shown in the examples above. This is
necessary due to different naming schemes between the model layers being read from the source and the model
we create for inference. The above examples include the partial parts of the names which are common between
the two naming schemes.

– For example: Original model names are like model.layers.0.self_attn.q_proj, whereas the names
we give are like layers.0.self_attn.qkv_proj.q_proj

• Quantization with Fused Speculation

– We currently do not quantize the draft model, Include these in the draft_model.
modules_to_not_convert section of your JSON file

Backward Incompatible Changes:

• Now running the quantization workflow will need the modules-to-not-convert-file flag while running
with inference demo because we no longer hard-code the layers to incorporate quantized layers.

NxD Inference Weights Sharding Guide

NxD Inference provides two approaches to shard model weights and load them onto Neuron Devices, enabling parallel
processing (e.g. Tensor Parallelism) on each device. This guide demonstrates the usage of both approaches using
Tutorial: Using Speculative Decoding and Quantization to improve Llama-3.1-405B inference performance on Trn2
instances, and provides insights into selecting the appropriate method based on the usage pattern and performance
requirements.

Note: Sharding speed on different storage volumes can vary. We recommend to use NVMe solid state drive (SSD)
storage to achieve the best sharding performance. This guide shows sharding results on NVMe SSD. For more infor-
mation about NVMe storage on EC2 instances, see the following: * Instance store volumes in the Amazon EC2 User
Guide. Instance store volumes are drives attached to EC2 instances that you can use for temporary storage. Neuron
instances such as Trn1 and Trn2 include NVMe drives that you can use as instance store volumes. * EBS volumes and
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NVMe in the Amazon EBS User Guide. For persistent storage on NVMe, you can use EBS volumes built on AWS
Nitro.

Table of contents

• Shard on compile (Pre-shard)

• Shard on load

Shard on compile (Pre-shard)

The shard on compile (pre-shard) approach loads the supported pretrained checkpoints, converts to Neuron compatible
format, shards for each parallel rank and serializes sharded weights to disk as safetensors files. The entire sharding
and serialization process can take a few minutes to hours depending on the model size and throughput of the storage
volume. This approach is optimized to minimize the future model loading time.

The following example demonstrates how to run shard on compile with Llama3.1-405b.

First, complete the prerequisites for running Llama3.1-405b on a Trn2.48xlarge instance.

Next, enable shard on compile by adding --save-sharded-checkpoint to the command. The sharded checkpoints
will be saved to the /weights folder under the specified COMPILED_MODEL_PATH.

Full command to run shard on compile for Llama3.1-405b:

# Replace this with the path where model files are downloaded.
MODEL_PATH="/home/ubuntu/models/Llama-3.1-405B-Instruct/"
# This is where the compiled model will be saved.
COMPILED_MODEL_PATH="/home/ubuntu/traced_model/Llama-3.1-405B-Instruct/"

NUM_CORES=128
TP_DEGREE=64
LNC=2

export NEURON_RT_VIRTUAL_CORE_SIZE=$LNC
export NEURON_RT_NUM_CORES=$((NUM_CORES/NEURON_RT_VIRTUAL_CORE_SIZE))
export NEURON_RT_EXEC_TIMEOUT=600

inference_demo \
--model-type llama \
--task-type causal-lm \

run \
--model-path $MODEL_PATH \
--compiled-model-path $COMPILED_MODEL_PATH \
--torch-dtype bfloat16 \
--start_rank_id 0 \
--local_ranks_size $TP_DEGREE \
--tp-degree $TP_DEGREE \
--batch-size 1 \
--max-context-length 2048 \
--seq-len 2048 \
--on-device-sampling \
--top-k 1 \

(continues on next page)
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--fused-qkv \
--sequence-parallel-enabled \
--qkv-kernel-enabled \
--attn-kernel-enabled \
--mlp-kernel-enabled \
--cc-pipeline-tiling-factor 1 \
--pad-token-id 2 \
--save-sharded-checkpoint \
--prompt "What is annapurna labs?" 2>&1 | tee log

You should see the outputs below in your logs. The duration can slightly vary between runs. Note that model loading
started only after sharding is completed.

INFO:Neuron:Sharding Weights for ranks: 0...63
INFO:Neuron:Done sharding weights in 1856.5586961259833 seconds
Loading model to Neuron...
Total model loading time: 107.76132441597292 seconds

Now that sharded checkpoints have been serialized to disk, you may save sharding time in your next run by adding
--skip-sharding to the command. Sharded weights will be directly loaded from the disk for inference, which saves
you 30+ minutes of sharding for each subsequent run in this example.

The total model loading time in each subsequent run is expected to be comparable with the first run.

Shard on load

The shard on load approach significantly reduces sharding overheads by parallelizing tensor movement in shard-
ing/loading and skipping sharded checkpoints serialization. This approach is preferred when you are working with
weights that are frequently retrained/fine-tuned so re-sharding becomes a bottleneck when serving with new weights.
Since Neuron 2.23 release, Shard on load is enabled by default in NxD Inference.

Full command to run shard on load for Llama3.1-405b is shown below. Note that --save-sharded-checkpoint is
excluded from the command.

# Replace this with the path where model files are downloaded.
MODEL_PATH="/home/ubuntu/models/Llama-3.1-405B-Instruct/"
# This is where the compiled model will be saved.
COMPILED_MODEL_PATH="/home/ubuntu/traced_model/Llama-3.1-405B-Instruct/"

NUM_CORES=128
TP_DEGREE=64
LNC=2

export NEURON_RT_VIRTUAL_CORE_SIZE=$LNC
export NEURON_RT_NUM_CORES=$((NUM_CORES/NEURON_RT_VIRTUAL_CORE_SIZE))
export NEURON_RT_EXEC_TIMEOUT=600

inference_demo \
--model-type llama \
--task-type causal-lm \

run \
--model-path $MODEL_PATH \

(continues on next page)
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--compiled-model-path $COMPILED_MODEL_PATH \
--torch-dtype bfloat16 \
--start_rank_id 0 \
--local_ranks_size $TP_DEGREE \
--tp-degree $TP_DEGREE \
--batch-size 1 \
--max-context-length 2048 \
--seq-len 2048 \
--on-device-sampling \
--top-k 1 \
--fused-qkv \
--sequence-parallel-enabled \
--qkv-kernel-enabled \
--attn-kernel-enabled \
--mlp-kernel-enabled \
--cc-pipeline-tiling-factor 1 \
--pad-token-id 2 \
--prompt "What is annapurna labs?" 2>&1 | tee log

You should see the outputs below in your logs. The duration can slightly vary between runs. Note that sharding
happened while model was being loaded (i.e. shard on load).

Loading model to Neuron...
INFO:Neuron:Done Sharding weights in 49.31190276599955 seconds
Total model loading time: 187.3972628650372 seconds

As you can see, weights sharding of shard on load is much faster than that of shard on compile.

When the current run finishes, no sharded checkpoints will be saved. Therefore, you cannot use --skip-sharding
for your next run. In each subsequent run, NxD Inference will do the exact same amount of sharding work, so the total
model loading time is expected to be comparable with the first run. It’s also expected that the total model loading time
is longer than that of shard on compile, due to the extra sharding work it has to do during loading time.

Disaggregated Inference [BETA]

Overview

Disaggregated Inference (DI), also known as disaggregated serving, disaggregated prefill, P/D disaggregation, is an
LLM serving architecture that separates the prefill and decode phases of inference onto different hardware resources.
To achieve this, prefill worker needs to transfer the computed KV cache to the decode worker to resume decoding.
Separating the compute intensive prefill phase from the memory bandwidth intensive decode phase can improve the
LLM serving experience by

1. Removing prefill interruptions to decode from continuous batching to reduce inter token latency (ITL). These gains
can be used to achieve higher throughput by running with a higher decode batch size while staying under Service Level
Objectives (SLO).

2. Adapt to changing traffic patterns while still remaining under application SLOs.

3. Enable independent scaling of resources and parallelism strategies for prefill (compute bound) and decode (mem-
ory bound).

Note: This feature is still in beta. Currently only a single decode server and a single prefill server is supported (1P1D).
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Automatic Prefix Caching is not supported with DI.

Neuron Implementation Details

Disaggregated Inference is mainly implemented through Neuron’s vLLM fork https://github.com/aws-neuron/
upstreaming-to-vllm/tree/neuron-2.24-vllm-v0.7.2 and the Neuron Runtime.

There are three main components to a DI workflow.

1. The router. Its job is to orchestrate requests to servers inside the prefill and decode clusters.

2. The prefill cluster. This represents all of the prefill servers ready to run a DI workload.

3. The decode cluster. This represents all of the decode servers ready to run a DI workload.

Below is an example lifespan of a single request through the DI flow.

1. A request is sent to the router (1), a component responsible for orchestrating (2) the requests to both the prefill and
decode servers. It receives responses from the prefill and decode servers and streams the results back to the user.

2. The prefill server receives the request from the router (3a) and starts prefilling. After the prefill completes (4), it
updates the status of the request for the decode server by sending information through another ZMQ server. Then, it
listens for a “pull request” from the decode server to initiate the KV cache transfer. We use Neuron runtime APIs to
transfer the KV cache through EFA from Neuron device to Neuron device. This is a zero copy transfer, meaning that we
do not copy the KV cache from a Neuron device to CPU to transfer, but rather directly transfer KV cache from Neuron
device to Neuron device. The transfer is also asynchronous. This means that the prefill server can immediately start
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prefilling the next request while the KV cache of the previous request is being transferred. This ensures that TTFT is
not impacted for other requests while the KV cache for older request is being transferred to decode.

3. The decode server also receives a request from the router at the same time as the prefill server (3b). It waits until it
receives a signal that its corresponding prefill is done from the prefill server by listening on the ZMQ server. Then, if
there is a free spot in the decode batch, the scheduler will schedule the request and send a “pull request” to the prefill
server. This initiates the asynchronous KV cache transfer (red arrow) through EFA by calling the Neuron Runtime API.
The receive also needs to be asynchronous to ensure smooth ITL. While the receive is happening other decode requests
will still run. As soon as the receive is finished the scheduler will add the request to the next decode batch (5).

Prefill Decode Interference When Colocating Prefill and Decode

In traditional continuous batching, prefill requests are prioritized over decode requests. Prefills are run as batch size
1 because they are compute intensive whereas decodes can be run at a higher batch size because it is constrained on
memory bandwidth not compute. To ensure the highest throughput, continuous batching schedulers prioritize new
prefills if the decode batch is not at max capacity. As soon as a decode request finishes, another prefill is scheduled to
fill the finished request’s place. However, all other ongoing decodes pause while the new prefill is running because that
prefill uses the same compute resources. This effect is known as prefill stall or prefill contention.

Disaggregated Inference avoids prefill stall because the decode workflow is never interrupted by a prefill as it receives
KV caches asynchronously while decoding. The overall ITL on DI is affected by the transfer time of the KV cache
but this does not scale with batch size. For example, in a continuous batching workload of batch size 8 each request
will on average be interrupted 7 times whereas in DI each request is only affected by a single transfer since it happens
asynchronously.

Another advantage of DI is its ability to adapt to traffic patterns while maintaining a consistent ITL. For example, if
prefill requests double in length the application can double the amount of available prefill servers in the prefill cluster
to match the new traffic pattern. Continuous batching workloads would suffer because longer prefill requests increase
tail ITL whereas DI workloads continue to deliver a low variance and a predictable customer experience.

Additionally, DI also allows users to tailor their parallelism strategies differently for prefill and decode. For example, a
model with 32 attention heads may prefer to run two decode servers Data Parallel=2 (DP). each with Tensor Parallel=32
(TP) in order to reduce KV replication instead of TP=64. Such replication will get worse if using Group Query Attention
(GQA).

DI does not necessarily improve throughput directly but it can help depending on the workload. Continuous batching
is a technique optimized for throughput at the cost of ITL. An application may have an SLO to ensure that ITL is under
a certain threshold. Because increasing the batch size increases the amount of prefill stall, and therefore increases ITL,
many applications run on smaller than ideal batch sizes when using continuous batching. DI can allow an application
to run at a higher batch size while still keeping ITL under the application defined SLO.

Trade-Offs

Because DI runs prefill and decode separately, each part of the inference process needs to operate at an equal level
of efficiency to maximize throughput and hardware resources. For example, if you can process 4 prefill requests per
second and two decode requests per second the application will be stuck processing two requests per second. It is also
important to note that the prefill and decode efficiency can vary based on the prompt length and the number of tokens
for a response respectively. Continuous batching and chunked prefill do not have this issue as these techniques run
prefill and decode on the same hardware.

One technique to remediate this is to run with a dynamic amount of prefill and decode servers. We call this dynamic
xPyD. In the above example, we could run with 1 prefill and 2 decode servers so that our prefill and decode efficiency
will be balanced. This is being actively worked on and currently only static configurations of one prefill to one decode
(1P1D) are supported.
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Example Usage

Refer to the offline inference DI example for a quick example to get started.

Refer to the Disaggregated Inference Tutorial for a detailed usage guide.

Use the NxD Inference (neuronx-distributed-inference) Developer Guides to learn how to use NxD Inference.

• NxD Inference Features Configuration Guide

• NxD Inference - Production Ready Models

• Onboarding models to run on NxD Inference

• vLLM User Guide for NxD Inference

• Testing modeling code with NxD Inference

• Migrating from NxD Core inference examples to NxD Inference

• Migrating from Transformers NeuronX to NeuronX Distributed(NxD) Inference

• LLM Inference Benchmarking guide

• Accuracy Evaluation of Models on Neuron Using Open Source Datasets

• Custom Quantization

• NxD Inference Weights Sharding Guide

• Disaggregated Inference [BETA]

3.2.5 Tutorials

Tutorial: Deploying Llama3.1 405B (Trn2)

NeuronX Distributed (NxD) Inference enables you to deploy Llama3.1 405B on a single Trn2 instance.

You can run Llama3.1 405B with default configuration options. NxD Inference also provides several features and
configuration options that you can use to optimize and tune the performance of Llama3.1 405B on Trn2. This guide
walks through how to run Llama3.1 405B on Trn2 with vLLM, and how to enable these optimizations for optimal
performance. In addition, we also have a separate tutorial for running Llama3.1 405B with vanilla fused speculative
decoding Tutorial: Using Speculative Decoding and Quantization to improve Llama-3.1-405B inference performance
on Trn2 instances.

Table of contents

• Background, Concepts, and Optimizations

– Logical NeuronCore Configuration (LNC)

– Tensor parallelism (TP) on Trn2

– Optimizing Performance

• Tutorial: Run Llama3.1 405B on Trn2

– Step 1: Connect to the Trn2 instance

– Step 2: Install the vLLM version that supports NxD Inference

– Step 3: Deploy Llama 3.1 405B sample code
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Background, Concepts, and Optimizations

Logical NeuronCore Configuration (LNC)

On Trn2, the Neuron SDK supports Logical NeuronCore Configuration (LNC), which determines the number of Neu-
ronCores visible to the Neuron SDK. When running on Trn2, the Neuron SDK is optimized for LNC=2, which means
each NeuronCore visible to the Neuron SDK is two physical NeuronCores. The LNC configuration also affects what
TP degree options you can use.

NxD Inference automatically chooses the correct LNC configuration based on the target platform.

For more information about LNC, see Logical NeuronCore configuration.

Tensor parallelism (TP) on Trn2

Each Trn2 instance has 128 Neuron cores. With LNC=2, you can set a TP degree up to 64. We recommend that you
use LNC=2 for all models on Trn2.

For more information about tensor parallelism in NxD Inference, see nxdi-tensor-parallelism.

Optimizing Performance

EAGLE Speculative Decoding

Speculative decoding is a performance optimization technique where a smaller draft LLM model predicts the next
tokens, and the larger target LLM model verifies those predictions.

NxD Inference supports EAGLE v1 speculative decoding with a flat draft structure. To use EAGLE v1, you must use
an EAGLE checkpoint for a draft model that is not tree-based and is specifically fine-tuned for EAGLE speculation.
For more information about EAGLE, see the official implementation on GitHub: SafeAILab/EAGLE.

To optimize performance for EAGLE speculative decoding, NxD Inference uses a feature called fused speculation,
where the draft model and target model are fused into a single compiled model artifact to improve performance. Fused
speculation uses a different config called FusedSpecNeuronConfig, which specifies the model class. draft config, and
draft model path to fuse with the target model.

For more information about speculative decoding in NxD Inference, including other types of speculative decoding
supported, see Speculative Decoding.

FP8 Quantization

NxD Inference supports FP8 quantization, where model weights and data are converted to a smaller data type to re-
duce memory bandwidth usage. FP8 quantization enables optimal usage of memory bandwidth to improve model
performance. For more information, see Model Weight Quantization.

NxD Inference also supports KV cache quantization, where the KV cache is quantized to FP8. For more information,
see KV Cache Quantization.
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Optimized Kernels

NxD Inference supports kernels that optimize parts of the modeling code for best performance.

• Flash attention. This kernel uses a sharded flash attention implementation to improve performance during the
context encoding pass. This kernel is enabled automatically at supported sequence lengths. For LNC2, NxD
Inference automatically enables flash attention for sequence lengths of 256 and larger that are divisible by 256.
For LNC1, NxD Inference automatically enables flash attention for sequence lengths of 4096 and larger. You
can also enable it with attn_kernel_enabled=True in NeuronConfig. NxD Inference automatically enables
the flash attention kernel at supported sequence lengths even if attn_kernel_enabled is false.

• QKV. This kernel fuses the QKV layers to improve performance during the attention forward pass. To enable
this kernel, set qkv_kernel_enabled=True in NeuronConfig.

• MLP. This kernel implements the MLP module used in decoder layers. To enable this kernel, set
mlp_kernel_enabled=True in NeuronConfig.

• Quantized MLP. This kernel implements a quantized version of the MLP kernel. This kernel uses FP8 compute
to improve performance. To enable this kernel, set quantized_mlp_kernel_enabled=True. This kernel
requires mlp_kernel_enabled=True.

Note: To use the QKV and MLP kernels, you must set torch_dtype to torch.bfloat16 in NeuronConfig.

Tutorial: Run Llama3.1 405B on Trn2

As a prerequisite, this tutorial requires that you have a Trn2 instance created from a Deep Learning AMI that has the
Neuron SDK pre-installed.

To set up a Trn2 instance using Deep Learning AMI with pre-installed Neuron SDK, see NxD Inference Setup Guide.

Step 1: Connect to the Trn2 instance

Use SSH to connect to the Trn2 instance using the key pair that you chose when you launched the instance.

After you are connected, activate the Python virtual environment that includes the Neuron SDK.

source ~/aws_neuronx_venv_pytorch_2_5_nxd_inference/bin/activate

Run pip list to verify that the Neuron SDK is installed.

python -m pip list

You should see Neuron packages including neuronx-distributed-inference and neuronx-cc.
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Step 2: Install the vLLM version that supports NxD Inference

NxD Inference supports running models with vLLM. This functionality is available in the AWS Neuron fork of the
vLLM GitHub repository. Install the latest release branch of vLLM from the AWS Neuron fork following instructions
in the vLLM User Guide for NxD Inference.

Step 3: Deploy Llama 3.1 405B sample code

Choose one of the following examples to run on the Trn2 instance:

1. Deploy Llama3.1 405B with vLLM offline inference. This example demonstrates how to deploy on Trn2 with
vLLM and topK sampling.

2. Deploy Llama3.1 405B with EAGLE speculative decoding. This example demonstrates how to use EAGLE to
optimize Llama3.1 405B on Trn2.

Example 1: Deploy Llama3.1 405B on Trn2 with vLLM offline inference

This example demonstrates how to deploy Llama3.1 405B on Trn2 with vLLM offline inference and the following
configuration options:

• Sequence length: 2048 tokens

• Max context length: 1024 tokens

• Speculation length: 6 tokens

• Flash attention, QKV, and MLP kernels

• On-device sampling with topK sampling

To use this sample, you must first download a 405B model checkpoint from Hugging Face to a local path on the Trn2
instance. For more information, see Downloading models in the Hugging Face documentation. You can download and
use meta-llama/Llama-3.1-405B-Instruct for this tutorial.

import os
import torch

from vllm import LLM, SamplingParams

# Force vLLM framework to use neuronx-distributed-inference
os.environ['VLLM_NEURON_FRAMEWORK'] = "neuronx-distributed-inference"

model_path = "/home/ubuntu/models/Llama-3.1-405B-Instruct/"

def run_llama_generate():
# Initialize vLLM.
llm = LLM(

model=model_path,
tensor_parallel_size=64,
max_num_seqs=1,
max_model_len=2048,
block_size=2048,
dtype=torch.bfloat16,

(continues on next page)
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(continued from previous page)

# Configure NeuronConfig.
override_neuron_config={

"max_context_length": 1024,
"skip_warmup": True,

},
device="neuron"

)

# Run vLLM to generate outputs.
prompts = ["I believe the meaning of life is"]
sampling_params = SamplingParams(top_k=50)
outputs = llm.generate(prompts, sampling_params)
for output in outputs:

prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

if __name__ == "__main__":
run_llama_generate()

Example 2: Deploy Llama3.1 405B on Trn2 with EAGLE speculative decoding

This example demonstrates how to deploy Llama3.1 405B on Trn2 with EAGLE speculative decoding.

Note: To use this example, you must provide an EAGLE-trained Llama3.1 405B checkpoint to use for EAGLE
speculative decoding. For more information about EAGLE checkpoint compatibility with NxD Inference, see EAGLE
Speculative Decoding.

This example uses the following configuration options:

• Sequence length: 2048 tokens

• Max context length: 1024 tokens

• Speculation length: 6 tokens

• Flash attention, QKV, and MLP kernels

• On-device sampling with greedy sampling

• Sequence parallelism enabled

• Auto-bucketing enabled, which automatically selects buckets to use. For more information about bucketing and
how to customize the buckets used, see Bucketing.

import copy
import os
import torch

from transformers import AutoTokenizer, GenerationConfig

from neuronx_distributed_inference.models.config import FusedSpecNeuronConfig,␣
(continues on next page)
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→˓NeuronConfig, OnDeviceSamplingConfig
from neuronx_distributed_inference.models.llama.modeling_llama import␣
→˓LlamaInferenceConfig, NeuronLlamaForCausalLM
from neuronx_distributed_inference.utils.hf_adapter import HuggingFaceGenerationAdapter,␣
→˓load_pretrained_config

model_path = "/home/ubuntu/models/llama-3.1-405b-Instruct/"
draft_model_path = "/home/ubuntu/models/EAGLE-llama-3-405b/"
compiled_model_path = "/home/ubuntu/neuron_models/llama-3-405b-instruct-EAGLE/"

# Set environment variables for Trn2.
os.environ["XLA_DENSE_GATHER_FACTOR"] = "0"
os.environ["NEURON_RT_EXEC_TIMEOUT"] = "600"

def run_llama_generate():
top_k = 1
do_sample = False

# Initialize tokenizer.
tokenizer = AutoTokenizer.from_pretrained(model_path, padding_side="right")
tokenizer.pad_token = tokenizer.eos_token

# Initialize target model config.
neuron_config = NeuronConfig(

torch_dtype=torch.bfloat16,
tp_degree=64,
batch_size=1,
max_context_length=1024,
seq_len=2048,
on_device_sampling_config=OnDeviceSamplingConfig(

dynamic=False,
do_sample=do_sample,
top_k=top_k

),
enable_eagle_speculation=True,
enable_fused_speculation=True,
speculation_length=6,
trace_tokengen_model=False,
enable_bucketing=True,
fused_qkv=True,
sequence_parallel_enabled=True,
attn_kernel_enabled=True,
qkv_kernel_enabled=True,
mlp_kernel_enabled=True,
cc_pipeline_tiling_factor=1,

)
config = LlamaInferenceConfig(

neuron_config,
load_config=load_pretrained_config(model_path),

)

# Initialize draft model config.

(continues on next page)
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draft_neuron_config = copy.deepcopy(neuron_config)
draft_neuron_config.trace_tokengen_model = True
draft_neuron_config.enable_fused_speculation = False
draft_neuron_config.is_eagle_draft = True
draft_neuron_config.sequence_parallel_enabled = False
draft_config = LlamaInferenceConfig(

draft_neuron_config,
load_config=load_pretrained_config(draft_model_path)

)

# Initialize fused speculation config.
fused_spec_config = FusedSpecNeuronConfig(

NeuronLlamaForCausalLM._model_cls,
draft_config=draft_config,
draft_model_path=draft_model_path,

)
config.fused_spec_config = fused_spec_config

# Compile and save model.
print("\nCompiling and saving model...")
model = NeuronLlamaForCausalLM(model_path, config)
model.compile(compiled_model_path)
tokenizer.save_pretrained(compiled_model_path)

# Load from compiled checkpoint.
print("\nLoading model from compiled checkpoint...")
model = NeuronLlamaForCausalLM(compiled_model_path)
model.load(compiled_model_path)
tokenizer = AutoTokenizer.from_pretrained(compiled_model_path)

# Initialize generation config.
generation_config = GenerationConfig.from_pretrained(model_path)
generation_config_kwargs = {

"do_sample": do_sample,
"top_k": top_k,
"pad_token_id": 0,
"prompt_lookup_num_tokens": neuron_config.speculation_length,

}
generation_config.update(**generation_config_kwargs)

# Generate outputs.
print("\nGenerating outputs...")
prompts = ["I believe the meaning of life is"]
print(f"Prompts: {prompts}")
inputs = tokenizer(prompts, padding=True, return_tensors="pt")
generation_model = HuggingFaceGenerationAdapter(model)
outputs = generation_model.generate(

inputs.input_ids,
generation_config=generation_config,
attention_mask=inputs.attention_mask,
max_length=model.config.neuron_config.max_length,

)

(continues on next page)
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output_tokens = tokenizer.batch_decode(outputs, skip_special_tokens=True, clean_up_
→˓tokenization_spaces=False)

print("Generated outputs:")
for i, output_token in enumerate(output_tokens):

print(f"Output {i}: {output_token}")

if __name__ == "__main__":
run_llama_generate()

Tutorial: Deploying Llama3.2 Multimodal Models

NeuronX Distributed Inference (NxDI) enables you to deploy Llama-3.2-11B-Vision-Instruct and Llama-3.
2-90B-Vision-Instruct models on Neuron Trainium and Inferentia instances.

You can run Llama3.2 Multimodal with default configuration options. NxD Inference also provides several features and
configuration options that you can use to optimize and tune the performance for inference. This guide walks through
how to run Llama3.2 Multimodal with vLLM, and how to enable optimizations for inference performance on Trn1/Inf2
instances. It takes about 20-60 minutes to complete.

Table of contents

• Step 1: Set up Development Environment

• Step 2: Download and Convert Checkpoints

• Step 3: Deploy with vLLM Inference

– Configurations

– Model Inputs

– Offline Example

– Online Example

Step 1: Set up Development Environment

1. Launch a trn1.32xlarge or inf2.48xlarge instance on Ubuntu 22 with Neuron Multi-Framework DLAMI.
Please refer to the setup guide if you don’t have one yet. If you are looking to install NxD Inference library
without using pre-existing DLAMI, please refer to the NxD Inference Setup Guide.

2. Use default virtual environment pre-installed with the Neuron SDK.

source /opt/aws_neuronx_venv_pytorch_2_6_nxd_inference/bin/activate

3. Install the latest release branch of vLLM from the AWS Neuron fork following the vLLM User Guide for NxD
Inference.

4. You should now have the Neuron SDK and other necessary packages installed, including
neuronx-distributed-inference, neuronx-cc, torch, torchvision, and vllm-neuronx.
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Step 2: Download and Convert Checkpoints

Download Llama3.2 Multimodal models from either Meta’s official website or HuggingFace(HF) (11B, 90B).

NxDI supports HF checkpoint out-of-the-box. To use the Meta checkpoint, you need to run the following script to
convert the downloaded Meta checkpoint into NxDI supported format.

python -m neuronx_distributed_inference.models.mllama.convert_mllama_weights_to_neuron \
--input-dir <path_to_meta_pytorch_checkpoint> \
--output-dir <path_to_neuron_checkpoint> \
--instruct \
--num-shards 8 #(1 for 11B and 8 for 90B)

After the script is finished running, you should have the following configuration and checkpoint files. Verify by ls
<path_to_neuron_checkpoint>:

chat_template.json model.safetensors tokenizer_config.json
config.json special_tokens_map.json
generation_config.json tokenizer.json

Note: The following code examples use HF checkpoint, as it is supported by default, no script needs to be run.

Step 3: Deploy with vLLM Inference

We provide two examples to deploy Llama3.2 Multimodal with vLLM:

1. Offline inference: you can provide prompts in a python script and execute it.

2. Online inference: you will serve the model in an online server and send requests.

If you already have a compiled model artifact in MODEL_PATH with the same specified configuration, or if you have set
an environment variable NEURON_COMPILED_ARTIFACTS , the vLLM engine will load the compiled model and run
inference directly. Otherwise, it will automatically compile and save a new model artifact. See vLLM User Guide for
NxD Inference for more. We provide example configurations here, continue reading on how to tune them per your use
case.

Configurations

You should specifically tune these configurations when optimizing performance for Llama3.2 Multimodal models.
Please refer to NxD Inference Features Configuration Guide for detailed explanation of each configuration.

• MODEL_PATH - The directory containing NxDI-supported configs, checkpoints, and neuron compiled artifacts.

• BATCH_SIZE - Batch size and sequence length together are bounded by device memory. For sequence shorter
than 16k, we support up to batch size 4. For longer sequence, we support batch size 1.

• SEQ_LEN - The entire sequence length combining input and output sequence. We support sequence length up to
128k for 11B model, and 16k for 90B model.

• TENSOR_PARALLEL_SIZE - For best performance, choose the maximum supported value by your instance, that
is divisible by the model’s hidden sizes and number of attention heads: 32 for trn1.32xlarge and 16 for
inf2.48xlarge.
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• CONTEXT_ENCODING_BUCKETS - Set based on your distribution of input/context length. For example, suppose
90% of the input traffic is shorter than 1k sequence, and all are less than 2k, then we should set the context
encoding buckets to be [1024, 2048].

• TOKEN_GENERATION_BUCKETS - Set based on your distribution of entire sequence length. Use similar principle
as above.

Note: Longer sequence takes up more memory, so we should use less buckets. For example, to compile the 90B
model on trn1.32xlarge with SEQ_LEN=16384, BATCH_SIZE=4, we can use buckets [1024, 2048, 16384] to
cover the longest possible sequence as well as shorter sequence where the majority of traffic comes from. We also set
an environment variable by export NEURON_SCRATCHPAD_PAGE_SIZE=1024 to increase the scratchpad size in our
direct memory access engine to fit the large tensors.

• SEQUENCE_PARALLEL_ENABLED - Set to True to enable sequence parallel. In principle, sequence parallel helps
scaling to long sequence length by splitting tensors along the sequence dimension. However, for short sequence
length less than 2k, it is not worth to pay for the collectives overhead when compute workload is manageable.
So in this example, as we configured sequence length to be no more than 2k, we disabled the sequence parallel.

• IS_CONTINUOUS_BATCHING - Set based on your input traffic. For example, suppose end-to-end latency to gen-
erate an entire output sequence (batch size 1) is 1 second in average. However, you receive a request every 0.5
second. Then it is beneficial to enable continuous batching so that new request can get generation started before
prior request is finished.

• ON_DEVICE_SAMPLING_CONFIG - We enable on-device sampling to perform sampling logic on the Neuron de-
vice (rather than on the CPU) to achieve better performance.

Model Inputs

• PROMPTS: List[str] - Batch of text prompts.

• IMAGES: List[Union[PIL.Image.Image, torch.Tensor]] - Batch of image prompts. We currently sup-
port one image per prompt as recommended by Meta. If the prompt has no image, use an empty tensor.

• SAMPLING_PARAMS: List[Dict] - Batch of sampling parameters. With dynamic sampling, you can pass dif-
ferent top_k, top_p, and temperature values for each input in a batch.

Offline Example

import torch
import requests
from PIL import Image

from vllm import LLM, SamplingParams
from vllm import TextPrompt

from neuronx_distributed_inference.models.mllama.utils import add_instruct

def get_image(image_url):
image = Image.open(requests.get(image_url, stream=True).raw)
return image

(continues on next page)
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# Configurations
MODEL_PATH = "/home/ubuntu/model_hf/Llama-3.2-90B-Vision-Instruct-hf"
BATCH_SIZE = 4
SEQ_LEN = 2048
TENSOR_PARALLEL_SIZE = 32
CONTEXT_ENCODING_BUCKETS = [1024, 2048]
TOKEN_GENERATION_BUCKETS = [1024, 2048]
SEQUENCE_PARALLEL_ENABLED = False
IS_CONTINUOUS_BATCHING = True
ON_DEVICE_SAMPLING_CONFIG = {"global_topk":64, "dynamic": True, "deterministic": False}

# Model Inputs
PROMPTS = ["What is in this image? Tell me a story",

"What is the recipe of mayonnaise in two sentences?" ,
"Describe this image",
"What is the capital of Italy famous for?",
]

IMAGES = [get_image("https://github.com/meta-llama/llama-models/blob/main/models/scripts/
→˓resources/dog.jpg?raw=true"),

torch.empty((0,0)),
get_image("https://awsdocs-neuron.readthedocs-hosted.com/en/latest/_images/nxd-

→˓inference-block-diagram.jpg"),
torch.empty((0,0)),
]

SAMPLING_PARAMS = [dict(top_k=1, temperature=1.0, top_p=1.0, max_tokens=256),
dict(top_k=1, temperature=0.9, top_p=1.0, max_tokens=256),
dict(top_k=10, temperature=0.9, top_p=0.5, max_tokens=512),
dict(top_k=10, temperature=0.75, top_p=0.5, max_tokens=1024),
]

def get_VLLM_mllama_model_inputs(prompt, single_image, sampling_params):
# Prepare all inputs for mllama generation, including:
# 1. put text prompt into instruct chat template
# 2. compose single text and single image prompt into Vllm's prompt class
# 3. prepare sampling parameters
input_image = single_image
has_image = torch.tensor([1])
if isinstance(single_image, torch.Tensor) and single_image.numel() == 0:

has_image = torch.tensor([0])

instruct_prompt = add_instruct(prompt, has_image)
inputs = TextPrompt(prompt=instruct_prompt)
inputs["multi_modal_data"] = {"image": input_image}
# Create a sampling params object.
sampling_params = SamplingParams(**sampling_params)
return inputs, sampling_params

def print_outputs(outputs):
# Print the outputs.
for output in outputs:

prompt = output.prompt

(continues on next page)
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generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

if __name__ == '__main__':
assert len(PROMPTS) == len(IMAGES) == len(SAMPLING_PARAMS), \

f"""Text, image prompts and sampling parameters should have the same batch size,
got {len(PROMPTS)}, {len(IMAGES)}, and {len(SAMPLING_PARAMS)}"""

# Create an LLM.
llm = LLM(

model=MODEL_PATH,
max_num_seqs=BATCH_SIZE,
max_model_len=SEQ_LEN,
block_size=SEQ_LEN,
device="neuron",
tensor_parallel_size=TENSOR_PARALLEL_SIZE,
override_neuron_config={

"context_encoding_buckets": CONTEXT_ENCODING_BUCKETS,
"token_generation_buckets": TOKEN_GENERATION_BUCKETS,
"sequence_parallel_enabled": SEQUENCE_PARALLEL_ENABLED,
"is_continuous_batching": IS_CONTINUOUS_BATCHING,
"on_device_sampling_config": ON_DEVICE_SAMPLING_CONFIG,

}
)

batched_inputs = []
batched_sample_params = []
for pmpt, img, params in zip(PROMPTS, IMAGES, SAMPLING_PARAMS):

inputs, sampling_params = get_VLLM_mllama_model_inputs(pmpt, img, params)
# test batch-size = 1
outputs = llm.generate(inputs, sampling_params)
print_outputs(outputs)
batched_inputs.append(inputs)
batched_sample_params.append(sampling_params)

# test batch-size = 4
outputs = llm.generate(batched_inputs, batched_sample_params)
print_outputs(outputs)

This script will print the outputs. Below is an example output from image-text prompt:

Prompt: '<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n<|image|>What is
in this image? Tell me a story<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n
→˓',
Generated text: 'The image shows a dog riding a skateboard. The dog is standing on the
skateboard, which is in the middle of the road. The dog is looking at the camera with its
mouth open, as if it is smiling. The dog has floppy ears and a long tail. It is wearing a
collar around its neck. The skateboard is black with red wheels. The background is␣
→˓blurry,
but it appears to be a city street with buildings and cars in the distance.'
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Online Example

First, open a terminal and spin up a server of the model. If you specify a new set of configurations, a new neuron model
artifact will be compiled now.

MODEL_PATH="/home/ubuntu/model_hf/Llama-3.2-90B-Vision-Instruct-hf"
python3 -m vllm.entrypoints.openai.api_server \

--model $MODEL_PATH \
--tensor-parallel-size 32 \
--max-model-len 2048 \
--max-num-seqs 4 \
--device neuron \
--override-neuron-config '{

"context_encoding_buckets": [1024, 2048],
"token_generation_buckets": [1024, 2048],
"sequence_parallel_enabled": false,
"is_continuous_batching": true,
"on_device_sampling_config": {

"global_topk": 64,
"dynamic": true,
"deterministic": false

}
}'

If you see the below logs, that means your server is up and running:

INFO: Started server process [284309]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)

Then open a new terminal as the client where you can send requests to the server. We’ve enabled continuous batching
by default, so you can open up to --max-num-seqs client terminals to send requests. To send a text-only request:

MODEL_PATH="/home/ubuntu/model_hf/Llama-3.2-90B-Vision-Instruct-hf"
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{

"model": "'"$MODEL_PATH"'",
"messages": [

{
"role": "user",
"content": "What is the capital of Italy?"
}

]
}'

You should receive outputs shown in the client terminal shortly:

{"id":"chat-2df3e876738b470ab27b090e0a09736e","object":"chat.completion",
"created":1734401826,"model":"/home/ubuntu/model_hf/Llama-3.2-90B-Vision-Instruct-hf/",
"choices":[{"index":0,"message":{"role":"assistant","content":"The capital of Italy is
Rome.","tool_calls":[]},"logprobs":null,"finish_reason":"stop","stop_reason":null}],

(continues on next page)
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"usage":{"prompt_tokens":42,"total_tokens":50,"completion_tokens":8},"prompt_logprobs":
→˓null}

If the request fails, increase the value of the VLLM_RPC_TIMEOUT environment variable using export
VLLM_RPC_TIMEOUT=180000, then restart the server. The timeout value depends on the model and deployment con-
figuration used.

To send a request with both text and image prompts:

curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{

"model": "'"$MODEL_PATH"'",
"messages": [

{
"role": "user",
"content": [

{
"type": "text",
"text": "Describe this image"
},
{
"type": "image_url",
"image_url": {

"url": "https://awsdocs-neuron.readthedocs-hosted.com/en/latest/_images/
→˓nxd-inference-block-diagram.jpg"

}
}

]
}

]
}'

You can expect results appear in the client terminal shortly:

{"id":"chat-fd1319865bd44d6aa60a4739cce61c9d","object":"chat.completion",
"created":1734401984,"model":"/home/ubuntu/model_hf/Llama-3.2-90B-Vision-Instruct-hf/",
"choices":[{"index":0,"message":{"role":"assistant","content":"The image presents a
diagram illustrating the components of NxD Inference, with a focus on inference modules
and additional modules. The diagram is divided into two main sections: \"Inference
Modules\" and \"Additional Modules.\" \n\n**Inference Modules:**\n\n* Attention
Techniques\n* KV Caching\n* Continuous Batching\n\n**Additional Modules:**\n\n*
Speculative Decoding (Draft model and Draft heads (Medusa / Eagle))\n\nThe diagram also
includes a section titled \"NxD Core (Distributed Strategies, Distributed Model Tracing)\
→˓"
and a logo for PyTorch at the bottom.","tool_calls":[]},"logprobs":null,
"finish_reason":"stop","stop_reason":null}],"usage":{"prompt_tokens":14,"total_tokens":
→˓137,
"completion_tokens":123},"prompt_logprobs":null}
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Tutorial: Using Speculative Decoding to improve Llama-3.3-70B inference performance on Trn2 in-
stances

NeuronX Distributed (NxD) Inference allows you to deploy Llama3.3 70B on a single Trn2 or Trn1 instance. This
tutorial provides a step-by-step guide to deploy Llama3.3 70B on a Trn2 instance using two different configurations,
one without speculative decoding and the other with draft model based speculative decoding enabled (with Llama-3.2
1B as the draft model). We will also measure performance by running a load test using LLMPerf and compare key
metrics between the two configurations. While this tutorial uses batch size 1 for demonstration purposes, the model
configuration provides support for batch sizes up to 4.

Table of contents

• Prerequisites:

– Set up and connect to a Trn2.48xlarge instance

– Install packages

• Scenario 1: Run Llama3.3 70B on Trn2

– Step 1: Compile the model

– Step 2: Run the model using vLLM

– Step 3: Measure performance using LLMPerf

• Scenario 2: Run Llama3.3 70B on Trn2 with Speculative Decoding

– Step 1: Compile the model

– Step 2: Run the model using vLLM

– Step 3: Measure performance using LLMPerf

• Conclusion

Prerequisites:

Set up and connect to a Trn2.48xlarge instance

As a prerequisite, this tutorial requires that you have a Trn2 instance created from a Deep Learning AMI that has the
Neuron SDK pre-installed.

To set up a Trn2 instance using Deep Learning AMI with pre-installed Neuron SDK, see NxD Inference Setup Guide.

After setting up an instance, use SSH to connect to the Trn2 instance using the key pair that you chose when you
launched the instance.

After you are connected, activate the Python virtual environment that includes the Neuron SDK.

source ~/aws_neuronx_venv_pytorch_2_5_nxd_inference/bin/activate

Run pip list to verify that the Neuron SDK is installed.

pip list | grep neuron

You should see Neuron packages including neuronx-distributed-inference and neuronx-cc.
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Install packages

NxD Inference supports running models with vLLM. This functionality is available in the AWS Neuron fork of the
vLLM GitHub repository. Install the latest release branch of vLLM from the AWS Neuron fork following instructions
in the vLLM User Guide for NxD Inference.

In this tutorial, you will use llmperf to measure the performance. We will use the load test feature of LLMPerf and
measure the performance for accepting 10,000 tokens as input and generating 1500 tokens as output. Install llmperf
into the virtual environment.

git clone https://github.com/ray-project/llmperf.git
cd llmperf
pip install -e .

Download models

To use this sample, you must first download a 70B model checkpoint from Hugging Face to a local path on the Trn2
instance. For more information, see Downloading models in the Hugging Face documentation. You can download and
use meta-llama/Llama-3.3-70B-Instruct for this tutorial.

Since we will be using Speculative Decoding in the second configuration, you will also need a draft model checkpoint.
You can download and use meta-llama/Llama-3.2-1B-Instruct.

Note: NxD Inference supports batch sizes up to 4 for this model configuration. To determine the optimal batch size for
your specific use case, we recommend incrementally testing batch sizes from 1 to 4 while monitoring your application’s
performance metrics.

Scenario 1: Run Llama3.3 70B on Trn2

In this scenario, you will run Llama3.3 70B on Trn2 without Speculative Decoding using bfloat16 precision.

Step 1: Compile the model

We will first compile and run generation on a sample prompt using a command installed by
neuronx-distributed-inference. Save the contents of the below script to your favorite shell script file,
for example, compile_model.sh and then run it.

Note that we are using the following features as described in the tutorial for running 405B model Tutorial: Deploying
Llama3.1 405B (Trn2)

• Logical NeuronCore Configuration (LNC)

• Tensor parallelism (TP) on Trn2

• Optimized Kernels

The script compiles the model and runs generation on the given input prompt. Note the path we used to save the
compiled model. This path should be used when launching vLLM server for inference so that the compiled model
can be loaded without recompilation. Please refer to NxD Inference API Reference for more information on these
inference_demo flags.

Note: Known issue: Using kernels with bucket length of 1024 or less may lead to Numerical Error in inference.

644 Chapter 3. NeuronX Distributed (NxD)

https://github.com/ray-project/llmperf
https://github.com/ray-project/llmperf?tab=readme-ov-file#load-test
https://huggingface.co/docs/hub/en/models-downloading
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct


AWS Neuron

RuntimeError: Failed to execute the model status=1003 message=Numerical Error

# Replace this with the path where you downloaded and saved the model files.
MODEL_PATH="/home/ubuntu/models/Llama-3.3-70B-Instruct/"
# This is where the compiled model will be saved. The same path
# should be used when launching vLLM server for inference.
COMPILED_MODEL_PATH="/home/ubuntu/traced_model/Llama-3.3-70B-Instruct/"

NUM_CORES=128
TP_DEGREE=64
LNC=2

export NEURON_RT_VIRTUAL_CORE_SIZE=$LNC
export NEURON_RT_NUM_CORES=$((NUM_CORES/NEURON_RT_VIRTUAL_CORE_SIZE))
export NEURON_RT_EXEC_TIMEOUT=600
export XLA_DENSE_GATHER_FACTOR=0
export NEURON_RT_INSPECT_ENABLE=0

inference_demo \
--model-type llama \
--task-type causal-lm \

run \
--model-path $MODEL_PATH \
--compiled-model-path $COMPILED_MODEL_PATH \
--torch-dtype bfloat16 \
--start_rank_id 0 \
--local_ranks_size $TP_DEGREE \
--tp-degree $TP_DEGREE \
--batch-size 1 \
--max-context-length 12288 \
--seq-len 12800 \
--on-device-sampling \
--top-k 1 \
--do-sample \
--fused-qkv \
--sequence-parallel-enabled \
--qkv-kernel-enabled \
--attn-kernel-enabled \
--mlp-kernel-enabled \
--cc-pipeline-tiling-factor 1 \
--pad-token-id 2 \
--enable-bucketing \
--context-encoding-buckets 2048 4096 8192 12288 \

--token-generation-buckets 2048 4096 8192 12800 \
--prompt "What is annapurna labs?" 2>&1 | tee log
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Step 2: Run the model using vLLM

After compiling the model, you can run the model using vLLM. Save the contents of the below script to another shell
script file, for example, start_vllm.sh and then run it.

export NEURON_RT_INSPECT_ENABLE=0
export NEURON_RT_VIRTUAL_CORE_SIZE=2

# These should be the same paths used when compiling the model.
MODEL_PATH="/home/ubuntu/models/Llama-3.3-70B-Instruct/"
COMPILED_MODEL_PATH="/home/ubuntu/traced_model/Llama-3.3-70B-Instruct/"

export VLLM_NEURON_FRAMEWORK="neuronx-distributed-inference"
export NEURON_COMPILED_ARTIFACTS=$COMPILED_MODEL_PATH
VLLM_RPC_TIMEOUT=100000 python -m vllm.entrypoints.openai.api_server \

--model $MODEL_PATH \
--max-num-seqs 1 \
--max-model-len 12800 \
--tensor-parallel-size 64 \
--device neuron \
--use-v2-block-manager \
--override-neuron-config "{\"on_device_sampling_config\": {\"do_sample\": true}, \

→˓"skip_warmup\": true}" \
--port 8000 &

PID=$!
echo "vLLM server started with PID $PID"

Step 3: Measure performance using LLMPerf

After the above steps, the vllm server should be running. You can now measure the performance using LLMPerf. Before
we can use the llmperf package, we need to make a few changes to its code. Follow benchmarking with LLMPerf
guide to apply the code changes.

Below is a sample shell script to run LLMPerf. To provide the model with 10000 tokens as input and generate 1500
tokens as output on average, we use the following parameters from LLMPerf:

--mean-input-tokens 10000 \
--mean-output-tokens 1500 \

More information about several arguments used in the script can be found in the llmperf open source code.

# This should be the same path to which the model was downloaded (also used in the above␣
→˓steps).
MODEL_PATH="/home/ubuntu/models/Llama-3.3-70B-Instruct/"
# This is the name of directory where the test results will be saved.
OUTPUT_PATH=llmperf-results-sonnets

export OPENAI_API_BASE="http://localhost:8000/v1"
export OPENAI_API_KEY="mock_key"

python token_benchmark_ray.py \
--model $MODEL_PATH \

(continues on next page)
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--mean-input-tokens 10000 \
--stddev-input-tokens 0 \
--mean-output-tokens 1500 \
--stddev-output-tokens 0 \
--num-concurrent-requests 1\
--timeout 3600 \
--max-num-completed-requests 50 \
--tokenizer $MODEL_PATH \
--additional-sampling-params '{}' \
--results-dir $OUTPUT_PATH \
--llm-api "openai"

A sample output from the above script is shown below:

Results for token benchmark for /home/ubuntu/models/Llama-3.3-70B-Instruct/ queried with␣
→˓the openai api.

inter_token_latency_s
p25 = 0.01964743386193489
p50 = 0.01965969146322459
p75 = 0.019672998415771872
p90 = 0.01969826815724373
p95 = 0.019810569172135244
p99 = 0.020350346909947692
mean = 0.01969182239660784
min = 0.0196275211258056
max = 0.020702997242410977
stddev = 0.00015700734112322808

ttft_s
p25 = 0.8109508841298521
p50 = 0.8142827898263931
p75 = 30.46490489714779
p90 = 30.513100237119943
p95 = 30.521608413150535
p99 = 48.876512633068415
mean = 11.503728219866753
min = 0.8080519903451204
max = 66.4881955627352
stddev = 15.692731777293613

end_to_end_latency_s
p25 = 30.296781020238996
p50 = 30.326033774763346
p75 = 59.9560666854959
p90 = 60.001504834741354
p95 = 60.028880204679446
p99 = 79.1842334462329
mean = 41.04328096391633
min = 30.265212223865092
max = 97.54387667682022
stddev = 15.796048923358924

request_output_throughput_token_per_s
p25 = 25.044969421803977

(continues on next page)
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p50 = 49.49542857484997
p75 = 49.543217224244
p90 = 49.583184869985566
p95 = 49.58588728343319
p99 = 49.592597790896676
mean = 40.91042833304163
min = 15.387946954098137
max = 49.59489426003143
stddev = 11.825984480587056

number_input_tokens
p25 = 10000.0
p50 = 10000.0
p75 = 10000.0
p90 = 10000.0
p95 = 10000.0
p99 = 10000.0
mean = 10000.0
min = 10000
max = 10000
stddev = 0.0

number_output_tokens
p25 = 1501.0
p50 = 1501.0
p75 = 1501.0
p90 = 1501.0
p95 = 1501.0
p99 = 1502.02
mean = 1501.04
min = 1501
max = 1503
stddev = 0.282842712474619

Number Of Errored Requests: 0
Overall Output Throughput: 36.55567822866449
Number Of Completed Requests: 50
Completed Requests Per Minute: 1.4612140207588533

Scenario 2: Run Llama3.3 70B on Trn2 with Speculative Decoding

In this scenario, you will run Llama3.3 70B on Trn2 with Speculative Decoding. Specifically, we will use the below
variations from the supported variants as described in Speculative Decoding

• Speculative Decoding with Llama-3.2-1B as the draft model Speculative Decoding with a Draft model

• Fused Speculation for improved performance Fused Speculation
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Step 1: Compile the model

When compiling the model to use speculative decoding, you need to provide a draft model checkpoint and a few
additional parameters to the inference_demo command.

For a quick review, here are the additional arguments provided:

--draft-model-path $DRAFT_MODEL_PATH \
--enable-fused-speculation \
--speculation-length 7 \

Please refer to NxD Inference API Reference for more information on these inference_demo flags. The complete
script to compile the model for this configuration is shown below:

Note: Known issue: Using kernels with bucket length of 1024 or less may lead to Numerical Error in inference.

RuntimeError: Failed to execute the model status=1003 message=Numerical Error

# This is the same path as in the previous scenario.
MODEL_PATH="/home/ubuntu/models/Llama-3.3-70B-Instruct/"
# This is the path where the draft model is downaloded and saved.
DRAFT_MODEL_PATH="/home/ubuntu/models/Llama-3.2-1B-Instruct/"
# As in the previous scenario, this is where the compiled model will be saved.
COMPILED_MODEL_PATH="/home/ubuntu/traced_model/Llama-3.3-70B-Instruct/"

NUM_CORES=128
TP_DEGREE=64
LNC=2

export NEURON_RT_VIRTUAL_CORE_SIZE=$LNC
export NEURON_RT_NUM_CORES=$((NUM_CORES/NEURON_RT_VIRTUAL_CORE_SIZE))
export NEURON_RT_EXEC_TIMEOUT=600
export XLA_DENSE_GATHER_FACTOR=0
export NEURON_RT_INSPECT_ENABLE=0

inference_demo \
--model-type llama \
--task-type causal-lm \

run \
--model-path $MODEL_PATH \
--compiled-model-path $COMPILED_MODEL_PATH \
--torch-dtype bfloat16 \
--start_rank_id 0 \
--local_ranks_size $TP_DEGREE \
--tp-degree $TP_DEGREE \
--batch-size 1 \
--max-context-length 12288 \
--seq-len 12800 \
--on-device-sampling \
--top-k 1 \
--fused-qkv \
--sequence-parallel-enabled \

(continues on next page)
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--qkv-kernel-enabled \
--attn-kernel-enabled \
--mlp-kernel-enabled \
--cc-pipeline-tiling-factor 1 \
--draft-model-path $DRAFT_MODEL_PATH \
--enable-fused-speculation \
--speculation-length 7 \
--pad-token-id 2 \
--enable-bucketing \
--context-encoding-buckets 2048 4096 8192 12288 \

--token-generation-buckets 2048 4096 8192 12800 \
--prompt "What is annapurna labs?" 2>&1 | tee log

Step 2: Run the model using vLLM

Similar to compiling the model, we need to specify parameters specific to speculative decoding when running the model
using vLLM.

For a quick glance, these are the parameters that are different for running vLLM server with model compiled using
speculative decoding:

--speculative-max-model-len 12800 \
--speculative-model $DRAFT_MODEL_PATH \
--num-speculative-tokens 7 \
--override-neuron-config "{\"enable_fused_speculation\":true}" \

Here is the complete script to run the model using vLLM with speculative decoding:

export NEURON_RT_INSPECT_ENABLE=0
export NEURON_RT_VIRTUAL_CORE_SIZE=2

# These should be the same paths used when compiling the model.
MODEL_PATH="/home/ubuntu/models/Llama-3.3-70B-Instruct/"
DRAFT_MODEL_PATH="/home/ubuntu/models/Llama-3.2-1B-Instruct/"
COMPILED_MODEL_PATH="/home/ubuntu/traced_model/Llama-3.3-70B-Instruct/"

export VLLM_NEURON_FRAMEWORK="neuronx-distributed-inference"
export NEURON_COMPILED_ARTIFACTS=$COMPILED_MODEL_PATH
VLLM_RPC_TIMEOUT=100000 python -m vllm.entrypoints.openai.api_server \

--model $MODEL_PATH \
--max-num-seqs 1 \
--max-model-len 12800 \
--tensor-parallel-size 64 \
--device neuron \
--speculative-max-model-len 12800 \
--speculative-model $DRAFT_MODEL_PATH \
--num-speculative-tokens 7 \
--use-v2-block-manager \
--override-neuron-config "{\"enable_fused_speculation\":true}" \
--port 8000 &

PID=$!
(continues on next page)
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echo PID=$PID
echo "vLLM server started with PID $PID"

Step 3: Measure performance using LLMPerf

The script to measure the performance using LLMPerf is same as the one used in the first scenario. Before we can use
the llmperf package, we need to make a few changes to its code. Follow benchmarking with LLMPerf guide to apply
the code changes.

For convenience, here’s the script once again:

# This should be the same path to which the model was downloaded (also used in the above␣
→˓steps).
MODEL_PATH="/home/ubuntu/models/Llama-3.3-70B-Instruct/"
# This is the name of directory where the test results will be saved. Use a different␣
→˓name for this scenario.
OUTPUT_PATH=llmperf-results-sonnets-speculative

export OPENAI_API_BASE="http://localhost:8000/v1"
export OPENAI_API_KEY="mock_key"

python token_benchmark_ray.py \
--model $MODEL_PATH \
--mean-input-tokens 10000 \
--stddev-input-tokens 0 \
--mean-output-tokens 1500 \
--stddev-output-tokens 0 \
--num-concurrent-requests 1\
--timeout 3600 \
--max-num-completed-requests 50 \
--tokenizer $MODEL_PATH \
--additional-sampling-params '{}' \
--results-dir $OUTPUT_PATH \
--llm-api "openai"

A sample output from the above script is shown below:

Results for token benchmark for /home/ubuntu/models/Llama-3.3-70B-Instruct/ queried with␣
→˓the openai api.

inter_token_latency_s
p25 = 0.0053349758717231455
p50 = 0.005386366705410183
p75 = 0.005441084293027719
p90 = 0.005499971026182175
p95 = 0.005520176071580499
p99 = 0.005911254031351169
mean = 0.00540780140378178
min = 0.005264532127728065
max = 0.006265544256816307
stddev = 0.00013951778334019935

(continues on next page)
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ttft_s
p25 = 0.8693495176266879
p50 = 0.870149074587971
p75 = 0.8710820493288338
p90 = 0.8725412225350737
p95 = 0.8742059985175729
p99 = 36.83790613239617
mean = 2.280795605443418
min = 0.8676468348130584
max = 71.38881027325988
stddev = 9.97280539681726

end_to_end_latency_s
p25 = 8.873123338911682
p50 = 8.950916013680398
p75 = 9.030085149221122
p90 = 9.120021602977067
p95 = 9.150626054406166
p99 = 45.70815015356973
mean = 10.393093119114637
min = 8.766328778117895
max = 80.78758085798472
stddev = 10.158917239418473

request_output_throughput_token_per_s
p25 = 166.22213179149702
p50 = 167.69243252025473
p75 = 169.16253286110174
p90 = 169.52692450439133
p95 = 169.81518762962915
p99 = 170.85438941846397
mean = 164.631719334475
min = 18.579588397857652
max = 171.2233293995004
stddev = 21.152953887186314

number_input_tokens
p25 = 10000.0
p50 = 10000.0
p75 = 10000.0
p90 = 10000.0
p95 = 10000.0
p99 = 10000.0
mean = 10000.0
min = 10000
max = 10000
stddev = 0.0

number_output_tokens
p25 = 1501.0
p50 = 1501.0
p75 = 1501.0
p90 = 1501.0
p95 = 1501.0
p99 = 1502.02
mean = 1501.04

(continues on next page)
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min = 1501
max = 1503
stddev = 0.282842712474619

Number Of Errored Requests: 0
Overall Output Throughput: 144.17136914316023
Number Of Completed Requests: 50
Completed Requests Per Minute: 5.76285918335928

Conclusion

As seen in the table below, TPOT reduced by 3.6x and output token throughput increased by 4x when using specula-
tive decoding with draft model combined with fused speculative decoding, compared to baseline without speculative
decoding. Please note that batch size of 1 is used in this tutorial for computing the below metrics.

Scenario (all using BF16) TTFT (P50 in
ms)

TPOT (P50 in
ms)

Output token Throughput (per
second)

No speculative decoding 814.2 19.6 36
Fused speculative decoding (Llama 3.2
1B Draft)

870.1 5.3 144

Tutorial: Scaling LLM Inference with Data Parallelism on Trn2

Introduction

This tutorial demonstrates how to implement data parallelism (DP) LLM inference with multiple model copies on
Neuron. The following sections provides a sequence of steps to stand up multiple Llama 3.3 70B model endpoints on
a single trn2.48xlarge instance with NxD Inference and vLLM and run data parallel inference.

Data Parallel Inference

We can achieve Data Parallelism by using multiple copies of the same model hosted on the instance to process multiple
requests simultaneously. Using NxD Inference and vLLM, you can deploy multiple model endpoints by adjusting the
tensor parallel degree (Tensor Parallelism (TP) refers to sharding model weight matrices onto multiple NeuronCores
within each model copy) and allocating appropriate NeuronCore ranges for each model endpoint. While increasing
the batch size with a single copy of the model increases throughput, introducing data parallelism with multiple model
endpoints combined with tensor parallelism allows further increase in instance throughput with some impact to latency.
Use this technique when you can relax the latency constraint of your application to further maximize the throughput of
the instance.

In this tutorial we use Llama 3.3 70B with DP=2 and TP=32, However, you can follow the same sequence of steps to
deploy additional model copies by appropriately changing the tensor parallel degree. You can also use this guide to
deploy multiple copies of any other models on Trn1 or Inf2 instances as long as the model fits and the DP x TP degree
does not exceed the number of model cores.
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Prerequisites:

Setup and Connect to an Amazon EC2 Trn2 Instance

An Amazon EC2 trn2.48xlarge instance with AWS Neuron SDK version 2.23.0 or later (Neuron 2.24.1
(06/30/2025)) is required.

To launch a Trn2 instance using Deep Learning AMI with pre-installed Neuron SDK and NxD Inference dependencies,
see NxD Inference Setup Guide.

Make sure to activate the Neuron virtual environment

source /opt/aws_neuronx_venv_pytorch_2_6_nxd_inference/bin/activate

To verify that NxD Inference has installed successfully, check that you can run the inference_demo console script.

inference_demo --help

Download Model Weights

To use this tutorial, you must first download a Llama 3.3 70B Instruct model checkpoint from Hugging Face to a local
path on the Trn2 instance. For more information, see Downloading Models in the Hugging Face documentation. You
can download and use meta-llama/Llama-3.3-70B-Instruct for this tutorial.

Install Neuron vLLM Fork

NxD Inference supports running models with vLLM. This functionality is available in the AWS Neuron fork of the
vLLM GitHub repository. Install the latest release branch of vLLM from the AWS Neuron fork following instructions
in the vLLM User Guide for NxD Inference.

Install LLMPerf

In this tutorial, you will use LLMPerf to measure the performance.

Install llmperf into the virtual environment.

git clone --branch v2.0 https://github.com/ray-project/llmperf.git
cd llmperf
pip install -e .

Once you have installed LLMPerf, please apply relevant patches as described in LLM Inference Benchmarking guide .
Ensure that you apply all the patches described there including the data parallelism support patch.
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Step-by-Step Tutorial Instructions

Step 1: Compile the model

Before we launch the model endpoint with vLLM, we’ll use the NxD Inference library to compile the model with an
appropriate configuration. Refer to NxD Inference Features Configuration Guide for more information. To compile
a model for data parallelism inference, set the NUM_CORES, TP_DEGREE, BATCH_SIZE to allow for strategic workflow
distribution. For DP=2 with BATCH_SIZE>=1, TP_DEGREE should be set to 64/2=32 to maximize NeuronCore
utilization across all model copies. Simply create and run a shell script as illustrated below:

compile_model.sh

#!/bin/bash
# Replace with path to your downloaded Hugging Face model checkpoints
MODEL_PATH="/ubuntu/model_hf/Llama-3.3-70B-Instruct/"

# This is where the compiled model will be saved. The same path
# should be used when launching vLLM server for inference.
export COMPILED_MODEL_PATH="/ubuntu/traced_model/Llama-3.3-70B-Instruct/"

NUM_CORES=128
TP_DEGREE=32
LNC=2
BATCH_SIZE=4

export NEURON_RT_VIRTUAL_CORE_SIZE=$LNC
export NEURON_RT_NUM_CORES=$((NUM_CORES/NEURON_RT_VIRTUAL_CORE_SIZE))
export NEURON_RT_EXEC_TIMEOUT=600
export XLA_DENSE_GATHER_FACTOR=0
export NEURON_RT_INSPECT_ENABLE=0

inference_demo \
--model-type llama \
--task-type causal-lm \

run \
--model-path $MODEL_PATH \
--compiled-model-path $COMPILED_MODEL_PATH \
--torch-dtype bfloat16 \
--start_rank_id 0 \
--local_ranks_size $TP_DEGREE \
--tp-degree $TP_DEGREE \
--batch-size $BATCH_SIZE \
--max-context-length 8192 \
--seq-len 8192 \
--on-device-sampling \
--top-k 1 \
--do-sample \
--fused-qkv \
--qkv-kernel-enabled \
--attn-kernel-enabled \
--mlp-kernel-enabled \
--pad-token-id 2 \
--compile-only \

(continues on next page)
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--prompt "What is annapurna labs?" 2>&1 | tee log

To compile the model, run this script with command: ./compile_model.sh

It’s important to specify the path to which the compiled model is saved, as this same path must be used when you later
launch the vLLM server for inference, allowing you to use the pre-compiled model without having to compile it again.

Note: To run this script on trn1, set LNC=1. For more information about LNC, see Logical NeuronCore configuration
. Also appropriately change NUM_CORES & TP_DEGREE (eg. 16 for DP=2)

For detailed information about the inference_demo flags, you can consult the NxD Inference API Reference.

Step 2: Launch model endpoints

Create a deployment script (deploy_vllm_endpoint.sh) containing below code snippet that configures and launches
a model endpoint. The script is parameterized so that you can pass a specific port number, range of neuron cores, tensor
parallel degree and batch size.

Key Parameters Explained:

• MODEL_PATH: The Hugging Face model identifier or local model_hf path containing Meta-Llama-3.3-70B-
Instruct hugging face checkpoints. Eg. /home/ubuntu/model_hf/Llama-3.3-70B-Instruct/

• port: Network port for the endpoint Eg. 8000. The port number should be unique for each model endpoint.

• cores: Range of NeuronCores allocated to this endpoint. This should be a non overlapping range of cores when
deploying multiple model endpoints on the same instance. For example, when allocated 32 NeuronCores to a
model endpoint specify 0-31 or 32-63.

• tp_degree: Degree of tensor parallelism for model sharding. To maximize NeuronCores utilization, reduce
tp_degree while increasing dp_degree.

• bs : Batch size specified for model endpoint.

These parameters should match the values used during compilation step above.

deploy_vllm_endpoint.sh

# Model deployment script with detailed configuration

# Default values for arguments
DEFAULT_PORT=8000
DEFAULT_CORES="0-31"
DEFAULT_TP_DEGREE=32
DEFAULT_BS=4

# Help function
show_help() {

echo "Usage: $0 [options]"
echo "Options:"
echo " -p port Port number for vLLM endpoint (default: $DEFAULT_PORT)"
echo " -c cores Range of neuron cores (default: $DEFAULT_CORES)"
echo " -t tp_degree Tensor parallel degree (default: $DEFAULT_TP_DEGREE)"
echo " -b bs Batch size (default: $DEFAULT_BS)"
echo " -h Show this help message"

(continues on next page)
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}

# Parse single-letter arguments
while getopts "p:c:t:b:h" opt; do

case $opt in
p) port="$OPTARG" ;;
c) cores="$OPTARG" ;;
t) tp_degree="$OPTARG" ;;
b) bs="$OPTARG" ;;
h) show_help; exit 0 ;;
?) show_help; exit 1 ;;

esac
done

# Set defaults if not provided
port=${port:-$DEFAULT_PORT}
cores=${cores:-$DEFAULT_CORES}
tp_degree=${tp_degree:-$DEFAULT_TP_DEGREE}
bs=${bs:-$DEFAULT_BS}

# Environment configurations
export NEURON_RT_INSPECT_ENABLE=0
export NEURON_RT_VIRTUAL_CORE_SIZE=2

# These should be the same paths used when compiling the model.
MODEL_PATH="/ubuntu/model_hf/Llama-3.3-70B-Instruct/"
COMPILED_MODEL_PATH="/ubuntu/traced_model/Llama-3.3-70B-Instruct/"

export VLLM_NEURON_FRAMEWORK="neuronx-distributed-inference"
export NEURON_COMPILED_ARTIFACTS=$COMPILED_MODEL_PATH
export NEURON_RT_VISIBLE_CORES=${cores}

VLLM_RPC_TIMEOUT=100000 python -m vllm.entrypoints.openai.api_server \
--model $MODEL_PATH \
--max-num-seqs ${bs} \
--max-model-len 12800 \
--tensor-parallel-size ${tp_degree} \
--device neuron \
--use-v2-block-manager \
--override-neuron-config "{\"on_device_sampling_config\": {\"do_sample\": true, \

→˓"global_topk\": 64}}" \
--port ${port} &

PID=$!
echo "vLLM server started with PID $PID"

Run this script to launch 2 vLLM servers. You can run these commands as background processes in the same terminal
or run two seperate terminals for each command. We launch two servers, each with a tensor parallel degree of 32 and
batch size of 4. Note that the first vLLM server uses neuron cores 0-31 and the second one 32-63. You can pick any
ports that are available.

./deploy_vllm_endpoint.sh -p 8000 -c 0-31 -t 32 -b 4 &

and
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./deploy_vllm_endpoint.sh -p 8001 -c 32-63 -t 32 -b 4 &

The server start up time can take a few minutes since the model weights are getting loaded. Once the vLLM servers
have been launched, you should see the following log output. This implies that the model server has been deployed.

INFO: Started server process [221607]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)

Step 3: Benchmark the deployed model endpoints

After the above steps, the vLLM server should be running. You can now measure the performance using LLMPerf.
Ensure you have made the required changes to use LLMPerf with DP>1 by following Install LLMPerf

Below is a sample shell script to run LLMPerf. The script allows the user to specify tensor parallelism degree, data
parallelism degree, and batch size through command-line arguments, with default values provided. It calculates the
concurrency based on batch size and data parallelism, sets up the environment for benchmarking with input tokens
N(7936, 30) and output tokens N(256,30), and then runs LlmPerf’s token_benchmark_ray.py with various param-
eters to measure the model endpoints’ performance. The benchmark simulates requests with specific input and output
token distributions, and collects results for analysis.

More information about several arguments used in the script can be found in the llmperf open source code

benchmark_model.sh

#!/bin/bash

# Default values for arguments
DEFAULT_TP_DEGREE=32
DEFAULT_DP_DEGREE=2
DEFAULT_BS=1

# Help function
show_help() {

echo "Usage: $0 [options]"
echo "Options:"
echo " -t tp_degree Tensor parallel degree (default: $DEFAULT_TP_DEGREE)"
echo " -d dp_degree Data parallel degree (default: $DEFAULT_DP_DEGREE)"
echo " -b bs Batch size (default: $DEFAULT_BS)"
echo " -h Show this help message"

}

# Parse single-letter arguments
while getopts "t:d:b:h" opt; do

case $opt in
t) tp_degree="$OPTARG" ;;
d) dp_degree="$OPTARG" ;;
b) bs="$OPTARG" ;;
h) show_help; exit 0 ;;
?) show_help; exit 1 ;;

esac
done

(continues on next page)
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# Set defaults if not provided
tp_degree=${tp_degree:-$DEFAULT_TP_DEGREE}
dp_degree=${dp_degree:-$DEFAULT_DP_DEGREE}
bs=${bs:-$DEFAULT_BS}

# Calculate total concurrent requests (batch_size * data_parallelism)
# If result is less than 1, default to batch_size
concurrency=$(awk -v batch="$bs" -v dp_degree="$dp_degree" 'BEGIN {

concurrency = int(batch * dp_degree)
print (concurrency >= 1 ? concurrency : batch)

}')
echo "concurrency: $concurrency"

MODEL_PATH="/ubuntu/model_hf/Llama-3.3-70B-Instruct/"

# Modify OpenAI's API key and API base to use vLLM's API server.
export OPENAI_API_KEY=EMPTY

#if you have more vLLM servers, append the required number of ports like so:
#;http://localhost:8001/v1;http://localhost:8002/v1"
export OPENAI_API_BASE="http://0.0.0.0:8000/v1;http://0.0.0.0:8001/v1"

python /root/llmperf/token_benchmark_ray.py \
--model ${MODEL_PATH} \
--mean-input-tokens 7936 \
--stddev-input-tokens 30 \
--mean-output-tokens 256 \
--stddev-output-tokens 30 \
--num-concurrent-requests ${concurrency} \
--results-dir "/ubuntu/results/" \
--timeout 21600 \
--max-num-completed-requests 1000 \
--additional-sampling-params '{"temperature": 0.7, "top_k": 50}' \
--llm-api "openai"

Run this script with ./benchmark_model.sh -t 32 -d 2 -b 4 . These args match the args set while launching
vLLM servers above.

Once the script starts executing, you will see output like:

INFO worker.py:1852 -- Started a local Ray instance.
4%| | 39/1000 [01:29<30:14, 1.89s/it]

Once benchmarking is complete, results can be found in the directory specified with the –results-dir flag in the
benchmark_vllm.sh script
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Conclusion

This tutorial demonstrates how

data parallelism using multiple model copies can help increase the throughput. While standard batching (DP=1, BS>1)
processes multiple requests through a single model copy, data parallelism deploys multiple independent model copies
that can process different requests simultaneously. Our experiments with batch sizes 1 & 4 show that as we decrease
Tensor Parallelism (TP) from 64 to 16 and increase Data Parallelism (DP) from 1 to 4, we see up to 2x throughput
improvement with non optimized configurations. However, this comes with an increase in Time To First Token (TTFT)
latency. This illustrates a key consideration: while DP can improve overall system throughput by processing more
concurrent requests, it can lead to higher latency

When to choose Data parallel with multiple model copies over using single model copy in an instance:

• Use DP when your workload is collective-bound rather than memory or compute-bound. At high batch sizes,
TP64 / TP128 collectives can become slow due to the number of hops and increasing throughput requirements.
At high enough batch size, it can be better to pay the cost of duplicated weight loads and use DP with multiple
model copies in order to reduce collective latencies.

• Consider DP when you need to handle many concurrent requests and can tolerate moderate latency increases

Implementation requires careful consideration of your total memory budget, as each additional model copy increases
memory consumption. You’ll need to balance the number of model copies against the resources allocated to each model
copy based on your specific throughput and latency requirements. By understanding these trade-offs and following the
implementation guidelines in this tutorial, users can select the most appropriate approach for their specific use case and
optimize their inference setup accordingly.

Tutorial: Multi-LoRA serving for Llama-3.1-8B on Trn2 instances

NeuronX Distributed (NxD) Inference supports multi-LoRA serving. This tutorial provides a step-by-step guide for
multi-LoRA serving with Llama-3.1-8B as the base model on a Trn2 instance. It describes two different ways of
running multi-LoRA serving with NxD Inference directly and through vLLM (with NxD Inference) We will use LoRA
adapters downloaded from HuggingFace as examples for serving.

Table of contents

• Prerequisites:

– Set up and connect to a Trn2.48xlarge instance

– Install packages

– Download base model and LoRA adapters

• Run multi-LoRA serving on Trn2 from NxD Inference

• Using vLLM for multi-LoRA serving on Trn2

– Multi-LoRA Configurations

– Offline inference example

– Online server example
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Prerequisites:

Set up and connect to a Trn2.48xlarge instance

As a prerequisite, this tutorial requires that you have a Trn2 instance created from a Deep Learning AMI that has the
Neuron SDK pre-installed.

To set up a Trn2 instance using Deep Learning AMI with pre-installed Neuron SDK, see NxD Inference Setup Guide.

After setting up an instance, use SSH to connect to the Trn2 instance using the key pair that you chose when you
launched the instance.

After you are connected, activate the Python virtual environment that includes the Neuron SDK.

source ~/aws_neuronx_venv_pytorch_2_5_nxd_inference/bin/activate

Run pip list to verify that the Neuron SDK is installed.

pip list | grep neuron

You should see Neuron packages including neuronx-distributed-inference and neuronx-cc.

Install packages

NxD Inference supports running models with vLLM. This functionality is available in the AWS Neuron fork of the
vLLM GitHub repository. Install the latest release branch of vLLM from the AWS Neuron fork following instructions
in the vLLM User Guide for NxD Inference.

Download base model and LoRA adapters

To use this sample, you must first download a Llama-3.1-8B-Instruct model checkpoint from Hugging Face to a local
path on the Trn2 instance. Note that you may need access from Meta for model download. For more information, see
Downloading models in the Hugging Face documentation.

You also need to download LoRA adapters from Hugging Face for multi-LoRA serving. As examples, you can down-
load nvidia/llama-3.1-nemoguard-8b-topic-control and reissbaker/llama-3.1-8b-abliterated-lora.

Run multi-LoRA serving on Trn2 from NxD Inference

We will run multi-LoRA serving from NxD inference with inference_demo on Trn2 using Llama-3.1-8B and two
LoRA adapters. The data type is bfloat16 precision.

You should specifically set the following configurations when enabling multi-LoRA serving with inference_demo.

• enable_lora - The flag to enable multi-LoRA serving in NxD Inference. Defaults to False.

• max_loras - The maximum number of concurrent LoRA adapters in device memory. Defaults to 1.

• max_lora_rank - The highest LoRA rank that needs to be supported. Defaults to 16. If it is not specified, the
maximum LoRA rank of the LoRA adapter checkpoints will be used.

• lora_ckpt_path - The checkpoint path for LoRA adapter in the format of adapter_id : path. Please set
this flag multiple times if multiple LoRA adapters are needs.

• adapter_id - The adapter ID for prompt. Each prompt comes with an adapter ID.
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Save the contents of the below script to your favorite shell script file, for example, multi_lora_model.sh and then
run it. The script compiles the model and runs generation on the given input prompt.

# Replace this with the path where you downloaded and saved the model files.
MODEL_PATH="/home/ubuntu/models/Llama-3.1-8B-Instruct/"
# Replace the following with the paths where you downloaded and saved the LoRA adapters.
LORA_PATH_1="/home/ubuntu/models/loras/llama-3.1-nemoguard-8b-topic-control"
LORA_PATH_2="/home/ubuntu/models/loras/llama-3.1-8b-abliterated-lora"
# This is where the compiled model will be saved.
COMPILED_MODEL_PATH="/home/ubuntu/traced_model/Llama-3.1-8B-Lora/"

NUM_CORES=128
TP_DEGREE=32
LNC=2

export NEURON_RT_VIRTUAL_CORE_SIZE=$LNC
export NEURON_RT_NUM_CORES=$TP_DEGREE
export NEURON_RT_EXEC_TIMEOUT=600
export XLA_DENSE_GATHER_FACTOR=0
export NEURON_RT_INSPECT_ENABLE=0

inference_demo \
--model-type llama \
--task-type causal-lm \

run \
--model-path $MODEL_PATH \
--compiled-model-path $COMPILED_MODEL_PATH \
--torch-dtype bfloat16 \
--start_rank_id 0 \
--local_ranks_size $TP_DEGREE \
--tp-degree $TP_DEGREE \
--batch-size 2 \
--max-context-length 12288 \
--seq-len 64 \
--on-device-sampling \
--top-k 1 \
--do-sample \
--pad-token-id 2 \
--enable-bucketing \
--enable-lora \
--max-loras 2 \
--lora-ckpt-path "lora_id_1 : ${LORA_PATH_1}" \
--lora-ckpt-path "lora_id_2 : ${LORA_PATH_2}" \
--prompt "I believe the meaning of life is" \
--adapter-id lora_id_1 \
--prompt "I believe the meaning of life is" \
--adapter-id lora_id_2 \
| tee log

NxD Inference expects the same number of prompts and adapter IDs in the script. A prompt is mapped to the adapter
ID with the same order. For example, the first prompt in the script assoicates with lora_id_1 and the second one
assoicates with lora_id_2. Although the two prompts are the same, NxD Inference will generate different outputs
due to different adapter IDs.
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Using vLLM for multi-LoRA serving on Trn2

We can run multi-LoRA serving on Trn2 with vLLM for Llama models. Please refer to vLLM User Guide for NxD
Inference for more details on how to run model inference on TRN2 with vLLM.

Multi-LoRA Configurations

You should specifically set the following configurations when enabling multi-LoRA serving with vLLM.

• enable_lora - The flag to enable multi-LoRA serving in NxD Inference. Defaults to False.

• max_loras - The maximum number of concurrent LoRA adapters in device memory. Defaults to 1.

• max_lora_rank - The highest LoRA rank that needs to be supported. Defaults to 16. If it is not specified, the
maximum LoRA rank of the LoRA adapter checkpoints will be used.

• lora_modules - Set the LoRA checkpoint paths and their adapter IDs in the format of adapter_id_1=path1
adapter_id_2=path2 ....

Offline inference example

You can also run multi-LoRA serving offline on TRN2 with vLLM.

import os
os.environ['VLLM_NEURON_FRAMEWORK'] = "neuronx-distributed-inference"
from vllm import LLM, SamplingParams
from vllm.entrypoints.openai.serving_models import LoRAModulePath
from vllm.lora.request import LoRARequest

MODEL_PATH="/home/ubuntu/models/Llama-3.1-8B-Instruct/"
# LoRA checkpoint paths.
LORA_PATH_1="/home/ubuntu/models/loras/llama-3.1-nemoguard-8b-topic-control"
LORA_PATH_2="/home/ubuntu/models/loras/llama-3.1-8b-abliterated-lora"

# Sample prompts.
prompts = [

"The president of the United States is",
"The capital of France is",

]

# Create a sampling params object.
sampling_params = SamplingParams(top_k=1)

# Create an LLM with multi-LoRA serving.
llm = LLM(

model=MODEL_PATH,
max_num_seqs=2,
max_model_len=64,
tensor_parallel_size=32,
device="neuron",
override_neuron_config={

"sequence_parallel_enabled": False,
},

(continues on next page)
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lora_modules=[
LoRAModulePath(name="lora_id_1", path=LORA_PATH_1),

LoRAModulePath(name="lora_id_2", path=LORA_PATH_2),
],
enable_lora=True,
max_loras=2,

)
"""
NxD Inference enables static loading of LoRA adapters: https://docs.vllm.ai/en/v0.9.0/
→˓features/lora.html on vLLM server start and does
not optionally support dynamic serving of LoRA adapters: https://docs.vllm.ai/en/v0.9.0/
→˓features/lora.html#dynamically-serving-lora-adapters
Only the lora_name needs to be specified.
The lora_id and lora_path are supplied at the LLM class/server initialization, after␣
→˓which the paths are
handled by NxD Inference.
"""
lora_req_1 = LoRARequest("lora_id_1", 0, " ")

lora_req_2 = LoRARequest("lora_id_2", 1, " ")
outputs = llm.generate(prompts, sampling_params, lora_request=[lora_req_1, lora_req_2])

for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

Online server example

Save the contents of the below script to another shell script file, for example, start_vllm.sh and then run it.

export NEURON_RT_INSPECT_ENABLE=0
export NEURON_RT_VIRTUAL_CORE_SIZE=2

# These should be the same paths used when compiling the model.
MODEL_PATH="/home/ubuntu/models/Llama-3.1-8B-Instruct/"
# Replace the following with the paths where you downloaded and saved the LoRA adapters.
LORA_PATH_1="/home/ubuntu/models/loras/llama-3.1-nemoguard-8b-topic-control"
LORA_PATH_2="/home/ubuntu/models/loras/llama-3.1-8b-abliterated-lora"
# This is where the compiled model will be saved.
COMPILED_MODEL_PATH="/home/ubuntu/traced_model/Llama-3.1-8B-Lora/"

export VLLM_NEURON_FRAMEWORK="neuronx-distributed-inference"
export NEURON_COMPILED_ARTIFACTS=$COMPILED_MODEL_PATH
VLLM_RPC_TIMEOUT=100000 python -m vllm.entrypoints.openai.api_server \

--model $MODEL_PATH \
--max-num-seqs 2 \
--max-model-len 64 \
--tensor-parallel-size 32 \
--device neuron \
--use-v2-block-manager \
--enable-lora \

(continues on next page)
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--max-loras 2 \
--override-neuron-config "{\"sequence_parallel_enabled\": false}" \
--lora-modules lora_id_1=${LORA_PATH_1} lora_id_2=${LORA_PATH_2} \
--port 8000 &

PID=$!
echo "vLLM server started with PID $PID"

After the vLLM server is launched, we can send requests to the server for serving. A sample request is:

curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -
→˓d '{

"model": "lora_id_1",
"messages": [

{
"role": "user",
"content": "The president of the United States is"

}
]

}'

Tutorial: Using Speculative Decoding and Quantization to improve Llama-3.1-405B inference perfor-
mance on Trn2 instances

NeuronX Distributed (NxD) Inference allows you to deploy Llama3.1 405B on a single Trn2 instance. This tutorial
will show you how to optimize inference performance for Llama3.1 405B on a Trn2 instance with speculative decoding
and quantization. We will compile and load the model into a VLLM server and measure performance using LLMPerf.
This tutorial consists of two parts. In the first part, we will collect performance metrics for our base configuration
with bf16 model weights. In the second part, we will optimize inference performance with fp8 quantized weights and
speculative decoding. The performance is then compared with the results from part 1.

Table of contents

• Prerequisites

– Set up and connect to a Trn2.48xlarge instance

– Install packages

– Download models

• Scenario 1: Run Llama-3.1-405b inference with base configuration using bf16 weights

– Step 1: Compile the model and run generate

– Step 2: Start the Vllm server with the compiled Neuron model

– Step 3: Measure performance using LLMPerf

• Scenario 2: Run Llama-3.1-405b inference with fp8 weights and fused speculation (with draft model)

– Step 1: Rescale the model weights to use Neuron FP8 format and save the modules to not convert file
in model path

– Step 2: Compile the model and run generate

– Step 3: Start the Vllm server with the compiled Neuron model
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– Step 4: Measure performance using LLMPerf

• Conclusion

Prerequisites

Set up and connect to a Trn2.48xlarge instance

As a prerequisite, this tutorial requires that you have a Trn2 instance created from a Deep Learning AMI that has the
Neuron SDK pre-installed.

To set up a Trn2 instance using Deep Learning AMI with pre-installed Neuron SDK, see NxD Inference Setup Guide.

After setting up an instance, use SSH to connect to the Trn2 instance using the key pair that you chose when you
launched the instance.

After you are connected, activate the Python virtual environment that includes the Neuron SDK.

source ~/aws_neuronx_venv_pytorch_2_5_nxd_inference/bin/activate

Run pip list to verify that the Neuron SDK is installed.

pip list | grep neuron

You should see Neuron packages including neuronx-distributed-inference and neuronx-cc.

Install packages

NxD Inference supports running models with vLLM. This functionality is available in the AWS Neuron fork of the
vLLM GitHub repository. Install the latest release branch of vLLM from the AWS Neuron fork following instructions
in the vLLM User Guide for NxD Inference.

In this tutorial, you will use llmperf to measure the inference performance of the base Llama-3.1-405b-Instruct configu-
ration and the more optimized configuration. We will use the load test feature of LLMPerf and measure the performance
for accepting 10,000 tokens as input and generating 1500 tokens as output. Install llmperf into the virtual environment.

git clone https://github.com/ray-project/llmperf.git
cd llmperf
pip install -e .

Download models

To run inference in the first part of the tutorial, you need to download the Llama-3.1-405b-Instruct model checkpoint
with bf16 weights from Hugging Face (meta-llama/Llama-3.1-405B-Instruct). For the second part of the tutorial, you
will run a more optimized inference configuration. For this part, you need to download an fp8-quantized Llama3.1-
405B-FP8 model checkpoint (meta-llama/Llama-3.1-405B-Instruct-FP8). With Speculative Decoding, you will also
need to specify a draft model. You can download and use the model checkpoint from meta-llama/Llama-3.2-1B-
Instruct. For more information, see Downloading models in the Hugging Face documentation.
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Scenario 1: Run Llama-3.1-405b inference with base configuration using bf16 weights

Step 1: Compile the model and run generate

We will first compile and run generation on a sample prompt using a command installed by
neuronx-distributed-inference. Save the contents of the below script to your favorite shell script file,
for example, compile_model.sh and then run it.

Note that we are using the following features as described in the tutorial for running 405B model Tutorial: Deploying
Llama3.1 405B (Trn2)

• Logical NeuronCore Configuration (LNC)

• Tensor parallelism (TP) on Trn2

• Optimized Kernels

The script compiles the model and runs generation on the given input prompt. Please refer to NxD Inference API
Reference for more information on these inference_demo flags. Note the path we used to save the compiled model.
This path should be used when launching vLLM server for inference so that the compiled model can be loaded without
recompilation.

Note: Known issue: Using kernels with bucket length of 1024 or less may lead to Numerical Error in inference.

RuntimeError: Failed to execute the model status=1003 message=Numerical Error

# Replace this with the path where you downloaded and saved the model files.
MODEL_PATH="/home/ubuntu/models/Llama-3.1-405B-Instruct/"
# This is where the compiled model will be saved. The same path
# should be used when launching vLLM server for inference.
COMPILED_MODEL_PATH="/home/ubuntu/traced_model/Llama-3.1-405B-Instruct/"

NUM_CORES=128
TP_DEGREE=64
LNC=2

export NEURON_RT_VIRTUAL_CORE_SIZE=$LNC
export NEURON_RT_NUM_CORES=$((NUM_CORES/NEURON_RT_VIRTUAL_CORE_SIZE))
export NEURON_RT_EXEC_TIMEOUT=600

inference_demo \
--model-type llama \
--task-type causal-lm \

run \
--model-path $MODEL_PATH \
--compiled-model-path $COMPILED_MODEL_PATH \
--torch-dtype bfloat16 \
--start_rank_id 0 \
--local_ranks_size $TP_DEGREE \
--tp-degree $TP_DEGREE \
--batch-size 1 \
--max-context-length 12288 \

(continues on next page)
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--seq-len 12800 \
--on-device-sampling \
--top-k 1 \
--fused-qkv \
--sequence-parallel-enabled \
--qkv-kernel-enabled \
--attn-kernel-enabled \
--mlp-kernel-enabled \
--cc-pipeline-tiling-factor 1 \
--pad-token-id 2 \
--enable-bucketing \
-—context-encoding-buckets 2048 4096 10240 12288 \
-—token-generation-buckets 12800 \
--prompt "What is annapurna labs?" 2>&1 | tee log

The above script will compile a Neuron model for this base-case configuration, and also run generate on the example
prompt specified with the -prompt flag. You can change this prompt to your prompt of choice. The script’s output
will be written into log, a log file in the working directory.

In addition, in the subsequent runs of this script, you can add a --skip-compile flag to skip the compiling step since
the model is already compiled in the first run of the script. This will allow you to test the model with different prompts.

Step 2: Start the Vllm server with the compiled Neuron model

After compiling the model, you can run the model using vLLM. Save the contents of the below script to another shell
script file, for example, start_vllm.sh and then run it.

export NEURON_RT_VIRTUAL_CORE_SIZE=2

MODEL_PATH="/home/ubuntu/models/Llama-3.1-405B-Instruct"
COMPILED_MODEL_PATH="/home/ubuntu/traced_models/Llama-3.1-405B-Instruct"

export VLLM_NEURON_FRAMEWORK="neuronx-distributed-inference"
export NEURON_COMPILED_ARTIFACTS=$COMPILED_MODEL_PATH
VLLM_RPC_TIMEOUT=100000 python -m vllm.entrypoints.openai.api_server \

-—model $MODEL_PATH \
-—max-num-seqs 1 \
-—max-model-len 12800 \
-—tensor-parallel-size 64 \
-—device neuron \
-—use-v2-block-manager \
-—override-neuron-config "{}" \
-—port 8000 & PID=$!

echo "vLLM server started with PID $PID"
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Step 3: Measure performance using LLMPerf

After the above steps, the vllm server should be running. Before we can use the llmperf package, we need to make a
few changes to its code. Follow benchmarking with LLMPerf guide to apply the code changes.

We can now measure the performance using llmperf. Below is a sample shell script to run llmperf. More information
about several arguments used in the script can be found in the llmperf open source code .

# This should be the same path to which the model was downloaded (also used in the above␣
→˓steps).
MODEL_PATH="/home/ubuntu/models/Llama-3.1-405B-Instruct"
# This is the name of directory where the test results will be saved.
OUTPUT_PATH=llmperf-results-sonnets

export OPENAI_API_BASE="http://localhost:8000/v1"
export OPENAI_API_KEY="mock_key"

python token_benchmark_ray.py \
--model $MODEL_PATH \
--mean-input-tokens 10000 \
--stddev-input-tokens 0 \
--mean-output-tokens 1500 \
--stddev-output-tokens 0 \
--num-concurrent-requests 1\
--timeout 3600 \
--max-num-completed-requests 50 \
--additional-sampling-params '{}' \
--results-dir $OUTPUT_PATH \
--llm-api "openai"

The output for this llama-3.1-405B model run for the base case is shown below. Please note that the numbers can
slightly vary between runs but should be in the same order of magnitude.

Results for token benchmark for /home/ubuntu/models/llama-3.1-405b queried with the␣
→˓openai api.

inter_token_latency_s
p25 = 0.03783673520494379
p50 = 0.037929154633788834
p75 = 0.03799374728198055
p90 = 0.03806084386428147
p95 = 0.03818095359194858
p99 = 0.03862880035825585
mean = 0.03790912092492011
min = 0.03711292916794487
max = 0.03867580939426865
stddev = 0.0002364662521116205

ttft_s
p25 = 2.437347081664484
p50 = 2.441959390998818
p75 = 2.4439403364085592
p90 = 2.444729209714569
p95 = 2.445114637189545
p99 = 79.22927707570342

(continues on next page)

3.2. NxD Inference 669

https://github.com/ray-project/llmperf/blob/main/token_benchmark_ray.py


AWS Neuron

(continued from previous page)

mean = 5.451600373298861
min = 2.427013176959008
max = 153.00210832804441
stddev = 21.29264628138615

end_to_end_latency_s
p25 = 70.06310007086722
p50 = 70.09642704750877
p75 = 70.1557097924524
p90 = 70.28295350184199
p95 = 70.56055794338462
p99 = 148.28325726192182
mean = 73.19207735829521
min = 70.00512732309289
max = 222.50397142698057
stddev = 21.54750467688136

request_output_throughput_token_per_s
p25 = 25.417755028050912
p50 = 25.463487985775544
p75 = 25.522234144656743
p90 = 25.6487981126861
p95 = 25.729858763245502
p99 = 25.90146713883131
mean = 25.13808905954906
min = 8.080754642125802
max = 26.021214285642255
stddev = 2.465472136291901

number_input_tokens
p25 = 10000.0
p50 = 10000.0
p75 = 10000.0
p90 = 10000.0
p95 = 10000.0
p99 = 10000.0
mean = 10000.0
min = 10000
max = 10000
stddev = 0.0

number_output_tokens
p25 = 1783.0
p50 = 1785.0
p75 = 1789.75
p90 = 1798.1
p95 = 1803.55
p99 = 1816.67
mean = 1787.92
min = 1779
max = 1825
stddev = 8.54720386310933

Number Of Errored Requests: 0
Overall Output Throughput: 24.421011092151268
Number Of Completed Requests: 50
Completed Requests Per Minute: 0.8195336846889548
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Scenario 2: Run Llama-3.1-405b inference with fp8 weights and fused speculation (with draft model)

Step 1: Rescale the model weights to use Neuron FP8 format and save the modules to not convert
file in model path

Since Neuron device only supports the FP8_EXP4 (IEEE-754) data type, and the HuggingFace FP8 checkpoint for
Llamma-405b is in a different FP8 format (OCP FP8 E4M3/e4m3fn) which has a different range, we need to rescale
the public model weights. Follow this guide to rescale the FP8 model weights from HuggingFace: link.

Running a quantized model requires us to create modules to not convert json file to explicitly mention the layers which
are not quantized in the model. For this tutorial we can use the following file.

Download: modules_to_not_convert.json

Next we will compile and run the model and record performance metrics.

Step 2: Compile the model and run generate

We will first compile and run generation on a sample prompt using a command installed by
neuronx-distributed-inference. Save the contents of the below script to your favorite shell script file,
for example, compile_model.sh and then run it.

Note that we are using the following features as described in the tutorial for running 405B model Tutorial: Deploying
Llama3.1 405B (Trn2)

• Logical NeuronCore Configuration (LNC)

• Tensor parallelism (TP) on Trn2

• Optimized Kernels

The compiling script is similar to the one in part 1. Note that we have added the path for the draft model.

Note: Known issue: Using kernels with bucket length of 1024 or less may lead to Numerical Error in inference.

RuntimeError: Failed to execute the model status=1003 message=Numerical Error

# Replace this with the path where you downloaded and saved the model files.
MODEL_PATH="/home/ubuntu/models/Llama-3.1-405B-Instruct-FP8-rescaled/"
# Replace this with the path where you downloaded and saved the draft model files.
DRAFT_MODEL_PATH="/home/ubuntu/models/Llama-3.2-1b-instruct/"
# This is where the compiled model (.pt file) and sharded checkpoints will be saved. The␣
→˓same path
# should be used when launching vLLM server for inference.
COMPILED_MODEL_PATH="/home/ubuntu/traced_model/Llama-3.1-405B-Instruct/"
# Add a modules to not convert json file to the model path to specify non quantized␣
→˓modules.
MTNC_FILE_PATH="/home/ubuntu/models/Llama-3.1-405B-Instruct-FP8-rescaled/modules_to_not_
→˓convert.json"

NUM_CORES=128
TP_DEGREE=64
LNC=2

(continues on next page)
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export NEURON_RT_VIRTUAL_CORE_SIZE=$LNC
export NEURON_RT_NUM_CORES=$((NUM_CORES/NEURON_RT_VIRTUAL_CORE_SIZE))
export NEURON_RT_EXEC_TIMEOUT=600
export XLA_HANDLE_SPECIAL_SCALAR=1
export UNSAFE_FP8FNCAST=1

inference_demo \
-—model-type llama \
-—task-type causal-lm \
run \

-—model-path $MODEL_PATH \
-—compiled-model-path $COMPILED_MODEL_PATH \
-—torch-dtype bfloat16 \
-—start_rank_id 0 \
-—local_ranks_size $TP_DEGREE \
-—tp-degree $TP_DEGREE \
-—batch-size 1 \
-—max-context-length 12288 \
-—seq-len 12800 \
-—on-device-sampling \
-—top-k 1 \
-—fused-qkv \
-—sequence-parallel-enabled \
-—qkv-kernel-enabled \
-—attn-kernel-enabled \
-—mlp-kernel-enabled \
-—cc-pipeline-tiling-factor 1 \
-—draft-model-path $DRAFT_MODEL_PATH \
-—enable-fused-speculation \
-—speculation-length 7 \
-—pad-token-id 2 \
-—quantized-mlp-kernel-enabled \
-—quantization-type per_channel_symmetric \
-—rmsnorm-quantize-kernel-enabled \
-—enable-bucketing \
-—prompt "What is annapurna labs?" \
--modules-to-not-convert-file $MTNC_FILE_PATH \
-—context-encoding-buckets 2048 4096 10240 12288 \
-—token-generation-buckets 12800 2>&1 | tee compile_and_generate_log

The above script will compile a Neuron model with fused speculation, and also run generate on the example prompt
specified with the -prompt flag. Please refer to NxD Inference API Reference for more information on these
inference_demo flags.

You can change this prompt to your prompt of choice. The script’s output will be written into
compile_and_generate_log, a log file in the working directory.

In this script, we also turn on some additional environment variables: XLA_HANDLE_SPECIAL_SCALAR and
UNSAFE_FP8FNCAST to enable Neuron compiler to treat rescaled FP8FN weights as FP8_EXP4 weights.

In addition, in the subsequent runs of this script, you can add a --skip-compile flag to skip the compiling step since
the model is already compiled in the first run of the script. This will allow you to test the model with different prompts.
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Step 3: Start the Vllm server with the compiled Neuron model

After compiling the model, you can run the model using vLLM. Save the contents of the below script to another shell
script file, for example, start_vllm.sh and then run it.

export NEURON_RT_INSPECT_ENABLE=0
export NEURON_RT_VIRTUAL_CORE_SIZE=2
export XLA_HANDLE_SPECIAL_SCALAR=1
export UNSAFE_FP8FNCAST=1

MODEL_PATH="/home/ubuntu/models/Llama-3.1-405B-Instruct-FP8-rescaled"
DRAFT_MODEL_PATH="/home/ubuntu/models/Llama-3.2-1b-instruct"
COMPILED_MODEL_PATH="/home/ubuntu/traced_models/Llama-3.1-405B-Instruct_fp8"

export VLLM_NEURON_FRAMEWORK="neuronx-distributed-inference"
export NEURON_COMPILED_ARTIFACTS=$COMPILED_MODEL_PATH
VLLM_RPC_TIMEOUT=100000 python -m vllm.entrypoints.openai.api_server \

-—model $MODEL_PATH \
-—max-num-seqs 1 \
-—max-model-len 12800 \
-—tensor-parallel-size 64 \
-—device neuron \
-—speculative-max-model-len 12800 \
-—speculative-model $DRAFT_MODEL_PATH \
-—num-speculative-tokens 7 \
-—use-v2-block-manager \
-—override-neuron-config "{\"enable_fused_speculation\":true, \"quantized-mlp-kernel-

→˓enabled\":true, \"quantization-type\":\"per_channel_symmetric\", \"skip_warmup\": true}
→˓" \

-—port 8000 & PID=$!
echo "vLLM server started with PID $PID"

Step 4: Measure performance using LLMPerf

After the above steps, the vllm server should be running. Before we can use the llmperf package, we need to make a
few changes to its code. Follow benchmarking with LLMPerf guide to apply the code changes.

We can now measure the performance using llmperf. Run the following script with the modified llmperf package.

# This should be the same path to which the model was downloaded (also used in the above␣
→˓steps).
MODEL_PATH="/home/ubuntu/models/Llama-3.1-405B-Instruct-FP8-rescaled"
# This is the name of directory where the test results will be saved.
OUTPUT_PATH=llmperf-results-sonnets

export OPENAI_API_BASE="http://localhost:8000/v1"
export OPENAI_API_KEY="mock_key"

python token_benchmark_ray.py \
--model $MODEL_PATH \

(continues on next page)
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--mean-input-tokens 10000 \
--stddev-input-tokens 0 \
--mean-output-tokens 1500 \
--stddev-output-tokens 0 \
--num-concurrent-requests 1\
--timeout 3600 \
--max-num-completed-requests 50 \
--additional-sampling-params '{}' \
--results-dir $OUTPUT_PATH \
--llm-api "openai"

The output for this llama-3.1-405B model run with fused speculation with fused spec is shown below. Please note that
the numbers can slightly vary between runs but should be in the same order of magnitude.

Results for token benchmark for /home/ubuntu/models/Llama-3.1-405B-Instruct-FP8-rescaled␣
→˓queried with the openai api.

inter_token_latency_s
p25 = 0.008220573497974934
p50 = 0.008265312568750231
p75 = 0.008438719224417583
p90 = 0.00848199803312309
p95 = 0.008495625438929224
p99 = 0.011143428944987235
mean = 0.008419798457414533
min = 0.008173695931987216
max = 0.01364151847269386
stddev = 0.0007612118573477839

ttft_s
p25 = 2.2543624382815324
p50 = 2.254961202503182
p75 = 2.2576071268413216
p90 = 2.2596270388457924
p95 = 2.260639927221928
p99 = 2.2628143909573555
mean = 2.256157155628316
min = 2.2534945809748024
max = 2.2629711360204965
stddev = 0.0023667267664955545

end_to_end_latency_s
p25 = 14.586015026085079
p50 = 14.65608573507052
p75 = 14.91364526405232
p90 = 14.977840351965279
p95 = 15.000083449739032
p99 = 18.969864878777866
mean = 14.886235136194154
min = 14.520539953839034
max = 22.716861865017563
stddev = 1.1415236552464672

request_output_throughput_token_per_s
p25 = 100.64608830743339

(continues on next page)
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p50 = 102.4148205461138
p75 = 102.90679421801005
p90 = 103.02201242683091
p95 = 103.26614794565539
p99 = 103.36118277211666
mean = 101.22055373532301
min = 66.0742671641385
max = 103.37081160698546
stddev = 5.19249551094185

number_input_tokens
p25 = 10000.0
p50 = 10000.0
p75 = 10000.0
p90 = 10000.0
p95 = 10000.0
p99 = 10000.0
mean = 10000.0
min = 10000
max = 10000
stddev = 0.0

number_output_tokens
p25 = 1501.0
p50 = 1501.0
p75 = 1501.0
p90 = 1501.0
p95 = 1501.0
p99 = 1501.0
mean = 1501.0
min = 1501
max = 1501
stddev = 0.0

Number Of Errored Requests: 0
Overall Output Throughput: 100.69986490153724
Number Of Completed Requests: 50
Completed Requests Per Minute: 4.025311055357918

Conclusion

As seen from the table below, draft model based fused speculative decoding and quantization significantly improved
inference performance: TPOT reduced by 4x and output token throughput increased by 4x, while TTFT decreased
from 2442 ms to 2255 ms compared to baseline without speculative decoding. Please note that batch size of 1 is used
in this tutorial for computing the below metrics.

Scenario (all using BF16) TTFT (P50
in ms)

TPOT (P50
in ms)

Output token Throughput
(per second)

No speculative decoding 2442 37.9 25.46
Fused speculative decoding + rescaled weights
(Llama 3.2 1B Draft)

2255 8.27 102.41
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Tutorial: Evaluating Accuracy of Llama-3.1-70B on Neuron using open source datasets

Introduction

This tutorial provides a step-by-step guide to measure the accuracy of Llama3.1 70B on Trn1 with evaluation on two
distinct tasks: mathematical reasoning and logical analysis.

For this tutorial we use two datasets available in lm-eval, namely gsm8k_cot (high school math questions) and
mmlu_flan_n_shot_generative_logical_fallacies (multiple choice questions on the subject) to demonstrate
accuracy evaluation on Trn1. The metrics in these task are two variants of ExactMatch metrics called StrictMatch and
FlexibleExtract which differ in how strict they are in extracting the final answer from the generated output from the
model. To see the exact task definition used in lm-eval please look at gsm8k-cot and mmlu template.

We also need the instruction-tuned version of llama-3.1 70b meta-llama/Llama-3.1-70B-Instruct available hugging
face.

Task Overview

1. GSM8K with Chain-of-Thought (gsm8k_cot)

The GSM8K dataset focuses on grade school math word problems, testing LLMs’ mathematical reasoning capabilities.
Using Chain-of-Thought (CoT) prompting, we evaluate models’ ability to:

• Solve complex math word problems

• Show step-by-step reasoning

• Arrive at accurate numerical answers

2. MMLU Logical Fallacies (mmlu_flan_n_shot_generative_logical_fallacies)

This evaluation focuses on the model’s ability to identify and explain logical fallacies, a subset of the MMLU bench-
mark. The task tests:

• Understanding of common logical fallacies

• Ability to analyze arguments

• Explanation of reasoning flaws

Environment Setup Guide

Prerequisites

This tutorial requires that you have a Trn1 instance created from a Deep Learning AMI that has the Neuron SDK
pre-installed. Also we depend on our fork of vLLM as described in the vLLM User Guide for NxD Inference.

Before running evaluations, ensure your environment is properly configured by following these essential setup guides:

1. NxD Inference Setup Guide

• Configure AWS Neuron environment

• Set up required dependencies

• Verify system requirements
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2. vLLM User Guide for NxD Inference

• Setup vLLM according to the guide

Installing dependencies

Copy the inference-benchmarking directory to some location on your instance. Change directory to the your copy of
inference-benchmarking. Install other required dependencies in the same python env (e.g aws_neuron_venv_pytorch
if you followed manual install NxD Inference ) by:

!pip install -r requirements.txt

Download llama-3.1 70B

To use this sample, you must first download meta-llama/Llama-3.1-70B-Instruct model checkpoint from Hugging Face
/home/ubuntu/models/Llama-3.1-70B-Instruct/ on the Trn1 instance. For more information, see Downloading models
in the Hugging Face documentation.

Running Evaluations

There are two methods that you can use the evaluation scirpts to run your evaluation.

1. Using a yaml configuration file and accuracy.py script

2. writing your own python script that uses several components provided in accuracy.py and server_config.py

We demonstrate each use case separately here.

1. Running eval with yaml config file

In this method all you need is to create a yaml config file that specifies the server configuration and testing scenario
you want to run. Create config.yaml with the following content.

server:
name: "Llama-3.1-70B-Instruct"
model_path: "/home/ubuntu/models/Llama-3.1-70B-Instruct/"
model_s3_path: null
compiled_model_path: "/home/ubuntu/traced_models/Llama-3.1-70B-Instruct"
max_seq_len: 16384
context_encoding_len: 16384
tp_degree: 32
n_vllm_threads: 32
server_port: 8000
continuous_batch_size: 1

test:
accuracy:
mytest:
client: "lm_eval"
datasets: ["gsm8k_cot", "mmlu_flan_n_shot_generative_logical_fallacies"]
max_concurrent_requests: 1

(continues on next page)
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timeout: 3600
client_params:
limit: 200
use_chat: True

For tasks that require higher sequence length you need to adjust max_seq_len. For the tasks in this tutorial 16384
would suffice.

Run python accuracy.py --config config.yaml

2. Running eval through your own python code

You might be interested in running the evaluation in you python code. For instance if you want to change the configura-
tion programatically or post-process the results. This is possible using 3 main components provided in accuracy.py
and server_config.py.

1. Server Configuration: Using ServerConfig to define the vLLM server settings

2. Accuracy Scenario: Using AccuracyScenario to specify evaluation parameters

3. Test Execution: Running the evaluation with the configured settings

Step-by-Step Implementation

First, import the necessary components:

from accuracy import AccuracyScenario, run_accuracy_test
from server_config import ServerConfig

1. Configure the Server

Set up your server configuration with ServerConfig. This example uses Llama 3.1-8b Instruct:

name = "Llama-3.1-70B-Instruct"
server_config = ServerConfig(

name=name,
model_path=f"/home/ubuntu/models/{name}", # Local model path
model_s3_path=None, # S3 model path
max_seq_len=16384, # Maximum sequence length
context_encoding_len=16384, # Context window size
tp_degree=32, # Tensor parallel degree
n_vllm_threads=32, # Number of vLLM threads
server_port=8000, # Server port
continuous_batch_size=1, # Batch size for continuous batching

)
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2. Define the Evaluation Scenario

Create an AccuracyScenario to specify your evaluation parameters:

scenario = AccuracyScenario(
client="lm_eval", # Evaluation client
datasets=[ # Target datasets

"gsm8k_cot",
"mmlu_flan_n_shot_generative_logical_fallacies",

],
max_concurrent_requests=1, # Maximum concurrent requests
timeout=3600, # Timeout in seconds
client_params={"limit": 200} # Client-specific parameters

)

3. Run the Evaluation

Execute the evaluation using run_accuracy_test:

# Run the test with a named scenario
results_collection = run_accuracy_test(

server_config=server_config,
named_scenarios={"mytest": scenario}

)

# Display results
print(results_collection)

This code will execute the evaluation on the specified datasets and return detailed performance metrics. The results
include accuracy scores and other relevant metrics for each dataset.

Tutorial: Disaggregated Inference on Trn2 [BETA]

Overview

This tutorial will mainly cover how to run Disaggregated Inference (DI) 1P1D (1 prefill, 1 Decode) either on a single
Trn2 instance (1P and 1D both are on same instance) or on 2 instances (1P and 1D are on separate instances). It
will provide scripts that can setup both single and multi instance workflows. Next, the tutorial will demonstrate how
to benchmark DI. Finally, we show how to benchmark non Disaggregated Inference (non-DI) continuous batching to
compare results between DI vs. non-DI.

Read the DI Developer Guide for more detailed information.

Note: This tutorial was tested on trn2.48xlarge but its concepts are also be applicable to trn1.32xlarge.
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Set up and connect trn2.48xlarge instance

As a prerequisite, this tutorial requires that you have one or two Trn2 instances with Neuron SDK, Neuron vLLM and
Elastic Fabric Adapter (EFA) enabled and installed. The Neuron Deep Learning AMI comes with Neuron dependencies
and EFA enabled and installed so it is the recommended way to run this tutorial.

To set up a Trn2 instance using Deep Learning AMI with pre-installed Neuron SDK, see NxD Inference Setup Guide.

Note: Disaggregated Inference is only supported on Neuron instances with EFA enabled (trn1.32xlarge or
trn2.48xlarge). EFA is still required even when running single instance as the KV cache transfer happens through
EFA.

If you choose to manually install NxD Inference follow the EFA setup guide to install and enable EFA.

If running multi-instance it is recommended to have shared storage between the two instances to avoid having to down-
load, compile and save scripts twice. For more details, see documentation on mounting EFS or FSX filesystems.

After setting up an instance, use SSH to connect to the Neuron instance(s) using the key pair that you chose when you
launched the instance.

After you are connected, activate the Python virtual environment that includes the Neuron SDK.

source ~/aws_neuronx_venv_pytorch_2_7_nxd_inference/bin/activate

Install the Neuron vLLM fork into the virtual environment(s).

git clone -b neuron-2.24-vllm-v0.7.2 https://github.com/aws-neuron/upstreaming-to-vllm.
→˓git
cd upstreaming-to-vllm
pip install -r requirements-neuron.txt
VLLM_TARGET_DEVICE="neuron" pip install -e .
cd ..

For more information see vLLM User Guide for NxD Inference.

Run pip list to verify that the Neuron SDK is installed.

pip list | grep neuron

You should see Neuron packages including neuronx-distributed-inference and neuronx-cc and vllm.

Download Dependencies

To use this sample, you must first download a Llama-3.3-70B-Instruct model checkpoint from Hugging Face to a local
path on the Trn2 instance. Note that you may need access from Meta for model download. For more information, see
Downloading models in the Hugging Face documentation.
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Compile the model

Compile the model for Neuron by using the following compile.sh script.

#!/bin/bash
# copy and paste me into a file called compile.sh
# then run chmod +x compile.sh

# Parse command line arguments
while [[ $# -gt 0 ]]; do

case $1 in
--tp-degree)

TP_DEGREE="$2"
shift 2
;;

--batch-size)
BATCH_SIZE="$2"
shift 2
;;

--model-path)
MODEL_PATH="$2"
shift 2
;;

*)
echo "Unknown parameter: $1"
echo "Usage: $0 --tp-degree <value> --batch-size <value> --model-path <path>"
exit 1
;;

esac
done

export COMPILED_MODEL_PATH="di_traced_model_tp${TP_DEGREE}_b${BATCH_SIZE}/"

inference_demo \
--model-type llama \
--task-type causal-lm \
run \
--model-path $MODEL_PATH \
--compiled-model-path $COMPILED_MODEL_PATH \
--torch-dtype bfloat16 \
--tp-degree $TP_DEGREE \
--batch-size $BATCH_SIZE \
--ctx-batch-size 1 \
--tkg-batch-size $BATCH_SIZE \
--is-continuous-batching \
--max-context-length 8192 \
--seq-len 8192 \
--on-device-sampling \
--fused-qkv \
--global-topk 256 --dynamic \
--top-k 50 --top-p 0.9 --temperature 0.7 \
--do-sample \
--sequence-parallel-enabled \

(continues on next page)
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--qkv-kernel-enabled \
--attn-kernel-enabled \
--mlp-kernel-enabled \
--cc-pipeline-tiling-factor 1 \
--pad-token-id 2 \
--logical-neuron-cores 2 \
--context-encoding-buckets 256 512 1024 2048 4096 8192 \
--token-generation-buckets 512 1024 2048 4096 8192 \
--apply-seq-ids-mask \
--enable-bucketing \
--prompt "test prompt" \
--save-sharded-checkpoint \
--attn-block-tkg-nki-kernel-enabled \
--attn-block-tkg-nki-kernel-cache-update \
--k-cache-transposed \
--async-mode \
--compile-only

The --apply-seq-ids-mask flag is required for DI because it tells Neuron to only update the KV cache of the current
sequence ID to ensure KV cache integrity, and ultimately, accuracy.

Multi-Instance

For multi-instance run:

./compile.sh --tp-degree 64 --batch-size 4 --model-path path/to/your/downloaded/model

Single-Instance

For single-instance run:

./compile.sh --tp-degree 32 --batch-size 4 --model-path path/to/your/downloaded/model

We compile for tp-degree=32 because 1 prefill server will take up half of the Neuron Cores cores while the decode
server will take up the other half.

Launch the Prefill and Decode Servers

We provide a script called server.sh, which you can use to launch prefill and decode servers.

NEURON_RT_ASYNC_SENDRECV_EXPERIMENTAL_ENABLED=1 is currently required as DI is still in beta.
NEURON_RT_ASYNC_SENDRECV_BOOTSTRAP_PORT=45645 is required to tell the Neuron Runtime which port to
use for KV Cache transfer communications. NEURON_RT_ASYNC_EXEC_MAX_INFLIGHT_REQUESTS=2 enables
Asynchronous Runtime Support

The KVTransferConfig provided to both servers on startup have key information.
kv_connector=NeuronConnector lets vLLM know to use the Neuron implementation for KV cache transfer.
kv_role=producer lets vLLM know that this server’s job is to do prefill. kv_role=consumer lets vLLM know that
this server’s job is to do decode. neuron_core_offset=n lets vLLM know that the model is hosted starting on the
nth Neuron Core.
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#!/bin/bash
# copy and paste me into a file called server.sh
# then run chmod +x server.sh

#!/bin/bash

# Parse command line arguments
while [[ $# -gt 0 ]]; do

case $1 in
--tp-degree)

TP_DEGREE="$2"
shift 2
;;

--batch-size)
BATCH_SIZE="$2"
shift 2
;;

--model-path)
MODEL_PATH="$2"
shift 2
;;

--compiled-model-path)
COMPILED_MODEL_PATH="$2"
shift 2
;;

--send-ip)
SEND_IP="$2"
shift 2
;;

--recv-ip)
RECV_IP="$2"
shift 2
;;

*)
echo "Unknown parameter: $1"
echo "Usage: $0 --tp-degree <value> --batch-size <value> --model-path <path>␣

→˓\
--compiled-model-path <path> --send-ip <ip> --recv-ip <ip>"

exit 1
;;

esac
done

export NEURON_RT_ASYNC_SENDRECV_BOOTSTRAP_PORT=45645
export NEURON_RT_ASYNC_SENDRECV_EXPERIMENTAL_ENABLED=1
export NEURON_COMPILED_ARTIFACTS="$COMPILED_MODEL_PATH"
export NEURON_SEND_IP="$SEND_IP"
export NEURON_RECV_IP="$RECV_IP"
export NEURON_RT_ASYNC_EXEC_MAX_INFLIGHT_REQUESTS=2

if [ "$SEND" = "1" ]; then
PORT=8100
if [ "$SINGLE_INSTANCE" = "1" ]; then

(continues on next page)
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export NEURON_RT_VISIBLE_CORES=0-31
fi
TRANSFER_CONFIG='{

"kv_connector":"NeuronConnector",
"kv_buffer_device":"cpu",
"kv_role":"kv_producer",
"kv_rank":0,
"kv_parallel_size":2,
"kv_buffer_size":2e11,
"kv_ip":"'"$NEURON_SEND_IP"'",
"neuron_core_offset": 0

}'

else
PORT=8200
if [ "$SINGLE_INSTANCE" = "1" ]; then

NC_OFFSET=32
export NEURON_RT_VISIBLE_CORES=32-63

else
NC_OFFSET=0

fi
TRANSFER_CONFIG='{

"kv_connector":"NeuronConnector",
"kv_buffer_device":"cpu",
"kv_role":"kv_consumer",
"kv_rank":1,
"kv_parallel_size":2,
"kv_buffer_size":2e11,
"kv_ip":"'"$NEURON_SEND_IP"'",
"neuron_core_offset": "'"$NC_OFFSET"'"

}'
fi

python3 -m vllm.entrypoints.openai.api_server \
--model "$MODEL_PATH" \
--max-num-seqs "$BATCH_SIZE" \
--max-model-len 8192 \
--tensor-parallel-size "$TP_DEGREE" \
--device neuron \
--use-v2-block-manager \
--override-neuron-config "{}" \
--kv-transfer-config "$TRANSFER_CONFIG" \
--port "$PORT"

You may need multiple terminals to run the following commands.

For multi-instance choose one instance to be your prefill instance and one instance to be your decode instance. Get
the IP addresses of them by running hostname -i and use them in the commands below. Single instance can use
127.0.0.1 as the IP address since prefill and decode always run on the same instance.
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Multi-Instance

To launch a prefill server for multi-instance run:

SEND=1 ./server.sh --tp-degree 64 --batch-size 4 \
--model-path path/to/your/downloaded/model \
--compiled-model-path di_traced_model_tp64_b4/ \
--neuron-send-ip prefill_ip --neuron-recv-ip decode_ip

To launch a decode server open up a new tab and run:

./server.sh --tp-degree 64 --batch-size 4 \
--model-path path/to/your/downloaded/model \
--compiled-model-path di_traced_model_tp64_b4/ \
--neuron-send-ip prefill_ip --neuron-recv-ip decode_ip

Single-Instance

To launch a prefill server for single-instance run:

SEND=1 SINGLE_INSTANCE=1 ./server.sh --tp-degree 32 --batch-size 4 \
--model-path path/to/your/downloaded/model \
--compiled-model-path di_traced_model_tp32_b4/ \
--neuron-send-ip 127.0.0.1 --neuron-recv-ip 127.0.0.

→˓1

To launch a decode server open up a new tab and run:

SINGLE_INSTANCE=1 ./server.sh --tp-degree 32 --batch-size 4 \
--model-path path/to/your/downloaded/model \
--compiled-model-path di_traced_model_tp32_b4/ \
--neuron-send-ip 127.0.0.1 --neuron-recv-ip 127.0.0.1

When you see the line INFO: Uvicorn running on http://0.0.0.0:8100 (Press CTRL+C to quit) on
your prefill and decode server tabs your servers are ready.

Launch a Router (Proxy Server)

Both servers need to receive a request to run inference. The component that does this job is called the router as
mentioned in DI Developer Guide. We offer an implementation of a router called the neuron-proxy-server. The
neuron-proxy-server is an entrypoint in our fork of vLLM which launches a proxy server that will take a request
and forward it to both the prefill and decode servers. It will then capture their responses and format them back to the
user.

The implementation of the neuron-proxy-server can be found here.

For multi-instance run the router as another process on your prefill instance. For single-instance run the router as
another process on your Trn2.

A router can run on any instance that has a connection to both the prefill and decode nodes. For multi-instance 1P1D,
it makes the most sense to have the router on the prefill node to reduce network latency.

Launch the proxy server by running:
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pip install quart # only install one time
neuron-proxy-server --prefill-ip your_prefill_ip --decode-ip your_decode_ip --prefill-
→˓port 8100 --decode-port 8200

The proxy server is ready when you see the line INFO:hypercorn.error:Running on http://127.0.0.1:8000
(CTRL + C to quit)

Test the DI Setup

Run a sanity check to see if you DI setup is working by sending a curl request to the neuron-proxy-server:

curl -s http://localhost:8000/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "path/to/your/downloaded/model",
"prompt": ["a tornado is a"],
"max_tokens": 10,
"temperature": 0
}'

A successful response looks like: {"id": ... :[{"index":0,"text":" rotating column of air that
forms during severe thunderstorms" ... }

The neuron-proxy-server also supports the streaming of responses. It can be tested by:

curl -s http://localhost:8000/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "path/to/your/downloaded/model",
"prompt": ["a tornado is a"],
"max_tokens": 10,
"temperature": 0,
"stream": true
}'

Benchmark the DI Setup

Install LLMPerf

We will use LLMPerf to measure the performance.

LLMPerf will send requests to the neuron-proxy-server and capture data including Time To First Token, Inter
Token Latency and throughput.

Install llmperf into the aws_neuronx_venv_pytorch_2_7_nxd_inference virtual environment.

For multi-instance LLMperf is only required to be installed on the prefill instance where you will run benchmarking.

git clone https://github.com/ray-project/llmperf.git
cd llmperf
pip install -e .
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Once you have installed LLMPerf, apply the neuron_perf.patch as described in LLM Inference Benchmarking guide.

Next use the llmperf.sh script to run benchmarks.

#!/bin/bash
# copy and paste me into a file called llmperf.sh
# then run chmod +x llmperf.sh

# Set environment variables
export OPENAI_API_BASE="http://localhost:8000/v1"
export OPENAI_API_KEY="mock_key"

python llmperf/token_benchmark_ray.py \
--model=$MODEL_PATH \
--tokenizer=$MODEL_PATH \
--mean-input-tokens=1024 \
--stddev-input-tokens=0\
--mean-output-tokens=100 \
--stddev-output-tokens=10 \
--max-num-completed-requests=200 \
--timeout=1720000 \
--num-concurrent-requests=4 \
--results-dir=llmperf_results \
--llm-api=openai \
--additional-sampling-params "{\"top_k\": 50, \"top_p\": 0.9, \"temperature\": 0.7}"

Since the llmperf.sh script sends requests to localhost, it should be run on the same instance the router is running
on.

In multi-instance that means as a separate process on your prefill instance. For single instance that means a separate
process on your Trn2.

MODEL_PATH=path/to/your/downloaded/model ./llmperf.sh

This will run a total of 200 requests and your final output should have the line: Completed Requests Per Minute:
xx.xxxxxxx. Scroll up to see metrics such as Inter Token Latency and Time To First Token.

Benchmark a Non-DI Continuous Batching Setup for Comparison

To compare Disaggregated Inference against non-DI continuous batching we will run benchmarks without Disaggre-
gated Inference.

First kill all DI servers. Then kill the neuron-proxy-server.

We will run the same compiled model as a singular server for non-DI benchmarks. For single instance non-DI bench-
marking we will start one TP=32 server. For multi-instance non-DI benchmarking we will start one TP=64 server.
This means you do not need your second (decode) instance for this step. Latency can be compared directly in DI vs
non-DI benchmarks. You might need to adjust the throughput related metrics based on number of instances to compare
apples-to-apples between DI and non-D1. In this case, Non-DI throughput should be doubled before comparing with
DI as the non-DI benchmark uses half the amount of hardware.

Use the baseline_server.sh to launch a vLLM server without DI.

#!/bin/bash
# copy and paste me into a file called baseline_server.sh

(continues on next page)
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# then run chmod +x baseline_server.sh

#!/bin/bash

# Parse command line arguments
while [[ $# -gt 0 ]]; do

case $1 in
--tp-degree)

TP_DEGREE="$2"
shift 2
;;

--batch-size)
BATCH_SIZE="$2"
shift 2
;;

--model-path)
MODEL_PATH="$2"
shift 2
;;

--compiled-model-path)
COMPILED_MODEL_PATH="$2"
shift 2
;;

*)
echo "Unknown parameter: $1"
echo "Usage: $0 --tp-degree <value> --batch-size <value> --model-path <path>␣

→˓\
--compiled-model-path <path>"

exit 1
;;

esac
done

export NEURON_COMPILED_ARTIFACTS="$COMPILED_MODEL_PATH"
export NEURON_RT_ASYNC_EXEC_MAX_INFLIGHT_REQUESTS=2

if [ "$SINGLE_INSTANCE" = "1" ]; then
NEURON_RT_VISIBLE_CORES=0-31

fi

python3 -m vllm.entrypoints.openai.api_server \
--model "$MODEL_PATH" \
--max-num-seqs "$BATCH_SIZE" \
--max-model-len 8192 \
--tensor-parallel-size "$TP_DEGREE" \
--device neuron \
--use-v2-block-manager \
--override-neuron-config "{}" \
--port 8000
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Multi-Instance

Launch for multi-instance with:

./baseline_server.sh --tp-degree 64 --batch-size 4 \
--model-path path/to/your/downloaded/model \
--compiled-model-path di_traced_model_tp64_b4/

Single-Instance

Launch for single-instance with:

SINGLE_INSTANCE=1 ./baseline_server.sh --tp-degree 32 --batch-size 4 \
--model-path path/to/your/downloaded/model \
--compiled-model-path di_traced_model_tp32_b4/

Now we have a server launched with the same underlying model but with DI turned off.

Then on the same instance run llmperf which will now directly send requests to the server instead of going through a
proxy:

MODEL_PATH=path/to/your/downloaded_model ./llmperf.sh

This will run a total of 200 requests and your final output should have the line: Completed Requests Per Minute:
xx.xxxxxxx. Scroll up to see metrics such as Inter Token Latency and Time To First Token.

Known Issues

ENC:kv_store_acquire_file_lock Failed to open kv store server lock file Permission denied
usually means that another user on the system ran a DI workload and left behind a lock file that the current user does
not have access to. The solution is to delete /tmp/nrt_kv_store_server.lock file.

This section includes tutorials that you can follow to get started with the NeuronX Distributed (NxD) Inference library.

• Tutorial: Deploying Llama3.1 405B (Trn2)

• Tutorial: Deploying Llama3.2 Multimodal Models

• Tutorial: Using Speculative Decoding to improve Llama-3.3-70B inference performance on Trn2 instances

• Tutorial: Scaling LLM Inference with Data Parallelism on Trn2

• Tutorial: Multi-LoRA serving for Llama-3.1-8B on Trn2 instances

• Tutorial: Using Speculative Decoding and Quantization to improve Llama-3.1-405B inference performance on
Trn2 instances

• Tutorial: Evaluating Accuracy of Llama-3.1-70B on Neuron using open source datasets

• nxdi-trn2-llama3.3-70b-apc-tutorial

• Tutorial: Disaggregated Inference on Trn2 [BETA]
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3.2.6 Application Notes

This document is relevant for: Inf1, Inf2, Trn1, Trn2

Introducing NeuronX Distributed (NxD) Inference

Table of contents

• What are we introducing?

• How can I install NxD Inference library?

• I am currently using the Transformers NeuronX library for inference. How does the NxD Inference library
affect me?

• I am currently using vLLM with Transformers NeuronX library for inference. Does NxD Inference library
support vLLM ?

• What features and models are available in Transformers NeuronX (TNx) but not yet in NeuronX Distributed
Inference?

• I currently use Hugging Face TGI serving engine for deploying and serving Large Language Models (LLMs)
on Neuron. How does NxD Inference library affect me?

• I am new to Neuron and have inference workloads, what library should I use?

• Additional Resources

What are we introducing?

Starting with the Neuron SDK 2.21 release, we are introducing NxD Inference, an open-source PyTorch-based inference
library that simplifies deep learning model deployment on AWS Inferentia and Trainium instances. NxD Inference is
designed for optimized inference, enabling quick onboarding of PyTorch models with minimal changes. It features a
modular architecture that facilitates easy integration of HuggingFace PyTorch models and is compatible with serving
engines like vLLM.

Please see NxD Inference for NxD Inference overview and documentation.

How can I install NxD Inference library?

Please refer to NxD Inference Setup Guide for installation instructions.

I am currently using the Transformers NeuronX library for inference. How does the NxD Inference
library affect me?

If you are using Transformers NeuronX (TNx) in production, you can continue doing so. However, if you are planning
to onboard new models to Neuron for inference, NxD Inference offers several advantages to consider.

NxD Inference is designed to enable easy on-boarding of PyTorch models and comes with new features and enhanced
support:

• Hardware Support: While TNx is not supported on Trn2, NxD Inference supports all platforms (Trn1, Inf2,
and Trn2)
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• Simplified interface: To simplify model development with NxD Inference, you write modeling code using
PyTorch with standard Python, rather than using PyHLO as in TNx.

• Easy Migration: NxD Inference was designed to provide seamless migration from TNx, especially if you are
using it with vLLM. You can migrate your existing TNx inference scripts using the migration guide

• Enhanced Capabilities: NxD Inference offers more comprehensive support for MoE models and multimodal
models (Llama 3.2) compared to TNx

• Future Development: New inference features and support for advanced model architectures (like multi-
modality/video models) will be focused on NxD Inference

I am currently using vLLM with Transformers NeuronX library for inference. Does NxD Inference
library support vLLM ?

Yes, NxD Inference library supports vLLM inference engine. Neuron vLLM integration in 2.21 release will start
supporting both NxD Inference and Transformers NeuronX libraries. To use vLLM with NxD Inference library, you
can refer to the vLLM User Guide for NxD Inference.

What features and models are available in Transformers NeuronX (TNx) but not yet in NeuronX Dis-
tributed Inference?

While NxD Inference supports most features and models available in TNx, there are some differences in current support
that users should be aware of.

Features that are not yet supported in NxD Inference: The following TNx features aren’t supported yet in the NxD
Inference library.

• Multi-Node Inference support

Models not part of NxD Inference Model Hub: The following models are included in Transformers NeuronX but
not currently in NxD Inference library:

• Bloom

• GPT2

• GPT-J

• GPT-NEOX

If you need to use these models with NxD Inference, we encourage you to follow the onboarding models developer
guide. The onboarding process in NxD Inference is more straightforward compared to TNx due to its PyTorch-based
architecture.

I currently use Hugging Face TGI serving engine for deploying and serving Large Language Models
(LLMs) on Neuron. How does NxD Inference library affect me?

If you are currently using Hugging Face TGI serving engine to deploy models on Neuron, the introduction of NxD
Inference library will not have any impact and you can continue to use your existing inference workloads. Hugging
Face TGI integrates with Neuron SDK Inference libraries in a way that abstracts the underlying library for the users.
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I am new to Neuron and have inference workloads, what library should I use?

We recommend you use NxD Inference for your model inference workloads. To learn how to get started using NxD
Inference, see the NxD Inference documentation

Additional Resources

• NxD Inference

• NxD Inference Overview

• NxD Inference Release Notes (neuronx-distributed-inference)

This document is relevant for: Inf1, Inf2, Trn1, Trn2

Parallelism Techniques for LLM Inference

Table of contents

• Overview

• Tensor Parallelism

– How to Use Tensor Parallelism with NxD Inference

• Sequence Parallelism

– How to Use Sequence Parallelism with NxD Inference

• Flash Decoding

– How to Use Flash Decoding with NxD Inference

• Data Parallelism

– How to Use Data Parallelism with NxD Inference

Overview

Large language models (LLMs) have grown exponentially in size in the past few years, requiring increasing accelerator
memory to run the model. In order to effectively generate predictions from an LLM, it is often necessary to use one
or more parallelism techniques to shard operations across multiple available accelerators. Model parallelism, such
as tensor and sequence parallelism described in this document, can reduce memory requirements per NeuronCore by
sharding the model across multiple cores. Data parallelism, on the other hand, enables higher throughput by sharding
input data.
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Tensor Parallelism

Tensor parallelism is a technique in which a tensor is split into a number of chunks along the intermediate dimension,
resulting in sharding not only model parameters but also intermediate activations. Tensor parallelism has relatively high
communication volume and presents a synchronization point in forward pass, making it costly to scale beyond 1 node.
When tensors are sharded across multiple EC2 instances, the collective communication at these synchronization points
must occur through network interfaces like Elastic Fabric Adapter (EFA) instead of the faster chip-to-chip NeuronLink
connections.

A basic transformer MLP block contains a single matrix multiplication (matmul) called the up-projection, which in-
creases the dimensionality from the hidden_size to the intermediate_size, and a single output matmul called the down
projection, which reduces the dimensionality back to the hidden_size, with a non-linear activation function in-between.
In order to avoid running collective operations (synchronization point) after each matrix multiply, we defer collective
to run after 2nd linear layer. To ensure correctness of non-linear activation function computation (f(x+y) != f(x)
+ f(y) for non-linear f like silu in SwiGLU), we split first linear layer along columns (ColumnParallel) and second
linear layer along rows (RowParallel), then run an AllReduce collective operation at the end.

Modern transformer architectures use SwiGLU activation function, where the MLP block has 3 matrices, first up and
gate projection and later a down projection. We can view up and gate projection as the same (referred to as first matrix
multiply or first linear layer) in this context because they have the same sharding approach. In this case up and gate
projection is column parallel, while down projection is row parallel.

In attention, we similarly split Q, K and V projections in column parallel fashion and use row parallel for final output (O)
projection, then run AllReduce with input tensor size equal to batch_size x sequence_length x hidden_size
x per_element_bytes bytes. Here,``per_element_bytes`` depends on the numerical format of your tensors. When
using BF16, for example, it would be 2. AllReduce input tensor size is the same for both MLP and attention blocks,
resulting in two AllReduce operations with with the same input size and output size as per AllReduce algorithm per
transformer layer.

Fig. 3.6: Image visualizing transformer layer like llama3 with SwiGLU activation layer in MLP.

How to Use Tensor Parallelism with NxD Inference

Tensor parallelism can be enabled by setting the tp_degree parameter in NeuronConfig. See Tensor-parallelism
support for more detail.

Code example, defining NeuronConfig:

neuron_config = NeuronConfig(tp_degree=32)

See Tensor Parallelism Overview for a detailed reference of the concepts underlying tensor parallelism.
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Sequence Parallelism

One drawback of tensor parallelism is that it replicates attention/MLP layer norm and dropout operations across all
NeuronCores. These operations are less compute intensive compared to linear layers, but still requires significant
memory. These computations are independent along the sequence dimension, allowing us to shard across the sequence
dimension. This requires AllGather in the transition from a sequence to a tensor parallel region and ReduceScatter in
the transition from tensor to sequence parallel region during inference. Sequence parallelism is especially useful for
longer sequences and usually used in conjunction with tensor parallelism.

Fig. 3.7: Image visualizing how sequence and tensor parallelism intertwine in transformer layer like Llama 3.

How to Use Sequence Parallelism with NxD Inference

Sequence parallelism can be enabled by setting the sequence_parallel_enabled parameter in NeuronConfig. See
Sequence Parallelism for more detail.

Code example, defining NeuronConfig:

neuron_config = NeuronConfig(sequence_parallel_enabled=True)

Flash Decoding

Flash decoding enables inference on long sequences by partitioning the KV cache. The technique is useful for long
sequences and used in decoding phase. It is motivated by the fact that assuming KV caching, K and V memory footprint
scales with sequence length, while Q has sequence length equal to 1 during decoding.

Flash decoding shards K and V, and at the start uses AllGather to gather all Q heads in each KV partition. Each KV
partition computes partial softmax (also called log-sum-exp) which uses AllGather to compute log-sum-exp scaling
factor and correction denominator after “local” attention computation (multiply Q and K, then apply the mask). Lastly,
the algorithm performs ReduceScatter on attention results at the end.
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How to Use Flash Decoding with NxD Inference

Flash decoding can be enabled by setting the flash_decoding_enabled parameter in NeuronConfig. The technique
is only supported with GQA (grouped query attention).

Code example, defining NeuronConfig:

neuron_config = NeuronConfig(flash_decoding_enabled=True)

Data Parallelism

Data parallelism will replicate the model (same architecture, weights and hyperparameters) but will shard input data.
By distributing the data across NeuronCores or even different instances, data parallelism reduces the total execution
time of large batch size inputs using parallelization across sharded inputs instead of sequential execution. Compared to
batch parallel where KV cache is sharded, each data parallel replica has its own individual cache for separate sequences.

Data parallelism works as standalone technique or can be used in conjunction with other model sharding techniques
such as tensor parallelism. For example, Trn2 instances has 64 NeuronCores available when using default Logical
NeuronCore configuration (LNC) set to 2, so you can use a tensor parallel degree of 16 and a data parallel degree of 4,
resulting in four copies of the model, each with disjunct data partitioning and with each model sharded across 16 logical
NeuronCores. Model replicas can run on the same instance or separate instances. Data parallelism doesn’t introduce
any additional collective operations during inference.

Fig. 3.8: Image visualizing how data parallelism shards inputs.
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How to Use Data Parallelism with NxD Inference

See Tutorial: Scaling LLM Inference with Data Parallelism on Trn2 for detailed guidance on how to use vLLM to apply
data parallelism along with tensor parallelism to increase model inference throughput in NxDI.

• Introducing NeuronX Distributed (NxD) Inference

• Parallelism Techniques for LLM Inference

3.2.7 NxD Inference Misc

This document is relevant for: Inf1, Inf2, Trn1, Trn2

NxD Inference Release Notes (neuronx-distributed-inference)

Table of contents

• Neuronx Distributed Inference [0.4.7422] (Neuron 2.24.0 Release)

• Neuronx Distributed Inference [0.3.5591] (Neuron 2.23.0 Release)

• Neuronx Distributed Inference [0.2.0] (Beta) (Neuron 2.22.0 Release)

• Neuronx Distributed Inference [0.1.1] (Beta) (Neuron 2.21.1 Release)

• Neuronx Distributed Inference [0.1.0] (Beta) (Neuron 2.21 Release)

• Neuronx Distributed Inference [0.1.0] (Beta) (Trn2)

This document lists the release notes for Neuronx Distributed Inference library.

Neuronx Distributed Inference [0.4.7422] (Neuron 2.24.0 Release)

Date: 06/24/2025

• Models

– Qwen2.5 text models, which are tested on Trn1. Compatible models include:

∗ Qwen2.5-0.5B-Instruct

∗ Qwen2.5-7B-Instruct

∗ Qwen2.5-32B-Instruct

∗ Qwen2.5-72B-Instruct

• Features

– Automatic Prefix Caching support (APC) through vLLM. APC improves efficiency by reusing KV cache
from previous queries if the new query shares a prefix. APC can significantly improve TTFT based on how
often different queries share the same prefixes. Performance gains are greater when requests have longer
shared prefixes and when there is a higher frequency of prefix sharing across requests. For example, with
Llama3.3 70B on Trn2, you can observe a 3.2x TTFT improvement with the math.math dataset (90% cache
hit), a 1.6x TTFT improvement with a Sonnet dataset with 2K prompt length (25% cache hit), or no TTFT
improvement with the HumanEval dataset (0% cache hit). For more information, see nxdi-prefix-caching
and nxdi-trn2-llama3.3-70b-apc-tutorial.
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– Disaggregated Inference (DI) support through vLLM (Beta). Disaggregated Inference is also known as dis-
aggregated serving, disaggregated prefill, or p/d disaggregation. DI separates the prefill and decode phase
of inference onto different hardware resources. DI can improve inter token latency (ITL) by by eliminating
prefill stall in continuous batching, where decode is paused to perform prefill for a new incoming request.
With DI, you can also scale prefill and decode resources independently to further improve performance.
For more information, see Disaggregated Inference [BETA].

– Context parallelism in NeuronAttentionBase (Beta). Context parallelism distributes context processing
across multiple NeuronCores. Context parallelism improves TTFT, particularly at higher sequence lengths
where the number of KV heads is low. To use context parallelism, set cp_degree in NeuronConfig.

– Mixed-precision parameters in modeling code. This feature enables you to configure each module’s dtype
independently. To use mixed-precision parameters, set cast_type="as-declared" in NeuronConfig.
Note: The default behavior (cast_type="config") is to cast all parameters to the torch_dtype in Neu-
ronConfig.

– Output logits when using on-device sampling. To output logits, enable output_logits in NeuronConfig.
Note that this flag impacts performance and should only be used for debugging model logits.

• Other changes

– Add support for PyTorch 2.7. This release includes support for PyTorch 2.5, 2.6, and 2.7.

– Upgrade transformers requirement from v4.48 to v4.51.

– Re-enable warmup on Trn2. NxD Inference disabled warmup on Trn2 in the previous release due to an
issue that prevented certain model configurations from loading correctly. That issue is now fixed.

– Update the behavior of the attn_kernel_enabled attribute in NeuronConfig, which configures whether
to use the flash attention kernel. Previously, True meant to enable in all cases where supported, and
False meant to auto-enable where beneficial (defaults to False). Now, attn_kernel_enabled=False
disables the flash attention kernel in all cases. To use the previous auto-enable behavior, set
attn_kernel_enabled=None. The default value for attn_kernel_enabled is now None to retain the
same default behavior as before.

– Enable --verify-hlo flag during compilation. Now, if an HLO is invalid, compilation will fail. Previ-
ously, in certain scenarios, the compiler would successfully compile invalid HLOs.

– Update the flash attention kernel strategy to use the attention kernel on Trn2 in all cases where it’s supported.
This change fixes an issue where certain context lengths failed to trace.

– Add logical_nc_config as an argument to the build_module and build_function test utilities, so
you can use these utilities to test modules/functions for Trn2 using LNC2.

– Other minor fixes and improvements.

Known Issues and Limitations

Increased Device Memory Usage for Certain Configurations

Certain model configurations require slightly more device memory than in previous releases. If your model used close
to the maximum amount of device memory in previous releases, this increase could cause it to fail to load after you
compile it with this release. This issue is most likely to affect Llama3.1-405B configurations that use a large number
of buckets.

If this issue occurs, you will see the following error during model load.

ERROR TDRV:log_dev_mem Failed to allocate 512.000MB␣
→˓(alignment: 4.000MB, usage: shared scratchpad) on ND14:NC 6
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To avoid this error, reduce the number of buckets you use, or reduce the sequence lengths that you use in each bucket.

Neuronx Distributed Inference [0.3.5591] (Neuron 2.23.0 Release)

Date: 05/20/2025

NxD Inference is now GA and out of beta in the Neuron 2.23 release.

Features in this Release

• Features

– Shard-on-load for weight sharding is now enabled by default. With this change, end-to-end compile
and load time is reduced by up to 70% when sharding weights. This change significantly reduces com-
pile time by skipping weight sharding and serialization during compile, but may lead to increased load
time. For example, for Llama 3.1 405B, end-to-end compile and load time is reduced from 40 minutes
to 12 minutes. For best load performance, you can continue to serialize sharded weights by enabling
save_sharded_checkpoint in NeuronConfig. For more information, see NxD Inference Weights Shard-
ing Guide.

– Neuron Persistent Cache. NxD Inference now supports Neuron Persistent Cache, which caches compiled
model artifacts to reduce compilation times. For more information, see Neuron Persistent Cache.

– Support for an attention block kernel for token generation. This kernel performs QKV projections, RoPE,
attention, and output projections. You can use this kernel with Llama3-like attention on Trn2 to improve
token gen performance. To use this kernel, enable attn_block_tkg_nki_kernel_enabled in Neuron-
Config.

∗ This kernel can also update the KV cache in parallel with each layer’s attention compute to further
improve performance. This functionality hides the latency of the KV cache update that is otherwise
done for all layers at once at the end of each token generation iteration. To enable in-kernel KV cache
updates, enable attn_block_tkg_nki_kernel_cache_update in NeuronConfig. When in-kernel
KV cache updating is enabled, you can also enable k_cache_transposed to further improve the
performance.

– Automatically extract target_modules and max_lora_rank from LoRA checkpoints. You no longer
need to set these arguments manually.

– Support fused residual add in the QKV kernel. This feature improves the performance of context encod-
ing at short sequence lengths. To use this feature, enable the qkv_kernel_fuse_residual_add flag in
NeuronConfig.

• Backward incompatible changes

– Remove set_async_mode(async_mode) from NeuronBaseForCausalLM, as this feature didn’t work as
intended. Async mode cannot be enabled or disabled after the model is loaded. To enable async mode, set
async_mode=True in NeuronConfig.

• Other changes

– Disable warmup for Trn2. This change avoids an issue that prevents certain model configurations from
loading correctly. When warmup is disabled, you will see lower performance on the first few requests to
the model. This change also affects initial performance for serving through vLLM. Warmup will work in
many cases where it is now disabled, so you can try to reenable warmup by setting skip_warmup=False
in NeuronConfig. Alternatively, you can manually warm up the model by sending a few requests to each
bucket after loading the model.
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– Fix an issue where when continuous batching and bucketing were enabled, NxDI padded each input to
the largest sequence in the batch, rather than the next largest bucket for that input. This change improves
performance when using continuous batching with bucketing, including through vLLM.

– Add a num_runs parameter to benchmark_sampling, so you can configure the number of runs to perform
when benchmarking.

– Silence unimportant error messages during warmup.

– NeuronConfig now includes a disable_kv_cache_tiling flag that you can set to disable KV cache tiling
in cases where it was previously enabled by default.

– Update the package version to include additional information in the version tag.

– Other minor fixes and improvements.

Neuronx Distributed Inference [0.2.0] (Beta) (Neuron 2.22.0 Release)

Date: 04/03/2025

Models in this Release

• Llama 3.2 11B (Multimodal)

Features in this Release

• Multi-LoRA serving. This release adds support for multi-LoRA serving through vLLM by loading LoRA
adapters at server startup. Multi-LoRA serving is currently supported for Llama 3.1 8B, Llama 3.3 70B, and
other models that use the Llama architecture.

• Custom quantization. You can now specify which layers or modules in NxDI to quantize or keep in full
precision during inference. To configure which layers or modules to skip during quantization, use the
modules_to_not_convert and draft_model_modules_to_not_convert attributes in NeuronConfig.

• Models quantized through external libraries. NxDI now supports inference of models that are quantized exter-
nally using quantization libraries such as LLMCompressor.

• Async mode. This release adds support for async mode, which improves performance by asynchronously prepar-
ing the next forward call to a mode. To use async mode, enable the async_mode flag in NeuronConfig.

• CPU inference. You can now run models on CPU and compare against output on Neuron to debug accuracy
issues. To use this feature, enable the on_cpu flag in NeuronConfig.

• Unit/module testing utilities. These common utilities include build_module, build_function, and
validate_accuracy, which enable you to build a module or function and validate its accuracy on Neuron.
You can use these utilities in unit/integration tests to verify your modeling code works correctly.

• Add support for models that use a custom head_dim value from InferenceConfig. This change enables support
for models where head_dim isn’t equivalent to hidden_size divided by num_attention_heads.

• Input capture hooks. When you call the NeuronBaseForCausalLM forward function, you can provide an
input_capture_hook function that will be called with the model inputs as arguments.

• Runtime warmup. To improve the performance of the first request sent to a model, NxD Inference now warms
up the model during load. You can disable this behavior with the skip_warmup flag in NeuronConfig.
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Backward Incompatible Changes

• Fix the behavior of the do_sample sampling flag. Previously, NxDI used greedy sampling when
do_sample=True, which was a bug because do_sample=True should result in multinomial sampling. If
you use do_sample=True in a config where you intend to use greedy sampling, you must change it to
do_sample=False. As part of this change, the default value for do_sample is now False.

• Enforce that tensors in a model’s state_dict don’t share memory with other tensors. This change can cause
models to fail to load if their tensors share memory, which now results in an error: RuntimeError: Error
while trying to find names to remove to save state dict. To fix this issue, apply .clone().
detach().contiguous() to the model’s state_dict, and re-shard the weights.

• Change the quantization state_dict keys from weight_scale to scale to match the NxD quantization scale keys
and avoid any confusion. If you use quantization and have sharded weights from earlier versions of NxDI, you
must re-shard the weights.

• If you use a model that skips quantization for certain modules (such as in Llama 3.1 405B FP8), you must now
specify modules_not_to_convert to configure the modules that skip quantization.

• Validate when input size exceeds the model’s maximum length (max_context_length or max_length). NxD
Inference now throws a ValueError if given an input that’s too large. To enable the previous behavior, where
input is truncated to the maximum length, enable the allow_input_truncation flag in NeuronConfig.

Other Changes

• Improve model performance by up to 50% (5-20% in most cases) by eliminating overheads in logging.

• Upgrade transformers from v4.45 to v4.48.

• Deprecate NeuronConfig’s logical_neuron_cores attribute and replace it with logical_nc_config. The
LNC config is now automatically set from the NEURON_LOGICAL_NC_CONFIG environment variable if set.

• Deprecate NeuronConfig’s trace_tokengen_model attribute. This attribute is now determined dynamically
based on other configuration attributes.

• Improve the performance of on-device sampling.

• When running Llama models with LNC2, the sharded flash attention kernel is now automatically enabled when
context length is 256 or greater. Previously, this kernel was enabled for context length of 1024 or greater. This
change improves performance at smaller context lengths.

• NeuronConfig now includes a skip_sharding flag that you can enable to skip weight sharding during model
compilation. This option is useful in cases where you have already sharded weights, such as during iterative
development, so you can iterate without re-sharding the weights each time you compile the model.

• NeuronApplicationBase now includes a shard_weights function that you can use to shard weights independent
of compiling the model.

• Fix vanilla speculative decoding support for models with multiple EOS tokens.

• Other minor fixes and improvements.
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Known Issues and Limitations

• For some configurations that use continuous batching or vLLM, model warmup can cause Numerical Error
during inference. If you encounter this error, set skip_warmup=True in NeuronConfig to disable warmup and
avoid this issue. To disable warmup in vLLM, pass "skip_warmup": true in override_neuron_config.
For more information about how to configure vLLM, see vLLM Model Configuration.

RuntimeError: Failed to execute the model status=1003 message=Numerical Error

Neuronx Distributed Inference [0.1.1] (Beta) (Neuron 2.21.1 Release)

Date: 01/14/2025

Bug Fixes

• Fix minor issues with sampling params and add validation for sampling params.

Neuronx Distributed Inference [0.1.0] (Beta) (Neuron 2.21 Release)

Date: 12/20/2024

Features in this Release

NeuronX Distributed (NxD) Inference (neuronx-distributed-inference) is an open-source PyTorch-based in-
ference library that simplifies deep learning model deployment on AWS Inferentia and Trainium instances. Neuronx
Distributed Inference includes a model hub and modules that users can reference to implement their own models on
Neuron.

This is the first release of NxD Inference (Beta) that includes:

• Support for Trn2, Inf2, and Trn1 instances

• Support for the following model architectures. For more information, including links to specific supported model
checkpoints, see NxD Inference - Production Ready Models.

– Llama (Text), including Llama 2, Llama 3, Llama 3.1, Llama 3.2, and Llama 3.3

– Llama (Multimodal), including Llama 3.2 multimodal

– Mistral (using Llama architecture)

– Mixtral

– DBRX

• Support for onboarding additional models.

• Compatibility with HuggingFace checkpoints and generate() API

• vLLM integration

• Model compilation and serialization

• Tensor parallelism

• Speculative decoding
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– EAGLE speculative decoding

– Medusa speculative decoding

– Vanilla speculative decoding

• Quantization

• Dynamic sampling

• Llama3.1 405B Inference Example on Trn2

• Open Source Github repository: aws-neuron/neuronx-distributed-inference

For more information about the features supported by NxDI, see NxD Inference Features Configuration Guide.

Known Issues and Limitations

Longer Load Times for Large Models

Issue: Users may experience extended load times when working with large models, particularly during weight sharding
and initial model load. This is especially noticeable with models like Llama 3.1 405B.

Root Cause: These delays are primarily due to storage performance limitations.

Recommended Workaround: To mitigate this issue, we recommend that you store model checkpoints in high-
performance storage options:

• Instance store volumes: On supported instances, instance store volumes offer fast, temporary block-level storage.

• Optimized EBS volumes: For persistent storage with enhanced performance.

By using these storage optimizations, you can reduce model load times and improve your overall workflow efficiency.

Note: Load times may still vary depending on model size and specific hardware configurations.

Other Issues and Limitations

• Llama 3.2 11B (Multimodal) is not yet supported with PyTorch 2.5.

• The following model architectures are tested only on Trn1 and Inf2:

– Llama (Multimodal)

• The following model architectures are tested only on Trn1:

– Mixtral

– DBRX

• The following kernels are tested only on Trn2:

– MLP

– QKV

• If you run inference with an prompt that is larger than the model’s max_context_length, the model will gen-
erate incorrect output. In a future release, NxD Inference will throw an error in this scenario.

• Continuous batching (including through vLLM) supports batch size up to 4. Static batching supports larger batch
sizes.

• To use greedy on-device sampling, you must set do_sample to True.
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• To use FP8 quantization or KV cache quantization, you must set the XLA_HANDLE_SPECIAL_SCALAR environ-
ment variable to 1.

Neuronx Distributed Inference [0.1.0] (Beta) (Trn2)

Date: 12/03/2024

Features in this release

NeuronX Distributed (NxD) Inference (neuronx-distributed-inference) is an open-source PyTorch-based in-
ference library that simplifies deep learning model deployment on AWS Inferentia and Trainium instances. Neuronx
Distributed Inference includes a model hub and modules that users can reference to implement their own models on
Neuron.

This is the first release of NxD Inference (Beta) that includes:

• Support for Trn2 instances

• Compatibility with HuggingFace checkpoints and generate() API

• vLLM integration

• Model compilation and serialization

• Tensor parallelism

• Speculative decoding

– EAGLE speculative decoding

– Medusa speculative decoding

– Vanilla speculative decoding

• Quantization

• Dynamic sampling

• Llama3.1 405B Inference Example on Trn2

• Open Source Github repository: aws-neuron/neuronx-distributed-inference

For more information about the features supported by NxDI, see NxD Inference Features Configuration Guide.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

Troubleshooting Guide for NxD Inference

This guide provides solutions for common issues encountered when using NxD Inference.

Table of contents

• Accuracy Issues

– Accuracy Degradation with Auto-Cast

– Array indexing and in-place operations in Neuron

• Performance Issues
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– Skip model warmup during inference

• Other Common Issues

– Tensor Materialization During Tracing caused unexpected model behavior

– Input Data Type Handling for int64/fp64 due to compiler dtype compatibility

Accuracy Issues

The primary methods for validating model accuracy on Neuron involve both token-by-token output matching and logit-
level error analysis (relative or max absolute error) against a pre-calibrated GPU FP32 or CPU FP32 reference. When
output deviations are observed, these can be systematically attributed to factors such as tokenizer/input discrepancies,
amplification from large weight norms (high Lipschitz constants), quantization or precision loss, differences in operator
implementation or kernel fusion, compiler optimization, or unintended hardware-level datatype casts.

When validating model accuracy on Neuron, it is important to recognize that predicting the exact output deviations from
a high-precision reference (like CPU or GPU FP32) is theoretically NP-hard, due to the complex and nonlinear nature
of large neural networks. Rather than attempting to anticipate every possible numerical difference, the recommended
strategy is to systematically identify, localize, and diagnose deviations as they occur.

Accuracy Degradation with Auto-Cast

Issue: You may observe accuracy degradation in model outputs when using the default auto-cast behavior of the Neuron
compiler.

Explanation: By default, the Neuron compiler automatically casts certain operations to lower precision data types
(BF16) to improve performance. While this works well for most cases, it can sometimes lead to accuracy issues,
especially in operations involving integer-to-float conversions.

Solution: Use the --auto-cast=none compiler flag to disable automatic casting. This preserves the original precision
of operations at the cost of some performance.

Example using inference_demo:

inference_demo --model-type llama --task-type causal-lm run \
--model-path <path> \
--compiled-model-path <path> \
--torch-dtype bfloat16 \
--tp-degree <value> \
--batch-size <value> \
--max-context-length <value> \
--seq-len <value> \
--on-device-sampling \
--prompt "Your prompt here" \
--compiler-args "--auto-cast=none"

Example using NeuronConfig:

from neuronx_distributed_inference.models.config import NeuronConfig

neuron_config = NeuronConfig(
tp_degree=32,
batch_size=1,

(continues on next page)
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(continued from previous page)

max_context_length=1024,
seq_len=2048,
compiler_args="--auto-cast=none"

)

Integer-to-Float Conversion Issues

Issue: Operations involving integer-to-float conversions (such as in rotary embeddings) may experience significant
accuracy degradation when auto-cast is enabled.

Explanation: When integer values are converted to floating point and then automatically cast to lower precision (like
BF16), the precision loss can be substantial. This is particularly problematic in operations like rotary embeddings
where position IDs are converted to floating point for computing sin/cos values.

Solution: Use the --auto-cast=none compiler flag to prevent downcasting these operations. This is especially
important for models that use rotary embeddings or similar position encoding mechanisms.

Technical Details: The issue occurs in operations like:

# Integer position IDs are converted to float for sin/cos computation
# Downcasting to BF16 here can cause significant precision loss
position_ids = position_ids.to(torch.bfloat16)
sin, cos = self.compute_sin_cos(position_ids)

Memory Usage Considerations

Note: Using --auto-cast=none will increase memory usage as operations will use higher precision data types.
Ensure your instance has sufficient memory when using this flag.

Performance Impact

Note: Disabling auto-cast will typically result in slower inference. The exact performance impact depends on your
model architecture and hardware configuration. Consider this trade-off when optimizing for accuracy.

Array indexing and in-place operations in Neuron

Issue: When building attention masks, operations that combine array slicing with in-place modifications (e.g.,
mask_i[: arx[0] * arx[1], :ntok] = 0) can cause accuracy issues in Neuron. This is particularly problem-
atic when the array indices are dynamically computed.

Explanation: The accuracy issue stems from two main factors:

1. Array Slicing with Dynamic Ranges:

# Problematic: Array slicing with dynamic range (arx[0] * arx[1])
mask_i[: arx[0] * arx[1], :ntok] = 0

• Uses computed indices to access specific portions of the tensor

• Dynamic ranges can lead to unpredictable memory access patterns

2. In-place Modifications:

3.2. NxD Inference 705



AWS Neuron

# Problematic: Modifying tensor in-place
mask_i[...] = 0 # Direct modification of the original tensor

• Changes the original tensor’s values directly

• Can cause issues with Neuron’s memory management and optimization

Solution: Replace array slicing and in-place operations with element-wise operations:

# Instead of array slicing and in-place modification:
mask_i[: arx[0] * arx[1], :ntok] = 0 # Problematic

# Use element-wise operations:
arx_mask = (torch.arange(num_chunks, device=x.device) >= (arx[0] * arx[1])).to(dtype=x.
→˓dtype)
mask_i[:, :ntok] *= arx_mask.view(num_chunks, 1, 1) # Neuron-friendly

Example: File: test/unit/models/mllama/test_vision_encoder_attention_mask.py

# CPU version (problematic in Neuron):
def build_encoder_attention_mask_meta(x, ar, ntok, num_chunks, n_heads):

masks = []
for arx in ar:

mask_i = torch.ones((num_chunks, x.shape[2], 1), dtype=x.dtype)
mask_i[: arx[0] * arx[1], :ntok] = 0 # Problematic: array slicing + in-place
# ...

# Neuron-friendly version:
def build_encoder_attention_mask(x, ar, ntok, num_chunks, n_heads):

masks = []
for arx in ar:

mask_i = torch.ones((num_chunks, x.shape[2], 1), dtype=x.dtype, device=x.device)
arx_mask = (torch.arange(num_chunks, device=x.device) >= (arx[0] * arx[1])).

→˓to(dtype=x.dtype)
mask_i[:, :ntok] *= arx_mask.view(num_chunks, 1, 1) # Element-wise operation
# ...

Note: This pattern applies to similar operations where array slicing and in-place modifications are used together.
Consider using element-wise operations and avoiding in-place modifications for better Neuron compatibility.

Performance Issues

Skip model warmup during inference

Issue: You may observe slower performance for the first few inference requests, particularly on Trn2.

Explanation: By default, model warmup is disabled (skip_warmup=True) on Trn2 since warmup feature is not yet
implemented for Trn2. This means the model needs to “warm up” naturally through actual inference requests, leading
to slower performance during the initial requests.

Solution: There are approaches to ensure initial request performance:

1. Enable built-in warmup if your configuration supports it (on Inf2, Trn1):
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neuron_config = NeuronConfig(
tp_degree=32,
batch_size=1,
# skip_warmup=True is the default for Trn2 in release 2.23
# skip_warmup=False is the default for Trn1, Inf2 in release 2.23

)

2. Implement manual warmup by sending dummy requests (on all instance types):

# Send a few dummy requests before serving real traffic
dummy_prompt = "This is a warmup request."
for _ in range(3): # Number of warmup iterations

model.generate(
prompt=dummy_prompt,
max_new_tokens=32

)

Note:

• When using vLLM for serving, the same initial performance impact applies if warmup is disabled.

• Use –override-neuron-config “{"skip_warmup":false}” to change the warmup setting

Best Practice:

• For production environments where initial latency is critical, test if your configuration supports built-in warmup.

• If built-in warmup isn’t supported, implement manual warmup before serving real traffic.

• For development or non-latency-critical scenarios, the default configuration (warmup disabled) is sufficient.

Other Common Issues

Tensor Materialization During Tracing caused unexpected model behavior

Issue: Developers may inadvertently write code that forces tensor materialization during model tracing, leading to
fixed computation paths and unexpected behaviors.

Explanation: When model logic depends on tensor values during the forward pass, the compiler may try to evaluate
these values during tracing time. This “fixes” the computation path based on the initial values, resulting in a model
that doesn’t properly handle different runtime values.

Example of problematic code:

def forward(self, tensor):
if tensor[0] == 1: # Forces tensor sync during tracing

return tensor
else:

return tensor * 2

Solution: There are two debugging approaches to detect tensor materialization issues:

1. Enable warning messages:

import os

(continues on next page)
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(continued from previous page)

# Set before model tracing
os.environ['PT_XLA_DEBUG_LEVEL'] = '2' # Will print warnings when tensor sync occurs

2. Force errors on tensor materialization:

import torch_xla

# Set before model tracing
torch_xla._XLAC._set_allow_execution(False) # Will raise an error if tensor sync is␣
→˓attempted

Best Practice:

• Avoid control flow that depends on tensor values during tracing. Instead, consider setting flags through config-
urations that should not change during runtime. See below example:

class TestModel(torch.nn.Module):
def __init__(self, flag=1):

super().__init__()
# the flag should be pre-determined based on the model configuration
# it should not be an input of the model during runtime
self.flag = flag

def forward(self, tensor):
if self.flag:

return tensor
else:

return tensor * 2

• If dynamic model path is required, consider using JIT inference (See: Comparison of Traced Inference versus
XLA Lazy Tensor Inference (torch-neuronx))

Input Data Type Handling for int64/fp64 due to compiler dtype compatibility

Issue: While you may be using 64-bit data types (int64/fp64) from tokenizers or other input sources, be aware that
these are automatically converted to 32-bit types inside ModelWrapper.

Explanation: The Neuron compiler is optimized for 32-bit data types. To ensure optimal accuracy and compatibil-
ity, the model wrapper automatically converts 64-bit inputs (like those from Hugging Face tokenizers) to their 32-bit
equivalents (int64 → int32, fp64 → fp32).

Note: No action is required from users as this conversion is handled automatically.

Best Practice:

• Continue using your tokenizers and input pipelines as normal

• Be aware that 64-bit inputs are automatically converted to 32-bit when using ModelWrapper

• If you’re implementing custom pre-processing, using 32-bit types directly can be more efficient

This automatic conversion ensures consistent accuracy and compatibility with the Neuron compiler while maintaining
ease of use with standard tokenizers and input pipelines.

• NxD Inference Release Notes (neuronx-distributed-inference)

• Troubleshooting Guide for NxD Inference
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NxD Inference (where NxD stands for NeuronX Distributed) is an open-source PyTorch-based inference library that
simplifies deep learning model deployment on AWS Inferentia and Trainium instances.

NxDI Inference Overview and Setup

• NxD Inference Overview

• NxD Inference Setup Guide

Developer Guide

• NxD Inference Features Configuration Guide

• NxD Inference - Production Ready Models

• Onboarding models to run on NxD Inference

• vLLM User Guide for NxD Inference

• Testing modeling code with NxD Inference

• Migrating from NxD Core inference examples to NxD Inference

• Migrating from Transformers NeuronX to NeuronX Distributed(NxD) Inference

• LLM Inference Benchmarking guide

• Accuracy Evaluation of Models on Neuron Using Open Source Datasets

• Custom Quantization

• NxD Inference Weights Sharding Guide

• Disaggregated Inference [BETA]

API Reference Guide

• NxD Inference API Reference

Tutorials

• Tutorial: Deploying Llama3.1 405B (Trn2)

• Tutorial: Deploying Llama3.2 Multimodal Models

• Tutorial: Using Speculative Decoding to improve Llama-3.3-70B inference performance on Trn2 instances

• Tutorial: Scaling LLM Inference with Data Parallelism on Trn2

• Tutorial: Multi-LoRA serving for Llama-3.1-8B on Trn2 instances

• Tutorial: Using Speculative Decoding and Quantization to improve Llama-3.1-405B inference performance on
Trn2 instances

• Tutorial: Evaluating Accuracy of Llama-3.1-70B on Neuron using open source datasets

• nxdi-trn2-llama3.3-70b-apc-tutorial

• Tutorial: Disaggregated Inference on Trn2 [BETA]
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App Notes

• Introducing NeuronX Distributed (NxD) Inference

• Parallelism Techniques for LLM Inference

Misc

• NxD Inference Release Notes (neuronx-distributed-inference)

• Troubleshooting Guide for NxD Inference

This document is relevant for: Inf2, Trn1, Trn2

3.3 NxD Core

NeuronX Distributed Core (NxD Core) is a package for supporting different distributed training/inference mechanism
for Neuron devices. It would provide xla friendly implementations of some of the more popular distributed train-
ing/inference techniques. As the size of the model scales, fitting these models on a single device becomes impossible
and hence we have to make use of model sharding techniques to partition the model across multiple devices. As part
of this library, we enable support for Tensor Parallel sharding technique with other distributed library supported to be
added in future.

This document is relevant for: Inf2, Trn1, Trn2

3.3.1 NeuronX Distributed Setup

Install PyTorch Neuron on Trn1 to create a pytorch environment. It is recommended to work out of python virtual env
so as to avoid package installation issues.

You can install the neuronx-distributed package using the following command:

python -m pip install neuronx_distributed --extra-index-url https://pip.repos.neuron.
→˓amazonaws.com

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

3.3.2 App Notes

This document is relevant for: Inf2, Trn1, Trn2
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Tensor Parallelism Overview

Tensor Parallelism is a technique in which a tensor is split into N chunks along a particular dimension such that each
device only holds 1/N chunk of the tensor. Computation is performed using this partial chunk so as to get partial output.
These partial outputs are collected from all devices ensuring the correctness of the computation is maintained.

Taking a general matrix multiplication as an example, let’s say we have C = AB. We can split B along the column
dimension into [B0 B1 B2 . . . Bn] and each device holds a column. We then multiply A with each column in B on each
device, we will get [AB0 AB1 AB2 . . . ABn]. At this moment, each device still holds partial results, e.g. device rank 0
holds AB0. To make sure the result is correct, we need to all-gather the partial result and concatenate the tensor along
the column dimension. In this way, we are able to distribute the tensor over devices while making sure the computation
flow remains correct.

Fig and TP explanation is borrowed from https://colossalai.org/docs/concepts/paradigms_of_parallelism/
#tensor-parallel

Similarly we can perform the partition along the row dimensions and create a RowParallel Linear layer. In RowPar-
allelLinear layer, we partition the weight matrix along the row dimension. Let’s say we have C = AB. We can split B
along the row dimension into [B0 B1 B2 . . . Bn] and each device holds a row. We then multiply each column of A
on each device, we will get [A0B0 A1B1 A2B2 . . . AnBn]. At this moment, each device still holds partial results,
e.g. device rank 0 holds A0B0. To make sure the result is correct, we need to all-reduce sum the partial result from all
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devices to produce the final output.

Using this principle of sharded linear layers, we can construct MLPs of arbitrary depth until the need to operate on the
whole output tensor, in which case we would have to construct the output but gathering it from all devices.

Here is an illustration from the Megatron-LM paper In the above case, as you can see two linear layers are implemented
using Column Parallel and Row Parallel linear layers, wherein the ColumnParallel Linear shards along the columns
and then it is followed by RowParallel Linear layer which takes in parallel inputs (sharded outputs from ColumnPar-
allelLinear). Consider the example shown in the above diagram, Z = (XA)B. In this case we split the first matrix
multiplication over column dimension such that each device after first matrix multiplication holds partial result of
Y0=XA0,Y1=XA1 and so on. For the second matrix multiplication, we partition the weight matrix over row dimen-
sion and since the inputs are already columns sharded and we can multiply them to produce partial outputs. These
outputs finally requires an all-reduce sum, since we want to sum up the single column*row result.

Tensor Parallelism for Transformers:

A transformer block
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Fig: Taken from Megatron-LM paper.

As seen from the figure above, a simple self attention block has the QKV linear layer followed by MLP. Using the
same Column and Row Parallel linear layers, we can partition the self-attention block across devices thereby reducing
the memory footprint on each device, since each device now only holds partial parameters. This weight distribution
strategy allows us to scale large model training across devices.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

Pipeline Parallelism Overview

Pipeline parallelism is a technique used in deep learning model training to improve efficiency and reduce the training
time of large neural networks. Currently NeuronxDistributed’s pipeline parallelism is built specially for transformer
based models, where each Neuron core will be assigned with a subset of transformer layers. Pipelining is a technique
to achieve true parallelization in pipeline parallelism, by having the Neuron cores compute simultaneously on different
data samples, and to overcome the performance loss due to sequential computation. When you use pipeline parallelism,
training job is executed in a pipelined fashion over microbatches to maximize device usage.

Model partitioning

In NeuronxDistributed, we use Pytorch’s FX to trace the model and do partition on the FX IR. User simply needs to
specify where to cut the pipeline stages, and our algorithm will cut the pipeline stages and assign the corresponding
modules to each Neuron core automatically. Currently we require user to provide model partition decision but auto-
partition will be supported in the future. Here is an example of simple partition with 5 linear layers

# original NN module
class MyModule(torch.nn.Module):

def __init__(self):
(continues on next page)
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(continued from previous page)

super().__init__()
self.linears = torch.nn.ModuleList([torch.nn.Linear(4, 4) for _ in range(5)])

def forward(self, x):
for lin in self.linears:

x = lin(x)
return x

m = MyModule()
gm = torch.fx.symbolic_trace(m)
print(gm)
"""
GraphModule(
(linears): Module(

(0): Linear(in_features=4, out_features=4, bias=True)
(1): Linear(in_features=4, out_features=4, bias=True)
(2): Linear(in_features=4, out_features=4, bias=True)
(3): Linear(in_features=4, out_features=4, bias=True)
(4): Linear(in_features=4, out_features=4, bias=True)

)
)

def forward(self, x):
linears_0 = getattr(self.linears, "0")(x); x = None
linears_1 = getattr(self.linears, "1")(linears_0); linears_0 = None
linears_2 = getattr(self.linears, "2")(linears_1); linears_1 = None
linears_3 = getattr(self.linears, "3")(linears_2); linears_2 = None
linears_4 = getattr(self.linears, "4")(linears_3); linears_3 = None
return linears_4

"""

If user decide to cut the pipeline stage at the 3nd linear call, after partition there will be 2 submodules, where submod_0
contains first 3 linear layers and submod_1 contains last 2 linear layers.

After Split module
GraphModule(
(submod_0): GraphModule(

(linears_0): Linear(in_features=4, out_features=4, bias=True)
(linears_1): Linear(in_features=4, out_features=4, bias=True)
(linears_2): Linear(in_features=4, out_features=4, bias=True)

)
(submod_1): GraphModule(

(linears_3): Linear(in_features=4, out_features=4, bias=True)
(linears_4): Linear(in_features=4, out_features=4, bias=True)

)
)

def forward(self, x):
submod_0 = self.submod_0(x); x = None
submod_1 = self.submod_1(submod_0); submod_0 = None
return submod_1
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Pipeline Execution Schedule

Pipelining is based on splitting a mini-batch into microbatches, which are fed into the training pipeline one-by-one
and follow an execution schedule defined by the library runtime. A microbatch is a smaller subset of a given training
mini-batch. The pipeline schedule determines which microbatch is executed by which device for every time slot.

For example, depending on the pipeline schedule and the model partition, Neuron core i might perform (forward or
backward) computation on microbatch b while Neuron core i+1 performs computation on microbatch b+1, thereby
keeping both Neuron cores active at the same time. An example taken from Megatron paper is showed as below

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

Activation Memory Reduction

There are three major contributors to high device memory utilization: Parameters, Optimizer states and Activation
Memory. To reduce the size of parameter/optimizer states memory, one can use parallelism techniques like Tensor-
parallelism, Pipeline-paralleism or Zero1. However, as the hidden size and sequence length increases, the size of the
activation memory keeps growing linearly with hidden size and quadraticly with sequence length.

The total activation memory without any parallelism comes to about:

Activations memory per layer = sbh
(︂
34 +

5𝑎𝑠

ℎ

)︂
where,

• a: Number of attention heads

• b: microbatch size

• h: hidden dimension size

• s: sequence length

When we use tensor-parallelism, it not only helps to reduce the parameter and optimizer states size on each device, but
it also helps to reduce the activation memory. For a transformer model, where we apply the tensor-parallel sharding on
the attention block (more info here), the activation memory within the attention block also drops by a factor of tensor-
parallel degree (t). However, since the layernorms and dropouts (which are outside these attention blocks) are not
parallelised and they are replicated on each device. These layernorms and dropouts are computationally inexpensive,
however, they increase the overall activation memory on each device. Moreover, since we only parallelize within the
attention block or within the MLP block (h -> 4h projection), the inputs to the QKV multiplies and the MLP are still
unsharded. This overall adds to about 10sbh of total activation memory. To reduce this activation memory, one can
use 2 methods:

• Sequence-Parallelism

• Activation Recomputation
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Sequence Parallelism

Sequence-Parallelism was proposed by Shenggui and et.al . The authors propose to parallelize the compute along
all the sequence dimension in an attempt the reduce increasing the memory pressure due to high sequence-lengths.
Sequence-parallelism can be combined with tensor-parallelism to reduce the activation memory pressure due to in-
creasing sequence-lengths.

Tensor-parallelism parallelizes the parts of the transformer which are computationally heavy, however, it leaves the
layer-norms, dropouts and some MLP block intact. The activation memory for this block adds up to a factor of 10sbh.
Vijay Korthikanti et.al noticed that the compute in the non-tensor parallel region is independent in the sequence di-
mension. This property can be leveraged to shard the compute along the sequence dimension. The main advantage of
sharding these non-tensor parallel block is reducing the activation memory. We can use the same tensor-parallel degree
to partition, thereby reducing the overall activation memory by a factor of t. However, this partitioning comes at a cost.
Since we are partitionining the non-tensor parallel region along sequence dimnesion, we have to collect the activations
before we feed to the tensor-parallel block. This requires an introduction of all-gather collective operation which would
gather the activations along the sequence dimension. Similarly, after the tensor-parallel block, since we would have to
split the activations along the sequence dimension and distribute among the devices. Since, the tensor-parallel block
in the transformer module already uses an all-reduce (Row-parallel linear layer used for MLP), we can replace the
all-reduce operation with a reduce-scatter operation.

Ref: Reducing Activation Recomputation in Large Transformer Models

In the figure, g is all-gather operation and g¯ is the reduce-scatter operation. g and g¯ are conjugates and in the backward
pass, g¯ becomes an all-gather operation and g becomes the reduce-scatter operation. At first glance, it appears that
sequence-parallelism when combined with tensor-parallelism introduces an extra communication operation, however,
in a ring all-reduce, the op is broken down into all-gather and reduce-scatter. Hence, the bandwidth required for
sequence-parallelism is same as tensor-parallelism only. Hence, we are not losing out on compute but end up saving
the activation memory per device. The final activation memory when sequence-parallelism is combined with tensor-
parallelism:

Activations memory per layer = sbh
(︂
10

𝑡
+

24

𝑡
+

5𝑎𝑠

ℎ𝑡

)︂
=

sbh
𝑡

(︂
34 +

5𝑎𝑠

ℎ

)︂

Activation Recomputation

The total required memory in the above equation can still be high as we increase the sequence length and hidden
size. We would have to keep increasing the tensor-parallel degree to accommodate this requirement. Increasing the
tensor-parallel degree might soon start producing diminishing returns as the model would start becoming bandwidth
bottlenecked because of the extra collective communication operations. Activation recomputation can help to alleviate
this problem. In this method, we recompute a part of the forward pass during the backward pass, thereby avoiding
the need to save the activations during the forward pass. Activation recomputation is a trade-off between duplicate
computation vs memory. It allows you to save on memory at the cost of extra recompute. This trade-off becomes
valuable when we can fit larger models at the expense of recomputing forward pass activations.
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Ideally one can recompute the entire forward pass, there by resulting in an activation memory of 2sbh per transformer
layer. This method is called Full-activation checkpointing. This memory can further go down by a factor of t if we use
tensor-parallelism. In the activation memory equation, we have a quadratic term of 5abs^2. As the sequence length,
this term will grow at a much faster rate. This quadratic term comes from the softmax computation. Vijay Korthikanti
et.al propose Selective activation checkpointing where they only recompute the softmax and attention computation and
thereby avoid saving the activations coming from softmax and attention computation. This completely gets rid of the
quadratic term and brings down the activation memory per layer to 34sbh/t. The LLama-7B example in this tutorial
used selective activation checkpointing.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

Context Parallelism Overview

Context parallelism (CP) is a technique used in deep learning model training to train large context models. CP paral-
lelizes the processing of neural network activations across multiple devices by partitioning the input tensors along the
sequence dimension. CP reduces the memory footprint and computational cost of processing long sequences. Unlike
Sequence Parallelism (SP) that partitions the activations of specific layers, CP divides the activations of all layers.

The implementation of Context Parallelism in NxD leverages Ring Attention. Ring Attention enables efficient commu-
nication between devices by organizing them in a ring topology, allowing tokens to attend to each other across devices
without needing full attention computation on each device. This reduces memory overhead while extending the feasible
context length beyond traditional transformer models.

For more details, refer to Context Parallelism in Megatron <https://docs.nvidia.com/megatron-core/developer-guide/
latest/api-guide/context_parallel.html>_

Fig: Context Parallelism in NxD (Figure adapted from Megatron CP). In NxD’s TP implementation, we make use of
All-Gather (AG), Reduce-Scatter (RS) collectives. Further CP is applied to all layers including LayerNorm (LN), Linear
(LIN) and Fully-Connected (FC) layers. The figure shows a transformer layer running with TP2 and CP2. Assuming
sequence length is 8K, each device processes 4K tokens. Device0 and Device2 form a CP group and exchange KV
with each other; similarly, Device1 and Device3 form a CP group and exchange KV with each other. The collective
communication to exchange KV is handled by NxD using approaches described in the Ring Attention paper.

This document is relevant for: Inf2, Trn1, Trn2

• Tensor Parallelism Overview
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• Pipeline Parallelism Overview

• Activation Memory Reduction

• context_parallelism_overview

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

3.3.3 API Reference Guide

This document is relevant for: Inf2, Trn1, Trn2

Distributed Strategies APIs

NeuronX Distributed Core (NxD Core) is XLA based library for distributed training and inference on Neuron devices.
As part of this library, we support 3D parallelism: Tensor-Parallelism, Pipeline-Parallelism and Data-Parallelism. We
also support Zero1 optimizer to shard the optimizer weights. To support tensor-parallelism on Neuron, we adopted the
Apex Library built for CUDA devices. We modified the implementations to work with XLA. This document enlist the
different APIs and modules provided by the library

Table of contents

• Parallel Model State:

– Initialize Model Parallelism:

– Other helper APIs:

• Parallel Layers:

– Parallel Embedding:

– ColumnParallel Linear Layer:

– RowParallel Linear Layer:

– Padding Tensor-Parallel Layers

– Loss functions:

• Pipeline parallelism:

– Neuron Distributed Pipeline Model

– Common used APIs

Parallel Model State:

Initialize Model Parallelism:

def neuronx_distributed.parallel_state.initialize_model_parallel(
tensor_model_parallel_size=1,
pipeline_model_parallel_size=1,

)
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This module would initialize the distributed model training and allows users to set the number of tensor_parallel world
size.

Parameters:

• tensor_model_parallel_size : This should set the number of tensor parallel workers. Note the default value
is set to 1

• pipeline_model_parallel_size : This should set the number of pipeline parallel workers. Note the default
value is set to 1

Other helper APIs:

• neuronx_distributed.parallel_state.get_data_parallel_size() : Returns the data parallel world
size depending on the number of global workers and tensor parallel workers.

• neuronx_distributed.parallel_state.get_tensor_model_parallel_size() : Returns the tensor
parallel world size.

• neuronx_distributed.parallel_state.get_tensor_model_parallel_rank() : Returns the rank of
the worker within the tensor parallel group

• neuronx_distributed.parallel_state.get_pipeline_model_parallel_size() : Returns the
pipeline parallel world size.

• neuronx_distributed.parallel_state.get_pipeline_model_parallel_rank() : Returns the rank of
the worker within the pipeline parallel group

• neuronx_distributed.parallel_state.get_data_parallel_rank() : Returns the rank of the worker
in the data parallel group.

• neuronx_distributed.parallel_state.get_data_parallel_group(as_list=False) : Returns the
data parallel group after taking into account the tensor parallel size and the global world size. as_list argument
when set to True, would return the group as a List[List] otherwise it would return a torch.distributed.group.

• neuronx_distributed.parallel_state.get_tensor_model_parallel_group(as_list=False)
: Returns the tensor parallel group after taking into account the tensor parallel size and the global world
size. as_list argument when set to True, would return the group as a List[List] otherwise it would return a
torch.distributed.group.

• neuronx_distributed.parallel_state.get_pipeline_model_parallel_group(as_list=False) :
Returns the pipeline parallel group after taking into account the pipeline parallel size and the global world
size. as_list argument when set to True, would return the group as a List[List] otherwise it would return a
torch.distributed.group.

• move_model_to_device(model, device): This api moves the model to device by preserving tensor parallel
attributes.

Parallel Layers:

Majority of parameters within the transformer based model reside in the Embedding and Linear layers. Hence, to
reduce the number of parameters on a single device because of these layers, we provided sharded Embedding and
Linear layers.
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Parallel Embedding:

class neuronx_distributed.parallel_layers.ParallelEmbedding(
num_embeddings, embedding_dim, init_method=init.normal_,
dtype=torch.float32, device=None)

This module is intended to replace torch.nn.Embedding . In cases where the vocab size is too large, we can shard the
Embedding table across workers. Note: The embedding table would be sharded across all the tensor-parallel workers.

Parameters:

• num_embeddings (int) : size of the dictionary of embeddings

• embedding_dim (int) : the size of each embedding vector

• init_method: (torch.nn.init) : Initialization function for the embedding weights.

• dtype: (dtype) : Datatype for the weights

• device: (torch.device) : Device to initialize the weights on. By default, the weights would be initialized
on CPU

ColumnParallel Linear Layer:

class neuronx_distributed.parallel_layers.ColumnParallelLinear(
input_size, output_size, bias=True, gather_output=True,
sequence_parallel_enabled=False, dtype=torch.float32, device=None)

This module would perform a Column wise partition of the weight matrix. Linear layer is defined as Y = XA + b
, here A is parallelized along second dimension as A = [A_1, A_2 .... A_p] . Note: This layer is designed to
operate on 3-dimensional inputs.

Parameters:

• input_size: (int) : First dimension of the weight matrix

• output_size: (int) : Second dimension of the weight matrix

• bias: (bool): If set to True, bias would be added

• gather_output: (bool) : If true, call all-gather on output and make Y available to all Neuron devices, oth-
erwise, every Neuron device will have its output which is Y_i = XA_i

• sequence_parallel_enabled: (bool)
[When sequence-parallel is enabled, it would] gather the inputs from the sequence parallel region and
perform the forward and backward passes

• dtype: (dtype) : Datatype for the weights

• device: (torch.device) : Device to initialize the weights on. By default, the weights would be initialized
on CPU
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RowParallel Linear Layer:

class neuronx_distributed.parallel_layers.RowParallelLinear(
input_size, output_size, bias=True, input_is_parallel=False,
sequence_parallel_enabled=False, dtype=torch.float32, device=False

)

The linear layer is defined as Y = XA + b. A is parallelized along its first dimension and X along its second. Note:
This layer is designed to operate on 3-dimensional inputs.

Parameters:

• input_size: (int) : First dimension of the weight matrix

• output_size: (int) : Second dimension of the weight matrix

• bias: (bool) : If set to True, bias would be added

• input_is_parallel: (bool) : If true, we assume that the input is already split across the Neuron devices
and we do not split again. This is useful when we have a ColumnParallel Layer just before the Row Parallel layer

• sequence_parallel_enabled: (bool) : When sequence-parallel is enabled, it would gather the inputs from
the sequence parallel region and perform the forward and backward passes

• dtype: (dtype) : Datatype for the weights

• device: (torch.device) : Device to initialize the weights on. By default, the weights would be initialized
on CPU

Padding Tensor-Parallel Layers

def neuronx_distributed.parallel_layers.pad.pad_model(
model, tp_degree, n_heads, wrapped_classes=(), pad_hook_fn=None)

Pads a generic model to function to a desired tensor parallelism degree by padding the number of attention heads.
Returns the original model modified with padding. Uses 1-axis padding strategy: pads the sharded dim of the Paral-
lelLinear layers to the size it would have been for the padded number of heads.

Parameters:

• model (torch.nn.Module) : model to be padded

• tp_degree (int) : tensor parallel degree

• n_heads (int)
[the number of heads the given model to be padded has. This can] typically be found in the config

• wrapped_classes (Tuple[any], *optional*, defaults to `()`)
[tuple of classes] (and their submodules) which should be padded

• pad_hook_fn (Callable[any, float], *optional*, defaults to `None`)
[a hook] function that is called whenever encountering a class to pad. Receives an instance of the class to
pad and the tgt_src_ratio (num_heads_padded / num_heads)as its argument

Usage:
When modifying the Attention layer, typically you must divide by TP degree like so:

self.num_heads = neuronx_dist_utils.divide(self.num_heads, get_tensor_model_
→˓parallel_size())
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This line must be modified like so:

self.num_heads = neuronx_dist_utils.divide(
self.num_heads + get_number_of_extra_heads(self.num_heads, get_tensor_model_

→˓parallel_size()),
get_tensor_model_parallel_size())

Then, after initializing the model, you must call this wrapper:

model = get_model(config=desired_config)
model = pad_model(model, tp_degree=32, desired_config.num_heads) # Use the model␣
→˓as desired after this point

You can specify a specific layer or class for your model to pad, so you aren’t unnecessarily padding. Typically,
this layer will be your Attention layer

model = pad_model(model, tp_degree=32, desired_config.num_heads, wrapped_
→˓classes=[MyAttention])

You can also specify a pad_hook_fn, to be called whenever encountering an instance of wrapped_class, passing
in said instance as a parameter, along with the tgt_src_ratio (num_heads_padded / num_heads).

def my_hook(attention_to_pad, tgt_src_ratio):
attention_to_pad.split_size = int(model.split_size * tgt_src_ratio)
model = pad_model(

model,
tp_degree=32,
desired_config.num_heads,
wrapped_classes=[MyAttention],
pad_hook_fn=my_hook

)

Loss functions:

When you shard the final MLP layer using tensor-parallelism, instead of recollecting all the outputs from each TP
rank, we can use the ParallelCrossEntropy loss function. This function would take the parallel logits produced by final
parallel MLP and produce a loss by taking into account that the logits are sharded across multiple workers.

def neuronx_distributed.parallel_layers.loss_functions.parallel_cross_entropy(
parallel_logits, labels, label_smoothing=0.0)

Parameters:

• parallel_logits (Tensor) : Sharded logits from the previous MLP

• labels (Tensor) : Label for each token. Labels should not be sharded, and the parallel_cross_entropy would
take care of sharding the labels internally

• label_smoothing (float) : A float in [0.0, 1.0]. Specifies the amount of smoothing when computing the
loss, where 0.0 means no smoothing
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Pipeline parallelism:

Neuron Distributed Pipeline Model

class NxDPPModel(
module: torch.nn.Module,
transformer_layer_cls: Optional[Any] = None,
num_microbatches: int = 1,
virtual_pipeline_size: int = 1,
output_loss_value_spec: Optional[Union[Dict, Tuple]] = None,
return_mb_loss: bool = False,
broadcast_and_average_loss: bool = False,
pipeline_cuts: Optional[List[str]] = None,
input_names: Optional[List[str]] = None,
leaf_module_cls: Optional[List[Any]] = None,
autowrap_functions: Optional[Tuple[ModuleType]] = None,
autowrap_modules: Optional[Tuple[Callable, ...]] = None,
tracer_cls: Optional[Union[str, Any]] = None,
param_init_fn: Optional[Any] = None,
trace_file_path: Optional[str] = None,
use_zero1_optimizer: bool = False,
auto_partition: Optional[bool] = False,
deallocate_pipeline_outputs: bool = False,

)

Parameters:

• module: Module to be distributed with pipeline parallelism

• transformer_layer_cls: The module class of transformer layers

• num_microbatches: Number of pipeline microbatchs

• virtual_pipeline_size: Virtual pipeline size if greater than 1 we will use the interleaved pipeline schedule.

• output_loss_value_spec:
The output_loss_value_spec value can be specified to disambiguate which value in the output of for-
ward is the loss value on which NxDPPModel should apply backpropagation. For example, if your forward
returns a tuple (loss, model_out), you can specify output_loss_value_spec=(True, False). Or,
if your forward returns a dict {'loss': loss_value, 'model_out': model_out}, you can specify
output_loss_value_spec={'loss': True, 'model_out': False} referred from this

• return_mb_loss: Whether return a list of loss for all microbatchs

• broadcast_and_average_loss:Whether to broadcast loss to all PP ranks and average across dp ranks, when
set to True return_mb_loss must be False

• pipeline_cuts: A list of layer names that will be used to annotate pipeline stage boundaries

• input_names:The input names that will be used for tracing, which will be the same as the model inputs during
runtime.

• leaf_module_cls:A list of module classes that should be treated as leaf nodes during tracing. Note transformer
layer class will be by default treat as leaf nodes.

• autowrap_modules: (symbolic tracing only)
Python modules whose functions should be wrapped automatically without needing to use fx.wrap(). ref-
erence here
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• autowrap_functions: (symbolic tracing only)
Python functions that should be wrapped automatically without needing to use fx.wrap(). reference here

• tracer_cls:User provided tracer class for symbolic tracing. It can be “hf”, “torch” or any tracer class user
created.

• param_init_fn:
Function used to initialize parameters. This is useful if user wants to use meta device to do delayed param-
eter initialization. param_init_fn should take a module as input and initialize the parameters that belongs
to this module only (not for submodules).

• use_zero1_optimizer: Whether to use the zero1 optimizer. When setting to True the gradient average will
be handed over.

• auto_partition:
Boolean to indicate whether to use auto_partition for the model. When set to True, the pipeline cuts used
as the pipeline stage boundaries to partition the model are automatically determined. When set to True,
the pipeline_cuts parameter should not be set. The pipeline_cuts are chosen on the basis of the transformer
layer names.

• deallocate_pipeline_outputs:
Whether to deallocate the pipeline outputs after send. After send the output tensor is only useful for its
‘.grad_fn’ field, and not its ‘.data’.

Common used APIs

NxDPPModel.run_train(**kwargs)

Train the model with PP schedule, which will run both forward and backward in a PP manner. The kwargs should
be the same as the input_names provided to the trace function. Will output the loss that provided by user from out-
put_loss_value_spec.

NxDPPModel.run_eval(**kwargs)

Eval the model with PP schedule, which will run forward only. The kwargs should be the same as the input_names
provided to the trace function. Will output the loss that provided by user from output_loss_value_spec.

NxDPPModel.local_named_parameters(**kwargs)

The parameters that are local to this PP rank. This must be called after the model is partitioned.

NxDPPModel.local_named_modules(**kwargs)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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Training APIs

Table of contents

• Neuronx-Distributed Training APIs:

– Initialize NxD Core config:

– Initialize NxD Core Model Wrapper:

– Initialize NxD Core Optimizer Wrapper:

– Enable LoRA fine-tuning:

– Save Checkpoint:

– Load Checkpoint:

• Modules:

– GQA-QKV Linear Module:

• Checkpointing:

– Save Checkpoint:

– Load Checkpoint

– Gradient Clipping:

– Neuron Zero1 Optimizer:

• Neuron PyTorch-Lightning

– Neuron Lightning Module

– Neuron XLA Strategy

– Neuron XLA Precision Plugin

– Neuron TQDM Progress Bar

– Neuron TensorBoard Logger

Neuronx-Distributed Training APIs:

In Neuronx-Distributed, we provide a series of APIs under neuronx_distributed directly that helps user to apply op-
timizations in NxD Core easily. These APIs cover configuration, model/optimizer initialization and saving/loading
checkpoint.
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Initialize NxD Core config:

def neuronx_distributed.trainer.neuronx_distributed_config(
tensor_parallel_size=1,
pipeline_parallel_size=1,
pipeline_config=None,
optimizer_config=None,
activation_checkpoint_config=None,
pad_model=False,
sequence_parallel=False,
model_init_config=None,
lora_config=None,

)

This method initializes NxD Core training config and initialize model parallel. This config maintains all optimization
options of the distributed training, and it’s a global config (the same for all processes).

Parameters:

• tensor_parallel_size (int) : Tensor model parallel size. Default: 1.

• pipeline_parallel_size (int) : Pipeline model parallel size. Default: 1.

• pipeline_config (dict)
[Pipeline parallel config. For details please refer to] pipeline parallel guidance. Default: None.

• optimizer_config (dict) : Optimizer config. Default: {"zero_one_enabled": False,
"grad_clipping": True, "max_grad_norm": 1.0}.

• Enable ZeRO-1 by setting zero_one_enabled to True.

• Enable grad clipping by setting grad_clipping to True.

• Change maximum grad norm value by setting max_grad_norm.

• activation_checkpoint_config (str of torch.nn.Module)
[Activation checkpoint config,] accept value: "full", None, or any torch.nn.Module. When set to
full, regular activation checkpoint enabled (every transformer layer will be re-computed). When set to
None, activation checkpoint disabled. When set to any torch.nn.Module, selective activation checkpoint
enabled, any provided module will be re-computed. Default: None.

• pad_model (bool) : Whether to pad attention heads of model. Default: False.

• sequence_parallel (bool) : Whether to enable sequence parallel. Default: False.

• model_init_config (dict) : Model initialization config. Default: {"sequential_move_factor": 11,
"meta_device_init": False, "param_init_fn": None}.

• lora_config: LoRA configuration. Default: None with LoRA disabled.

• sequential_move_factor: num of processes instantiating model on host at the same time.
This is done to avoid the host OOM. Range: 1-32.

• meta_device_init: whether to initialize model on meta device.

• param_init_fn: method that initialize parameters of modules, should be provided when
param_init_fn is True.
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Initialize NxD Core Model Wrapper:

def neuronx_distributed.trainer.initialize_parallel_model(nxd_config, model_fn, *model_
→˓args, **model_kwargs)

This method initialize NxD Core model wrapper, return a wrapped model that can be used as a regular torch.nn.
Module, while has all the model optimizations in config applied. This wrapper is designed to hide the complexity
of optimizations such as pipeline model parallel, so that users can simply use the wrapped model as the unwrapped
version.

Parameters:

• nxd_config (dict): config generated by neuronx_distributed_config.

• model_fn (callable): user provided function to get the model for training.

• model_args and model_kwargs: arguments that will be passed to model_fn.

Model wrapper class and its methods:

class neuronx_distributed.trainer.model.NxDModel(torch.nn.Module):
def local_module(self):

# return the unwrapped local module

def run_train(self, *args, **kwargs):
# method to run one iteration, when pipeline parallel enabled,
# user have to use this instead of forward+backward

def named_parameters(self, *args, **kwargs):
# only return parameters on local rank.
# same for `parameters`, `named_buffers`, `buffers`

def named_modules(self, *args, **kwargs):
# only return modules on local rank.
# same for `modules`, `named_children`, `children`

Note: As a short cut, users can call model.config or model.dtype from wrapped model if original model is hugging
face transformers pre-trained model.

Initialize NxD Core Optimizer Wrapper:

def neuronx_distributed.trainer.initialize_parallel_optimizer(nxd_config, optimizer_
→˓class, parameters, **defaults)

This method initialize NxD Core optimizer wrapper, return a wrapped optimizer that can be used as a regular torch.
optim.Optimizer, while has all the optimizer optimizations in config applied.

This optimizer wrapper is inherited from toch.optim.Optimizer. It takes in the nxd_config and configures the
optimizer to work with different distributed training regime.

The step method of the wrapped optimizer contains necessary all-reduce operations and grad clipping. Other methods
and variables work the same as the unwrapped optimizer.

Parameters:

3.3. NxD Core 727



AWS Neuron

• nxd_config (dict): config generated by neuronx_distributed_config.

• optimizer_class (Type[torch.optim.Optimizer]): optimizer class to create the optimizer.

• parameters (iterable): parameters passed to the optimizer.

• defaults: optimizer options that will be passed to the optimizer.

Enable LoRA fine-tuning:

LoRA model wrapper

class LoRAModel(module, LoraConfig)

Parameters:

• module (torch.nn.Module): Module to be wrapped with LoRA

• LoraConfig: The LoRA configuration defined in neuronx_distributed.modules.lora.LoraConfig

The flags in LoraConfig to initialize LoRA adapter:

• enable_lora (bool): Enable LoRA fine-tuning.

• lora_rank (int): The rank of LoRA adapter. A small LoRA rank reduces the memory footprint during
fine-tuning, but it may harm the model quality.

• lora_alpha (float): The alpha parameter for LoRA scaling, i.e., scaling LoRA weights against base model
weights.

• lora_dropout (float): The dropout probability for LoRA layers.

• bias (str): Bias type for LoRA. Can be none, all or lora_only.

• target_modules (List[str]): The names of the modules that need LoRA.

• use_rslora (bool): If True, uses Rank-Stabilized LoRA, which sets the adapter scaling factor to
lora_alpha/math.sqrt(lora_rank).

• init_lora_weights (str): Weights initialization of LoRA adapter. Can be default (initialized with
torch.nn.init.kaiming_uniform_()) or gaussian (initialized with torch.nn.init.normal_()).

Usage:
We first define the LoRA configuration for fine-tuning. Suppose the target modules is [q_proj, v_proj,
k_proj], it indicates that LoRA will be appied to modules whose name includes any of the keywords. An
example is

lora_config = neuronx_distributed.modules.lora.LoraConfig(
enable_lora=True,
lora_rank=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
target_modules=["q_proj", "v_proj", "k_proj"],

)

You can enable LoRA fine-tuning like below
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nxd_config = neuronx_distributed.neuronx_distributed_config(
...
lora_config=lora_config,

)
model = neuronx_distributed.initialize_parallel_model(nxd_config, ...)

Then the NxD model will be initialized with LoRA adapter enabled.

Save Checkpoint:

Method to save checkpoint, return None.

This method saves checkpoints for model, optimizer, scheduler and user contents sequentially. Model states are saved
on data parallel rank-0 only. When ZeRO-1 optimizer is not turned on, optimizer states are also saved like this; while
when ZeRO-1 optimizer is turned on, states are saved on all ranks. Scheduler and user contents are saved on master rank
only. Besides, users can use use_xser=True to boost saving performance and avoid host OOM. It’s achieved by saving
tensors one by one simultaneously and keeping the original data structure. However, the resulted checkpoint cannot be
loaded using load api of PyTorch. Users can also use async_save=True to further boost saving performance. It’s
achieved by saving tensors in separate processes along with computation. Setting async_save to true will result in
more host memory being used, therefore increase the risk of application crash due to system ran out of memory.

def neuronx_distributed.trainer.save_checkpoint(
path,
tag="",
model=None,
optimizer=None,
scheduler=None,
user_content=None,
num_workers=8,
use_xser=False,
num_kept_ckpts=None,
async_save=False,
zero1_optimizer=False

)

Parameters:

• path (str): path to save the checkpoints.

• tag (str): tag to save the checkpoints.

• model (torch.nn.Module): model to save, optional.

• optimizer (torch.optim.Optimizer): optimizer to save, optional.

• scheduler: scheduler to save, optional.

• user_content: user contents to save, optional.

• num_workers (int): num of processes saving data on host at the same time.
This is done to avoid the host OOM, range: 1-32.

• use_xser (bool): whether to use torch-xla serialization. When enabled, num_workers
will be ignored and maximum num of workers will be used. Default: False.

• num_kept_ckpts (int): number of checkpoints to keep on disk, optional. Default: None.

• async_save (bool): whether to use asynchronous saving method. Default: False.
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• zero1_optimizer (bool): : whether the optimizer state is from a zero1 optimizer, used when optimizer is a
dict

Save LoRA Checkpoint:
NxD also uses neuronx_distributed.trainer.save_checkpoint() to save LoRA models, but it can set
save_lora_base and merge_lora in LoraConfig to specify how to save LoRA checkpoint. There are three modes
for LoRA checkpoint saving:

• save_lora_base=False, merge_lora=False: Save the LoRA adapter only.

• save_lora_base=True, merge_lora=False: Save both the base model and the LoRA adapter seperately.

• save_lora_base=True, merge_lora=True: Merge the LoRA adapter into the base model and then save the
base model.

Other than the adapter, NxD also needs to save the LoRA configuration file for LoRA loading. The configuration can
be saved into the same checkpoint with the adapter, or saved as a seperately json file.

• save_lora_config_adapter (bool): If False, save the configuration file as a seperately json file.

Note that if LoRA configuration file is saved separately, it is named as lora_adapter/adapter_config.json.

A configuration example to save the LoRA adapter only is

lora_config = neuronx_distributed.modules.lora.LoraConfig(
...
save_lora_base=False,
merge_lora=False,
save_lora_config_adapter=True,

)

Load Checkpoint:

Method to load checkpoint saved by save_checkpoint, return user contents if exists otherwise None. If tag not
provided, will try to use the newest tag tracked by save_checkpoint.

Note that the checkpoint to be loaded must have the same model parallel degrees as in current use, and if ZeRO-1
optimizer is used, must use the same data parallel degrees.

def neuronx_distributed.trainer.load_checkpoint(
path,
tag=None,
model=None,
optimizer=None,
scheduler=None,
num_workers=8,
strict=True,

)

Parameters:

• path (str): path to load the checkpoints.

• tag (str): tag to load the checkpoints.

• model (torch.nn.Module): model to load, optional.

• optimizer (torch.optim.Optimizer): optimizer to load, optional.
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• scheduler: scheduler to load, optional.

• num_workers (int): num of processes loading data on host at the same time.

This is done to avoid the host OOM, range: 1-32. - strict (bool): whether to use strict mode when loading model
checkpoint. Default: True.

Load LoRA Checkpoint:
NxD loads LoRA checkpoints by setting flags in LoraConfig.

• load_lora_from_ckpt: Resumes the checkpoint process.

• lora_save_dir: Load LoRA checkpoint from the specified folder

• lora_load_tag: Load the LoRA checkpoint with the specified tag

An example is:

lora_config = LoraConfig(
enable_lora=True,
load_lora_from_ckpt=True,
lora_save_dir=checkpoint_dir, # checkpoint path
lora_load_tag=tag, # sub-directory under checkpoint path

)
nxd_config = nxd.neuronx_distributed_config(

...
lora_config=lora_config,

)
model = nxd.initialize_parallel_model(nxd_config, ...)

The NxD model with be initialized with LoRA enabled and LoRA weights loaded. LoRA-related configurations are
the same as the LoRA adapter checkpoint.

Sample usage:

import neuronx_distributed as nxd

# create config
nxd_config = nxd.neuronx_distributed_config(

tensor_parallel_size=8,
optimizer_config={"zero_one_enabled": True, "grad_clipping": True, "max_grad_norm":␣

→˓1.0},
)

# wrap model
model = nxd.initialize_parallel_model(nxd_config, get_model)

# wrap optimizer
optimizer = nxd.initialize_parallel_optimizer(nxd_config, AdamW, model.parameters(),␣
→˓lr=1e-3)

...
(training loop):

loss = model.run_train(inputs)
optimizer.step()

...
(continues on next page)
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(continued from previous page)

# loading checkpoint (auto-resume)
user_content = nxd.load_checkpoint(

"ckpts",
model=model,
optimizer=optimizer,
scheduler=scheduler,

)
...
# saving checkpoint
nxd.save_checkpoint(

"ckpts",
nxd_config=nxd_config,
model=model,
optimizer=optimizer,
scheduler=scheduler,
user_content={"total_steps": total_steps},

)

Modules:

GQA-QKV Linear Module:

class neuronx_distributed.modules.qkv_linear.GQAQKVColumnParallelLinear(
input_size, output_size, bias=True, gather_output=True,
sequence_parallel_enabled=False, dtype=torch.float32, device=None, kv_size_

→˓multiplier=1, fuse_qkv=True)

This module parallelizes the Q,K,V linear projections using ColumnParallelLinear layers. Instead of using 3 differ-
ent linear layers, we can replace it with a single QKV module. In case of GQA module, the number of Q attention
heads are N times more than the number of K and V attention heads. The K and V attention heads are replicated
after projection to match the number of Q attention heads. This helps to reduce the K and V weights and is useful
especially during inference. However, in case of training these modules, it restricts the tensor-parallel degree that can
be used, since the attention heads should be divisible by tensor-parallel degree. Hence, to mitigate this bottleneck,
the GQAQKVColumnParallelLinear takes in a kv_size_multiplier argument. The module would replicate the K and
V weights kv_size_multiplier times thereby allowing you to use higher tensor-parallel degree. Note: here instead of
replicating the projection N/tp_degree times, we end of replicating the weights kv_size_multiplier times. This would
produce the same result, allow you to use higher tp_degree degree, however, it would result in extra memory getting
consumed.

Parameters:

• input_size: (int) : First dimension of the weight matrix

• output_sizes: (List[int]) : A list of second dimension of the Q and K/V weight matrix

• bias: (bool): If set to True, bias would be added

• gather_output: (bool)
[If true, call all-gather on output and make Y available to all] Neuron devices, otherwise, every Neuron
device will have its output which is Y_i = XA_i

• sequence_parallel_enabled: (bool)
[When sequence-parallel is enabled, it would gather] the inputs from the sequence parallel region and
perform the forward and backward passes
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• init_method: (torch.nn.init) : Initialization function for the Q and K/V weights.

• dtype: (dtype) : Datatype for the weights

• device: (torch.device)
[Device to initialize the weights on. By default, the weights] would be initialized on CPU

• kv_size_multiplier: (int): Factor by which the K and V weights would be replicated along the first di-
mension

• fuse_qkv: (bool): When fuse_qkv is enabled, a single fused tensor is used for QKV. By default, this param-
eter is True.

Checkpointing:

These are set of APIs for saving and loading the checkpoint. These APIs take care of saving and loading the shard
depending the tensor parallel rank of the worker.

Save Checkpoint:

def neuronx_distributed.parallel_layers.save(state_dict, save_dir, save_serially=True,␣
→˓save_xser: bool=False, down_cast_bf16=False)

Note: This method will be deprecated, use neuronx_distributed.trainer.save_checkpoint instead.

This API will save the model from each tensor-parallel rank in the save_dir . Only workers with data parallel rank
equal to 0 would be saving the checkpoints. Each tensor parallel rank would be creating a tp_rank_ii_pp_rank_ii
folder inside save_dir and each ones saves its shard in the tp_rank_ii_pp_rank_ii folder. If save_xser is
enabled, the folder name would be tp_rank_ii_pp_rank_ii.tensors and there will be a ref data file named as
tp_rank_ii_pp_rank_ii in save_dir for each rank.

Parameters:

• state_dict: (dict) : Model state dict. Its the same dict that you would save using torch.save

• save_dir: (str) : Model save directory.

• save_serially: (bool): This flag would save checkpoints one model-parallel rank at a time. This is partic-
ularly useful when we are checkpointing large models.

• save_xser: (bool): This flag would save the model with torch xla serialization. This could significantly
reduce checkpoint saving time when checkpointing large model, so it’s recommended to enable xser when the
model is large. Note that if a checkpoint is saved with save_xser, it needs to be loaded with load_xser, vice
versa.

• down_cast_bf16: (bool): This flag would downcast the state_dict to bf16 before saving.
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Load Checkpoint

def neuronx_distributed.parallel_layers.load(
load_dir, model_or_optimizer=None, model_key='model', load_xser=False, sharded=True)

Note: This method will be deprecated, use neuronx_distributed.trainer.load_checkpoint instead.

This API will automatically load checkpoint depending on the tensor parallel rank. For large models, one should pass
the model object to the load API to load the weights directly into the model. This could avoid host OOM, as the load
API would load the checkpoints for one tensor parallel rank at a time.

Parameters:

• load_dir: (str) : Directory where the checkpoint is saved.

• model_or_optimizer: (torch.nn.Module or torch.optim.Optimizer): Model or Optimizer object.

• model: (torch.nn.Module or torch.optim.Optimizer): Model or Optimizer object, equivilant to
model_or_optimizer

• model_key: (str) : The model key used when saving the model in the state_dict.

• load_xser: (bool) : Load model with torch xla serialization. Note that if a checkpoint is saved with
save_xser, it needs to be loaded with load_xser, vice versa.

• sharded: (bool) : If the checkpoint is not sharded, pass False. This is useful (especially during inference)
when the model is trained using a different strategy and you end up saving a single unsharded checkpoint. You
can then load this unsharded checkpoint onto the sharded model. When this attribute is set to False , it is
necessary to pass the model object. Note: The keys in the state-dict should have the same name as in the model
object, else it would raise an error.

Gradient Clipping:

With tensor parallelism, we need to handle the gradient clipping as we have to accumulate the total norm from all the
tensor parallel ranks. This should be handled by the following API

def neuronx_distributed.parallel_layers.clip_grad_norm(
parameters, max_norm, norm_type=2)

Parameters:

• parameters (Iterable[Tensor] or Tensor) : an iterable of Tensors or a single Tensor that will have
gradients normalized

• max_norm (float or int) :max norm of the gradients

• norm_type (float or int) : type of the used p-norm. Can be ‘inf’ for infinity norm.
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Neuron Zero1 Optimizer:

In Neuronx-Distributed, we built a wrapper on the Zero1-Optimizer present in torch-xla.

class NeuronZero1Optimizer(Zero1Optimizer)

This wrapper takes into account the tensor-parallel degree and computes the grad-norm accordingly. It also provides
two APIs: save_sharded_state_dict and load_sharded_state_dict. As the size of the model grows, saving the optimizer
state from a single rank can result in OOMs. Hence, the api to save_sharded_state_dict can allow saving states from
each data-parallel rank. To load this sharded optimizer state, there is a corresponding load_sharded_state_dict that
allows each rank to pick its corresponding shard from the checkpoint directory.

optimizer_grouped_parameters = [
{

"params": [
p for n, p in param_optimizer if not any(nd in n for nd in no_decay)

],
"weight_decay": 0.01,

},
{

"params": [
p for n, p in param_optimizer if any(nd in n for nd in no_decay)

],
"weight_decay": 0.0,

},
]

optimizer = NeuronZero1Optimizer(
optimizer_grouped_parameters,
AdamW,
lr=flags.lr,
pin_layout=False,
sharding_groups=parallel_state.get_data_parallel_group(as_list=True),
grad_norm_groups=parallel_state.get_tensor_model_parallel_group(as_list=True),

)

The interface is same as Zero1Optimizer in torch-xla

save_sharded_state_dict(output_dir, save_serially = True)

Note: This method will be deprecated, use neuronx_distributed.trainer.save_checkpoint instead.

Parameters:

• output_dir (str) : Checkpoint directory where the sharded optimizer states need to be saved

• save_serially (bool)
[Whether to save the states one data-parallel rank at a time. This is] especially useful when we want to
checkpoint large models.

load_sharded_state_dict(output_dir, num_workers_per_step = 8)
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Note: This method will be deprecated, use neuronx_distributed.trainer.load_checkpoint instead.

Parameters:

• output_dir (str) : Checkpoint directory where the sharded optimizer states are saved

• num_workers_per_step (int) : This argument controls how many workers are doing model load in parallel.

Neuron PyTorch-Lightning

Neuron PyTorch-Lightning is currently based on Lightning version 2.1.0, and will eventually be upstreamed Lightning-
AI code base

Neuron Lightning Module

Inherited from LightningModule

class neuronx_distributed.lightning.NeuronLTModule(
model_fn: Callable,
nxd_config: Dict,
opt_cls: Callable,
scheduler_cls: Callable,
model_args: Tuple = (),
model_kwargs: Dict = {},
opt_args: Tuple = (),
opt_kwargs: Dict = {},
scheduler_args: Tuple = (),
scheduler_kwargs: Dict = {},
grad_accum_steps: int = 1,
log_rank0: bool = False,
manual_opt: bool = True,

)

Parameters:

• model_fn: Model function to create the actual model

• nxd_config: Neuronx Distributed Config, output of neuronx_distributed.neuronx_distributed_config

• opt_cls: Callable to create optimizer

• scheduler_cls: Callable to create scheduler

• model_args: Tuple of args fed to model callable

• model_kwargs: Dict of keyworded args fed to model callable

• opt_args: Tuple of args fed to optimizer callable

• opt_kwargs: Dict of keyword args fed to optimizer callable

• scheduler_args: Tuple of args fed to scheduler callable

• scheduler_args: Dict of keyworded args fed to scheduler callable

• grad_accum_steps: Grad accumulation steps
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• log_rank0: Log at rank 0 (by default it will log at the last PP rank). Note that setting this to True will introduce
extra communication per step hence causing performance drop

• manual_opt: Whether to do manual optimization, note that currently NeuronLTModule doesn’t support auto
optimization so this should always set to True

Neuron XLA Strategy

Inherited from XLAStrategy

class neuronx_distributed.lightning.NeuronXLAStrategy(
nxd_config: Dict = None,
tensor_parallel_size: int = 1,
pipeline_parallel_size: int = 1,
save_load_xser: bool = True,

)

Parameters:

• nxd_config: Neuronx Distributed Config, output of neuronx_distributed.neuronx_distributed_config

• tensor_parallel_size: Tensor parallel degree, only needed when nxd_config is not specified

• pipeline_parallel_size: Pipeline parallel degree, only needed when nxd_config is not specified (Note that
for now we only support TP with Neuron-PT-Lightning)

• save_load_xser: Set to True will enable save/load with xla serialization, for more context check Save Check-
point

Neuron XLA Precision Plugin

Inherited from XLAPrecisionPlugin

class neuronx_distributed.lightning.NeuronXLAPrecisionPlugin

Neuron TQDM Progress Bar

Inherited from TQDMProgressBar

class neuronx_distributed.lightning.NeuronTQDMProgressBar

Neuron TensorBoard Logger

Inherited from TensorBoardLogger

class neuronx_distributed.lightning.NeuronTensorBoardLogger(save_dir)

Parameters:

• save_dir: Directory to save the log files

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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Inference APIs

Table of contents

• Model Trace:

• Trace Model Save/Load:

– Save:

– Load:

– Parameters:

Model Trace:

We can use the tensor parallel layers to perform large model inference too. For performing inference, we can re-use
the Parallel model built above for training and then use the trace APIs provided by the neuronx_distributed package to
trace it for inference. One can use the following set of APIs for running distributed inference:

def neuronx_distributed.trace.parallel_model_trace(func, example_inputs, compiler_
→˓workdir=None, compiler_args=None, inline_weights_to_neff=True, bucket_config=None, tp_
→˓degree=1, max_parallel_compilations=None)

This API would launch tensor parallel workers, where each worker would trace its own model. These traced models
would be wrapped with a single TensorParallelModel module which can then be used like any other traced model.

Parameters:

• func : Callable: This is a function that returns a Model object and a dictionary of states. The
parallel_model_trace API would call this function inside each worker and run trace against them. Note:
This differs from the torch_neuronx.trace where the torch_neuronx.trace requires a model object to be
passed.

• example_inputs: (torch.Tensor like) : The inputs that needs to be passed to the model. If you are
using bucket_config, then this must be a list of inputs for each bucket model. This configuration is similar to
torch_neuronx.bucket_model_trace()

• compiler_workdir: Optional[str,pathlib.Path] : Work directory used by |neuronx-cc|. This can be
useful for debugging and inspecting intermediary |neuronx-cc| outputs.

• compiler_args: Optional[Union[List[str],str]] : List of strings representing |neuronx-cc| compiler
arguments. See Neuron Compiler CLI Reference Guide (neuronx-cc) for more information about compiler op-
tions.

• inline_weights_to_neff: bool : A boolean indicating whether the weights should be inlined to the NEFF.
If set to False, weights will be separated from the NEFF. The default is True.

• bucket_config: torch_neuronx.BucketModelConfig : The config object that defines bucket selection
behavior. See torch_neuronx.BucketModelConfig() for more details.

• tp_degree: (int) : How many devices to be used when performing tensor parallel sharding

• max_parallel_compilations: Optional[int] : If specified, this function will only trace these numbers
of models in parallel, which can be necessary to prevent OOMs while tracing. The default is None, which means
the number of parallel compilations is equal to the tp_degree.
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Trace Model Save/Load:

Save:

def neuronx_distributed.trace.parallel_model_save(model, save_dir)

This API should save the traced model in save_dir . Each shard would be saved in its respective directory inside the
save_dir. Parameters:

• model: (TensorParallelModel) : Traced model produced using the

parallel_model_trace api. - save_dir: (str) : The directory where the model would be saved

Load:

def neuronx_distributed.trace.parallel_model_load(load_dir)

This API will load the sharded traced model into TensorParallelModel for inference.

Parameters:

• load_dir: (str) : Directory which contains the traced model.

This document is relevant for: Inf2, Trn1, Trn2

• Distributed Strategies APIs

• Training APIs

• Inference APIs

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

3.3.4 Developer Guide

This document is relevant for: Inf2, Trn1, Trn2

Training Developer Guides

This document is relevant for: Inf2, Trn1, Trn2
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Developer guide for Tensor Parallelism

Training

For training models with tensor-parallelism, one would have to make few changes to their model/training script. Below
we walk through the different changes one would have to make to shard the models across devices.

Creating DataLoader:

When we shard the model across devices using tensor parallelism, all the tensor parallel workers are operating on
the same batch of data. Hence, to ensure that each tensor parallel worker is getting the same data, we make use of
DistributedSampler as shown in the snippet below

def create_pretraining_dataset(
input_file, max_pred_length, mini_batch_size, worker_init

):
train_data = pretraining_dataset(

input_file=input_file, max_pred_length=max_pred_length
)
# To distribute the data across different workers in the world,
# we use the DistributedSampler. The num_replicas should be equal
# to the data_parallel_world_size. Note: data_parallel_rank=0 can have
# multiple tensor parallel ranks and each of these should get the same
# data.
train_sampler = DistributedSampler(

train_data,
num_replicas=parallel_state.get_data_parallel_world_size(),
rank=parallel_state.get_data_parallel_rank(),

)
train_dataloader = DataLoader(

train_data,
sampler=train_sampler,
batch_size=mini_batch_size,
num_workers=0,
worker_init_fn=worker_init,
drop_last=True,
pin_memory=True,

)
return train_dataloader

Creating Model:

One can create models by replacing the large linear layers with ColumnParallel and RowParallel Linear layers. In
case of transformers, we have a good structure where the Attention block usually have linear projections for QKV and
this is followed by a fully connected layer. Let’s take a look at the example for the BERT model. We make the attention
module of BERT model to use tensor parallel layers, thereby adding the ability to shard the model across devices.

class ParallelSelfAttention(transformers.models.bert.modeling_bert.BertSelfAttention):
def __init__(self, config, position_embedding_type=None):

super().__init__(config, position_embedding_type)
(continues on next page)
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(continued from previous page)

self.query = ColumnParallelLinear(config.hidden_size,
self.all_head_size,
gather_output=False)

self.key = ColumnParallelLinear(config.hidden_size,
self.all_head_size,
gather_output=False)

self.value = ColumnParallelLinear(config.hidden_size,
self.all_head_size,
gather_output=False)

# Since we shard the number of attention heads across tensor parallel
# ranks, each rank would have a subset of heads, hence, we update
# the num_attention_heads here.
tp_size = parallel_state.get_tensor_parallel_size()
self.num_attention_heads = self.num_attention_heads // tp_size
self.all_head_size = self.all_head_size // tp_size

As seen we just had to swap out the linear layers with ColumnParallel Linear layers and the rest of the forward method of
the attention layer can work as is. Note: In the above ColumnParallelLinear layer we are not gathering output from each
rank, in other words, each ranks is working on its own shard. We can make gather_output=True and that would gather
output and you would get a full dim output. However, gathering output from all ranks would introduce an all-gather
operation which can be expensive depending on the size of the tensor. In the case of attention module, we know that
the SelfAttention block is followed by MLP block. Hence, we replace the linear layer there with a RowParallelLinear
as shown below:

class ParallelSelfOutput(transformers.models.bert.modeling_bert.BertSelfOutput):
def __init__(self, config):

super().__init__(config)
self.dense = RowParallelLinear(config.hidden_size,

config.hidden_size,
input_is_parallel=True)

As seen we just had to replace the dense layer here, and pass the input_is_parallel argument. This way, the
RowParallelLinear should operator on partitions and get a collective result.

Making just the above two changes can help you partition good chunk of your model across multiple workers, thereby
allowing models of larger size to be trained on a single instance. Note: Majority of the parameters of a transformer
model are in these linear layers and hence partitioning these layers can help you scale.

Final Training script:

Once the dataloader and model changes are done, we are ready to build the training script. Good news, you can use the
same training loop as before for data-parallel training, and would need just the minor tweaks to get it all started.

from neuronx_distributed.parallel_layers import parallel_state, clip_grad_norm

neuronx_distributed.parallel_state.initialize_model_parallel(tensor_model_parallel_
→˓size=2)
dataloader = create_pretraining_dataset(
input_file, max_pred_length, mini_batch_size, worker_init)

model = YourNewlyBuiltParallelModel(config)
(continues on next page)
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# We have to move the model to device using this API, because when
# we move model to device using .to(device), the model parameter's
# attributes aren't preserved. This causes some of the tensor parallel
# attributes to be lost. Hence, this API takes care of preserving the
# tensor parallel attributes.
parallel_layers.move_model_to_device(model, device)

for inputs, labels in dataloader:
output = model(*inputs)
loss = loss_fn(output, labels)
loss.backward()
# Here we use clip_grad_norm from neuronx_distributed as that
# can handle tensor parallel ranks
clip_grad_norm(model.parameters(), max_norm)
# For the optimzer step, we have to pass the data_parallel group
xm.optimizer_step(

optimzer,
groups=parallel_state.get_data_parallel_group(as_list=True)

)
optimizer.zero_grad()
scheduler.step()

Few things to take note of in the above code snippet: 1. We are initializing the model parallel with tensor parallel
size of 2. This will shard the model across 2 devices. 2. We use the move_model_to_device API to move model to
device. This is equivalent to doing model.to(device). We need to explicity call this API since some of the tensor-
parallel attributes do not get copied over when we move the model to device using model.to(device). 3. We are
calling the clip_grad_norm from parallel_layers. This clip_grad_norm should take care of accumulating the
max_norm from the tensor_parallel ranks and producing the correct output. 4. We pass the data_parallel_group
to the optimizer_step. If we don’t pass the group, default would be all the workers in the world.

Saving Model:

Once training is done, we want to save the model. This can be done easily by calling the save api from
neuronx_distributed.parallel_layers . Here is an example:

neuronx_distributed.parallel_layers.save({
'epoch': epoch,
'model': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss,
...
}, PATH)

Note the model key used here, we need to provide the same key during model load.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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Developer guide for Pipeline Parallelism

Training

For training models with pipeline-parallelism, user needs to make few changes to their model/training script. In the
below steps, we walk through different changes user has to make to use pipeline parallelism. For general changes please
refer to tensor parallel guidance.

Creating Model

To train with pipeline parallel, user needs to wrap their torch module with NeuronxDistributed’s Pipeline Parallel model
wrapper, i.e. NxDPPModel Let’s take a look at our Llama example:

# Create torch model
config.return_dict = False
model = transformers.LlamaForCausalLM(config)
# Create pipeline cuts
pipeline_cuts = create_partition(config, args)
# Apply model wrapper
model = NxDPPModel(

model,
transformer_layer_cls=LlamaDecoderLayer,
num_microbatches=args.num_microbatches,
virtual_pipeline_size=1,
output_loss_value_spec=(True, False),
input_names=["input_ids", "attention_mask", "labels"],
pipeline_cuts=pipeline_cuts,
trace_file_path=args.trace_file_path,
leaf_module_cls=[LlamaRMSNorm.__name__],
autowrap_modules=[mappings],
use_zero1_optimizer=args.use_zero1_optimizer,
deallocate_pipeline_outputs=False,

)
model.move_model_to_device()

We first create the model from the Hugging Face model config. If tensor parallel needs to be applied to model it must
be done here before applying the pipeline parallel model wrapper. The next step is to create the partitions. Here is an
example to evenly partition the layers for all stages:

def create_partition(config, args):
"""
Evenly split the transformer layers between the PP ranks
"""
assert config.num_hidden_layers % args.pipeline_parallel_size == 0
num_layer_per_partition = config.num_hidden_layers // args.pipeline_parallel_size
pipeline_cuts = []
current_cut = num_layer_per_partition - 1
for i in range(args.pipeline_parallel_size-1):

pipeline_cuts.append(f"model.layers.{current_cut}")
current_cut += num_layer_per_partition

if torch.distributed.get_rank() == 0:
(continues on next page)
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print(f"pipeline_cuts {pipeline_cuts}")
return pipeline_cuts

Note that the pipeline cuts should be at the transformer layer module name, which in Llama model is indicated as model.
layers.i where i is the layer index. Users have the option to either provide the pipeline cuts, or set auto_partition
to True to automatically determine the pipeline cuts to use. After pipeline cuts are decided, pipeline model wrapper is
applied. Let’s take a deeper look into each input of the model wrapper

• model: The original Pytorch module, could be TPfied.

• transformer_layer_cls=LlamaDecoderLayer: The transformer layer class, we will use it for partition

• num_microbatches=args.num_microbatches: The number of microbatches we used for pipeline execution.

• virtual_pipeline_size: Virtual pipeline size if greater than 1 we will use the interleaved pipeline schedule.

• output_loss_value_spec=(True, False): This tells NxDPPModel how to get the loss from the model out-
put. In this case output is a tuple, where first value is loss and second value is something else. NxDPPModel will
use loss to run backward and return loss as the output.

• input_names=["input_ids", "attention_mask", "labels"]: The model input names that we will use
to run training. As our partition uses FX symbolic trace to trace the model, we will use these input names to
create concrete_args. Usually this will be the same input as you will feed into model for the execution. For
details please check https://pytorch.org/docs/stable/fx.html#torch.fx.symbolic_trace

• pipeline_cuts=pipeline_cuts: The pipeline cuts to decide the stages

• leaf_module_cls=[LlamaRMSNorm.__name__]: We can add some pytorch modules as leaf module so that
FX symbolic trace won’t trace it through. Here we mark the LlamaRMSNorm as one leaf module. If you hit any
issue about tracing you can skip tracing that part by add the module as a leaf module here. The transformer layer
module will be a leaf module by default.

• autowrap_modules: This serves as the same functionality to simplify FX tracing. User can provide a python
module here and all the methods from this python module will not be traced.

• use_zero1_optimizer: When zero-1 optimizer is used, set this to True, so the PP model will understand that
zero-1 optimizer will handle data parallel gradient averaging.

• deallocate_pipeline_outputs:
Whether to deallocate the pipeline outputs after send. After send the output tensor is only useful for its
‘.grad_fn’ field, and not its ‘.data’.

After applying model wrapper, NxDPPModel will partition the model based on the pipeline cuts. If the original model
is not yet moved to device, we can call model.move_model_to_device() so that NxDPPModel will only move the
local module to device.

Runtime execution:

To use pipeline runtime, user simply needs to replace their original model call with NxDPPModel.run_train, rest
will remain unchanged. Please note that the pipeline runtime will take care of both forward and backward call, so user
will not need to explicitly make backward calls. The NxDPPModel.run_train call will return the loss that is achieved
from output_loss_value_spec.
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Interleaved Pipeline-Parallelism:

To use interleaved pipeline parallel, one has to set virtual_pipeline_size greater than 1. The value of the
virtual_pipeline_size * pipeline_parallel_size should be equal to the number of layers in the models.
Interleave pipeline can help to reduce the pipeline bubble size and improve performance especially in cases when the
number of microbatches per data-parallel rank is small. More information can be found here

Mixed precision training

We support the torch autocast to do mixed precision, simply apply the context manager for the NxDPPModel.
run_train call. Here is an example:

# replace loss, _ = model(input_ids, attention_mask, labels) with below
with torch.autocast(enabled=args.use_amp > 0, dtype=torch.bfloat16, device_type="cuda"):

loss = model.run_train(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels,

)

Things that require user attention:

Model initialization

When the model is large, it is easy to cause host OOM when full model is created on every Neuron core. We recommend
2 ways to deal with this situation:

Using torchdistx’s deferred initialization

Pytorch’s torchdistx package (https://github.com/pytorch/torchdistx/tree/main) provides easy way to do deferred ini-
tialization. If you have torchdistx installed, using deferred initialization is simple as below

from torchdistx import deferred_init
# Instead of model = LlamaForCausalLM(config)
model = deferred_init.deferred_init(LlamaForCausalLM, config)

The model weights will be initialized in fake tensor mode which will not consume memory. After applying the
NxDPPModel model wrapper we will only materialize the weights that belong to the local module. Please be aware that
the torchdistx package is not actively maintained by Meta, please use at your own risk.
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Using meta device for initialization

NeuronxDistributed also supports also offer a way to first create the model on meta device, then reinitialize it to host
device with only the local modules. To create the model on meta device, follow the below example:

from neuronx_distributed.utils.model_utils import init_on_device
with init_on_device(torch.device("meta")):

model = LlamaForCausalLM(config)

With init_on_device(torch.device("meta")) context manager, all model weights will be create to meta device,
which will not consume host memory. Then during applying the PP model wrapper, user can pass the param_init_fn
kwargs which can define how to reinit the parameter. Here is an example:

def init_weights(module):
from neuronx_distributed.parallel_layers import ColumnParallelLinear,␣

→˓RowParallelLinear, ParallelEmbedding
if isinstance(module, (nn.Linear, Conv1D)):

module.weight.data.normal_(mean=0.0, std=model_config.initializer_range)
if module.bias is not None:

module.bias.data.zero_()
elif isinstance(module, nn.Embedding):

module.weight.data.normal_(mean=0.0, std=model_config.initializer_range)
if module.padding_idx:

module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):

module.bias.data.zero_()
module.weight.data.fill_(1.0)

elif isinstance(module, (ParallelEmbedding, RowParallelLinear,␣
→˓ColumnParallelLinear)):

module.init_weight_cpu()
if hasattr(module, "bias") and module.bias is not None:

module.bias.data.zero_()

model = NxDPPModel(...,param_init_fn=init_weights,...)

param_init_fn should take a module as input and initialize how the weight of that module should be initialized.

Moving model to device

When user create the model it is usually either created on CPU, or using meta device/torchdistx for delayed parameter
initialization. It is important to understand when the delayed parameter will be materialized and how/when to move
model to device.

Once the NxDPPModel wrapper is applied with the model together with the partition information, tracing and partition
will happen immediately. After partition we will materialize the local module if torchdistx is used or param_init_fn
is passed. So the returned model of NxDPPModel wrapper will have local parameters on host device.

After model is wrapped with NxDPPModel user can do things that are recommended to run on CPU, e.g. loading
shareded checkpoint. It is important to make sure to call model.move_model_to_device() before creating the
optimizer, so that the optimizer can take the weights that are on the device. When using zero-1 optimizer, it is also
required to use model.local_parameters() to create parameter groups so the optimizer can infer the right device
information from parameter groups.
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Gradient checkpointing

Gradient checkpointing (or activation checkpointing) is a common method used in deep learning to reduce memory
footprint by doing recomputation of forward computation. The common way to apply the gradient checkpointing on
XLA device is to use the torch_xla’s gradient checkpointing wrapper, which will apply an autograd function. However
FX’s symbolic tracing does not understand autograd function, and as a result the checkpointing information will be
ignored if the checkpoint wrapper is traced during partition. To handle this case, user can manually re-apply gradient
checkpoint after partition. Here we provide an example to checkpoint every transformer layer after partition.

from typing import Any, Dict, Iterator, Tuple
import torch.nn as nn

import torch
from torch_xla.utils.checkpoint import checkpoint as torch_checkpoint
from neuronx_distributed.parallel_layers.parallel_state import rmsg
from neuronx_distributed.utils.logger import get_logger
from torch.distributed.utils import _replace_by_prefix

logger = get_logger()

_CHECKPOINT_WRAPPED_MODULE = "mod"
_CHECKPOINT_PREFIX = _CHECKPOINT_WRAPPED_MODULE + "."

class CheckPointWrapper(torch.nn.Module):
def __init__(self, mod) -> None:

super().__init__()
self.mod = mod
# state_dict post hook to remove prefix to allow loading into a
# non-checkpoint wrapped module.
self._register_state_dict_hook(self._post_state_dict_hook)
# load_state_dict pre-hook to allow loading back into
# checkpoint-wrapped module.
self._register_load_state_dict_pre_hook(

self._pre_load_state_dict_hook, with_module=True
)

def forward(self, *args, **kwargs):
ordered_args = list(args)
for value in kwargs.values():

ordered_args += [value]

# Note: checkpoint cannot accept kwargs
return torch_checkpoint(self.mod, *ordered_args, use_reentrant=True)

def named_parameters(
self,
*args,
**kwargs,

) -> Iterator[Tuple[str, torch.nn.Parameter]]:
"""
Overrides :meth:`named_parameters()` to intercept parameter names and
remove all occurrences of ``_CHECKPOINT_PREFIX``.

(continues on next page)
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"""
for param_name, param in super().named_parameters(*args, **kwargs):

updated_name = param_name.replace(_CHECKPOINT_PREFIX, "")
yield updated_name, param

def named_modules(self,*args,**kwargs):
for module_name, module in super().named_modules(*args, **kwargs):

updated_name = module_name.replace(_CHECKPOINT_PREFIX, "")
yield updated_name, module

@staticmethod
def _post_state_dict_hook(

module: nn.Module,
state_dict: Dict[str, Any],
prefix: str,
*args: Any,

) -> Dict[str, Any]:
"""
_post_state_dict_hook() is called after the state_dict() of this
FSDP module is executed. For ``checkpoint_wrapper``, it will strip
checkpoint-wrapped module prefix so that this module can be loaded into
non-checkpointed modules. It would still be able to be loaded into
checkpoint-wrapped modules as this class adds the prefix back before
loading the state_dict.
"""
_replace_by_prefix(state_dict, f"{prefix}{_CHECKPOINT_PREFIX}", prefix)
return state_dict

@staticmethod
def _pre_load_state_dict_hook(

module: nn.Module,
state_dict: Dict[str, Any],
prefix: str,
*args: Any,

) -> None:
"""
``_pre_state_dict_hook` is called before ``self._load_from_state_dict()``
is called. For ``checkpoint_wrapper``, it will add back the module
prefix so that non-checkpointed modules can be loaded into
checkpoint_wrapper modules properly.
"""
_replace_by_prefix(state_dict, prefix, prefix + f"{_CHECKPOINT_PREFIX}")

def apply_checkpoint(dist_model, layers_to_checkpoint=None):
checkpoint_wrapper_added = False
if layers_to_checkpoint is not None and len(layers_to_checkpoint) == 0:

raise RuntimeError(
rmsg(f"invalid input layers_to_checkpoint {layers_to_checkpoint}, can't be␣

→˓empty")
)

for name, module in dist_model.local_module.named_children():
# checkpoint layers that are provided in input

(continues on next page)
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# if layers not provide in input, then checkpoint if it is transformer layer
if (layers_to_checkpoint and name in layers_to_checkpoint) or (

not layers_to_checkpoint and type(module) == dist_model.transformer_layer_cls
):

# add_module replaces old module with our own custom module.
# https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html

→˓#Module.add_module
dist_model.local_module.add_module(name, CheckPointWrapper(module))
checkpoint_wrapper_added = True

if layers_to_checkpoint is not None and not checkpoint_wrapper_added:
logger.warning(

rmsg(f"layers_to_checkpoint {layers_to_checkpoint} do not exist in the graph
→˓")

)
elif layers_to_checkpoint is None and not checkpoint_wrapper_added:

logger.warning(
rmsg(

f"During applying activation checkpointing, transformer_layer_cls {dist_
→˓model.transformer_layer_cls.__name__} can not be found in stage {dist_model.pipeline_
→˓parallel_rank}, skipping..."

)
)

model = NxDPPModel(...)
# Will checkpoint every transformer layer
apply_checkpoint(model)

apply_checkpoint function will try to apply gradient checkpointing to every transformer layer. Please note we have
plan to add this functionality into NxDPPModel in the future releases.

Model tracing

It is important to understand that the model cannot be partitioned without tracing. The model tracing is currently done
with FX’s symbolic trace. There are certain limitations for FX’s symbolic trace. So in order to avoid any tracing issue,
we would like to trace as less operations as possible, which means that we only want to trace the structure of the model,
and cut the pipeline stages on the transformer layers, we do not care how exactly the computations are in the model.
By default, we will mark all transformer layers as leaf nodes, so that the tracer will not trace inside these layers. If you
have some module that might cause tracing problem, you can try to mark them as leaf nodes as well. Our previous
example also marks the LlamaRMSNorm as leaf module for Llama model.

Special treatment for Hugging Face models

Hugging Face offers FX support for many of its models. We will detect if user is using a Hugging Face model (by
checking if the model class is transformers.PreTrainedModel), and if so we will use the Huggingface’s FX tracer
to do the symbolic trace. The Hugging Face’s tracer has implementation of many functionalities to help tracing, for
details please refer to here. However, please be aware that Hugging Face’s tracer will check if the model class name
belongs to one of the Hugging Face models. So if you create your model class based on some Huggingface model
class, it is important to maintain the same class name. Below is an example:
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from transformers.models.llama.modeling_llama import LlamaForCausalLM as␣
→˓LlamaForCausalLMHF

# Keep the same class name as original one
class LlamaForCausalLM(LlamaForCausalLMHF):

...

Auto partition

Setting the auto_partition parameter to True means that the transformer layers are automatically partitioned by
evenly splitting the transformer layers between the PP ranks. If the transformer layers are not evenly divisible by the
PP ranks, the remaining layers are distributed to the latter pipeline ranks. The partitions are created on the basis of
the transformer layer names. The transformer layer names are determined by recursively traversing the original torch
module to find the layer names of modules that are of the transformer_layer_cls type in the model. If the user
does not want to partition the model in this way, they can set the partitions to use by specifying the pipeline_cuts.
Note that the pipeline cuts should be at the transformer layer module name, which in the Llama model is given by
model.layers.i where i is the layer index.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

Developer guide for Activation Memory reduction

Sequence Parallelism

To combine sequence parallelism with tensor-parallelism, one needs to follow the steps below:

Model changes for Tensor-Parallel block:

For tensor-parallelism, we replace the linear layers with ColumnParallel and RowParallel Linear layers as mentioned
here. To enable sequence-parallel, we need to pass the sequence_parallel_enabled for the ColumnParallel and Row-
Parallel linear layers. Setting this argument to true, the ColumnParallel and RowParallel Linear layers will introduce
the all-gather and reduce-scatter operations for gathering and distributing the activations along the sequence
dimension.

from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXAttention

class class GPTNeoXAttentionNxD(GPTNeoXAttention):
def __init__(self, config):

super().__init__(config)
....
self.query_key_value = ColumnParallelLinear(

config.hidden_size,
3 * config.hidden_size,
stride=3,
gather_output=False,
init_method=init_method,
sequence_parallel_enabled=self.config.sequence_parallel_

→˓enabled,
(continues on next page)
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)
self.dense = RowParallelLinear(

config.hidden_size,
config.hidden_size,
input_is_parallel=True,
init_method=init_method,
sequence_parallel_enabled=self.config.sequence_parallel_enabled,

)
....

Model changes for Non-Tensor-Parallel block:

In a transformer module, the non-tensor parallel block contains mainly the Layer-Norm modules. Since we partition
the computation along the sequence dimension for the layer-norm, we need to sum up the gradients along the sequence
dimension for the Layer-norm. To help us do that, we use the Layer-norm provided from neuronx-distributed.
parallel_layers.layer_norm. The Layer-norm in neuronx-distributed should uses the same forward and backward
as torch.nn.LayerNorm, however, it just marks the weights as sequence-parallel weights. This tagging allows us to
look for weights with sequence-parallel tagging and reduce those gradients along the tensor-parallel degree. Hence we
need to add the following two changes:

from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXLayer
from neuronx_distributed.parallel_layers import layer_norm

class GPTNeoXLayerNxD(GPTNeoXLayer):
def __init__(self, config):

super().__init__(config)
...
self.input_layernorm = layer_norm.LayerNorm(

config.hidden_size,
eps=config.layer_norm_eps,
sequence_parallel_enabled=config.sequence_parallel_

→˓enabled
)

self.post_attention_layernorm = layer_norm.LayerNorm(
config.hidden_size,
eps=config.layer_norm_eps,
sequence_parallel_enabled=config.sequence_

→˓parallel_enabled
)

Once we replace the layernorm with neuronx-distributed’s layernorm, it will mark the weights as sequence-parallel
weights. Note: If your model is using RMSNorm or any other layer that parallelizes in the sequence-dimension, you
can mark the weights as sequence-parallel weights by using the following code:

setattr(param, "sequence_parallel_enabled", sequence_parallel_enabled)

Once marked, we then use this attribute when we compute gradients for layer-norm. We need to add the following code
before our optimizer.step:

def allreduce_sequence_parallel_gradients(optimizer):
""" All-reduce layernorm parameters across model parallel nodes when sequence␣

(continues on next page)
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→˓parallelism is used.
Modified from megatron-lm:
https://gitlab-master.nvidia.com/ADLR/megatron-lm/-/blob/

→˓3f91f09bb2ab32f9904b47f46f19d2fc3f518ed8/megatron/training.py#L425
"""
from neuronx_distributed.parallel_layers.mappings import reduce_from_tensor_model_

→˓parallel_region
grads = []
for param_group in optimizer.__getstate__()['param_groups']:

for group, params in param_group.items():
if group == 'params':

for p in params:
if isinstance(p, torch.Tensor) and p.grad is not None:

sequence_parallel_param = getattr(p, 'sequence_parallel_enabled',
→˓ False)

if sequence_parallel_param:
grads.append(p.grad.data)

for grad in grads:
reduce_from_tensor_model_parallel_region(grad)

As seen in the above code, we reduce the gradients from all tensor parallel devices. This is because the compute is
divided along the sequence dimension across all the devices participating in the tensor parallel group. For reference
implementation, check the GPTNeoX-20B modeling code .

Transposing the activations:

Sequence-parallelism implementation requires the sequence dimension to be the 0th dimension whereas the tensor-
parallel region requires the sequence dimension to be the first dimension. All our model implementation keeps the
sequence dimension as 1st dimension and batch dimension as 0th dimension. Hence, to accommodate sequence paral-
lelism, we need to insert a few transpose operations at the following places:

1. Before we start looping through all the layers, we need to transpose the sequence and batch dimension. We also need
to partition the inputs along the sequence dimensions such that each tp-rank gets a part. This can be done as:

form neuronx_distributed.parallel_layers.mappings import scatter_to_sequence_parallel_
→˓region
# NxD Core code change: sequence parallel uses seq_len as the 0-th dim
if self.config.sequence_parallel_enabled:

hidden_states = hidden_states.transpose(0, 1).contiguous()
hidden_states = scatter_to_sequence_parallel_region(hidden_states)

2. Since the attention block requires the sequence dimension to be 1st dimension, we transpose the output of QKV
projection and then transpose it back before the final MLP of the attention block.

# Within the attention module
qkv = self.query_key_value(hidden_states)

if config.sequence_parallel_enabled:
qkv = qkv.transpose(0,1)

...

(continues on next page)
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attn_output = attn_output.transpose(0,1)
attn_output = self.dense(attn_output)

3. Finally before returning the final output, we need to put all the partial activations along the sequence dimension back
together. This can be done as follows:

form neuronx_distributed.parallel_layers.mappings import gather_from_sequence_parallel_
→˓region
if self.config.sequence_parallel_enabled:

hidden_states = gather_from_sequence_parallel_region(hidden_states, to_model_
→˓parallel=False)

hidden_states = hidden_states.transpose(0, 1).contiguous()

return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_attentions,

)

These are the only major changes required to add sequence-parallelism on top of tensor-parallelism. Note: Sequence-
parallelism uses the same tensor-parallel group. For reference implementation, follow GPTNeoX-20B model script.

Activation Recomputation

As seen in the App notes on Activation Memory Recomputation we can reduce the activation memory by recomput-
ing few operations from the forward pass during the backward run. To replay some of the compute, we can use the
torch.utils.checkpoint.checkpoint. To use this API, we need to put the compute, we want to replay, inside a function
which can be passed to the checkpoint API. This API takes care of maintaining the RNG seed, not saving the activations
and also inserting the forward recompute during the gradient computation.

To enable selective activation checkpointing for the attention block, we can simply pass the attention block to the
checkpoint api as follows:

if config.selective_activation_checkpointing_is_enabled:
attn_output = torch.utils.checkpoint.checkpoint(self._attn, query, key, value,␣

→˓attention_mask, head_mask)
else:

attn_output = self._attn(query, key, value, attention_mask, head_mask)

Note: To use torch.utils.checkpoint, it is mandatory to use -O1 compiler flag. If this is not enabled, the Neuron compiler
would eliminate the duplicate recompute as an optimization and hence you would not see any memory gains.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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Developer guide for save/load checkpoint

This document will introduce how to use nxd.save_checkpoint and nxd.load_checkpoint to save and load checkpoint
for distributed model training. This two methods handle all checkpoint in a single method: model, optimize, learning
rate scheduler and any user contents.

Model states are saved on data parallel rank-0 only. When ZeRO-1 optimizer is not turned on, optimizer states are also
saved like this; while when ZeRO-1 optimizer is turned on, states are saved on all ranks. Scheduler and user contents
are saved on master rank only.

For a complete api guide, refer to API GUIDE.

Save checkpoint:

A sample usage:

nxd.save_checkpoint(
args.checkpoint_dir, # checkpoint path
tag=f"step_{total_steps}", # tag, sub-directory under checkpoint path
model=model,
optimizer=optimizer,
scheduler=lr_scheduler,
user_content={"total_steps": total_steps, "batch_idx": batch_idx, "cli_args": args.__

→˓dict__},
use_xser=True,
async_save=True,

)

Users can choose to not save every thing. For example, model states only:

nxd.save_checkpoint(
args.checkpoint_dir, # checkpoint path
tag=f"step_{total_steps}", # tag, sub-directory under checkpoint path
model=model,
use_xser=True,
async_save=True,

)

To only keep several checkpoints (e.g. 5), just use num_kept_ckpts=5.

Load checkpoint:

A sample usage, note that if no user contents detected, it will return None:

user_content = nxd.load_checkpoint(
args.checkpoint_dir, # checkpoint path
tag=f"step_{args.loading_step}", # tag
model=model,
optimizer=optimizer,
scheduler=lr_scheduler,

)

Leave tag not provided, this loading method will try to automatically resume from the latest checkpoint.
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user_content = nxd.load_checkpoint(
args.checkpoint_dir, # checkpoint path
model=model,
optimizer=optimizer,
scheduler=lr_scheduler,

)

ZeRO-1 Optimizer State Offline Conversion:

ZeRO-1 optimizer checkpoint are sharded states stored for each rank. When user want to load ZeRO-1 optimizer states
with different cluster setting (e.g. with DP degree changed), they can run the offline ZeRO-1 optimizer checkpoint
conversion tool. This tool supports conversion from sharded states to full states, from full to sharded, and from sharded
to sharded.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

Developer guide for Neuron-PT-Lightning

Training

For training models with Neuron-PT-Lightning, user needs to make few changes to their model/training script. In this
document we explain how we can train a model using Tensor Parallelism (TP), Data Parallelism (DP) and Zero-1.

First, let’s start with the model changes. Please follow the guidelines here (tensor parallel guidance) for building the
model with tensor-parallelism enabled and setting up training dataset.

Next, let’s walkthrough how we can build the training loop with Neuron-PT-Lightning APIs

Configure NeuronLTModule

NeuronxDistributed overrides LightningModule with built-in support for Neuron device. User needs to inherit from
NeuronLTModule

class NeuronLlamaLTModule(NeuronLTModule):
def training_step(self, batch, batch_idx):

...
...

Within LTModule, user needs to override the following methods training_step At this moment NeuronLTModule
only support manual optimization, so user needs to define forward, backward and optimization steps

def training_step(self, batch, batch_idx):
xm.mark_step() # Isolate forward+backward graph
for logger in self.trainer.loggers:

logger.print_step = -1
self.should_print = False
outputs = self.model(

input_ids=batch["input_ids"],
attention_mask=batch["attention_mask"],

(continues on next page)
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labels=batch["labels"],
)
loss = outputs.loss / self.grad_accum_steps
loss.backward()
self.averaged_loss += loss.detach()
xm.mark_step() # Isolate forward+backward graph
if not self.automatic_optimization and (batch_idx +1) % self.grad_accum_steps == 0:

self.should_print = True
loss_div = self.averaged_loss / self.trainer.strategy.data_parallel_size
loss_reduced = xm.all_reduce(

xm.REDUCE_SUM,
loss_div,
groups=parallel_state.get_data_parallel_group(as_list=True),

)
loss_reduced_detached = loss_reduced.detach()
self.averaged_loss.zero_()
optimizer = self.optimizers()
scheduler = self.lr_schedulers()
optimizer.step()
optimizer.zero_grad()
scheduler.step()
xm.mark_step() # Isolate Optimization step graph

# Setup items for logging
self.loss = loss_reduced_detached

return loss

configure_optimizers Configure optimizer and lr_scheduler

def configure_optimizers(self):
param_groups = self.get_param_groups_by_weight_decay()
optimizer = initialize_parallel_optimizer(

self.nxd_config, self.opt_cls, param_groups, **self.opt_kwargs
)
optimizer.zero_grad()
scheduler = self.scheduler_cls(optimizer, *self.scheduler_args, **self.scheduler_

→˓kwargs)
return (

[optimizer],
[

{
"scheduler": scheduler,

}
],

)

on_train_batch_end Customized behaviour at the end of each training batch, like logging

def on_train_batch_end(self, *args, **kwargs):
if self.should_print:

if not self.automatic_optimization:
self.log(

(continues on next page)
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"loss",
self.loss.detach().cpu().item() if self.loss is not None else torch.

→˓zeros(1, device="cpu", requires_grad=False),
prog_bar=True,

)
self.log(

"global_step",
self.global_step,
prog_bar=True,
on_step=True,
on_epoch=True,

)
for logger in self.trainer.loggers:

logger.print_step = self.global_step

Note that NeuronLTModule has a built-in function of get_param_groups_by_weight_decay for common use case
as shown in snippet below, users can also override with their own param_groups generation.

def get_param_groups_by_weight_decay(self):
"""Get param groups. Customers can override this to have their own way of weight_

→˓decay"""
param_optimizer = list(self.model.named_parameters())
no_decay = ["bias", "LayerNorm"] # gamma/beta are in LayerNorm.weight

optimizer_grouped_parameters = [
{

"params": [p for n, p in param_optimizer if not any(nd in n for nd in no_
→˓decay)],

"weight_decay": 0.01,
},
{

"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,

},
]
return optimizer_grouped_parameters

Configure DataModule

Create a LightningDataModule for data loading/sampling

class NeuronLightningDataModule(LightningDataModule):
def __init__(

self,
dataloader_fn: Callable,
data_dir: str,
batch_size: int,
data_args: Tuple = (),
data_kwargs: Dict = {},

):
super().__init__()

(continues on next page)
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self.dataloader_fn = dataloader_fn
self.data_dir = data_dir
self.batch_size = batch_size
self.data_args = data_args,
self.data_kwargs = data_kwargs

def setup(self, stage: str):
pass

def train_dataloader(self):
return self.dataloader_fn(

self.data_dir,
self.batch_size,
self.trainer.strategy.data_parallel_size,
self.trainer.strategy.data_parallel_rank,
*self.data_args,
**self.data_kwargs

)

Update Training Script

For detailed introduction to each api/class, check api guide

Create NeuronLTModule and DataModule

model = NeuronLlamaLTModule(
model_fn = LlamaForCausalLM,
nxd_config = nxd_config,
model_args = (model_config,),
opt_cls = optimizer_cls,
scheduler_cls = configure_scheduler,
opt_kwargs = {

"lr": flags.lr,
},
scheduler_args = (flags.warmup_steps, flags.max_steps),
grad_accum_steps = flags.grad_accum_usteps,
manual_opt = True,

)

dm = NeuronLightningDataModule(
create_llama_pretraining_dataset,
flags.data_dir,
flags.batch_size,
data_args = (flags.seed,),

)
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Add Strategy, Plugins, Callbacks

strategy = NeuronXLAStrategy(
nxd_config = nxd_config

)
plugins = []
plugins.append(NeuronXLAPrecisionPlugin())
callbacks = []
callbacks.append(NeuronTQDMProgressBar())

Create Trainer and Start Training

trainer = Trainer(
strategy = strategy,
max_steps = flags.steps_this_run,
plugins = plugins,
enable_checkpointing = flags.save_checkpoint,
logger = NeuronTensorBoardLogger(save_dir=flags.log_dir),
log_every_n_steps = 1,
callbacks = callbacks,

)
trainer.fit(model=model, datamodule=dm)

Checkpointing

To enable checkpoint saving, add ModelCheckpoint to the callbacks

callbacks.append(
ModelCheckpoint(

save_top_k = flags.num_kept_checkpoint,
monitor="global_step",
mode="max",
every_n_train_steps = flags.checkpoint_freq,
dirpath = flags.checkpoint_dir,

)
)

To load from specific checkpoint, add ckpt_path=ckpt_path to trainer.fit

trainer.fit(model=model, datamodule=dm, ckpt_path=ckpt_path)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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Developer guide for model and optimizer wrapper

Model and optimizer wrapper are useful tools to wrap original model and optimizer while keep the API unchanged. We
recommend to always use model and optimizer wrappers, it’s helpful to apply optimizations and hide the complexity
from the optimizations. Users need to care about the implementation details of the optimization, just use the wrappers
as you normally use torch.nn.Module and torch.optim.Optimizer.

For a complete api guide, refer to API GUIDE.

Create training config:

To use model and optimizer wrapper, we need to create neuronx_distributed config firstly.

A sample config use tensor parallel, pipeline parallel, ZeRO-1 optimizer, sequence parallel and activation checkpoint-
ing:

nxd_config = nxd.neuronx_distributed_config(
tensor_parallel_size=args.tensor_parallel_size,
pipeline_parallel_size=args.pipeline_parallel_size,
pipeline_config={

"transformer_layer_cls": LlamaDecoderLayer,
"num_microbatches": args.num_microbatches,
"output_loss_value_spec": (True, False),
"input_names": ["input_ids", "attention_mask", "labels"],
"pipeline_cuts": pipeline_cuts,
"trace_file_path": args.trace_file_path,
"param_init_fn": None,
"leaf_module_cls": [LlamaRMSNorm.__name__],
"autowrap_modules": [mappings],
"use_zero1_optimizer": args.use_zero1_optimizer > 0,
"use_optimizer_wrapper": True,

},
optimizer_config={

"zero_one_enabled": args.use_zero1_optimizer > 0,
"grad_clipping": True,
"max_grad_norm": 1.0,

},
sequence_parallel=args.use_sequence_parallel,
activation_checkpoint_config=CoreAttention if args.use_selective_checkpoint > 0 else

→˓"full",
model_init_config=model_init_config,

)

760 Chapter 3. NeuronX Distributed (NxD)



AWS Neuron

Use model wrapper:

When we wrap a model with model wrapper, we need to implement a model getter function. The model getter function
will be called to initialize model on CPU and then model will be moved to XLA device serially. Then, let’s pass
nxd_config, model getter function and its inputs to method initialize_parallel_model:

model = nxd.initialize_parallel_model(nxd_config, get_model, config)

If pipeline parallel is enabled, to run a training iteration, user must use run_train, it handles pipeline partitioned
forward and backward in it:

loss = model.run_train(*inputs)

Otherwise, users can use either run_train or:

loss = model(*inputs)
loss.backward()

To access the wrapped model:

model.local_module()

Model wrapper also has short cuts to access some common fields of hugging face transformers model;

model.dtype # get model's dtype
model.config # get model's config
model.name_or_path # get model's name or path

Use optimizer wrapper:

When we wrap an optimizer with optimizer wrapper, we need nxd_config, original optimizer class and its inputs
(parameters and optimizer arguments):

optimizer = nxd.initialize_parallel_optimizer(
nxd_config, torch.optim.AdamW, param_groups, lr=args.lr, betas=(args.beta1, args.

→˓beta2), weight_decay=args.weight_decay
)

One useful feature is that user can access grad norm value from wrapped optimizer directly:

# It's a XLA tensor
optimizer.grad_norm

Note that if optimizer has not been executed or grad_clipping is disable, access grad_norm will get None.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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Developer guide for LoRA finetuning

This document will introduce how to enable model finetuning with LoRA.

For a complete api guide, refer to API .

Enable LoRA finetuning:

We first set up LoRA-related configurations:

lora_config = nxd.modules.lora.LoraConfig(
enable_lora=True,
lora_rank=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
lora_verbose=True,
target_modules=["q_proj", "v_proj", "k_proj"],
save_lora_base=False,
merge_lora=False,

)

The default target modules for different model architectures can be found in model.py.

We then initialize NxD model with LoRA enabled:

nxd_config = nxd.neuronx_distributed_config(
...
lora_config=lora_config,

)
model = nxd.initialize_parallel_model(nxd_config, ...)

Save LoRA checkpoint

Users can save the LoRA adapter with

nxd.save_checkpoint(
checkpoint_dir_str=checkpoint_dir, # checkpoint path
tag=tag, # sub-directory under checkpoint path
model=model

)

Because save_lora_base=False and merge_lora=False, only the LoRA adapter is saved under
checkpoint_dir/tag/. We can also set merge_lora=True to save the merged model, i.e., merging LoRA
adapter into the base model.
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Load LoRA checkpoint:

A sample usage:

lora_config = LoraConfig(
enable_lora=True,
load_lora_from_ckpt=True,
lora_save_dir=checkpoint_dir, # checkpoint path
lora_load_tag=tag, # sub-directory under checkpoint path

)
nxd_config = nxd.neuronx_distributed_config(

...
lora_config=lora_config,

)
model = nxd.initialize_parallel_model(nxd_config, ...)

The NxD model with be initialized with LoRA enabled and LoRA weights loaded. LoRA-related configurations are
the same as the LoRA adapter checkpoint.

This document is relevant for: Inf2, Trn1, Trn2

• Developer guide for Tensor Parallelism

• Developer guide for Pipeline Parallelism

• Developer guide for Activation Memory reduction

• Developer guide for save/load checkpoint

• Developer guide for Neuron-PT-Lightning

• Developer guide for model and optimizer wrapper

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

Inference Developer Guide

This document is relevant for: Inf2, Trn1, Trn2

Developer guide for Neuronx-Distributed Inference

Neuronx-Distributed (NxD Core) provides fundamental building blocks that enable you to run advanced inference
workloads on AWS Inferentia and Trainium instances. These building blocks include parallel linear layers that enable
distributed inference, a model builder that compiles PyTorch modules into Neuron models, and more.

Neuron also offers Neuronx-Distributed (NxD) Inference, which is a library that provides optimized model and module
implementations that build on top of NxD Core. We recommend that you use NxD Inference to run inference workloads
and onboard custom models. For more information about NxD Inference, see NxD Inference Overview.

For examples of how to build directly on NxD Core, see the following:

• Llama 3.2 1B inference sample

• T5 3B inference tutorial [html] [notebook]

This document is relevant for: Inf2, Trn1, Trn2

• Developer guide for Neuronx-Distributed Inference
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This document is relevant for: Inf2, Trn1, Trn2

• Training Developer Guides

• Inference Developer Guide

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

3.3.5 Tutorials for NeuronX Distributed

This document is relevant for: Inf2, Trn1, Trn2

Training Tutorials

This document is relevant for: Inf2, Trn1, Trn2

Training with Tensor Parallelism

Keeping the above changes made in Developer guide, let’s now run an end-to-end training with tensor-parallelism.
This section is adopted from BERT pretraining tutorial which used data-parallel training to scale the throughput. In
this section we modify that tutorial to showcase the use of tensor-parallelism which should enable us to scale the size
of the model.

Setting up environment:

For this experiment, we will use a trn1-32xl machine with the storage set to 512GB at least. Follow the instructions
mentioned here: Install PyTorch Neuron on Trn1. It is recommended to work out of python virtual env so as to avoid
package installation issues.

We also have to install the neuronx-distributed package using the following command:

python -m pip install neuronx_distributed --extra-index-url https://pip.repos.neuron.
→˓amazonaws.com

Make sure the transformers version is set to 4.26.0 (Note: If you have transformers-neuronx in your environment, you
need to uninstall it to avoid a conflict with the transformers version.)

Let’s download the scripts and datasets for pretraining.

mkdir -p ~/examples/tp_dp_bert_hf_pretrain
cd ~/examples/tp_dp_bert_hf_pretrain
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/tp_dp_bert_hf_pretrain/tp_dp_bert_large_hf_pretrain_hdf5.py
wget https://raw.githubusercontent.com/aws-neuron/neuronx-distributed/master/examples/
→˓training/tp_dp_bert_hf_pretrain/requirements.txt
python3 -m pip install -r requirements.txt

Next let’s download the tokenizer and the sharded datasets:

mkdir -p ~/examples_datasets/
pushd ~/examples_datasets/
aws s3 cp s3://neuron-s3/training_datasets/bert_pretrain_wikicorpus_tokenized_hdf5/bert_
→˓pretrain_wikicorpus_tokenized_hdf5_seqlen128.tar . --no-sign-request

(continues on next page)
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(continued from previous page)

tar -xf bert_pretrain_wikicorpus_tokenized_hdf5_seqlen128.tar
rm bert_pretrain_wikicorpus_tokenized_hdf5_seqlen128.tar
popd

At this point, you are all set to start training

Running training

We first pre-compile the graphs using the neuron_parallel_compile. This process is similar to one discussed in
the BERT pretraining tutorial . Let’s run the command below:

cd ~/examples/tp_dp_bert_hf_pretrain
export XLA_DOWNCAST_BF16=1
neuron_parallel_compile torchrun --nproc_per_node=32 \
tp_dp_bert_large_hf_pretrain_hdf5.py \
--tensor_parallel_size 8 \
--steps_this_run 10 \
--batch_size 64 \
--grad_accum_usteps 64 |& tee compile_log.txt

This script uses a tensor-parallel size of 8. This will automatically set the data-parallel degree to 4 (32 workers /
tensor_parallel_size). Once the graphs are compiled we can now run training and observe our loss go down. To run
the training, we just the above command but without neuron_parallel_compile.

XLA_DOWNCAST_BF16=1 torchrun --nproc_per_node=32 \
tp_dp_bert_large_hf_pretrain_hdf5.py \
--tensor_parallel_size 8 \
--steps_this_run 10 \
--batch_size 64 \
--grad_accum_usteps 64 |& tee training_log.txt

You would notice that the throughput is lower when you run the dp_bert_large_hf_pretrain_hdf5.py. This
is expected as the number of data-parallel workers have gone down (from 32 to 4). However, if you open
neuron-top in another terminal, you should see the memory utilization per core for this script is lower than the
dp_bert_large_hf_pretrain_hdf5.py. Since the memory requirement has gone down, you can scale the size of
model either by increasing the number of layers/attention heads/hidden sizes.

The loss curve should match to the loss curve we would get from the data_parallel counterpart.

Known Issues:

1. Currently the checkpoints dumped during training are sharded and users would have to write a script to combine
the checkpoints themselves. This should be fixed in the future release

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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Training GPT-NeoX 6.9B with Tensor Parallelism and ZeRO-1 Optimizer

In this section, we showcase to pretrain a GPT-NeoX 6.9B model by using tensor parallelism and zero-1 optimizer in
the neuronx-distributed package. Please refer to the Neuron Samples repository to view the files in this tutorial.

Setting up environment:
For this experiment, we will use a ParallelCluster with at least four trn1-32xl compute nodes. Train your model on
ParallelCluster introduces how to setup and use a ParallelCluster. We need first to create and activate a python virtual
env on the head node of the ParallelCluster. Next follow the instructions mentioned here: Install PyTorch Neuron on
Trn1 to install neuron python packages.

We also need to install and clone the neuronx-distributed package using the following command:

python -m pip install neuronx_distributed --extra-index-url https://pip.repos.neuron.
→˓amazonaws.com
git clone git@github.com:aws-neuron/neuronx-distributed.git

Let’s download the scripts for pretraining.

cd ~/neuronx-distributed/examples/training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_6.
→˓9b_hf_pretrain/
ln -sf ~/neuronx-distributed/examples/training/tp_dp_gpt_neox_hf_pretrain/common/adamw_
→˓fp32_optim_params.py ./
ln -sf ~/neuronx-distributed/examples/training/tp_dp_gpt_neox_hf_pretrain/common/get_
→˓dataset.py ./
ln -sf ~/neuronx-distributed/examples/training/tp_dp_gpt_neox_hf_pretrain/common/
→˓requirements.txt ./
ln -sf ~/neuronx-distributed/examples/training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_
→˓20b_hf_pretrain/modeling_gpt_neox_nxd.py ./
ln -sf ~/neuronx-distributed/examples/training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_
→˓20b_hf_pretrain/utils.py ./
python3 -m pip install -r requirements.txt

Next let’s download and pre-process the dataset:

python3 get_dataset.py

At this point, you are all set to start training.

Running training
We first pre-compile the graphs using the neuron_parallel_compile. Let’s run the command below:

sbatch --exclusive \
--nodes 4 \
--wrap="srun neuron_parallel_compile bash $(pwd)/tp_dp_gpt_neox_6.9b_hf_pretrain.sh"

This script uses a tensor-parallel size of 8. This will automatically set the zero-1 sharding degree to 16 (4 * 32 workers
/ tensor_parallel_size). Once the graphs are compiled we can now run training and observe our loss goes down. To run
the training, we just the above command but without neuron_parallel_compile.

sbatch --exclusive \
--nodes 4 \
--wrap="srun bash $(pwd)/tp_dp_gpt_neox_6.9b_hf_pretrain.sh"

ZeRO-1 Optimizer
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The training script uses ZeRO-1 optimizer, where the optimizer states are partitioned across the ranks so that each rank
updates only its partition. Below shows the code snippet of using ZeRO-1 optimizer in training script:

from neuronx_distributed.optimizer import NeuronZero1Optimizer

optimizer = NeuronZero1Optimizer(
optimizer_grouped_parameters,
AdamW_FP32OptimParams,
lr=flags.lr,
pin_layout=False,
sharding_groups=parallel_state.get_data_parallel_group(as_list=True),
grad_norm_groups=parallel_state.get_tensor_model_parallel_group(as_list=True),

)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

Training GPT-NeoX 20B with Tensor Parallelism and ZeRO-1 Optimizer

In this section, we showcase to pretrain a GPT-NeoX 20B model by using the sequence parallel optimization of tensor
parallelism in the neuronx-distributed package. Please refer to the Neuron Samples repository to view the files in
this tutorial.

This GPT-NeoX 20B tutorial differs from the GPT-NeoX 6.9B tutorial in the following ways:

• sequence parallel optimization has been applied

• parallel cross entropy has been applied

• the model size has been increased from 6.9B to 20B

• the TP degree has been increased from 8 to 32

Setting up environment is same as the GPT-NeoX 6.9B tutorial.

Let’s download the scripts for pretraining:

cd ~/neuronx-distributed/examples/training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_20b_
→˓hf_pretrain/
ln -sf ~/neuronx-distributed/examples/training/tp_dp_gpt_neox_hf_pretrain/common/adamw_
→˓fp32_optim_params.py ./
ln -sf ~/neuronx-distributed/examples/training/tp_dp_gpt_neox_hf_pretrain/common/get_
→˓dataset.py ./
ln -sf ~/neuronx-distributed/examples/training/tp_dp_gpt_neox_hf_pretrain/common/
→˓requirements.txt ./
python3 -m pip install -r requirements.txt

Next let’s download and pre-process the dataset:

python3 get_dataset.py

At this point, you are all set to start training.

Running training
We first pre-compile the graphs using the neuron_parallel_compile. Let’s run the command below:

3.3. NxD Core 767

https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx/training/tp_dp_gpt_neox_hf_pretrain/tp_dp_gpt_neox_20b_hf_pretrain


AWS Neuron

sbatch --exclusive \
--nodes 4 \
--cpus-per-task 128 \
--wrap="srun neuron_parallel_compile bash $(pwd)/tp_dp_gpt_neox_20b_hf_pretrain.sh"

This script uses a tensor-parallel size of 32. This will automatically set the zero-1 sharding degree to 4 (4 * 32 workers
/ tensor_parallel_size). Once the graphs are compiled we can now run training and observe our loss goes down. To run
the training, we just the above command but without neuron_parallel_compile.

sbatch --exclusive \
--nodes 4 \
--cpus-per-task 128 \
--wrap="srun bash $(pwd)/tp_dp_gpt_neox_20b_hf_pretrain.sh"

Sequence Parallel
We made the following model level modifications to enable sequence parallel:

• turn on sequence_parallel_enabled of ColumnParallelLinear and RowParallelLinear in
GPTNeoXAttention and GPTNeoXMLP;

• replace torch LayerNorm in GPTNeoXLayer and GPTNeoXModel with neuronx-distributed LayerNorm with
sequence_parallel_enabled turned on;

• dimension transposition of intermediate states in the forward function of GPTNeoXAttention.

• dimension transposition and collective communication of intermediate states in the forward function of
GPTNeoXModel.

In the training training script level, we enable:

• all-reduce sequence parallel gradients at the gradient accumulation boundary.

Please check modeling_gpt_neox_nxd.py and tp_dp_gpt_neox_20b_hf_pretrain.py for details.

Parallel Cross Entropy
To enable parallel cross entropy, we made the following model level modeifincations:

• replace the CrossEntropyLoss with neuronx-distributed parallel_cross_entropy in the forward function
of GPTNeoXForCausalLM.

• use ColumnParallelLinear for the embed_out layer in GPTNeoXForCausalLM.

Please check modeling_gpt_neox_nxd.py for details.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

Training Llama3.1-8B, Llama3-8B and Llama2-7B with Tensor Parallelism and ZeRO-1 Optimizer

In this section, we showcase how to pre-train Llama3.1-8B, Llama3 8B and Llama2 7B model on four Trn1.32xlarge
instances using the Neuron Distributed library. We will use AWS ParallelCluster to orchestrate the training jobs. To
train the LLama model in this example, we will apply the following optimizations using the Neuron Distributed library:

1. Tensor Parallelism

2. Sequence Parallel

3. Selective checkpointing
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4. ZeRO-1

Setting up environment:

For this experiment, we will use AWS ParallelCluster with at least four Trn1.32xlarge compute nodes. Train your
model on ParallelCluster introduces how to setup and use a ParallelCluster. To setup the packages on the headnode of
the ParallelCluster, follow the instructions mentioned here: Install PyTorch Neuron on Trn1.

We also need to install and clone the neuronx-distributed package inside the virtual env using the following com-
mands:

python -m pip install neuronx_distributed --extra-index-url https://pip.repos.neuron.
→˓amazonaws.com
git clone git@github.com:aws-neuron/neuronx-distributed.git

Let’s download the scripts for pretraining:

1. Navigate to a directory to hold our experiments

cd ~/neuronx-distributed/examples/training/llama/tp_zero1_llama_hf_pretrain

2. Link the training scripts for our experiments

ln -sf ~/neuronx-distributed/examples/training/llama/training_utils.py ./
ln -sf ~/neuronx-distributed/examples/training/llama/modeling_llama_nxd.py ./
ln -sf ~/neuronx-distributed/examples/training/llama/get_dataset.py ./
ln -sf ~/neuronx-distributed/examples/training/llama/requirements.txt ./

If you want to pre-train Llama3.1 8B, you would need to run the following steps -

chmod +x tp_zero1_llama3_8B_hf_pretrain.sh
cp ./8B_config_llama3.1/config.json ./8B_config_llama3
ln -sf 8B_config_llama3.1/config.json ./

If you want to pre-train Llama3 8B, you would need to run the following steps -

chmod +x tp_zero1_llama3_8B_hf_pretrain.sh
ln -sf 8B_config_llama3/config.json ./

If you want to pre-train Llama2 7B, run the following steps -

chmod +x tp_zero1_llama2_7B_hf_pretrain.sh
ln -sf 7B_config_llama2/config.json ./

3. Installing the additional requirements

python3 -m pip install -r requirements.txt

To tokenize the data, we must request the tokenizer from hugging face and meta by following the instructions at the
following link: HuggingFace Llama 3 8B Model .

Use of the Llama models is governed by the Meta license. In order to download the model weights and tokenizer,
please visit the above website and accept their License before requesting access. After access has been granted, you
may use the following python3 script along with your own hugging face token to download and save the tokenizer.

Run the following from ~/examples/tp_zero1_llama_hf_pretrain directory:
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from huggingface_hub import login
from transformers import AutoTokenizer

login(token='your_own_hugging_face_token')

tokenizer = AutoTokenizer.from_pretrained('meta-llama/Meta-Llama-3-8B')
# For llama2 uncomment line below
# tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-hf')

tokenizer.save_pretrained(".")

For Llama3.1/Llama3, make sure your ~/examples/tp_zero1_llama_hf_pretrain directory has the following
files:

'./tokenizer_config.json', './special_tokens_map.json', './tokenizer.json'

For Llama2, you just copy the tokenizer.model to the ~/examples/tp_zero1_llama_hf_pretrain directory.
Next let’s download and pre-process the dataset:

python3 get_dataset.py --llama-version 3 # change the version number to 2 for Llama-2␣
→˓models

Note: In case you see an error of the following form when downloading data: huggingface_hub.utils.
_validators.HFValidationError: Repo id must be in the form 'repo_name' or 'namespace/
repo_name': '/home/ubuntu/examples/tp_zero1_llama_hf_pretrain'. Use `repo_type` argument
if needed. This could be because of a stale cache. Try deleting the cache using:

sudo rm -rf /home/ubuntu/.cache/

At this point, you are all set to start training. The below tutorial uses Llama3 8B as an example. To run Llama2 7B,
simply change the script from tp_zero1_llama3_8B_hf_pretrain.sh to tp_zero1_llama2_7B_hf_pretrain.
sh

Running training

By this step, the ParallelCluster is all setup for running experiments. Before we run training, we first pre-compile the
graphs using the neuron_parallel_compile. Let’s run the command below:

sbatch --exclusive \
--nodes 4 \
--cpus-per-task 128 \
--wrap="srun neuron_parallel_compile bash $(pwd)/tp_zero1_llama3_8B_hf_pretrain.sh"

This script uses a tensor-parallel size of 8. This will automatically set the zero-1 sharding degree to 16 (4 * 32 workers
/ tensor_parallel_size).

Note: You can use any number of nodes in this case, would just need to adjust the number of nodes in the above slurm
command accordingly. Also, the number of nodes used in parallel_compile command should be same as the actual
training run. This is because, as the number of nodes change, the data-parallel degree would change too. This would
result in more workers participating in operations like gradient all-reduce which would result in new graphs getting
created.

Once the graphs are compiled we can now run training and observe our loss goes down. To run the training, we just
run the above command but without neuron_parallel_compile.
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sbatch --exclusive \
--nodes 4 \
--cpus-per-task 128 \
--wrap="srun bash $(pwd)/tp_zero1_llama3_8B_hf_pretrain.sh"

Performance:

To achieve better performance, the script applies few techniques:

Sequence Parallelism and Selective Activation Checkpointing

As explained in the Activation Memory Recomputation Doc, both Sequence Parallelism and Selective activation check-
pointing can help with activation memory reduction thereby allowing us to fit bigger models with less number of de-
vices. Please refer to Activation Memory Reduction Developer Guide on how to enable sequence parallel and selective
activation checkpointing.

Coalescing Q, K, V layers:

We coalesced parallel matrix multiply to improve throughput:

• We coalesced query, key and value into one matrix multiply

• We coalesced gate_proj and up_proj into one matrix multiply

Please check modeling_llama_nxd.py and tp_dp_gpt_neox_20b_hf_pretrain.py for details. Note: Because
we coalesced the layers above, the pretrained checkpoint provided here cannot be loaded out of the box for fine-tuning,
and would require preprocessing. The Q,K,V layers and the gate_proj and up_proj layers need to be coalesced in the
checkpoint before loading.

Logging:

Currently for better performance we log loss values every 10 steps. Logging frequently will result in frequent syncs
between device and CPU which are expensive. Hence, it is recommended to do less frequent logging if possible.

Flash Attention:

We’re introducing flash attention function for better performance/memory efficiency. Currently it’s enabled by default,
to disable it set ``–use_flash_attention 0`

Checkpointing:

Currently by default, the checkpoint is saved at the end of training. You can modify that behaviour by saving the
checkpoint after every N steps inside the training loop:

from neuronx_distributed.parallel_layers import checkpointing
if global_step % every_n_steps_checkpoint == 0:

state_dict = {
"model": model.state_dict(),
"global_step": global_step,
"epoch": epoch,
"scheduler": scheduler.state_dict()

}
checkpointing.save(state_dict, flags.output_dir)
optimizer.save_sharded_state_dict(flags.output_dir)
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Here we have to save the model state_dict using the checkpointing.save API and the optimizer state_dict using the
optimizer.save_sharded_state_dict. This is because, currently, checkpointing.save API only saves on data-parallel rank
0, while in case of Zero1 Optimizer, the optimizer states are distributed across all data-parallel ranks. Hence, we use
Zero1 Optimizer’s save API to save the optimizer states.

Time to save a checkpoint:

Checkpoint save time can vary depending on what location the checkpoint is saved. If the checkpoint is saved in the
home directory, the checkpointing time can be higher. The same time can be reduce by 4x if the checkpoint is dumped
to FSX file system.

By default, checkpoint.save API allows one tensor-parallel rank at a time to save the checkpoint. This is done in order
to avoid HOST OOM. When all tensor-parallel ranks try to save at the same time, they would end up copying weights
to CPU at the same time. This can result in HOST OOM. Note: Since, we use XLA_DOWNCAST_BF16 flag for BF16
training, even though the weights on device are on bf16, the weights on CPU are copied in FP32 format. In case, you
want to avoid this typecasting from BF16 to FP32 when copying weights from device to CPU for checkpoint saving,
you can pass down_cast_bf16=True to the checkpointing.save API as follows:

from neuronx_distributed.parallel_layers import checkpointing
if global_step % every_n_steps_checkpoint == 0:

state_dict = {
"model": model.state_dict(),
"global_step": global_step,
"epoch": epoch,
"scheduler": scheduler.state_dict()

}
checkpointing.save(state_dict, flags.output_dir, down_cast_bf16=True)

This should not only reduce the HOST memory pressure when saving weights, but at the same time reduce model
checkpointing time by half. Note: We are saving checkpoint in sharded format, wherein each tensor-parallel rank is
saving one shard. To deploy these pretrained models, one would have to combine these shards by loading them and
concatenating the tensor-parallel layers together. (We are working on a checkpoint conversion script that combines the
shards into a single checkpoint)

In addition to the above method, if we want to speed up checkpoint saving for the model further, we can do so by:

from neuronx_distributed.parallel_layers import checkpointing
if global_step % every_n_steps_checkpoint == 0:

state_dict = {
"model": model.state_dict(),
"global_step": global_step,
"epoch": epoch,
"scheduler": scheduler.state_dict()

}
checkpointing.save(state_dict, flags.output_dir, down_cast_bf16=True, save_xser=True)

The save_xser uses torch-xla’s xser.save to save the tensors serially. This API will copy one tensor at a time to the
disk. This will allow all the ranks to save the checkpoint at the same time. This speeds up checkpoint saving especially
for large models as all ranks are saving at the same time. Moreover, the risk of HOST OOM is completely eliminated
because only one tensor is copied to CPU at a time.

Note: If we use save_xser to save the checkpoint, we would have to pass load_xser to the checkpoint.load API. Also,
if you use save_xser, the checkpoint folder would contain a .pt file for each tensor instead of a single .pt for the entire
state_dict. To read this checkpoint in your checkpoint conversion script, you would have to use xser.load API instead
of torch.load to load the checkpoint. The xser.load should load the serialized checkpoint and return the full state_dict.

Finally, to speed up optimizer saving time, you can increase the number of workers saving at the same time. This can
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be done as follows:

if global_step % every_n_steps_checkpoint == 0:
...
optimizer.save_sharded_state_dict(flags.output_dir, num_workers_per_step=32)

By default, num_workers_per_step is set to 8.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

Training Llama-3.1-70B, Llama-3-70B or Llama-2-13B/70B with Tensor Parallelism and Pipeline Par-
allelism

In this section, we showcase to pretrain Llama 3.1, Llama3 70B and Llama2 13B/70B model by using the ten-
sor parallel, pipeline parallel, sequence parallel, activation checkpoint as well as constant mask optimization in the
neuronx-distributed package.

Setting up environment:

For this experiment, we will use a ParallelCluster with at least 32 trn1-32xl compute nodes. Train your model on
ParallelCluster introduces how to setup and use a ParallelCluster.

We also need to install the neuronx-distributed package using the following command:

python -m pip install neuronx_distributed --extra-index-url https://pip.repos.neuron.
→˓amazonaws.com
git clone git@github.com:aws-neuron/neuronx-distributed.git

Let’s download the scripts for pretraining:

cd ~/neuronx-distributed/examples/training/llama/tp_pp_llama_hf_pretrain
ln -sf ~/neuronx-distributed/examples/training/llama/lr.py ./
ln -sf ~/neuronx-distributed/examples/training/llama/training_utils.py ./
ln -sf ~/neuronx-distributed/examples/training/llama/convert_checkpoints.py ./
ln -sf ~/neuronx-distributed/examples/training/llama/get_dataset.py ./
ln -sf ~/neuronx-distributed/examples/training/llama/modeling_llama_nxd.py ./
ln -sf ~/neuronx-distributed/examples/training/llama/requirements.txt ./

If you want to pre-train Llama3.1 70B, you would need to run the following steps -

chmod +x run_llama3_70B_tp_pp.sh
ln -sf 70B_config_llama3.1/config.json ./

If you want to pre-train Llama3 70B, you would need to run the following steps -

chmod +x run_llama3_70B_tp_pp.sh
ln -sf 70B_config_llama3/config.json ./

For llama2 13B, you would need to run the following steps -

chmod +x run_llama2_13B_tp_pp.sh
ln -sf 13B_config_llama2/config.json ./

If you want to pre-train Llama2 70B, you would need to run the following steps -
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chmod +x run_llama2_70B_tp_pp.sh
ln -sf 70B_config_llama2/config.json ./

The below tutorial uses Llama3.1 70B as an example. To run Llama2 70B or 13B, simply change the script from
run_llama3_70B_tp_pp.sh to run_llama2_70B_tp_pp.sh or run_llama2_13B_tp_pp.sh.

First, let’s get all the needed dependencies

python3 -m pip install -r requirements.txt

To tokenize the data, we must request the tokenizer from hugging face and meta by following the instructions at the
following link: HuggingFace Llama 3 8B Model .

Use of the Llama models is governed by the Meta license. In order to download the model weights and tokenizer, please
visit the above website and accept their License before requesting access. After access has been granted, you may use
the following python3 script along with your own hugging face token to download and save required tokenizer.

Run the following from ~/examples/tp_pp_llama_hf_pretrain directory:

from huggingface_hub import login
from transformers import AutoTokenizer

login(token='your_own_hugging_face_token')

tokenizer = AutoTokenizer.from_pretrained('meta-llama/Meta-Llama-3-8B')
# For llama2 uncomment line below
# tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-hf')

tokenizer.save_pretrained(".")

For Llama3.1/Llama3, make sure your ~/examples/tp_pp_llama2_hf_pretrain directory has the following files:

'./tokenizer_config.json', './special_tokens_map.json', './tokenizer.json'

For Llama2, you can just copy the tokenizer.model to the ~/examples/tp_pp_llama2_hf_pretrain directory.

Next let’s download and pre-process the dataset:

python3 get_dataset.py --llama-version 3 # change the version number to 2 for Llama-2␣
→˓models

In case you see an error of the following form when downloading data: huggingface_hub.utils._validators.
HFValidationError: Repo id must be in the form 'repo_name' or 'namespace/repo_name':
'/home/ubuntu/examples/tp_pp_llama2_hf_pretrain'. Use `repo_type` argument if needed. This
could be because of a stale cache. Try deleting the cache using:

sudo rm -rf /home/ubuntu/.cache/

In case you see an error of the following form when downloading data: `NotImplementedError: Loading a
dataset cached in a LocalFileSystem is not supported.` Try upgrading pip:

pip install -U datasets

At this point, you are all set to start training.

Running training

We first pre-compile the graphs using the neuron_parallel_compile. Let’s run the command below:
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sbatch --exclusive \
--nodes 32 \
--cpus-per-task 128 \
--wrap="srun neuron_parallel_compile bash $(pwd)/run_llama3_70B_tp_pp.sh"

This script uses a tensor-parallel size of 8, pipeline-parallel size of 8 To run the training, we just use the above command
but without neuron_parallel_compile.

sbatch --exclusive \
--nodes 32 \
--cpus-per-task 128 \
--wrap="srun bash $(pwd)/run_llama3_70B_tp_pp.sh"

To achieve better performance, the script applies few techniques:

Sequence Parallelism and Selective Activation Checkpointing

As explained in the Activation Memory Recomputation Doc, both Sequence Parallelism and Selective activation check-
pointing can help with activation memory reduction thereby allowing us to fit bigger models with less number of de-
vices. Please refer to Activation Memory Reduction Developer Guide on how to enable sequence parallel and selective
activation checkpointing.

GQAQKVColumnParallelLinear Layer:

In LLama 70B GQA module, the K and V attention heads are 8 whereas Q has 64 attentions heads. Since the number
of attention heads should be divisible by tensor_parallel_degree, we would end up using a tp_degree of 8. Hence to fit
a 70B model, we would have to use a higher pipeline-parallel degree. Using higher pipeline-parallel degree works well
when the global batch size is very high, however, as the data-parallel degree increases at higher cluster size, the batch
size per node decreases. This would result in higher pipeline bubble thereby reducing performance. To mitigate this
issue, one can use the GQAQKVColumnParallelLinear layer with the kv_size_multiplier set to 4. This would repeat
the KV heads and make them 32. This would allow doing tensor-parallelism using tp_degree of 32. This reduces the
activation memory per device and thereby eventually allows using a pipeline parallel degree of 4. This can be enabled
by passing the argument:

torchrun $DISTRIBUTED_ARGS run_llama_nxd.py \
... \
--qkv_linear 1 \
--kv_replicator 4 \
--tb_dir $tb_dir |& tee $LOG_PATH/log

The above changes are already included in the run_llama_70b_tp_pp.sh. For Llama13B model we only do 8-way tensor
parallelism so we do not need this change.

Fusing Q,K,V layers:

In the GQAQKVColumnParallelLinear, the parallel matrix multiply is coalesced to improve throughput. Currently it’s
enabled by default. To disable it, set --fuse_qkv 0

Note: Because the layers above are coalesced, ensure that any pretrained checkpoint loaded for fine-tuning has the q,k,v
layers coleasced. Otherwise, preprocessing is required to fuse these layers in the checkpoint. Follow this Checkpoint
Conversion Guide and set --fuse_qkv to coalesce the layers in the checkpoint.

Flash Attention:

We’re introducing flash attention function for better performance/memory efficiency. Currently it’s enabled by default,
to disable it set ``–use_flash_attention 0`

Save/Load Checkpoint (refer to API GUIDE for more context about checkpoint APIs):
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To enable checkpoint saving, add the following flags to run_llama_70b_tp_pp.sh:

• --checkpoint_freq Number of steps to save a checkpoint, set to -1 to disable saving checkpoint, should set as
-1 when pre-compling graph

• --checkpoint_dir Direction to save the checkpoint

• --num_kept_checkpoint Number of checkpoints to save, older checkpoint will be deleted manually, set to -1
to keep all saved checkpoints.

• --save_load_xser Save with torch xla serialization to reduce time saving, it’s recommended to enable xser
for significantly faster save/load

• --async_checkpoint_saving Whether to use asynchronous checkpoint saving to reduce saving time.

To enable checkpoint loading, add the following flags to run_llama_70b_tp_pp.sh:

• --loading_step Step to retrieve checkpoint from, set to -1 to disable checkpoint loading. Set to
latest_if_exists to load the latest checkpoint under checkpoint_dir.

• --checkpoint_dir Direction to load the checkpoint from

• --save_load_xser load with torch xla serialization to reduce time saving, it’s recommended to enable xser for
significantly faster save/load. Note that if the chekpoint is saved with xser, it can only be loaded with xser, vice
versa.

Load pretrained model:

We also provide option to load from pretrained HF model. Before loading, convert the full model to sharded model
with convert_checkpoints.py:

python3 convert_checkpoints.py --tp_size <tp_size> --pp_size <pp_size> --n_layers
→˓<number_of_layers> --input_dir <path_to_full_model> --output_dir <sharded_model_path>
→˓ --convert_from_full_model

And add --pretrained_weight_dir <sharded_model_path> flag to run_llama_70b_tp_pp.sh

Convert sharded model to full model with convert_checkpoints.py:

python3 convert_checkpoints.py --tp_size <tp_size> --pp_size <pp_size> --n_layers
→˓<number_of_layers> --input_dir <sharded_model_dir> --output_dir <full_model_dir> --
→˓convert_to_full_model --kv_size_multiplier <kv_size_multiplier> --config config.json --
→˓qkv_linear True --load_xser True

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

Training Llama-2-7B/13B/70B using Tensor Parallelism and Pipeline Parallelism with Neuron
PyTorch-Lightning

In this section, we showcase to pretrain a Llama2 7B/13B/70B with Tensor Parallelism and Pipeline Parallel using Neu-
ron PyTorch-Lightning APIs, please refer to Llama2 7B Tutorial, Llama2 13B/70B Tutorial and Neuron PT-Lightning
Developer Guide for more context.
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Setting up environment:

For this experiment, we will use AWS ParallelCluster with at least four trn1.32xlarge compute nodes(at least 32 nodes
are needed for 13B/70B model size). Train your model on ParallelCluster introduces how to setup and use a Parallel-
Cluster. To setup the packages on the headnode of the ParallelCluster, follow the instructions mentioned here: Install
PyTorch Neuron on Trn1.

We also need to install the neuronx-distributed package inside the virtual env using the following command:

python -m pip install neuronx_distributed --extra-index-url https://pip.repos.neuron.
→˓amazonaws.com
git clone git@github.com:aws-neuron/neuronx-distributed.git

Let’s download the scripts for pretraining:

1. Navigate to a directory to hold our experiments

cd ~/neuronx-distributed/examples/training/llama/lightning

2. Link the training scripts for our experiments

ln -sf ~/neuronx-distributed/examples/training/llama/get_dataset.py ./
ln -sf ~/neuronx-distributed/examples/training/llama/lr.py ./
ln -sf ~/neuronx-distributed/examples/training/llama/modeling_llama_nxd.py ./
ln -sf ~/neuronx-distributed/examples/training/llama/requirements.txt ./
ln -sf ~/neuronx-distributed/examples/training/llama/requirements_ptl.txt ./
ln -sf ~/neuronx-distributed/examples/training/llama/training_utils.py ./

If you want to pre-train Llama 7B, you would need to run the following steps -

chmod +x run_llama_7b_tp_ptl.sh
mkdir 7B_config_llama2
cp ~/neuronx-distributed/examples/training/llama/tp_zero1_llama_hf_pretrain/7B_config_
→˓llama2/config.json ./7B_config_llama2
ln -sf 7B_config_llama2/config.json ./

If you want to pre-train Llama 13B, you would need to run the following steps -

chmod +x run_llama_13b_tp_pp_ptl.sh
mkdir 13B_config
cp ~/neuronx-distributed/examples/training/llama/tp_pp_llama_hf_pretrain/13B_config_
→˓llama2/config.json ./13B_config
ln -sf 13B_config/config.json ./

If you want to pre-train Llama 70B, you would need to run the following steps -

chmod +x run_llama_70b_tp_pp_ptl.sh
mkdir 70B_config
cp ~/neuronx-distributed/examples/training/llama/tp_pp_llama_hf_pretrain/70B_config_
→˓llama2/config.json ./70B_config
ln -sf 70B_config/config.json ./

3. Installing the additional requirements and giving the right permissions to our shell script
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python3 -m pip install -r requirements.txt
python3 -m pip install -r requirements_ptl.txt # Currently we're supporting Lightning␣
→˓version 2.1.0

Next, we tokenize our dataset. Note: To tokenize the data, we must request the tokenizer from HuggingFace and Meta
by following the instructions at the following link: HuggingFace Llama 2 7B Model . Use of the Llama 2 model is
governed by the Meta license. In order to download the model weights and tokenizer, please visit the above website
and accept their License before requesting access. After access has been granted, you may use the download scripts
provided by Meta to download the model weights and tokenizer to your cluster.

Once you have downloaded the tokenizer and model weights, you can copy the tokenizer.model to the ~/examples/
llama2_lightning directory.

Next let’s download and pre-process the dataset:

python3 get_dataset.py --llama-version 2

Note: In case you see an error of the following form when downloading data: huggingface_hub.utils.
_validators.HFValidationError: Repo id must be in the form 'repo_name' or 'namespace/
repo_name': '/home/ubuntu/examples/llama2_lightning'. Use `repo_type` argument if needed.
This could be because of a stale cache. Try deleting the cache using:

sudo rm -rf /home/ubuntu/.cache/

At this point, you are all set to start training.

Training Llama2-7B with Tensor Parallelism

By this step, the ParallelCluster is all setup for running experiments. Before we run training, we first pre-compile the
graphs using the neuron_parallel_compile. Let’s run the command below:

sbatch --exclusive \
--nodes 4 \
--cpus-per-task 128 \
--wrap="srun neuron_parallel_compile bash $(pwd)/run_llama_7b_tp_ptl.sh"

This script uses a tensor-parallel size of 8. This will automatically set the zero-1 sharding degree to 16 (4 * 32 workers
/ tensor_parallel_size).

Note: You can use any number of nodes in this case, would just need to adjust the number of nodes in the above slurm
command accordingly. Also, the number of nodes used in parallel_compile command should be same as the actual
training run. This is because, as the number of nodes change, the data-parallel degree would change too. This would
result in more workers participating in operations like gradient all-reduce which would result in new graphs getting
created.

Once the graphs are compiled we can now run training and observe our loss goes down. To run the training, we just
run the above command but without neuron_parallel_compile.

sbatch --exclusive \
--nodes 4 \
--cpus-per-task 128 \
--wrap="srun bash $(pwd)/run_llama_7b_tp_ptl.sh"
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Training Llama2-13B/70B with Tensor Parallelism and Pipeline Parallelism

Here we use Llama70B as an example. To run 13B, simply change the script from run_llama_70b_tp_pp.
sh to run_llama_13B_tp_pp.sh Before we run training, we first pre-compile the graphs using the neu-
ron_parallel_compile. Let’s run the command below:

Pre-compiling

sbatch --exclusive \
--nodes 32 \
--cpus-per-task 128 \
--wrap="srun neuron_parallel_compile bash $(pwd)/run_llama_70b_tp_pp_ptl.sh"

This script uses a tensor-parallel size of 8, pipeline-parallel size of 8 To run the training, we just use the above command
but without neuron_parallel_compile.

sbatch --exclusive \
--nodes 4 \
--cpus-per-task 128 \
--wrap="srun bash $(pwd)/run_llama_7b_tp_ptl.sh"

Checkpointing:

To enable checkpoint saving, add following flags to run_llama_7b_tp_ptl.sh/ run_llama_13b_tp_pp.
sh / run_llama_70B_tp_pp.sh: * --save_checkpoint Add this flag to enable checkpoint saving *
--checkpoint_freq Number of steps to save a checkpoint * --checkpoint_dir Direction to save the checkpoint *
--num_kept_checkpoint Number of checkpoints to save, older checkpoint will be deleted manually, set to -1 to keep
all saved checkpoints * --save_load_xser load with torch xla serialization to reduce time saving, it’s recommended
to enable xser for significantly faster save/load. Note that if the chekpoint is saved with xser, it can only be loaded with
xser, vice versa.

To enable checkpoint loading, add following flags to run_llama_7b_tp_ptl.sh/ run_llama_13b_tp_pp.
sh / run_llama_70B_tp_pp.sh: * --resume_ckpt * --load_step Step to retrieve checkpoint from *
--checkpoint_dir Direction to load the checkpoint from * --save_load_xser load with torch xla serialization
to reduce time saving, it’s recommended to enable xser for significantly faster save/load. Note that if the chekpoint is
saved with xser, it can only be loaded with xser, vice versa.

This document is relevant for: Inf2, Trn1, Trn2

• Training with Tensor Parallelism

• Training GPT-NeoX 6.9B with Tensor Parallelism and ZeRO-1 Optimizer

• Training GPT-NeoX 20B with Tensor Parallelism and ZeRO-1 Optimizer

• Training Llama3.1-8B, Llama3-8B and Llama2-7B with Tensor Parallelism and ZeRO-1 Optimizer

• Training Llama-3.1-70B, Llama-3-70B or Llama-2-13B/70B with Tensor Parallelism and Pipeline Parallelism

• Training Llama-2-7B/13B/70B using Tensor Parallelism and Pipeline Parallelism with Neuron PyTorch-
Lightning

• llama2_7b_tp_zero1_ptl_finetune_tutorial

• llama3_8b_tp_ptl_lora_finetune_tutorial

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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Inference Tutorials

T5 inference with Tensor Parallelism

This is an extension to the t5 inference tutorial. Here we will use NeuronxDistributed to improve the inference perfor-
mance using tensor parallelism.

This tutorial has the following main sections:

1. Install dependencies

2. Plug in NeuronxDistributed layers into T5

3. Compile the T5 model

4. Run distributed inference with beam search

This Jupyter notebook should be run on a Inf2 instance (inf2.24xlarge) or Trn1 isntance (trn1.32xlarge)

The tutorial works for t5 and flan-t5 models. In this notebook we will run distributed inference with flan-
t5-xl.

Install dependencies

The code in this tutorial is written for Jupyter Notebooks. To use Jupyter Notebook on the Neuron instance, you can
use this guide.

Run the notebook by cloning aws-neuron-sdk

git clone https://github.com/aws-neuron/aws-neuron-sdk.git
cd aws-neuron-sdk/src/examples/pytorch/neuronx_distributed/t5-inference/

Once done execute t5-inference-tutorial.ipynb

It is recommended to go through the t5 inference tutorial before you start this tutorial. In addition to the dependencies
in the t5 inference tutorial, we need to install neuronx-distributed.

This tutorial requires the following pip packages:

• torch-neuronx

• neuronx-cc

• transformers

• optimum-neuron

• neuronx-distributed

Most of these packages will be installed when configuring your environment using the Trn1/Inf2 setup guide. The
additional dependencies must be installed here:

[ ]: ! pip install --upgrade transformers==4.33.1 optimum-neuron neuronx_distributed --extra-
→˓index-url https://pip.repos.neuron.amazonaws.com

[ ]: # Pull the latest version of the compiler
! pip install --upgrade neuronx-cc>=2.11 --no-deps

[ ]: # Lets update numpy to a newer version
! pip install --upgrade "numpy>=1.22.2,<2" --no-deps
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Plug in NeuronxDistributed layers into T5

We extend the huggingface’s T5 model to use the NeuronxDistributed parallel layers. To do so, we
simply swap linear layers in T5LayerSelfAttention, T5LayerCrossAttention, and T5LayerFF definitions
with ColumnParallelLinear and RowParallelLinear. We also need to swap the Embedding layer with
ParallelEmbedding.

Let us take the example of T5Attention. The attention block has q, k, v, and o linear layers. The multi-head attention
block uses q, k and v to compute the attention scores. The attention scores are then passed through o to compute the at-
tention block output. So let us swap q, k and v layers with ColumnParallelLinear and o with RowParallelLinear.
Having RowParallelLinear following a ColumnParallelLinear is a performance optimization. The attention
scores computed with q, k and v are already split across Neuron devices. The row parallel layer can use this shared
output directly. The embedding layer is simply swapped with the ParallelEmbedding.

class ParallelAttention(T5Attention):
def __init__(self, config: T5Config, has_relative_attention_bias=False):

super().__init__(config, has_relative_attention_bias)
# Per attention head and per partition values
world_size = parallel_state.get_tensor_model_parallel_size()
self.num_attention_heads_per_partition = divide(self.n_heads, world_size)
self.hidden_size_per_partition = self.num_attention_heads_per_partition * self.

→˓key_value_proj_dim

# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = ColumnParallelLinear(self.d_model,

self.inner_dim,
bias=False,
gather_output=False)

self.k = ColumnParallelLinear(self.d_model,
self.inner_dim,
bias=False,
gather_output=False)

self.v = ColumnParallelLinear(self.d_model,
self.inner_dim,
bias=False,
gather_output=False)

self.o = RowParallelLinear(self.inner_dim,
self.d_model,
bias=False,
input_is_parallel=True)

if self.has_relative_attention_bias:
self.relative_attention_bias = ParallelEmbedding(self.relative_attention_num_

→˓buckets, self.n_heads)
self.n_heads = self.num_attention_heads_per_partition

...

You can find the all modified T5 layers defined in t5_model_layers.py.

Once we have the modified T5 layers, we can plug in the T5Attention and T5LayerFF into the pretrained model. Here
is how you do that.

def load_pretrained_with_parallel_attn(model_name):

(continues on next page)
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(continued from previous page)

model = T5ForConditionalGeneration.from_pretrained(model_name, torch_dtype="auto")

# Parallel implementation of Attention modules.
from t5_model_layers import ParallelSelfAttention, ParallelFF, ParallelCrossAttention

for index, block in enumerate(model.decoder.block):
if index == 0:

block.layer[0] = ParallelSelfAttention(model.config,
has_relative_attention_bias=True)

else:
block.layer[0] = ParallelSelfAttention(model.config)

block.layer[1] = ParallelCrossAttention(model.config)
block.layer[2] = ParallelFF(model.config)

# Load the weights into the parallel layers
neuronx_distributed.parallel_layers.load(model_name + ".pt", model, sharded=False)

return model

Compile the parallel T5 model

Let us set some model parameters.

[ ]: model_name = "google/flan-t5-xl"
max_length = 128
num_beams = 4
tp_degree = 8 # tensor parallelism degree

Download and save the model that we want to trace.

[ ]: import torch
from transformers import T5ForConditionalGeneration

model = T5ForConditionalGeneration.from_pretrained(model_name, torch_dtype="auto")
torch.save({"model":model.state_dict()}, model_name.split("/")[-1] + ".pt")
model.config.use_cache = True

To run HuggingFace T5 models on Neuron, we need to make a couple of changes. Let us reuse the code from the t5
inference tutorial which makes T5 compatible with Neuron. For your convenience, the code copied into wrapper.py
and t5_models.py. This notebook will import these files.

The only change made to this code is that we use neuronx_distributed.trace instead of torch_neuronx.trace.

Let us trace the encoder and decoder.

[ ]: import t5_models
import neuronx_distributed
import time

# This can take up to 20 minutes
encoder_compile_start_time = time.time()
traced_encoder = t5_models.parallel_trace_encoder(model_name, max_length, num_beams, tp_
→˓degree)

(continues on next page)
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print("Encoder compilation time {}".format(time.time() - encoder_compile_start_time))

neuronx_distributed.trace.parallel_model_save(traced_encoder, "TracedParallelEncoder.pt")

[ ]: # This can take up to 15 minutes
decoder_compile_start_time = time.time()
traced_decoder = t5_models.parallel_trace_decoder(model, model_name, num_beams, max_
→˓length, tp_degree)
print("Decoder compilation time {}".format(time.time() - decoder_compile_start_time))

neuronx_distributed.trace.parallel_model_save(traced_decoder, "TracedParallelDecoder.pt")

Inference with the traced parallel T5 model

With the traced model, let us try using beam search for inference.

[ ]: import neuronx_distributed
from wrapper import T5Wrapper
from transformers import T5Tokenizer

num_return_sequences = 4

traced_encoder = neuronx_distributed.trace.parallel_model_load("TracedParallelEncoder.pt
→˓")
traced_decoder = neuronx_distributed.trace.parallel_model_load("TracedParallelDecoder.pt
→˓")

tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5Wrapper.from_pretrained(model_name)

model.encoder = traced_encoder
model.decoder = traced_decoder
setattr(model.encoder, 'main_input_name', 'input_ids') # Attribute required by beam␣
→˓search

output = model.parallel_infer(tokenizer=tokenizer,
prompt="translate English to German: Lets eat good food.",
max_length=max_length,
num_beams=num_beams,
num_return_sequences=num_return_sequences,
device="xla")

results = [tokenizer.decode(t, skip_special_tokens=True) for t in output]

print('Results:')
for i, summary in enumerate(results):

print(i + 1, summary)
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Results:
1 Lassen Sie uns gutes Essen essen.
2 Lassen Sie uns gut essen.
3 Lassen Sie uns gutes Essen zu essen.
4 Lassen Sie uns gutes Essen zu sich nehmen.

Benchmarking

Let us benchmark the per token decoder latency

[ ]: # Let us install NeuronPerf. We will use it to measure the performance.
! pip install neuronperf --extra-index-url=https://pip.repos.neuron.amazonaws.com

[ ]: import os
import neuronperf as npf

d_model = model.config.d_model
model_dir = "TracedParallelDecoder.pt"
decoder_run_count = 128

def load_fn(model_path, **kwargs):
return neuronx_distributed.trace.parallel_model_load(model_path)

# NeuronPerf can't see tp_degree at the moment, so just expose all cores
def env_setup_fn(*_):

del os.environ["NEURON_RT_VISIBLE_CORES"]

def benchmark():

# Create some sample inputs for the decoder
decoder_input_ids = torch.ones((num_beams, 1), dtype=torch.int64)
decoder_attention_mask = torch.ones((num_beams, max_length), dtype=torch.int32)
encoder_attention_mask = torch.ones((num_beams, max_length), dtype=torch.int64)
encoder_hidden_states = torch.ones((num_beams, max_length, d_model), dtype=torch.

→˓float32)
beam_idx = torch.arange(0, num_beams, dtype=torch.int64)
beam_scores = torch.zeros((num_beams,), dtype=torch.float)

inputs = (decoder_input_ids,
decoder_attention_mask,
encoder_hidden_states,
encoder_attention_mask,
beam_idx,
beam_scores)

reports = npf.benchmark(
load_fn,
model_dir,
[inputs],
batch_sizes=1,
n_models=1,

(continues on next page)
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max_infers=decoder_run_count,
workers_per_model=1, # no bottleneck on model inputs, so 1 is fine
env_setup_fn=env_setup_fn,
multiprocess=False,

)

report = reports[0]

# let's update throughput to be tokens / second and add a new recor
latency_in_s = report["latency_ms_avg"] / 1000
tokens_per_s = decoder_run_count / latency_in_s
report["throughput_avg"] = tokens_per_s

# display and save results
npf.print_reports(reports, cols=["throughput_avg", "latency_ms_p50", "latency_ms_p99

→˓"])
print(f"Results saved to: {npf.write_json(reports[0])}")

benchmark()

Now lets benchmark inference as a whole including sampling.

[ ]: import os
import torch
import neuronx_distributed
import neuronperf as npf

from transformers import T5Tokenizer
from wrapper import T5Wrapper

tokenizer = T5Tokenizer.from_pretrained(model_name)

generated_token_count = 0

class Wrapper(torch.nn.Module):
def __init__(self,

traced_encoder,
traced_decoder):

super().__init__()
self.model = T5Wrapper.from_pretrained(model_name)
self.model.encoder = traced_encoder
self.model.decoder = traced_decoder
setattr(self.model.encoder, 'main_input_name', 'input_ids') # Attribute␣

→˓required by beam search

def forward(self, *inputs):
input_ids = inputs[0]['input_ids']
attention_mask = inputs[0]['attention_mask']
return self.model.parallel_infer(input_ids=input_ids,

attention_mask=attention_mask,
max_length=max_length,
num_beams=num_beams,

(continues on next page)
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num_return_sequences=num_return_sequences)

def load_fn(filename, **kwargs):
traced_encoder = neuronx_distributed.trace.parallel_model_load(filename +

→˓"TracedParallelEncoder.pt")
traced_decoder = neuronx_distributed.trace.parallel_model_load(filename +

→˓"TracedParallelDecoder.pt")
return Wrapper(traced_encoder, traced_decoder)

# NeuronPerf can't see tp_degree at the moment, so just expose all cores
def env_setup_fn(*_):

del os.environ["NEURON_RT_VISIBLE_CORES"]

def preprocess_fn(inputs):

encoding = []
for text in inputs:

batch_encoding = tokenizer(text,
max_length=max_length,
truncation=True,
padding='max_length',
return_tensors="pt")

input_ids = batch_encoding['input_ids']
attention_mask = batch_encoding['attention_mask']
encoding.append({"input_ids": input_ids,

"attention_mask": attention_mask})
return encoding

def postprocess_fn(outputs):
output = [tokenizer.decode(seq) for seq in outputs]
global generated_token_count
generated_token_count = len(outputs[0])
return output

def benchmark():
inputs = ["summarize: The Inflation Reduction Act lowers prescription drug costs,␣

→˓health care costs, and energy costs. It's the most aggressive action on tackling the␣
→˓climate crisis in American history, which will lift up American workers and create␣
→˓good-paying, union jobs across the country. It'll lower the deficit and ask the ultra-
→˓wealthy and corporations to pay their fair share. And no one making under $400,000 per␣
→˓year will pay a penny more in taxes."]

reports = npf.benchmark(
load_fn,
"", # Model dir
[inputs],
batch_sizes=1,
n_models=1,
max_infers=5,
max_duration=0, # sampling can take a while, so let's not timeout
workers_per_model=1,
env_setup_fn=env_setup_fn,
preprocess_fn=preprocess_fn,

(continues on next page)

786 Chapter 3. NeuronX Distributed (NxD)



AWS Neuron

(continued from previous page)

postprocess_fn=postprocess_fn,
multiprocess=False,

)

report = reports[0]

report["throughput_avg"] = round(generated_token_count / (report["latency_ms_avg"] /␣
→˓1000), 2)

report["latency_per_token_ms_p50"] = round((report["latency_ms_p50"])/generated_
→˓token_count, 2)

report["latency_per_token_ms_p99"] = round((report["latency_ms_p99"])/generated_
→˓token_count, 2)

# display and save results
npf.print_reports(reports, cols=["throughput_avg", "latency_per_token_ms_p50",

→˓"latency_per_token_ms_p99"])
print(f"Results saved to: {npf.write_json(report)}")

benchmark()

• T5 inference tutorial [html] [notebook]

• Llama 3.2 1B inference example

This document is relevant for: Inf2, Trn1, Trn2

• Training Tutorials

• Inference Tutorials

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

3.3.6 Misc

This document is relevant for: Inf1, Inf2, Trn1, Trn2

NxD Core Release Notes (neuronx-distributed)

Table of contents

• NxD Core [0.13.14393]

• NxD Core [0.12.12111]

• NxD Core [0.11.0]

• NxD Core [0.10.1]

• NxD Core [0.10.0]

• NxD Core [0.9.0]

• NxD Core [0.8.0]
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• NxD Core [0.7.0]

• NxD Core [0.6.0]

• NxD Core [0.5.0]

• NxD Core [0.4.0]

• NxD Core [0.3.0]

• NxD Core [0.2.0]

This document lists the release notes for Neuronx-Distributed library.

NxD Core [0.13.14393]

Date: 6/24/2025

New in this release

Inference:
• Add --auto-cast=none compiler arg by default in ModelBuilder to ensure model dtypes are preserved during

compilation.

• Update ModelBuilder to cast model weights based on dtypes defined in module parameters.

• Add support for PyTorch 2.7. This release includes support for PyTorch 2.5, 2.6, and 2.7.

• Other minor fixes and improvements.

Training:
• Added support for transformers 4.48.0

NxD Core [0.12.12111]

Date: 5/20/2025

New in this release

Inference:
• Improve the Model Builder API. Note: The Model Builder API is in beta.

– Add Neuron Persistent Cache support to Model Builder. Now, Model Builder caches compiled model
artifacts to reduce compilation time.

– Improve the performance of weight sharding in Model Builder to support shard-on-load in NxD Inference.

– Improve the performance of Model Builder trace when HLO debug mode is enabled.

• Add a Llama-3.2-1B reference inference sample using NxD Core.

• Remove the deprecated NxD inference examples. You can use the NxD Inference library to run inference with
on Neuron using NxD.

• Other minor fixes and improvements.
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Training:
• Context parallel support for sequence lengths up to 32k on TRN1 (beta feature)

General:
• Update the package version to include additional information.

NxD Core [0.11.0]

Date: 4/3/2025

New in this release

Inference:
• Improve the performance of weight sharding by up to 60-70%, depending on the model.

• You can now configure modules to skip during quantization with the modules_to_not_convert argument.

• Other minor fixes and improvements.

Training:
• Fixed issue with wikicorpus dataset download

• Updated model load for LoRA checkpoints

Known Issues and Limitations

• With PT2.5, some of the key workloads like Llama3-8B training may show reduced performance when using
–llm-training compiler flag as compared to PT2.1.

In such a case, try removing –llm-training flag from NEURON_CC_FLAGS in the run.sh only if using Neuron Kernel
Interface.

NxD Core [0.10.1]

Date: 1/14/2025

New in this release

Inference:
• Fix an issue with sequence parallel support for quantized models.
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NxD Core [0.10.0]

Date: 12/20/2024

New in this release

Training:
• Added support for HuggingFace Llama3 70B with Trn2 instances

• Added support for PyTorch 2.5

• Added DPO support for post-training model alignment

• Added fused QKV optimization in GQA models

• Support for Mixture-of-Experts with Tensor, Sequence, and Pipeline parallelism

Known Issues and Limitations

• With PT2.5, some of the key workloads like Llama3-8B training may show reduced performance when using
–llm-training compiler flag as compared to PT2.1.

In such a case, try removing –llm-training flag from NEURON_CC_FLAGS in the run.sh

NxD Core [0.9.0]

Date: 09/16/2024

New in this release

Training:
• Added LoRA adaptor support

• Added support for GPU compatible precision support using ZeRO-1

Inference:
• Added inference example for DBRX, and Mixtral models

• Improved inference performance with sequence length autobucketing

• Improved trace time for inference examples

• Reduced memory usage by sharing weights across prefill and decode traced models
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NxD Core [0.8.0]

Date: 07/03/2024

New in this release

• Added support for Interleave pipeline parallel. At large cluster sizes, interleave pipeline schedule should help to
reduce the pipeline bubble, thereyby increasing training throughput.

• Added integration with flash attention kernel for longer sequence length training. See Llama3 8K sequence-
length training sample.

• Added support for naive speculative decoding, enabling assistance during the token generation process by pre-
dicting tokens with a draft model and verifying the predicted tokens with the original target model. Refer to the
Neuronx Distributed inference developer guide for an example.

• Added integration with flash attention kernel for longer sequence length inference. See an end to end example
of CodeLlama-13b model with 16K sequence length.

• Added support for scaled inference to run for Llama-2 70b or similar sized models

Known Issues and Limitations

• Model checkpointing saves sharded checkpoints. Users will have to write a script to combine the shards

• Validation/Evaluation with interleaved pipeline feature is not supported.

• Due to weights not being able to be shared across context encoding and token generation trace, inference scale
is tested for models up to size Llama-2-70b. For model configurations above this, there is a risk of OOM errors.

• Tracing Llama-2-70b sized models for inference and loading them to device can take close to two hours. This is
due to duplicate sharding of weights for both context encoding and token generation traces.

NxD Core [0.7.0]

Date: 04/01/2024

New in this release

• Added support for Pipeline-parallelism training using PyTorch-lightning

• Added support for fine-tuning a model and running evaluation on the fine-tuned model using optimum-neuron

• Added support for auto-partitioning the pipeline parallel stages for training large models

• Added support for async checkpointing, optimizing the checkpoint saving time.

• Added support for auto-resume from a checkpoint, in case training job crashes.

• Added support for sequence length autobucketing in inference

• Added support for inference with bfloat16

• Improved performance for Llama-2-7b inference example.
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Known Issues and Limitations

• Currently the model checkpointing saves a sharded checkpoint, and users have to write a script to combine the
shards.

NxD Core [0.6.0]

Date: 12/21/2023

New in this release

• Added support for Model/Optimizer wrapper that handles the parallelization in both model and optimizer.

• Added support for PyTorch-lightning. This allows users to train models using Tensor-parallelism and Data-
parallelism.

• Added new checkpoint save/load APIs that handles the parallelization and dumps/loads the checkpoint.

• Added a new QKV module which has the ability to replicate the KV heads and produce the query, key and value
states.

• Reduced the model initialization time when pipeline-parallel distributed strategy is used.

• Added support for limiting max parallel compilations in parallel_model_trace. This resolves many out of memory
errors by reducing the host memory usage.

• Added example for Llama-2-7b inference. This is still early in development and is not well-optimized. The
current recommendation is to use transformers-neuronx for optimal performance of llama inference.

Known Issues and Limitations

• Currently the model checkpointing saves a sharded checkpoint, and users have to write a script to combine the
shards.

• Pipeline-parallelism is not supported as part of PyTorch-lightning integration.

NxD Core [0.5.0]

Date: 10/26/2023

New in this release

• Added support for pipeline-parallelism for distributed training.

• Added support for serialized checkpoint saving/loading, resulting in better checkpoint saving/loading time.

• Added support for mixed precision training using torch.autocast.

• Fixed an issue with Zero1 checkpoint saving/loading.
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Known Issues and Limitations

• Currently the model checkpointing saves a sharded checkpoint, and users have to write a script to combine the
shards.

NxD Core [0.4.0]

Date: 9/15/2023

New in this release

• Added API for padding attention heads when they are not divisible by tensor-parallel degree

• Added a constant threadpool for distributed inference

• Fixed a bug with padding_idx in ParallelEmbedding layer

• Fixed an issue with checkpoint loading to take into account the stride parameter in tensor parallel layers

Known Issues and Limitations

• Currently the model checkpointing saves a sharded checkpoint, and users have to write a script to combine the
shards.

NxD Core [0.3.0]

Date: 8/28/2023

New in this release

• Added Zero1 Optimizer support that works with tensor-parallelism

• Added support for sequence-parallel that works with tensor-parallelism

• Added IO aliasing feature in parallel_trace api, which can allow marking certains tensors as state tensors

• Fixed hangs when tracing models using parallel_trace for higher TP degree

Known Issues and Limitations

• Currently the model checkpointing saves a sharded checkpoint, and users have to write a script to combine the
shards.
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NxD Core [0.2.0]

Date: 7/19/2023

New in this release

• Added parallel cross entropy loss function.

Known Issues and Limitations

• Currently the model checkpointing saves a sharded checkpoint, and users have to write a script to combine the
shards.

Date: 6/14/2023

New in this release

• Releasing the Neuron Distributed (neuronx-distributed) library for enabling large language model train-
ing/inference.

• Added support for tensor-parallelism training/inference.

Known Issues and Limitations

• Currently the model checkpointing saves a sharded checkpoint, and users have to write a script to combine the
shards.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

• NxD Core Release Notes (neuronx-distributed)

This document is relevant for: Inf2, Trn1, Trn2

Setup

Install PyTorch Neuron on Trn1 to create a pytorch environment. It is recommended to work out of python virtual env
so as to avoid package installation issues.

You can install the neuronx-distributed package using the following command:

python -m pip install neuronx_distributed --extra-index-url https://pip.repos.neuron.
→˓amazonaws.com
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App Notes

• Tensor Parallelism Overview

• Pipeline Parallelism Overview

• Activation Memory Reduction

• context_parallelism_overview

API Reference Guide

• Distributed Strategies APIs

• Training APIs

• Inference APIs

Developer Guide

• Training Developer Guides

• Inference Developer Guide

Tutorials

• Training Tutorials

• Inference Tutorials

Misc

• NxD Core Release Notes (neuronx-distributed)

This document is relevant for: Inf2, Trn1, Trn2

3.3. NxD Core 795



AWS Neuron

796 Chapter 3. NeuronX Distributed (NxD)



CHAPTER

FOUR

ADDITIONAL ML LIBRARIES

4.1 Third-party libraries

4.1.1 Third-party partner libraries

AWS Neuron integrates with multiple third-party partner products that alow you to run deep learning workloads on
Amazon EC2 instances powered by AWS Trainium and AWS Inferentia chips. The following list gives an overview of
the third-party libraries working with AWS Neuron.

Table of contents

• Hugging Face Optimum Neuron

• PyTorch Lightning

• AXLearn

Hugging Face Optimum Neuron

Optimum Neuron bridges Hugging Face Transformers and the AWS Neuron SDK, providing standard Hugging Face
APIs for AWS Trainium and AWS Inferentia. It offers solutions for both training and inference, including support
for large-scale model training and deployment for AI workflows. Supporting Amazon SageMaker and pre-built Deep
Learning Containers, Optimum Neuron simplifies the use of Trainium and Inferentia for machine learning. This inte-
gration allows developers to work with familiar Hugging Face interfaces while leveraging Trainium and Inferentia for
their transformer-based projects.

Optimum Neuron documentation

PyTorch Lightning

PyTorch Lightning is a deep learning framework for professional AI researchers and machine learning engineers who
need maximal flexibility without sacrificing performance at scale. Lightning organizes PyTorch code to remove boil-
erplate and unlock scalability.

Get Started with Lightning

Use PyTorch Lightning Trainer with NxD.
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AXLearn

AXLearn is an open-source JAX-based library used by AWS Neuron for training deep learning models on AWS
Trainium. Integrates with JAX ecosystem and supports distributed training.

Check AXLearn Github repository

4.1.2 Additional third-party libraries

NeMo

NxD Training offers a NeMo-compatible YAML interface for training PyTorch models on AWS Trainium chips. The
library supports both Megatron-LM and HuggingFace model classes through its model hub. NxD Training leverages
key NeMo components, including Experiment Manager for tracking ML experiments and data loaders for efficient data
processing. This library simplifies the process of training deep learning models on AWS Trainium while providing
compatibility with familiar NeMo YAML Interface.

This document is relevant for: Inf2, Trn1

4.2 Transformers NeuronX (transformers-neuronx)

This document is relevant for: Inf2, Trn1

4.2.1 Transformers NeuronX Setup (transformers-neuronx)

If you already have setup your environment to run PyTorch NeuronX, you just need to install Transformers NeuronX
library using the following instruction.

pip install transformers-neuronx --extra-index-url=https://pip.repos.neuron.amazonaws.com

If you are starting from scratch, Neuron Multi Framework DLAMI is recommended as it comes pre-installed with
Transformers NeuronX virtual environment. You can refer to the instructions to launch a Neuron instance using Multi
Framework DLAMI

This document is relevant for: Inf2, Trn1

This document is relevant for: Inf2, Trn1

4.2.2 Transformers Neuron Developer Guide (transformers-neuronx)

This document is relevant for: Inf2, Trn1
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Transformers NeuronX (transformers-neuronx) Developer Guide

Transformers NeuronX for Trn1 and Inf2 is a software package that enables PyTorch users to perform large language
model (LLM) performant inference on second-generation Neuron hardware (See: NeuronCore-v2).The Neuron per-
formance page lists expected inference performance for commonly used Large Language Models.

Introduction

The Transformers NeuronX repository contains the source code of the AWS Neuron Transformers integration project.
As it stands now, it mainly serves the purpose of running transformer decoder inference (autoregressive sampling)
workflows on the Neuron platform.

Note: This project is actively in development. The Neuron team is still heavily modifying the Neuron optimized
module classes. The functionality provided in this repository will not maintain long-term API stability until version
>= 1.0.0. For applications willing to reuse code from this repository, we recommend treating the Neuron optimized
module implementations as samples, and pin the version of the main library package torch-neuronx to avoid breaking
interface changes as new features are developed.

Checkpoint compatibility with HuggingFace Transformers

transformers-neuronx is checkpoint-compatible with HuggingFace Transformers. While the Neuron team reimple-
mented some HuggingFace Transformers models from scratch for the purpose of maximizing the execution efficiency
of transformer decoders on Neuron, the implementations are done with maximizing compatibility in mind, meaning
one can train transformer decoder models, say GPT2, using the standard HuggingFace Transformers library, and then
construct an inference-optimized decoder model using transformers-neuronx’s GPT2ForSampling class. If training
was done with other libraries such as MegatronLM, then it is still possible to convert the obtained checkpoint to the
standard HuggingFace Transformers checkpoint format, and then move on to transformers-neuronx’s optimized decoder
implementations.

Neuron optimized transformer decoders implemented in XLA High Level Operations (HLO)

Due to the stateful nature of the autoregressive sampling computation, an efficient implementation of autoregressive
sampling using the Neuron SDK requires rewriting the model forward function into a pure-function computation run-
ning on fixed-shape tensors. Furthermore, we want the pure-function computation be implemented in a compiled
language so that the Neuron compiler can perform extensive code analysis and optimization. We chose XLA High
Level Operations (HLO) as the compiled language for implementing Neuron optimized transformer decoder classes.
The source code of these classes contains Python functions written in a syntax called “PyHLO”, name of a Neuron in-
ternal tool for writing/compiling the HLO language in Python. As an example, a “language model head” implemented
in PyHLO may look like the following.

class LmHeadHlo:

...

def lm_head(self, scribe):
dtype = self.dtype
hidden_size = self.hidden_size
n_active_tokens = self.n_active_tokens
batch_size = self.batch_size
vocab_size = self.vocab_size
hidden = dtype[hidden_size, n_active_tokens, batch_size].Parameter(parameter_

(continues on next page)
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→˓number=0)
weight = dtype[hidden_size, vocab_size].Parameter(parameter_number=1)
rhs_size = n_active_tokens * batch_size
hidden = dtype[hidden_size, rhs_size].Reshape(hidden)
dot_dims = dict(lhs_contracting_dimensions=[0], rhs_contracting_dimensions=[0])
logits = dtype[vocab_size, rhs_size].Dot(weight, hidden, dot_dimension_

→˓numbers=dot_dims)
return dtype[vocab_size, n_active_tokens, batch_size].Reshape(logits)

...

The transformers_neuronx.compiler.compile_py_func function can convert the Python lm_head function
into HloModuleProto, a valid input format for the neuronx-cc compiler.

Tensor-parallelism support

For transformer decoders used in large language models, tensor-parallelism is necessary as it provides a way to shard
the models’ large weight matrices onto multiple NeuronCores, and having NeuronCores working on the same matrix
multiply operation collaboratively. transformers-neuronx’s tensor-parallelism support makes heavy use of collective
operations such as all-reduce, which is supported natively by the Neuron runtime.

There are some principles for setting tensor-parallelism degree (number of NeuronCores participating in sharded matrix
multiply operations) for Neuron-optimized transformer decoder models.

1. The number of attention heads needs to be divisible by the tensor-parallelism degree.

2. The total data size of model weights and key-value caches needs to be smaller than 16 GB times the tensor-
parallelism degree.

3. Currently, the Neuron runtime supports tensor-parallelism degrees 1, 2, 8, and 32 on Trn1 and supports tensor-
parallelism degrees 1, 2, 4, 8, and 24 on Inf2.

Some examples:

1. facebook/opt-13b has 40 attention heads, and when running at batch size 1 and float16 precision the model
requires ~29 GB memory, therefore a trn1.2xlarge with 32 GB device memory is sufficient.

2. facebook/opt-30b has 56 attention heads, and at batch size 1 and float16 precision the model requires ~66 GB
memory, therefore it can run on 8 NeuronCores on one trn1.32xlarge using 128 GB device memory.

3. gpt2-xl has 25 attention heads and requires ~4 GB memory at bfloat16 precision. It runs without tensor-
parallelism only.

Features

Compile-time Configurations

Transformers Neuron models support a variety of compile-time configurations that can be used to tune model perfor-
mance. All models support the following configurations:

• batch_size: The batch size to compile a model for. Once the batch size has been set, this is the only size that is
supported at inference time. Neuron uses ahead-of-time compilation to achieve high performance which requires
that the compiled artifact shapes must be known at compilation time.
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• n_positions: The maximum number of positions (or sequence length) to allow during generation. This pa-
rameter directly controls the width of the KV cache. This parameter should be set to the maximum expected
sequence length for the end application.

• tp_degree: This parameter controls the number of tensor parallel shards to split the model into. Each shard
will execute on a separate NeuronCore. To minimize latency, it is recommended to set the tensor parallelism to
be equal to the number of NeuronCores that are available on an instance.

• amp: This allows a models weights and compute to be cast to a different type. The options are; 'bf16', 'f16', or
'f32'. For models trained in float32, the 16-bit mixed precision options ('bf16', 'f16') generally provide
sufficient accuracy while significantly improving performance.

• context_length_estimate: This parameter controls the maximum sequence length of the prompt/context
handling compute graph. This parameter is not supported in GPTNeoXForSampling and GPTJForSampling.

from transformers_neuronx import NeuronAutoModelForCausalLM

model = NeuronAutoModelForCausalLM.from_pretrained(
'gpt2', # Uses the GPT2 checkpoint from https://huggingface.co/

→˓gpt2
batch_size=1, # Allow inference with batch size 1 inputs
n_positions=128, # Allow a maximum size of 128 prompt & output tokens
tp_degree=2, # Shard the model weights & compute across 2 NeuronCores
amp='f16', # Downcast the weights & compute to float16
context_length_estimate=64, # Build an optimized context encoding network for a␣

→˓maximum prompt size of 64
)
model.to_neuron() # Load/compile the model

Checkpoint support and automatic model selection

New in release 2.18

Transformers Neuron now supports a greater variety of checkpoints including older pytorch binary checkpoints and
newer safetensors checkpoints. For improved load speed and reduced host memory consumption, it is recommended to
always use safetensors by default. Both regular and sharded variants of checkpoints are supported. It is no longer
recommended to use the save_pretrained_split function which was used in older Transformers Neuron examples.

In addition to supporting standard checkpoint formats, Transformers Neuron provides an AutoModel class
NeuronAutoModelForCausalLM which can be used to load the correct model without explicitly importing the
architecture-specific class.

from transformers_neuronx import NeuronAutoModelForCausalLM

# Loads: https://huggingface.co/bigscience/bloom-560m
bloom = NeuronAutoModelForCausalLM.from_pretrained('bigscience/bloom-560m')
bloom.to_neuron()

# Loads: https://huggingface.co/openlm-research/open_llama_3b_v2
llama = NeuronAutoModelForCausalLM.from_pretrained('openlm-research/open_llama_3b_v2')
llama.to_neuron()

# This is equivalent to the following:
from transformers_neuronx import BloomForSampling
model = BloomForSampling.from_pretrained('bigscience/bloom-560m')

(continues on next page)
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model.to_neuron()

from transformers_neuronx import LlamaForSampling
llama = LlamaForSampling.from_pretrained('openlm-research/open_llama_3b_v2')
llama.to_neuron()

Note: Advanced features of huggingface hub access are not supported. This includes private repositories which
require access tokens and branches.

In order to support more advanced repository downloads, please download the model to a local directory and load it
from there.

Hugging Face generate() API support

Transformers Neuron models support the Hugging Face generate() API via the
HuggingFaceGenerationModelAdapter adapter class. In the following example we demonstrate how to run
sampling with temperature using the GPT2 model:

import torch
from transformers import AutoTokenizer, AutoConfig
from transformers_neuronx import GPT2ForSamplingWithContextBroadcasting,␣
→˓HuggingFaceGenerationModelAdapter

# Create and compile the Neuron model
model = GPT2ForSamplingWithContextBroadcasting.from_pretrained('gpt2')
model.to_neuron()

# Use the `HuggingFaceGenerationModelAdapter` to access the generate API
config = AutoConfig.from_pretrained('gpt2')
model = HuggingFaceGenerationModelAdapter(config, model)

# Get a tokenizer and example input
tokenizer = AutoTokenizer.from_pretrained('gpt2')
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.padding_side = 'left'
text = "Hello, I'm a language model,"
encoded_input = tokenizer(text, return_tensors='pt', padding=True)

# Run inference using temperature
with torch.inference_mode():

model.reset_generation()
generated_sequence = model.generate(

input_ids=encoded_input.input_ids,
attention_mask=encoded_input.attention_mask,
do_sample=True,
max_length=256,
temperature=0.7,

)

print([tokenizer.decode(tok) for tok in generated_sequence])
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Note: As the Hugging Face generation API can expand the input’s batch dimension based on different generation
configurations, we need to compile the neuron model with different compile batch_size compared to the run
time batch_size (batch dimension of inputs to generation API). - if do_sample=True, compile_batch_size
= runtime_batch_size x num_return_sequences x beam_size - otherwise, compile_batch_size =
runtime_batch_size x num_return_sequences

Neuron Persistent Cache

The Neuron Persistent Cache is now enabled for Transformers Neuron by default. Model artifacts which have been
compiled once will be cached and reused on successive runs when possible. Model artifacts will only be reused when
compiling with the same compiler version (neuronx-cc), model configurations, and compiler flags. It also includes
other features (i.e. using an S3 bucket as the cache backend). For more detailed information, see the Persistent cache
documentation

int8 weight storage support

Transformers Neuron supports int8 weight storage for the GPT2 model class. int8 weight storage can be used to reduce
memory bandwidth usage to improve model performance. int8 weight storage support for additional model classes will
be added in an upcoming release. In the following example we demonstrate how to apply int8 weight storage to the
GPT2 model via the QuantizationConfig and NeuronConfig configs:

import torch
from transformers import AutoTokenizer
from transformers_neuronx import GPT2ForSamplingWithContextBroadcasting, NeuronConfig,␣
→˓QuantizationConfig

# Set the weight storage config use int8 quantization and bf16 dequantization
neuron_config = NeuronConfig(

quant=QuantizationConfig(quant_dtype='s8', dequant_dtype='bf16'),
)

# Create and compile the Neuron model
model = GPT2ForSamplingWithContextBroadcasting.from_pretrained(

'gpt2',
amp='bf16', # NOTE: When using quantization, amp type must match dequant type
neuron_config=neuron_config

)
model.to_neuron()

# Get a tokenizer and example input
tokenizer = AutoTokenizer.from_pretrained('gpt2')
text = "Hello, I'm a language model,"
encoded_input = tokenizer(text, return_tensors='pt')

# Run inference
with torch.inference_mode():

generated_sequence = model.sample(encoded_input.input_ids, sequence_length=256,␣
→˓start_ids=None)
print([tokenizer.decode(tok) for tok in generated_sequence])
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Parallel Input Prompt Context Encoding

Transformers Neuron supports parallel input prompt context encoding for the GPT2 model class. Parallel context en-
coding can be used to significantly reduce the latency of the input prompt context encoding before the autoregressive
decoder token generation loop. Parallel context encoding support for additional model classes will be added in an
upcoming release.

The GPT2ForSamplingWithContextBroadcasting class has a context_length_estimate variable that deter-
mines the number of input prompt tokens that will be processed in parallel. For optimal results, this should be set to
a power of 2 that is closest to the most frequently seen input prompt length. In the following example we demonstrate
how to apply parallel context encoding to the GPT2 model via the GPT2ForSamplingWithContextBroadcasting
class. In this example, we set the context_length_estimate to be 128, which is the closest power of 2 the length
of the input prompt (97 tokens).

import torch
from transformers import AutoTokenizer
from transformers_neuronx import GPT2ForSamplingWithContextBroadcasting

# Create and compile the Neuron model
model = GPT2ForSamplingWithContextBroadcasting.from_pretrained(

'gpt2',
context_length_estimate=256 # Create an optimized network which handles prompts up␣

→˓to 256 tokens
)
model.to_neuron()

# Get a tokenizer and example input
tokenizer = AutoTokenizer.from_pretrained('gpt2')
text = "Hello, I'm a generative AI language model. Generative AI is a type of AI that␣
→˓can create new content and ideas, including conversations, stories, images, videos,␣
→˓and music. It is powered by large models that are pre-trained on vast amounts of data␣
→˓and commonly referred to as foundation models (FMs). With generative AI on AWS, you␣
→˓can reinvent your applications, create entirely new customer experiences, drive␣
→˓unprecedented levels of productivity, and transform your business. "
encoded_input = tokenizer(text, return_tensors='pt')

# Run inference
with torch.inference_mode():

generated_sequence = model.sample(encoded_input.input_ids, sequence_length=256)
print([tokenizer.decode(tok) for tok in generated_sequence])

The GPT2ForSamplingWithContextBroadcasting class can also process an input prompt that has a different batch
size from the batch size of the autoregressive decoder output. For example, an input prompt with batch size = 1 can
be used to produce an output of batch size = 5 to generate multiple suggestions for the same input prompt. The input
prompt batch size can be specified using the prompt_batch_size argument and the autoregressive decoder output
batch size can be specified using the batch_size argument. In the following example we demonstrate how to apply
parallel context encoding to the GPT2 model to generate 5 outputs for a single input.

import torch
from transformers import AutoTokenizer
from transformers_neuronx import GPT2ForSamplingWithContextBroadcasting

# Create and compile the Neuron model
model = GPT2ForSamplingWithContextBroadcasting.from_pretrained(

(continues on next page)
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'gpt2',
prompt_batch_size=1, # This allows prompt and output batch to vary
batch_size=5,
context_length_estimate=256

)
model.to_neuron()

# Get a tokenizer and example input
tokenizer = AutoTokenizer.from_pretrained('gpt2')
text = "Hello, I'm a generative AI language model. Generative AI is a type of AI that␣
→˓can create new content and ideas, including conversations, stories, images, videos,␣
→˓and music. It is powered by large models that are pre-trained on vast amounts of data␣
→˓and commonly referred to as foundation models (FMs). With generative AI on AWS, you␣
→˓can reinvent your applications, create entirely new customer experiences, drive␣
→˓unprecedented levels of productivity, and transform your business. "
encoded_input = tokenizer(text, return_tensors='pt')

# Run inference
with torch.inference_mode():

generated_sequence = model.sample(encoded_input.input_ids, sequence_length=256)

for i, output in enumerate(generated_sequence):
print('-' * 50)
print(f'Batch {i} output:')
print(tokenizer.decode(output))

Serialization support

Transformers NeuronX supports model serialization (model saving and loading) for all models except the
GPTJForSampling and GPTNeoXForSampling` model classes. In the following example we demonstrate how to
save and load the compiled artifacts for the GPT2 model:

import torch
from transformers import AutoTokenizer
from transformers_neuronx import GPT2ForSamplingWithContextBroadcasting

# Create and compile the Neuron model
model = GPT2ForSamplingWithContextBroadcasting.from_pretrained('gpt2')
model.to_neuron()

# Save the compiled Neuron model
model.save('gpt2-compiled-artifacts')

# Load the Neuron model
model = GPT2ForSamplingWithContextBroadcasting.from_pretrained('gpt2')
# Load the compiled Neuron artifacts
model.load('gpt2-compiled-artifacts')
# Since prior artifacts are loaded, this skips compilation
model.to_neuron()

# Get a tokenizer and example input
(continues on next page)
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tokenizer = AutoTokenizer.from_pretrained('gpt2')
text = "Hello, I'm a language model,"
encoded_input = tokenizer(text, return_tensors='pt')

# Run inference
with torch.inference_mode():

generated_sequence = model.sample(encoded_input.input_ids, sequence_length=256,␣
→˓start_ids=None)
print([tokenizer.decode(tok) for tok in generated_sequence])

Transformers NeuronX also supports the serialization of presharded weights. This reduces future model load time by
saving a transformed and sharded set of weights as a new safetensors checkpoint. When this checkpoint is loaded,
sharding and transformations normally done by Transformers NeuronX will be skipped, reducing model load time
significantly. The saving of presharded weights is only available when on_device_embedding is true. In the following
example we demonstrate how to save and load presharded weights along with compiled artifacts on a Llama model:

from transformers_neuronx import LlamaForSampling
from transformers_neuronx import NeuronConfig
from transformers import AutoTokenizer

neuron_config = NeuronConfig(on_device_embedding=True)

# Create and compile the Neuron model
model_neuron = LlamaForSampling.from_pretrained('openlm-research/open_llama_3b', batch_
→˓size=1, tp_degree=8, n_positions=128, neuron_config=neuron_config)
model_neuron.to_neuron()

# save the presharded weights and compiled artifacts to a directory
model_neuron.save('llama-artifacts', sharded_weights=True)

del model_neuron

# use the presharded checkpoint to reduce model load time
model_neuron_presharded = LlamaForSampling.from_pretrained('llama-artifacts', batch_
→˓size=1, tp_degree=8, n_positions=128, neuron_config=neuron_config)

# load in the compiled artifcats to skip compilation
model_neuron_presharded.load('llama-artifacts')
model_neuron_presharded.to_neuron()

CPU Compilation Support

Transformers NeuronX now supports compilation on CPU. CPU compilation is compatible with model serialization
and presharding weights, and is available for all models except the GPTJForSampling and GPTNeoXForSampling
model classes. To compile on CPU, the initial call to to_neuron() is replaced with cpu_compile(). In the following
example we demonstrate how to compile on CPU for the LLaMA model:

from transformers_neuronx import LlamaForSampling
from transformers_neuronx import NeuronConfig
from transformers import AutoTokenizer

(continues on next page)
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neuron_config = NeuronConfig(on_device_embedding=True)

# Create and compile the model on CPU
model_neuron = LlamaForSampling.from_pretrained('openlm-research/open_llama_3b', batch_
→˓size=1, tp_degree=8, n_positions=128, neuron_config=neuron_config)
model_neuron.cpu_compile() # instead of model_neuron.to_neuron()

# save the weights and compiled artifacts to a directory
model_neuron.save('llama-artifacts')

To use the saved artifacts generated by CPU compilation on a Neuron device:

from transformers_neuronx import LlamaForSampling
from transformers_neuronx import NeuronConfig
from transformers import AutoTokenizer

neuron_config = NeuronConfig(on_device_embedding=True)

# use the presharded checkpoint to reduce model load time
model_neuron_presharded = LlamaForSampling.from_pretrained('llama-artifacts', batch_
→˓size=1, tp_degree=8, n_positions=128, neuron_config=neuron_config)

# load in the compiled artifacts to skip compilation
model_neuron_presharded.load('llama-artifacts')

# now, use CPU compiled artifacts to run the model
model_neuron_presharded.to_neuron()

Compilation worker count support

Transformers-neuronx supports providing compilation worker count for all models. This setting controls how many
workers will execute HLO graph compilation tasks in parallel. A lower setting reduces CPU memory utilization when
compiling a model, but increases the compilation time. This setting is useful to prevent out of CPU memory errors when
compiling large models. By default, the number of workers used is equal to the total HLO graphs required for compila-
tion. Compilation worker count integrates with both CPU compilation flow using cpu_compile() and neuron device
compilation flow using to_neuron(). To set the compilation worker count, use the compilation_worker_count
argument in NeuronConfig. The following sample shows how to compile the graphs one by one.

neuron_config = NeuronConfig(compilation_worker_count=1)

Grouped-query attention (GQA) support [Beta]

Transformers Neuron supports grouped-query attention (GQA) models for Llama and Mistral model classes. There
are multiple sharding strategies for K/V cache, in order to satisfy different constraints.

• GQA.SHARD_OVER_HEADS distributes K/V caches along head dimension. This can be only used when K/V heads
is multiple of tensor-parallelism degree. This is the default configuration.

• GQA.SHARD_OVER_BATCH distributes K/V caches along batch dimension. This can be only used when batch size
is multiple of tensor-parallelism degree. This can be useful for large-batch inference.
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• GQA.REPLICATED_HEADS replicates K/V heads. This can be used when neither batch size nor K/V heads can be
divisible by tensor-parallelism degree. This can be useful for low-latency small-batch inference.

• GQA.ALL_GATHER_HEADS evenly splits the K/V heads across all NeuronCores. This is optimized for large-batch
inference of GQA model without replication.

In the following example we demonstrate how to configure these distributed inference strategies and perform inference
with the Mistral model:

import torch
from transformers import AutoTokenizer
from transformers_neuronx import MistralForSampling, GQA, NeuronConfig

# Set sharding strategy for GQA to be shard over heads
neuron_config = NeuronConfig(

group_query_attention=GQA.SHARD_OVER_HEADS
)

# Create and compile the Neuron model
model_neuron = MistralForSampling.from_pretrained('mistralai/Mistral-7B-Instruct-v0.2',␣
→˓amp='bf16', neuron_config=neuron_config)
model_neuron.to_neuron()

# Get a tokenizer and exaple input
tokenizer = AutoTokenizer.from_pretrained('mistralai/Mistral-7B-Instruct-v0.2')
text = "[INST] What is your favourite condiment? [/INST]"
encoded_input = tokenizer(text, return_tensors='pt')

# Run inference
with torch.inference_mode():

generated_sequence = model_neuron.sample(encoded_input.input_ids, sequence_
→˓length=256, start_ids=None)
print([tokenizer.decode(tok) for tok in generated_sequence])

Repeated Ngram Filtering

Repeated Ngram Filtering reduces redundant ngram phrases within the generated text. It uses the same API as Hugging-
Face API for NoRepeatedNGram. Set the parameter no_repeat_ngram_size to the size of ngram phrases to be filtered
and pass it to the sampling function as in the example model.sample(inputs_ids, no_repeat_ngram_size=3)

On-device sampling support [Beta]

Transformers-neuronx supports on-device sampling for all models except Mixtral models. The features can be enabled
by setting on_device_generation in NeuronConfig to an instance of GenerationConfig.

In the following example, we demonstrate how to use on-device generation for a Llama model using top_k, top_p,
top_p_min_tokens and temperature.
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Top-K on-device sampling support [Beta]

Transformers Neuron supports Top-K Sampling on-device for all models except Mixtral models. In the following exam-
ple, we demonstrate how to use on-device Top-K for the Llamamodel via the GenerationConfig and NeuronConfig
configs.

import torch
from transformers_neuronx import LlamaForSampling
from transformers_neuronx.config import NeuronConfig, GenerationConfig
from transformers import AutoTokenizer

neuron_config = NeuronConfig(
on_device_generation=GenerationConfig(max_length=128, top_k=10, top_p=0.9, top_p_min_

→˓tokens=1, temperature=0.9, do_sample=True)
)

# Create and compile the Neuron model
model_neuron = LlamaForSampling.from_pretrained('openlm-research/open_llama_3b', batch_
→˓size=1, tp_degree=8, n_positions=128, neuron_config=neuron_config)
model_neuron.to_neuron()

# Get a tokenizer and exaple input
tokenizer = AutoTokenizer.from_pretrained('openlm-research/open_llama_3b')
text = "Hello, I'm a language model,"
encoded_input = tokenizer(text, return_tensors='pt')

# Run inference
with torch.inference_mode():

generated_sequence = model_neuron.sample(encoded_input.input_ids, sequence_
→˓length=128, top_k=10)

print([tokenizer.decode(tok) for tok in generated_sequence])

By default, transformers-neuronx uses the same, fixed sampling parameters for all sequences across all invocations
of the model when on-device generation is enabled. It is possible to provide new sampling parameters per model
invocation by enabling the dynamic feature in the GenerationConfig. It is also possible to provide different sam-
pling parameters for each sequence in the batch by using the per_batch_line feature. When using this feature, it
is recommended to limit the number of tokens that are considered during sampling across all sequences by setting
global_top_k to a reasonably low number e.g. 250 to prevent poor performance when computing top_p tokens over
a large vocabulary without any prior filtering. When using per_batch_line, top_k, top_p, top_p_min_tokens
and temperature accept lists with value per sequence in the batch.

In the following example, we demonstrate how to use the dynamic and per_batch_line features together.

import torch
from transformers_neuronx import LlamaForSampling
from transformers_neuronx.config import NeuronConfig, GenerationConfig
from transformers import AutoTokenizer

batch_size = 2
generation_config = GenerationConfig(

max_length=128, dynamic=True, per_batch_line=True, do_sample=True,
top_k=[1] * batch_size,
top_p=[1.0] * batch_size,
top_p_min_tokens=[1] * batch_size,

(continues on next page)
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temperature=[1.0] * batch_size,
global_top_k=256

)

neuron_config = NeuronConfig(
on_device_generation=generation_config

)

# Create and compile the Neuron model
model_neuron = LlamaForSampling.from_pretrained('openlm-research/open_llama_3b', batch_
→˓size=2, tp_degree=8, n_positions=128, neuron_config=neuron_config)
model_neuron.to_neuron()

# Get a tokenizer and exaple input
tokenizer = AutoTokenizer.from_pretrained('openlm-research/open_llama_3b')
tokenizer.pad_token = tokenizer.eos_token
text = ["Hello, I'm a language model,", "Hello, I'm also a language model,"]
encoded_input = tokenizer(text, return_tensors='pt')

# Run inference
with torch.inference_mode():

generated_sequence = model_neuron.sample(encoded_input.input_ids, sequence_
→˓length=128)

print([tokenizer.decode(tok) for tok in generated_sequence])

# Use different settings for each sequence in the batch
# Supported because we use `generation_config.per_batch_line = True`
generation_config.top_k = [1, 20]
generation_config.top_p = [1.0, 0.9]
generation_config.top_p_min_tokens = [1, 1]
generation_config.temperature = [1.0, 0.9]

# Update the generation configuration dynamically
# Supported because we use `generation_config.dynamic = True`
model_neuron.update_generation_config(generation_config)

generated_sequence = model_neuron.sample(encoded_input.input_ids, sequence_
→˓length=128)

print([tokenizer.decode(tok) for tok in generated_sequence])

Running inference with multiple models

Multiple transformers-neuronx models can be loaded at the same time as long as the total number of consumed Neuron-
Cores is less than or equal to the total number of NeuronCores on the instance. For example, three tp-degree=8 models
can be loaded and run in parallel on an inf2.48xlarge which has 24 NeuronCores. The NEURON_RT_NUM_CORES and
NEURON_RT_VISIBLE_CORES environment variables can be used to allocate the necessary number of NeuronCores
to each process to run multiple transformers-neuronx models in parallel. See the NeuronCore Allocation and Model
Placement for Inference (torch-neuronx) section for additional information about how to use these environment vari-
ables.

It is important to notice that when multiple models are used on a single instance, the number of threads should be
reduced to avoid race condition on host side. Assume the neuron instance (i.e. trn1) has 192 CPU cores. If one of
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the models keeps all CPU cores busy, there would be significant performance degradation in the rest of models. As a
result, the number of threads for each model should be limited to part of available cores. To do this, OMP_NUM_THREADS
environment variable can be set. For example, if there are 192 CPU cores available and four tp-degree=8 models are
used, one can export OMP_NUM_THREADS=48 to avoid race condition.

Streamer

LLMs generate tokens in auto-regressive loop. A model.sample call waits till the end of full sequence generation before
returning the generated response. It is possible to output an output token as soon as it is generated. To do this, a streamer
object can be used. Streamer is an object which has 2 methods: put and end. There are several predefined streamer in
transformers library such as TextIteratorStreamer. The following example shows how to define a streamer and use it in
transformers-neuronx:

import torch
from transformers import AutoTokenizer
from transformers_neuronx import MistralForSampling, GQA

import transformers
from time import time

# Create a custom streamer inherited from transformers.generation.streamers.BaseStreamer
class CustomStreamer(transformers.generation.streamers.BaseStreamer):

def __init__(self) -> None:
self.reset()

def reset(self):
self.token_latencies = []
self.iter = 0
self.now = time()

def put(self, tokens):
now = time()
token_latency = now - self.now
print(f"Iteration {self.iter:4d}: Latency [s] {token_latency:6.3f} -- Token

→˓{tokens}")
self.now = now
self.iter += 1
self.token_latencies.append(token_latency)

def end(self):
print("First 10 token latencies:", self.token_latencies[:10])

# Create and compile the Neuron model
model_neuron = MistralForSampling.from_pretrained('mistralai/Mistral-7B-Instruct-v0.2',␣
→˓amp='bf16')
model_neuron.to_neuron()

# Get a tokenizer and exaple input
tokenizer = AutoTokenizer.from_pretrained('mistralai/Mistral-7B-Instruct-v0.2')
text = "[INST] What is your favourite condiment? [/INST]"

(continues on next page)
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encoded_input = tokenizer(text, return_tensors='pt')

streamer = CustomStreamer()
# Run inference
with torch.inference_mode():

generated_sequence = model_neuron.sample(encoded_input.input_ids, sequence_
→˓length=256, start_ids=None, streamer=streamer)

Stopping Criteria

We can define custom stopping criteria to stop autoregressive loop. For example, if we want to limit autoregressive
loop after 0.5s, we can define and use stopping criteria class as follows:

import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from transformers_neuronx import MistralForSampling, GQA, NeuronConfig
from transformers_neuronx.stopping_criteria import StoppingCriteria, StoppingCriteriaList

from time import time
from typing import List, Optional, Callable

class MaxTimeCriteria(StoppingCriteria):
"""
This class can be used to stop generation whenever the full generation exceeds some␣

→˓amount of time. By default, the
time will start being counted when you initialize this function. You can override␣

→˓this by passing an
`initial_time`.

Args:
max_time (`float`):

The maximum allowed time in seconds for the generation.
initial_time (`float`, *optional*, defaults to `time()`):

The start of the generation allowed time.
"""

def __init__(self, max_time: float, initial_timestamp: Optional[float] = None):
self.max_time = max_time
self.initial_timestamp = time() if initial_timestamp is None else initial_

→˓timestamp

def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs)␣
→˓-> bool:

dt = time() - self.initial_timestamp
end_condition = dt > self.max_time
if end_condition:

print("Stopping!")
return end_condition

(continues on next page)
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# Create a streamer. This can be a custom streamer too inherited from transformers.
→˓generation.streamers.BaseStreamer
class CustomStreamer(transformers.generation.streamers.BaseStreamer):

def __init__(self) -> None:
self.reset()

def reset(self):
self.token_latencies = []
self.iter = 0
self.now = time()

def put(self, tokens):
now = time()
token_latency = now - self.now
print(f"Iteration {self.iter:4d}: Latency [s] {token_latency:6.3f} -- Token

→˓{tokens}")
self.now = now
self.iter += 1
self.token_latencies.append(token_latency)

def end(self):
pass

# Create and compile the Neuron model
model_neuron = MistralForSampling.from_pretrained('mistralai/Mistral-7B-Instruct-v0.2',␣
→˓amp='bf16')
model_neuron.to_neuron()

# Get a tokenizer and exaple input
tokenizer = AutoTokenizer.from_pretrained('mistralai/Mistral-7B-Instruct-v0.2')
text = "[INST] What is your favourite condiment? [/INST]"
encoded_input = tokenizer(text, return_tensors='pt')

# Add stopping criteria to stop after 0.5 seconds
stopping_criteria_list= StoppingCriteriaList([MaxTimeCriteria(0.5)])
streamer = CustomStreamer()

# Run inference
with torch.inference_mode():

model_neuron.sample(input_ids=encoded_input.input_ids, sequence_length=256, stopping_
→˓criteria_list=stopping_criteria_list, streamer=streamer)
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Speculative sampling [Beta]

Transformers Neuron supports speculative sampling for the Llama and GPT2 model classes. In speculative sampling,
we use use a smaller draft model to speculate future tokens. These are then sent to the larger target model, which accepts
or rejects these tokens. For more detailed information, see the original proposal by DeepMind titled Accelerating Large
Language Model Decoding with Speculative Sampling. Our implementation for speculative sampling is lossless. In
addition to standalone draft models, we also support Eagle draft models. Currently we only support Eagle v1.

In the following example, we demonstrate how to perform speculative sampling using the Llamamodel. In this example,
we are performing multinomial sampmling.

import torch
from transformers import LlamaTokenizer
from transformers_neuronx import NeuronAutoModelForCausalLM, NeuronConfig,␣
→˓GenerationConfig
from transformers_neuronx.fused_speculation import FusedSpeculativeDecoder

# Specify path to draft and target
draft = '/home/ubuntu/Llama-2-7b-chat-hf'
target = '/home/ubuntu/Llama-2-70b-chat-hf'

# Specify generation parameters
gen_kwargs = {

"top_k": 50,
"top_p": 0.9,
"do_sample": True,
"temperature": 0.7,

}

# Load draft model
draft_neuron_model = NeuronAutoModelForCausalLM.from_pretrained(

draft,
n_positions=1024,
batch_size=1,
tp_degree=32,
amp='bf16',
neuron_config=NeuronConfig(

padding_side="right",
attention_layout=Layout.BSH,
collectives_layout="BSH",
on_device_embedding=True,
on_device_generation=GenerationConfig(**gen_kwargs),
),

)
draft_neuron_model.to_neuron()
# Load target model
target_neuron_model = NeuronAutoModelForCausalLM.from_pretrained(

target,
n_positions=1024,
batch_size=1,
tp_degree=32,
amp='bf16',
neuron_config=NeuronConfig(

(continues on next page)
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padding_side="right",
attention_layout=Layout.BSH,
collectives_layout="BSH",
on_device_embedding=True,
on_device_generation=GenerationConfig(**gen_kwargs),
),

)
target_neuron_model.to_neuron()

# Compile the speculative sampling model
# Here we set sepculation length to be 4
fsd = FusedSpeculativeDecoder(

draft_neuron_model,
target_neuron_model,
4,
)

fsd.to_neuron()

# Initialize tokenizer and text prompt
tokenizer = LlamaTokenizer.from_pretrained(target)
prompt = "Hello, I'm a generative AI language model."
inputs = tokenizer(prompt, return_tensors="pt")

# Call speculative sampling on given input
response = fsd.sample(

input_ids=inputs.input_ids,
attention_mask=inputs.attention_mask,
sequence_length=30,

)

# Decode the response
generated_text = tokenizer.decode(response[0])
print(f"\nDecoded tokens: {generated_text}")

The following sample shows how to enable EAGLE speculation. To get the EAGLE draft model to work, manually
copy the LM head weights from the target model to the draft model. Additionally, you need to rename the keys in the
draft model’s state_dict to match those in the target model.

import torch
from transformers import LlamaTokenizer
from transformers_neuronx import NeuronAutoModelForCausalLM, NeuronConfig,␣
→˓GenerationConfig
from transformers_neuronx.fused_speculation import FusedSpeculativeDecoder

# Specify path to draft and target
# The Eagle draft model can be downloaded from Eagle website
draft = '/home/ubuntu/EAGLE-llama2-chat-70B'
target = '/home/ubuntu/Llama-2-70b-chat-hf'

# Specify generation parameters
gen_kwargs = {

"top_k": 50,
(continues on next page)
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"top_p": 0.9,
"do_sample": True,
"temperature": 0.7,

}

# Load draft model
draft_neuron_model = NeuronAutoModelForCausalLM.from_pretrained(

draft,
n_positions=1024,
batch_size=1,
tp_degree=32,
amp='bf16',
neuron_config=NeuronConfig(

is_eagle_draft=True,
has_pre_attention_norm=False,
# Need the above two configs for Eagle
padding_side="right",
attention_layout=Layout.BSH,
collectives_layout="BSH",
on_device_embedding=True,
on_device_generation=GenerationConfig(**gen_kwargs),
),

)
draft_neuron_model.to_neuron()
# Load target model
target_neuron_model = NeuronAutoModelForCausalLM.from_pretrained(

target,
n_positions=1024,
batch_size=1,
tp_degree=32,
amp='bf16',
neuron_config=NeuronConfig(

is_eagle_target=True,
# Need the above config for Eagle
padding_side="right",
attention_layout=Layout.BSH,
collectives_layout="BSH",
on_device_embedding=True,
on_device_generation=GenerationConfig(**gen_kwargs),
),

)
target_neuron_model.to_neuron()

# Compile the speculative sampling model
# Here we set sepculation length to be 4
fsd = FusedSpeculativeDecoder(

draft_neuron_model,
target_neuron_model,
4,
)

fsd.to_neuron()

(continues on next page)
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# The rest are the same

QKV Weight Fusion

Concatenating a model’s query, key and value weight matrices often achieves better performance because larger
matrices allow for more efficient data movement and compute. QKV weight fusion can be enabled by setting
fuse_qkv=True in the NeuronConfig:

neuron_config = NeuronConfig(fuse_qkv=True)

Attention Layout

The intermediate tensor layouts in a model’s attention layer can impact the compiler’s optimization opportunities and
thus can impact a model’s performance. Using (batch, sequence, hidden) (or BSH) layout for attention often
achieves better performance since it can enable better overlapping of compute with collectives and can reduce trans-
poses. We intend to enable BSH attention by default in a future release. For now, BSH attention layout can be enabled
by setting attention_layout="BSH" in the NeuronConfig:

neuron_config = NeuronConfig(attention_layout="BSH")

Bucketing

LLM inference is a generate process that can produce variable length sequences. This poses a problem since the Neuron
compiler produces executables which expect statically shaped inputs and outputs. To make LLM work with different
shapes, transformers_neuronx generates buckets and applies padding wherever it is required.

There are at least two set of buckets for each LLM inference that can be set by user: 1) Context encoding (pre-fill)
buckets and 2) output token generation buckets.

Token generation buckets
In token generation, tokens are generated iteratively. At each token position, transformer need to attend to the previous
tokens only. But in the naive implementation with static shapes, one may attend to all KV-cache (full sequence length).
To solve this problem, we use token generation buckets. Token generation buckets determine the attention lengths. For
instance, if the max sequence length is 1024 tokens and current token is at position 120, there is no need to attend to
all 1024 tokens in the current step. We can use token generation buckets to attend to different portions of KV-cache.
By default, token generation buckets which are powers of 2 starting from 128 tokens are used (i.e. 128, 256, 512,
up to sequence length). In the example above, bucket 128 would be used for position 120 which would reduce the
wasted compute significantly. User can change these buckets by setting a list for n_positions (see example below).
Otherwise, if a number is given for n_positions (sequence length), instead of a list, then the powers of 2 buckets
starting from 128 will be used. The last bucket would be n_positions (sequence length), even if it is not a power of
2.

Context encoding buckets
The prompt tokens can be processed in parallel. As a result, we need to set the bucket sizes for different estimated
length of input prompts. We can specify these context bucket sizes using the context_length_estimate argument.
In general, it is better to have all the bucket to be multiples of 256 tokens. But adding too many buckets would increase
device memory consumption and add extra latency for bucket switching. Usually, the powers of 2 starting from 128
tokens are used for context encoding buckets. If the total sequence length (n_positions) is beyond 2048 tokens, it is
desirable to add extra buckets with multiple of 512 or 1024 tokens. It is not recommended to add buckets of multiples
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of 256 tokens or smaller for context buckets beyond 2k to avoid bucket switching latency. At runtime, the smallest
bucket which fits the input context will be used. By default, the context encoding buckets set to half of output-token
buckets. Adding extra context buckets would reduce the wasted compute and improves performance. However, the
extra executables would reduce memory space since executables require device memory space.

Notice that the default output token generation buckets work well for wide range of applications. However, ideal context
encoding buckets depends on the specific use case. For instance, if all the requests have a context length of about 1500
+/- 500 tokens, adding more buckets closer to 1500 might help context encoding time. In this example, adding buckets
of 1024, 1280, 1536, 1792, 2048 tokens (distance of 256 tokens) could help. Moreover, the largest context encoding
bucket should be larger than the largest context length. Otherwise, the performance would degrade significantly.

To set context encoding and token generation buckets manually:

context_length_estimate = [1024, 1280, 1536, 1792, 2048] # The best context estimate␣
→˓depends on the use case
n_positions = [128, 256, 512, 1024, 2048, 3072] # Usually default buckets␣
→˓are appropriate

model = NeuronAutoModelForCausalLM.from_pretrained(
'gpt2',
batch_size=1,
n_positions=n_positions,
tp_degree=2,
amp='f16',
context_length_estimate=context_length_estimate,

)

Multi-node inference support (TP/PP)

Prerequisite: https://awsdocs-neuron.readthedocs-hosted.com/en/latest/frameworks/torch/torch-neuronx/
setup-trn1-multi-node-execution.html

When models are too large to fit on single node, Transformers NeuronX multi-node inference (tensor parallel and
pipeline parallel) can be used to shard model weights across multiple Neuron instances (only supported on Trn1 and
Trn1n). Single node inference code can easily be extended to multi-node inference.

Note that Transformers Neuronx currently doesn’t support multi-node Tensor Parallel and Pipeline Parallel at same
time, when Pipeline Parallel is used, the Tensor Parallel has to be within a node (TP<=32 on Trn1/Trn1n).

In the below sections, we first outline the sample code for single node execution and then provide instructions to migrate
the code to use multi-node tensor parallel or multi-node pipeline parallel. To start with, the code below is for single
node script, running llama2-3b model with tensor parallel degree as 32.

import torch
from transformers import AutoTokenizer, AutoConfig
from transformers_neuronx import LlamaForSampling, HuggingFaceGenerationModelAdapter

# Create and compile the Neuron model
model = LlamaForSampling.from_pretrained("openlm-research/open_llama_3b", tp_degree=32)
model.to_neuron()

# Use the `HuggingFaceGenerationModelAdapter` to access the generate API
config = AutoConfig.from_pretrained("openlm-research/open_llama_3b")
model = HuggingFaceGenerationModelAdapter(config, model)

(continues on next page)
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# Get a tokenizer and example input
tokenizer = AutoTokenizer.from_pretrained("openlm-research/open_llama_3b")
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.padding_side = 'left'
text = "Hello, I'm a language model,"
encoded_input = tokenizer(text, return_tensors='pt', padding=True)

# Run inference using temperature
with torch.inference_mode():

model.reset_generation()
generated_sequence = model.generate(

input_ids=encoded_input.input_ids,
attention_mask=encoded_input.attention_mask,
do_sample=True,
max_length=256,
temperature=0.7,

)

print([tokenizer.decode(tok) for tok in generated_sequence])

command line:

python3 multi_node_dev_example.py

Multi-Node Tensor Parallel
Compared to single node tensor parallel, multi-node tensor parallel shards the model weights in the same way but
having mores cores across nodes. In the meantime, it requires each node’s model.forward() receives the exact same
input, otherwise there would be unexpected behaviors (runtime failure, wrong output).

Configurations (environment variables to be configured on each node):

• NEURON_RT_ROOT_COMM_ID: the master node’s <IP address>:<port>

• NEURON_RANK_ID: rank of the node, 0 means master node

• NEURON_LOCAL_TP: the local tensor parallel degree on each node

example:

Change the single node script to use tp=64 (2 node). Set the torch.manual_seed to ensure the sampling loop running
on each node will sample same token as next input.

Node 1 command line:

NEURON_RT_ROOT_COMM_ID=10.1.201.64:63423 NEURON_RANK_ID=0 NEURON_LOCAL_TP=32 python3␣
→˓multi_node_dev_example.py

Node 2 command line (same as Node 1 but set NEURON_RANK_ID as 1):

NEURON_RT_ROOT_COMM_ID=10.1.201.64:63423 NEURON_RANK_ID=1 NEURON_LOCAL_TP=32 python3␣
→˓multi_node_dev_example.py

You can also refer to Tutorial to run lama 3.1 405b multinode 16k tutorial with multi-node tensor parallel.

Multi-Node Pipeline Parallel
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While having the weight tensor sharded as tensor pararallel, one can utilize pipeline parallel to partition the layers
across different node, the intermediate tensor (hidden) will be transferred from one pipeline stage (nodes) to the next
pipeline stage (nodes). The final output will be sent from last pipeline stage back to first pipeline stage.

Compared to multi-node tensor parallel, for non-zero rank, the model.forward in pipeline parallel will fallback to
while loop and block on the input broadcasting from master.

Configurations (environment variables to be configured on each node):

• NEURON_RT_ROOT_COMM_ID: the master node’s <IP address>:<port>

• CPU_COMM_ID: similar to NEURON_RT_ROOT_COMM_ID , but need to set with different port

• NEURON_RANK_ID: rank of the node, 0 means master node

• NEURON_PP_STAGES: number of pipeline stages (nodes)

example:

Keep the original single node script with tp=32.

Node 1 command line:

NEURON_PP_STAGES=2 CPU_COMM_ID=10.1.201.64:8989 NEURON_RT_ROOT_COMM_ID=10.1.201.64:63423␣
→˓NEURON_RANK_ID=0 python3 multi_node_dev_example.py

Node 2 command line (same as Node 1 but set NEURON_RANK_ID as 1):

NEURON_PP_STAGES=2 CPU_COMM_ID=10.1.201.64:8989 NEURON_RT_ROOT_COMM_ID=10.1.201.64:63423␣
→˓NEURON_RANK_ID=1 python3 multi_node_dev_example.py

Long Sequence length support up to 128k

Flash Attention
With the integration of FlashAttention kernel, developers can use longer sequence lengths for LLAMA models. The
Flash Attention kernel is automatically used when the input sequence length is greater than 8k without any additional
configuration. Refer to Tutorial for usage of 32k sequence length on a variation of LLAMA3-8B Model.

Flash Decoding
Flash Decoding (FD) is a technique that significantly speeds up attention during inference, especially for long-context
tasks in large language models (LLMs) with GQA.

With integration of FD, developers can achieve faster inference with larger sequence and batch size by reducing the
KV cache replication. Refer to Tutorial on flash decoding usage for 128k sequence length sampling. Flash decoding
can be enabled by setting the flag shard_over_sequence=True in NeuronConfig

neuron_config = NeuronConfig(shard_over_sequence=True)

Note that you can skip the first Allgather introduced by flash decoding at the cost of duplicate Q weights, this is only
recommended for relatively small models (i.e. 3B, 8B) and large batch size.

neuron_config = NeuronConfig(shard_over_sequence=True, duplicate_q_weight_sos=True)

Known limitations and FAQs
• Flash decoding is expected to have performance degradation (PTL) for smaller sequence and batch sizes. We

recommend flash decoding when batch-size x sequence length > 16k
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• Flash decoding support is not enabled for the following features

• Speculative Decoding

• Multi Head Attention (MHA) models

This document is relevant for: Inf2, Trn1

This document is relevant for: Inf2, Trn1

Transformers NeuronX (transformers-neuronx) Developer Guide for Continuous Batching

Transformers NeuronX is integrated with vLLM to enable continuous batching for high-throughput LLM serving and
inference. This guide aims to help users get started with continuous batching for Transformers NeuronX and vLLM by
providing:

• Transformers NeuronX An overview of Transformers NeuronX.

• Continuous Batching with Transformers NeuronX and vLLM The continuous batching procedure implemented
by Transformers NeuronX and vLLM.

• Install vLLM and Get Started with Offline Inference Installation and usage instructions for Transformers NeuronX
and vLLM.

• New Features in Neuron Release 2.21 A showcase of new features in Transformers NeuronX and vLLM.

• Frequently Asked Questions

Transformers NeuronX (transformers-neuronx)

Transformers NeuronX for Trn1 and Inf2 is a software package that enables PyTorch users to perform large language
model (LLM) performant inference on second-generation Neuron hardware (See: NeuronCore-v2). The Neuron per-
formance page lists expected inference performance for commonly used Large Language Models.

Continuous Batching with Transformers NeuronX and vLLM

Transformers NeuronX implements the following operational flow with vLLM for continuous batching support:

1. Context encode multiple prompts using virtual dynamic batching.

2. Decode all sequences simultaneously until a sequence generates an EOS token.

3. Evict the finished sequence and insert a new prompt encoding.

4. Resume the decoding process, repeating steps 2 and 3 until all sequences are decoded.

Supported Model Architectures

Transformers NeuronX supports continuous batching for models compatible with the following Hugging Face classes:

• LlamaForCausalLM

• MistralForCausalLM
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Install vLLM and Get Started with Offline Inference

Neuron maintains a fork of vLLM (v0.6.2) that contains the necessary changes to support inference with Transformers
NeuronX. Neuron is working with the vLLM community to upstream these changes to make them available in a future
version.

Install vLLM

First install neuronx-cc and the transformers-neuronx packages. Then install the vLLM fork from source:

git clone -b v0.6.x-neuron https://github.com/aws-neuron/upstreaming-to-vllm.git
cd upstreaming-to-vllm
pip install -r requirements-neuron.txt
VLLM_TARGET_DEVICE="neuron" && pip install -e .

Note: Please note the vLLM pip package from PyPI is not compatible with Neuron. To work with Neuron, install
vLLM using the source as outlined above.

Note: The current supported version of Pytorch for Neuron installs triton version 2.1.0. This is incompatible with
vllm >= 0.5.3. You may see an error cannot import name 'default_dump_dir.... To work around this, run
pip install --upgrade triton==3.0.0 after installing the vLLM wheel.

If Neuron packages are detected correctly in the installation process, vllm-0.1.dev2830+g22c56ee.neuron216
will be installed (The neuron version depends on the installed neuronx-cc version).

Run Offline Batched Inference with Transformers NeuronX and vLLM

In the following example we demonstrate how to perform continuous batching with a Llama model.

Note: Since Llama models are gated, please accept the Llama Community License Agreement and request access to
the model. Then use a Hugging Face user access token to download the model.

from vllm import LLM, SamplingParams

# Sample prompts.
prompts = [

"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",

]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

# Create an LLM.
llm = LLM(

model="meta-llama/Meta-Llama-3.1-8B-Instruct",
(continues on next page)
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max_num_seqs=8,
# The max_model_len and block_size arguments are required to be same as max sequence␣

→˓length,
# when targeting neuron device. Currently, this is a known limitation in continuous␣

→˓batching
# support in transformers-neuronx.
max_model_len=128,
block_size=128,
# The device can be automatically detected when AWS Neuron SDK is installed.
# The device argument can be either unspecified for automated detection, or␣

→˓explicitly assigned.
device="neuron",
tensor_parallel_size=2)

# Generate texts from the prompts. The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:

prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

Run the API Server

To run the OpenAI-compatible API server in vLLM, run either command below:

vllm serve meta-llama/Meta-Llama-3.1-8B-Instruct --tensor-parallel-size 32 --max-num-
→˓seqs 4 --max-model-len 2048 --block-size 8

python3 -m vllm.entrypoints.openai.api_server --model meta-llama/Meta-Llama-3.1-8B-
→˓Instruct --tensor-parallel-size 32 --max-num-seqs 4 --max-model-len 2048 --block-size 8

New Features in Neuron Release 2.21

Neuron’s vLLM integration with Transformers NeuronX is tested using a public fork of vLLM v0.6.2. New features and
enhancements introduced in this fork will be described below. Neuron’s intent is to upstream these features to vLLM
as soon as possible after release. Prior to upstreaming, these features can be accessed in the AWS Neuron GitHub
repository https://github.com/aws-neuron/upstreaming-to-vllm/tree/v0.6.x-neuron.

Neuron Release 2.21 Features for the v0.6.2 vLLM Neuron Fork
• Sequence bucketing configuration for context encoding and token generation.

• Granular NeuronConfig control in vLLM entrypoints.

• Inference support for speculative decoding.

• Inference support for EAGLE speculative decoding.

Neuron Release 2.20 Features
• Multi-node inference support for larger models. Example scripts are included in vLLM .
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• Direct loading of Hugging Face-compatible checkpoints without creation of a -split directory.

Sequence Bucketing

To configure buckets, set the following environment variables. Refer to the developer guide for details on how to
configure the values. These environment variables need to be set before starting the vLLM server or instantiating the
LLM object.

• NEURON_CONTEXT_LENGTH_BUCKETS: Bucket sizes for context encoding.

• NEURON_TOKEN_GEN_BUCKETS: Bucket sizes for token generation.

For example: export NEURON_CONTEXT_LENGTH_BUCKETS="128,512,1024"

NeuronConfig Override

The default NeuronConfig in vLLM uses the latest optimizations from the Neuron SDK. However, you can override
the default values or add a new configuration from the developer guide by setting the override_neuron_config
parameter while creating the LLM object.

llm = LLM(
model="meta-llama/Meta-Llama-3.1-8B-Instruct",
max_num_seqs=8,
max_model_len=128,
block_size=128
device="neuron",
tensor_parallel_size=32,
#Override or update the NeuronConfig
override_neuron_config={"shard_over_sequence":True})

While standing up the API server, set the override-neuron-config argument. For example:

python3 -m vllm.entrypoints.openai.api_server --model meta-llama/Meta-Llama-3.1-8B-
→˓Instruct --tensor-parallel-size 32 --max-num-seqs 4 --max-model-len 2048 --block-size␣
→˓8 --override-neuron-config {\"shard_over_sequence\":\"True\"}

Quantization

To use int8 weight storage , set the environment variable NEURON_QUANT_DTYPE to s8.

Speculative Decoding

Speculative decoding is a token generation optimization technique that uses a small draft model to generate K tokens
autoregressively and a larger target model to determine which draft tokens to accept, all in a combined forward pass.
For more information on speculative decoding, please see [Leviathan, 2023] and [Chen et al., 2023].

Speculative decoding is now available for inference with Transformers NeuronX and vLLM:

from vllm import LLM, SamplingParams

# Sample prompts.
(continues on next page)
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(continued from previous page)

prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",

]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

# Create an LLM.
llm = LLM(

model="meta-llama/Meta-Llama-3.1-70B-Instruct",
speculative_model="meta-llama/Llama-3.2-1B-Instruct",
# The max_model_len, speculative_max_model_len, and block_size arguments are␣

→˓required to be same as max sequence length,
# when targeting neuron device. Currently, this is a known limitation in continuous␣

→˓batching
# support in transformers-neuronx.
max_model_len=128,
block_size=128,
speculative_max_model_len=128,
dtype="bfloat16",
max_num_seqs=4,
num_speculative_tokens=4,
# The device can be automatically detected when AWS Neuron SDK is installed.
# The device argument can be either unspecified for automated detection, or␣

→˓explicitly assigned.
device="neuron",
tensor_parallel_size=32,
use_v2_block_manager=True,

)

outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:

prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

Note: Please ensure that the selected target and draft model are from the same model family. For example, if the target
model is an instruction-tuned Llama model, the draft model must also be a lower-capacity instruction-tuned Llama
model.
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EAGLE Speculative Decoding

Extrapolation Algorithm for Greater Language-model Efficiency (EAGLE) extends the speculative decoding technique
described above by:

• Utilizing a specially trained EAGLE draft model that predicts feature outputs through an Autoregression Head
and next token outputs through an LM Head.

• Reducing sampling uncertainty by using the next autoregressively sampled token and a current feature map as
draft model inputs.

For more information on EAGLE, please see [Li et al., 2024]

EAGLE speculative decoding can be applied without changes to the speculative decoding code sample above. Trans-
formers NeuronX and vLLM will recognize a draft model as an EAGLE draft when is_eagle: True is set in the
model’s Hugging Face config.json file.

Frequently Asked Questions

Is PagedAttention supported in the vLLM integration?
No, PagedAttention is not currently supported. It will be supported in a future Neuron release.

This document is relevant for: Inf2, Trn1

• Transformers NeuronX (transformers-neuronx) Developer Guide

This document is relevant for: Inf2, Trn1

This document is relevant for: Inf2, Trn1

4.2.3 Transformers NeuronX Tutorials

• Hugging Face meta-llama/Llama-2-13b autoregressive sampling on Inf2 & Trn1

• Hugging Face facebook/opt-13b autoregressive sampling on Inf2 & Trn1

• Hugging Face facebook/opt-30b autoregressive sampling on Inf2 & Trn1

• Hugging Face facebook/opt-66b autoregressive sampling on Inf2

This document is relevant for: Inf2, Trn1

This document is relevant for: Inf2, Trn1

4.2.4 Misc (transformers-neuronx)

This document is relevant for: Inf2, Trn1, Trn2

826 Chapter 4. Additional ML Libraries

https://arxiv.org/pdf/2401.15077
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/meta-llama-2-13b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/facebook-opt-13b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/facebook-opt-30b-sampling.ipynb
https://github.com/aws-neuron/aws-neuron-samples/blob/master/torch-neuronx/transformers-neuronx/inference/facebook-opt-66b-sampling.ipynb


AWS Neuron

Transformers Neuron (transformers-neuronx) release notes

Table of Contents

• Model classes status

• Model features

• Release [0.13.380.0]

• Release [0.13.322.0]

• Release [0.12.313]

• Release [0.11.351.0]

• Release [0.10.0.332]

• Release [0.10.0.21]

• Release [0.9.474]

• Release [0.8.268]

• Release [0.7.84]

• Release [0.6.106]

• Release [0.5.58]

• Release [0.4.0]

• Release [0.3.0]

Transformers Neuron for Trn1/Inf2 is a software package that enables PyTorch users to perform large language model
(LLM) inference on second-generation Neuron hardware (See: NeuronCore-v2).

Model classes status

• BLOOM: [Beta]

• GPT2: [Beta]

• GPT-J: [Beta]

• GPT-Neox: [Beta]

• Llama: [Beta]

• Llama 2: [Beta]

• Mistral: [Beta]
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Model features

Model Flexible Tensor Parallelism Prompt Estimate Support Serialization Support
BLOOM Yes Yes Yes
GPT2 Yes Partial Yes
GPT-J No No No
GPT-NeoX No No No
Llama Yes Yes Yes
Llama 2 Yes Yes Yes
Llama 3.1 Yes Yes Yes
Mistral Yes Yes Yes

Release [0.13.380.0]

Date: 01/14/2025

What’s new in this release

• The transformers depedency has been pinned to transformers<4.48

Release [0.13.322.0]

Date: 12/20/2024

Summary

What’s new in this release

• Flash decoding support for speculative decoding

• Enabled on-device generation support in speculative decoding flows

• Added support for EAGLE speculative decoding support with greedy and lossless sampling

• Support for CPU compilation and sharded model saving

Performance Improvements

• Performance optimized MLP and QKV kernels added for llama models with support for sequence parallel norm

• Added support to control concurrent compilation workers

• Added option to skip AllGather using duplicate Q weights during shard over sequence
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Resolved Issues

• Fixed padding issues when requested batch size is smaller than neff compiled size

• Fixed sequence parallel norm issue when executor is used with speculative decoding flows

Known Issues and Limitations

• GPT-NeoX is sensitive to fp16 and customers are advised to use only amp="f32" for GPT-NeoX.

• Using cache_layout=constants.LAYOUT_BSH in NeuronConfig has known limitations with compilation.
Customers are advised to use constants.LAYOUT_SBH instead.

Release [0.12.313]

Date: 09/16/2024

Summary

What’s new in this release

• Support for model serialization (save and load) of all models except the GPTJForSampling and
GPTNeoXForSampling` model classes, which reduces future model load time by saving a transformed and
sharded set of weights as a new safetensors checkpoint.

• Support for on device sampling (Top P) with Continuous batching

• Support for Scaled RoPE for LLAMA 3.1 models

• Support for multi-node inference for LLAMA 3.1 405B model for specific sequence lengths

• Support for FlashDecoding (using shard_over_sequence) for supporting long context lengths upto 128k Tu-
torial

Resolved Issues

• Fixes to handle seq_ids consistently across vLLM versions

• Fixes for KV head full replication logic errors

Known Issues and Limitations

• GPT-NeoX is sensitive to fp16 and customers are advised to use only amp="f32" for GPT-NeoX.

• Using cache_layout=constants.LAYOUT_BSH in NeuronConfig has known limitations with compilation.
Customers are advised to use constants.LAYOUT_SBH instead.
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Release [0.11.351.0]

Date: 07/03/2024

Summary

What’s new in this release

• Support for compiler optimized flash attention kernel to support context lengths of 16k/32k for Llama models

• Streamer support enabled for BLOOM, GPTJ, GPT2, GPT-NeoX and LLAMA models

• Support for on device generation for TopK in Mixtral models

• Continuous batching support for Mistral v0.2

• Minor API improvements with type annotations for NeuronConfig, deprecation warnings for old arguments, and
exposing top-level configurations

• Performance improvements such as an optimized logit ordering for continuous batching in Llama models, op-
timized QKV padding for certain GQA models, faster implementation of cumsum operation to improve TopP
performance

Resolved Issues

• Removed start_ids=None from generate()

• Mistral decoding issue that occurs during multiple sampling runs

• Mistralv0.1 sliding window error

• Off-by-one error in window context encoding

• Better error messaging

Known Issues and Limitations

• on_device_generation=GenerationConfig(do_sample=True) has some known failures for Llama mod-
els. Customers are advised not to use on_device_generation in such cases.

• GPT-NeoX is sensitive to fp16 and customers are advised to use only amp="f32" for GPT-NeoX.

• Using cache_layout=constants.LAYOUT_BSH in NeuronConfig has known limitations with compilation.
Customers are advised to use constants.LAYOUT_SBH instead.

Release [0.10.0.332]

Date: 04/10/2024
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Summary

What’s new in this release

• [Beta] Added support for continuous batching and a reference integration with vLLM (Llama models only)

Known Issues and Limitations

• There is a known compiler issue for inference of some configurations of Llama-2 70B that can cause accuracy
degredation. Customers are advised to use the --enable-mixed-precision-accumulation compiler flag if
Llama-2 70B accuracy issues occur.

• There is a known compiler issue for inference of some configurations of Llama-2 13B that can
cause accuracy degredation. Customers are advised to use the --enable-saturate-infinity
--enable-mixed-precision-accumulation compiler flags if Llama-2 13B accuracy issues occur.

• There is a known compiler issue for inference of some configurations of GPT-2 that can cause
accuracy degredation. Customers are advised to use the --enable-saturate-infinity
--enable-mixed-precision-accumulation compiler flags if GPT-2 accuracy issues occur.

• GPT-NeoX is sensitive to fp16 and customers are advised to use only amp="f32" for GPT-NeoX.

• Using cache_layout=constants.LAYOUT_BSH in NeuronConfig has known limitations with compilation.
Customers are advised to use constants.LAYOUT_SBH instead.

Release [0.10.0.21]

Date: 04/01/2024

Summary

What’s new in this release

• Added support for on device log-softmax and on device sampling for TopK

• Added support for on device embedding for all models.

• Added support for Speculative Decoding

• [Beta] Added support for Mixtral-8x7b MoE

• [Beta] Added support for mistralai/Mistral-7B-Instruct-v0.2 with no sliding window

• Added faster checkpoint loading support for both sharded and whole checkpoints

• Added the ability to download checkpoints directly from huggingface hub repositories

• Added NeuronAutoModelForCausalLM class which automatically loads architecture-specific classes

• Added a warmup to all kernels to avoid unexpected initialization latency spikes
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Resolved Issues

• Users no longer need a copy of the original checkpoint and can use safetensor checkpoints for optimal speed.

Known Issues and Limitations

• There is a known compiler issue for inference of some configurations of Llama-2 70B that can cause accuracy
degredation. Customers are advised to use the --enable-mixed-precision-accumulation compiler flag if
Llama-2 70B accuracy issues occur.

• There is a known compiler issue for inference of some configurations of Llama-2 13B that can
cause accuracy degredation. Customers are advised to use the --enable-saturate-infinity
--enable-mixed-precision-accumulation compiler flags if Llama-2 13B accuracy issues occur.

• There is a known compiler issue for inference of some configurations of GPT-2 that can cause
accuracy degredation. Customers are advised to use the --enable-saturate-infinity
--enable-mixed-precision-accumulation compiler flags if GPT-2 accuracy issues occur.

• GPT-NeoX is sensitive to fp16 and customers are advised to use only amp="f32" for GPT-NeoX.

Release [0.9.474]

Date: 12/21/2023

Summary

What’s new in this release

• [Llama] [Beta] Added support for Llama-2 70B.

• [Mistral] [Beta] Added support for Mistral 7B.

• [Beta] Added support for PyTorch 2.1.

• [Beta] Added support for Grouped Query Attention (GQA).

• [Beta] Added support for safetensors serialization.

• [Llama] [Beta] Added support for early stopping in the sample_llama function.

• [GPT2] [Beta] Added sparse attention support.

• [Stable] Added support for BatchNorm.

• Use the --auto-cast=none compiler flag by default for all models. This flag improves accuracy for float32
operations.
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Resolved Issues

• Resolved an issue in top_p in the sample_llama function so that it now selects the same number of tokens that
the Hugging Face top_p implementation selects.

Known Issues and Limitations

• There is a known compiler issue for inference of some configurations of Llama-2 70B that can cause accuracy
degredation. Customers are advised to use the --enable-mixed-precision-accumulation compiler flag if
Llama-2 70B accuracy issues occur.

• There are known compiler issues impacting inference accuracy of certain model configurations of Llama-2-13b
when amp = fp16 is used. If this issue is observed, amp=fp32 should be used as a work around. This issue will
be addressed in future Neuron releases.

Release [0.8.268]

Date: 10/26/2023

Summary

What’s new in this release

• [Llama] [Beta] Added support for int8 quantization for Llama.

• [BLOOM] [Beta] Added multi bucket context encoding support for BLOOM.

• [Beta] Added model Serialization for all supported models (except GPT-J and GPT-NeoX).

• [Beta] Added the ability to return output logit scores during sampling.

• [Stable] Added support for SOLU activation and GroupNorm.

Resolved Issues

• [GPT2] Fixed an issue in GPT2ForSamplingWithContextBroadcasting where the input prompt would get
truncated if it was longer than the context_length_estimate.

Known Issues and Limitations

Release [0.7.84]

Date: 09/15/2023
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Summary

What’s new in this release

• Use the --model-type=transformer compiler flag by default for all models. This flag improves performance
and compilation time for all models. This flag replaces the --model-type=transformer-inference flag,
which is now depracated.

Resolved Issues

• Fixed an issue where the HuggingFaceGenerationModelAdapter class falls back to serial context en-
coding for models that have parallel context encoding (GPT2ForSamplingWithContextBroadcasting,
LlamaForSampling, etc.)

• [GPT2 / OPT] Fixed an issue in the parallel context encoding network where incorrect results could be generated
due to incorrect masking logic.

Known Issues and Limitations

• Some configurations of Llama and Llama-2 inference models fail compilation with the error IndirectLoad/
Save requires contiguous indirect access per partition. This is fixed in the compiler version
2.10.0.35 (Neuron SDK 2.14.1).

• Some configurations of Llama and Llama-2 inference model fail compilation with the error Too many
instructions after unroll for function sg0000. To mitigate this, please try with -O1 compiler op-
tion (or --optlevel 1) by adding os.environ["NEURON_CC_FLAGS"] = "-O1" to your script or set in the
environment. A complete fix will be coming in the future release which will not require this option. Note: Using
-O1 in the Llama-2 13B tutorial results in about 50% increase in latency compared to Neuron SDK 2.13.2. If
this is not acceptable, please use compiler version from Neuron SDK 2.13.2.

Release [0.6.106]

Date: 08/28/2023

Summary

What’s new in this release

• Added support for Llama 2 (excluding grouped/multi-query versions, such as Llama 2 70B) [Beta]

• Improved the performance of BLOOM and Llama models [Beta]

• Reduced execution latency of token generation in tensor parallel models by improving thread synchronization.
(supported in Llama only)

• Added an optimized vector implementation of RoPE positional embedding. (supported in Llama only)

• Added support for faster context encoding on sequences of varying lengths. This is implemented by allowing
multiple buckets for parallel context encoding. During inference the best fit bucket is chosen. (supported in
Llama/GPT-2 only)

• Added the Neuron Persistent Cache for compilation to automatically load pre-compiled model artifacts. (sup-
ported by all models)
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• Improved compilation time by compiling models used for different sequence length buckets in parallel. (not
supported in GPT-NeoX/GPT-J)

Resolved Issues

• [Llama] Fixed an issue in the parallel context encoding network where incorrect results could be generated if the
context length is shorter than the context length estimate

• [GPT2 / OPT] Fixed an issue in the parallel context encoding network where incorrect results could be generated

Known Issues and Limitations

• The HuggingFaceGenerationModelAdapter class currently falls back to serial context encoding for mod-
els that have parallel context encoding (GPT2ForSamplingWithContextBroadcasting, LlamaForSampling,
etc. )

• Beam search can introduce memory issues for large models

• There can be accuracy issues for the GPT-J model for certain use-cases

Release [0.5.58]

Date: 7/21/2023

Summary

What’s new in this release

• Added support for GPT-NeoX models [Beta].

• Added support for BLOOM models [Beta].

• Added support for Llama models [Alpha].

• Added support for more flexible tensor-parallel configurations to GPT2, OPT, and BLOOM. The attention
heads doesn’t need to be evenly divisible by tp_degree anymore. (Note: The tp_degree still needs to sat-
isfy the runtime topologies constraint for collective communication (i.e Allreduce). For more details on
supported topologies, see: Tensor-parallelism-support and https://awsdocs-neuron.readthedocs-hosted.com/en/
latest/general/arch/neuron-features/collective-communication.html.)

• Added multi-query / multi-group attention support for GPT2.

Resolved Issues

• Fixed NaN issues for GPT2 model.

• Fixed OPT/GPT-NeoX gibberish output.

• Resolved an issue where NaN values could be produced when the context_length argument was used in
GPT2/OPT.
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Known Issues and Limitations

• Missing cache reorder support for beam search.

• For more info, please see features-support.

Release [0.4.0]

Date: 6/14/2023

Summary

What’s new in this release

• Added int8 weight storage for GPT2 models.

• Improved prompt context encoding performance for GPT2 models.

• Improved collective communications performance for tp-degrees 4, 8, and 24 on Inf2.

• Improved collective communications performance for tp-degrees 8 and 32 on Trn1.

• Support for the --model-type=transformer-inference compiler flag for optimized decoder-only LLM in-
ference.

Resolved Issues

Incorrect GPT-J linear layer sharding

Added padding to the GPT-J linear layer to correctly handle odd vocabulary sizes.

Incorrect output with HuggingFace beam_search()

Issues where the HuggingFace generate() method produces incorrect results when beam_search() is used have
been resolved.

Release [0.3.0]

Date: 05/01/2023

Summary

What’s new in this release

• Added transformers-neuronx artifacts to PyPI repository.

• Added support for the HuggingFace generate().

• Added model serialization support for GPT2 models, including model saving, loading, and weight swapping.

• Added support for caching compiled artifacts.

836 Chapter 4. Additional ML Libraries

https://github.com/aws-neuron/transformers-neuronx/blob/main/README.md#Currently-supported-models-and-features
https://huggingface.co/docs/transformers/model_doc/gpt2
https://huggingface.co/docs/transformers/model_doc/gpt2
https://huggingface.co/docs/transformers/model_doc/gptj


AWS Neuron

• Improved performance by removing unnecessary KV-cache tensor resetting.

• Improved prompt context encoding performance (OPT, GPT2).

Resolved Issues

Incorrect GPT-J amp_callback import

Fixed the GPT-J demo to import the correct amp_callback function.

Known Issues and Limitations

Incorrect output with HuggingFace beam_search()

When the HuggingFace generate() method is configured to use beam_search(), this can produce incorrect
results for certain configurations. It is recommended to use other generation methods such as sample() or
greedy_search(). This will be fixed in a future Neuron release.

This document is relevant for: Inf2, Trn1, Trn2

• Transformers Neuron (transformers-neuronx) release notes

This document is relevant for: Inf2, Trn1

Setup (transformers-neuronx)

If you already have setup your environment to run PyTorch NeuronX, you just need to install Transformers NeuronX
library using the following instruction.

pip install transformers-neuronx --extra-index-url=https://pip.repos.neuron.amazonaws.com

If you are starting from scratch, Neuron Multi Framework DLAMI is recommended as it comes pre-installed with
Transformers NeuronX virtual environment. You can refer to the instructions to launch a Neuron instance using Multi
Framework DLAMI

Developer Guide (transformers-neuronx)

• Transformers NeuronX (transformers-neuronx) Developer Guide

Tutorials (transformers-neuronx)

• Hugging Face meta-llama/Llama-2-13b autoregressive sampling on Inf2 & Trn1

• Hugging Face facebook/opt-13b autoregressive sampling on Inf2 & Trn1

• Hugging Face facebook/opt-30b autoregressive sampling on Inf2 & Trn1

• Hugging Face facebook/opt-66b autoregressive sampling on Inf2
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Misc (transformers-neuronx)

• Transformers Neuron (transformers-neuronx) release notes

This document is relevant for: Inf2, Trn1

This document is relevant for: Inf2, Trn1, Trn2

4.3 AWS Neuron Reference for NeMo Megatron

AWS Neuron Reference for NeMo Megatron is a library that includes modified versions of the open-source packages
NeMo and Apex that have been adapted for use with AWS Neuron and AWS EC2 Trn1 instances. The library supports
Tensor Parallel, Pipeline parallel and Data Parallel configurations for distributed training of large language models
like GPT-3 175B. The APIs have been optimized for XLA based computation and high performance communication
over Trainium instances. The library uses various techniques to improve memory utilization such as sequence paral-
lelism which reduces activation memory footprint, selective or full activation checkpointing which allows larger model
configurations to fit. SPMD optimizations are also used whenever possible to reduce the number of graphs obtained.

Setup (neuronx-nemo-megatron)

The library can be installed from neuronx-nemo-megatron github repo

Tutorials (neuronx-nemo-megatron)

• Launch a GPT-3 pretraining job using neuronx-nemo-megatron

• Launch a Llama 2 pretraining job using neuronx-nemo-megatron

4.3.1 Important Tips for Training with Neuron NeMo Megatron

Do Not Create the Attention Mask

If you are using your own data pipeline, do not create an attention mask for each record. Neuron NeMo Megatron is
optimized to create an attention mask on Neuron Cores directly before use. Creating an attention mask per sample
consumes excess CPU memory and often causes out of memory errors on CPU.

This document is relevant for: Inf2, Trn1, Trn2
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5.1.1 Neuron DLAMI Overview

Neuron DLAMIs are an easy way to get started on Neuron SDK as they come pre-installed with Neuron SDK. Neuron
currently supports 3 types of DLAMIs, multi-framework DLAMIs , single framework DLAMIs and base DLAMIs to
easily get started on single Neuron instance. Below sections describe the supported Neuron DLAMIs, corresponding
virtual environments and easy way to retrieve the DLAMI id using SSM parameters.

5.1.2 Neuron Multi Framework DLAMI

Neuron Deep Learning AMI (DLAMI) is a multi-framework DLAMI that supports multiple Neuron frame-
work/libraries. Each DLAMI is pre-installed with Neuron drivers and support all Neuron instance types. Each virtual
environment that corresponds to a specific Neuron framework/library comes pre-installed with all the Neuron libraries
including Neuron compiler and Neuron runtime needed for you to easily get started.

Note: Tensorflow-neuron 2.10 (inf1) released in SDK v2.20.2 is not compatible with the latest runtime in v2.21 SDK.
Code that compiles will face runtime errors with the latest SDK 2.21.1 version.

Neuron team is aware of this issue and we will ship a single-framework AMI for TF 2.10 inf1 in a future release.

You can use multi-framework DLAMIs from Neuron SDK v2.20.0 for inf1 workloards to avoid this issue. For example:

Deep Learning AMI Neuron (Ubuntu 22.04/AL2023) 20241027

Ubuntu22: ami-017ff4652165fd617
AL2023: ami-06fdb253ce8a32239

aws ec2 run-instances --image-id <ami-id>

Alternatively, you can use the latest Neuron DLAMIs on Ubuntu and run this command as a work-around:

sudo apt-get remove -y aws-neuronx-dkms aws-neuronx-collectives aws-neuronx-runtime-lib␣
→˓aws-neuronx-tools
sudo apt-get install aws-neuronx-dkms=2.18.* -y
sudo apt-get install aws-neuronx-collectives=2.22.* -y
sudo apt-get install aws-neuronx-runtime-lib=2.22.* -y
sudo apt-get install aws-neuronx-tools=2.19.* -y

https://github.com/aws-neuron/aws-neuron-sdk/issues/1071 for more information on the issue.

Multi Framework DLAMIs supported

Operating System Neuron Instances Supported DLAMI Name
Ubuntu 22.04 Inf1, Inf2, Trn1, Trn1n, Trn2 Deep Learning AMI Neuron (Ubuntu 22.04)
Amazon Linux 2023 Inf1, Inf2, Trn1, Trn1n, Trn2 Deep Learning AMI Neuron (Amazon Linux 2023)
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Virtual Environments pre-installed

Neuron Framework/Libraries supported Virtual Environment
PyTorch 2.7 Torch NeuronX, NxD Core /opt/aws_neuronx_venv_pytorch_2_7
PyTorch 2.7 NxD Training, Torch NeuronX /opt/aws_neuronx_venv_pytorch_2_7_nxd_training
PyTorch 2.7 NxD Inference, Torch NeuronX /opt/aws_neuronx_venv_pytorch_2_7_nxd_inference
Transformers NeuronX (PyTorch 2.7) /opt/aws_neuronx_venv_pytorch_2_7_transformers
JAX 0.6 NeuronX /opt/aws_neuronx_venv_jax_0_6
Tensorflow 2.10 NeuronX /opt/aws_neuronx_venv_tensorflow_2_10
Tensorflow 2.10 Neuron (Inf1) /opt/aws_neuron_venv_tensorflow_2_10_inf1
PyTorch 1.13 Neuron (Inf1) /opt/aws_neuron_venv_pytorch_1_13_inf1

Within the PyTorch 2.7 NxD Training virtual environment, we have included a setup script that installs required de-
pendencies for the package. To run this script, activate the virtual environment and run setup_nxdt.sh and this will
run the setup steps here.

You can easily get started with the multi-framework DLAMI through AWS console by following this setup guide. If
you are looking to use the Neuron DLAMI in your cloud automation flows, Neuron also supports SSM parameters to
easily retrieve the latest DLAMI id.

5.1.3 Neuron Single Framework DLAMI

Neuron supports single framework DLAMIs that correspond to a single framework version (ex:- TensorFlow 2.10).
Each DLAMI is pre-installed with Neuron drivers and supports all Neuron instance types. Each virtual environment
corresponding to a specific Neuron framework/library comes pre-installed with all the relevant Neuron libraries includ-
ing Neuron compiler and Neuron run-time.

Single Framework DLAMIs supported

Framework Operating
System

Neuron Instances
Supported

DLAMI Name

PyTorch 2.7 Ubuntu 22.04 Inf2, Trn1, Trn1n, Trn2 Deep Learning AMI Neuron PyTorch 2.7 (Ubuntu
22.04)

PyTorch 2.7 Amazon Linux
2023

Inf2, Trn1, Trn1n, Trn2 Deep Learning AMI Neuron PyTorch 2.7 (Ama-
zon Linux 2023)

JAX 0.6 Ubuntu 22.04 Inf2, Trn1, Trn1n, Trn2 Deep Learning AMI Neuron JAX 0.6 (Ubuntu
22.04)

JAX 0.6 Amazon Linux
2023

Inf2, Trn1, Trn1n, Trn2 Deep Learning AMI Neuron JAX 0.6 (Amazon
Linux 2023)

Tensorflow 2.10 Ubuntu 22.04 Inf2, Trn1, Trn1n, Trn2 Deep Learning AMI Neuron TensorFlow 2.10
(Ubuntu 22.04)

Tensorflow 2.10
(Inf1)

Ubuntu 22.04 Inf1 Deep Learning AMI Neuron TensorFlow 2.10
Inf1 (Ubuntu 22.04)

PyTorch 1.13
(Inf1)

Ubuntu 22.04 Inf1 Deep Learning AMI Neuron PyTorch 1.13 Inf1
(Ubuntu 22.04)
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Virtual Environments pre-installed

DLAMI Name Neuron Libraries sup-
ported

Virtual Environment

Deep Learning AMI Neuron PyTorch 2.7
(Ubuntu 22.04, Amazon Linux 2023)

PyTorch 2.7 Torch Neu-
ronX, NxD Core

/opt/aws_neuronx_venv_pytorch_2_7

Deep Learning AMI Neuron PyTorch 2.7
(Ubuntu 22.04, Amazon Linux 2023)

PyTorch 2.7 NxD Training,
Torch NeuronX

/opt/aws_neuronx_venv_pytorch_2_7_nxd_training

Deep Learning AMI Neuron PyTorch 2.7
(Ubuntu 22.04, Amazon Linux 2023)

PyTorch 2.7 NxD Infer-
ence, Torch NeuronX

/opt/aws_neuronx_venv_pytorch_2_7_nxd_inference

Deep Learning AMI Neuron PyTorch 2.7
(Ubuntu 22.04, Amazon Linux 2023)

Transformers NeuronX Py-
Torch 2.7

/opt/aws_neuronx_venv_pytorch_2_7_transformers

Deep Learning AMI Neuron JAX 0.6 (Ubuntu
22.04, Amazon Linux 2023)

JAX NeuronX 0.6 /opt/aws_neuronx_venv_jax_0_6

Deep Learning AMI Neuron PyTorch 1.13
(Ubuntu 22.04)

Pytorch Neuron (Inf1) /opt/aws_neuron_venv_pytorch_1_13_inf1

Deep Learning AMI Neuron TensorFlow 2.10
(Ubuntu 22.04)

Tensorflow Neuronx /opt/aws_neuronx_venv_tensorflow_2_10

Deep Learning AMI Neuron TensorFlow 2.10
(Ubuntu 22.04)

Tensorflow Neuron (Inf1) /opt/aws_neuron_venv_tensorflow_2_10_inf1

You can easily get started with the single framework DLAMI through AWS console by following one of the corre-
sponding setup guides . If you are looking to use the Neuron DLAMI in your cloud automation flows , Neuron also
supports SSM parameters to easily retrieve the latest DLAMI id.

5.1.4 Neuron Base DLAMI

Neuron Base DLAMIs comes pre-installed with Neuron driver, EFA, and Neuron tools. Base DLAMIs might be
relevant if you are extending the DLAMI for containerized applications.

Base DLAMIs supported

Operating System Neuron Instances Supported DLAMI Name
Amazon Linux 2023 Inf1, Inf2, Trn1n, Trn1, Trn2 Deep Learning Base Neuron AMI (Amazon Linux 2023)
Ubuntu 22.04 Inf1, Inf2, Trn1n, Trn1, Trn2 Deep Learning Base Neuron AMI (Ubuntu 22.04)

5.1.5 Using SSM parameters to find DLAMI id and trigger Cloud Automation flows

Neuron DLAMIs support AWS SSM parameters to easily find the Neuron DLAMI id. Currently we only support
finding the latest DLAMI id that corresponds to latest Neuron SDK release with SSM parameter support. In the future
releases, we will add support for finding the DLAMI id using SSM parameters for a specific Neuron release.
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Finding specific DLAMI image id with the latest neuron release

You can find the DLAMI that supports latest Neuron SDK by using the SSM get-parameter.

aws ssm get-parameter \
--region us-east-1 \
--name <dlami-ssm-parameter-prefix>/latest/image_id \
--query "Parameter.Value" \
--output text

The SSM parameter prefix for each DLAMI can be seen below

SSM Parameter Prefix

AMI Name SSM parameter Prefix
Deep Learning AMI Neuron (Ubuntu
22.04)

/aws/service/neuron/dlami/multi-framework/ubuntu-22.04

Deep Learning AMI Neuron (Ama-
zon Linux 2023)

/aws/service/neuron/dlami/multi-framework/amazon-linux-2023

Deep Learning AMI Neuron Py-
Torch 2.7 (Ubuntu 22.04)

/aws/service/neuron/dlami/pytorch-2.7/ubuntu-22.04

Deep Learning AMI Neuron Py-
Torch 2.7 (Amazon Linux 2023)

/aws/service/neuron/dlami/pytorch-2.7/amazon-linux-2023

Deep Learning AMI Neuron JAX 0.6
(Ubuntu 22.04)

/aws/service/neuron/dlami/jax-0.6/ubuntu-22.04

Deep Learning AMI Neuron JAX 0.6
(Amazon Linux 2023)

/aws/service/neuron/dlami/jax-0.6/amazon-linux-2023

Deep Learning AMI Neuron Py-
Torch 1.13 Inf1 (Ubuntu 22.04)

/aws/service/neuron/dlami/pytorch-1.13-inf1/ubuntu-22.04

Deep Learning AMI Neuron Tensor-
Flow 2.10 (Ubuntu 22.04)

/aws/service/neuron/dlami/tensorflow-2.10/ubuntu-22.04

Deep Learning Base Neuron AMI
(Amazon Linux 2023)

/aws/service/neuron/dlami/base/amazon-linux-2023

Deep Learning Base Neuron AMI
(Ubuntu 22.04)

/aws/service/neuron/dlami/base/ubuntu-22.04

For example to find the latest DLAMI id for Multi-Framework DLAMI (Ubuntu 22) you can use the following

aws ssm get-parameter \
--region us-east-1 \
--name /aws/service/neuron/dlami/multi-framework/ubuntu-22.04/latest/image_id \
--query "Parameter.Value" \
--output text

You can find all available parameters supported in Neuron DLAMis via CLI

aws ssm get-parameters-by-path \
--region us-east-1 \
--path /aws/service/neuron \
--recursive

You can also view the SSM parameters supported in Neuron through AWS parameter store by selecting the “Neuron”
service.
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Use SSM Parameter to launch instance directly via CLI

You can use CLI to find the latest DLAMI id and also launch the instance simulataneuosly. Below code snippet shows
an example of launching inf2 instance using multi-framework DLAMI

aws ec2 run-instances \
--region us-east-1 \
--image-id resolve:ssm:/aws/service/neuron/dlami/tensorflow-2.10/ubuntu-22.04/latest/
→˓image_id \
--count 1 \
--instance-type inf2.48xlarge \
--key-name <my-key-pair> \
--security-groups <my-security-group>

Use SSM alias in EC2 launch templates

SSM Parameters can also be used directly in launch templates. So, you can update your Auto Scaling groups to use
new AMI IDs without needing to create new launch templates or new versions of launch templates each time an AMI
ID changes. Ref: https://docs.aws.amazon.com/autoscaling/ec2/userguide/using-systems-manager-parameters.html

5.1.6 Other Resources

https://docs.aws.amazon.com/dlami/latest/devguide/what-is-dlami.html

https://docs.aws.amazon.com/dlami/latest/devguide/appendix-ami-release-notes.html

https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html

This document is relevant for: Inf1, Inf2, Trn1, Trn2

5.2 Neuron Containers

This document is relevant for: Inf1, Inf2, Trn1, Trn2

5.2.1 Getting started with Neuron DLC using Docker

Training

Launch Trn1 Instance

• Please follow the instructions at launch an Amazon EC2 Instance to Launch an instance, when choosing the
instance type at the EC2 console. Please make sure to select the correct instance type.

• To get more information about instances sizes and pricing see: Trn1 web page, Inf2 web page, Inf1 web page

• Select your Amazon Machine Image (AMI) of choice, please note that Neuron supports Amazon Linux 2
AMI(HVM) - Kernel 5.10.

• When launching a Trn1, please adjust your primary EBS volume size to a minimum of 512GB.

• After launching the instance, follow the instructions in Connect to your instance to connect to the instance
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Note: If you are facing a connectivity issue during the model loading process on a Trn1 instance with Ubuntu, that
could probably be because of Ubuntu limitations with multiple interfaces. To solve this problem, please follow the
steps mentioned here.

Users are highly encouraged to use DLAMI to launch the instances, since DLAMIs come with the required fix.

Install Drivers

# Configure Linux for Neuron repository updates

sudo tee /etc/yum.repos.d/neuron.repo > /dev/null <<EOF
[neuron]
name=Neuron YUM Repository
baseurl=https://yum.repos.neuron.amazonaws.com
enabled=1
metadata_expire=0
EOF
sudo rpm --import https://yum.repos.neuron.amazonaws.com/GPG-PUB-KEY-AMAZON-AWS-NEURON.
→˓PUB

# Update OS packages
sudo yum update -y

# Install OS headers
sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r) -y

# Remove preinstalled packages and Install Neuron Driver and Runtime
sudo yum remove aws-neuron-dkms -y
sudo yum remove aws-neuronx-dkms -y
sudo yum install aws-neuronx-dkms-2.* -y

# Install EFA Driver(only required for multi-instance training)
curl -O https://efa-installer.amazonaws.com/aws-efa-installer-latest.tar.gz
wget https://efa-installer.amazonaws.com/aws-efa-installer.key && gpg --import aws-efa-
→˓installer.key
cat aws-efa-installer.key | gpg --fingerprint
wget https://efa-installer.amazonaws.com/aws-efa-installer-latest.tar.gz.sig && gpg --
→˓verify ./aws-efa-installer-latest.tar.gz.sig
tar -xvf aws-efa-installer-latest.tar.gz
cd aws-efa-installer && sudo bash efa_installer.sh --yes
cd
sudo rm -rf aws-efa-installer-latest.tar.gz aws-efa-installer
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Install Docker

sudo yum install -y docker.io
sudo usermod -aG docker $USER

Logout and log back in to refresh membership.

Verify Docker

docker run hello-world

Expected result:

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
(amd64)
3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/get-started/

Verify Neuron Component

Once the environment is setup, a container can be started with –device=/dev/neuron# to specify desired set of Inferen-
tia/Trainium devices to be exposed to the container. To find out the available neuron devices on your instance, use the
command ls /dev/neuron*.

When running neuron-ls inside a container, you will only see the set of exposed Trainiums. For example:

docker run --device=/dev/neuron0 neuron-test neuron-ls

Would produce the following output in trn1.32xlarge:

+--------+--------+--------+---------+
| NEURON | NEURON | NEURON | PCI |
| DEVICE | CORES | MEMORY | BDF |
+--------+--------+--------+---------+
| 0 | 2 | 32 GB | 10:1c.0 |
+--------+--------+--------+---------+
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Build and Run Docker Image

• how-to-build-neuron-container

Run Tutorial

tutorial-training

Inference

Install Drivers

# Configure Linux for Neuron repository updates
sudo tee /etc/yum.repos.d/neuron.repo > /dev/null <<EOF
[neuron]
name=Neuron YUM Repository
baseurl=https://yum.repos.neuron.amazonaws.com
enabled=1
metadata_expire=0
EOF
sudo rpm --import https://yum.repos.neuron.amazonaws.com/GPG-PUB-KEY-AMAZON-AWS-NEURON.
→˓PUB

# Update OS packages
sudo yum update -y

#########################################################################################
→˓#######################
# To install or update to Neuron versions 1.19.1 and newer from previous releases:
# - DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade to␣
→˓latest Neuron driver
#########################################################################################
→˓#######################

# Install OS headers
sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r) -y

# Install Neuron Driver
sudo yum install aws-neuron-dkms -y

####################################################################################
# Warning: If Linux kernel is updated as a result of OS package update
# Neuron driver (aws-neuron-dkms) should be re-installed after reboot
####################################################################################
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Install Docker

sudo yum install -y docker.io
sudo usermod -aG docker $USER

Logout and log back in to refresh membership.

Verify Docker

docker run hello-world

Expected result:

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
(amd64)
3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/get-started/

Verify Neuron Component

Once the environment is setup, a container can be started with –device=/dev/neuron# to specify desired set of Inferen-
tia/Trainium devices to be exposed to the container. To find out the available neuron devices on your instance, use the
command ls /dev/neuron*.

When running neuron-ls inside a container, you will only see the set of exposed Inferentias. For example:

docker run --device=/dev/neuron0 neuron-test neuron-ls

Would produce the following output in inf1.xlarge:

+--------------+---------+--------+-----------+-----------+------+------+
| PCI BDF | LOGICAL | NEURON | MEMORY | MEMORY | EAST | WEST |
| | ID | CORES | CHANNEL 0 | CHANNEL 1 | | |
+--------------+---------+--------+-----------+-----------+------+------+
| 0000:00:1f.0 | 0 | 4 | 4096 MB | 4096 MB | 0 | 0 |
+--------------+---------+--------+-----------+-----------+------+------+
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Run Tutorial

tutorial-infer

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

5.2.2 Neuron Deep Learning Containers

Table of Contents

• Overview

• Inference Containers

• Training Containers

• Getting started with Neuron DLC using Docker

• Using containers on AWS services

– Amazon EKS

– Amazon ECS

– Amazon SageMaker

– AWS Batch

• Customizing Neuron Deep Learning Containers

Overview

AWS Deep Learning Containers (DLCs) provide a set of Docker images that are pre-installed with deep learning frame-
works. The containers are optimized for performance and available in Amazon Elastic Container Registry (Amazon
ECR). DLCs make it straightforward to deploy custom ML environments in a containerized manner, while taking
advantage of the portability and reproducibility benefits of containers.

AWS Neuron DLCs are a set of Docker images for training and serving models on AWS Trainium and Inferentia
instances using AWS Neuron SDK. The sections below list all of the AWS Neuron DLCs, as well as the AWS DLCs
that come pre-installed with the Neuron SDK.
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Inference Containers

DLC Name DLC Link(s) Tutorial(s)
Neuron Inference Containers

Neuron PyTorch Inference
Containers
Neuronx PyTorch Inference
Containers

tutorial-infer
torchserve-neuron

Large Model Inference (LMI)/Deep
Java Library (DJL) Containers

LMI Containers

HuggingFace Inference Containers

HuggingFace Text Generation
Inference (TGI) Containers
HuggingFace Neuron Inference
Containers

Triton Inference Containers NVIDIA Triton Inference Contain-
ers

Training Containers

DLC Name DLC Link(s) Tutorial(s)
Neuron Training Containers Neuronx PyTorch Training Containers tutorial-training
HuggingFace Training Containers HuggingFace Neuron Training Containers

Getting started with Neuron DLC using Docker

Getting started with Neuron DLC using Docker

Using containers on AWS services

Amazon EKS

Amazon ECS

Amazon SageMaker

AWS Batch

Customizing Neuron Deep Learning Containers

Deep Learning Containers can be customized to fit your specific project needs. To read more, visit Customize Neuron
DLC.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2
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5.2.3 Customize Neuron DLC

Table of Contents

• Description

• Method 1: Using DLC as a Base Image

• Method 2: Modifying Published Dockerfiles

Description

This guide covers how to customize and extend the Neuron Deep Learning Container (DLC) to fit your specific project
needs. You can customize the DLC either by using the DLC as a base image in your Dockerfile or by modifying
published Dockerfiles on GitHub.

Method 1: Using DLC as a Base Image

1. Create a New Dockerfile. In your Dockerfile, specify the Neuron DLC as your base image using the FROM
directive.

2. Complete the Dockerfile. You can add additional packages, change the base environment, or any other modifica-
tions that suit your project. AWS Batch Training is a good example which needs customize Neuron DLC by using
it as the base image. From its Dockerfile, we can find the customized container copies llama_batch_training.sh
to the container and runs it.

3. Navigate to the directory containing your Dockerfile and build your custom container.

Method 2: Modifying Published Dockerfiles

1. Visit the Neuron DLC Github repo and locate the Dockerfile for the container you wish to customize.

2. Modify the Dockerfile as needed. You can add additional packages, change the base environment, or any other
modifications that suit your project. For example, if you do not need to use Neuron tools in your scenario and
want to make the container smaller, you can remove aws-neuronx-tools at this line.

3. Navigate to the directory containing your Dockerfile and build your custom container.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

5.2.4 Neuron Plugins for Containerized Environments

This section summarizes various neuron infrastructure artifacts for containerized environments.

• Neuron Node Problem Detector - This plugin enhances resiliency by detecting and remediating errors. For de-
tailed instructions on running this plugin in EKS environment, please refer to EKS Setup For Neuron To leverage
this plugin on ECS, please refer to Neuron Problem Detector And Recovery

• Neuron Device Plugin - The Neuron device plugin manages Neuron hardware resources in a Kubernetes envi-
ronment. It integrates with the Kubernetes device plugin framework to advertise and manage Neuron resources,
making them available for use by Pods. For more information on using Neuron with Kubernetes, please refer to
EKS Setup For Neuron
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• Neuron Scheduler Extension - Neuron scheduler extension is a Kubernetes artifact which helps with optimal
allocation of neuron cores. Installating scheduler extension is optional if a workload pod consumes all neuron
resources on a node. For more information on using Neuron with Kubernetes, please refer to EKS Setup For
Neuron

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

5.2.5 Neuron Containers FAQ

Table of Contents

• Where can I find DLC images

• What is OCI Neuron Hook and do we need that

• What container runtimes are supported

• How to expose Neuron Devices to Container

• How to expose Neuron Cores to Container

• Can Neuron Devices be shared by different Containers running in the same Host

• Can Neuron Cores be shared by different Containers running in the same Host

• When would you use Neuron K8 Scheduler Extension

• How to add EFA devices to the container

• Can distributed training jobs be run without EFA devices in container

Where can I find DLC images

• The Inference/Training DLC images can be found here.

• In the DLC release page do a search for neuron to get the ECR repo location of specific neuron DLC release.

What is OCI Neuron Hook and do we need that

Neuron devices are exposed to the containers using the –device option in the docker run command. Docker runtime
(runc) does not yet support the ALL option to expose all neuron devices to the container.

With OCI neuron hook support is added to expose ALL devices to container using an environment variable,
“AWS_NEURON_VISIBLE_DEVICES=ALL”. For more details please refer oci neuron hook

In Kubernetes, if we are using the device plugin version 1.7 & below, then the oci neuron hook is needed. If using
device plugin version >= 1.8 then oci neuron hook is not needed
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What container runtimes are supported

Neuron containers have been tested to work with docker, containerd, cri-o runtimes without any changes. If the oci
neuron hook is used then they need to be enabled in the runtime config. For more details please refer oci neuron hook

How to expose Neuron Devices to Container

Neuron Device: Represents the number of Inferentia/Trainium chips in the instance. Refer Container Devices for more
details

How to expose Neuron Cores to Container

Neuron Core: Represents the number of Neuron Cores in the instance. Refer Container Cores for more details. Each
Inferentia1 device has 4 Neuron Cores and each Inferentia2 and Trainium1 device has 2 Neuron Cores. When the
devices are exposed to the containers all the cores in the device are available for use in the container. Please refer
NeuronX Runtime Configuration to see how the environment variables NEURON_RT_VISIBLE_CORES and NEU-
RON_RT_NUM_CORES can be used to assign core to containers

Can Neuron Devices be shared by different Containers running in the same Host

Yes, except in Kubernetes environment where the devices cannot be shared

Can Neuron Cores be shared by different Containers running in the same Host

No

When would you use Neuron K8 Scheduler Extension

The neuron cores/devices that are exposed to the container needs to be contiguous. The kubernetes device plugin does
not guarantee the devices to be contiguous. The K8 Neuron Scheduler Extension takes care of assigning contiguous
devices to the containers.

How to add EFA devices to the container

The EFA devices are exposed to the container using the –device option

--device /dev/infiniband/uverbs0

In a Kubernetes environment, the EFA device plugin is used to detect and advertise the available EFA interfaces. The
EFA device plugin can be installed using the Helm chart provided by Amazon EKS

helm repo add eks https://aws.github.io/eks-charts
helm install aws-efa-k8s-device-plugin --namespace kube-system eks/aws-efa-k8s-device-
→˓plugin

Once the plugin is deployed, applications can use the resource type vpc.amazonaws.com/efa in a pod request spec

resources:
limits:

vpc.amazonaws.com/efa: 4
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Can distributed training jobs be run without EFA devices in container

No. For distributed training jobs on Trainium, all EFA interfaces provided by trn1.32xlarge need to be attached to the
container

This document is relevant for: Inf1, Inf2, Trn1, Trn2

In this section, you’ll find resources to help you use containers for accelerating your deep learning models on Inferentia
and Trainium instances.

5.2.6 Getting started with Neuron DLC using Docker

AWS Neuron Deep Learning Containers (DLCs) are a set of Docker images for training and serving models on AWS
Trainium and Inferentia instances using AWS Neuron SDK. To build a Neuron container using Docker, please refer to
Getting started with Neuron DLC using Docker.

5.2.7 Neuron Deep Learning Containers

In most cases, it is recommended to use a preconfigured Deep Learning Container (DLC) from AWS. Each DLC is
pre-configured to have all of the Neuron components installed and is specific to the chosen ML Framework. For more
details on Neuron Deep Learning Containers, please refer to Neuron Deep Learning Containers.

5.2.8 Customize Neuron DLC

Neuron DLC can be customized as needed. To learn more about how to customize the Neuron Deep Learning Container
(DLC) to fit your specific project needs, please refer to Customize Neuron DLC.

5.2.9 Neuron Plugins for Containerized Environments

Neuron provides plugins for better observability and fault tolerance. For more information on the plugins, please refer
to Neuron Plugins for Containerized Environments.

5.2.10 Neuron Containers FAQ

For frequently asked questions and troubleshooting, please refer to Neuron Containers FAQ

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

5.3 AWS Workload Orchestration

Neuron can be used in a wide selection of development flows. Each flow has its own starting point and requirements
which are required to enable deep learning acceleration with AWS Neuron.

This document is relevant for: Inf1, Inf2, Trn1, Trn2
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5.3.1 Amazon EKS

This document is relevant for: Inf1, Inf2, Trn1, Trn2

Using Neuron with Amazon EKS

Table of Contents

• EKS Setup For Neuron

• Prerequisites

• Neuron Device Plugin

– Deploy Neuron Device Plugin

• Neuron Scheduler Extension

– Container Device Allocation On Different Instance Types

– Deploy Neuron Scheduler Extension

• Neuron Node Problem Detector Plugin

– Permissions for Neuron Node Problem Detector Plugin

– Deploy Neuron Node Problem Detector And Recovery

• Neuron Monitor Daemonset

– Deploy Neuron Monitor Daemonset

• Neuron Helm Chart

EKS Setup For Neuron

Customers that use Kubernetes can conveniently integrate Inf1/Trn1 instances into their workflows. This section will
go through steps for setting up EKS cluster for Neuron.

Prerequisites

Please refer to EKS instructions to create a cluster. Once the cluster is ACTIVE, please add nodes to the cluster. We
recommend using node template for neuron nodes. Following example demonstrates how to add neuron nodes using
node template. The example adds managed nodes using eksctl tool. For more details, please refer to EKS User Guide.

As first step, please create a script to capture the parameters for the node template:

#!/bin/bash

CLUSTER_NAME=$1
CLUSTER_SG=$(eksctl get cluster $CLUSTER_NAME -o json|jq -r ".[0].ResourcesVpcConfig.
→˓ClusterSecurityGroupId")
VPC_ID=$(eksctl get cluster $CLUSTER_NAME -o json|jq -r ".[0].ResourcesVpcConfig.VpcId")

cat <<EOF > cfn_params.json
(continues on next page)
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(continued from previous page)

[
{

"ParameterKey": "ClusterName",
"ParameterValue": "$CLUSTER_NAME"

},

{
"ParameterKey": "ClusterControlPlaneSecurityGroup",
"ParameterValue": "$CLUSTER_SG"

},

{
"ParameterKey": "VpcId",
"ParameterValue": "$VPC_ID"

}
]
EOF

These parameters include the name of the cluster, the security group the nodes can use to connect to the control plane
and the vpcid. Next, get the node group template from tutorial below -

wget https://raw.githubusercontent.com/aws-neuron/aws-neuron-eks-samples/master/dp_bert_
→˓hf_pretrain/cfn/eks_trn1_ng_stack.yaml

This template file has a few important config settings -

• It places the node in a placement group. This optimizes the network speed between the nodes.

• The template installs the EFA driver. Please note that the libfabric version should match between the AMI and
the workload containers.

• It uses the EKS optimized accelerated AMI which has the necessary neuron components installed. The template
uses AMI for Kubernetes version 1.25. Please update to appropriate version.

• The template adds trn1.32xlarge nodes to the cluster. Please update to the desired instance type.

• Trn2 instance types use a default LNC (Logical NeuronCore Configuration) setting of 2, if you want to change
it to 1, update the UserData section of the launch template to a new LNC setting as shown below, and deploy the
new/updated version of launch template.

--==BOUNDARY==
Content-Type: text/x-shellscript; charset="us-ascii"

#!/bin/bash
set -ex
config_dir=/opt/aws/neuron
config_file=${config_dir}/logical_nc_config
[ -d "$config_dir" ] || mkdir -p "$config_dir"
[ -f "$config_file" ] || touch "$config_file"
if ! grep -q "^NEURON_LOGICAL_NC_CONFIG=1$" "$config_file" 2>/dev/null; then

printf "NEURON_LOGICAL_NC_CONFIG=1" >> "$config_file"
fi
--==BOUNDARY==--

Finally, run the following command to create cloud formation stack:
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aws cloudformation create-stack \
--stack-name eks-trn1-ng-stack \
--template-body file://eks_trn1_ng_stack.yaml \
--parameters file://cfn_params.json \
--capabilities CAPABILITY_IAM

The above command will create a stack named eks-trn1-ng-stack, which will be visible in cloudformation. Please wait
for that stack creation to complete before proceeding to next step.

Now we are ready to add the nodes. The example will demonstrate creating node groups using eksctl tool.

Please run following command to determine the AZs:

aws ec2 describe-availability-zones \
--region $REGION_CODE \
--query "AvailabilityZones[]" \
--filters "Name=zone-id,Values=$1" \
--query "AvailabilityZones[].ZoneName" \
--output text

Next, create a script named create_ng_yaml.sh to generate node group yaml. The arguments to the script include
the region, AZs, cluster name and name of the cloudformation stack created earlier (eks-trn1-ng-stack in case of this
example):

#!/bin/bash

REGION_CODE=$1
EKSAZ1=$2
EKSAZ2=$3
CLUSTER_NAME=$4
STACKNAME=$5

LT_ID_TRN1=$(aws cloudformation describe-stacks --stack-name $STACKNAME \
--query "Stacks[0].Outputs[?OutputKey=='LaunchTemplateIdTrn1'].OutputValue" \
--output text)

cat <<EOF > trn1_nodegroup.yaml
apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
name: $CLUSTER_NAME
region: $REGION_CODE
version: "1.28"

iam:
withOIDC: true

availabilityZones: ["$EKSAZ1","$EKSAZ2"]

managedNodeGroups:
- name: trn1-32xl-ng1
launchTemplate:
id: $LT_ID_TRN1

(continues on next page)
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minSize: 1
desiredCapacity: 1
maxSize: 1
availabilityZones: ["$EKSAZ1"]
privateNetworking: true
efaEnabled: true

EOF

Run the above script. It should produce a yaml similar to -

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
name: nemo2
region: us-west-2
version: "1.25"

iam:
withOIDC: true

availabilityZones: ["us-west-2d","us-west-2c"]

managedNodeGroups:
- name: trn1-32xl-ng1
launchTemplate:
id: lt-093c222b35ea89009

minSize: 1
desiredCapacity: 1
maxSize: 1
availabilityZones: ["us-west-2d"]
privateNetworking: true
efaEnabled: true

The example shows kubernetes version 1.25. Please update the version as needed. This yaml can now be used with
eksctl.

eksctl create nodegroup -f trn1_nodegroup.yaml

This will add the nodes to the cluster. Please wait for the nodes to be ‘Ready’. This can be verified using the get node
command.

If you are running a distributed training or inference job, you will need EFA resources. Please install the EFA device
plugin using instructions at EFA device plugin repository.

Next, we will install the Neuron Device Plugin.
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Neuron Device Plugin

Neuron device plugin exposes Neuron cores & devices to kubernetes as a resource. aws.amazon.com/neuroncore
and aws.amazon.com/neuron are the resources that the neuron device plugin registers with the kubernetes.
aws.amazon.com/neuroncore is used for allocating neuron cores to the container. aws.amazon.com/neuron is used
for allocating neuron devices to the container. When resource name ‘neuron’ is used, all the cores belonging to the
device will be allocated to container.

Deploy Neuron Device Plugin

• Make sure prequisite are satisified

• Apply the Neuron device plugin as a daemonset on the cluster with the following command

helm upgrade --install neuron-helm-chart oci://public.ecr.aws/neuron/neuron-
→˓helm-chart \

--set "npd.enabled=false"

• Verify that neuron device plugin is running

kubectl get ds neuron-device-plugin -n kube-system

Expected result (with 2 nodes in cluster):

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE ␣
→˓NODE SELECTOR AGE
neuron-device-plugin 2 2 2 2 2
→˓<none> 18h

• Verify that the node has allocatable neuron cores and devices with the following command

kubectl get nodes "-o=custom-columns=NAME:.metadata.name,NeuronCore:.status.
→˓allocatable.aws\.amazon\.com/neuroncore"

Expected result:

NAME NeuronCore
ip-192-168-65-41.us-west-2.compute.internal 32
ip-192-168-87-81.us-west-2.compute.internal 32

kubectl get nodes "-o=custom-columns=NAME:.metadata.name,NeuronDevice:.
→˓status.allocatable.aws\.amazon\.com/neuron"

Expected result:

NAME NeuronDevice
ip-192-168-65-41.us-west-2.compute.internal 16
ip-192-168-87-81.us-west-2.compute.internal 16
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Neuron Scheduler Extension

The Neuron scheduler extension is required for scheduling pods that require more than one Neuron core or device
resource. For a graphical depiction of how the Neuron scheduler extension works, see k8s-neuron-scheduler-flow.
The Neuron scheduler extension finds sets of directly connected devices with minimal communication latency when
scheduling containers. On Inf1 and Inf2 instance types where Neuron devices are connected through a ring topology,
the scheduler finds sets of contiguous devices. For example, for a container requesting 3 Neuron devices the scheduler
might assign Neuron devices 0,1,2 to the container if they are available but never devices 0,2,4 because those devices
are not directly connected. On Trn1.32xlarge and Trn1n.32xlarge instance types where devices are connected through a
2D torus topology, the Neuron scheduler enforces additional constraints that containers request 1, 4, 8, or all 16 devices.
If your container requires a different number of devices, such as 2 or 5, we recommend that you use an Inf2 instance
instead of Trn1 to benefit from more advanced topology.

Container Device Allocation On Different Instance Types

The Neuron scheduler extension applies different rules when finding devices to allocate to a container on Inf1 and Inf2
instances than on Trn1. These rules ensure that when users request a specific number of resources, Neuron delivers
consistent and high performance regardless of which cores and devices are assigned to the container.

On Inf1 and Inf2 Neuron devices are connected through a ring topology. There are no restrictions on the number of
devices requested as long as it is fewer than the number of devices on a node. When the user requests N devices, the
scheduler finds a node where N contiguous devices are available. It will never allocate non-contiguous devices to the
same container. The figure below shows examples of device sets on an Inf2.48xlarge node which could be assigned to
a container given a request for 2 devices.

Devices on Trn1.32xlarge and Trn1n.32xlarge nodes are connected via a 2D torus topology. On Trn1 nodes containers
can request 1, 4, 8, or all 16 devices. In the case you request an invalid number of devices, such as 7, your pod will not
be scheduled and you will receive a warning:

Instance type trn1.32xlarge does not support requests for device: 7. Please request a
different number of devices.

When requesting 4 devices, your container will be allocated one of the following sets of devices if they are available.
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When requesting 8 devices, your container will be allocated one of the following sets of devices if they are available.
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For all instance types, requesting one or all Neuron cores or devices is valid.

Deploy Neuron Scheduler Extension

Multiple Scheduler Approach

In cluster environments where there is no access to default scheduler, the neuron scheduler extension can be used with
another scheduler. A new scheduler is added (along with the default scheduler) and then the pod’s that needs to run
the neuron workload use this new scheduler. Neuron scheduler extension is added to this new scheduler. EKS natively
does not yet support the neuron scheduler extension and so in the EKS environment this is the only way to add the
neuron scheduler extension.

• Make sure Neuron device plugin is running

• Install the neuron-scheduler-extension

helm upgrade --install neuron-helm-chart oci://public.ecr.aws/neuron/neuron-
→˓helm-chart \

(continues on next page)
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--set "scheduler.enabled=true" \
--set "npd.enabled=false"

• Check there are no errors in the my-scheduler pod logs and the k8s-neuron-scheduler pod is bound to a node

kubectl logs -n kube-system my-scheduler-79bd4cb788-hq2sq

I1012 15:30:21.629611 1 scheduler.go:604] "Successfully bound pod to␣
→˓node" pod="kube-system/k8s-neuron-scheduler-5d9d9d7988-xcpqm" node="ip-
→˓192-168-2-25.ec2.internal" evaluatedNodes=1 feasibleNodes=1

• When running new pod’s that need to use the neuron scheduler extension, make sure it uses the my-scheduler as
the scheduler. Sample pod spec is below

apiVersion: v1
kind: Pod
metadata:
name: <POD_NAME>
spec:
restartPolicy: Never
schedulerName: my-scheduler
containers:

- name: <POD_NAME>
command: ["<COMMAND>"]
image: <IMAGE_NAME>
resources:

limits:
cpu: "4"
memory: 4Gi
aws.amazon.com/neuroncore: 9
requests:
cpu: "1"
memory: 1Gi

• Once the neuron workload pod is run, make sure logs in the k8s neuron scheduler has successfull filter/bind
request

kubectl logs -n kube-system k8s-neuron-scheduler-5d9d9d7988-xcpqm

2022/10/12 15:41:16 POD nrt-test-5038 fits in Node:ip-192-168-2-25.ec2.
→˓internal
2022/10/12 15:41:16 Filtered nodes: [ip-192-168-2-25.ec2.internal]
2022/10/12 15:41:16 Failed nodes: map[]
2022/10/12 15:41:16 Finished Processing Filter Request...

2022/10/12 15:41:16 Executing Bind Request!
2022/10/12 15:41:16 Determine if the pod %v is NeuronDevice podnrt-test-5038
2022/10/12 15:41:16 Updating POD Annotation with alloc devices!
2022/10/12 15:41:16 Return aws.amazon.com/neuroncore
2022/10/12 15:41:16 neuronDevUsageMap for resource:aws.amazon.com/
→˓neuroncore in node: ip-192-168-2-25.ec2.internal is [false false false␣
→˓false false false false false false false false false false false false␣

(continues on next page)
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→˓false]
2022/10/12 15:41:16 Allocated ids for POD nrt-test-5038 are: 0,1,2,3,4,5,6,
→˓7,8
2022/10/12 15:41:16 Try to bind pod nrt-test-5038 in default namespace to␣
→˓node ip-192-168-2-25.ec2.internal with &Binding{ObjectMeta:{nrt-test-5038␣
→˓ 8da590b1-30bc-4335-b7e7-fe574f4f5538 0 0001-01-01 00:00:00 +0000 UTC
→˓<nil> <nil> map[] map[] [] [] []},Target:ObjectReference{Kind:Node,
→˓Namespace:,Name:ip-192-168-2-25.ec2.internal,UID:,APIVersion:,
→˓ResourceVersion:,FieldPath:,},}
2022/10/12 15:41:16 Updating the DevUsageMap since the bind is successful!
2022/10/12 15:41:16 Return aws.amazon.com/neuroncore
2022/10/12 15:41:16 neuronDevUsageMap for resource:aws.amazon.com/
→˓neuroncore in node: ip-192-168-2-25.ec2.internal is [false false false␣
→˓false false false false false false false false false false false false␣
→˓false]
2022/10/12 15:41:16 neuronDevUsageMap for resource:aws.amazon.com/
→˓neurondevice in node: ip-192-168-2-25.ec2.internal is [false false false␣
→˓false]
2022/10/12 15:41:16 Allocated devices list 0,1,2,3,4,5,6,7,8 for resource␣
→˓aws.amazon.com/neuroncore
2022/10/12 15:41:16 Allocated devices list [0] for other resource aws.
→˓amazon.com/neurondevice
2022/10/12 15:41:16 Allocated devices list [0] for other resource aws.
→˓amazon.com/neurondevice
2022/10/12 15:41:16 Allocated devices list [0] for other resource aws.
→˓amazon.com/neurondevice
2022/10/12 15:41:16 Allocated devices list [0] for other resource aws.
→˓amazon.com/neurondevice
2022/10/12 15:41:16 Allocated devices list [1] for other resource aws.
→˓amazon.com/neurondevice
2022/10/12 15:41:16 Allocated devices list [1] for other resource aws.
→˓amazon.com/neurondevice
2022/10/12 15:41:16 Allocated devices list [1] for other resource aws.
→˓amazon.com/neurondevice
2022/10/12 15:41:16 Allocated devices list [1] for other resource aws.
→˓amazon.com/neurondevice
2022/10/12 15:41:16 Allocated devices list [2] for other resource aws.
→˓amazon.com/neurondevice
2022/10/12 15:41:16 Return aws.amazon.com/neuroncore
2022/10/12 15:41:16 Succesfully updated the DevUsageMap [true true true␣
→˓true true true true true true false false false false false false false] ␣
→˓and otherDevUsageMap [true true true false] after alloc for node ip-192-
→˓168-2-25.ec2.internal
2022/10/12 15:41:16 Finished executing Bind Request...
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Default Scheduler Approach

• Make sure Neuron device plugin is running

• Enable the kube-scheduler with option to use configMap for scheduler policy. In your cluster.yml Please update
the spec section with the following

spec:
kubeScheduler:
usePolicyConfigMap: true

• Launch the cluster

kops create -f cluster.yml
kops create secret --name neuron-test-1.k8s.local sshpublickey admin -i ~/.
→˓ssh/id_rsa.pub
kops update cluster --name neuron-test-1.k8s.local --yes

• Install the neuron-scheduler-extension [Registers neuron-scheduler-extension with kube-scheduler]

helm upgrade --install neuron-helm-chart oci://public.ecr.aws/neuron/neuron-
→˓helm-chart \

--set "scheduler.enabled=true" \
--set "scheduler.customScheduler.enabled=false" \
--set "scheduler.defaultScheduler.enabled=true" \
--set "npd.enabled=false"

Neuron Node Problem Detector Plugin

The Neuron Problem Detector Plugin facilitates error detection and recovery by continuously monitoring the health
of Neuron devices across all Kubernetes nodes. It publishes CloudWatch metrics for node errors and can optionally
trigger automatic recovery of affected nodes. Please follow the instructions below to enable the necessary permissions
for the plugin.

Permissions for Neuron Node Problem Detector Plugin

Neuron node problem detection and recovery is authorized via IAM roles for service accounts. For more information,
see IAM roles for service accounts in the Amazon EKS User Guide. This documentation shows how to configure an
IAM role for service accounts using the command line tool eksctl. Follow the instructions below to configure IAM
authorization for service accounts:

• Install the eksctl CLI using instructions listed at https://eksctl.io/installation/.

• Create a policy as shown below:

Policy template

{
"Version": "2012-10-17",
"Statement": [

{
"Action": [

"autoscaling:SetInstanceHealth",
(continues on next page)
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"autoscaling:DescribeAutoScalingInstances"
],
"Effect": "Allow",
"Resource": <arn of the Auto Scaling group corresponding to the␣

→˓Neuron nodes for the cluster>
},
{

"Action": [
"ec2:DescribeInstances"

],
"Effect": "Allow",
"Resource": "*",
"Condition": {

"ForAllValues:StringEquals": {
"ec2:ResourceTag/aws:autoscaling:groupName": <name of␣

→˓the Auto Scaling group corresponding to the Neuron nodes for the cluster>
}

}
},
{

"Action": [
"cloudwatch:PutMetricData"

],
"Effect": "Allow",
"Resource": "*",
"Condition": {

"StringEquals": {
"cloudwatch:Namespace": "NeuronHealthCheck"

}
}

}
]

}

To create the policy, the AWS CLI can be used as shown below, where npd-policy-trimmed.json is the
JSON policy constructed from the template above.

aws iam create-policy \
--policy-name NeuronProblemDetectorPolicy \
--policy-document file://npd-policy-trimmed.json

• Create a namespace for the Neuron Node Problem Detector and its service account:

kubectl create ns neuron-healthcheck-system

• Associate the authorization with the service account using the following script:

#!/bin/bash
CLUSTER_NAME=<eks cluster name>
REGION_CODE=$(aws configure get region)
POLICY_ARN=<policy arn for NeuronProblemDetectorPolicy>

eksctl create iamserviceaccount \
(continues on next page)
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(continued from previous page)

--name node-problem-detector \
--namespace neuron-healthcheck-system \
--cluster $CLUSTER_NAME \
--attach-policy-arn $POLICY_ARN \
--approve \
--role-name neuron-problem-detector-role-$CLUSTER_NAME \
--region $REGION_CODE \
--override-existing-serviceaccounts

• Verify that the service account is annotated correctly. An example is shown below:

kubectl describe sa node-problem-detector -n neuron-healthcheck-system
Name: node-problem-detector
Namespace: neuron-healthcheck-system
Labels: app.kubernetes.io/managed-by=eksctl
Annotations: eks.amazonaws.com/role-arn: arn:aws:iam::111111111111:
→˓role/neuron-problem-detector-role-cluster1
Image pull secrets: <none>
Mountable secrets: <none>
Tokens: <none>
Events: <none>

• To cleanup, deletion of the service account can be done using the following command:

#!/bin/bash
CLUSTER_NAME=<eks cluster name>
REGION_CODE=$(aws configure get region)

eksctl delete iamserviceaccount \
--name node-problem-detector \
--namespace neuron-healthcheck-system \
--cluster $CLUSTER_NAME \
--approve \
--region $REGION_CODE \

Deploy Neuron Node Problem Detector And Recovery

Neuron node problem detector and recovery artifact checks the health of Neuron devices on each Kubernetes node.
After detecting an unrecoverable Neuron error, it triggers a node replacement. In order to get started with Neuron node
problem detector and recovery, make sure that the following requirements are satisfied:

• The Neuron node problem detector and recovery requires Neuron driver 2.15+, and it requires the runtime to be
at SDK 2.18 or later.

• Make sure prerequisites are satisfied. This includes prerequisites for getting started with Kubernetes containers
and prerequisites for the Neuron node problem detector and recovery.

• Install the Neuron node problem detector and recovery as a DaemonSet on the cluster with the following com-
mand:

Note: The installation pulls the container image from the upstream repository for node problem
detector registry.k8s.io/node-problem-detector.
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helm upgrade --install neuron-helm-chart oci://public.ecr.aws/neuron/neuron-
→˓helm-chart

• By default, the Neuron node problem detector and recovery has monitor only mode enabled. To enable the
recovery functionality:

helm upgrade --install neuron-helm-chart oci://public.ecr.aws/neuron/neuron-
→˓helm-chart \

--set "npd.nodeRecovery.enabled=true"

• Verify that the Neuron device plugin is running:

kubectl get pod -n neuron-healthcheck-system

Expected result (with 4 nodes in cluster):

NAME READY STATUS RESTARTS AGE
node-problem-detector-7qcrj 1/1 Running 0 59s
node-problem-detector-j45t5 1/1 Running 0 59s
node-problem-detector-mr2cl 1/1 Running 0 59s
node-problem-detector-vpjtk 1/1 Running 0 59s

• When any unrecoverable error occurs, Neuron node problem detector and recovery publishes a metric under the
CloudWatch namespace NeuronHealthCheck. It also reflects in NodeCondition and can be seen with kubectl
describe node.

Neuron Monitor Daemonset

Neuron monitor is primary observability tool for neuron devices. For details of neuron monitor, please refer to the
neuron monitor guide. This tutorial describes deploying neuron monitor as a daemonset on the kubernetes cluster.

Deploy Neuron Monitor Daemonset

• Download the neuron monitor yaml file. k8s-neuron-monitor-daemonset.yml

• Apply the Neuron monitor yaml to create a daemonset on the cluster with the following command

kubectl apply -f k8s-neuron-monitor.yml

• Verify that neuron monitor daemonset is running

kubectl get ds neuron-monitor --namespace neuron-monitor

Expected result (with 2 nodes in cluster):

NAME DESIRED CURRENT READY UP-TO-DATE ␣
→˓AVAILABLE NODE SELECTOR AGE
neuron-monitor 2 2 2 2 ␣
→˓2 <none> 27h

• Get the neuron-monitor pod names
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kubectl get pods

Expected result

NAME READY STATUS RESTARTS AGE
neuron-monitor-slsxf 1/1 Running 0 17m
neuron-monitor-wc4f5 1/1 Running 0 17m

• Verify the prometheus endpoint is available

kubectl exec neuron-monitor-wc4f5 -- wget -q --output-document - http://127.
→˓0.0.1:8000

Expected result

# HELP python_gc_objects_collected_total Objects collected during gc
# TYPE python_gc_objects_collected_total counter
python_gc_objects_collected_total{generation="0"} 362.0
python_gc_objects_collected_total{generation="1"} 0.0
python_gc_objects_collected_total{generation="2"} 0.0
# HELP python_gc_objects_uncollectable_total Uncollectable objects found␣
→˓during GC
# TYPE python_gc_objects_uncollectable_total counter

Neuron Helm Chart

To simplify the Kubernetes container deployment process, the Neuron Helm Chart has been provided with the following
containers:

• Neuron Device Plugin

• Neuron Scheduler Extension

• Neuron Node Problem Detector and Recovery

For information on how to setup the containers on a Kubernetes cluster using the Neuron Helm Chart, please refer to
https://github.com/aws-neuron/neuron-helm-charts/.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1

Deploy Neuron Container on Elastic Kubernetes Service (EKS) for Inference

Table of Contents

• Description

• Setup Environment

• Inference Example
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Description

You can use the Neuron version of the AWS Deep Learning Containers to run inference on Amazon Elastic Kubernetes
Service (EKS). In this developer flow, you set up an EKS cluster with Inf1 instances, create a Kubernetes manifest for
your inference service and deploy it to your cluster. This developer flow assumes:

1. The model has already been compiled through Compilation with Framework API on EC2 instance or through
Compilation with Sagemaker Neo.

2. You already set up your container to retrieve it from storage.

Setup Environment

Please add inferentia nodes using instructions at EKS Setup For Neuron .

Using the YML deployment manifest shown in the EKS documentation for inferentia, replace the image in the contain-
ers specification with the one you built using how-to-build-neuron-container.

Note: Before deploying the yaml to your EKS cluster, make sure to push the image to ECR. Refer to
Pushing a Docker image for more information.

Inference Example

Please refer to example-deploy-rn50-as-k8s-service run a simple inference example. Note that the container image
referenced in the YML manifest is created using how-to-build-neuron-container.

This document is relevant for: Inf1

This document is relevant for: Trn1, Trn2
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Deploy a simple mlp training script as a Kubernetes job

This tutorial uses mlp train as a teaching example on how to deploy an training application using Kubernetes on the
Trn1 instances. For more advanced example, please refer to Tutorial: Launch a Multi-Node PyTorch Neuron Training
Job on Trainium Using TorchX and EKS

Prerequisite:

• EKS Setup For Neuron: to setup k8s support on your cluster.

• Trn1 instances as worker nodes with attached roles allowing:

– ECR read access policy to retrieve container images from ECR:
arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryReadOnly

• Have a container image that is build using tutorial-training

Deploy a mlp training image

1. Create a file named mlp_train.yaml with the contents below.

Note: In the image: add the appropriate location of the image

apiVersion: v1
kind: Pod
metadata:
name: trn1-mlp

spec:
restartPolicy: Never
schedulerName: default-scheduler
hostNetwork: true
nodeSelector:
beta.kubernetes.io/instance-type: trn1.32xlarge
beta.kubernetes.io/instance-type: trn1.2xlarge

containers:
- name: trn1-mlp
command: ["/usr/local/bin/python3"]
args: ["/opt/ml/mlp_train.py"]
image: 647554078242.dkr.ecr.us-east-1.amazonaws.com/sunda-pt:k8s_mlp_0907
imagePullPolicy: IfNotPresent
env:
- name: NEURON_RT_LOG_LEVEL
value: "INFO"

resources:
limits:
aws.amazon.com/neuron: 2

requests:
aws.amazon.com/neuron: 2

2. Deploy the pod.
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kubectl apply -f mlp_train.yaml

3. Check the logs to make sure training completed

kubectl logs <pod name>

Your log should have the following

Final loss is 0.1977
----------End Training ---------------

This document is relevant for: Trn1, Trn2

In this section, you’ll find resources to help you use Neuron with EKS cluster, deploying inference and training work-
loads on Inferentia and Trainium EKS clusters.

EKS Setup

This guide covers setting up the Neuron device plugin, scheduler extension, node problem detector, and monitoring
plugins. These components enable efficient resource utilization, monitoring, and resilience when using Inferentia and
Trainium instances for inference and training workloads on Kubernetes clusters. To get started with using AWS Neuron
and setting up the required plugins on an EKS cluster, please refer to EKS Setup For Neuron.

Running Inference workload

This guide walks you through the end-to-end process of building and running a Docker container with your model
and deploying it on an EKS cluster with Inferentia instances. For running machine learning inference workloads on
Amazon EKS using AWS Deep Learning Containers, please refer to Deploy Neuron Container on Elastic Kubernetes
Service (EKS) for Inference.

Running Training workload

This guide walks you through the end-to-end process of building and running a Docker container with your model and
deploying it on an EKS cluster with Trainium instances. For running machine learning training workloads on Amazon
EKS using AWS Deep Learning Containers, please refer to Deploy a simple mlp training script as a Kubernetes job.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

5.3.2 Amazon ECS

This document is relevant for: Inf1, Inf2, Trn1, Trn2
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Neuron Problem Detector And Recovery

Neuron node problem detector and recovery artifact checks the health of Neuron devices on each ECS instance. After
detecting an unrecoverable Neuron error, it triggers an instance replacement. In order to get started with Neuron node
problem detector and recovery, make sure that the following requirements are satisfied:

• The Neuron node problem detector and recovery requires Neuron driver 2.15+, and it requires the runtime to be
at SDK 2.18 or later.

Creating a Task Definition

Configuration

The task definition includes two containers:

• npd-container: This container is responsible for enabling Problem detection functionality in the ECS cluster.

• recovery-container: This container handles recovery operations in case of failures detected by Neuron Problem
Detector.

The recovery-container has an environment variable called ENABLE_RECOVERY that controls whether recovery is en-
abled or disabled. Set the value to true to enable recovery, or false to disable it.

Follow these steps to create a task definition for NPD and recovery:

1. Go to the ECS console and select Task Definitions in the navigation pane.

2. Click Create new Task Definition and choose Create new Task Definition with JSON.

3. Paste the task definition JSON provided, replacing the placeholders with your account-specific values.

{
"family": "neuron-npd-and-recovery",
"containerDefinitions": [

{
"name": "npd",
"image": "registry.k8s.io/node-problem-detector/node-problem-

→˓detector:v0.8.19",
"cpu": 0,
"portMappings": [

{
"name": "npd-80-tcp",
"containerPort": 80,
"hostPort": 80,
"protocol": "tcp",
"appProtocol": "http"

}
],
"essential": true,
"entryPoint": [

"/bin/sh",
"-c"

],
"command": [

"echo '{\"plugin\":\"kmsg\",\"logPath\":\"/dev/kmsg\",\
→˓"lookback\":\"5m\",\"bufferSize\":10,\"source\":\"kernel-monitor\",\

(continues on next page)
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(continued from previous page)

→˓"conditions\":[{\"type\":\"NeuronHealth\",\"reason\":\"NeuronHasNoError\",
→˓\"message\":\"Neuronhasnoerror\"}],\"rules\":[{\"type\":\"permanent\",\
→˓"condition\":\"NeuronHealth\",\"reason\":\"NeuronHasError_SRAM_
→˓UNCORRECTABLE_ERROR\",\"pattern\":\".*NEURON_HW_ERR=SRAM_UNCORRECTABLE_
→˓ERROR.*\"},{\"type\":\"permanent\",\"condition\":\"NeuronHealth\",\
→˓"reason\":\"NeuronHasError_NC_UNCORRECTABLE_ERROR\",\"pattern\":\".
→˓*NEURON_HW_ERR=NC_UNCORRECTABLE_ERROR.*\"},{\"type\":\"permanent\",\
→˓"condition\":\"NeuronHealth\",\"reason\":\"NeuronHasError_HBM_
→˓UNCORRECTABLE_ERROR\",\"pattern\":\".*NEURON_HW_ERR=HBM_UNCORRECTABLE_
→˓ERROR.*\"},{\"type\":\"permanent\",\"condition\":\"NeuronHealth\",\
→˓"reason\":\"NeuronHasError_DMA_ERROR\",\"pattern\":\".*NEURON_HW_ERR=DMA_
→˓ERROR.*\"}]}' > /config/kernel-monitor.json && /node-problem-detector --
→˓v=2 --logtostderr --enable-k8s-exporter=false --config.system-log-
→˓monitor=/config/kernel-monitor.json"

],
"environment": [],
"mountPoints": [],
"volumesFrom": [],
"linuxParameters": {

"devices": [
{

"hostPath": "/dev/kmsg",
"containerPath": "/dev/kmsg",
"permissions": [

"read",
"write"

]
}

]
},
"privileged": true,
"logConfiguration": {

"logDriver": "awslogs",
"options": {

"awslogs-group": "/ecs/npd",
"awslogs-create-group": "true",
"awslogs-region": "us-west-2",
"awslogs-stream-prefix": "ecs"

},
"secretOptions": []

},
"systemControls": []

},
{

"name": "recovery",
"image": "public.ecr.aws/neuron/neuron-node-recovery:1.3.0",
"cpu": 0,
"portMappings": [],
"essential": true,
"entryPoint": [

"/bin/sh",
"-c"

(continues on next page)
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(continued from previous page)

],
"command": [

"python scripts/check-health.py"
],
"environment": [

{
"name": "ENABLE_RECOVERY",
"value": "false"

}
],
"mountPoints": [],
"volumesFrom": [],
"readonlyRootFilesystem": true,
"logConfiguration": {

"logDriver": "awslogs",
"options": {

"awslogs-create-group": "true",
"awslogs-group": "/ecs/recovery",
"awslogs-region": "us-west-2",
"awslogs-stream-prefix": "ecs"

}
},
"systemControls": []

}
],
"executionRoleArn": "arn:aws:iam::012345678910:role/ecsTaskExecutionRole

→˓",
"taskRoleArn": "arn:aws:iam::012345678910:role/ecsTaskExecutionRole",
"networkMode": "awsvpc",
"requiresCompatibilities": [

"EC2"
],
"cpu": "1024",
"memory": "3072",
"runtimePlatform": {

"cpuArchitecture": "X86_64",
"operatingSystemFamily": "LINUX"

}
}

4. Review the task definition and click Create.

For more details on task definitions, refer to the AWS documentation.
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Deploying the Service

After creating the task definition, follow these steps to deploy the service:

1. In the ECS console, select the task definition and click Deploy → Create Service.

2. Select your ECS cluster, set the launch type to EC2, and the service type to Daemon.

3. Click Create to deploy the service.

For more details on deploying services, refer to the AWS documentation.

Permissions

Ensure the ECS task execution role and task role have permissions to:

• Publish metrics to CloudWatch

• Read and set health status of EC2 instances in the Auto Scaling group

Refer to the AWS documentation on IAM roles for ECS tasks for more information.

When any unrecoverable error occurs, Neuron node problem detector and recovery publishes a metric under the Cloud-
Watch namespace NeuronHealthCheck. It also reflects in NodeCondition and can be seen with kubectl describe node.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1

Deploy Neuron Container on Elastic Container Service (ECS) for Inference

Table of Contents

• Description

• Setup Environment
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You can use the Neuron version of the AWS Deep Learning Containers to run inference on Amazon Elastic Container
Service (ECS). In this developer flow, you set up an ECS cluster with inf1/inf2 instances, create a task description for
your inference service and deploy it to your cluster. This developer flow assumes:

1. The model has already been compiled through Compilation with Framework API on EC2 instance or through
Compilation with Sagemaker Neo.

2. You already set up your container to retrieve it from storage.

Setup Environment

1. Set up an Amazon ECS cluster:
Follow the instructions on Setting up Amazon ECS for Deep Learning Containers

2. Define an Inference Task:
Use the instruction on the DLC Inference on ECS Tutorial to define a task and create a service for the
appropriate framework.

When creating tasks for inferentia instances on ECS, be aware of the considerations and requirements listed
in Working with inference workloads on Amazon ECS.

3. Use the container image created using how-to-build-neuron-container as the image in your task definition.

Note: Before deploying your task definition to your ECS cluster, make sure to push the image to ECR. Refer to
Pushing a Docker image for more information.

This document is relevant for: Inf1

This document is relevant for: Trn1, Trn2

Deploy Neuron Container on Elastic Container Service (ECS) for Training

Table of Contents

• Description

• Setup Environment
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Description

You can use the Neuron version of the AWS Deep Learning Containers to run training on Amazon Elastic Container
Service (ECS). In this developer flow, you set up an ECS cluster with trn1 instances, create a task description for your
training container and deploy it to your cluster. This developer flow assumes:

1. The model has already been compiled through Compilation with Framework API on EC2 instance or through
Compilation with Sagemaker Neo.

2. You already set up your container to retrieve it from storage.

Setup Environment

1. Set up an Amazon ECS cluster:
Follow the instructions on Setting up Amazon ECS for Deep Learning Containers

2. Define a Training Task:
Use the instruction on the DLC Training on ECS Tutorial to define a task and create a service for the
appropriate framework.

When creating tasks for trn1 instances on ECS, be aware of the considerations and requirements listed in
Working with training workloads on Amazon ECS.

3. Use the container image created using how-to-build-neuron-container as the image in your task definition.

Note: Before deploying your task definition to your ECS cluster, make sure to push the image to ECR. Refer to
Pushing a Docker image for more information.

This document is relevant for: Trn1, Trn2

In this section, you’ll find resources to help you use Neuron with ECS cluster, deploying inference and training work-
loads on Inferentia and Trainium ECS clusters.
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Using Neuron Node Problem Detector Plugin with ECS

Neuron node problem detector and recovery plugin enhances resiliency by detecting and remediating errors. To get
started with using Neuron node problem detector plugin and recovery plugin on an ECS cluster, please refer to Neuron
Problem Detector And Recovery.

Running Inference workload

This guide walks you through the end-to-end process of building and running a Docker container with your model
and deploying it on an ECS cluster with Inferentia instances. For running machine learning inference workloads on
Amazon ECS using AWS Deep Learning Containers, please refer to Deploy Neuron Container on Elastic Container
Service (ECS) for Inference.

Running Training workload

This guide walks you through the end-to-end process of building and running a Docker container with your model and
deploying it on an ECS cluster with Trainium instances. For running machine learning training workloads on Amazon
ECS using AWS Deep Learning Containers, please refer to Deploy Neuron Container on Elastic Container Service
(ECS) for Training.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

5.3.3 AWS ParallelCluster

This document is relevant for: Trn1, Trn2

Parallel Cluster Flows- Training

This document is relevant for: Inf2, Trn1, Trn2

Train your model on ParallelCluster

Table of Contents

• Description

• Setup environment
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Description

This document explains how to use AWS ParallelCluster to build HPC compute environment that uses Trn1 compute
nodes to run your distributed ML training job. Once the nodes are launched, we will run a training task to confirm that
the nodes are working, and use slurm commands to check the job status. In this tutorial, we will use AWS pcluster
command to run a yaml file in order to generate the cluster. As an example, we are going to launch multiple Trn1.32xl
nodes in our cluster.

We are going to set up our ParallelCluster infrastructure as below:

As shown in the figure above, inside a VPC, there are two subnets, a public and a private ones. Head Node resides in
the public subnet, while the compute fleet (in this case, trn1 instances) are in the private subnet. A Network Address
Translation (NAT) gateway is also needed in order for nodes in the private subnet to connect to clients outside the VPC.
In the next section, we are going to describe how to set up all the necessary infrastructure for trn1 ParallelCluster.

Setup environment

1. Install prerequisite infrastructure:

Follow these setup instructions to install VPC and all the necessary components for ParallelCluster.

2. Install AWS ParallelCluster in a virtual environment (recommended)

Follow https://docs.aws.amazon.com/parallelcluster/latest/ug/install-v3-virtual-environment.html

3. Create and launch ParallelCluster

Follow these creating cluster instructions to launch ParallelCluster in the VPC.

1. Launch training job

Follow these running training instructions to submit a model training script as a slurm job.

This document is relevant for: Inf2, Trn1, Trn2
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• Train your model on ParallelCluster

This document is relevant for: Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

5.3.4 AWS Batch

This document is relevant for: Inf2, Trn1, Trn2

Train your model on AWS Batch

Table of Contents

• Description

• How does AWS Batch work with Trainium

Description

AWS Batch provides a scalable and cost-effective solution for running batch computing workloads in the AWS Cloud.
Integrating Trainium with AWS Batch provides an efficient and cost-effective way of training deep learning models at
scale. Once you configure your training job, AWS Batch effectively manages the orchestration, execution, and dynamic
scaling of compute resources for your extensive machine learning workloads. To learn more about AWS Batch, see
here.
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How does AWS Batch work with Trainium

As depicted in the illustration above, our workflow begins by building a Docker container image for Trainium
and pushing it to Amazon Elastic Container Registry (ECR). Following this, we configure our AWS Batch environment
with the required capabilities, and subsequently submit the training job.

Please follow the below mentioned steps to run your training jobs on AWS Batch with Trainium.

1. Before you begin, please ensure that you have the following prerequisites completed:
• AWS VPC with at least one Subnet and EFA Enabled Security Group (learn more about EFA-enabled

security group here). Please make sure subnet needs to be private, and the VPC needs to have a NAT
gateway to allow internet connectivity for the private subnet.

• AWS ECR repository

• AWS CLI installed and configured with permissions for the above mentioned AWS resources

• Docker

• jq

2. Setup to start working with AWS Batch
Connect to your EC2 instance(x86_64-based Linux instance) and clone the aws-neuron-samples repo.
Once done, navigate to aws batch scripts directory.

cd ~/
git clone https://github.com/aws-neuron/aws-neuron-samples.git
cd ~/aws-neuron-samples/torch-neuronx/training/aws-batch/all-reduce

3. Configure resource requirements
Update the build_configs_and_setup.sh with your environment variables. Once done, execute the bash
script using the command ./build_configs_and_setup.sh.

4. Build the required docker image and publish it to ECR
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Run ./build_docker_image.sh to build a Neuron Deep-Learning Container image using the latest Neuron
packages and push this image to ECR.

5. Prepare the AWS infrastructure required to submit the batch job
Run ./create_resources.sh to create all AWS Batch resources needed for your training workload. Below is
the brief description of various AWS Batch components this script will create for you -

• Placement Group enables you to influence the placement of your EC2 (Elastic Compute Cloud) instances
within the AWS infrastructure.

• Launch Template allows you to define a set of instance configuration parameters, including the Amazon
Machine Image (AMI), instance type, key pair, security groups, and other settings, in a template format.

• Compute Environment helps you to specify configuration that specifies the type of compute resources
you want to use for your batch jobs. It includes details such as the EC2 instance types, the minimum and
maximum number of instances, the VPC configuration, and other settings related to the compute environ-
ment.

• Job Definition is a blueprint that specifies how a batch job should be run. It encapsulates information
about the job, such as the Docker image to be used, the command to execute within the container, the CPU
and memory requirements, job dependencies, and other settings.

• Job Queue acts as a queueing mechanism for managing and scheduling the execution of batch comput-
ing workloads. By using job queues, AWS Batch provides a scalable and efficient way to process batch
workloads, managing the allocation of resources and ensuring optimal use of compute capacity.

6. Submit the job to AWS-Batch
Run ./submit_job.sh to submit a basic all-reduce job in the provisioned AWS Batch environment

7. Monitor the AWS-Batch job
You can use Amazon CloudWatch Logs to monitor, store, and view all your logs from AWS Batch job. To learn
more about it, please see here.

Note:
• You could run a full model training job using this setup. For example, this sample runs the Llama2-7B tutorial

on AWS Batch using the same setup.

• You can further tailor your Dockerfile to include any additional dependencies specific to your needs.

• You have the option to leverage trn1n.32xlarge instances as an alternative to trn1.32xlarge. To make
this transition, you only need to make adjustments to the launch template and job definition in order to
accommodate the use of 16 EFA (Elastic Fabric Adapter) devices, whereas the current setup for trn1 employs
8 EFA devices. Please check out this document to start with trn1n.32xlarge for multi-node execution.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2
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5.4 Amazon SageMaker

Amazon SageMaker is a fully managed machine learning (ML) platform that streamlines the end-to-end ML workflow
at scale. AWS Neuron integrates with Amazon SageMaker to provide optimized performance for ML workloads on
AWS Inferentia and AWS Trainium chips.

Table of contents

• SageMaker JumpStart

• SageMaker HyperPod

• SageMaker Training

• SageMaker Inference

5.4.1 SageMaker JumpStart

Use Amazon SageMaker JumpStart to train and deploy models using Neuron. SageMaker JumpStart is an ML hub that
accelerates model selection and deployment. It provides support for fine-tuning and deploying popular models such as
Meta’s Llama family of models. Users can customize pre-trained models with their data and easily deploy them.

5.4.2 SageMaker HyperPod

Use Amazon SageMaker HyperPod to streamline ML infrastructure setup and optimization with AWS Neuron. Sage-
Maker HyperPod leverages pre-configured distributed training libraries to split workloads across numerous AI acceler-
ators, enhancing model performance. HyperPod ensures uninterrupted training through automatic checkpointing, fault
detection, and recovery.

5.4.3 SageMaker Training

Amazon SageMaker Model Training reduces the time and cost to train and tune ML models at scale without the need
to manage infrastructure.

5.4.4 SageMaker Inference

With Amazon SageMaker , you can start getting predictions, or inferences, from your trained ML models. SageMaker
provides a broad selection of ML infrastructure and model deployment options to help meet all your ML inference
needs.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2
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5.5 Third-party solutions

AWS Neuron integrates with multiple third-party partner solutions that alow you to run deep learning workloads on
Amazon EC2 instances powered by AWS Trainium and AWS Inferentia chips. The following list gives an overview of
third-party solutions that work with AWS Neuron.

Table of contents

• Ray

• Domino

5.5.1 Ray

Ray, by Anyscale, is the open source AI Compute Engine at the center of the world’s most powerful AI Platforms. It
precisely orchestrates infrastructure for any distributed AI workload like data processing, model training, and serving
on any accelerator at any scale. Ray simplifies the complexity of distributed computing, improves efficiency, lower
costs, and accelerates developer productivity.

Ray Train documentation

5.5.2 Domino

Domino is an open enterprise platform for data science, machine learning, and AI research. It works with an expansive
list of industry leading tools and technologies to enrich data science research, development, and deployment processes.
Domino works with a wide range of data sources, languages, IDEs, tools, libraries, and publication targets.

Domino documentation

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

5.6 Setup Guide

This document is relevant for: Inf1, Inf2, Trn1, Trn2

5.6.1 Amazon EC2

This document is relevant for: Inf1
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EC2 Flows - Inference

This document is relevant for: Inf1

Compile with Framework API and Deploy on EC2 Inf1

Table of Contents

• Description

• Setup Environment

– 1. Launch an Inf1 Instance

– 2. Set up a development environment

∗ Enable PyTorch-Neuron

∗ Enable TensorFlow-Neuron

∗ Enable Apache MXNet

– 3. Set up Jupyter notebook

Description

You can use a single inf1 instance as a development environment to compile and deploy Neuron models. In this
developer flow, you provision an EC2 inf1 instance using a Deep Learming AMI (DLAMI) and execute the two steps
of the development flow in the same instance. The DLAMI comes pre-packaged with the Neuron frameworks, compiler,
and required runtimes to complete the flow. Development happens through Jupyter Notebooks or using a secure shell
(ssh) connection in terminal. Follow the steps bellow to setup your environment.

Note: Model compilation can be executed on a non-inf1 instance for later deployment. Follow the same EC2
Developer Flow Setup using other instance families and leverage Amazon Simple Storage Service (S3) to share the
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compiled models between different instances.

Setup Environment

1. Launch an Inf1 Instance

• Please follow the instructions at launch an Amazon EC2 Instance to Launch an Inf1 instance, when
choosing the instance type at the EC2 console. Please make sure to select the correct instance type.
To get more information about Inf1 instances sizes and pricing see Inf1 web page.

• When choosing an Amazon Machine Image (AMI) make sure to select Deep Learning AMI with
Conda Options. Please note that Neuron Conda environments are supported only in Ubuntu 18
DLAMI and Amazon Linux2 DLAMI, Neuron Conda environments are not supported in Amazon
Linux DLAMI.

• After launching the instance, follow the instructions in Connect to your instance to connect to the
instance

Note: You can also launch the instance from AWS CLI, please see AWS CLI commands to launch inf1
instances.

2. Set up a development environment

Enable PyTorch-Neuron

Important:
For successful installation or update to next releases (Neuron 1.20.0 and newer):

• Uninstall aws-neuron-dkms by running: sudo apt remove aws-neuron-dkms or sudo yum remove
aws-neuron-dkms

• Install or upgrade to latest Neuron driver (aws-neuron-dkms) by following the “Setup Guide” instructions.

PyTorch 1.9.1

Ubuntu DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

# Neuron is pre-installed on Deep Learning AMI (DLAMI), latest DLAMI version may not␣
→˓include latest Neuron versions
# To update to latest Neuron version, follow "Update to latest release" instruction on␣
→˓Neuron documentation

(continues on next page)
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(continued from previous page)

#########################################################################################
→˓#######################
# To install or update to Neuron versions 1.19.1 and newer from previous releases:
# - DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade␣
→˓to latest Neuron driver
#########################################################################################
→˓#######################

# Install OS headers
sudo apt-get install linux-headers-$(uname -r) -y

# Install Neuron Driver
sudo apt-get install aws-neuronx-dkms --allow-change-held-packages -y

####################################################################################
# Warning: If Linux kernel is updated as a result of OS package update
# Neuron driver (aws-neuron-dkms) should be re-installed after reboot
####################################################################################

# Activate PyTorch
source activate

Amazon Linux DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

# Neuron is pre-installed on Deep Learning AMI (DLAMI), latest DLAMI version may not␣
→˓include latest Neuron versions
# To update to latest Neuron version, follow "Update to latest release" instruction on␣
→˓Neuron documentation

#########################################################################################
→˓#######################
# To install or update to Neuron versions 1.19.1 and newer from previous releases:
# - DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade␣
→˓to latest Neuron driver
#########################################################################################
→˓#######################

# Install OS headers
sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r) -y

# Install Neuron Driver
sudo yum versionlock delete aws-neuronx-dkms
sudo yum install aws-neuronx-dkms -y

####################################################################################
(continues on next page)
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(continued from previous page)

# Warning: If Linux kernel is updated as a result of OS package update
# Neuron driver (aws-neuron-dkms) should be re-installed after reboot
####################################################################################

# Activate PyTorch
source activate

PyTorch 1.8.1

Ubuntu DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

# Neuron is pre-installed on Deep Learning AMI (DLAMI), latest DLAMI version may not␣
→˓include latest Neuron versions
# To update to latest Neuron version, follow "Update to latest release" instruction on␣
→˓Neuron documentation

#########################################################################################
→˓#######################
# To install or update to Neuron versions 1.19.1 and newer from previous releases:
# - DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade␣
→˓to latest Neuron driver
#########################################################################################
→˓#######################

# Install OS headers
sudo apt-get install linux-headers-$(uname -r) -y

# Install Neuron Driver
sudo apt-get install aws-neuronx-dkms --allow-change-held-packages -y

####################################################################################
# Warning: If Linux kernel is updated as a result of OS package update
# Neuron driver (aws-neuron-dkms) should be re-installed after reboot
####################################################################################

# Activate PyTorch
source activate aws_neuron_pytorch_p36
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Amazon Linux DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

# Neuron is pre-installed on Deep Learning AMI (DLAMI), latest DLAMI version may not␣
→˓include latest Neuron versions
# To update to latest Neuron version, follow "Update to latest release" instruction on␣
→˓Neuron documentation

#########################################################################################
→˓#######################
# To install or update to Neuron versions 1.19.1 and newer from previous releases:
# - DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade␣
→˓to latest Neuron driver
#########################################################################################
→˓#######################

# Install OS headers
sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r) -y

# Install Neuron Driver
sudo yum versionlock delete aws-neuronx-dkms
sudo yum install aws-neuronx-dkms -y

####################################################################################
# Warning: If Linux kernel is updated as a result of OS package update
# Neuron driver (aws-neuron-dkms) should be re-installed after reboot
####################################################################################

# Activate PyTorch
source activate aws_neuron_pytorch_p36

Enable TensorFlow-Neuron

Important:
For successful installation or update to next releases (Neuron 1.20.0 and newer):

• Uninstall aws-neuron-dkms by running: sudo apt remove aws-neuron-dkms or sudo yum remove
aws-neuron-dkms

• Install or upgrade to latest Neuron driver (aws-neuron-dkms) by following the “Setup Guide” instructions.
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TensorFlow 2.5.1

Ubuntu DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

Traceback (most recent call last):
File "/home/docs/checkouts/readthedocs.org/user_builds/awsdocs-neuron/checkouts/latest/

→˓src/helperscripts/neuronsetuphelper.py", line 1001, in <module>
setup_cmd += nr_setup.instructions(framework=framework,action=action,framework_

→˓version=args.framework_version,os=args.os,ami=args.ami,mode=args.mode)
File "/home/docs/checkouts/readthedocs.org/user_builds/awsdocs-neuron/checkouts/latest/

→˓src/helperscripts/neuronsetuphelper.py", line 977, in instructions
setup_cmd=hlpr_instructions(self,self.neuron_version)

File "/home/docs/checkouts/readthedocs.org/user_builds/awsdocs-neuron/checkouts/latest/
→˓src/helperscripts/neuronsetuphelper.py", line 787, in hlpr_instructions

fal_supported_rtd=nr_setup.fal_supported_runtime[fw][fw_ver]['neuron-rtd']
KeyError: '2.10.1'

Amazon Linux DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

Traceback (most recent call last):
File "/home/docs/checkouts/readthedocs.org/user_builds/awsdocs-neuron/checkouts/latest/

→˓src/helperscripts/neuronsetuphelper.py", line 1001, in <module>
setup_cmd += nr_setup.instructions(framework=framework,action=action,framework_

→˓version=args.framework_version,os=args.os,ami=args.ami,mode=args.mode)
File "/home/docs/checkouts/readthedocs.org/user_builds/awsdocs-neuron/checkouts/latest/

→˓src/helperscripts/neuronsetuphelper.py", line 977, in instructions
setup_cmd=hlpr_instructions(self,self.neuron_version)

File "/home/docs/checkouts/readthedocs.org/user_builds/awsdocs-neuron/checkouts/latest/
→˓src/helperscripts/neuronsetuphelper.py", line 787, in hlpr_instructions

fal_supported_rtd=nr_setup.fal_supported_runtime[fw][fw_ver]['neuron-rtd']
KeyError: '2.10.1'

TensorFlow 1.15.5

Ubuntu DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.
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# Neuron is pre-installed on Deep Learning AMI (DLAMI), latest DLAMI version may not␣
→˓include latest Neuron versions
# To update to latest Neuron version, follow "Update to latest release" instruction on␣
→˓Neuron documentation

#########################################################################################
→˓#######################
# To install or update to Neuron versions 1.19.1 and newer from previous releases:
# - DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade␣
→˓to latest Neuron driver
#########################################################################################
→˓#######################

# Install OS headers
sudo apt-get install linux-headers-$(uname -r) -y

# Install Neuron Driver
sudo apt-get install aws-neuronx-dkms --allow-change-held-packages -y

####################################################################################
# Warning: If Linux kernel is updated as a result of OS package update
# Neuron driver (aws-neuron-dkms) should be re-installed after reboot
####################################################################################

# Activate TensorFlow
source activate aws_neuron_tensorflow_p36

Amazon Linux DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

# Neuron is pre-installed on Deep Learning AMI (DLAMI), latest DLAMI version may not␣
→˓include latest Neuron versions
# To update to latest Neuron version, follow "Update to latest release" instruction on␣
→˓Neuron documentation

#########################################################################################
→˓#######################
# To install or update to Neuron versions 1.19.1 and newer from previous releases:
# - DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade␣
→˓to latest Neuron driver
#########################################################################################
→˓#######################

# Install OS headers
sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r) -y

# Install Neuron Driver
(continues on next page)
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(continued from previous page)

sudo yum versionlock delete aws-neuronx-dkms
sudo yum install aws-neuronx-dkms -y

####################################################################################
# Warning: If Linux kernel is updated as a result of OS package update
# Neuron driver (aws-neuron-dkms) should be re-installed after reboot
####################################################################################

# Activate TensorFlow
source activate aws_neuron_tensorflow_p36

Enable Apache MXNet

Important:
For successful installation or update to next releases (Neuron 1.20.0 and newer):

• Uninstall aws-neuron-dkms by running: sudo apt remove aws-neuron-dkms or sudo yum remove
aws-neuron-dkms

• Install or upgrade to latest Neuron driver (aws-neuron-dkms) by following the “Setup Guide” instructions.

MXNet 1.8.0

Ubuntu DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

# Note: There is no DLAMI Conda environment for this framework version
# Framework will be installed/updated inside a Python environment

# Update OS packages
sudo apt-get update -y

#########################################################################################
→˓#######################
# To install or update to Neuron versions 1.19.1 and newer from previous releases:
# - DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade␣
→˓to latest Neuron driver
#########################################################################################
→˓#######################

# Install OS headers
sudo apt-get install linux-headers-$(uname -r) -y

(continues on next page)
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(continued from previous page)

# Install Neuron Driver
sudo apt-get install aws-neuronx-dkms --allow-change-held-packages -y

####################################################################################
# Warning: If Linux kernel is updated as a result of OS package update
# Neuron driver (aws-neuron-dkms) should be re-installed after reboot
####################################################################################

# Install Neuron Tools
sudo apt-get install aws-neuronx-tools -y

export PATH=/opt/aws/neuron/bin:$PATH

# Activate MXNet
source activate aws_neuron_mxnet_p36

# Set Pip repository to point to the Neuron repository
pip config set global.extra-index-url https://pip.repos.neuron.amazonaws.com

#Install Neuron MXNet
wget https://aws-mx-pypi.s3.us-west-2.amazonaws.com/1.8.0/aws_mx-1.8.0.2-py2.py3-none-
→˓manylinux2014_x86_64.whl
pip install aws_mx-1.8.0.2-py2.py3-none-manylinux2014_x86_64.whl
pip install mx_neuron neuron-cc

Amazon Linux DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

# Note: There is no DLAMI Conda environment for this framework version
# Framework will be installed/updated inside a Python environment

# Update OS packages
sudo yum update -y

#########################################################################################
→˓#######################
# To install or update to Neuron versions 1.19.1 and newer from previous releases:
# - DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade␣
→˓to latest Neuron driver
#########################################################################################
→˓#######################

# Install OS headers
sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r) -y

# Install Neuron Driver
sudo yum versionlock delete aws-neuronx-dkms

(continues on next page)
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(continued from previous page)

sudo yum install aws-neuronx-dkms -y

####################################################################################
# Warning: If Linux kernel is updated as a result of OS package update
# Neuron driver (aws-neuron-dkms) should be re-installed after reboot
####################################################################################

# Install Neuron Tools
sudo yum install aws-neuronx-tools -y

export PATH=/opt/aws/neuron/bin:$PATH

# Activate MXNet
source activate aws_neuron_mxnet_p36

# Set Pip repository to point to the Neuron repository
pip config set global.extra-index-url https://pip.repos.neuron.amazonaws.com

#Install Neuron MXNet
wget https://aws-mx-pypi.s3.us-west-2.amazonaws.com/1.8.0/aws_mx-1.8.0.2-py2.py3-none-
→˓manylinux2014_x86_64.whl
pip install aws_mx-1.8.0.2-py2.py3-none-manylinux2014_x86_64.whl
pip install mx_neuron neuron-cc

MXNet 1.5.1

Ubuntu DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

# Neuron is pre-installed on Deep Learning AMI (DLAMI), latest DLAMI version may not␣
→˓include latest Neuron versions
# To update to latest Neuron version, follow "Update to latest release" instruction on␣
→˓Neuron documentation

#########################################################################################
→˓#######################
# To install or update to Neuron versions 1.19.1 and newer from previous releases:
# - DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade␣
→˓to latest Neuron driver
#########################################################################################
→˓#######################

# Install OS headers
sudo apt-get install linux-headers-$(uname -r) -y

# Install Neuron Driver
sudo apt-get install aws-neuronx-dkms --allow-change-held-packages -y

(continues on next page)
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(continued from previous page)

####################################################################################
# Warning: If Linux kernel is updated as a result of OS package update
# Neuron driver (aws-neuron-dkms) should be re-installed after reboot
####################################################################################

# Activate MXNet
source activate aws_neuron_mxnet_p36

Amazon Linux DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

# Neuron is pre-installed on Deep Learning AMI (DLAMI), latest DLAMI version may not␣
→˓include latest Neuron versions
# To update to latest Neuron version, follow "Update to latest release" instruction on␣
→˓Neuron documentation

#########################################################################################
→˓#######################
# To install or update to Neuron versions 1.19.1 and newer from previous releases:
# - DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade␣
→˓to latest Neuron driver
#########################################################################################
→˓#######################

# Install OS headers
sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r) -y

# Install Neuron Driver
sudo yum versionlock delete aws-neuronx-dkms
sudo yum install aws-neuronx-dkms -y

####################################################################################
# Warning: If Linux kernel is updated as a result of OS package update
# Neuron driver (aws-neuron-dkms) should be re-installed after reboot
####################################################################################

# Activate MXNet
source activate aws_neuron_mxnet_p36
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3. Set up Jupyter notebook

To develop from a Jupyter notebook see setup-jupyter-notebook-steps-troubleshooting

You can also run a Jupyter notebook as a script, first enable the ML framework Conda or Python environment of your
choice and see running-jupyter-notebook-as-script for instructions.

This document is relevant for: Inf1

This document is relevant for: Inf1

Compile with Framework API and Deploy on EC2 Inf2

Table of Contents

• Description

• Setup Environment

– 1. Launch an Inf2 Instance

– 2. Set up a development environment

∗ Enable PyTorch-Neuron

– 3. Set up Jupyter notebook

Description

You can use a single inf2 instance as a development environment to compile and deploy Neuron models. In this
developer flow, you provision an EC2 inf2 instance using a Deep Learning AMI (DLAMI) and execute the two steps of
the development flow in the same instance. The DLAMI comes pre-packaged with the Neuron frameworks, compiler,
and required runtimes to complete the flow. Development happens through Jupyter Notebooks or using a secure shell
(ssh) connection in terminal. Follow the steps below to setup your environment.
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Note: Model compilation can be executed on a non-inf2 instance for later deployment. Follow the same EC2
Developer Flow Setup using other instance families and leverage Amazon Simple Storage Service (S3) to share the
compiled models between different instances.

Setup Environment

1. Launch an Inf2 Instance

• Please follow the instructions at launch an Amazon EC2 Instance to launch an Inf2 instance, when
choosing the instance type at the EC2 console. Please make sure to select the correct instance type.
To get more information about Inf2 instances sizes and pricing see Inf2 web page.

• When choosing an Amazon Machine Image (AMI) make sure to select Deep Learning AMI with
Conda Options. Please note that Neuron Conda environments are supported only in Ubuntu 18
DLAMI and Amazon Linux2 DLAMI, Neuron Conda environments are not supported in Amazon
Linux DLAMI.

• After launching the instance, follow the instructions in Connect to your instance to connect to the
instance

Note: You can also launch the instance from AWS CLI, please see AWS CLI commands to launch inf2
instances.

2. Set up a development environment

Enable PyTorch-Neuron

Important:
For successful installation or update to next releases (Neuron 1.20.0 and newer):

• Uninstall aws-neuron-dkms by running: sudo apt remove aws-neuron-dkms or sudo yum remove
aws-neuron-dkms

• Install or upgrade to latest Neuron driver (aws-neuron-dkms) by following the “Setup Guide” instructions.

PyTorch 1.9.1

Ubuntu DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.
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# Neuron is pre-installed on Deep Learning AMI (DLAMI), latest DLAMI version may not␣
→˓include latest Neuron versions
# To update to latest Neuron version, follow "Update to latest release" instruction on␣
→˓Neuron documentation

#########################################################################################
→˓#######################
# To install or update to Neuron versions 1.19.1 and newer from previous releases:
# - DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade␣
→˓to latest Neuron driver
#########################################################################################
→˓#######################

# Install OS headers
sudo apt-get install linux-headers-$(uname -r) -y

# Install Neuron Driver
sudo apt-get install aws-neuronx-dkms --allow-change-held-packages -y

####################################################################################
# Warning: If Linux kernel is updated as a result of OS package update
# Neuron driver (aws-neuron-dkms) should be re-installed after reboot
####################################################################################

# Activate PyTorch
source activate

Amazon Linux DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

# Neuron is pre-installed on Deep Learning AMI (DLAMI), latest DLAMI version may not␣
→˓include latest Neuron versions
# To update to latest Neuron version, follow "Update to latest release" instruction on␣
→˓Neuron documentation

#########################################################################################
→˓#######################
# To install or update to Neuron versions 1.19.1 and newer from previous releases:
# - DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade␣
→˓to latest Neuron driver
#########################################################################################
→˓#######################

# Install OS headers
sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r) -y

# Install Neuron Driver
(continues on next page)
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(continued from previous page)

sudo yum versionlock delete aws-neuronx-dkms
sudo yum install aws-neuronx-dkms -y

####################################################################################
# Warning: If Linux kernel is updated as a result of OS package update
# Neuron driver (aws-neuron-dkms) should be re-installed after reboot
####################################################################################

# Activate PyTorch
source activate

PyTorch 1.8.1

Ubuntu DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

# Neuron is pre-installed on Deep Learning AMI (DLAMI), latest DLAMI version may not␣
→˓include latest Neuron versions
# To update to latest Neuron version, follow "Update to latest release" instruction on␣
→˓Neuron documentation

#########################################################################################
→˓#######################
# To install or update to Neuron versions 1.19.1 and newer from previous releases:
# - DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade␣
→˓to latest Neuron driver
#########################################################################################
→˓#######################

# Install OS headers
sudo apt-get install linux-headers-$(uname -r) -y

# Install Neuron Driver
sudo apt-get install aws-neuronx-dkms --allow-change-held-packages -y

####################################################################################
# Warning: If Linux kernel is updated as a result of OS package update
# Neuron driver (aws-neuron-dkms) should be re-installed after reboot
####################################################################################

# Activate PyTorch
source activate aws_neuron_pytorch_p36
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Amazon Linux DLAMI

Note: For a successful installation or update, execute each line of the instructions below separately or copy the contents
of the code block into a script file and source its contents.

# Neuron is pre-installed on Deep Learning AMI (DLAMI), latest DLAMI version may not␣
→˓include latest Neuron versions
# To update to latest Neuron version, follow "Update to latest release" instruction on␣
→˓Neuron documentation

#########################################################################################
→˓#######################
# To install or update to Neuron versions 1.19.1 and newer from previous releases:
# - DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade␣
→˓to latest Neuron driver
#########################################################################################
→˓#######################

# Install OS headers
sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r) -y

# Install Neuron Driver
sudo yum versionlock delete aws-neuronx-dkms
sudo yum install aws-neuronx-dkms -y

####################################################################################
# Warning: If Linux kernel is updated as a result of OS package update
# Neuron driver (aws-neuron-dkms) should be re-installed after reboot
####################################################################################

# Activate PyTorch
source activate aws_neuron_pytorch_p36

3. Set up Jupyter notebook

To develop from a Jupyter notebook see setup-jupyter-notebook-steps-troubleshooting

You can also run a Jupyter notebook as a script, first enable the ML framework Conda or Python environment of your
choice and see running-jupyter-notebook-as-script for instructions.

This document is relevant for: Inf1

• Compile with Framework API and Deploy on EC2 Inf1

• Compile with Framework API and Deploy on EC2 Inf2

This document is relevant for: Inf1

This document is relevant for: Trn1, Trn2
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EC2 Flows- Training

This document is relevant for: Inf2, Trn1, Trn2

Train your model on EC2

Table of Contents

• Description

• Setup Environment

– 1. Launch an Trn1 Instance

– 2. Set up a development environment

∗ Enable PyTorch-Neuron

– 3. Set up Jupyter notebook

Description

You can use a single Trn1 instance as a development environment to compile and train Neuron models. In this developer
flow, you provision an EC2 Trn1 instance using a Deep Learming AMI (DLAMI) and execute the two steps of the
development flow in the same instance. The DLAMI comes pre-packaged with the Neuron frameworks, compiler, and
required runtimes to complete the flow. Development happens through Jupyter Notebooks or using a secure shell (ssh)
connection in terminal. Follow the steps bellow to setup your environment.
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Setup Environment

1. Launch an Trn1 Instance

• Please follow the instructions at launch an Amazon EC2 Instance to Launch an Trn1 instance, when
choosing the instance type at the EC2 console. Please make sure to select the correct instance type.
To get more information about Trn1 instances sizes and pricing see Trn1 web page.

• Select your Amazon Machine Image (AMI) of choice, please note that Neuron support Ubuntu 18
AMI or Amazon Linux 2 AMI, you can also choose Ubuntu 18 or Amazon Linux 2 Deep Learning
AMI (DLAMI)

• When launching a Trn1, please adjust your primary EBS volume size to a minimum of 512GB.

• After launching the instance, follow the instructions in Connect to your instance to connect to the
instance

Note: If you are facing a connectivity issue during the model loading process on a Trn1 instance with
Ubuntu, that could probably be because of Ubuntu limitations with multiple interfaces. To solve this
problem, please follow the steps mentioned here.

Users are highly encouraged to use DLAMI to launch the instances, since DLAMIs come with the required
fix.

2. Set up a development environment

Enable PyTorch-Neuron

PyTorch 1.11.0

Ubuntu 20 AMI

Note:
• Instructions in this page only apply to setting up Neuron components on Linux host running Ubuntu

or Amazon Linux AMI.

• When launching a Trn1/Trn2, please adjust your primary EBS volume size to a minimum of 512GB.

# Configure Linux for Neuron repository updates
. /etc/os-release

sudo tee /etc/apt/sources.list.d/neuron.list > /dev/null <<EOF
deb https://apt.repos.neuron.amazonaws.com ${VERSION_CODENAME} main
EOF
wget -qO - https://apt.repos.neuron.amazonaws.com/GPG-PUB-KEY-AMAZON-AWS-
→˓NEURON.PUB | sudo apt-key add -

# Update OS packages
sudo apt-get update -y

(continues on next page)
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(continued from previous page)

# Install git
sudo apt-get install git -y

# Install OS headers
sudo apt-get install linux-headers-$(uname -r) -y

# Remove preinstalled packages and Install Neuron Driver and Runtime
sudo apt-get remove aws-neuron-dkms -y
sudo apt-get remove aws-neuronx-dkms -y
sudo apt-get remove aws-neuronx-oci-hook -y
sudo apt-get remove aws-neuronx-runtime-lib -y
sudo apt-get remove aws-neuronx-collectives -y
sudo apt-get install aws-neuronx-dkms=2.* -y
sudo apt-get install aws-neuronx-oci-hook=2.* -y
sudo apt-get install aws-neuronx-runtime-lib=2.* -y
sudo apt-get install aws-neuronx-collectives=2.* -y

# Install EFA Driver(only required for multi-instance training)

curl -O https://efa-installer.amazonaws.com/aws-efa-installer-latest.tar.gz
wget https://efa-installer.amazonaws.com/aws-efa-installer.key && gpg --import␣
→˓aws-efa-installer.key
cat aws-efa-installer.key | gpg --fingerprint
wget https://efa-installer.amazonaws.com/aws-efa-installer-latest.tar.gz.sig &&
→˓ gpg --verify ./aws-efa-installer-latest.tar.gz.sig

tar -xvf aws-efa-installer-latest.tar.gz
cd aws-efa-installer && sudo bash efa_installer.sh --yes
cd
sudo rm -rf aws-efa-installer-latest.tar.gz aws-efa-installer

# Remove pre-installed package and Install Neuron Tools
sudo apt-get remove aws-neuron-tools -y
sudo apt-get remove aws-neuronx-tools -y
sudo apt-get install aws-neuronx-tools=2.* -y

export PATH=/opt/aws/neuron/bin:$PATH

# Install Python venv and activate Python virtual environment to install
# Neuron pip packages.
sudo apt install python3.8-venv
python3.8 -m venv aws_neuron_venv_pytorch
source aws_neuron_venv_pytorch/bin/activate
pip install -U pip

# Install wget, awscli
pip install wget
pip install awscli

# Install packages from repos
python -m pip config set global.extra-index-url "https://pip.repos.neuron.

(continues on next page)
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(continued from previous page)

→˓amazonaws.com"

# Install Python packages - Transformers package is needed for BERT
python -m pip install torch-neuronx=="1.11.0.1.*" "neuronx-cc==2.*"

Amazon Linux 2 AMI

Note:
• Instructions in this page only apply to setting up Neuron components on Linux host running Ubuntu

or Amazon Linux AMI.

• When launching a Trn1/Trn2, please adjust your primary EBS volume size to a minimum of 512GB.

# Configure Linux for Neuron repository updates

sudo tee /etc/yum.repos.d/neuron.repo > /dev/null <<EOF
[neuron]
name=Neuron YUM Repository
baseurl=https://yum.repos.neuron.amazonaws.com
enabled=1
metadata_expire=0
EOF
sudo rpm --import https://yum.repos.neuron.amazonaws.com/GPG-PUB-KEY-AMAZON-
→˓AWS-NEURON.PUB

# Install OS headers
sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r) -y

# Update OS packages
sudo yum update -y

# Install git
sudo yum install git -y

# Remove preinstalled packages and Install Neuron Driver and Runtime
sudo yum remove aws-neuron-dkms -y
sudo yum remove aws-neuronx-dkms -y
sudo yum remove aws-neuronx-oci-hook -y
sudo yum remove aws-neuronx-runtime-lib -y
sudo yum remove aws-neuronx-collectives -y
sudo yum install aws-neuronx-dkms-2.* -y
sudo yum install aws-neuronx-oci-hook-2.* -y
sudo yum install aws-neuronx-runtime-lib-2.* -y
sudo yum install aws-neuronx-collectives-2.* -y

# Install EFA Driver(only required for multi-instance training)
curl -O https://efa-installer.amazonaws.com/aws-efa-installer-latest.tar.gz
wget https://efa-installer.amazonaws.com/aws-efa-installer.key && gpg --import␣
→˓aws-efa-installer.key

(continues on next page)
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(continued from previous page)

cat aws-efa-installer.key | gpg --fingerprint
wget https://efa-installer.amazonaws.com/aws-efa-installer-latest.tar.gz.sig &&
→˓ gpg --verify ./aws-efa-installer-latest.tar.gz.sig
tar -xvf aws-efa-installer-latest.tar.gz
cd aws-efa-installer && sudo bash efa_installer.sh --yes
cd
sudo rm -rf aws-efa-installer-latest.tar.gz aws-efa-installer

# Remove pre-installed package and Install Neuron Tools
sudo yum remove aws-neuron-tools -y
sudo yum remove aws-neuronx-tools -y
sudo yum install aws-neuronx-tools-2.* -y

export PATH=/opt/aws/neuron/bin:$PATH

# Install Python venv and activate Python virtual environment to install
# Neuron pip packages.
python3.7 -m venv aws_neuron_venv_pytorch
source aws_neuron_venv_pytorch/bin/activate
python -m pip install -U pip

# Install wget, awscli
pip install wget
pip install awscli

# Install packages from repos
python -m pip config set global.extra-index-url "https://pip.repos.neuron.
→˓amazonaws.com"

# Install Python packages - Transformers package is needed for BERT
python -m pip install torch-neuronx=="1.11.0.1.*" "neuronx-cc==2.*"

3. Set up Jupyter notebook

To develop from a Jupyter notebook see setup-jupyter-notebook-steps-troubleshooting

You can also run a Jupyter notebook as a script, first enable the ML framework Conda or Python environment of your
choice and see running-jupyter-notebook-as-script for instructions.

This document is relevant for: Inf2, Trn1, Trn2

• Train your model on EC2

This document is relevant for: Trn1, Trn2
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Inference

• Compile with Framework API and Deploy on EC2 Inf1

• Compile with Framework API and Deploy on EC2 Inf2

Training

• Train your model on EC2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

5.6.2 PyTorch Neuron (torch-neuronx) Setup

Note: This Setup guide is relevant for Inf2 & Trn1 / Trn1n / Trn2 instances.

Table of contents

• torch-neuronx setup on Ubuntu 22

• torch-neuronx setup on Amazon Linux 2023 (AL2023)

• torch-neuronx setup on Rocky Linux 9

torch-neuronx setup on Ubuntu 22

Ubuntu 22 (Neuron Multi-Framework DLAMI) Ubuntu 22 (Ubuntu22 AMI)

torch-neuronx setup on Amazon Linux 2023 (AL2023)

Amazon Linux 2023 (Amazon Linux 2023 AMI)

torch-neuronx setup on Rocky Linux 9

Rocky Linux 9 (Rocky Linux 9 AMI) This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf1
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5.6.3 PyTorch Neuron (torch-neuron) Setup

Note: This Setup guide is relevant for Inf1 instances.

Table of contents

• torch-neuron setup on Ubuntu 20

• torch-neuron setup on Ubuntu 22

• torch-neuron setup on Amazon Linux 2023 (AL2023)

• torch-neuron setup on Rocky Linux 9

torch-neuron setup on Ubuntu 20

Ubuntu 20 (Ubuntu20 AMI) Ubuntu 20 (DLAMI Base AMI) Ubuntu 20 (DLAMI Pytorch
AMI)

torch-neuron setup on Ubuntu 22

Ubuntu 22 (Neuron Multi-Framework DLAMI) Ubuntu 22 (Ubuntu22 AMI)

torch-neuron setup on Amazon Linux 2023 (AL2023)

Amazon Linux 2023 (Amazon Linux 2023 AMI)

torch-neuron setup on Rocky Linux 9

Rocky Linux 9 (Rocky Linux 9 AMI) This document is relevant for: Inf1

This document is relevant for: Inf2, Trn1, Trn2

5.6.4 Tensorflow Neuron (tensorflow-neuronx) Setup

Note: This Setup guide is relevant for Inf2 & Trn1 / Trn1n instances.

Table of contents

• tensorflow-neuronx setup on Ubuntu 22

• tensorflow-neuronx setup on Amazon Linux 2023 (AL2023)
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tensorflow-neuronx setup on Ubuntu 22

Ubuntu 22 (Neuron Multi-Framework DLAMI) Ubuntu 22 (Ubuntu22 AMI)

tensorflow-neuronx setup on Amazon Linux 2023 (AL2023)

Amazon Linux 2023 (Amazon Linux 2023 AMI) This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf1

5.6.5 Tensorflow Neuron (tensorflow-neuron) Setup

Note: This Setup guide is relevant for Inf1 instances.

Table of contents

• tensorflow-neuron setup on Ubuntu 20

• tensorflow-neuron setup on Ubuntu 22

• tensorflow-neuron setup on Amazon Linux 2023 (AL2023)

tensorflow-neuron setup on Ubuntu 20

Ubuntu 20 (Ubuntu20 AMI) Ubuntu 20 (DLAMI Base AMI)

tensorflow-neuron setup on Ubuntu 22

Ubuntu 22 (Neuron Multi-Framework DLAMI) Ubuntu 22 (Ubuntu22 AMI)

tensorflow-neuron setup on Amazon Linux 2023 (AL2023)

Amazon Linux 2023 (Amazon Linux 2023 AMI) This document is relevant for: Inf1

This document is relevant for: Inf1

5.6.6 MxNet Neuron (mxnet-neuron) Setup

Note: This Setup guide is relevant for Inf1 instances.

Table of contents

• mxnet-neuron setup on Ubuntu 20

• mxnet-neuron setup on Ubuntu 22
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• mxnet-neuron setup on Amazon Linux 2023 (AL2023)

mxnet-neuron setup on Ubuntu 20

Ubuntu 20 (Ubuntu20 AMI) Ubuntu 20 (DLAMI Base AMI)

mxnet-neuron setup on Ubuntu 22

Ubuntu 22 (Ubuntu22 AMI)

mxnet-neuron setup on Amazon Linux 2023 (AL2023)

Amazon Linux 2023 (Amazon Linux 2023 AMI) This document is relevant for: Inf1

This section walks you through the various options to install and upgrade Neuron. You have to install Neuron on
Trainium and Inferentia powered instances to enable deep-learning acceleration.

Launching Inf/Trn instances on Amazon EC2 PyTorch NeuronX (torch-neuronx) Setup for Inf2 & Trn1
/ Trn1n/ Trn2 Instances PyTorch Neuron (torch-neuron) Setup for Inf1 Instances JAX Setup
for Inf2 & Trn1 / Trn1n Instances Tensorflow Neuron (tensorflow-neuronx) Setup for Inf2 & Trn1 /
Trn1n Instances Tensorflow Neuron (tensorflow-neuron) Setup for Inf1 Instances MxNet
Neuron (mxnet-neuron) Setup for Inf1 Instances PyTorch Neuron Setup Guides for Rocky Linux 9 (Inf2
& Trn1 / Trn1n) Instances This document is relevant for: Inf1, Inf2, Trn1, Trn2

910 Chapter 5. Developer Flows



CHAPTER

SIX

RUNTIME & TOOLS

This document is relevant for: Inf1, Inf2, Trn1, Trn2

6.1 NeuronX Runtime

NeuronX runtime consists of kernel driver and C/C++ libraries which provides APIs to access Inferentia and Trainium
Neuron devices. The Neuron ML frameworks plugins for TensorFlow, PyTorch and Apache MXNet use the Neuron
runtime to load and run models on the NeuronCores. Neuron runtime loads compiled deep learning models, also
referred to as Neuron Executable File Format (NEFF) to the Neuron devices and is optimized for high-throughput and
low-latency.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

6.1.1 API Reference Guide

This document is relevant for: Inf1, Inf2, Trn1, Trn2

Developer’s Guide - NeuronX Runtime

Table of contents

• Introduction

• Required Software

• Brief Introduction to Neuron Hardware

– Neuron Device

– NeuronCore

• The Neuron Runtime Architecture

– Application Interface Layer (The libnrt API)

– Monitoring and Profiling

– The NEFF format and NEFF Parser

– Graph Walker and CPU Node Executor

– User Mode Driver
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∗ Memory Management

• Building the first Neuron application

– Prerequisites

– Getting a NEFF file

– The Code

– Code Breakdown

∗ Initialization and cleanup

∗ Loading the NEFF

∗ Creating input/output tensors

∗ Iterating through tensors in an nrt_tensor_set_t

∗ Deallocating input/output tensors

∗ Executing the NEFF

• The LIBNRT API

– API Return Codes

– Initialization, configuration and teardown

∗ Environment variables used to configure the Runtime Library

– The Model API

∗ Environment variables used to configure a model being loaded

– The Tensor API

∗ The Tensorset API

– The Execution API

– The Profiling API

– Other APIs

Introduction

This guide is intended to support a deeper understanding of the Neuron Runtime and how ML applications are built
using the Runtime APIs directly. Most customers will not need this level of detail as the interactions with the Neuron
Runtime are already taken care by popular ML Frameworks with built-in Neuron support such as torch-neuron and
tensorflow-neuron. This guide is focused on the information you need to know when building custom frameworks that
will call libnrt APIs directly from C/C++ apps.

Note: The next few paragraphs provide a brief introduction to the Neuron hardware and the Neuron Runtime archi-
tecture. Customers who’d rather skip this and jump straight to building their first ML application which runs without
the aid of an ML framework, should go to Building the first Neuron application.

The Neuron Runtime Library (libnrt) is the intermediate layer between Application + Framework and Neuron Driver
+ Neuron Device. It provides a C API for initializing the Neuron hardware, staging models and input data, executing
inferences and training iterations on the staged models, and retrieving output data. The vast majority of ML applications
running on Neuron will follow one of the following 3 architectural templates:
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Fig. 6.1: Individual processes executing models on one or more Neuron Devices

Fig. 6.2: Processes working together on executing models within the same instance - libnccom (The Neuron Collective
Communication Library) handles inter-worker communication
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Fig. 6.3: Processes working together on executing models across multiple instances - libnccom, libfabric and the EFA
driver handle communication

Required Software

A more comprehensive guide to installing Neuron software can be found in the torch_quick_start guide.

The Neuron Runtime requires the Neuron Driver, which is provided by the aws-neuron-dkms package:

AL2:

sudo yum install aws-neuronx-dkms

Ubuntu:

sudo apt-get install aws-neuronx-dkms

The Runtime Library consists of the libnrt.so and header files. These artifacts are version controlled and installed via
the aws-neuronx-runtime-lib package. After installing the package, the binary (libnrt.so) is found in /opt/
aws/neuron/lib and the needed header files are found in /opt/aws/neuron/include:

AL2:

sudo yum install aws-neuronx-runtime-lib

Ubuntu:

sudo apt-get install aws-neuronx-runtime-lib

For applications that use distributed training or distributed inferences, the Neuron Collective Communication Library
is required:

AL2:

sudo yum install aws-neuronx-collectives

Ubuntu:

sudo apt-get install aws-neuronx-collectives
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In case of multi-instance training, the EFA driver and the Libfabric library - provided by the EFA installer - need to be
installed as well:

AL2 & Ubuntu:

curl -O https://efa-installer.amazonaws.com/aws-efa-installer-latest.tar.gz
wget https://efa-installer.amazonaws.com/aws-efa-installer.key && gpg --import aws-efa-
→˓installer.key
cat aws-efa-installer.key | gpg --fingerprint
wget https://efa-installer.amazonaws.com/aws-efa-installer-latest.tar.gz.sig && gpg --
→˓verify ./aws-efa-installer-latest.tar.gz.sig

tar -xvf aws-efa-installer-latest.tar.gz
cd aws-efa-installer && sudo bash efa_installer.sh --yes
cd
sudo rm -rf aws-efa-installer-latest.tar.gz aws-efa-installer

Brief Introduction to Neuron Hardware

Neuron Machine Learning Accelerators (or Neuron Devices) are custom accelerators designed to efficiently execute
Machine Learning workloads such as executing inference on a given model or running a distributed training job. De-
pending on the type of workload and its size, customers can opt for the following Neuron-equipped EC2 instances:

Workload type Neuron Device
Name

Instance type(s) Devices Per In-
stance

Availability

Inference Inferentia II (v3) inf2.xlarge,
inf2.8xlarge

1 Available Now!

Inference Inferentia II (v3) inf2.24xlarge 6 Available Now!
Inference Inferentia II (v3) inf2.48xlarge 12 Available Now!
Inference Inferentia (v1) inf1.xlarge,

inf1.2xlarge
1 Available Now!

Inference Inferentia (v1) inf1.6xlarge 4 Available Now!
Inference Inferentia (v1) inf1.24xlarge 16 Available Now!
Training Trainium (v2) trn1.2xlarge 1 Available Now!
Training Trainium (v2) trn1.32xlarge 16 Available Now!

Neuron Device

Each Neuron Device consists of multiple execution units - called NeuronCores, a high throughput device memory, PCIe
interfaces to the host CPU and to the other Neuron Devices and other components, depending on the Neuron Device
version.

To get the number of NeuronCores per Neuron Device, the amount of Neuron Device memory and the way devices are
directly connected, use the neuron-ls tool:

neuron-ls --topology
instance-type: trn1.32xlarge
instance-id: i-0633517e496256bf8
+--------+--------+--------+---------------+---------+
| NEURON | NEURON | NEURON | CONNECTED | PCI |
| DEVICE | CORES | MEMORY | DEVICES | BDF |

(continues on next page)
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+--------+--------+--------+---------------+---------+
| 0 | 2 | 32 GB | 12, 3, 4, 1 | 10:1c.0 |
| 1 | 2 | 32 GB | 13, 0, 5, 2 | 10:1d.0 |
| 2 | 2 | 32 GB | 14, 1, 6, 3 | a0:1c.0 |
| 3 | 2 | 32 GB | 15, 2, 7, 0 | a0:1d.0 |
| 4 | 2 | 32 GB | 0, 7, 8, 5 | 20:1b.0 |
| 5 | 2 | 32 GB | 1, 4, 9, 6 | 20:1c.0 |
| 6 | 2 | 32 GB | 2, 5, 10, 7 | 90:1b.0 |
| 7 | 2 | 32 GB | 3, 6, 11, 4 | 90:1c.0 |
| 8 | 2 | 32 GB | 4, 11, 12, 9 | 20:1d.0 |
| 9 | 2 | 32 GB | 5, 8, 13, 10 | 20:1e.0 |
| 10 | 2 | 32 GB | 6, 9, 14, 11 | 90:1d.0 |
| 11 | 2 | 32 GB | 7, 10, 15, 8 | 90:1e.0 |
| 12 | 2 | 32 GB | 8, 15, 0, 13 | 10:1e.0 |
| 13 | 2 | 32 GB | 9, 12, 1, 14 | 10:1b.0 |
| 14 | 2 | 32 GB | 10, 13, 2, 15 | a0:1e.0 |
| 15 | 2 | 32 GB | 11, 14, 3, 12 | a0:1b.0 |
+--------+--------+--------+---------------+---------+
Neuron Device Topology

* * * *

*––[ 0 ]––[ 1 ]––[ 2 ]––[ 3 ]––*

*––[ 4 ]––[ 5 ]––[ 6 ]––[ 7 ]––*

*––[ 8 ]––[ 9 ]––[10 ]––[11 ]––*

*––[12 ]––[13 ]––[14 ]––[15 ]––*

* * * *
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NeuronCore

The NeuronCore is the primary execution unit within the accelerator. Each NeuronCore contains several execution
engines (for different types of compute operations such as tensor-based, vector and scalar), DMA engines, and a local
cache. A NeuronCore can operate independently or together with other NeuronCores, depending on the nature of the
workload and the way a model is compiled and loaded to the NeuronCores in the accelerator. Each execution engine
can access the cache and DRAM attached to the accelerator device. The primary form of data movement between the
host CPU and the accelerator device, as well as between the device DRAM and NeuronCores, is Direct Memory Access
(DMA). The use of DMA enables more efficient data movement.

The Neuron Runtime Architecture
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Application Interface Layer (The libnrt API)

The Application Interface Layer allows applications and frameworks to use the available Neuron Devices to run infer-
ence or training workloads. A complete reference of the C interface can be found in The LIBNRT API .

Monitoring and Profiling

The Neuron Runtime is able to capture key execution metrics which can be read in real-time using neuron-monitor
and neuron-top. neuron-monitor allows forwarding those metrics to CloudWatch or a Prometheus server, enabling
fleet-wide monitoring - for more on that please refer to the neuron-monitor usage guide Neuron Monitor User Guide.
Profiling an execution is another feature of the Neuron Runtime - which provides an API for starting and stopping
profiling, as well as saving the profile data to a file, which can be used by tools such as the Neuron Tensorboard. This
API is documented in The Profiling API section.

The NEFF format and NEFF Parser

A NEFF (*N*euron *E*xecutable *F*ile *F*ormat) is a single file container for all the artifacts needed to execute a
model on one or more NeuronCores. A NEFF is the output of the Neuron Compiler (neuron-cc). It contains Neuron
machine instructions, pseudo instructions (compiler-generated instructions which are parsed and replaced with Neuron
instructions by the Neuron Runtime when the model loads), tensor information, model parameters and other compo-
nents that support the model’s execution on one or more NeuronCores. Operators that are not supported by Neuron can
be compiled into CPU-executable binary and included into the NEFF as well.

The contents of a NEFF can be shown by using neuron-packager tool (which will be released soon).

Usually there is only one subgraph (which is executed on a single NeuronCore) in a NEFF:

NEFF Nodes:
NODE Executor Name Variable Size Type Format ␣

→˓Shape DataType TimeSeries
1 Neuron Core sg00

image:0 3259008 IN NHWC [1 3 552␣
→˓984]

net_output:0 1323972 OUT NHWC [1 78 69␣
→˓123] false

In this example, there is a single subgraph, one input and one output:

Some NEFFs can have multiple subgraphs (which will be deployed by the runtime on separate NeuronCores) and
multiple CPU operators, as exemplified below:

NEFF Nodes:
NODE Executor Name Variable Size ␣

→˓ Type Format Shape DataType TimeSeries
(continues on next page)
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1 Neuron Core sg00
input:0 2 ␣

→˓ IN NHWC [1 1 1 1]
nn/relu1:0 2 ␣

→˓ OUT NHWC [1 1 1 1] false
1 Neuron Core sg01

nn/relu1:0 2 ␣
→˓ IN NHWC [1 1 1 1]

nn/relu2:0 2 ␣
→˓ OUT NHWC [1 1 1 1] false

2 CPU fused_3_layout_transform
layout_transform0:0 0 ␣

→˓ OUT []
4 CPU fused_2_nn_conv2d_nn_relu

constant0 2 ␣
→˓ IN [1 1 1 1] float16

nn.relu0:0 0 ␣
→˓ OUT []

5 CPU fused_1_layout_transform_copy
nn/relu3:0 0 ␣

→˓ OUT []
6 Neuron Core sg02

nn/relu3:0 2 ␣
→˓ IN NHWC [1 1 1 1]

nn/relu4:0 2 ␣
→˓ OUT NHWC [1 1 1 1] false

6 Neuron Core sg03
nn/relu4:0 2 ␣

→˓ IN NHWC [1 1 1 1]
nn/output:0 2 ␣

→˓ OUT NHWC [1 1 1 1] false

The output above can be summarized by the graph below:

The nodes marked with dark blue are intermediate tensors that are handled internally by the Neuron Runtime. The
other blue nodes are inputs/outputs. The green colored box indicates the operator is executed on the NeuronCore while
the red color box indicates the execution is done on the CPU.

The NEFF layer in Neuron Runtime is responsible for parsing a NEFF, validating it, and translating pseudo instructions
into hardware specific instructions and DMA descriptors.
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Graph Walker and CPU Node Executor

As shown in the previous section, a NEFF can contain one or more nodes. During execution, the Neuron Runtime
Graph Walker executes each node one by one and handles copying input and output between each of them. If a node
needs to be executed by the CPU, then a corresponding library function, found in a .so file in the NEFF, is dynamically
loaded using dlopen() during model load and executed during model execution. Since this library function is executed
in the calling thread’s context, the workload can be efficiently parallelized using a multi-threaded approach.

In the example below, each invocation of nrt_execute() would take 23ms: the first CPU node takes 1ms, the Neu-
ronCore execution takes 20ms and the second CPU node takes 2 ms, so the total latency is 23ms and the throughput is
43 calls per second (1000/23).

If multiple threads are used, subsequent executions would be pipelined inside the runtime, hence increasing the through-
put in this case to ~50 (1000/20).
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User Mode Driver

This is the lowest level component of the Neuron Runtime and handles programming the engines, managing memory,
creating DMA descriptors to move data from host and device, handling notifications etc.

Memory Management

The Neuron Runtime is responsible with managing Neuron Device and host memory for the running models. The ap-
plication is responsibile with deallocating every loaded model and allocated tensor so the proper deallocation method
needs to be called. For more details, refer to The LIBNRT API documentation. Tools such as neuron-top and
neuron-monitor can be used to determine the amount of memory being used at any given time.

Building the first Neuron application

The simple application presented here will load a NEFF file, use the provided binary files’ contents as input tensors
(if a file wasn’t provided for an input tensor, that input tensor will be zero-filled), and save the output tensors as binary
files.

Prerequisites

Building the application requires:

• a recent version of GCC

• installing the aws-neuronx-runtime-lib package as described in Required Software

Running the built application requires:

• a Neuron-equipped instance as shown in Brief Introduction to Neuron Hardware

• installing the aws-neuronx-runtime-lib and the aws-neuronx-dkms package as described in Required Soft-
ware

• a NEFF file

Getting a NEFF file

When running any workload through a Neuron framework, the compiled NEFFs will be placed in /var/tmp/
neuron-compile-cache. Additionally, setting the NEURON_FRAMEWORK_DEBUG environment variable to 1 before
running the workload will enable the compiled NEFFs to be written to the current directory.

The Code

#include <stdbool.h>
#include <nrt/nrt.h>
#include <nrt/nrt_experimental.h>

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>

(continues on next page)

6.1. NeuronX Runtime 921



AWS Neuron

(continued from previous page)

#include <errno.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <pthread.h>
#include <fcntl.h>
#include <stdint.h>
#include <unistd.h>

// Function to mmap a file in the application's memory space,
// it will return a pointer to the mmapped memory and the size
// of the mmapped data will be written to *size
void *mmap_file(const char *filepath, size_t *size) {

struct stat sb;
int fd = open(filepath, O_RDONLY);
if (fd < 0 || fstat(fd, &sb) != 0) {

fprintf(stderr, "Unable to open %s: %s\n", filepath, strerror(errno));
return MAP_FAILED;

}
*size = sb.st_size;
return mmap(NULL, sb.st_size, PROT_READ, MAP_PRIVATE, fd, 0);

}

#define P_ERR(...) fprintf(stderr, __VA_ARGS__)

#define CHECK_RESULT(res, expected, ...) \
if (res != expected) { \

fprintf(stderr, __VA_ARGS__); \
exit(-1); \

}

// struct used to load input tensors from files
typedef struct {

char *name;
size_t size;
void *data;

} input_tensor_info_t;

// simple container for input_tensor_info_t
typedef struct {

input_tensor_info_t *entries;
int entry_count;

} input_tensor_info_array_t;

// Allocate tensorsets and tensors based on the info_array and returns a valid tensorset␣
→˓in out_tset
// containing all the newly allocated tensors
NRT_STATUS allocate_tensors(nrt_tensor_info_array_t *info_array, nrt_tensor_usage_t␣
→˓usage_type, nrt_tensor_set_t **out_tset) {

NRT_STATUS result;
int tensor_idx;
nrt_tensor_info_t *tensor_info = NULL;
nrt_tensor_t *tensor = NULL;

(continues on next page)
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// We allocate a nrt_tensor_set which acts as a containers for nrt_tensors
result = nrt_allocate_tensor_set(out_tset);
if (result != NRT_SUCCESS) {

P_ERR("Couldn't allocate %s tensorset\n", usage_type == NRT_TENSOR_USAGE_INPUT ?
→˓"input" : "output");

}

for (tensor_idx = 0; tensor_idx < info_array->tensor_count; tensor_idx++) {
tensor_info = &info_array->tensor_array[tensor_idx];
if (tensor_info->usage != usage_type) {

continue;
}
// Allocate the tensor with the name and size found in tensor_info_array
result = nrt_tensor_allocate(NRT_TENSOR_PLACEMENT_DEVICE, 0, tensor_info->size,

tensor_info->name, &tensor);
if (result != NRT_SUCCESS) {

P_ERR("Couldn't allocate tensor %s\n", tensor_info->name);
return result;

}
// Finally add the tensors to the newly allocated tensor set
result = nrt_add_tensor_to_tensor_set(*out_tset, tensor_info->name, tensor);
if (result != NRT_SUCCESS) {

P_ERR("Couldn't add tensor %s to tensorset\n", tensor_info->name);
return result;

}
}
return NRT_SUCCESS;

}

// Tensor iterator handler - returns false if the iteration needs to stop
typedef bool (*tensor_handler)(nrt_tensor_t *, nrt_tensor_info_t *, NRT_STATUS *, void␣
→˓*);

// Iterates through all the tensors in the given tensorset, based on the data in info_
→˓array for the given usage_type
// and calls the handler function with the provided args pointer
// Will return the first error returned by a handler
NRT_STATUS iterate_tensors(nrt_tensor_set_t *tset, nrt_tensor_info_array_t *info_array,␣
→˓nrt_tensor_usage_t usage_type,

tensor_handler handler, void *args) {
NRT_STATUS result = NRT_SUCCESS;
NRT_STATUS final_result = NRT_SUCCESS;
int tensor_idx;
nrt_tensor_info_t *tensor_info = NULL;
nrt_tensor_t *tensor = NULL;

for (tensor_idx = 0; tensor_idx < info_array->tensor_count; tensor_idx++) {
tensor_info = &info_array->tensor_array[tensor_idx];
if (tensor_info->usage != usage_type) {

continue;
}

(continues on next page)
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result = nrt_get_tensor_from_tensor_set(tset, tensor_info->name, &tensor);
if (result != NRT_SUCCESS) {

P_ERR("Tensor %s not found in tensor set\n", tensor_info->name);
continue;

}
result = NRT_SUCCESS;
if ((*handler)(tensor, tensor_info, &result, args) == false) {

return result;
}
if (final_result == NRT_SUCCESS && result != final_result) {

final_result = result;
}

}
return final_result;

}

// Tensor iteration handler that checks if a tensor has an input file associated with it
// based on the CLI args
bool handler_load_inputs(nrt_tensor_t *tensor, nrt_tensor_info_t *tensor_info, NRT_
→˓STATUS *result, void* args) {

NRT_STATUS res;
int idx;
input_tensor_info_array_t *info_array = (input_tensor_info_array_t *)args;
bool input_found = false;

for (idx = 0; idx < info_array->entry_count; idx++) {
if (strcmp(info_array->entries[idx].name, tensor_info->name) != 0) {

continue;
}
if (info_array->entries[idx].size != tensor_info->size) {

P_ERR("Input file for tensor %s has incorrect size %lu, expected %lu\n",
tensor_info->name, info_array->entries[idx].size, tensor_info->size);

break;
}
res = nrt_tensor_write(tensor, info_array->entries[idx].data, 0, tensor_info->

→˓size);
if (res != NRT_SUCCESS) {

P_ERR("Unable to write content to input tensor %s\n", tensor_info->name);
} else {

input_found = true;
}

}
if (!input_found) {

fprintf(stderr, "Input tensor %s will be zero-filled\n", tensor_info->name);
}
*result = NRT_SUCCESS;
return true;

}

// Tensor iteration handler that saves outputs
bool handler_save_outputs(nrt_tensor_t *tensor, nrt_tensor_info_t *tensor_info, NRT_
→˓STATUS *result, void* args) {

(continues on next page)
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static char filename[280];

int fd;
// Allocating a buffer large enough to read the entire tensor
void *tensor_data = malloc(tensor_info->size);

*result = NRT_SUCCESS;
if (tensor_data == NULL) {

fprintf(stderr, "Unable to allocate memory for saving output tensor %s\n",␣
→˓tensor_info->name);

*result = NRT_FAILURE;
return true;

}
// Reading the tensor to the newly allocated buffer
*result = nrt_tensor_read(tensor, tensor_data, 0, tensor_info->size);
if (*result != NRT_SUCCESS) {

fprintf(stderr, "Unable to read tensor %s\n", tensor_info->name);
free(tensor_data);
return true;

}

// Saving the tensor to a file
snprintf(filename, 280, "%s.out", tensor_info->name);
fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0644);
if (fd < 0) {

fprintf(stderr, "Unable to open %s for writing\n", filename);
free(tensor_data);
*result = NRT_FAILURE;
return true;

}
if (write(fd, tensor_data, tensor_info->size) != tensor_info->size) {

*result = NRT_FAILURE;
fprintf(stderr, "Unable to write tensor %s contents to file %s\n", tensor_info->

→˓name, filename);
}
close(fd);

free(tensor_data);
return true;

}

// Tensor iteration handler that deallocates tensors
bool handler_free_tensor(nrt_tensor_t *tensor, nrt_tensor_info_t *tensor_info, NRT_
→˓STATUS *result, void* args) {

*result = NRT_SUCCESS;
nrt_tensor_free(&tensor);
return true;

}

int main(int argc, char *argv[]) {
NRT_STATUS result;
int idx = 0;

(continues on next page)
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int tensor_idx = 0;
void *neff_data = NULL;
size_t neff_size = 0;
void *input_data = NULL;

input_tensor_info_array_t input_tensor_info_array = {0};
input_tensor_info_t *current_input = NULL;

nrt_model_t *model = NULL;
nrt_tensor_set_t *inputs = NULL;
nrt_tensor_set_t *outputs = NULL;

nrt_tensor_t *tensor = NULL;
nrt_tensor_info_array_t *tensor_info_array = NULL;

if (argc < 2) {
fprintf(stderr, "Incorrect number of args, usage: exec_test file.neff [input_1_

→˓name] [input_1_file] ...\n");
exit(-1);

}

// Try mmapping the NEFF file first, so we can fail fast if not found or
// mmap fails
neff_data = mmap_file(argv[1], &neff_size);
if (neff_data == MAP_FAILED) {

fprintf(stderr, "Unable to map file %s\n", argv[1]);
exit(-1);

}

// mmap input tensor files (if any provided) and fill the input_tensor_info array
if (argc > 3) {

input_tensor_info_array.entries = malloc((argc - 2 / 2) * sizeof(input_tensor_
→˓info_t));

for (idx = 2; idx < argc; idx += 2) {
if (idx + 1 >= argc) {

break;
}
current_input = &input_tensor_info_array.entries[input_tensor_info_array.

→˓entry_count];
input_data = mmap_file(argv[idx + 1], &current_input->size);
if (input_data == MAP_FAILED) {

fprintf(stderr, "Unable to mmap inputs file %s\n", argv[idx + 1]);
continue;

}
current_input->name = argv[idx];
current_input->data = input_data;
input_tensor_info_array.entry_count++;

}
}

// Before calling any nrt API, nrt_init must be called
// Since this is not running as part of a framework, the correct parameter for

(continues on next page)
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→˓'framework' is
// NRT_FRAMEWORK_TYPE_NO_FW and the others can be empty strings
result = nrt_init(NRT_FRAMEWORK_TYPE_NO_FW, "", "");
CHECK_RESULT(result, NRT_SUCCESS, "NRTLIB could not be initialized, error: %d\n",␣

→˓(int)result);

// Loading the NEFF
printf("Loading NEFF\n");
result = nrt_load(neff_data, neff_size, -1, -1, &model);
CHECK_RESULT(result, NRT_SUCCESS, "Unable to load NEFF\n");

// In order to allocate tensors, first we need to call nrt_get_model_tensor_info␣
→˓which
// will give us the model tensors' names and sizes in tensor_info_array
printf("Getting IO tensor information\n");
result = nrt_get_model_tensor_info(model, &tensor_info_array);
CHECK_RESULT(result, NRT_SUCCESS, "Unable to get model tensor information\n");

// Allocating tensors
printf("Creating I/O data (%ld tensors)\n", tensor_info_array->tensor_count);
result = allocate_tensors(tensor_info_array, NRT_TENSOR_USAGE_INPUT, &inputs);
CHECK_RESULT(result, NRT_SUCCESS, "Error allocating input tensors\n");
result = allocate_tensors(tensor_info_array, NRT_TENSOR_USAGE_OUTPUT, &outputs);
CHECK_RESULT(result, NRT_SUCCESS, "Error allocating input tensors\n");

// Loading input files (if provided)
iterate_tensors(inputs, tensor_info_array, NRT_TENSOR_USAGE_INPUT, handler_load_

→˓inputs,
(void*) &input_tensor_info_array);

// Executing model using the tensors in the inputs tensorset and writing the outputs␣
→˓to the tensors
// in the outputs tensorset
result = nrt_execute(model, inputs, outputs);
CHECK_RESULT(result, NRT_SUCCESS, "Error during model execution: %d\n", result);

// Saving outputs to files
result = iterate_tensors(outputs, tensor_info_array, NRT_TENSOR_USAGE_OUTPUT,␣

→˓handler_save_outputs, NULL);
if (result != NRT_SUCCESS) {

P_ERR("Error saving outputs to files\n");
}

// Unloading the model
result = nrt_unload(model);
if (result != NRT_SUCCESS) {

P_ERR("Unable to unload NEFF\n");
}

printf("Freeing tensors\n");
iterate_tensors(inputs, tensor_info_array, NRT_TENSOR_USAGE_INPUT, handler_free_

→˓tensor, NULL);

(continues on next page)
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iterate_tensors(outputs, tensor_info_array, NRT_TENSOR_USAGE_OUTPUT, handler_free_
→˓tensor, NULL);

nrt_destroy_tensor_set(&inputs);
nrt_destroy_tensor_set(&outputs);

printf("Deallocating model tensor info\n");
// We are done with the tensor_info_array, we can dispose of it
nrt_free_model_tensor_info(tensor_info_array);

printf("Deallocating inputs tensor info\n");
// Unmapping the input files
for (tensor_idx = 0; tensor_idx < input_tensor_info_array.entry_count; tensor_idx++)

→˓{
munmap(input_tensor_info_array.entries[tensor_idx].data, input_tensor_info_array.

→˓entries[tensor_idx].size);
}
if (input_tensor_info_array.entries) {

free(input_tensor_info_array.entries);
}

// Clean-up the runtime
printf("Cleaning up the runtime\n");
nrt_close();

printf("DONE\n");
}

Building the example:

gcc run_neff.c -o run_neff -lnrt -pthread -I/opt/aws/neuron/include -L/opt/aws/neuron/lib

Running the example:

./run_neff my.neff [input_1] [input_1.bin] [input_2] [input_2.bin] ...

Code Breakdown

Initialization and cleanup

// ...
result = nrt_init(NRT_FRAMEWORK_TYPE_NO_FW, "", "");
// ...
nrt_close();

The Neuron Runtime is initialized by calling nrt_init and all applications should call nrt_close once they’re done
using it. For more details on these functions, go to the Initialization, configuration and teardown section.
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Loading the NEFF

Once the contents of a NEFF file have been mapped to virtual memory using mmap . . .

// ...
void *mmap_file(const char *filepath, size_t *size) {

struct stat sb;
int fd = open(filepath, O_RDONLY);
if (fd < 0 || fstat(fd, &sb) != 0) {

fprintf(stderr, "Unable to open %s: %s\n", filepath, strerror(errno));
return MAP_FAILED;

}
*size = sb.st_size;
return mmap(NULL, sb.st_size, PROT_READ, MAP_PRIVATE, fd, 0);

}
// ...
neff_data = mmap_file(argv[1], &neff_size);

. . . the NEFF is loaded using nrt_load. The runtime will decide the optimal placement for the model - it will choose
the best NeuronCore on which to deploy the model:

// ...
result = nrt_load(neff_data, neff_size, -1, -1, &model);
// ...

The call will return a valid model handle in nrt_model_t* which will subsequently be used for other calls to the
Runtime API (such as nrt_execute).

For more details on the model API (including nrt_load), go to the The Model API section.

Creating input/output tensors

The main container for tensors is the nrt_tensor_set_t*. Tensors (nrt_tensor_t*) are not passed di-
rectly to the NEFF execution function, nrt_execute, they have to be wrapped in a nrt_tensor_set_t*.
The allocate_tensors function will allocate the tensorset and the tensors for the requested usage type
(NRT_TENSOR_USAGE_INPUT or NRT_TENSOR_USAGE_OUTPUT) and return the tensorset containing the allocated ten-
sors in out_tset.

NRT_STATUS allocate_tensors(nrt_tensor_info_array_t *info_array, nrt_tensor_usage_t␣
→˓usage_type, nrt_tensor_set_t **out_tset) {
// ...
// We allocate a nrt_tensor_set which acts as a containers for nrt_tensors
result = nrt_allocate_tensor_set(out_tset);
// ...

for (tensor_idx = 0; tensor_idx < info_array->tensor_count; tensor_idx++) {
tensor_info = &info_array->tensor_array[tensor_idx];
if (tensor_info->usage != usage_type) {

continue;
}
// ...
// Allocate the tensor with the name and size found in tensor_info_array
result = nrt_tensor_allocate(NRT_TENSOR_PLACEMENT_DEVICE, 0, tensor_info->size,

(continues on next page)

6.1. NeuronX Runtime 929



AWS Neuron

(continued from previous page)

tensor_info->name, &tensor);
// ...
// Finally add the tensors to the newly allocated tensor set
result = nrt_add_tensor_to_tensor_set(*out_tset, tensor_info->name, tensor);
// ...

}
// ...

}

Iterating through tensors in an nrt_tensor_set_t

A helper function, iterate_tensors is used to iterate through the nrt_tensor_t in a tensorset and call the function
handler for each of them. If the handler function returns false iteration ends. iterate_tensors returns the first
error reported by the handler function.

// Tensor iterator handler - returns false if the iteration needs to stop
typedef bool (*tensor_handler)(nrt_tensor_t *, nrt_tensor_info_t *, NRT_STATUS *, void␣
→˓*);

NRT_STATUS iterate_tensors(nrt_tensor_set_t *tset, nrt_tensor_info_array_t *info_array,␣
→˓nrt_tensor_usage_t usage_type,

tensor_handler handler, void *args) {
// ...
for (tensor_idx = 0; tensor_idx < info_array->tensor_count; tensor_idx++) {

// ...
result = nrt_get_tensor_from_tensor_set(tset, tensor_info->name, &tensor);
// ...
if ((*handler)(tensor, tensor_info, &result, args) == false) {

return result;
}
// ...

}

Deallocating input/output tensors

After the execution is complete, the tensors are deallocated using iterate_tensors and the tensorsets are deallocated
using nrt_destroy_tensor_set:

iterate_tensors(inputs, tensor_info_array, NRT_TENSOR_USAGE_INPUT, handler_free_tensor,␣
→˓NULL);
iterate_tensors(outputs, tensor_info_array, NRT_TENSOR_USAGE_OUTPUT, handler_free_tensor,
→˓ NULL);

nrt_destroy_tensor_set(&inputs);
nrt_destroy_tensor_set(&outputs);

The handler_free_tensor function simply deallocates the given tensor:

bool handler_free_tensor(nrt_tensor_t *tensor, nrt_tensor_info_t *tensor_info, NRT_
→˓STATUS *result, void* args) {

(continues on next page)
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// ...
nrt_tensor_free(&tensor);
// ...

}

For more details on the tensor API, check out the The Tensor API and the The Tensorset API sections.

Executing the NEFF

The NEFF is executed using a call to nrt_execute. If nrt_execute completes successfully, the output tensors are
read and saved to files (one binary file per output tensor) using iterate_tensors:

// Executing model using the tensors in the inputs tensorset and writing the outputs to␣
→˓the tensors
// in the outputs tensorset
result = nrt_execute(model, inputs, outputs);
// ...
// Saving outputs to files
result = iterate_tensors(outputs, tensor_info_array, NRT_TENSOR_USAGE_OUTPUT, handler_
→˓save_outputs, NULL);

The iteration handler reads the tensor data and writes it to a file with the same name as the tensor:

bool handler_save_outputs(nrt_tensor_t *tensor, nrt_tensor_info_t *tensor_info, NRT_
→˓STATUS *result, void* args) {
// ...
void *tensor_data = malloc(tensor_info->size);
// ...
// Reading the tensor to the newly allocated buffer
*result = nrt_tensor_read(tensor, tensor_data, 0, tensor_info->size);
// ...

// Saving the tensor to a file
snprintf(filename, 280, "%s.out", tensor_info->name);
fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0644);
// ...
if (write(fd, tensor_data, tensor_info->size) != tensor_info->size) {

// ...
}
close(fd);

For more details on the execution API, go to the The Execution API section.
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The LIBNRT API

API Return Codes

All API calls will return an NRT_STATUS value representing the return status of the call. In case of an error, an error
message will also be logged (based on the logging settings, more on that in the next section). The table below contains
all the possible error codes. Please note that some error codes only apply to certain API calls.

Name Re-
turn
Code

Error

NRT_SUCCESS0 Call was successful
NRT_FAILURE1 Generic failure
NRT_INVALID2 Invalid NEFF, bad instruction, bad DMA descriptor, input tensor name/size does not match

the model, etc.
NRT_INVALID_HANDLE3 Invalid handle (e.g. an invalid model handle)
NRT_RESOURCE4 Failed to allocate a resource for the requested operation
NRT_TIMEOUT5 Operation timed out
NRT_HW_ERROR6 Hardware failure
NRT_QUEUE_FULL7 Too many pending nrt_execute() requests. The runtime request queue is full. Cannot

enqueue more nrt_execute() requests
NRT_LOAD_NOT_ENOUGH_NC9 The number of available NeuronCores is insufficient for the requested operation
NRT_UNSUPPORTED_NEFF_VERSION10 NEFF version unsupported
NRT_UNINITIALIZED13 Returned when attempting an API call when the library is not initialized
NRT_CLOSED 14 Returned when attempting an API call after nrt_close() was called
NRT_EXEC_BAD_INPUT1002 Invalid input has been submitted to nrt_execute()
NRT_EXEC_COMPLETED_WITH_NUM_ERR1003 Execution completed with numerical errors (produced NaN)
NRT_EXEC_COMPLETED_WITH_ERR1004 Execution was completed with other errors, either logical (event double clear), or hardware

(parity error)
NRT_EXEC_NC_BUSY1005 The neuron core is locked (in use) by another model/thread
NRT_OOB 1006 One or more indirect memcopies and/or embedding updates are out of bound due to input

corruptions
NRT_EXEC_HW_ERR_COLLECTIVES1200 Suspected hang in collectives operation due to hardware errors on this or other workers.
NRT_EXEC_HW_ERR_HBM_UE1201 An HBM suffered from an uncorrectable error and produced incorrect results

Initialization, configuration and teardown

NRT_STATUS nrt_init(nrt_framework_type_t framework, const char *fw_version, const char *fal_version)
Initializes the Neuron Runtime’s internal state and the Neuron hardware’s state. This should be called be-
fore any other nrt_* call is attempted - although a small set of functions are exempt from this rule (for ex-
ample nrt_get_total_nc_count and get_nrt_version). Any call to the NRT library API will return
NRT_FAILURE if nrt_init has not been called beforehand and that API call requires it.

The runtime can be configured by setting the appropriate environment variable before this API call. The list of
available environment variables is found in the Environment variables used to configure the Runtime Library
section.

Parameters
• framework – Can be one of:

NRT_FRAMEWORK_TYPE_INVALID, // Invalid framework
NRT_FRAMEWORK_TYPE_NO_FW, // No framework NRT_FRAMEWORK_TYPE_TENSORFLOW,
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// Tensorflow NRT_FRAMEWORK_TYPE_PYTORCH, // Pytorch
NRT_FRAMEWORK_TYPE_MXNET // Mxnet

This argument is used by our Neuron Tools to determine the type of application running, it
has no other impact on the functioning of the runtime. Application using a custom framework
or calling the Neuron Runtime directly should use NRT_FRAMEWORK_TYPE_NO_FW.

• *fw_version (const char) – version of the framework on top of which this runtime is
running

• *fal_version (const char) – version of the framework adapter on top of which this run-
time is running

Applications using NRT_FRAMEWORK_TYPE_NO_FW for the first argument should use two empty strings for
the versions.

Environment variables used to configure the Runtime Library

NEURON_RT_LOG_LOCATION=<CONSOLE/SYSLOG>, default=CONSOLE
Chooses the output target for the Neuron Runtime logs (either console or syslog).

NEURON_RT_LOG_LEVEL=<ERROR/WARN/INFO/DEBUG/TRACE>, default=ERROR
Specifies the logging verbosity for the Neuron Runtime library, from ERROR (least verbose), to TRACE (most
verbose).

NEURON_RT_NUM_CORES=<n>
Specifies how many NeuronCores are needed for the application. During nrt_init the requested number of
NeuronCores are exclusively associated with the calling processes and become unavailable to any other process
attempting to use them. If there aren’t enough NeuronCores available, nrt_init will return an error. Once
the owner process has called nrt_close or exited, the NeuronCores are released and become available to be
associated with another process. By default, all NeuronCores present on the instance will be made available to
the caller.

NEURON_RT_VISIBLE_CORES=<m,n,p-q>
Similarly to the previous, it allows the calling process to get exclusive access to a set of NeuronCores,
but it allows explicitly specifying which NeuronCores are available for the application based on their zero-
based indices. This variable can be a list of NeuronCores, for example: NEURON_RT_VISIBLE_CORES=3,
4,5,6, a range of NeuronCores, for example: NEURON_RT_VISIBLE_CORES=3-6, or a combination of both:
NEURON_RT_VISIBLE_CORES=3-5,6. The resulting range must be contiguous, for example this is not valid:
NEURON_RT_VISIBLE_CORES=3,5,6 because 4 is missing from the list, and indices need to be provided in
consecutive increasing order.

Note: If both NEURON_RT_VISIBLE_CORES are NEURON_RT_NUM_CORES are defined,
NEURON_RT_VISIBLE_CORES will be used.

NEURON_RT_ROOT_COMM_ID=<ip_address:port>
Mandatory for applications that run workloads containing Collective Communication operators, allows specify-
ing the IP address and assign a port for the rank 0 worker in the Collective Compute worker pool. For example:
NEURON_RT_ROOT_COMM_ID=10.0.1.2:46820.

NEURON_RT_STOCHASTIC_ROUNDING_SEED=<value>
Allows setting a value for the stochastic rounding seed. Has no effect on inf1.

NEURON_RT_DEBUG_MEMLOG_MAX_SIZE=<value>, default=1024*1024
Allows changing the number of entries in the memory allocations log. This log contains an entry for every
allocation and deallocation and will be dumped to a file in case of a memory allocation failure in CSV format.

6.1. NeuronX Runtime 933



AWS Neuron

NRT_STATUS nrt_close()
Closes all the devices used by the application (as defined by NEURON_RT_NUM_CORES/NEURON_RT_VISIBLE_CORES)
and cleans up the runtime state. Note that once nrt_close has been called, most nrt_* API calls will fail if
attempted.

The Model API

NRT_STATUS nrt_load(const void *neff_bytes, size_t size, int32_t start_nc, int32_t nc_count, nrt_model_t
**model)

Loads a NEFF file whose content is found in neff_bytes, with the given size, placing it on nc_count Neuron-
Cores starting with NeuronCore index start_nc. If either nc_count or start_nc are -1, an optimal value for
each will be determined automatically. The model can be configured using a list of environment variables read
inside this API call which can be found in the Environment variables used to configure a model being loaded
section. It returns a handle to the loaded model in the nrt_model_t* pointer if the call succeeds. The re-
turned handle represents the loaded model and can be used with calls that operate on an nrt_model_t* (such
as nrt_execute).

Parameters
• neff_bytes – Pointer to existing NEFF file data

• size – Size of data in neff_bytes

• start_nc – Index of the NeuronCore on which to stage the model. The first NeuronCore
owned by the application will always have the index 0 - for example, even if when setting
NEURON_RT_VISIBLE_CORES=3,4, the two NeuronCores will be referred to as 0 and 1. If
-1, an optimal index will be automatically determined (based on current NeuronCore usage).

• nc_count – Number of NeuronCores on which to stage the model. If its value is a multiple
of the amount of NeuronCores needed by the model, the model will be replicated on the
number of NeuronCores specified in the argument. This feature is called TBD and it will be
explained in detail in a separate section. If its value is -1, the model will be staged a single
time, using the number of cores needed by a single instance of the model.

• model – Model handle returned by the call which can be passed to other functions that operate
on models (such as nrt_execute).

Environment variables used to configure a model being loaded

NEURON_RT_EXEC_TIMEOUT=<n>, default=30 (inf1), default=600(trn1,inf2)
Maximum of time, in seconds, allowed for one execution before timing out - which will cause the call to
nrt_execute to fail and return NRT_TIMEOUT.

NEURON_RT_VALIDATE_HASH=<true/false>, default=false
Verify the integrity of NEFF data being loaded by checking against a checksum found in the header.

NEURON_RT_STOCHASTIC_ROUNDING_EN=<true/false>, default=false
Enable stochastic rounding.

NRT_STATUS nrt_load_collectives(const void *neff_bytes, size_t size, int32_t start_nc, int32_t nc_count,
uint32_t g_device_id, uint32_t g_device_count, nrt_model_t **model)

Same as nrt_load (same environment variables can be used to configure the model), but must be used when
loading NEFFs containing Collective Communication operators. Uses the same arguments as nrt_load, but adds
2 extra ones.

Parameters
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• neff_bytes – Pointer to existing NEFF file data

• size – Size of data in neff_bytes

• start_nc – Index of NeuronCore on which to stage the model. If -1, an optimal index will
be automatically determined (based on current NeuronCore usage).

• nc_count – Number of NeuronCores on which to stage the model. If its value is a multiple
of the amount of NeuronCores needed by the model, the model will be replicated on the
number of NeuronCores specified in the argument. This feature is called TBD and it will be
explained in detail in a separate section. If its value is -1, the model will be staged a single
time, using the number of cores needed by a single instance of the model.

• g_device_id – Globally unique ID within the Collective Communication world associated
with this model instance.

• g_device_count – Size of the Collective Communication world (total number of partici-
pating unique IDs).

• model – Model handle returned by the call which can be passed to other functions that operate
on models (such as nrt_execute).

NRT_STATUS nrt_unload(nrt_model_t *model)
Unloads the given model and frees up device and host resources.

Parameters
• model – Pointer to model to unload. All data associated with the model is deleted, do not

reuse the pointer or try to deallocate it afterwards. Do not call nrt_unload again on the
same nrt_model_t* pointer (think of it as a call to free()).

NRT_STATUS nrt_get_model_nc_count(const nrt_model_t *model, uint32_t *nc_count)
Gets the number of NeuronCores used by the model and writes that value at the address pointed by nc_count.

Parameters
• model – Valid pointer to an nrt_model_t.

• nc_count – If the call completes successfully, the pointed address will contain the number
of NeuronCores used by the model.

NRT_STATUS nrt_get_model_tensor_info(nrt_model_t *model, nrt_tensor_info_array_t **tensor_info)
Gets input/output tensor information for a given loaded model.

Parameters
• model – Valid pointer to an nrt_model_t.

• tensor_info – Pointer to a nrt_tensor_info_array_t* which will contain the
tensor information data. The function allocates memory for the structure internally
which can only be correctly freed by calling nrt_free_model_tensor_info. The
nrt_tensor_info_array_t struct and its dependencies are defined as follows:

typedef struct nrt_tensor_info_array {
uint64_t tensor_count; // Total number of input/

→˓output tensors used by the model
nrt_tensor_info_t tensor_array[]; // Array of tensor info␣

→˓representing those tensors
} nrt_tensor_info_array_t;

typedef struct nrt_tensor_info {
(continues on next page)
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char name[NRT_TENSOR_NAME_MAX]; // Name of the tensor
nrt_tensor_usage_t usage; // Type of the tensor
size_t size; // Tensor size in bytes
nrt_dtype_t dtype; // Data type
uint32_t *shape; // An array representing␣

→˓data shape
uint32_t ndim; // The number of dimensions␣

→˓(number of elements in the shape array)
} nrt_tensor_info_t;

// Usage type definitions for tensors
typedef enum nrt_tensor_usage {

NRT_TENSOR_USAGE_INPUT = 0, // Tensor is used for input
NRT_TENSOR_USAGE_OUTPUT, // Tensor is used for output

} nrt_tensor_usage_t;

// Data type definitions for tensors
typedef enum nrt_dtype {

NRT_DTYPE_UNKNOWN = 0,
NRT_DTYPE_FLOAT32,
NRT_DTYPE_FLOAT16,
NRT_DTYPE_BFLOAT16,
NRT_DTYPE_INT8,
NRT_DTYPE_UINT8,
NRT_DTYPE_INT16,
NRT_DTYPE_UINT16,
NRT_DTYPE_INT32,
NRT_DTYPE_UINT32,
NRT_DTYPE_INT64,
NRT_DTYPE_UINT64

} nrt_dtype_t;

NRT_STATUS nrt_free_model_tensor_info(nrt_tensor_info_array_t *tensor_info)
Frees a nrt_tensor_info_array_t allocated by a call to nrt_get_model_tensor_info. As with all deal-
location functions, don’t call it more than once on the same pointer.

Parameters
• tensor_info – nrt_tensor_info_array_t to deallocate.

NRT_STATUS nrt_get_model_instance_count(nrt_model_t *model, uint32_t *instance_count)
Returns the number of times this nrt_model_t `is currently staged on the NeuronDevice(s) by writing it to the
address pointed by ``instance_count`. It will always be >= 1. This value can be used to determine the number
of threads that can optimally call nrt_execute on this nrt_model_t.

Parameters
• model – Valid pointer to an nrt_model_t.

• instance_count – If the call completes successfully, the address will contain the instance
count for this model
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The Tensor API

NRT_STATUS nrt_tensor_allocate(nrt_tensor_placement_t tensor_placement, int logical_nc_id, size_t size,
const char *name, nrt_tensor_t **tensor)

Allocates a new tensor, placing it in either host virtual memory or device memory (based on the
tensor_placement argument), on the specified NeuronCore index, of a given size, and attaches the given name
to it - the name is only used for log messages. For applications running on Inferentia, tensor_placement should
always be NRT_TENSOR_PLACEMENT_VIRTUAL. For all other cases, NRT_TENSOR_PLACEMENT_DEVICE should
be used. If successful, the tensor address will contain a valid pointer to the newly allocated nrt_tensor_t.
(depricated) tensor_placement set to NRT_TENSOR_PLACEMENT_HOST will allocate tensors in physical host
memory. Tensors allocated with NRT_TENSOR_PLACEMENT_HOST cannot be larger than 4MB, the Kernel phys-
ical page size limit. We restrict tensors to a single page of host memory to simplify the generation of DMA
descriptors during pre-execution setup.

Parameters
• tensor_placement – Controls where the tensor will be placed, the definition of the
nrt_tensor_placement_t enum is as follows:

typedef enum {
NRT_TENSOR_PLACEMENT_DEVICE, // the tensor is allocated␣

→˓directly in device memory
NRT_TENSOR_PLACEMENT_HOST, // (depricated) the tensor is␣

→˓allocated in DMAable host memory (only for sizes < 4MB)
NRT_TENSOR_PLACEMENT_VIRTUAL // the tensor is allocated in␣

→˓host memory
} nrt_tensor_placement_t;

• logical_nc_id (int) – Zero-based NeuronCore index on which to allocate the tensor (if
tensor_placement is NRT_TENSOR_PLACEMENT_DEVICE) or to which associate the tensor
for all other cases.

• size – Size for the new tensor.

• name – Name for the new tensor.

• tensor – If the call completes successfully, the address will contain a valid nrt_tensor_t*
pointer.

void nrt_tensor_free(nrt_tensor_t **tensor)
Frees a tensor allocated by a call to nrt_tensor_allocate and sets the nrt_tensor_t* pointer at address tensor
to NULL.

Parameters
• tensor – Pointer to a pointer to a previously allocated nrt_model_t. After the call returns,

the nrt_model_t* pointer will be NULL.

NRT_STATUS nrt_tensor_read(const nrt_tensor_t *tensor, void *buf, size_t offset, size_t size)
Reads size bytes of data from a given tensor, starting at offset, to buf starting at offset 0. buf needs to be
allocated with a size of at least size bytes.

Parameters
• tensor – Valid pointer to an nrt_tensor_t.

• buf – Buffer where to write read data, it needs to be at least size bytes in size.

• offset – Offset within the tensor from which to begin reading.
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• size – Size to read.

NRT_STATUS nrt_tensor_write(nrt_tensor_t *tensor, const void *buf, size_t offset, size_t size)
Writes size bytes of data to a given tensor, starting at offset, from buf (starting at offset 0).

Parameters
• tensor – Valid pointer to an nrt_tensor_t.

• buf – Buffer containing size bytes of data to write to the tensor.

• offset – Offset within the tensor from which to begin writing.

• size – Size to write.

size_t nrt_tensor_get_size(const nrt_tensor_t *tensor)
Returns the size, in bytes, of the given tensor.

Parameters
• tensor – Valid pointer to an nrt_tensor_t.

Returns
Size in bytes of the given tensor.

NRT_STATUS nrt_tensor_allocate_empty(const char *name, nrt_tensor_t **tensor)
Allocates an empty tensor, i.e. the tensor structure w/o any attached storage.

Parameters
• name – Name for the new tensor.

• tensor – If the call completes successfully, the address will contain a valid nrt_tensor_t*
pointer.

NRT_STATUS nrt_tensor_attach_buffer(nrt_tensor_t *tensor, void *buffer, size_t size)
Attaches a caller-supplied buffer to a tensor. Any storage previously attached to the tensor is detached and freed
if was owned by the tensor. The attached buffer is managed by the caller and must persist through the entire
lifetime of the tensor - calling nrt_tensor_free will not deallocate it. This changes the memory placement of the
nrt_tensor_t to NRT_TENSOR_PLACEMENT_VIRTUAL regardless of the initial memory placement type.

Parameters
• tensor – Valid pointer to an nrt_tensor_t.

• buffer – Buffer of size bytes to attach to the tensor.

• size – Size of attached buffer.

NRT_STATUS nrt_tensor_allocate_slice(const nrt_tensor_t *tensor_source, size_t offset, size_t size, const
char *name, nrt_tensor_t **tensor_slice)

Allocates a new nrt_tensor_t that doesn’t have its own backing storage - instead, it will use a part (slice)
of tensor_source’s storage, starting at offset with the given size. The shared backing storage is reference
counted and it will not be deallocated until the last tensor using it is deallocated.

Parameters
• tensor_source – Valid pointer to a nrt_tensor_t whose storage will be used by the new

tensor.

• offset – Offset within the tensor_source used as origin for the ‘slice’.

• size – Size of storage to be used by the new tensor.

• name – Name for the new tensor.
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• tensor_slice – If the call completes successfully, the address will contain a valid, newly
allocated, nrt_tensor_t* pointer.

void *nrt_tensor_get_va(const nrt_tensor_t *tensor)
Returns the virtual address for an allocated tensor.

Parameters
• tensor – Valid pointer to an nrt_tensor_t.

Returns
Pointer to host memory used by the tensor.

The Tensorset API

Tensorsets are containers for tensors.

NRT_STATUS nrt_allocate_tensor_set(nrt_tensor_set_t **result)
Allocates an empty nrt_tensor_set_t and places its address in result.

Parameters
• result – If the call completes successfully, this address will contain a pointer to a valid,

newly allocated nrt_tensor_set_t.

void nrt_destroy_tensor_set(nrt_tensor_set_t **tensor_set)
Frees a tensor set allocated by a call to nrt_allocate_tensor_set and sets the nrt_tensor_set_t* pointer
at address tensor_set to NULL.

Parameters
• tensor_set – Pointer to a pointer to a previously allocated nrt_tensor_set_t. After the

call returns, the nrt_tensor_set_t* pointer will be NULL.

NRT_STATUS nrt_add_tensor_to_tensor_set(nrt_tensor_set_t *tensor_set, const char *tensor_name,
nrt_tensor_t *tensor)

Adds an nrt_tensor to a tensor_set under a given name. That name can be later used to retrieve the tensor.

Parameters
• tensor_set – Pointer to a valid Tensorset where to add the tensor.

• tensor_name – Name that will be used to access the added tensor in the container. Does
not need to be the same as the nrt_tensor_t’s name.

• tensor – Pointer to a valid nrt_tensor_t to ad to the Tensorset.

NRT_STATUS nrt_get_tensor_from_tensor_set(nrt_tensor_set_t *tensor_set, const char *tensor_name,
nrt_tensor_t **tensor)

Gets an nrt_tensor from the tensor set based on the name used when it was added by
nrt_add_tensor_to_tensor_set and places its address at the address pointed by tensor. If the ten-
sor is not found, NRT_FAILURE is returned and nothing gets written at the address pointed by tensor.

Parameters
• tensor_set – Pointer to a valid Tensorset containing the tensor.

• tensor_name – Name associated with the searched nrt_tensor_t when it was added to
this Tensorset. Might be different from the nrt_tensor_t’s internal name.

• tensor – Address where the address of the found nrt_tensor_t will be placed.
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The Execution API

NRT_STATUS nrt_execute(nrt_model_t *model, const nrt_tensor_set_t *input_set, nrt_tensor_set_t *output_set)
Runs one execution of the given nrt_model_t using the provided input tensor set and writing the results to the
provided output tensor set.

Parameters
• model – Valid pointer to a nrt_model_t on which to run the execution.

• input_set – Tensor set containing input data.

• output_set – Tensor set where the output data will be written to.

NRT_STATUS nrt_execute_repeat(nrt_model_t *model, const nrt_tensor_set_t *input_set, nrt_tensor_set_t
*output_set, int repeat_count)

Same as nrt_execute but it will repeat the execution repeat_count times using the outputs from the n - 1th
iteration as inputs for the nth iteration. This requires a specially compiled NEFF and it’s not a commonly used
call.

Parameters
• model – Valid pointer to a nrt_model_t on which to run the execution.

• input_set – Tensor set containing input data.

• output_set – Tensor set where the output data will be written to.

• repeat_count – Number of times to repeat this execution.

The Profiling API

NRT_STATUS nrt_profile_start(nrt_model_t *model, const char *filename)
Begins profiling of the execution of the given model. The profile data will be written to the file specified by the
path in filename. The file will be truncated if it exists.

Parameters
• model – Valid pointer to a nrt_model_t which will be profiled by the Neuron Runtime during

execution.

• filename – Path to a file where the profile will be written. If the file already exists, it will
be truncated.

NRT_STATUS nrt_profile_stop(const char *filename)
Ends profiling of the execution of a model and writes profile data to filename. filename needs to be the same
path as the one used for nrt_profile_start.

Parameters
• filename – Path to a file where the profile will be written. If the file already exists, it will

be truncated.

940 Chapter 6. Runtime & Tools



AWS Neuron

Other APIs

NRT_STATUS nrt_get_version(nrt_version_t *ver, size_t size)
Fills a nrt_version_t struct with the provided size with version info. The size argument allows for backwards
compatibility. if the struct changes in future releases.

Parameters
• *ver – Pointer to a nrt_version_t structure which is currently defined as:

typedef struct nrt_version {
uint64_t rt_major; // major version number
uint64_t rt_minor; // minor version number
uint64_t rt_patch; // patch version number
uint64_t rt_maintenance; // maintainance version number
char rt_detail[RT_VERSION_DETAIL_LEN]; // runtime version␣

→˓description string
char git_hash[GIT_HASH_LEN]; // runtime git hash

} nrt_version_t;

• size (size_t) – Size of the nrt_version_t structure, should always be
sizeof(nrt_version_t)

NRT_STATUS nrt_get_total_nc_count(uint32_t *nc_count)
Gets the total number of NeuronCores present on the current instance. The result is not affected by the values in
NEURON_RT_NUM_CORES or NEURON_RT_VISIBLE_CORES and, in fact, this function can be called before calling
nrt_init.

Parameters
• nc_count – If the call completes successfully, the address will contain the total number of

NeuronCores present on the instance.

NRT_STATUS nrt_get_visible_nc_count(uint32_t *nc_count)
Gets the total number of NeuronCores available to the application after nrt_init has parsed the configuration
environment variables NEURON_RT_NUM_CORES and NEURON_RT_VISIBLE_CORES (if provided).

Parameters
• nc_count – If the call completes successfully, the address will contain the total number of

NeuronCores available to the application.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

6.1.2 Configuration Guide

This document is relevant for: Inf1, Inf2, Trn1, Trn2
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NeuronX Runtime Configuration

NeuronX Runtime is responsible for executing ML models on Neuron Devices. NeuronX Runtime determines which
NeuronCore will execute which model and how to execute it. Configuration of the NeuronX Runtime is controlled
through the use of Environment variables at the process level. By default, Neuron framework extensions will take care
of NeuronX Runtime configuration on the user’s behalf. Explicit configurations are also possible when attempting to
achieve a desired behavior.

This guide provides an overview of the different environment variables available to configure NeuronX Runtime be-
havior.

Table 6.1: Environment Variables
Name Description Type Expected Values De-

fault
Value

RT Version

NEURON_RT_VISIBLE_CORESRange of specific Neuron-
Cores needed by the process

Integer
range
(like
1-3)

Any value or range be-
tween 0 to Max Neu-
ronCore in the system.

None 2.0+

NEURON_RT_NUM_CORESNumber of NeuronCores re-
quired by the process.

Integer A value from 1 to Max
NeuronCore in the sys-
tem.

0,
which
is
inter-
preted
as “all”

2.0+

NEURON_RT_LOG_LOCATIONRuntime log location string console or syslog con-
sole

2.0+

NEURON_RT_LOG_LEVELRuntime log verbose level string ERROR, WARN-
ING, INFO, DEBUG,
TRACE

ER-
ROR

2.0+

NEURON_RT_EXEC_TIMEOUTTimeout for execution in
seconds

Integer 0 to INT_MAX 30 2.0+

NEURON_RT_VALIDATE_HASHValidate NEFF contents be-
fore loading into accelerator

Boolean TRUE or FALSE FALSE 2.0+

NEURON_RT_MULTI_INSTANCE_SHARED_WEIGHTSShare weights when loading
multiple instance versions of
the same model on different
NeuronCores

Boolean TRUE or FALSE FALSE 2.11+

NEURON_RT_ASYNC_EXEC_MAX_INFLIGHT_REQUESTSControls number of asyn-
chronous execution requests
to be supported.

Integer 0 to INT_MAX; 0 is
disabled.

0 2.15+

NeuronCore Allocation

Important: NEURONCORE_GROUP_SIZES is being deprecated, if your application is using
NEURONCORE_GROUP_SIZES please see Migrate your application to Neuron Runtime 2.x (libnrt.so) for more
details.

By default, NeuronX Runtime initializes all the cores present in the system and reserves them for the current process.
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Note: Once a NeuronCore is reserved for a process, it cannot be used by another process at all, until the process
reserving that NeuronCore is terminated.

Using NEURON_RT_VISIBLE_CORES

For parallel processing, NEURON_RT_VISIBLE_CORES can be used to control which NeuronCores each process would
reserve. This variable is specified with a single NeuronCore index or an inclusive range value.

For example, if a process (myapp.py) requires one NeuronCore, then it can be started with
NEURON_RT_VISIBLE_CORES=0 to limit the process to NeuronCore 0. For parallel processing, multiple pro-
cess can be started (without any change to myapp.py code) with different NEURON_RT_VISIBLE_CORES values. Here
is an example that runs myapp.py on inf1.xlarge in parallel across the four different NeuronCores available in the
inf1.xlarge.

NEURON_RT_VISIBLE_CORES=0 myapp.py &
NEURON_RT_VISIBLE_CORES=1 myapp.py &
NEURON_RT_VISIBLE_CORES=2 myapp.py &
NEURON_RT_VISIBLE_CORES=3 myapp.py &

If myapp.py required 3 NeuronCores and was running on a inf1.6xlarge (16 NeuronCores maximum), the first instance
of myapp.py could use NeuronCores 0-2, the next instance could use 3-5 and so on:

NEURON_RT_VISIBLE_CORES=0-2 myapp.py &
NEURON_RT_VISIBLE_CORES=3-5 myapp.py &
NEURON_RT_VISIBLE_CORES=6-8 myapp.py &
NEURON_RT_VISIBLE_CORES=9-11 myapp.py &
NEURON_RT_VISIBLE_CORES=12-14 myapp.py &

Using NEURON_RT_NUM_CORES

If NEURON_RT_NUM_CORES is set to a value between 1 and the maximum number of NeuronCores in the instance,
Neuron Runtime will attempt to automatically reserve the number of free NeuronCores specified for the process. The
difference between NEURON_RT_VISIBLE_CORES and NEURON_RT_NUM_CORES is that, NEURON_RT_VISIBLE_CORES
specifies exact NeuronCores to allocate where as NEURON_RT_NUM_CORES specifies the number of NeuronCores needed
and Neuron Runtime selects free NeuronCores.

Using the same example earlier where myapp.py needed 3 cores, but _which_ 3 cores was of no concern, the same
application could be executed in parallel up to 5 times on an inf1.6xlarge (16 NeuronCore max):

NEURON_RT_NUM_CORES=3 myapp.py &
NEURON_RT_NUM_CORES=3 myapp.py &
NEURON_RT_NUM_CORES=3 myapp.py &
NEURON_RT_NUM_CORES=3 myapp.py &
NEURON_RT_NUM_CORES=3 myapp.py &

Executing a 6th NEURON_RT_NUM_CORES=3 myapp.py & in the above example would fail as there is only a single
NeuronCore still free.
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Notes

1. Number of NeuronCores in a inferentia device is 4

2. Number of inferentia is depends on the instance size.

3. The NeuronCore index in NEURON_RT_VISIBLE_CORES starts from 0 and ends at (number of NeuronDe-
vices * number of NeuronCores) - 1.

4. By default, NEURON_RT_NUM_CORES is set to 0, which indicates to RT that all cores are to be used.

5. NEURON_RT_VISIBLE_CORES takes precedence over NEURON_RT_NUM_CORES. If specified, all cores
within the range will be assigned to the owning process.

Logging and debug-ability

By default, NeuronX Runtime logs to syslog with verbose level of INFO and only ERROR s are logged in console. The
following code snippet shows ways to increase/decrease the log level.

NEURON_RT_LOG_LEVEL=INFO myapp.py # Sets the log level for syslog and console to␣
→˓INFO
NEURON_RT_LOG_LOCATION=console NEURON_RT_LOG_LEVEL=QUIET myapp.py # Completely␣
→˓disables console logging.

By default, NeuronX Runtime expects the NeuronCore to complete execution of any model with in 2 seconds. If
NeuronCore didn’t complete the execution within 2 seconds then runtime would fail the execution with timeout er-
ror. Most of the models takes few milliseconds to complete so 2 seconds(2000 milliseconds) is more than ade-
quate. However if your model is expected to run more than 2 seconds then you can increase the timeout with NEU-
RON_RT_EXEC_TIMEOUT.

NEURON_RT_EXEC_TIMEOUT=5 myapp.py # increases the timeout to 5 seconds

Additional Logging Controls

NeuronX Runtime enables detailed control over logging behaviors, including the ability to set separate log levels and
log locations for individual components. When NEURON_RT_LOG_LEVEL is set globally, NeuronX Runtime combines
the logs from all modules into a single stream. For instance, the logs from the modules TDRV and NMGR would appear
in the same stream as shown in the example below

::
2023-Jan-09 20:27:41.0593 15042:15042 ERROR TDRV:exec_consume_infer_status_notifications (FATAL-
RT-UNDEFINED-STATE) inference timeout (600000 ms) on Neuron Device 0 NC 0, waiting for execution
completion notification 2023-Jan-09 20:27:41.0600 15042:15042 ERROR NMGR:dlr_infer

However, it is possible to adjust the log level for individual components to capture more or less detail as required for
specific debugging contexts. These individual components are - TDRV: the low level driver library - KMGR: the higher
level manager library bridging the driver and runtime - NRT: the Neuron Runtime library responsible for loading and
executing models that is exposed to end users and frameworks

To adjust the log level for individual components, use the environment variable
NEURON_RT_LOG_LEVEL_<component>, where <component> is the identifier of the component (either TDRV,
NMGR, or NRT). This allows for precise control over the verbosity of logs generated by each component, facilitating
more targeted debugging. For example, the following sets different log levels for the TDRV and NMGR components.

::
export NEURON_RT_LOG_LEVEL_TDRV=DEBUG export NEURON_RT_LOG_LEVEL_NMGR=ERROR
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Similarly, to specify separate log locations for individual components, use the environment variable
NEURON_RT_LOG_LOCATION_<component>, following the same naming convention as for log levels. This fea-
ture enables logs from different components to be directed to separate files or destinations, making it easier to organize
and analyze the log output. For example, the following sets different log locations for the TDRV and NMGR components.

::
export NEURON_RT_LOG_LOCATION_TDRV=tdrv.log export NEURON_RT_LOG_LOCATION_NMGR=nmgr.log

Checksum

To execute a model(NEFF), NeuronX Runtime needs to load the NEFF file into NeuronCore and run. Neuron Runtime
provides a way to do checksum validation on each NEFF file while loading to validate the file is not corrupted. This
option is off by default to avoid performance penalty during model load time(~50%).

NEURON_RT_VALIDATE_HASH=true myapp1.py # enables model checksum validation while␣
→˓loading
NEURON_RT_VALIDATE_HASH=false myapp2.py # disables(default) model checksum validation␣
→˓while loading

Shared Weights (NEURON_RT_MULTI_INSTANCE_SHARED_WEIGHTS)

By default, NeuronX Runtime will make copies of model weights when loading the same instance of a model to multiple
NeuronCores. Changing this default to a weight sharing mechanism is possible with NeuronX Runtime 2.11 or higher
by setting NEURON_RT_MULTI_INSTANCE_SHARED_WEIGHTS=TRUE. Use of this flag will allow for more models to be
loaded by reducing the memory requirements, but will potentially come at a cost of throughput by forcing the execution
across cores to compete for memory bandwidth.

Note: the use of this flag requires the model to be loaded with the multi-instance feature (see PyTorch Neuron (torch-
neuron) Core Placement API [Beta]).

See the [BERT tutorial with shared weights notebook] for an example of how this is used in Torch-Neuron.

NEURON_RT_MULTI_INSTANCE_SHARED_WEIGHTS=TRUE myapp1.py # enables model weight sharing
NEURON_RT_MULTI_INSTANCE_SHARED_WEIGHTS=FALSE myapp2.py # disables(default) model␣
→˓weight sharing

Aynchronous Execution (NEURON_RT_ASYNC_EXEC_MAX_INFLIGHT_REQUESTS)

A beta asynchronous execution feature which can reduce latency by roughly 12% for training workloads. Starting in
Neuron Runtime version 2.15, the feature is available, but disabled. To enable the feature for possible improvement,
recommendation is to set NEURON_RT_ASYNC_EXEC_MAX_INFLIGHT_REQUESTS to 3. Setting the number of
inflight requests above 3 may lead to Out-Of-Memory (OOM) errors during execution. For developers using libnrt.so
directly, please use nrt_register_async_exec_callback to register a callback for the nrt execution thread to post the
execution status to. A default callback will be registered if one is not set by the developer.

NEURON_RT_ASYNC_EXEC_MAX_INFLIGHT_REQUESTS=3 myapp.py # Up to 3 async exec requests␣
→˓at once.
NEURON_RT_ASYNC_EXEC_MAX_INFLIGHT_REQUESTS=0 myapp.py # disables async execution␣
→˓(default behavior)

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2
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This document is relevant for: Inf1, Inf2, Trn1, Trn2

6.1.3 Misc (NeuronX Runtime)

This document is relevant for: Inf1, Inf2, Trn1, Trn2

Neuron Runtime Troubleshooting on Inf1, Inf2 and Trn1

This document aims to provide more information on how to fix issues you might encounter while using the Neuron
Runtime 2.x or above. For each issue we will provide an explanation of what happened and what can potentially correct
the issue.

If your issue is not listed below or you have a more nuanced problem, contact us via issues posted to this repo, the AWS
Neuron developer forum, or through AWS support.

Table of contents

• Generic Errors

– Neuron Driver installation fails

– Application fails to start

– This Neuron Runtime (compatibility id: X) is not compatible with the installed aws-neuron-dkms pack-
age

– Neuron Core is in use

– Unsupported NEFF Version

– Unsupported Hardware Operator Code

– Insufficient Memory

– Insufficient number of NeuronCores

– Numerical Error

– RuntimeError: module compiled against API version 0xf but this version of numpy is 0xe

– Failure to initialize Neuron

– An application is trying to use more cores that are available on the instance

– Neuron Runtime execution fails at out-of-bound access

• Hardware Errors

• EFA and Collective Communication Errors

– Missing aws-neuronx-collectives package

– Missing efa installer package.

– EFA is not enabled in trn1.32xlarge

– Communication timeout

– Communication errors.

– EFA Kernel messages (dmesg) after process termination.

– Failure to find bootstrap interface
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– Name resolution failure

• Usage of Neuron Custom C++ Operators

– Neuron Runtime timeout or GPSIMD exception

– FI_EFA_FORK_SAFE

Generic Errors

Neuron Driver installation fails

aws-neuron-dkms is a driver package which needs to be compiled during installation. The compilation requires kernel
headers for the instance’s kernel. uname -r can be used to find kernel version in the instance. In some cases, the
installed kernel headers might be newer than the instance’s kernel itself.

Please look at the aws-neuron-dkms installation log for message like the following:

Building for 4.14.193-149.317.amzn2.x86_64
Module build for kernel 4.14.193-149.317.amzn2.x86_64 was skipped since the
kernel headers for this kernel does not seem to be installed.

If installation log is not available, check whether the module is loaded.

$ lsmod | grep neuron

If the above has no output then that means aws-neuron-dkms installation is failed.

Solution

1. Stop all applications using the NeuronCores.

2. Uninstall aws-neuron-dkms sudo apt remove aws-neuron-dkms or sudo yum remove
aws-neuron-dkms

3. Install kernel headers for the current kernel sudo apt install -y linux-headers-$(uname -r) or sudo
yum install -y kernel-devel-$(uname -r) kernel-headers-$(uname -r)

4. Install aws-neuron-dkms sudo apt install aws-neuron-dkms or sudo yum install
aws-neuron-dkms

Application fails to start

Neuron Runtime requires Neuron Driver(aws-neuron-dkms package) to access Neuron devices. If the driver is not
installed then Neuron Runtime wont able to access the Neuron devices and will fail with an error message in console
and syslog.

If aws-neuron-dkms is not installed then the error message will be like the following:

2021-Aug-11 18:38:27.0917 13713:13713 ERROR NRT:nrt_init Unable to determine␣
→˓Neuron Driver version. Please check aws-neuron-dkms package is installed.
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If aws-neuron-dkms is installed but does not support the latest runtime then the error message will be like the fol-
lowing:

2021-Aug-11 19:18:21.0661 24616:24616 ERROR NRT:nrt_init This runtime requires␣
→˓Neuron Driver version 2.0 or greater. Please upgrade aws-neuron-dkms package.

When using any supported framework from Neuron SDK version 2.5.0 and Neuron Driver (aws-neuron-dkms) versions
2.4 or older, Neuron Runtime will return the following error message:

2022-Dec-01 09:34:12.0559 138:138 ERROR HAL:aws_hal_tpb_pooling_write_profile ␣
→˓ failed programming the engine

Solution

Please follow the installation steps in Setup Guide to install aws-neuronx-dkms.

This Neuron Runtime (compatibility id: X) is not compatible with the installed aws-neuron-dkms
package

This error is caused by incompatibility between the Neuron Driver (dkms package) and the Runtime Library (runtime-
lib package). The driver remains backwards compatible with older versions of Neuron Runtime, but newer versions of
the Runtime might rely on the functionality that is only provided by a newer driver. In that case, an update to the newer
driver is required.

In some cases the compatibility error persists even after the driver has been updated. That happens when the update
process fails to reload the driver at the end of the update. Note that $ modinfo neuron will misleadingly show the
new version because modinfo reads the version information for neuron.ko file that’s been successfully replaced.

Reload failure happens because one of the processes is still using Neuron Devices and thus the driver cannot be reloaded.

Solution

Check for any process that is still using the Neuron driver by running lsmod:

ubuntu@ip-10-1-200-50:~$ lsmod | grep neuron
neuron 237568 0
ubuntu@ip-10-1-200-50:~$

“Used by” counter, the second number, should be 0. If it is not, there is still a running process that is using Neuron.
Terminate that process and either:

$ sudo rmmod neuron
$ sudo modprobe neuron

Or simply rerun the installation one more time. The driver logs its version in dmesg:

$ sudo dmesg
...
[21531.105295] Neuron Driver Started with Version:2.9.4.0-
→˓8a6fdf292607dccc3b7059ebbe2fb24c60dfc7c4
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A common culprit is a Jupyter process. If you are using Jupyter on the instance, make sure to terminate Jupyter process
before updating the driver.

Neuron Core is in use

A Neuron Core cant be shared between two applications. If an application started using a Neuron Core all other
applications trying to use the NeuronCore would fail during runtime initialization with the following message in the
console and in syslog:

2021-Aug-27 23:22:12.0323 28078:28078 ERROR NRT:nrt_allocate_neuron_cores ␣
→˓ NeuronCore(s) not available - Requested:nc1-nc1 Available:0

Solution

Terminate any other processes that are using NeuronCore and then try launching the application again. If you are
using Jupyter, ensure that you only have a single Jupyter kernel attempting to access the NeuronCores by restarting or
shutting-down any other kernels, which will release any NeuronCores that might be in use.

Unsupported NEFF Version

While loading a model(NEFF), Neuron Runtime checks the version compatibility. If the version the NEFF is incom-
patible with Runtime then it would fail the model load with following error message:

NEFF version mismatch supported: 1.1 received: 2.0

Solution

Use compatible versions of Neuron Compiler and Runtime. Updating to the latest version of both Neuron Compiler
and Neuron Runtime is the simplest solution. If updating one of the two is not an option, please refer to the neuron-
runtime-release-notes of the Neuron Runtime to determine NEFF version support.

Unsupported Hardware Operator Code

While loading a model(NEFF), Neuron Runtime checks whether the hardware operators are supported or not. If un-
supported, Neuron Runtime will display the following error messages:

2023-Jul-28 22:23:13.0357 101413:101422 ERROR TDRV:translate_one_pseudo_instr_v2 ␣
→˓ Unsupported hardware operator code 214 found in neff.
2023-Jul-28 22:23:13.0357 101413:101422 ERROR TDRV:translate_one_pseudo_instr_v2 ␣
→˓ Please make sure to upgrade to latest aws-neuronx-runtime-lib and aws-neuronx-
→˓collective; for detailed installation instructions visit Neuron documentation.

6.1. NeuronX Runtime 949



AWS Neuron

Solution

Upgrade to latest Neuron Runtime and Neuron Collectives.

Insufficient Memory

While loading a model(NEFF), Neuron Runtime reserves both device and host memory for storing weights, ifmap and
ofmap of the Model. The memory consumption of each model is different. If Neuron Runtime is unable to allocate
memory then the model load would fail with the following message in syslog

kernel: [XXXXX] neuron:mc_alloc: device mempool [0:0] total 1073741568 occupied␣
→˓960539030 needed 1272 available 768

Solution

As the error is contextual to what’s going on with your instance, the exact next step is unclear. Try unloading some of
the loaded models which will free up device DRAM space. If this is still a problem, moving to a larger Inf1 instance
size with additional NeuronCores may help.

Insufficient number of NeuronCores

The NEFF requires more NeuronCores than available on the instance.

Check for error messages in syslog similar to:

NRT: 26638:26638 ERROR TDRV:db_vtpb_get_mla_and_tpb Could not find VNC␣
→˓id n
NRT: 26638:26638 ERROR NMGR:dlr_kelf_stage Failed to create␣
→˓shared io
NRT: 26638:26638 ERROR NMGR:stage_kelf_models Failed to stage␣
→˓graph: kelf-a.json to NeuronCore
NRT: 26638:26638 ERROR NMGR:kmgr_load_nn_post_metrics Failed to load NN:␣
→˓xxxxxxx, err: 2

Solution

The NeuronCores may be in use by models you are not actively using. Ensure you’ve unloaded models you’re not using
and terminated unused applications. If this is still a problem, moving to a larger Inf1 instance size with additional
NeuronCores may help.
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Numerical Error

Neuron Devices will detect any NaN generated during execution and report it. If Neuron Runtime sees NaNs are
generated then it would fail the execution request with Numerical Error with the following message:

nrtd[nnnnn]: .... Error notifications found on NC .... INFER_ERROR_SUBTYPE_NUMERICAL

Solution

This usually an indication of either error in the model or error in the input.

Report issue to Neuron by posting the relevant details on GitHub issues.

RuntimeError: module compiled against API version 0xf but this version of numpy is 0xe

This usually means that the numpy version used during compilation is different than the one used when executing the
model. As of Neuron SDK release 2.15, numpy versions supported in Neuron SDK are following: numpy<=1.25.2,
>=1.22.2. Check and confirm the right numpy version is installed and re-compile/execute the model.

Failure to initialize Neuron

nd0 nc0 Timestamp program stop timeout (1000 ms)
nd0 nc0 Error while waiting for timestamp program to end on TPB eng 0
nd0 nc0 Failed to stop neuron core
nd0 nc0 Failed to end timestamp sync programs
TDRV not initialized
Failed to initialize devices, error:5

Previously executed application left Neuron devices in running state. Reset Neuron devices but reloading Neuron
Driver. Note, this is a temporary workaround, future versions of Neuron will reset running devices automatically.

sudo rmmod neuron; sudo modprobe neuron

An application is trying to use more cores that are available on the instance

Could not open the nd1

Use properly sized instance. trn1.32xlarge has 32 Neuron Cores, trn1.2xlarge has 2 Neuron Cores.
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Neuron Runtime execution fails at out-of-bound access

When a Neuron Runtime execution encounters an out-of-bound access error, the runtime logs in the stdout console will
display one of the following error messages:

2024-08-12 18:34:56,116::ERROR: 2024-Aug-12 18:34:56.067150 159612:159612 ERROR TDRV:
→˓generate_custom_notification_msg nd0:nc0:h_model.id1107: Received notification␣
→˓generated at runtime: failed to run embedding table update, due to out-of-bound access.
2024-08-12 18:34:56,116::ERROR: 2024-Aug-12 18:34:56.067151 159602:159602 ERROR TDRV:
→˓generate_custom_notification_msg nd0:nc1:h_model.id1109: Received notification␣
→˓generated at runtime: failed to run scatter/gather (indirect memory copy), due to out-
→˓of-bound access.

Cause of the Error
An out-of-bound access error typically indicates that incorrect inputs have been provided to the model.

How to Debug
To troubleshoot this issue, you need to examine both the High-Level Operation (HLO) and all inputs. Neuron Runtime
can automatically dump all inputs in binary format, which can be instrumental in debugging. To enable input dumping
for each failed execution, set the following environment variable:

export NEURON_RT_DBG_DUMP_INPUTS_ON_ERR=<an NRT_STATUS value>

A complete set of NRT_STATUS can be found under The LIBNRT API Return Codes.

Once this variable is set, Neuron Runtime generates a directory in the current working directory for each failed execution
at this NRT_STATUS value. The directory name follows this pattern:

input_dump_<runtime_generated_random_number>_h_nn_<runtime_generated_execution_id>

Inside each directory, you’ll find all the inputs that led to this failure, stored in binary format. Additionally, the model
name is saved in a separate file called model_name.txt within the same directory.

To disable input dump, you can set the environment variable back to 0

export NEURON_RT_DBG_DUMP_INPUTS_ON_ERR=0

Example: Debug an out-of-bound access execution
To debug an out-of-bound (OOB) execution, which returns an NRT_STATUS code of 1006, both HLO and all inputs
are required. By setting the NEURON_RT_DBG_DUMP_INPUTS_ON_ERR environment variable to 1006, you can capture
the inputs leading to an OOB execution.

For example, when an OOB error occurs, Neuron Runtime creates a directory named in-
put_dump_424238335_h_nn_10001. Here, 424238335 is a randomly generated number by Neuron Runtime,
and 10001 is the Neuron Runtime generated execution ID. All relevant inputs, labeled from input0 to input14, are
saved in binary format within this directory.

ubuntu@ip-172-31-53-90:~$ NEURON_RT_DBG_DUMP_INPUTS_ON_ERR=1006 torchrun --nproc_per_
→˓node=2 train_torchrun.py
......
2024-Jun-26 00:32:47.943821 30294:32381 ERROR TDRV:generate_custom_notification_msg ␣
→˓ nd0:nc0:h_model.id1001: Received notification generated at runtime: failed to run␣
→˓scatter/gather (indirect memory copy), due to out-of-bound access. isa instruction␣
→˓line number = 11. model name = /home/ubuntu/token-seqlen1280-batch128-FullyUnrolled.

(continues on next page)
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(continued from previous page)

→˓736.2.0.62758.0a0+44863561.93f365ce40ab99133659.pb.neff
......
2024-Jun-26 00:32:47.948678 30294:32381 ERROR NMGR:dlr_infer ␣
→˓ Inference completed with err: 1006. mode->h_nn=1001, start_nc=0, nc_count=1
2024-Jun-26 00:32:50.801487 30294:32381 ERROR TDRV:tensor_dump_inputs ␣
→˓ 15 input tensors were dumped successfully to directory /home/ubuntu/input_dump_
→˓424238335_h_nn_10001. Model name is /home/ubuntu/token-seqlen1280-batch128-
→˓FullyUnrolled.736.2.0.62758.0a0+44863561.93f365ce40ab99133659.pb.neff
......

ubuntu@ip-172-31-53-90:~$ ls -lt
total 3908900
drwxrwxr-x 2 ubuntu ubuntu 4096 Jun 26 00:32 input_dump_424238335_h_nn_10001
.....

ubuntu@ip-172-31-53-90:~$ ls -lt input_dump_424238335_h_nn_10001
total 1405192
-rw-r—r-- 1 ubuntu ubuntu 5242880 Jun 26 00:32 input14.bin
-rw-r—r-- 1 ubuntu ubuntu 5242880 Jun 26 00:32 input13.bin
-rw-r—r-- 1 ubuntu ubuntu 5242880 Jun 26 00:32 input12.bin
-rw-r—r-- 1 ubuntu ubuntu 5242880 Jun 26 00:32 input11.bin
-rw-r—r-- 1 ubuntu ubuntu 13967360 Jun 26 00:32 input10.bin
-rw-r—r-- 1 ubuntu ubuntu 81920 Jun 26 00:32 input8.bin
-rw-r—r-- 1 ubuntu ubuntu 4 Jun 26 00:32 input9.bin
-rw-r—r-- 1 ubuntu ubuntu 4 Jun 26 00:32 input6.bin
-rw-r—r-- 1 ubuntu ubuntu 81920 Jun 26 00:32 input7.bin
-rw-r—r-- 1 ubuntu ubuntu 16777216 Jun 26 00:32 input5.bin
-rw-r—r-- 1 ubuntu ubuntu 131072 Jun 26 00:32 input3.bin
-rw-r—r-- 1 ubuntu ubuntu 13967360 Jun 26 00:32 input4.bin
-rw-r—r-- 1 ubuntu ubuntu 16777216 Jun 26 00:32 input2.bin
-rw-r—r-- 1 ubuntu ubuntu 13967360 Jun 26 00:32 input1.bin
-rw-r—r-- 1 ubuntu ubuntu 1342177280 Jun 26 00:32 input0.bin
-rw-r—r-- 1 ubuntu ubuntu 9 Jun 26 00:32 model_name.txt

ubuntu@ip-172-31-53-96:~$ cat input_dump_424238335_h_nn_10001/model_name.txt
/home/ubuntu/token-seqlen1280-batch128-FullyUnrolled.736.2.0.62758.0a0+44863561.
→˓93f365ce40ab99133659.pb.neff

Known Limitations
• HLO Access: Neuron Runtime does not have direct access to the HLO; it must be deduced from the model name.

• Partial Input Dumps: If a Neuron Runtime execution fails and an exception is raised to the Neuron Framework,
other ongoing Neuron Runtime executions may be terminated by the Neuron Framework. This means only one
set of inputs may be fully captured, while others may be incomplete if terminated prematurely.

– An input dump folder is considered complete when the model_name.txt file is fully written, as Neuron
Runtime saves all inputs first and then writes the model_name.txt file. So you might find out the folder with
the complete set of inputs by searching for the model_name.txt file.
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Hardware Errors

For Trn and Inf instances, the following hardware errors are monitored by Neuron Runtime:
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Er-
ror
Types

De-
scrip-
tion

Behaviors Recommended
Actions

SRAM
Un-
cor-
rectable

An
on-
chip
SRAM
en-
coun-
tered a
parity
error
and
pro-
duced
incor-
rect
re-
sults.

1. Instance Retirement Notice: You will receive an EC2 instance retire-
ment notice within 15 minutes of experiencing this message. EKS, EC2
Auto Scaling Groups, and AWS ParallelCluster will react to these retire-
ment notices according to their configured policies, but you can also auto-
mate responses to these notices yourself with EventBridge rules.
2. Neuron Runtime Behavior: Neuron Runtime will time-
out and exit with NRT_EXEC_COMPLETED_WITH_ERR (1004) or
NRT_EXEC_HW_ERR_NC_UE (1202) return code. You will see
the following error message in runtime logs from stdout console:
(FATAL-RT-UNDEFINED-STATE) [ND 0][NC 0] Uncorrectable
memory error is detected, metadata: 0x16. Please
terminate or stop/start this instance to prevent future
impact from the hardware error.

1. Replace the EC2
instance by terminat-
ing it or stopping
then starting it.
2. Utilize Neu-
ron Sysfs and
Neuron Moni-
tor to monitor the
sram_ecc_uncorrected
error counts.

HBM
Un-
cor-
rectable

An
HBM
en-
coun-
tered
an
uncor-
rectable
error
and
pro-
duced
incor-
rect
re-
sults.

1. Instance Retirement Notice: You will receive an EC2 instance retire-
ment notice within 15 minutes of experiencing this message. EKS, EC2
Auto Scaling Groups, and AWS ParallelCluster will react to these retire-
ment notices according to their configured policies, but you can also auto-
mate responses to these notices yourself with EventBridge rules.
2. Neuron Runtime Behavior: Neuron Runtime will timeout and exit
with NRT_TIMEOUT (5) or NRT_EXEC_HW_ERR_HBM_UE (1201) return
code. You will see the following error message in runtime logs from
stdout console: (FATAL-RT-UNDEFINED-STATE) Uncorrectable
HBM memory error is detected. Execution results may be
invalid. Please terminate or stop/start this instance to
prevent future impact from the hardware error.

1. Replace the EC2
instance by terminat-
ing it or stopping
then starting it.
2. Utilize Neu-
ron Sysfs and
Neuron Moni-
tor to monitor the
mem_ecc_uncorrected
error counts.

DMA
Aborts

A
DMA
engine
en-
coun-
tered
an un-
recov-
erable
error.

Neuron Runtime Behavior: Neuron Runtime will timeout and exit
with NRT_TIMEOUT (5) or NRT_EXEC_HW_ERR_DMA_ABORT (1203) re-
turn code. You will see the following error messages in runtime
logs from stdout console: [MLA 0][NC 0] DMA TX engine 0 is in
an abort state or [MLA 0][NC 0] DMA RX engine 0 is in an
abort state

Replace the EC2 in-
stance by terminat-
ing it or stopping
then starting it.

Hang
on
Col-
lec-
tives

Pos-
sibly
caused
by a
hard-
ware
error
on an-
other
worker.

Neuron Runtime Behavior: Neuron Runtime will timeout and exit with
NRT_TIMEOUT (5) or NRT_EXEC_HW_ERR_COLLECTIVES (1200)
return code. You will see the following error messages in runtime
logs from stdout console: (FATAL-RT-UNDEFINED-STATE) missing
collectives status on Neuron Device 0 NC 0, model 0 -
suspected hang in collectives operation 0 out of 100

Search for SRAM
Uncorrectable,
HBM Uncor-
rectable, DMA
Aborts, and Hang on
Compute errors on
the other workers,
and implement the
recommended ac-
tions on the affected
worker. Afterward,
restart your work-
load and attempt
again.

Hang
on
Com-
pute

Unex-
pected
soft-
ware
or
hard-
ware
issue.

Neuron Runtime Behavior: Neuron Runtime will timeout and exit with
NRT_TIMEOUT (5). You will see the following error messages in runtime
logs from stdout console: (FATAL-RT-UNDEFINED-STATE) execution
timeout (30000 ms) on Neuron Device 0 NC 0, model xxx.
neff, waiting for execution completion notification

Replace the EC2 in-
stance by terminat-
ing it or stopping
then starting it.

6.1. NeuronX Runtime 955

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-retirement.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-retirement.html
https://repost.aws/knowledge-center/eventbridge-notification-scheduled-events
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Stop_Start.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Stop_Start.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/tools/neuron-sys-tools/neuron-sysfs-user-guide.html#description-for-each-metric
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/tools/neuron-sys-tools/neuron-sysfs-user-guide.html#description-for-each-metric
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/tools/neuron-sys-tools/neuron-monitor-user-guide.html#system-level-metric-groups
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/tools/neuron-sys-tools/neuron-monitor-user-guide.html#system-level-metric-groups
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-retirement.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-retirement.html
https://repost.aws/knowledge-center/eventbridge-notification-scheduled-events
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Stop_Start.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Stop_Start.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/tools/neuron-sys-tools/neuron-sysfs-user-guide.html#description-for-each-metric
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/tools/neuron-sys-tools/neuron-sysfs-user-guide.html#description-for-each-metric
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/tools/neuron-sys-tools/neuron-monitor-user-guide.html#system-level-metric-groups
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/tools/neuron-sys-tools/neuron-monitor-user-guide.html#system-level-metric-groups
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Stop_Start.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Stop_Start.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Stop_Start.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Stop_Start.html


AWS Neuron

Upon any hardware errors, you should also expect to see the error message like the following
in dmesg: NEURON_HW_ERR=SRAM_UNCORRECTABLE_ERROR instance-id=i-0592464924bd45322
hostname=ip-172-31-61-252 nd-id=0 nc-id=0 serial-num=19fcda00f5ff6eb9
action=TERMINATE_INSTANCE

EFA and Collective Communication Errors

Missing aws-neuronx-collectives package

aws-neuronx-collectives package is required to execute Collective Communication on a single instance and across
multiple instances.

NCCL init error: Error opening libnccom.so, cannot use collective operations! Please set␣
→˓LD_LIBRARY_PATH to library location. Error: libnccom.so: cannot open shared object
file: No such file or directory
Please make sure to install correct version of aws-neuronx-collectives; for detailed␣
→˓installation instructions visit Neuron documentation

Install aws-neuornx-collectives package. If the installation used non-default destination set LD_LIBRARY_PATH.

Missing efa installer package.

efa-installer package is required to execute Collective Communication across multiple instances.

Unable to run multi-instance workload. Ofi plugin is not installed or EFA is not enabled

Follow the directions to install efa-installer package. Make sure to add the path to to libfabric library to
LD_LIBRARY_PATH

EFA is not enabled in trn1.32xlarge

EFA is used as a transport for Collective Communication among multiple instances. EFA must be enabled on the
instances used for multi-node training.

OFI plugin initNet() failed is EFA enabled?

Confirm that EFA is enabled by running lspci command and making sure there are eight EFA devices. For example:

[ec2-user@ip-10-0-13-247 ~]$ lspci -tv
-+-[0000:a0]-+-00.0 Amazon.com, Inc. Elastic Network Adapter (ENA)
| +-01.0 Amazon.com, Inc. Elastic Network Adapter (ENA)
| +-19.0 Amazon.com, Inc. Elastic Fabric Adapter (EFA)
| +-1a.0 Amazon.com, Inc. Elastic Fabric Adapter (EFA)
| +-1b.0 Amazon.com, Inc. NeuronDevice
| +-1c.0 Amazon.com, Inc. NeuronDevice
| +-1d.0 Amazon.com, Inc. NeuronDevice
| +-1e.0 Amazon.com, Inc. NeuronDevice
| \-1f.0 Amazon.com, Inc. NVMe SSD Controller
+-[0000:90]-+-00.0 Amazon.com, Inc. Elastic Network Adapter (ENA)
| +-01.0 Amazon.com, Inc. Elastic Network Adapter (ENA)
| +-19.0 Amazon.com, Inc. Elastic Fabric Adapter (EFA)

(continues on next page)
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(continued from previous page)

| +-1a.0 Amazon.com, Inc. Elastic Fabric Adapter (EFA)
| +-1b.0 Amazon.com, Inc. NeuronDevice
| +-1c.0 Amazon.com, Inc. NeuronDevice
| +-1d.0 Amazon.com, Inc. NeuronDevice
| +-1e.0 Amazon.com, Inc. NeuronDevice
| \-1f.0 Amazon.com, Inc. NVMe SSD Controller
+-[0000:20]-+-00.0 Amazon.com, Inc. Elastic Network Adapter (ENA)
| +-01.0 Amazon.com, Inc. Elastic Network Adapter (ENA)
| +-19.0 Amazon.com, Inc. Elastic Fabric Adapter (EFA)
| +-1a.0 Amazon.com, Inc. Elastic Fabric Adapter (EFA)
| +-1b.0 Amazon.com, Inc. NeuronDevice
| +-1c.0 Amazon.com, Inc. NeuronDevice
| +-1d.0 Amazon.com, Inc. NeuronDevice
| +-1e.0 Amazon.com, Inc. NeuronDevice
| \-1f.0 Amazon.com, Inc. NVMe SSD Controller
+-[0000:10]-+-00.0 Amazon.com, Inc. Elastic Network Adapter (ENA)
| +-01.0 Amazon.com, Inc. Elastic Network Adapter (ENA)
| +-19.0 Amazon.com, Inc. Elastic Fabric Adapter (EFA)
| +-1a.0 Amazon.com, Inc. Elastic Fabric Adapter (EFA)
| +-1b.0 Amazon.com, Inc. NeuronDevice
| +-1c.0 Amazon.com, Inc. NeuronDevice
| +-1d.0 Amazon.com, Inc. NeuronDevice
| +-1e.0 Amazon.com, Inc. NeuronDevice
| \-1f.0 Amazon.com, Inc. NVMe SSD Controller
\-[0000:00]-+-00.0 Intel Corporation 440FX - 82441FX PMC [Natoma]

+-01.0 Intel Corporation 82371SB PIIX3 ISA [Natoma/Triton II]
+-01.3 Intel Corporation 82371AB/EB/MB PIIX4 ACPI
+-03.0 Amazon.com, Inc. Device 1111
+-04.0 Amazon.com, Inc. NVMe EBS Controller
\-1f.0 Amazon.com, Inc. NVMe EBS Controller

Launch instances with EFA enabled and try again. If not planning to use the instances for multi-node training or running
on trn1.2xlarge, this error message can be ignored.

Communication timeout

Ranks exchange information during NEFF loading and before the start of the execution. The loading/execution cannot
move forward until all ranks are ready.

Timeout waiting for RX (waited 120 sec) - retrying

Timeout waiting for incoming connection (waited 120 sec) - retrying

Connect to localhost:33666 failed - retrying

The communication timeouts are not fatal. The ranks will continue waiting forever. In most case the timeouts are
caused by one of the ranks getting delayed, usually be recompilation of a graph. The execution is resumed after the
graph is compiled (might take significant amount of time). It is possible to determine if compilation is in progress by
checking the logs on all nodes.

Communication timeouts might also indicate that one of the nodes or ranks is hang. If that is the case, terminate the
run and restart from the last known good check point.
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Communication errors.

RX, connection closed by remote peer

There could be other similar messages indicating that ranks failed to communicate.

One of the ranks or nodes encountered a problem and terminated. Terminate the run and restart from the last known
check point.

EFA Kernel messages (dmesg) after process termination.

[298850.502143] neuron:npid_detach: neuron:npid_detach: pid=90193, slot=0
[298850.919248] efa 0000:a0:1a.0 rdmap160s26: Failed to process command DEREG_MR (opcode␣
→˓8) comp_status 7 err -22

When a process that executed Collective Communication terminates it deregisters buffers that were registered with the
networking stack. There is a race condition because the Neuron driver deregisters buffers owned by terminating process
as part of the memory cleanup. The error is benign and will be removed in the future releases.

Failure to find bootstrap interface

No interface found in the same subnet as remote address fe80::1461:22ff:fe33:b471<45015>
No usable listening interface found

Bootstrap code incorrectly trying to use link-local IPv6 address for communication. This error will be fixed in the next
Neuron release. In the meantime, as a workaround, disable IPv6 on the instances.

sudo sysctl -w net.ipv6.conf.all.disable_ipv6=1
sudo sysctl -w net.ipv6.conf.default.disable_ipv6=1

Name resolution failure

WARN Invalid NCCL_COMM_ID [compute1-dy-training-0-1.pcluster-trn1-24-pdx80-2n.pcluster:
→˓41211], please use format: <ipv4>:<port> or [<ipv6>]:<port>

Verify that the name can be resolved by DNS by using nslookup or dig. Currently released version fails to resolve
FQDN longer than 63 characters. This error will be fixed in the upcoming Neuron release. In the mean time use
shorter names to ensure that FQDN length does not exceed the maximum of 63 characters.

Usage of Neuron Custom C++ Operators

Neuron Runtime timeout or GPSIMD exception

At this point, reset of Neuron Runtime is required after running a model which invoked a Neuron Custom C++ operator.
Otherwise, a Neuron Runtime timeout or GPSIMD exception may occur.

Example Neuron Runtime timeout:
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2023-Jan-09 20:27:41.0593 15042:15042 ERROR TDRV:exec_consume_tpb_status_notifications ␣
→˓ Missing infer_status notification: (end:1)
2023-Jan-09 20:27:41.0593 15042:15042 ERROR TDRV:exec_consume_tpb_status_notifications ␣
→˓ Missing infer_status notification: (end:2)
2023-Jan-09 20:27:41.0593 15042:15042 ERROR TDRV:exec_consume_tpb_status_notifications ␣
→˓ Missing infer_status notification: (end:3)
2023-Jan-09 20:27:41.0593 15042:15042 ERROR TDRV:exec_consume_tpb_status_notifications ␣
→˓ Missing infer_status notification: (end:4)
2023-Jan-09 20:27:41.0593 15042:15042 ERROR TDRV:exec_consume_tpb_status_notifications ␣
→˓ Missing infer_status notification: (end:0)
2023-Jan-09 20:27:41.0593 15042:15042 ERROR TDRV:exec_consume_infer_status_
→˓notifications (FATAL-RT-UNDEFINED-STATE) inference timeout (600000 ms) on Neuron␣
→˓Device 0 NC 0, waiting for execution completion notification
2023-Jan-09 20:27:41.0600 15042:15042 ERROR NMGR:dlr_infer ␣
→˓ Inference completed with err: 5

Example GPSIMD exception:

2023-Jan-06 22:28:01.0845 137472:137472 ERROR TDRV:pool_stdio_queue_consume_all_entries ␣
→˓Printing stderr from GPSIMD:
GPSIMD EXCEPTION OCCURRED: ILLEGAL INSTRUCTION
Subtype/Type/Cause: 0x201
Exception PC: 0x840001E8

Solution

If either of the above errors are seen, and NEURON_RT_RESET_CORES is set to 0, either unset it or set it to 1. This will
enable the default runtime behaviour of resetting NeuronCores when initializing applications. See NeuronX Runtime
Configuration for more information.

Also note that the timeout period can be changed by setting NEURON_RT_EXEC_TIMEOUT. See NeuronX Runtime Con-
figuration for more information.

FI_EFA_FORK_SAFE

Older Linux (<5.15) kernels require environment variable FI_EFA_FORK_SAFE to be set to 1 for the libfabric to
operate correctly. Specifically Amazon Linux 2 uses 5.10 kernel and requires the variable to be set.

When the variable is not set multi-node collective communication will be disabled. Intra-node collective commu-
nication is still possible. The following error message will be logged the first time a model containing collective
communication is loaded:

Linux kernel 5.10 requires setting FI_EFA_FORK_SAFE=1 environment variable. Multi-node␣
→˓support will be disabled.
Please restart with FI_EFA_FORK_SAFE=1 set."

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2
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NeuronX runtime FAQ

Table of Contents

• Where can I find information about Neuron Runtime 2.x (libnrt.so)

• What will happen if I will upgrade Neuron Framework without upgrading latest kernel mode driver?

• Do I need to recompile my model to use the Runtime Library?

• Do I need to change my application launch command?

• How do I restart/start/stop the NeuronX Runtime?

• How do I know which runtimes are associated with which Neuron Device(s)?

• What about RedHat or other versions of Linux and Windows?

• How can I take advantage of multiple NeuronCores to run multiple inferences in parallel?

Where can I find information about Neuron Runtime 2.x (libnrt.so)

See Introducing Neuron Runtime 2.x (libnrt.so) for detailed information about Neuron Runtime 2.x (libnrt.so).

What will happen if I will upgrade Neuron Framework without upgrading latest kernel mode driver?

Application start would fail with the following error message: .. code:: bash

2021-Aug-11 19:18:21.0661 24616:24616 ERROR NRT:nrt_init This runtime requires Neuron Driver ver-
sion 2.0 or greater. Please upgrade aws-neuron-dkms package.

Do I need to recompile my model to use the Runtime Library?

No. Runtime 2.x supports all the models compiled with Neuron Compiler 1.x.

Do I need to change my application launch command?

No.

How do I restart/start/stop the NeuronX Runtime?

Since Neuron Runtime is a library, starting/stopping application would result in starting/stopping the Neuron Runtime.
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How do I know which runtimes are associated with which Neuron Device(s)?

neuron-ls and neuron-top can be used to find out applications using Neuron Devices.

What about RedHat or other versions of Linux and Windows?

We don’t officially support it yet.

How can I take advantage of multiple NeuronCores to run multiple inferences in parallel?

Examples of this for TensorFlow and MXNet are found here and here.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

Neuron Runtime Release Notes

Neuron Runtime consists of a kernel mode driver and C/C++ libraries which provides APIs to access Neuron Devices.
The runtime itself (libnrt.so) is integrated into the ML frameworks for simplicity of deployment. The Neuron Runtime
supports training models and executing inference on the Neuron Cores.

Table of contents

• Known issues

• NEFF Support Table:

• Neuron Runtime Library [2.26.42.0]

• Neuron Runtime Library [2.25.57.0]

• Neuron Runtime Library [2.24.53.0]

• Neuron Runtime Library [2.23.112.0]

• Neuron Runtime Library [2.23.110.0]

• Neuron Runtime Library [2.22.19.0]

• Neuron Runtime Library [2.22.14.0]

• Neuron Runtime Library [2.21.41.0]

• Neuron Runtime Library [PATCH 2.20.22.0]

• Neuron Runtime Library [2.20.11.0]

• Neuron Runtime Library [2.19.5.0]

• Neuron Runtime Library [2.18.15.0]

• Neuron Runtime Library [2.18.14.0]

• Neuron Runtime Library [2.17.7.0]

• Neuron Runtime Library [2.16.14.0]

• Neuron Runtime Library [2.16.8.0]

6.1. NeuronX Runtime 961



AWS Neuron

• Neuron Runtime Library [2.15.14.0]

• Neuron Runtime Library [2.15.11.0]

• Neuron Runtime Library [2.14.8.0]

• Neuron Runtime Library [2.13.6.0]

• Neuron Runtime Library [2.12.23.0]

• Neuron Runtime Library [2.12.14.0]

• Neuron Runtime Library [2.11.43.0]

• Neuron Runtime Library [2.10.18.0]

• Neuron Runtime Library [2.10.15.0]

• Neuron Runtime Library [2.9.64.0]

• Neuron Runtime 2.x (libnrt.so) release [2.2.51.0]

• Neuron Runtime 2.x (libnrt.so) release [2.2.31.0]

• Neuron Runtime 2.x (libnrt.so) release [2.2.18.0]

• Neuron Runtime 2.x (libnrt.so) release [2.2.15.0]

Known issues

Updated : 06/19/2025

• The nrt_tensor_allocate APIs do not support more then 4 GB (>= 4GB) sizes. Passing in a size larger than
or equal to 4GB will result in datatype overflow leading to undefined behavior.

• A hardware bug affecting Trainium and Inferentia2 devices causes numerical errors to become “sticky” within
the Neuron Core hardware. When a legitimate numerical error occurs during execution, the error state persists
in the hardware, causing all subsequent executions to incorrectly report numerical errors even when the compu-
tations are valid. This sticky error state can only be resolved by restarting the application to clear the hardware.

NEFF Support Table:

Use this table to determine the version of Runtime that will support the version of NEFF you are using. NEFF version
is determined by the version of the Neuron Compiler.

NEFF Version Runtime Version Range Notes
0.6 * All versions of RT support NEFF 0.6
1.0 >= 1.0.6905.0 Starting support for 1.0 NEFFs
2.0 >= 1.6.5.0 Starting support for 2.0 NEFFs
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Neuron Runtime Library [2.26.42.0]

Date: 06/24/2025

New in this release

• Added support for 8x8 collective groups (TP8 + CP8) on TRN2 for LNC=2
• Added support for direct State-Buffer to State-Buffer collective ops for LNC=1
• Introduce RDH algorithm for inter-node collective communication

• Added support for loading NEFF with different world sizes in the same NRT process

Improvements

• Reduced the average latency of 32x2 collective groups by 65%

• Reduced latency for intra-chip reduce scatter operations on TRN2 instances by up to 20% for small transfers and
60% for medium to large transfers

• Improved latency for medium message sizes for intra-chip All Gather operations on TRN2 by up to 60%

• Improved the debugging experience by adding logs which print out the value of timed-out, non-zero semaphores
on Trainium2 platforms

• Improved timeout error messages by displaying the NEFF program counters for the stuck Neuron Core

• Refined out-of-memory error messages to report a NEFF level memory breakdown table

Bug fixes

• Fixed crash caused by race condition during the capture of system profiles

• Fixed various memory leaks that occur during nrt_close

Neuron Profiler 2.0 (Beta)

• Added option to filter the Neuron Cores to capture trace events on (reference)

• Added option to filter the event types recorded when capturing system traces (reference)

• Added new trace events to capture the latency of the collectives execution barrier

Compatibility Changes

• This version of the Neuron runtime requires aws-neuron-dkms version 2.22 or later on Trainium2 instances
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Neuron Runtime Library [2.25.57.0]

Date: 05/19/2025

New in this release

• Added NEURON_RT_LOW_LATENCY_TASKS_CPU_AFFINITY environment variable to allow users to set the thread
affinity of low latency tasks that run on host cpu

Improvements

• Refined software notification queue overflow detection flow and improved error message

• Reduced latency for All-Reduce intra-chip collective (TP 4) by 50% for medium message sizes

• Improved error message when an execution request is passed a tensor allocated on an incorrect HBM

• Improved NEFF switch latency by up to 95% when using async mode

• Increased the number of different replica groups supported in the same NEFF on TRN2

• Explicitly limit the max number of in-flight async requests to the hard limit of 63

Bug fixes

• Fixed segfault that can occur when applications attempt to load a NEFF with an unsupported number of FMA
source descriptors

Neuron Profiler 2.0 (Beta)

• Added traces for Host <-> device data transfer events in system profiles

• Added pre/post execution hooks to system profiles

• Significant performance improvements in time taken by calls to nrt_sys_trace_fetch_events()

Neuron Runtime Library [2.24.53.0]

Date: 04/03/2025

New in this release

• Removed support for Neuron Distributed Event Tracing (reference)
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Improvements

• Improved dynamic DMA descriptor generation performance by up to 3% for certain workloads

• Reduced collectives device memory footprint for large Neffs

• Improved device latency for memory bound workloads on TRN2

• Added support for profiling executions when NRT is launched in Async Execution Mode
(NEURON_RT_ASYNC_EXEC_MAX_INFLIGHT_REQUESTS > 0)

• Added check to detect execution completion queue overflows

Bug fixes

• Fixed bug introduced in NRT 2.23 where the runtime was incorrectly reporting executions that hit “Out of Bound”
errors as successful executions

• Fixed segfault when encountering “out of memory” errors when starting profiles

Neuron Profiler 2.0 (Beta)

• Reduced overhead of Neuron Profiler 2.0 to <1% of overall latency

• Added new nrt_sys_trace_fetch_events API to retrieve system trace events

• Added out of bound error events to system trace

• Removed the NEURON_RT_INSPECT_DURATION_NSEC and NEURON_RT_INSPECT_START_OFFSET_NSEC con-
figuration options

NKI

• Added dynamic DMA support for block scatter ops

• Added RangeSelect instruction Support for the Vector engine

Neuron Runtime Library [2.23.112.0]

Date: 01/14/2025

Bug fixes

• Fixed DMA abort errors on TRN2.
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Neuron Runtime Library [2.23.110.0]

Date: 12/20/2024

New in this release

• Added Trainium2 support

• Added runtime support to detect and fail on out-of-bound memory access in DMA operations

• Added support for 4-rank replica group on adjacent Neuron cores on TRN1/TRN1N

• Added new profiling API for capturing system and device profiles. This feature is currently in beta. See the
Neuron Profiler 2.0 (Beta) documentation for usage. (reference)

Improvements

• Reduced runtime host RAM utilization

• Improved Neff context switch overhead reducing latency by up to 500us

• Split hardware errors into more granular categories
– NRT_EXEC_HW_ERR_HBM_UE (1201)

– NRT_EXEC_HW_ERR_NC_UE (1202)

– NRT_EXEC_HW_ERR_DMA_ABORT (1203)

• Updated runtime to breakdown DMA ring memory usage into more detailed categories
– dma rings io

– dma rings spill

– dma rings collectives

– dma rings runtime

• Updated the nrt_load error path to print a clear error message when failing to load a collectives Neff instead
of aborting

Bug fixes

• Fixed multiple memory corruptions and exhaustions on the collectives failure path

• Fixed bug where incorrect execution status was passed to the async execution callback
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End of Support

• Removed INF1 Support from Runtime library

Neuron Runtime Library [2.22.19.0]

Date: 11/20/2024

New in this release

• Minor improvements and bug fixes

Neuron Runtime Library [2.22.14.0]

Date: 09/16/2024

New in this release

• Improved the inter-node mesh algorithm to scale better for larger number of nodes and larger allreduce problem
sizes

Bug fixes

• Implemented a fix that differentiate between out-of-memory (OOM) conditions occurring on the host system
versus the device when an OOM event occurs

• Resolved a performance issue with transpose operations, which was caused by an uneven distribution of work
across DMA engines

Neuron Runtime Library [2.21.41.0]

Date: 07/03/2024

New in this release

• Improved collectives performance on small buffers

• Improved memory utilization by reducing the size of collective buffers

• Logging improvements including improvements for HW errors, out of bounds issues, and collectives

• Added fine grained NRT error return codes for execution errors (reference)
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Bug fixes

• Fixed bug where runtime was incorrectly reporting instruction offsets to the profiler

Neuron Runtime Library [PATCH 2.20.22.0]

Date: 04/01/2024

Bug fixes

• Fixed a bug where setting NEURON_SCRATCHPAD_PAGE_SIZE to a non-power of two value could lead to
unnecessary Neuron memory allocations.

• Fixed messaging so that logs of benign numerical errors do not include a full dump of runtime state.

• Fixed a bug that was causing Neuron Collectives to consume excessive amount of Neuron memory, causing out
of memory errors during model load.

• Fixed a bug where the Runtime would fail to report a hardware error while the status API reported instance
retirement.

• Fixed a hang in Neuron Collectives that could occur when subgraphs running on different workers had a different
number of replicas.

Neuron Runtime Library [2.20.11.0]

Date: 02/13/2024

New in this release

• Improved performance of collective communication operators (CC ops) by up to 30% for problem sizes smaller
than 16MB. This is a typical size of CC ops when executing LLM inference.

• Added support for inter-node alltoall which is a MoE use case.

• Added NRT version check across all ranks to make sure all ranks are using the same runtime.

• Improved logging on collectives timeout during model execution.
– “(FATAL-RT-UNDEFINED-STATE) missing collectives status on Neuron Device 0 NC 0, model

model.neff - suspected hang in collectives operation 0 out of 32”

• Log HBM uncorrectable errors on timeout if any occurred during model execution.
– “(FATAL-RT-UNDEFINED-STATE) encountered uncorrectable memory error on Neuron Device 0,

execution results may be invalid. Please terminate or start/stop this instance to recover from bad hard-
ware.”
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Bug fixes

• Fixed bug where metrics were undercounting the amount of memory used for a loaded model.

• Fixed bug which prevented the runtime from reporting more than 32 loaded models to metrics.

• Fixed replica group signature calculation check.

Neuron Runtime Library [2.19.5.0]

Date: 12/21/2023

New in this release

• Added Out-of-bound error detection logic for Gather/Scatter operations
– Out-of-bound error message “failed to run scatter/gather (indirect memory copy), due to out-of-bound

access” will be displayed on an OOB error

– The runtime execution will return an “Out of Bound” error return code in the case an OOB
error occurs

∗ NRT_EXEC_OOB = 1006

• Improved Neff not supported error message to list out runtime supported features vs features used by the
Neff

– Example output: “NEFF version 2.0 uses unsupported features: [0x100000]. Neuron Runtime NEFF
supported features map: [0x1ff]. Please update the aws-neuronx-runtime-lib package”

• Increased limit of multicore custom ops functions
– Total number of CustomOps in a model has been increased to 10.

– Note: these 10 ops have to reside in one .so, as a result, they either have to be all single core op or all
multicore op.

Neuron Runtime Library [2.18.15.0]

Date: 11/09/2023

Bug fixes

• Removed unnecessary data collection during execution logging which could impact performance.
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Neuron Runtime Library [2.18.14.0]

Date: 10/26/2023

New in this release

• Add beta Collectives barrier API (nrt_barrier) to nrt_experimental.h

• Improved error handling and logging for NaNs produced by intermediate calculations that do not affect output.

• Improved logging by surfacing model id on load and execution errors.

• Output a better error message when Neff fails to load due to JSON size issues, e.g. “File sg00/def.json size
(8589934592) exceeds json parser maximum (4294967295)”

Bug fixes

• Fixed logging error message to specify Neuron Cores instead of Neuron Devices when loading unsupported
collectives topology.

• Fixed segfault on error path when Neuron Device fails to initialize.

Neuron Runtime Library [2.17.7.0]

Date: 9/14/2023

New in this release

• Improved logging by printing out NEFF name in debug logs of nrt_execute

Bug fixes

• Fixed hang that would occur when running a NEFF which contains embedding update instructions in multiple
functions.

• Fixed issue where the Neuron Runtime registered the same memory multiple times to an EFA device causing
applications to exceed the number of physical pages that could be registered.

• Fixed assert (void tvm::runtime::GraphRuntime::PatchDltDataPtr(DLTensor*,
uint32_t*, size_t): Assertion `tensor_get_mem_type(grt->io_tensor) ==
NRT_TENSOR_MEM_TYPE_MALLOC' failed.) that occured on INF1 caused by an uninitialized pointer.

• Fixed potential hang that can occur when partial replica groups for collectives are present in a NEFF.
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Neuron Runtime Library [2.16.14.0]

Date: 9/01/2023

Bug fixes

• Fixed a segfault on failure to complete Neuron Device initialization. New behavior will avoid the failure and
escalate a fixed Neuron Runtime error code (NERR_FAIL, code 0x1)

• Improved error messages around Neuron Device initialization failures.

Neuron Runtime Library [2.16.8.0]

Date: 8/09/2023

New in this release

• Add runtime version and capture time to NTFF

• Improved Neuron Device copy times for all instance types via async DMA copies

• Improved error messages for unsupported topologies (example below)

global comm ([COMM ID]) has less channels than this replica group ([REPLICA GROUP ID]) :

likely not enough EFA devices found if running on multiple nodes or CC not permitted on this group
[[TOPOLOGY]]

• Improved logging message for collectives timeouts by adding rank id to trace logs (example below)

[gid: [RANK ID]] exchange proxy tokens

• Improved error messages when loading NEFFs with unsupported instructions (example below)

Unsupported hardware operator code [OPCODE] found in neff.

Please make sure to upgrade to latest aws-neuronx-runtime-lib and aws-neuronx-collective; for de-
tailed installation instructions visit Neuron documentation.

Bug fixes

• Fixed “failed to get neighbor input/output addr” error when loading collectives NEFF compiled with callgraph
flow and NEFF without callgraph flow.

Neuron Runtime Library [2.15.14.0]

Date: 8/09/2023
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New in this release

• Reduced the contiguous memory size requirement for initializing Neuron Runtime on trn1/inf2 instance families
by shrinking some of the notification buffers. A particularly large decrease was the reduction of a 4MB error
notification buffer down to 64K. Expectation is that under memory constrained or highly fragmented memory
systems, the Neuron Runtime would come up more reliably than previous versions.

Neuron Runtime Library [2.15.11.0]

Date: 7/19/2023

New in this release

• Added beta asynchronous execution feature which can reduce latency by roughly 12% for training workloads.
See Runtime Configuration guide for details on how to use the feature.

• AllReduce with All-to-all communication pattern enabled for 16 ranks on TRN1/TRN1N within the instance
(intranode); choice of 16 ranks is limited to NeuronCores 0-15 or 16-31.

• Minor improvement in end-to-end execution latency after reducing the processing time required for benign error
notifications.

• Reduced notification overhead by using descriptor packing improving DMA performance for memory bound
workloads by up to 25%.

• Improved load speed by removing extraneous checks that were previously being performed during loads.

• Minor performance boost to CC Ops by removing the need to sort execution end notifications.

• Bumped profiling NTFF version to version 2 to remove duplicate information which may result in hitting protobuf
limits, and avoid crashing when using an older version of Neuron tools to postprocess the profile. Please upgrade
to Neuron tools 2.12 or above to view profiles captured using this version of the Neuron runtime.

Neuron Runtime Library [2.14.8.0]

Date: 6/14/2023

New in this release

• Added All-to-All All-Reduce support for Neuron Collective operations, which is expected to improve All-Reduce
performance by 3-7x in most cases.

• Added more descriptive NEURON_SCRATCHPAD_PAGE_SIZE to eventually replace NEU-
RON_RT_ONE_TMPBUF_PAGE_SIZE_MB

• Neuron Runtime is now getting the device BDF from Neuron Driver for internal use.
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Bug fixes

• Fixed rare race condition caused by DMA memory barrier not being set for certain data transfers leading to
non-determinism in outputs

• Fixed NeuronCore latency not being counted properly in Neuron metrics

• Removed stack allocation of error notifications buffer when parsing error notifications, which may lead to stack
overflows on smaller stack sizes.

Neuron Runtime Library [2.13.6.0]

Date: 05/01/2023

New in this release

• Added support for internal Neuron Compiler change, Queue Set Instances, which leads to reduced NEFF foot-
prints on Neuron Devices. In some cases, the reduction is as much as 60% smaller DMA ring size.

Bug fixes

• Fixed a rare fabric deadlock scenario (hang) in NeuronCore v2 related to notification events.

• Ensure tensor store writes are complete before synchronization event is set.

Neuron Runtime Library [2.12.23.0]

Date: 04/19/2023

Bug fixes

• Minor internal bug fixes.

Neuron Runtime Library [2.12.14.0]

Date: 03/28/2023

New in this release

• Added support for 16 channels and 16 EFA devices, which is required for enabling EC2 TRN1N instances with
Neuron.

• Added support for hierarchical All-Reduce and Reduce-Scatter. These implementations are now used by default
and provides up to 75% reduction in latency for 2MB buffers across 256 ranks.

• Added support for loading more than one Neuron Custom Operator library.

• Added support for loading multicore Neuron Custom Operators.

• Updated INF2 to support rank 1 topology.
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• Minor improvement in model load time for small models (below 100MB).

Neuron Runtime Library [2.11.43.0]

Date: 02/08/2023

New in this release

• Added support for Neuron Custom C++ operators as a beta feature. As of this release, usage of Custom C++
operators requires a reset of the Neuron Runtime after running a model which invoked a Neuron Custom C++
operator.

• Added support for a counter that enable measuring FLOPS on neuron-top and neuron-monitor.

• Added support for LRU cache for DMA rings.

Bug fixes

• Fixed load failures due to memory bounds checking for Neuron Collective Compute operations in Runtime during
model load.

• Fixed an internal bug that was preventing Neuron Runtime metrics from posting.

• Fixed a bug that caused segfaults as a result of double frees and stack overflows.

Neuron Runtime Library [2.10.18.0]

Date: 11/07/2022

New in this release

• Minor bug fixes and enhancements.

Neuron Runtime Library [2.10.15.0]

Date: 10/26/2022

New in this release

• Changed default runtime behavior to reset NeuronCores when initializing applications. With this change, the
reseting of the Neuron Driver after application crash is no longer necessary. The new reset functionality is
controled by setting environment variable: NEURON_RT_RESET_CORES, see NeuronX Runtime Configuration for
more information.
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Bug fixes

• Fixed a bug where Stochastic Rounding was not being set for collective communication operators

• Fixed an issue with triggering DMA for large tensors

• Increased default execution timeout to 30 seconds

• Fixed IOQ resetting queue to incorrect ring id value

• Updated the Neuron driver for more reliable behavior of driver device reset. Driver no longer busy waits on reset
or gets stuck waiting on reset, which caused kernel taints or caused driver unload attempts to fail.

• Fixed a bug the prevented collective communication over tensors larger than 2GB

• Fixed a bug that caused intermittent memory corruption when unloading a model

• Fixed a bug that caused the exhausting of EFA memory registration pool after multiple model reloads.

Neuron Runtime Library [2.9.64.0]

Date: 10/10/2022

This release specifically adds support for training workloads on one or more EC2 TRN1 instances.

Required Neuron Driver Version: 2.5 or newer

New in this release

• Broke out runtime into a separate package called aws-neuronx-runtime-lib.

• Added RUNPATH for discovery of libnrt.so, can be overridden with LD_LIBRARY_PATH.

• Added support for multiple collective compute operations, e.g. All-Reduce, Reduce-Scatter, All-Gather.

• Added Send/Recv operation support

• Added support for using multiple DMA engines with single pseudo embedding update instruction.

• Changed instruction buffer alignment to 32K.

• Reduced memory required during NEFF swapping.

• Enabled notifications for send/recv collectives operations.

• Added trace apis in support of execution profiling.

• Added support for TPB reset (default: off).

• Added version checking for libnccom (aws-neuronx-collectives).

• Added new runtime version API.

• Added 8-channel support for Trn1.

• Improved debug outputs.

• Added support for write combining on BAR4.

• Increased default execution timeout from 2 seconds to 30 seconds.

• Improved handling of zero-sized tensors
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Neuron Runtime 2.x (libnrt.so) release [2.2.51.0]

Date: 03/25/2022

• Fixed an invalid memory access that could occur when unloading models.

• Reduced severity of logging for numerical errors from ERROR to WARN.

• Improved handling of models with numerous CPU operations to avoid inference failure due to memory exhaus-
tion.

Neuron Runtime 2.x (libnrt.so) release [2.2.31.0]

Date: 01/20/2022

New in the release

• Changed error notifications from WARN to ERROR in cases when the causing problem is non-recoverable.

• Changed handling of inference timeouts (NERR_TIMEOUT) to avoid failure when the timeout is related to a soft-
ware thread scheduling conflict.

Bug fixes

• Increased the number of data queues in Neuron Runtime 2.x to match what was previously used in Neuron
Runtime 1.x. The use of fewer number of data queues in Neuron Runtime 2.x was leading to crashes in a limited
number of models.

• Fixed the way Neuron Runtime 2.x updates the inference end timestamp. Previously, Neuron Runtime 2.x update
of the inference end timestamp would have lead to a negative latency statistics in neuron-monitor with certain
models.

Neuron Runtime 2.x (libnrt.so) release [2.2.18.0]

Date: 11/05/2021

• Resolved an issue that affect the use of Neuron within container. In previous Neuron Runtime release (lib-
nrt.so.2.2.15.0), when /dev/neuron0 was not used by the application, Neuron Runtime attempted and failed
to initialize /dev/neuron0 because user didn’t pass /dev/neuron0 to the container. this Neuron Runtime re-
lease (libnrt.so.2.2.18.0) allows customers to launch containers with specific NeuronDevices other than
/dev/neuron0.

Neuron Runtime 2.x (libnrt.so) release [2.2.15.0]

Date: 10/27/2021
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New in this release

• First release of Neuron Runtime 2.x - In this release we are introducing Neuron Runtime 2.x which is a shared li-
brary named (libnrt.so) and replacing Neuron Runtime 1.x server (neruon-rtd) . Upgrading to libnrt.so
improves throughput and latency, simplifies Neuron installation and upgrade process, introduces new capabili-
ties for allocating NeuronCores to applications, streamlines container creation, and deprecates tools that are no
longer needed. The new library-based runtime (libnrt.so) is integrated into Neuron’s ML Frameworks (with
the exception of MXNet 1.5) and Neuron Tools packages directly - users no longer need to install/deploy the
aws-neuron-runtimepackage.

Important:
– You must update to the latest Neuron Driver (aws-neuron-dkms version 2.1 or newer) for proper func-

tionality of the new runtime library.

– Read Introducing Neuron Runtime 2.x (libnrt.so) application note that describes why are we making this
change and how this change will affect the Neuron SDK in detail.

– Read Migrate your application to Neuron Runtime 2.x (libnrt.so) for detailed information of how to migrate
your application.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

Neuron Driver Release Notes

Table of contents

• Known issues

• Neuron Driver release [2.22.2.0]

• Neuron Driver release [2.21.37.0]

• Neuron Driver release [2.20.74.0]

• Neuron Driver release [2.20.28.0]

• Neuron Driver release [2.19.64.0]

• Neuron Driver release [2.18.20.0]

• Neuron Driver release [2.18.12.0]

• Neuron Driver release [2.17.17.0]

• Neuron Driver release [2.16.7.0]

• Neuron Driver release [2.15.9.0]

• Neuron Driver release [2.14.5.0]

• Neuron Driver release [2.13.4.0]

• Neuron Driver release [2.12.18.0]

• Neuron Driver release [2.12.11.0]

• Neuron Driver release [2.11.9.0]
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• Neuron Driver release [2.10.11.0]

• Neuron Driver release [2.9.4.0]

• Neuron Driver release [2.8.4.0]

• Neuron Driver release [2.7.33.0]

• Neuron Driver release [2.7.15.0]

• Neuron Driver release [2.6.26.0]

• Neuron Driver release [2.5.38.0]

• Neuron Driver release [2.3.26.0]

• Neuron Driver release [2.3.11.0]

• Neuron Driver release [2.3.3.0]

• Neuron Driver release [2.2.14.0]

• Neuron Driver release [2.2.13.0]

• Neuron Driver release [2.2.6.0]

• Neuron Driver release [2.1]

Known issues

Updated : 04/29/2022

• In rare cases of multi-process applications running under heavy stress a model load failure my occur. This may
require reloading of the Neuron Driver as a workaround.

Neuron Driver release [2.22.2.0]

Date: 06/24/2025

Bug Fixes

• Added workaround for HW DGE descriptor fetching bug

• Fixed typos in certain error log messages

Upcoming Neuron driver 2.21 support changes for Inf1 instance users

• Starting with Neuron Release 2.26, Neuron driver versions above 2.21 will only support non-Inf1 instances (such
as Trn1, Inf2, or other instance types).

• Inf1 instance users, Neuron driver 2.21 and below will remain supported with regular security patches.

• Inf1 instance users are advised to pin the Neuron driver version to 2.21.* in their installation script using
following command:

sudo apt-get install aws-neuronx-dkms=2.21.* -y
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Neuron Driver release [2.21.37.0]

Date: 05/19/2025

New in this release

• Added the ability for users to read power utilization for each neuron device via a sysfs interface. This interface
shows the minimum, maximum and average power consumed by the device over the past minute, expressed as a
percentage of the device’s maximum power. (reference)

• Added the ability for users to read the device utilization. This shows up as the microseconds between the start
and end of the current execution on hardware. (reference)

Neuron Driver release [2.20.74.0]

Date: 05/12/2025

New in this release

• Fixes DMA abort errors on Trainium2 that could occur in Neuron Runtime during specific workloads.

Neuron Driver release [2.20.28.0]

Date: 04/03/2025

New in this release

• This driver is required to run with Neuron Runtime 2.24 or later on Trainium2 machines. Included in the release
is a bug fix to avoid device memory corruption issues leading to undefined Neuron Device behavior.

Improvements

• Improved interface between libnrt and the Driver resulting in stability improvements.

Neuron Driver release [2.19.64.0]

Date: 12/20/2024
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New in this release

• Added Trainium2 support

Improvements

• Optimized HBM Memory allocation to reduce fragmentation. See here for more details.

Neuron Driver release [2.18.20.0]

Date: 11/20/2024

Bug Fixes

• This release addresses an issue with Neuron Driver that can lead to a user-space application either gaining access
to kernel addresses or providing the driver with spoofed memory handles (kernel addresses) that can be potentially
used to gain elevated privileges. We would like to thank Cossack9989 for reporting and collaborating on this
issue.

Neuron Driver release [2.18.12.0]

Date: 09/16/2024

New in this release

• Introduced a sysfs memory usage counter for DMA rings (reference)

Bug Fixes

• Resolved an issue where a memory allocation failure caused a hang due to the memory allocation lock not being
released

• Resolved an issue where the driver was allocating more memory than needed for aligned device allocations

Neuron Driver release [2.17.17.0]

Date: 07/03/2024
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New in this release

• Improved detection and reporting of DMA errors

• Added more fine grained sysfs metrics to track memory allocation types

• Logging improvements

Bug Fixes

• Fixed compatibility issues for the Linux 6.3 kernel

• Resolved issue where device reset handling code was not properly checking the failure metric

Neuron Driver release [2.16.7.0]

Date: 04/01/2024

Bug Fixes

• Fixed installation issues caused by API changes in Linux 6.3 and 6.4 kernel distributions.

• Fixed an installation build failure when fault-injection is enabled in the kernel.

• Fixed an issue where sysfs total peak memory usage metrics can underflow

• Removed usage of sysfs_emit which is not supported on Linux kernels <= v5.10-rc1

Neuron Driver release [2.15.9.0]

Date: 12/21/2023

Bug Fixes

• Release PCIe BAR4 on driver startup failure

• Fix container BDF indexing issues to support relative device ordering used by containers

• Remove incorrect error message in neuron_p2p_unregister_va and harden P2P error checking

Neuron Driver release [2.14.5.0]

Date: 10/26/2023
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New in this release

• Show uncorrectable SRAM and HBM ECC errors on TRN1 and INF2

• Fixed double free on error path during driver startup

Neuron Driver release [2.13.4.0]

Date: 9/14/2023

New in this release

• Added sysfs support for showing connected devices on trn1.32xl, inf2.24xl, and inf2.48xl instances.

Neuron Driver release [2.12.18.0]

Date: 9/01/2023

Bug Fixes

• Added fixes required by Neuron K8 components for improving reliability of pod failures (see Neuron K8 release
notes for more details).

• Added fixes required by Neuron K8 components to support zero-based indexing of Neuron Devices in Kubernetes
deployments.

Neuron Driver release [2.12.11.0]

Date: 8/28/2023

New in this release

• Added FLOP count to sysfs (flop_count)

• Added connected Neuron Device ids to sysfs (connected_devices)

• Added async DMA copy support

• Suppressed benign timeout/retry messages
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Bug Fixes

• Allocated CC-Core to correct NeuronCore; splitting CC-Cores evenly between NeuronCores.

Neuron Driver release [2.11.9.0]

Date: 7/19/2023

New in this release

• Added support for creating batch DMA queues.

Bug Fixes

• Error message, “ncdev is not NULL”, was being printed unnecessarily. Fixed.

• Fix DMA timeouts during NeuronCore reset of neighboring core caused by incorrect nc_id (NeuronCore ID)
assigned to reserved memory

Neuron Driver release [2.10.11.0]

Date: 6/14/2023

New in this release

• Added memory usage breakdown by category to the Neuron Sysfs nodes. New categories are code, misc, tensors,
constants, and scratchpad. Please see the Sysfs page under Neuron Tools for more detailed description of each.

• Improved NeuronCore initialization (nrt_init) performance by approximately 1 second.

Bug Fixes

• Fixed small timing window during NeuronCore resets, which previously would timeout during memcpy

• Removed potential double free of memory when terminating the Neuron Driver.

• Fixed sysfs race condition, which was leading to Neuron Driver crash during termination.

Neuron Driver release [2.9.4.0]

Date: 05/01/2023
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New in this release

• Added dma_buf support, which is needed for future EFA implementations in the Linux kernel.

• Added new IOCTL to get Neuron Device BDF (used by Neuron Runtime)

• Added optional support for sysfs notify (off by default). See Neuron Sysfs documentation (under Neuron System
Tools) for more details.

Bug Fixes

• Fixed max DMA queue size constant to be the correct size - previous incorrect sizing had potential to lead to
DMA aborts (execution timeout).

Neuron Driver release [2.8.4.0]

Date: 03/28/2023

New in this release

• Supports both Trn1n and Inf2 instance types.

• Renamed NEURON_ARCH_INFERENTIA=>NEURON_ARCH_V1 and NEU-
RON_ARCH_TRN=>NEURON_ARCH_V2

• Under sysfs nodes, the following changes were made:

– Changed “infer” metrics to “execute” metrics

– Added peak memory usage metric

– Removed empty dynamic metrics directory

– Removed refresh rate metric

– Fixed arch type names in sysfs

Bug Fixes

• Fixed minor memory leak when closing the Neuron Runtime.

• Fixed memory leaks on error paths in Neuron Driver.

• Added a workaround to resolve hangs when NeuronCore reset is ran while another core is performing DMA
operations.
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Neuron Driver release [2.7.33.0]

Date: 02/24/2023

Bug Fixes

• Added a retry mechanism to mitigate possible data copy failures during reset of a NeuronCore. An info log
message will be emitted when this occurs indicating that the retry was attempted. An example:

kernel: [726415.485022] neuron:ndma_memcpy_wait_for_completion: DMA completion␣
→˓timeout for UDMA_ENG_33 q0
kernel: [726415.491744] neuron:ndma_memcpy_offset_move: Failed to copy memory␣
→˓during a NeuronCore reset: nd 0, src 0x100154480000, dst 0x100154500000, size␣
→˓523264. Retrying the copy.

Neuron Driver release [2.7.15.0]

Date: 02/08/2023

New in this release

• Added Neuron sysfs metrics under /sys/devices/virtual/neuron_device/neuron{0,1, ...}/
metrics/

Neuron Driver release [2.6.26.0]

Date: 11/07/2022

New in this release

• Minor bug fixes and improvements.

Neuron Driver release [2.5.38.0]

Neuron Driver now supports INF1 and TRN1 EC2 instance types. Name of the driver package changed from aws-
neuron-dkms to aws-neuronx-dkms. Please remove the older driver package before installing the newest one.

Date: 10/10/2022
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New in this release

• Support added for EC2 Trn1 instance types and ML training workloads.

• Added missing GPL2 LICENSE file.

• Changed package name to aws-neuronx-dkms (was previously minus the ‘x’).

• Security Update – blocked user space access to control registers and DMA control queues intended to be used
by the Neuron Driver only.

• Added support for DMA Aborts to avoid hangs.

• Added support for TPB Reset.

• Added sysfs entries for triggering resets and reading core counts.

• Added write combining on BAR4.

• Added PCI Device ID update as part of install.

• Added handling for known duplicate device id error.

Bug Fixes

• Fixed a null pointer free scenario.

• Fixed installation issue related to install without internet connectivity.

Neuron Driver release [2.3.26.0]

Date: 08/02/2022

Bug Fixes

• Security Update: Blocked user space access to control registers and DMA control queues intended to be used by
the Neuron Driver only. Recommending upgrade to all customers.

Neuron Driver release [2.3.11.0]

Date: 05/27/2022

New in this release

• This driver is required to support future releases of the Neuron Runtime. Included in the release is both a bug fix
to avoid a kernel crash scenario and an increased compatibility range to ensure compatibility with future versions
of Neuron Runtime.
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Bug Fixes

• Correction to huge aligned memory allocation/freeing logic that was previously susceptible to crashes in the
kernel. The crash would bring down the OS. Recommending upgrade to all customers.

Neuron Driver release [2.3.3.0]

Date: 04/29/2022

New in this release

• Minor performance improvements on inference and loading of models.

Bug Fixes

• Reduced Host CPU usage when reading hw_counters metric from neuron-monitor

• Minor bug fixes.

Neuron Driver release [2.2.14.0]

Date: 03/25/2022

New in this release

• Minor updates

Neuron Driver release [2.2.13.0]

Date: 01/20/2022

New in this release

• Minor updates

Neuron Driver release [2.2.6.0]

Date: 10/27/2021
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New in this release

• Memory improvements made to ensure all allocations are made with 4K alignments.

Resolved issues

• No longer delays 1s per NeuronDevice when closing Neuron Tools applications.

• Fixes a Ubuntu 20 build issue

Neuron Driver release [2.1]

• Support is added for Neuron Runtime 2.x (libnrt.so).

• Support for previous releases of Neuron Runtime 1.x is continued with Driver 2.x releases.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

Neuron Collectives Release Notes

Neuron Collectives refers to a set of libraries used to support collective compute operations within the Neuron SDK.
The collectives support is delivered via the aws-neuronx-collectives package and includes a pre-built version of the
OFI plugin required for use of collectives with Elastic Fabric Adapter (EFA).

Table of contents

• Neuron Collectives [2.26.43.0]

• Neuron Collectives [2.25.65.0]

• Neuron Collectives [2.24.59.0]

• Neuron Collectives [2.23.135.0]

• Neuron Collectives [2.23.133.0]

• Neuron Collectives [2.22.26.0]

• Neuron Collectives [2.21.46.0]

• Neuron Collectives [2.20.22.0]

• Neuron Collectives [2.20.11.0]

• Neuron Collectives [2.19.7.0]

• Neuron Collectives [2.18.18.0]

• Neuron Collectives [2.17.9.0]

• Neuron Collectives [2.16.16.0]

• Neuron Collectives [2.16.8.0]

• Neuron Collectives [2.15.16.0]

• Neuron Collectives [2.15.13.0]
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• Neuron Collectives [2.14.9.0]

• Neuron Collectives [2.13.7.0]

• Neuron Collectives [2.12.35.0]

• Neuron Collectives [2.12.22.0]

• Neuron Collectives [2.11.47.0]

• Neuron Collectives [2.10.20.0]

• Neuron Collectives [2.9.86.0]

Neuron Collectives [2.26.43.0]

Date: 06/24/2025

Bug fixes

• Fixed various memory leaks which occur during process cleanup

Neuron Collectives [2.25.65.0]

Date: 05/19/2025

New in this release

• Added multinode collectives support for Trainium2 instances without EFA devices

Improvements

• Minor performance improvement to network proxy handshake

Bug fixes

• Fixed memory leak clearning up communication devices during nrt_close

Neuron Collectives [2.24.59.0]

Date: 04/03/2025
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Improvements

• Improved interface between libnccom and libnrt resulting stability improvements

Neuron Collectives [2.23.135.0]

Date: 01/14/2025

Improvements

• Aws-ofi-nccl: minor performance improvement

Neuron Collectives [2.23.133.0]

Date: 12/20/2024

New in this release

• Added Trainium2 support

Improvements

• Improved startup times for large scale training jobs by up to 5 seconds

• Enhanced error logging for bootstrap failures

Neuron Collectives [2.22.26.0]

Date: 09/16/2024

New in this release:

• Added check to print out an error message on invalid NEURON_RT_ROOT_COMM_ID configurations

Bug fixes

• Resolved an issue where the libnccom.so filename was versioned incorrectly as libnccom.so.2.y.y. Will
be correctly versioned as libnccom.so.2.22.26 in this release.
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Neuron Collectives [2.21.46.0]

Date: 07/03/2024

New in this release:

• Bootstrap changes to improve application startup latency for large-scale workloads

• Logging improvements

Neuron Collectives [2.20.22.0]

Date: 04/01/2024

New in this release:

• minor bug fixes and enhancements

Neuron Collectives [2.20.11.0]

Date: 02/13/2024

Bug Fixes

• Require “libatomic” for rpm installs

Neuron Collectives [2.19.7.0]

Date: 12/21/2023

New in this release

• Improve collectives barrier latency from 500us to 40us

Bug Fixes

• Fix bug where proxy thread blocks the runtime from adding ops leading to an execution hang
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Neuron Collectives [2.18.18.0]

Date: 10/26/2023

New in this release: * Bumpped compatibility version to 17 to align with struct change in the nec.h header

Neuron Collectives [2.17.9.0]

Date: 9/14/2023

New in this release: * minor bug fixes and enhancements

Neuron Collectives [2.16.16.0]

Date: 9/01/2023

New in this release: * minor bug fixes and enhancements

Neuron Collectives [2.16.8.0]

Date: 8/28/2023

New in this release:

• Improved error messages for unsupported topologies

• Improved timeout error messages for bootstrapInit

Bug Fixes: * Fix bug where Linux kernel version check for SAFE_FORK env variable was incorrectly requiring
SAFE_FORK to be set on kernel versions greater than 5

Neuron Collectives [2.15.16.0]

Date: 8/09/2023

New in this release:

• minor bug fixes and enhancements

Neuron Collectives [2.15.13.0]

Date: 7/19/2023

New in this release:

• AllReduce with All-to-all communication pattern enabled for 16 ranks on TRN1/TRN1N within the instance
(intranode); choice of 16 ranks is limited to NeuronCores 0-15 or 16-31.

Bug Fixes:

• Fix incorrect mask calculation for 16 ranks when using NeuronCores 16-31

• Fix channels for 16 ranks to avoid failures in the runtime; restrict participating ranks to 0-15 or 16-31
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Neuron Collectives [2.14.9.0]

Date: 6/14/2023

New in this release

• Added check for FI_EFA_FORK_SAFE environment variable; now forcing the flag to be set to 1 for multinode
runs executing on Linux kernels older than 5.15.

Neuron Collectives [2.13.7.0]

Date: 05/01/2023

New in this release

• Added support for dma_buf - required for future EFA and Linux kernel updates.

• Reduced benign reporting of timeouts. Previous implementations reported “Timeout waiting for incoming con-
nection” too frequently (log spam).

Neuron Collectives [2.12.35.0]

Date: 04/19/2023

Bug Fixes

• Fixed support for SOCKET_IFNAME config that was affecting EKS users at scale on large training jobs.

Neuron Collectives [2.12.22.0]

Date: 03/28/2023

New in this release

• Added support for TRN1N.

• Added support for 16 channels and 16 EFA devices, which is required for enabling EC2 TRN1N instances with
Neuron.

• Added support for hierarchical All-Reduce and Reduce-Scatter. These implementations are now used by default
and provides up to 75% reduction in latency for 2MB buffers across 256 ranks.

Neuron Collectives [2.11.47.0]

Date: 02/08/2023

New in this release

• Added support for Inf2.
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Neuron Collectives [2.10.20.0]

Date: 10/10/2022

New in this release

• Improved logging to appear similar in style to Neuron Runtime

Bug Fixes

• Fixed memory registration to support 2GB+ sizes

• Fixed association of network devices to channels (removes previous hard-coding).

Neuron Collectives [2.9.86.0]

Date: 10/10/2022

New in this release

• Added support for All-Reduce, Reduce-Scatter, All-Gather, and Send/Recv operations.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

API Reference Guide

• Runtime API

Configuration Guide

• Runtime Configuration

Misc

• Troubleshooting on Inf1 and Trn1

• FAQ

• Neuron Runtime Release Notes

• Neuron Driver Release Notes

• Neuron Collectives Release Notes

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2
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6.2 Monitoring Tools

This document is relevant for: Inf1, Inf2, Trn1, Trn2

6.2.1 Neuron Monitor User Guide

Table of contents

• Overview

• Using neuron-monitor

– Configuration file example

– Neuron applications tagging

– JSON objects and fields in the configuration file

– Neuron Runtime-level metric groups

– System-wide metric groups

• Execution model

• The JSON output format

– instance_info

– neuron_hardware_info

– neuron_k8s_info

– Metric Groups

• Neuron application level metric groups

– neuroncore_counters

– execution_stats

– memory_used

– neuron_runtime_vcpu_usage

• System level metric groups

– neuron_hw_counters

– vcpu_usage

– memory_info

• Companion scripts

– neuron-monitor-cloudwatch.py

– neuron-monitor-prometheus.py

– neuron-monitor-k8s-info.py (Beta)

• Running neuron monitor in Kubernetes environment
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Overview

neuron-monitor collects metrics and stats from the Neuron Applications running on the system and streams the col-
lected data to stdout in JSON format. It is provided as part of the aws-neuron-tools package.

These metrics and stats are organized into metric groups which can be configured by providing a configuration file as
described in Using neuron-monitor

When running, neuron-monitor will:

• Collect the data for the metric groups which, based on the elapsed time since their last update, need to be updated

• Take the newly collected data and consolidate it into a large report

• Serialize that report to JSON and stream it to stdout from where it can be consumed by other tools - such as the
sample neuron-monitor-cloudwatch.py and neuron-monitor-prometheus.py scripts.

• Wait until at least one metric group needs to be collected and repeat this flow

Note: neuron-monitor fully supports the newly launched Trn2 instances.

Using neuron-monitor

neuron-monitor CLI

neuron-monitor [parameters]

neuron-monitor accepts the following optional parameters:

• --verbose (int) default=0: Can be 0 to 4, and controls the amount of debugging and verbose information
sent to stderr; 0: no output, 4: maximum verbosity

• -c, --config-file (string): Allows specifying a valid path to a neuron-monitor JSON configuration file

Example:

neuron-monitor -c monitor.conf

Not specifying any configuration file will enable collecting all the metric groups with a period of 5 seconds for all
currently running Neuron applications.

Configuration file example

Example of a configuration file which enables all available metric groups for every running Neuron application, with
a global update period of 1 second and sets an update period of 2 seconds for the "neuron_hw_counters" metric
group:

{
"period": "1s",
"neuron_runtimes": [
{
"tag_filter": ".*",
"metrics": [
{
"type": "neuroncore_counters"

(continues on next page)
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(continued from previous page)

},
{
"type": "memory_used"

},
{
"type": "neuron_runtime_vcpu_usage"

},
{
"type": "execution_stats"

}
]

}
],
"system_metrics": [
{
"type": "vcpu_usage"

},
{
"type": "memory_info"

},
{

"period": "2s",
"type": "neuron_hw_counters"

}
]

}

Neuron applications tagging

In order to make application monitoring easier, Neuron applications can be tagged with a 255 character string which
identifies that app. Tagging is done using the NEURON_PROCESS_TAG environment variable.

For example: NEURON_PROCESS_TAG=my_app_1 python training.py will associate the my_app_1 tag with that
Python application. If NEURON_PROCESS_TAG is not specified, the application’s PID will be used as a TAG.

This tag will be used by neuron-monitor to filter Neuron applications.

JSON objects and fields in the configuration file

• "neuron_runtimes" - array of objects specifying which Neuron Applications to monitor and what metric
groups are enabled for each of them

– "tag_filter" - a regex which will be used to filter Neuron applications tags in order to determine if they
will be monitored (optional)

– "metrics" - array of objects specifying which metric groups to capture for this Neuron application

∗ "type" - type of metric group

• "period" - this field applies to metric group objects and sets the amount of time between two updates for that
metric group

– if can be specified as part of the root and/or neuron_runtime objects where it applies to all their children,
and/or as part of a metric group object
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– if there’s no period specified, a default value of 5 seconds will be used

• "system_metrics" - array of objects specifying which system level metric groups are enabled

Neuron Runtime-level metric groups

• neuroncore_counters - NeuronCore related metrics

• memory_used - data on the amount of memory used by the Neuron application

• vcpu_usage - Neuron application vCPU utilization data

• execution_stats - Neuron application execution stats, including error count and latency

System-wide metric groups

• vcpu_usage - system-wide vCPU usage

• memory_info - system-wide memory usage

• neuron_hw_counters - counters for correctable and uncorrectable memory ecc events

Execution model

neuron-monitor waits for one or more metric groups to be up for update, then collects the corresponding data, consol-
idates it into a report which is streamed to stdout as a JSON and goes back to waiting.
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The JSON output format

Whenever the report gets updated, a complete JSON is written to stdout. This is its structure:

{
"neuron_runtime_data": [
{
"pid": 0,
"address": "",
"neuron_runtime_tag", "my_app_1",
"error": "",
"report": {
"neuroncore_counters": {

[...]
},
"execution_stats": {

[...]
},
"memory_used": {

[...]
},
"neuron_runtime_vcpu_usage": {

[...]
}

}
}

],
"system_data": {
"neuron_hw_counters": {

[...]
},
"vcpu_usage": {

[...]
},
"memory_info": {

[...]
}

},
"instance_info": {

[...]
},
"neuron_hardware_info": {

[...]
},
"neuron_k8s_info": {

[...]
}

}

• "neuron_runtime_data" is an array containing one entry per each Neuron application which passes the filter
specified in the settings file

– "pid" is the pid of this Neuron application

– "neuron_runtime_tag" is the configured tag for the Neuron application
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– "error" specifies any error that occurred when collecting data from this Neuron application

– "report" will contain the results for the Neuron application-level metric groups; their formats are de-
scribed below

• "system_data" has a similar structure to "neuron_runtime_data"‘s "report" but only contains system-
level metric groups (not associated to any Neuron application)

Regardless of the configuration, the following two JSON objects are always present in the output:

instance_info

Contains information about the instance on which neuron-monitor is running.

"instance_info": {
"instance_name": "My_Instance",
"instance_id": "i-0011223344556677a",
"instance_type": "trn2n.48xlarge",
"instance_availability_zone": "us-west-2b",
"instance_availability_zone_id": "usw2-az2",
"instance_region": "us-west-2",
"ami_id": "ami-0011223344556677b",
"subnet_id": "subnet-112233ee",
"error": ""

}

Depending on when the instance was launched, the following fields might not be available:

• instance_availability_zone_id : available only for instances launched in 2020-08-24 and later

• instance_region : available only for instances launched on 2020-08-24 and later

• instance_name : available only if instance_region is set and aws-cli tools are installed

error will contain an error string if getting one of the fields, except those mentioned above, resulted in an error.

neuron_hardware_info

Contains basic information about the Neuron hardware.

"neuron_hardware_info": {
"neuron_device_type": "trainium2",
"neuron_device_version": "v4",
"neuroncore_version": "v3d",
"neuron_device_count": 16,
"neuron_device_memory_size": 103079215104,
"neuroncore_per_device_count": 4,
"logical_neuroncore_config": 2,
"error": ""

}

• neuron_device_type: type of the Neuron Devices on the instance

• neuroncore_version: version of the NeuronCores on the instance

• neuron_device_count : number of available Neuron Devices
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• neuron_device_memory_size: total memory available on each Neuron Device

• neuroncore_per_device_count : number of NeuronCores present on each Neuron Device

• logical_neuroncore_config : the current Logical NeuronCore configuration

• error : will contain an error string if any occurred when getting this information (usually due to the Neuron
Driver not being installed or not running).

The following JSON object is disabled by default, but can be made available if “k8s_info” is enabled:

neuron_k8s_info

Contains information about what Kubernetes pods/containers are using Neuron resources

"neuron_k8s_info": {
"period": 15.030359284,
"neuroncores_k8s_info": {
"0": {
"pod_name": "p0",
"namespace": "n0",
"container_name": ["c0"]

},
"1": {
"pod_name": "p0",
"namespace": "n0",
"container_name": ["c0"]

},
...

"neurondevices_k8s_info": {
"0": {
"pod_name": "p0",
"namespace": "n0",
"container_name": ["c0"]

},
...

}
"error": ""

},

• "neuroncores_k8s_info" - object containing information on which Neuron cores are being used by Kuber-
netes pod/containers, indexed by Neuron core index: "neuroncore_index": { neuroncore_k8s_data }

– "pod_name" - name of pod using Neuron core

– "namespace" - namespace of pod using Neuron core

– "container_name" - names of containers using Neuron core

• "neurondevices_k8s_info" - object containing information on which Neuron devices are being
used by Kubernetes pod/containers, indexed by Neuron device index: "neurondevice_index": {
neurondevice_k8s_data }

– "pod_name" - name of pod using Neuron device

– "namespace" - namespace of pod using Neuron device

– "container_name" - names of containers using Neuron device
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• "error" - will contain an error string if any occurred when getting this information

For more information on how to enable K8s information, see neuron-monitor-k8s-info.py (Beta).

Metric Groups

Each metric group requested in the settings file will get an entry in the resulting output. The general format for such
an entry is:

"metric_group": {
"period": 1.015, // Actual captured period, in seconds
"error": "", // Error, if any occurred, otherwise an empty string
[...] // Metric group specific data

}

Neuron application level metric groups

neuroncore_counters

"neuroncore_counters": {
"period": 1.000113182,
"neuroncores_in_use": {
"0": {
"neuroncore_utilization": 42.01,
"flops": 1234567891011,
"v3d": {
"nc_v3.0": {
"neuroncore_utilization": 21.01

},
"nc_v3.1": {
"neuroncore_utilization": 63.01

}
}

},
"1": {
"neuroncore_utilization": 42.02,
"flops": 1234567891021,
"v3d": {
"nc_v3.2": {
"neuroncore_utilization": 21.02

},
"nc_v3.3": {
"neuroncore_utilization": 63.02

}
}

},
[...]

},
"error": ""

}
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• "neuroncores_in_use" is an object containing data for all the NeuronCores that were active when the data
was captured, indexed by NeuronCore index: "neuroncore_index": { neuroncore_data }

– "neuroncore_utilization" - NeuronCore utilization, in percent, during the captured period

– "flops" - number of floating point operations per second during the captured period

– "v3d" - only available on Trn2 - contains the utilization for every physical NeuronCore that makes up the
current NeuronCore

• "error" - string containing any error that occurred when collecting the data

execution_stats

"execution_stats": {
"period": 1.030613214,
"error_summary": {
"generic": 0,
"numerical": 0,
"transient": 0,
"model": 0,
"runtime": 0,
"hardware": 0

},
"execution_summary": {
"completed": 123,
"completed_with_err": 0,
"completed_with_num_err": 0,
"timed_out": 0,
"incorrect_input": 0,
"failed_to_queue": 0

},
"latency_stats": {
"total_latency": {
"p0": 0.01100001,
"p1": 0.01100002,
"p25": 0.01100004,
"p50": 0.01100008,
"p75": 0.01100010,
"p99": 0.01100012,
"p100": 0.01100013

},
"device_latency": {
"p0": 0.01000001,
"p1": 0.01000002,
"p25": 0.01000004,
"p50": 0.01000008,
"p75": 0.01000010,
"p99": 0.01000012,
"p100": 0.01000013

}
},
"error": ""

},
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• "error_summary" is an object containing the error counts for the captured period indexed by their type

– "generic" - generic execution errors

– "numeric" - NAN errors encountered during execution

– "transient" - recoverable errors, such as ECC corrections

– "model" - model-related errors

– "runtime" - Neuron Runtime errors

– "hardware" - hardware errors such as uncorrectable ECC issues

• "execution_summary" is an object containing all execution outcome counts for the captured period indexed
by their type

– "completed" - executions completed successfully

– "completed_with_err" - executions that ended in an error other than a numeric error

– "completed_with_num_err" - executions that ended in a numeric error

– "timed_out" - executions that took longer than the Neuron Runtime configured timeout value

– "incorrect_input" - executions that failed to start due to incorrect input being provided

– "failed_to_queue" - execution requests that were rejected due to Neuron Runtime not being able to
queue them

• "latency_stats" contains two objects containing latency percentiles, in seconds, for the data captured for the
model executed during the captured period. If there are no models being executed during this time, the two
objects will be null (i.e. "total_latency": null)

– "total_latency" - percentiles, in seconds, representing

latency for an execution as measured by the Neuron Runtime - "device_latency" - percentiles, in seconds,
representing execution time exclusively on the Neuron Device

• "error" - string containing any error that occurred when collecting the data

memory_used

"memory_used": {
"period": 1.00001,
"neuron_runtime_used_bytes": {
"host": 6997643264,
"neuron_device": 12519788544,
"usage_breakdown": {
"host": {
"application_memory": 6996594688,
"constants": 0,
"dma_buffers": 1048576,
"tensors": 0

},
"neuroncore_memory_usage": {
"0": {
"constants": 193986816,
"model_code": 176285056,
"model_shared_scratchpad": 0,

(continues on next page)
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(continued from previous page)

"runtime_memory": 0,
"tensors": 20971520

},
"1": {
"constants": 193986816,
"model_code": 176285056,
"model_shared_scratchpad": 0,
"runtime_memory": 0,
"tensors": 20971520

},
...

}
}
"loaded_models": [
{
"name": "neff",
"uuid": "91f2f66e83ea419dace1da07617ad39f",
"model_id": 10005,
"is_running": false,
"subgraphs": {
"sg_00": {
"memory_used_bytes": {
"host": 20480,
"neuron_device": 21001024,
"usage_breakdown": {
"host": {
"application_memory": 20480,
"constants": 0,
"dma_buffers": 0,
"tensors": 0

},
"neuron_device": {
"constants": 20971520,
"model_code": 29504,
"runtime_memory": 0,
"tensors": 0

}
}

},
"neuroncore_index": 0,
"neuron_device_index": 12

}
}

},
...
],
"error": ""

}

• "memory_used" summarizes the amount of memory used by the Neuron application

– "neuron_runtime_used_bytes" - current amount of memory used by the Neuron application

∗ "host" - total host DRAM usage in bytes
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∗ "neuron_device" - total Neuron device memory usage in bytes

∗ "usage_breakdown" - a breakdown of the total memory usage in the other two fields

· "host" - breakdown of the host memory usage

· "application_memory" - amount of host memory used by the application - this includes all
allocations that are not included in the next categories

· "constants" - amount of host memory used for constants during training (or weights during
inference)

· "dma_buffers" - amount of host memory used for DMA transfers

· "tensors" - amount of host memory used for tensors

· "neuroncore_memory_usage" - a breakdown of memory allocated on the Neuron Devices and
the NeuronCores for which it was allocated

"0" - "64" (for trn2-48xlarge) - NeuronCores for which the memory was allocated

"constants" - amount of device memory used for constants during training (or weights
during inference)

"model_code" - amount of device memory used for models’ executable code

"model_shared_scratchpad" - amount of device memory used for the scratchpad
shared by the models - a memory region reserved for the models’

internal variables and auxiliary buffers - "runtime_memory" - amount of device memory
used by the Neuron Runtime - "tensors" - amount of device memory used for tensors

• "loaded_models" - array containing objects representing loaded models

– "name" - name of the model

– "uuid" - unique id for the model

– "model_id" - Neuron application-assigned ID for this model

– "is_running" - true if this model is currently started, false otherwise

– “subgraphs" - object containing all the subgraphs for the model, indexed by their name:
"subgraph_name": { subgraph_data }

∗ "memory_used_bytes" - memory usage for this subgraph

· "host" - total host DRAM usage in bytes

· "neuron_device" - total Neuron device DRAM usage in bytes

· "usage_breakdown" - a breakdown of memory allocated at load time for this model

· "host" - breakdown of host memory allocated for this model

· "application_memory" - amount of host memory allocated for this model by the Neuron
Runtime which doesn’t fall in any of the next categories

· "constants" - amount of host memory used for constants during training (or weights during
inference)

· "dma_buffers" - host memory allocated for DMA transfers for this model

· "tensors" - amount of device memory used for tensors at model load time

· "neuron_device" - a breakdown of device memory allocated for this model
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· "constants" - amount of device memory used for constants during training (or weights dur-
ing inference)

· "model_code" - amount of device memory used for the model’s executable code

· "runtime_memory" - amount of device memory used by the Neuron Runtime for this model

· "tensors" - amount of device memory allocated for tensors at this model’s load time

∗ "neuroncore_index" - NeuronCore index on which the subgraph is loaded

∗ "neuron_device_index" - Neuron device index on which the subgraph is loaded

• "error" - string containing any error that occurred when collecting the data

neuron_runtime_vcpu_usage

"neuron_runtime_vcpu_usage": {
"period": 1.030604818,
"vcpu_usage": {
"user": 42.01,
"system": 12.34

},
"error": ""

}

• "vcpu_usage" - object showing vCPU usage in percentages for the Neuron application during the captured
period

– "user" - percentage of time spent in user code by this Neuron Application

– "system" - percentage of time spent in kernel code by this Neuron application

• "error" - string containing any error that occurred when collecting the data

System level metric groups

neuron_hw_counters

"neuron_hw_counters": {
"period": 1.030359284,
"neuron_devices": [
{
"neuron_device_index": 0,
"mem_ecc_corrected": 0,
"mem_ecc_uncorrected": 0,
"sram_ecc_uncorrected": 0,
"sram_ecc_corrected": 0

}
],
"error": ""

},

• "neuron_devices" - array containing ECC data for all Neuron devices

– "neuron_device_index" - Neuron device index
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– "mem_ecc_corrected" - number of corrected ECC events in the Neuron device’s DRAM

– "mem_ecc_uncorrected" - number of uncorrected ECC events in the Neuron device’s DRAM

– "sram_ecc_uncorrected" - number of uncorrected ECC events in the Neuron device’s SRAM

– "sram_ecc_corrected" - number of corrected ECC events in the Neuron device’s SRAM

• "error" - string containing any error that occurred when collecting the data

vcpu_usage

"vcpu_usage": {
"period": 0.999974868,
"average_usage": {
"user": 32.77,
"nice": 0,
"system": 22.87,
"idle": 39.36,
"io_wait": 0,
"irq": 0,
"soft_irq": 0

},
"usage_data": {
"0": {
"user": 34.41,
"nice": 0,
"system": 27.96,
"idle": 37.63,
"io_wait": 0,
"irq": 0,
"soft_irq": 0

},
"1": {
"user": 56.84,
"nice": 0,
"system": 28.42,
"idle": 14.74,
"io_wait": 0,
"irq": 0,
"soft_irq": 0

},
[...]

},
"context_switch_count": 123456,
"error": ""

}

• each vCPU usage object contains the following fields:

– "user" - percentage of time spent in user code

– "nice" - percentage of time spent executing niced user code

– "system" - percentage of time spent executing kernel code

– "idle" - percentage of time spent idle
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– "io_wait" - percentage of time spent waiting for IO operations

– "irq" - percentage of time spent servicing hardware interrupts

– "soft_irq" - percentage of time spent servicing software interrupts

• "average_usage" - contains the average usage across all vCPUs during the captured period

• "usage_data" - contains per vCPU usage during the captured period

• "context_switch_count" - contains the number of vCPU context switches during the captured period

• "error" - string containing any error that occurred when collecting the data

memory_info

"memory_info": {
"period": 5.346411129,
"memory_total_bytes": 49345835008,
"memory_used_bytes": 16042344448,
"swap_total_bytes": 0,
"swap_used_bytes": 0,
"error": ""

}

• "memory_total_bytes" - total size of the host memory, in bytes

• "memory_used_bytes" - amount of host memory in use, in bytes

• "swap_total_bytes" - total size of the host swap file, in bytes

• "swap_used_bytes" - amount of swap memory in use, in bytes

Companion scripts

neuron-monitor is installed with three Python companion scripts: neuron-monitor-cloudwatch.py, neuron-monitor-
prometheus.py, and neuron-monitor-k8s-info.py (Beta)

neuron-monitor-cloudwatch.py

It requires Python3 and the boto3 Python module. It is installed to: /opt/aws/neuron/bin/
neuron-monitor-cloudwatch.py.

Using neuron-monitor-cloudwatch.py

neuron-monitor | neuron-monitor-cloudwatch.py --namespace <namespace> --region <region>

For example:

neuron-monitor | neuron-monitor-cloudwatch.py --namespace neuron_monitor_test --region␣
→˓us-west-2
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neuron-monitor-prometheus.py

It requires Python3 and the Prometheus client Python module. It is installed to: /opt/aws/neuron/bin/
neuron-monitor-prometheus.py.

Using neuron-monitor-prometheus.py

neuron-monitor | neuron-monitor-prometheus.py --port <port>

For example:

neuron-monitor | neuron-monitor-prometheus.py --port 8008

The default value for --port is 8000.

If your data visualization framework is Grafana, we provided a Grafana dashboardwhich integrates with Prometheus
and this script.

neuron-monitor-k8s-info.py (Beta)

It requires Python3 and the gRPC Python package. It is installed to: /opt/aws/neuron/bin/
neuron-monitor-k8s-info.py.

Important: This companion script is in Beta and is disabled by default.

It only works on EKS, and is currently not supported with EKS auto mode.

Using neuron-monitor-k8s-info.py

neuron-monitor | neuron-monitor-prometheus.py --port <port> --enable-k8s-info | neuron-
→˓monitor-k8s-info.py --period <seconds>

For example:

neuron-monitor | neuron-monitor-prometheus.py --port 8008 --enable-k8s-info | neuron-
→˓monitor-k8s-info.py --period 30

The default value for --period is 15.

Running neuron monitor in Kubernetes environment

For running neuron monitor in Kubernetes environment, please refer to instructions here.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2
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6.2.2 Neuron Top User Guide

Table of contents

• Overview

• Using neuron-top

– Command line arguments

– User interface

Overview

neuron-top provides useful information about NeuronCore and vCPU utilization, memory usage, loaded models, and
Neuron applications.

Note: neuron-top fully supports the newly launched trn2 instances.

Note: If you are parsing neuron-top output in your automation environment, you can now replace it with
neuron-monitor (Neuron Monitor User Guide) which outputs data in a standardized, easier to parse JSON format.

Using neuron-top

Command line arguments

Launch neuron-top by simply typing its name in the shell: neuron-top.

User interface

The title section of the user interface shows the application’s version number, EC2 instance ID, and the instance type
on which it is running:

The rest of the user interface is divided in 4 sections. The data shown in these sections applies to the currently selected
tab - which can be the ‘all’ tab, which aggregates data from all running Neuron processes, or a tab representing a single
Neuron process:
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• The NeuronCore <vers> Utilization section shows the NeuronCore utilization for the currently selected
tab. <vers> is the version of the NeuronCores on the instance (for example, v2 for trn1 instances and inf2
instances, v3 for trn2 instances with LNC=1, v3d for trn2 instances with LNC=2)

Pressing the ‘F’ key will toggle between displaying utilization percentages - as seen in the previous image - and
teraflops (trillion floating point operations per second), as seen in the image below:

• The VCPU Utilization section shows:

– System vCPU usage - the two percentages are user% and system%

– Runtime vCPU usage - same breakdown

• The Memory Usage Summary section provides a breakdown of the total memory usage on the Neuron Device
as well as on the host:

– Host Used Memory - amount of host memory used by the selected application (or an aggregate of all
applications if ‘All’ is selected)

∗ Total - total amount of host memory used

∗ Tensors - amount of host memory used for tensors

∗ Constants - amount of host memory used for constants (for applications running training) or
weights (for applications running inferences)

∗ DMA Buffers - amount of host memory used for DMA transfers
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∗ App. Memory - amount of host memory used by the application that doesn’t fall in any of the pre-
vious categories

– Device Used Memory - amount of device memory used by the selected application (or an aggregate of
all applications if ‘All’ is selected)

∗ Total - total amount of device memory used

∗ Tensors - amount of device memory used for tensors

∗ Constants - amount of device memory used for constants (for applications running training) or
weights (for applications running inferences)

∗ Model Code - amount of device memory used for storing model executable code

∗ Runtime Memory - amount of device memory used by the Neuron Runtime (outside of the previous
categories)

∗ Model Scratchpad - amount of device memory used for the shared model scratchpad, a shared
buffer used for internal model variables and other auxiliary buffers

• Memory Usage Details contains memory usage data organized as a tree which can be expanded/collapsed.
The columns are:

– Model ID - the Neuron Runtime identifier for this model instance

– Host Memory - amount of host memory used

– Device Memory - amount of device memory used

The tree view shows the amount of memory used for the same categories shown in the Memory Usage Summary but
in this section they are attached to either a model (if the memory has been allocated at model load time for that model),
or to a NeuronCore (if the memory can’t be associated with a model, but has been allocated for that NeuronCore). The
‘parent’ shows the total amount of memory used - the sum of its children.

Note: The up/down/left/right keys can be used to navigate the tree view. The ‘x’ key expands/collapses the entire tree.

The bottom bar shows which Neuron process’ data is currently displayed by highlighting its tag using a green font
and marking it using a pair of ‘>’, ‘<’ characters. The ‘all’ tab shows an aggregated view of all the Neuron processes
currently running on the instance.

Note: The ‘1’-‘9’ keys select the current tab. ‘a’/’d’ selects the previous/next tab on the bar.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2
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6.2.3 Neuron LS User Guide

The neuron-ls command is a tool for managing Neuron devices in your instance. This command serves two key pur-
poses: it identifies all Neuron devices present in the current instance and provides information about the processes run-
ning on each device along with the command that launched that process. To use this command, simply type neuron-ls
in your terminal.

neuron-ls CLI

neuron-ls [options]

Available options:
• --wide, -w: Displays the table in a wider format.
• --show-all-procs, -a: Show all processes using the Neuron Devices, including processes that aren’t

using Neuron Runtime 2.x such as neuron-monitor or neuron-ls itself.
• --topology, -t: Display topology information about the system’s Neuron Devices.
• --json-output, -j: Output in JSON format.

Note: neuron-ls fully supports the newly launched Trn2 instances.

Examples

neuron-ls is compatible with all Neuron instance types: inf1, inf2, trn1 and trn2. These are a few examples on
running the tool on a trn2n.48xlarge:

$ neuron-ls
instance-type: trn2n.48xlarge
instance-id: i-aabbccdd123456789
logical-neuroncore-config: 2
+--------+--------+--------+---------------+---------+
| NEURON | NEURON | NEURON | CONNECTED | PCI |
| DEVICE | CORES | MEMORY | DEVICES | BDF |
+--------+--------+--------+---------------+---------+
| 0 | 4 | 96 GB | 12, 3, 4, 1 | cc:00.0 |
| 1 | 4 | 96 GB | 13, 0, 5, 2 | b5:00.0 |
| 2 | 4 | 96 GB | 14, 1, 6, 3 | b6:00.0 |
| 3 | 4 | 96 GB | 15, 2, 7, 0 | cb:00.0 |
| 4 | 4 | 96 GB | 0, 7, 8, 5 | 6f:00.0 |
| 5 | 4 | 96 GB | 1, 4, 9, 6 | 58:00.0 |
| 6 | 4 | 96 GB | 2, 5, 10, 7 | 59:00.0 |
| 7 | 4 | 96 GB | 3, 6, 11, 4 | 6e:00.0 |
| 8 | 4 | 96 GB | 4, 11, 12, 9 | 9b:00.0 |
| 9 | 4 | 96 GB | 5, 8, 13, 10 | 84:00.0 |
| 10 | 4 | 96 GB | 6, 9, 14, 11 | 85:00.0 |
| 11 | 4 | 96 GB | 7, 10, 15, 8 | 9a:00.0 |
| 12 | 4 | 96 GB | 8, 15, 0, 13 | f8:00.0 |
| 13 | 4 | 96 GB | 9, 12, 1, 14 | e1:00.0 |
| 14 | 4 | 96 GB | 10, 13, 2, 15 | e2:00.0 |
| 15 | 4 | 96 GB | 11, 14, 3, 12 | f7:00.0 |
+--------+--------+--------+---------------+---------+
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$ neuron-ls --wide
instance-type: trn2n.48xlarge
instance-id: i-aabbccdd123456789
logical-neuroncore-config: 2
+--------+--------+--------+---------------+---------+--------+--------------------------
→˓--------------------------------------------------------+---------+
| NEURON | NEURON | NEURON | CONNECTED | PCI | PID | ␣
→˓ COMMAND | RUNTIME |
| DEVICE | CORES | MEMORY | DEVICES | BDF | | ␣
→˓ | VERSION |
+--------+--------+--------+---------------+---------+--------+--------------------------
→˓--------------------------------------------------------+---------+
| 0 | 4 | 96 GB | 12, 3, 4, 1 | cc:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --warmup none --fixed-instance-count 64 --... | 2.0.0 |
| 1 | 4 | 96 GB | 13, 0, 5, 2 | b5:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --warmup none --fixed-instance-count 64 --... | 2.0.0 |
| 2 | 4 | 96 GB | 14, 1, 6, 3 | b6:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --warmup none --fixed-instance-count 64 --... | 2.0.0 |
| 3 | 4 | 96 GB | 15, 2, 7, 0 | cb:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --warmup none --fixed-instance-count 64 --... | 2.0.0 |
| 4 | 4 | 96 GB | 0, 7, 8, 5 | 6f:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --warmup none --fixed-instance-count 64 --... | 2.0.0 |
| 5 | 4 | 96 GB | 1, 4, 9, 6 | 58:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --warmup none --fixed-instance-count 64 --... | 2.0.0 |
| 6 | 4 | 96 GB | 2, 5, 10, 7 | 59:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --warmup none --fixed-instance-count 64 --... | 2.0.0 |
| 7 | 4 | 96 GB | 3, 6, 11, 4 | 6e:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --warmup none --fixed-instance-count 64 --... | 2.0.0 |
| 8 | 4 | 96 GB | 4, 11, 12, 9 | 9b:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --warmup none --fixed-instance-count 64 --... | 2.0.0 |
| 9 | 4 | 96 GB | 5, 8, 13, 10 | 84:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --warmup none --fixed-instance-count 64 --... | 2.0.0 |
| 10 | 4 | 96 GB | 6, 9, 14, 11 | 85:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --warmup none --fixed-instance-count 64 --... | 2.0.0 |
| 11 | 4 | 96 GB | 7, 10, 15, 8 | 9a:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --warmup none --fixed-instance-count 64 --... | 2.0.0 |
| 12 | 4 | 96 GB | 8, 15, 0, 13 | f8:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --warmup none --fixed-instance-count 64 --... | 2.0.0 |
| 13 | 4 | 96 GB | 9, 12, 1, 14 | e1:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --warmup none --fixed-instance-count 64 --... | 2.0.0 |
| 14 | 4 | 96 GB | 10, 13, 2, 15 | e2:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --warmup none --fixed-instance-count 64 --... | 2.0.0 |
| 15 | 4 | 96 GB | 11, 14, 3, 12 | f7:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --warmup none --fixed-instance-count 64 --... | 2.0.0 |
+--------+--------+--------+---------------+---------+--------+--------------------------
→˓--------------------------------------------------------+---------+

$ neuron-ls --show-all-procs
instance-type: trn2n.48xlarge
instance-id: i-aabbccdd123456789
logical-neuroncore-config: 2
+--------+--------+--------+---------------+---------+--------+--------------------------

(continues on next page)
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(continued from previous page)

→˓----------------+---------+
| NEURON | NEURON | NEURON | CONNECTED | PCI | PID | COMMAND ␣
→˓ | RUNTIME |
| DEVICE | CORES | MEMORY | DEVICES | BDF | | ␣
→˓ | VERSION |
+--------+--------+--------+---------------+---------+--------+--------------------------
→˓----------------+---------+
| 0 | 4 | 96 GB | 12, 3, 4, 1 | cc:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --... | 2.0.0 |
| | | | | | 269192 | neuron-ls --show-all-
→˓procs | NA |
+--------+--------+--------+---------------+---------+--------+--------------------------
→˓----------------+---------+
| 1 | 4 | 96 GB | 13, 0, 5, 2 | b5:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --... | 2.0.0 |
| | | | | | 269192 | neuron-ls --show-all-
→˓procs | NA |
+--------+--------+--------+---------------+---------+--------+--------------------------
→˓----------------+---------+
| 2 | 4 | 96 GB | 14, 1, 6, 3 | b6:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --... | 2.0.0 |
| | | | | | 269192 | neuron-ls --show-all-
→˓procs | NA |
+--------+--------+--------+---------------+---------+--------+--------------------------
→˓----------------+---------+
| 3 | 4 | 96 GB | 15, 2, 7, 0 | cb:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --... | 2.0.0 |
| | | | | | 269192 | neuron-ls --show-all-
→˓procs | NA |
+--------+--------+--------+---------------+---------+--------+--------------------------
→˓----------------+---------+
| 4 | 4 | 96 GB | 0, 7, 8, 5 | 6f:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --... | 2.0.0 |
| | | | | | 269192 | neuron-ls --show-all-
→˓procs | NA |
+--------+--------+--------+---------------+---------+--------+--------------------------
→˓----------------+---------+
| 5 | 4 | 96 GB | 1, 4, 9, 6 | 58:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --... | 2.0.0 |
| | | | | | 269192 | neuron-ls --show-all-
→˓procs | NA |
+--------+--------+--------+---------------+---------+--------+--------------------------
→˓----------------+---------+
| 6 | 4 | 96 GB | 2, 5, 10, 7 | 59:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --... | 2.0.0 |
| | | | | | 269192 | neuron-ls --show-all-
→˓procs | NA |
+--------+--------+--------+---------------+---------+--------+--------------------------
→˓----------------+---------+
| 7 | 4 | 96 GB | 3, 6, 11, 4 | 6e:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --... | 2.0.0 |
| | | | | | 269192 | neuron-ls --show-all-

(continues on next page)
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→˓procs | NA |
+--------+--------+--------+---------------+---------+--------+--------------------------
→˓----------------+---------+
| 8 | 4 | 96 GB | 4, 11, 12, 9 | 9b:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --... | 2.0.0 |
| | | | | | 269192 | neuron-ls --show-all-
→˓procs | NA |
+--------+--------+--------+---------------+---------+--------+--------------------------
→˓----------------+---------+
| 9 | 4 | 96 GB | 5, 8, 13, 10 | 84:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --... | 2.0.0 |
| | | | | | 269192 | neuron-ls --show-all-
→˓procs | NA |
+--------+--------+--------+---------------+---------+--------+--------------------------
→˓----------------+---------+
| 10 | 4 | 96 GB | 6, 9, 14, 11 | 85:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --... | 2.0.0 |
| | | | | | 269192 | neuron-ls --show-all-
→˓procs | NA |
+--------+--------+--------+---------------+---------+--------+--------------------------
→˓----------------+---------+
| 11 | 4 | 96 GB | 7, 10, 15, 8 | 9a:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --... | 2.0.0 |
| | | | | | 269192 | neuron-ls --show-all-
→˓procs | NA |
+--------+--------+--------+---------------+---------+--------+--------------------------
→˓----------------+---------+
| 12 | 4 | 96 GB | 8, 15, 0, 13 | f8:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --... | 2.0.0 |
| | | | | | 269192 | neuron-ls --show-all-
→˓procs | NA |
+--------+--------+--------+---------------+---------+--------+--------------------------
→˓----------------+---------+
| 13 | 4 | 96 GB | 9, 12, 1, 14 | e1:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --... | 2.0.0 |
| | | | | | 269192 | neuron-ls --show-all-
→˓procs | NA |
+--------+--------+--------+---------------+---------+--------+--------------------------
→˓----------------+---------+
| 14 | 4 | 96 GB | 10, 13, 2, 15 | e2:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --... | 2.0.0 |
| | | | | | 269192 | neuron-ls --show-all-
→˓procs | NA |
+--------+--------+--------+---------------+---------+--------+--------------------------
→˓----------------+---------+
| 15 | 4 | 96 GB | 11, 14, 3, 12 | f7:00.0 | 268911 | neuron-bench exec --run-
→˓as-cc-neff --... | 2.0.0 |
| | | | | | 269192 | neuron-ls --show-all-
→˓procs | NA |
+--------+--------+--------+---------------+---------+--------+--------------------------
→˓----------------+---------+
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$ neuron-ls --topology
instance-type: trn2n.48xlarge
instance-id: i-aabbccdd123456789
logical-neuroncore-config: 2
+--------+--------+--------+---------------+---------+
| NEURON | NEURON | NEURON | CONNECTED | PCI |
| DEVICE | CORES | MEMORY | DEVICES | BDF |
+--------+--------+--------+---------------+---------+
| 0 | 4 | 96 GB | 12, 3, 4, 1 | cc:00.0 |
| 1 | 4 | 96 GB | 13, 0, 5, 2 | b5:00.0 |
| 2 | 4 | 96 GB | 14, 1, 6, 3 | b6:00.0 |
| 3 | 4 | 96 GB | 15, 2, 7, 0 | cb:00.0 |
| 4 | 4 | 96 GB | 0, 7, 8, 5 | 6f:00.0 |
| 5 | 4 | 96 GB | 1, 4, 9, 6 | 58:00.0 |
| 6 | 4 | 96 GB | 2, 5, 10, 7 | 59:00.0 |
| 7 | 4 | 96 GB | 3, 6, 11, 4 | 6e:00.0 |
| 8 | 4 | 96 GB | 4, 11, 12, 9 | 9b:00.0 |
| 9 | 4 | 96 GB | 5, 8, 13, 10 | 84:00.0 |
| 10 | 4 | 96 GB | 6, 9, 14, 11 | 85:00.0 |
| 11 | 4 | 96 GB | 7, 10, 15, 8 | 9a:00.0 |
| 12 | 4 | 96 GB | 8, 15, 0, 13 | f8:00.0 |
| 13 | 4 | 96 GB | 9, 12, 1, 14 | e1:00.0 |
| 14 | 4 | 96 GB | 10, 13, 2, 15 | e2:00.0 |
| 15 | 4 | 96 GB | 11, 14, 3, 12 | f7:00.0 |
+--------+--------+--------+---------------+---------+

Neuron Device Topology
* * * *

*––[ 0 ]––[ 1 ]––[ 2 ]––[ 3 ]––*

*––[ 4 ]––[ 5 ]––[ 6 ]––[ 7 ]––*

*––[ 8 ]––[ 9 ]––[10 ]––[11 ]––*

*––[12 ]––[13 ]––[14 ]––[15 ]––*

* * * *

Legend:

*–– = Wrap-around link
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$ neuron-ls -j
[
{

"neuron_device": 0,
"bdf": "cc:00.0",
"connected_to": [

12,
3,
4,
1

],
"nc_count": 4,
"logical_neuroncore_config": 2,
"memory_size": 103079215104,
"neuron_processes": [

{
"pid": 113985,
"command": "neuron-bench exec --run-as-cc-neff --...",
"neuron_runtime_version": "2.0.0"

}
]

},
...
{

"neuron_device": 15,
"bdf": "f7:00.0",
"connected_to": [

11,
14,
3,
12

],
"nc_count": 4,
"logical_neuroncore_config": 2,
"memory_size": 103079215104,
"neuron_processes": [

{
"pid": 113985,
"command": "neuron-bench exec --run-as-cc-neff --...",
"neuron_runtime_version": "2.0.0"

}
]

}
]

• instance-type: Type of instance on which neuron-ls is running.

• instance-id: EC2 ID of the instance on which neuron-ls is running.

• logical-neuroncore-config: (only available on trn2 instances) the current logical NeuronCore configuration; for
more information refer to Logical NeuronCore configuration

• NEURON DEVICE / neuron_device: Logical ID assigned to the Neuron Device.

• NEURON CORES / nc_count: Number of NeuronCores present in the Neuron Device.
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• NEURON MEMORY / memory_size: Amount DRAM memory in Neuron Device.

• CONNECTED DEVICES / connected_to: Logical ID of Neuron Devices connected to this Neuron Device.

• PCI BDF / bdf: PCI Bus Device Function (BDF) ID of the device.

• PID / pid: ID of the process using this NeuronDevice.

• COMMAND / command: Command used to launch the process using this Neuron Device.

• RUNTIME VERSION / neuron_runtime_version: Version of Neuron Runtime (if applicable) for the application
using this Neuron Device.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

6.2.4 Neuron Sysfs User Guide

Table of contents

• Introduction

• Neuron Sysfs Filesystem Structure

– High Level Overview

– Description for Each Field

– Read and Write to Sysfs

– Note

• How to Troubleshoot via Sysfs

Introduction

The kernel provides a few ways in which userspace programs can get system information from the kernel space. Sysfs
is one common way to do so. It is a virtual filesystem typically mounted on the /sys directory and contains information
about hardware devices attached to the system and about drivers handling those devices. By navigating the hierarchical
structure of the sysfs filesystem and viewing the information provided by its files and directories, you can gather valuable
information that can help diagnose and resolve a wide range of hardware and system issues.

Thus a sysfs filesystem is set up per Neuron Device under /sys/devices/virtual/neuron_device to give you an
insight into the Neuron Driver and Runtime at system level. By performing several simple CLIs such as reading or
writing to a sysfs file, you can get information such as Runtime status, memory usage, Driver info etc. You can even
create your own shell scripts to query Runtime and Driver statistics from sysfs and generate customized reports.

This user guide will first explain the Neuron sysfs structure and then introduce many ways where you can perform
diagnostic works with Neuron sysfs.
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Neuron Sysfs Filesystem Structure

High Level Overview

Here is the high level structure of the Neuron sysfs filesystem, where the total and present counters are not shown:

/sys/devices/virtual/neuron_device/
neuron0/

subsystem
uevent
connected_devices
core_count
reset
power/

async
control
runtime_active_time
runtime_active_kids
...

info/
notify_delay
serial_number
architecture/

arch_type
device_name
instance_type

stats
hardware

mem_ecc_uncorrected
sram_ecc_uncorrected

memory_usage
host_mem

application_memory
constants
dma_buffers
dma_rings
driver_memory
notifications
tensors
uncategorized

power
utilization

neuron_core0/
info/

architecture/
arch_type

stats/
status/

exec_bad_input
hw_error
infer_failed_to_queue
resource_nc_error
unsupported_neff_version

(continues on next page)
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(continued from previous page)

failure
infer_completed_with_error
invalid_error
oob_error
success
generic_error
infer_completed_with_num_error
resource_error
timeout

memory_usage/
device_mem/

collectives
constants
dma_rings
driver_memory
model_code
model_shared_scratchpad
nonshared_scratchpad
notifications
runtime_memory
tensors

| uncategorized
host_mem

other_info/
flop_count
inference_count
model_load_count
reset_fail_count
reset_req_count
nc_time_in_use

...
neuron_core1/

info/
...

stats/
...

...
neuron1
neuron2
neuron3
...

Each Neuron Device is represented as a directory under /sys/devices/virtual/neuron_device/, where
neuron0/ represents the Neuron Device 0, neuron1/ represents the Neuron Device 1, etc. Each NeuronCore is
represented as a directory under a Neuron Device directory, represented as neuron_core{0,1,2,...}. Metrics such
as Runtime and Driver info and statistics are collected as per NeuronCore in two directories under the NeuronCore
directory, i.e. info/ and stats/.

Most of the metrics belong to a category called “counter.” Each counter is represented as a directory, which holds two
numerical values as two files: total and present. Each memory usage counter has an additional value called peak. The
total value starts accumulating metrics when the Driver is loaded. The present value records the last changed metric
value. The peak value records the max value so far. Each counter has the same filesystem structure like this:
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/sys/devices/virtual/neuron_device/neuron0/neuron_core0/status/
exec_bad_input/

total
present

hw_error/
total
present

infer_failed_to_queue/
total
present

...

Description for Each Field

info/: This directory stores general information about hardware and software. None of them are counter types.

• notify_delay: The delay between notifications from the Neuron Device. Current settings are on (0) or off
(-1). Off by default.

• serial_number: The unique device identifier.

• architecture/: This directory stores hardware architecture information.

– arch_type: The architecture type of the Neuron Device. Sample architecture types are v1, v2, and v3.
You can only read the value. You cannot change it.

– instance_type: The instance type of the Neuron Device. Sample instance types are Inf1, Inf2, and Trn1.
You can only read the value. You cannot change it.

– device_type: The Neuron Device type. Sample Neuron Device types are Inferentia, Inferentia2, and
Trainium1. You can only read the value. You cannot change it.

stats/: This directory stores Neuron Runtime and Driver statistics. It contains three subdirectories: status/,
memory_usage/, and other_info/.

• status/: This directory stores the number of each return status of API calls. As explained in The LIBNRT
API Return Codes, every API call returns an NRT_STATUS value, which represents the return status of that
API call. Our sysfs filesystem stores all NRT_STATUS as subdirectories under the status/ directory. They all
have the counter structure. Thus each NRT_STATUS subdirectory holds two values (total and present) and records
the number of times you receive a certain NRT_STATUS. The following is description for each NRT_STATUS
subdirectory. You should see the description align with what is described in The LIBNRT API Return Codes.

• memory_usage/: This directory contains memory usage statistics for both device and host, represented as coun-
ters. In this directory, the total counters indicate the current memory usage, present counters represent the
memory allocation or deallocation amount in the previous operation, and peak counters indicate the maximum
memory usage observed. Additionally, this directory provides detailed breakdown statistics for device and host
memory usage. These memory breakdown details correspond to the Memory Usage Summary section displayed
on in Neuron Monitor.

– device_mem/: The amount of memory that Neuron Runtime uses for weights, instructions and DMA
rings.

∗ This device memory per NeuronCore is further categorized into five types: collectives/,
constants/, dma_rings/, driver_memory/, model_code/, model_shared_scratchpad/,
nonshared_scratchpad/, notifications/, runtime_memory/, tensors/, and
uncategorized/. Each of these categories has total, present, and peak.
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· collectives - amount of device memory used for collective communication between
workers

· constants - amount of device memory used for constants (for applications running
training) or weights (for applications running inferences)

· dma_rings - amount of device memory used for storing model executable code used
for data movements

· driver_memory - amount of device memory used by the Neuron Driver

· model_code - amount of device memory used for storing model executable code

· model_shared_scratchpad - amount of device memory used for the shared model
scratchpad, a buffer shared between models on the same Neuron Core used for internal
model variables and other auxiliary buffers

· nonshared_scratchpad - amount of device memory used for non-shared model
scratchpad, a buffer used by a single model for internal model variables and other aux-
iliary buffers

· notifications - amount of device memory used to store instruction level trace infor-
mation used to profile workloads ran on the device

· runtime_memory - amount of device memory used by the Neuron Runtime (outside
of the previous categories)

· tensors - amount of device memory used for tensors

· uncategorized - amount of device memory that does not belong in any other catagory
in this list

– host_mem/: The amount of memory that Neuron Runtime uses for input and output tensors.

∗ The host memory per Neuron Device is further categorized into four types: application_memory/
, constants/, dma_buffers/, dma_rings/, driver_memory/, notifications/, tensors/,
uncategorized/. These categories provide more granular host memory classification compared
to Host Used Memory section. Each of these categories has total, present, and peak

– hardware/: Hardware statistics.

∗ mem_ecc_uncorrected: The number of uncorrected ECC events in the Neuron device’s DRAM.

∗ sram_ecc_uncorrected: The number of uncorrected ECC events in the Neuron device’s SRAM.

– power/: Power statistics.

∗ utilization: Reports per-minute power usage statistics as a percentage of max power in the fol-
lowing format:

<status>,<timestamp>,<min_power>,<max_power>,<avg_power>

Field descriptions:
status

Indicates the sampling state in a string. Valid values are:

POWER_STATUS_VALID - Sampling successful

POWER_STATUS_NO_DATA - No samples available

POWER_STATUS_INVALID - An internal sampling error occurred

timestamp
Time when the sample was collected in Unix epoch seconds (integer)
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min_power
Minimum power utilization during the sampling period (0.00-100.00%)

max_power
Maximum power utilization during the sampling period (0.00-100.00%)

avg_power
Average power utilization during the sampling period (0.00-100.00%)

The interface updates these statistics every minute based on continuous power sampling.

• other_info/: This directory contains statistics that are not included by status/ and memory_usage/. None
of them are counter types.

– flop_count: The number of flops. You can use it to calculate the TFLOP/s by flop_count / time interval

– inference_count: The number of successful inferences

– model_load_count: The number of successful model loads

– reset_fail_count: The number of failed device resets

– reset_req_count: The number of device resets requests

– nc_time_in_use: The time interval in microseconds between the start and the end of the current execu-
tion on hardware

Other fields:

• connected_devices: The list of connected devices’ ids. You should see the same output as neuron-ls’s CON-
NECTED DEVICES.

• reset: write to this file resets corresponding the Neuron Device.

Read and Write to Sysfs

Reading a sysfs file gives the value for the corresponding metric. You can use the cat command to view the contents
of the sysfs files.:

ubuntu@ip-xxx-xx-xx-xxx:~$ sudo cat /sys/devices/virtual/neuron_device/neuron0/neuron_
→˓core0/stats/status/failure/total
0
ubuntu@ip-xxx-xx-xx-xxx:~$ sudo cat /sys/devices/virtual/neuron_device/neuron0/neuron_
→˓core0/info/architecture/arch_type
NCv2

Sysfs metrics of counter type are write to clear. You can write any value to the file, and the metric will be set to 0:

ubuntu@ip-xxx-xx-xx-xxx:~$ echo 1 | sudo tee /sys/devices/virtual/neuron_device/neuron0/
→˓neuron_core0/stats/status/failure/total
1

Writing to reset resets the corresponding Neuron Device. E.g. the below resets Neuron Device 0:

ubuntu@ip-xxx-xx-xx-xxx:~$ echo 1 | sudo tee /sys/devices/virtual/neuron_device/neuron0/
→˓reset
1
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Note

All files under /sys/devices/virtual/neuron_device/neuron0/power such as runtime_active_kids or
runtime_status are related to generic device power management. They are not created or controlled by our sysfs
metrics. The word runtime in these files does not refer to Neuron Runtime.

How to Troubleshoot via Sysfs

You can perform simple and easy tasks to troubleshoot your ML jobs with one or a few CLIs to read or write the sysfs
filesystem. You can do aggregations across all the NeuronCores and all the Neuron Device to get a summarized view
using your scripts.

You can also use the Sysfs notification feature to wait passively (without wasting CPU cycles) for changes to the values of
Sysfs files. To use this feature, you need to implement a user-space program that calls the poll() function on the Sysfs
file that you want to wait on. The poll() function has the following signature: unsigned int (*poll) (struct
file *, struct poll_table_struct *). By default, the Sysfs notification feature is turned off when the driver
is loaded. To enable notifications, you can set the value of /sys/devices/virtual/neuron_device/neuron0/
info/notify_delay to 0. To disable notifications, you can set it to -1. Please note that enabling this feature can
impact performance.

Here is a sample user space program using poll():

#include <fcntl.h>
#include <poll.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char * argv[])
{

char readbuf[128];
int attr_fd = -1;
struct pollfd pfd;
int retval = 0;
ssize_t read_bytes;

if (argc < 2) {
fprintf(stderr, "Error: Please specify sysfs file path\n");
exit(1);

}
attr_fd = open(argv[1], O_RDONLY, 0);
if (attr_fd < 0) {

perror(argv[1]);
exit(2);

}

read_bytes = read(attr_fd, readbuf, sizeof(readbuf));
if (read_bytes < 0) {

perror(argv[1]);
exit(3);

}
printf("%.*s", (int)read_bytes, readbuf);

(continues on next page)
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(continued from previous page)

pfd.fd = attr_fd;
pfd.events = POLLERR | POLLPRI;
pfd.revents = 0;
while ((retval = poll(&pfd, 1, 100)) >= 0) {

if (pfd.revents & (POLLERR | POLLPRI)) {
pfd.revents = 0;

lseek(attr_fd, 0, SEEK_SET);
read_bytes = read(attr_fd, readbuf, sizeof(readbuf));
if (read_bytes < 0) {

perror(argv[1]);
exit(4);

}
printf("%.*s", (int)read_bytes, readbuf);

}
}
return 0;

}

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

6.2.5 NCCOM-TEST User Guide

Table of contents

• Overview

• Using nccom-test

– Output description

– CLI arguments

– Examples

Overview

nccom-test is a benchmarking tool for evaluating Collective Communication operations on AWS Trainium and Inferen-
tia instances. It supports Trn1, Trn2, and Inf2 instance types. The tool can assess performance across multiple instances
or perform quick environment sanity checks before running more complex workloads. While single-instance bench-
marking is supported for all compatible instance types, multi-instance benchmarking is limited to Trainium instances
(Trn1 and Trn2).

Note: On Inf2 instances, only single-instance benchmarking is supported. Running a multi-node nccom-test bench-
mark will result in an error.
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Using nccom-test

Here is a simple example which will run a 2 worker (ranks) all-reduce with a total size of 32MB:

nccom-test -r 2 allr
size(B) count(elems) type time(us) algbw(GB/s) busbw(GB/s)

33554432 33554432 uint8 768 40.69 40.69
Avg bus bandwidth: 40.6901GB/s

Output description

The command will output a table containing several columns containing performance metrics. There will be a line for
every requested data size (by default the data size is 32MB as seen in the previous example).

Column
name

Description

size(B) Size in bytes for the data involved in this operation
count(elems) Number of elements in the data involved in this operation. For example, if size(B) is 4 and type is

fp32, then count will be 1 since one single fp32 element has been processed.
type Data type for the processed data. Can be: uint8, int8, uint16, int16, fp16, bf16, int32, uint32,

fp32
time(us) Time in microseconds representing the P50 of all durations for the Collective Communication op-

erations executed during the benchmark.
al-
gbw(GB/s)

Algorithm bandwidth in gibibytes (1GiB = 1,073,741,824 bytes) per second which is calculated as
size(B) / time(us)

busbw(GB/s) Bus bandwidth - bandwidth per data line in gibibytes per second - it provides a bandwidth number
that is independent from the number of ranks (unlike algbw). For a more in-depth explanation on
bus Bandwidth, please refer to NVIDIA’s nccl-tests documentation.

Avg bus
bandwidth

Average of the values in the busbw column
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CLI arguments

Argu-
ment

Default value Description

<cc oper-
ation>

N/A, required argu-
ment

The type of Collective Communication operation to execute for this bench-
mark. Supported types:

• all_reduce / allr: All-Reduce

• all_gather / allg: All-Gather

• reduce_scatter / redsct: Reduce-Scatter

• sendrecv: Send-Receive

• alltoall: All-to-All

-r,
--nworkers

N/A, required argu-
ment

Total number of workers (ranks) to use

-N,
--nnodes

1 Total number of nodes (instances) to use. The number of workers will be di-
vided equally across all nodes. If this argument is greater than 1, the NEU-
RON_RT_ROOT_COMM_ID environment variable needs to be set to the
host address of the instance nccom-test is ran on, and a free port number (for
example: NEURON_RT_ROOT_COMM_ID=10.0.0.1:44444). Additionally, ei-
ther -s, --hosts needs to be provided or a ~/hosts file needs to exist - for
more details refer to the -s,--hosts description below.

-b,
--minbytes

32M The starting size for the benchmark

-e,
--maxbytes

32M The end size for the benchmark. nccom-test will run benchmarks for all sizes
between -b, --minbytes and -e, --maxbytes, increasing the size by ei-
ther -i, --stepbytes or --f, --stepfactor with every run.

-i,
--stepbytes

(--maxbytes -
--minbytes) / 10

Amount of bytes with which to increase the benchmark’s size on every sub-
sequent run. For example, for this combination of arguments: -b 8 -e 16
-i 4, the benchmark will be ran for the following sizes: 8 bytes, 12 bytes, 16
bytes.

-f,
--stepfactor

N/A Factor with which to increase the benchmark’s size on every subsequent run.
For example, for this combination of argument values: -b 8 -e 32 -f 2,
the benchmark will be ran for the following sizes: 8 bytes, 16 bytes, 32 bytes.

-n,
--iters

20 Number of Collective Communication operations to execute during the bench-
mark.

-w,
--warmup_iters

5 Number of Collective Communication operations to execute as warmup during
the benchmark (which won’t be counted towards the result).

-d,
--datatype

uint8 Data type for the data used by the benchmark. Supported types: uint8, int8,
uint16, int16, fp16, bf16, uint32, int32, fp32. Input data will be zero
filled, unless --check is provided (currently, only available for --datatype
fp32) in which case it will be filled by a repetead value of the requested type.

-c,
--check

false If provided, the corectness of the operations will be checked. This will not
impact results (time, algbw and busbw) but will slightly increase the overall
execution time.

-s,
--hosts

N/A Hosts on which to run execution. Checks ~/hosts if not specified.

--non-interactivefalse Do not display any animation or progress indicator.
--report-to-json-fileN/A Persist config and results to JSON file if a filepath is provided.
--show-input-output-sizefalse Print or save to JSON per rank input and output sizes in B.
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Note: All arguments that take a size in bytes will also accept larger size units, for example: -f 2048 can be written
as -f 2kb or -f 1048576 can be written as -f 1MB.

Examples

Note: Performance data shown in these examples should not be considered up-to-date. For the latest performance
data, please refer to the performance section.

Single Instance Examples

• Quick environment validation

nccom-test -r 2 allr
size(B) count(elems) type time(us) algbw(GB/s) ␣

→˓busbw(GB/s)
33554432 33554432 uint8 768 40.69 ␣

→˓40.69
Avg bus bandwidth: 40.6901GB/s

If a problem was found, it can be reported in two possible ways:

– Immediately:

nccom-test -r 2 allr
Neuron DKMS Driver is not running! Read the troubleshooting␣
→˓guide at: https://awsdocs-neuron.readthedocs-hosted.com/
→˓en/latest/neuron-runtime/nrt-troubleshoot.html#neuron-
→˓driver-installation-fails

– After a benchmark attempt:

nccom-test -r 2 allr
size(B) count(elems) type time(us) ␣

→˓algbw(GB/s) busbw(GB/s)
33554432 Failure running neuron-bench - log file /

→˓tmp/nccom_test_log_7pqpdfjf.log
1 errors found - test failed

In this case, further information about the error can be found in the
neuron-bench log file.

• 2 rank all-reduce on a single instance for sizes ranging from 1MiB to 1GiB with a step of 4x

nccom-test -r 2 --minbytes 1kb --maxbytes 1gb --stepfactor 4 --datatype␣
→˓fp32 allr

size(B) count(elems) type time(us) algbw(GB/s) ␣
→˓busbw(GB/s)

1024 256 fp32 58 0.02 ␣
→˓ 0.02

(continues on next page)
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4096 1024 fp32 58 0.07 ␣
→˓ 0.07

16384 4096 fp32 58 0.26 ␣
→˓ 0.26

65536 16384 fp32 58 1.05 ␣
→˓ 1.05

262144 65536 fp32 60 4.07 ␣
→˓ 4.07

1048576 262144 fp32 68 14.36 ␣
→˓14.36

4194304 1048576 fp32 107 36.51 ␣
→˓36.51

16777216 4194304 fp32 332 47.06 ␣
→˓47.06

67108864 16777216 fp32 1214 51.48 ␣
→˓51.48

268435456 67108864 fp32 4750 52.63 ␣
→˓52.63

1073741824 268435456 fp32 18930 52.83 ␣
→˓52.83
Avg bus bandwidth: 23.6671GB/s

• 32 rank all-gather on a single instance for sizes ranging from 1KiB to 1MiB with a step of 8x, with correctness
checking

nccom-test -r 32 --minbytes 1kb --maxbytes 1mb --stepfactor 8 --datatype fp32 --
→˓check allg

size(B) count(elems) type time(us) algbw(GB/s) busbw(GB/s)
1024 256 fp32 151 0.01 0.01
8192 2048 fp32 149 0.05 0.05
65536 16384 fp32 150 0.41 0.39
524288 131072 fp32 179 2.73 2.64

Avg bus bandwidth: 0.7731GB/s

• Reporting input and output size explicitly with --show-input-output-size

nccom-test -r 32 --minbytes 1kb --maxbytes 1mb --stepfactor 8 --datatype fp32 --check␣
→˓allg --show-input-output-size
size(B) count(elems) total_input_size(B) total_output_size(B) type time:
→˓avg(us) algbw(GB/s) busbw(GB/s)

1024 256 32 1024 fp32 ␣
→˓ 6.16 0.17 0.16

8192 2048 256 8192 fp32 ␣
→˓ 6.48 1.26 1.23
65536 16384 2048 65536 fp32 ␣

→˓ 8.17 8.02 7.77
524288 131072 16384 524288 fp32 ␣
→˓23.16 22.64 21.93
Avg bus bandwidth: 7.7715GB/s

• Example results as JSON with --report-to-json-file
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nccom-test -r 32 --minbytes 1kb --maxbytes 1mb --stepfactor 8 --datatype fp32 --check␣
→˓allg --report-to-json-file nccom-results.json
size(B) count(elems) type time:avg(us) algbw(GB/s) busbw(GB/s)

1024 256 fp32 6.19 0.17 0.16
8192 2048 fp32 6.55 1.25 1.21
65536 16384 fp32 8.18 8.01 7.76

524288 131072 fp32 23.11 22.69 21.98
Avg bus bandwidth: 7.7775GB/s

python3 -m json.tool nccom-results.json
{

"results": [
{

"size(B)": 1024,
"count(elems)": 256,
"type": "fp32",
"algbw(GB/s)": 0.16553675170497603,
"busbw(GB/s)": 0.16036372821419553,
"time:avg(us)": 6.19

},
{

"size(B)": 8192,
"count(elems)": 2048,
"type": "fp32",
"algbw(GB/s)": 1.2500906056270864,
"busbw(GB/s)": 1.21102527420124,
"time:avg(us)": 6.55

},
{

"size(B)": 65536,
"count(elems)": 16384,
"type": "fp32",
"algbw(GB/s)": 8.008982241741455,
"busbw(GB/s)": 7.758701546687035,
"time:avg(us)": 8.18

},
{

"size(B)": 524288,
"count(elems)": 131072,
"type": "fp32",
"algbw(GB/s)": 22.688776793562784,
"busbw(GB/s)": 21.97975251876395,
"time:avg(us)": 23.11

}
]

}
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Multiple Instances Example

• 64 rank all-reduce on two instances for sizes ranging from 8 bytes to 1GiB with a step of 2x, running 50 ops

NEURON_RT_ROOT_COMM_ID=10.1.4.145:45654 nccom-test -r 64 -N 2 -b 8 -e 1GB -
→˓f 2 -n 50 -w 5 -d fp32 allr --hosts 127.0.0.1 10.1.4.138

size(B) count(elems) type time(us) algbw(GB/s) ␣
→˓busbw(GB/s)

8 2 fp32 520 0.00 ␣
→˓ 0.00

16 4 fp32 520 0.00 ␣
→˓ 0.00

32 8 fp32 523 0.00 ␣
→˓ 0.00

64 16 fp32 525 0.00 ␣
→˓ 0.00

128 32 fp32 553 0.00 ␣
→˓ 0.00

256 64 fp32 709 0.00 ␣
→˓ 0.00

512 128 fp32 782 0.00 ␣
→˓ 0.00

1024 256 fp32 840 0.00 ␣
→˓ 0.00

2048 512 fp32 881 0.00 ␣
→˓ 0.00

4096 1024 fp32 916 0.00 ␣
→˓ 0.01

8192 2048 fp32 1013 0.01 ␣
→˓ 0.01

16384 4096 fp32 1031 0.01 ␣
→˓ 0.03

32768 8192 fp32 1174 0.03 ␣
→˓ 0.05

65536 16384 fp32 1315 0.05 ␣
→˓ 0.09

131072 32768 fp32 1315 0.09 ␣
→˓ 0.18

262144 65536 fp32 1311 0.19 ␣
→˓ 0.37

524288 131072 fp32 1312 0.37 ␣
→˓ 0.73

1048576 262144 fp32 1328 0.74 ␣
→˓ 1.45

2097152 524288 fp32 1329 1.47 ␣
→˓ 2.89

4194304 1048576 fp32 1378 2.83 ␣
→˓ 5.58

8388608 2097152 fp32 1419 5.51 ␣
→˓10.84

16777216 4194304 fp32 2138 7.31 ␣
→˓14.39

33554432 8388608 fp32 2711 11.53 ␣
(continues on next page)
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(continued from previous page)

→˓22.69
67108864 16777216 fp32 3963 15.77 ␣

→˓31.05
134217728 33554432 fp32 6279 19.91 ␣

→˓39.19
268435456 67108864 fp32 11954 20.91 ␣

→˓41.17
536870912 134217728 fp32 21803 22.93 ␣

→˓45.15
1073741824 268435456 fp32 41806 23.92 ␣

→˓47.09
Avg bus bandwidth: 9.3924GB/s

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

6.2.6 Neuron System Tools

Table of Contents

• Neuron Tools [2.24.54.0]

– New in the release

– Bug fixes

• Neuron Tools [2.23.16.0]

– New in the release

– Bug fixes

• Neuron Tools [2.22.66.0]

– New in the release

– Bug fixes

• Neuron Tools [2.20.204.0]

– New in the release

– Neuron Profile 2.0 (Beta)

• Neuron Tools [2.19.0.0]

– New in the release

– Bug fixes

• Neuron Tools [2.18.3.0]

– New in the release

– Bug fixes

• Neuron Tools [2.17.1.0]

– Bug fixes

1034 Chapter 6. Runtime & Tools



AWS Neuron

• Neuron Tools [2.17.0.0]

– New in the release

– Bug fixes

• Neuron Tools [2.16.1.0]

– New in the release

– Bug fixes

– Known issues

• Neuron Tools [2.15.4.0]

• Neuron Tools [2.14.6.0]

• Neuron Tools [2.13.4.0]

• Neuron Tools [2.12.2.0]

• Neuron Tools [2.11.10.0]

• Neuron Tools [2.10.1.0]

• Neuron Tools [2.9.5.0]

• Neuron Tools [2.8.2.0]

• Neuron Tools [2.7.2.0]

• Neuron Tools [2.6.0.0]

• Neuron Tools [2.5.19.0]

• Neuron Tools [2.5.16.0]

• Neuron Tools [2.4.6.0]

• Neuron Tools [2.1.4.0]

• Neuron Tools [2.0.790.0]

• Neuron Tools [2.0.623.0]

• Neuron Tools [2.0.494.0]

• Neuron Tools [2.0.327.0]

• Neuron Tools [2.0.277.0]

Neuron Tools [2.24.54.0]

Date: 6/24/2025
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New in the release

• Scratchpad memory usage visualization is now available in the Neuron Profiler UI. This feature shows scratchpad
memory usage over time with tensor level visibility at each time slice. This view also provides the HLO name
associate with the first use of each tensor. See View Scratchpad Usage With Memory Tracker for more details.

• Framework stack traces are now available in the Neuron Profiler UI. Users will now be able to see how instructions
executed on device map to their source code. See Framework Stack Trace for more details.

• On-device collectives barriers are now shown in the Neuron Profiler UI. This annotation will make it more clear
when there is overhead for collectives synchronization. See Collectives for an example.

• HBM throughput visualization over time is now shown in the Neuron Profiler UI, which reflects data movement
where either the source or destination are HBM.

• Added option to filter the Neuron Cores to capture trace events on (reference)

• Added option to filter the event types recorded when capturing system traces (reference)

• Added a flag to nccom-test to get results in JSON (--report-to-json-file <filename>).

• Added a flag to nccom-test to explicitly show input and output sizes based on the operation
(--show-input-output-size).

Bug fixes

• Fixed instance id labeling in system profile view for framework events.

• Fixed issue in Neuron Profiler UI where the full data was not shown in the NEFF Nodes tab.

Neuron Tools [2.23.16.0]

Date: 5/19/2025

New in the release

• Improved Neuron Profiler performance, allowing users to view profile results 5x times faster on average.

• Improved error reporting with timeline support for error signatures via custom notifications in the Neuron Profiler
UI. Added execution and out-of-bounds (OOB) error tracking in Neuron Profiler JSON outputs.

• Updated the default grouping for system profiles to include process ID.

• Added neuron-monitor companion script for collecting Kubernetes info in EKS. See neuron-monitor-k8s-
info.py (Beta) for details.
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Bug fixes

• Fixed hang during data collection when running nccom-test across multiple instances.

• Fixed certain cases in Neuron Profiler where DMA sizes were always reported as 0 bytes.

Neuron Tools [2.22.66.0]

Date: 2/14/2025

New in the release

• neuron-det is no longer supported starting with this release. We recommend customers transition to Neuron
Profiler 2.0 (Beta) for debugging runtime hangs and issues in large-scale settings. This tool offers the same
runtime function level traces with improved ease of use and optimized performance. For more information about
Neuron Profiler 2.0 (Beta), see Neuron Profiler 2.0 (Beta) User Guide.

• Added several enhancements to the Neuron Profiler UI, including NeuronCore barrier annotations, a minimal
default view to improve initial load performance, usability of updating markers, and better organization of view
settings.

• Added new event types in the system profile for Neuron Profiler 2.0 (Beta) related to out-of-bounds execution
errors, execution request submission, and model switch overhead.

• Updated system trace output format for Neuron Profiler 2.0 (Beta). Users will need to upgrade the
aws-neuronx-runtime-lib and aws-neuronx-tools packages to the same Neuron SDK version to process
and view the profiles.

Bug fixes

• Fixed an issue in the Neuron Profiler UI where dependencies were misaligned in the timeline when highlighted.

• Fixed an issue where instruction dependency IDs were truncated in the Neuron Profiler JSON output.

Neuron Tools [2.20.204.0]

Date: 12/20/2024

New in the release

• Added support for Trn2 instance types.

• Added support for Logical Neuroncores. neuron-top, neuron-monitor, and neuron-ls now display and
aggregate information per Logical Neuroncore based on LNC configuration.

• Added Neuron Profile 2.0 (Beta). See Neuron Profiler 2.0 (Beta) User Guide for more information.
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Neuron Profile 2.0 (Beta)

• System profiles featuring Neuron Runtime API trace and ML framework trace.

• Option to view system and device profiles using the Perfetto UI

• Support for native JAX and PyTorch profilers.

• Support for distributed workloads in environments such as EKS and ParallelCluster.

• Ability to drill down from high-level system profiles to low-level device profiles.

• Simplified experience for capturing profiles.

Neuron Tools [2.19.0.0]

Date: 09/16/2024

New in the release

• Added support for Neuron Kernel Interface (NKI). Please see Profiling NKI kernels with Neuron Profile for more
info.

• Updated neuron-profile JSON output to include information regarding instruction dependencies, DMA
throughput, and SRAM usage. See Alternative output formats on how to generate this output.

• Updated Neuron Profiler UI to display transpose information for DMAs (when applicable). Hover over the tooltip
for further details (see Features on using tooltips).

Bug fixes

• Fixed error handling in neuron-top to exit gracefully when passing an unknown argument

Neuron Tools [2.18.3.0]

Date: 07/03/2024

New in the release

• Profile captured with Neuron Runtime 2.20+ now includes annotations with additional information such as du-
ration, size, and replica groups around collective operations.

• Running neuron-profile capture for workloads with collectives will now attempt to use the required number of
workers if –collectives-workers-per-node or –collectives-worker-count is not set.

• Profiler UI now persists searched information in the URL and provides a summary of the search results.

• Updating sampling approach to show more representative data in the profiler UI when zoomed out.

• Updated groupings for displayed info on click in the profiler UI.

• Added neuron_device_type and neuron_device_memory_size to neuron-monitor’s hardware information output.
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Bug fixes

• Resolved issue where NaN would be seen in the JSON output of neuron-profile and result in parsing errors.

• Resolved inconsistent timeline display issues in profiler UI that depended on when the profile was processed.

• neuron-profile view –output-format summary-text will now display in a fixed order.

• Updated accuracy of pending DMA count in the profiler UI.

• Removed unnecessary calls to exec when capturing memory utilization metrics in neuron-monitor.

Neuron Tools [2.17.1.0]

Date: 04/01/2024

Bug fixes

• Fixed potential hang during synchronization step in nccom-test.

Neuron Tools [2.17.0.0]

Date: 02/13/2024

New in the release

• Added support to neuron-profile for collective communication operator improvements in Neuron SDK 2.17.
See Neuron Runtime Release Notes for more info.

• Optimized count query for sampling in neuron-profile UI for up to 3x faster load performance.

• Introduced warning annotations in neuron-profileUI to automatically highlight potential performance issues.
See the Neuron Profile User Guide for more info.

Bug fixes

• Resolved issue of inaccurate execution time reported by neuron-profile as mentioned in Neuron Tools 2.16.1.0
release notes.

• Fixed NaN display errors in the neuron-profile UI.

• Fixed file naming issue when capturing collectives profiles with neuron-profile.
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Neuron Tools [2.16.1.0]

Date: 12/21/2023

New in the release

• First release of the Neuron Distributed Event Tracing tool neuron-det to visualize execution for multi-node
workloads. Get started with the neuron-det-ug.

• neuron-profile now has the ability to capture multi-worker jobs. See the Neuron Profile User Guide for more
info.

• Added terminology descriptions to neuron-profile summary statistics. To view through the CLI, use
neuron-profile view --terminology To view in the UI, hover over the key in the summary.

• Added optional flags to neuron-profile view to change the InfluxDB bucket name (--db-bucket <bucket
name>) and profile display name (--display-name <name>).

Bug fixes

• Fixed bug where GPSimd summary values were missing in the profile summary.

• Fixed issue in nccom-test to no longer expect Neuron Device 0 in a container environemnt.

• Fixed issue in nccom-test to no longer require the instance launching nccom-test to be participating in the
workload.

Known issues

• Execution time reported in neuron-profile is sometimes in-accurate due to a bug in how the time is captured.
The bug will be address in upcoming Neuron releases.

Neuron Tools [2.15.4.0]

Date: 10/26/2023

New in the release:

• Fixed bug in neuron-profile that may result in a crash when using the NeuronCore Pipeline feature on Inf1.

• Improved visibility of summary stats in the profiler UI with added groupings.

• Added support for alltoall CC operation in nccom-test.

Neuron Tools [2.14.6.0]

Date: 09/15/2023

New in the release:

• Added legend in neuron-ls to clarify wrap around edges for topology view.

• Improved error messaging when passing invalid arguments to neuron-profile view.

• Fixed bug in neuron-profile that incorrectly calculated buffer utilization for more recently compiled NEFFs.
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• Fixed bug in neuron-profile where the profile would sometimes include additional idle time while waiting
for execution to start.

• Profiler output now includes HLO name in addition to framework layer names.

• neuron-profile view now has --output-format json option which will write to a file specified by
--output-file <name> (default is ntff.json) instead of writing data to InfluxDB.

Neuron Tools [2.13.4.0]

Date: 08/28/2023

New in the release:

• --check option of nccom-test now supports more data types (fp16, bf16, (u)int8, (u)int16, and
(u)int32 are now supported in addition to fp32)

• Fixed bug in nccom-test that would wait indefinitely for execution to end when running on multiple instances
(-N 2 and higher).

• Fixed bug in neuron-profile to prevent a crash during utilization calculation

Neuron Tools [2.12.2.0]

Date: 7/19/2023

New in the release:

• Bumped the max supported profiling NTFF version to version 2 to resolve crashes when postprocessing NTFFs
captured with newer versions of the Neuron Runtime Library. When viewing profiles captured using Neuron
Runtime Library 2.15 or above, please upgrade tools to 2.12. This version of Neuron tools remains compatible
with NTFF version 1.

• Bug fixes for neuron-profile related to the calculation of some summary stats.

Neuron Tools [2.11.10.0]

Date: 6/14/2023

New in the release:

• nccom-test can now show multiple latency stats in the results table, such as average or percentiles, by specifying
the -s option (for example: -s p10 p99 avg p50).

• First public support for neuron-profile as a standalone tool that can be used to profile executions on Neuron
Devices. Visit the Neuron Tools documentation page for more details on how to use the Neuron Profiler.

Neuron Tools [2.10.1.0]

Date: 05/01/2023

New in the release:

• Added new Neuron Collectives benchmarking tool, nccom-test, to enable benchmarking sweeps on various
Neuron Collective Communication operations. See new nccom-test documentation under System Tools for more
details.

• Expanded support for Neuron profiling to include runtime setup/teardown times and collapsed execution of Neu-
ronCore engines and DMA. See Tensorboard release notes and tutorial for more details.
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Neuron Tools [2.9.5.0]

Date: 03/28/2023

New in the release:

• Updated neuron-top to show effective FLOPs across all NeuronCores.

Neuron Tools [2.8.2.0]

Date: 02/24/2023

New in the release:

• Updated neuron-top to show aggregated utilization/FLOPs across all NeuronCores.

Neuron Tools [2.7.2.0]

Date: 02/08/2023

New in the release:

• Added support for model FLOPS metrics in both neuron-monitor and neuron-top. More details can be found in
the Neuron Tools documentation.

Neuron Tools [2.6.0.0]

Date: 12/09/2022

This release adds support for profiling with the Neuron Plugin for TensorBoard on TRN1. Please check out the docu-
mentation Neuron Plugin for TensorBoard (Trn1).

New in the release:

• Updated profile post-processing for workloads executed on TRN1

Neuron Tools [2.5.19.0]

Date: 11/07/2022

New in the release:

• Minor bug fixes and improvements.

Neuron Tools [2.5.16.0]

Date: 10/26/2022

New in the release:

• New neuron-monitor and neuron-top feature: memory utilization breakdown. This new feature provides
more details on how memory is being currently used on the Neuron Devices as well as on the host instance.

• neuron-top’s UI layout has been updated to accommodate the new memory utilization breakdown feature.

• neuron-monitor’s inference_stats metric group was renamed to execution_stats. While the previ-
ous release still supported inference_stats, starting this release the name inference_stats is considered
deprecated and can’t be used anymore.
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Note: For more details on the new memory utilization breakdown feature in neuron-monitor and neuron-top
check out the full user guides: Neuron Monitor User Guide and Neuron Top User Guide.

Bug Fixes:

• Fix a rare crash in neuron-top when the instance is under heavy CPU load.

• Fix process names on the bottom tab bar of neuron-top sometimes disappearing for smaller terminal window
sizes.

Neuron Tools [2.4.6.0]

Date: 10/10/2022

This release adds support for both EC2 INF1 and TRN1 platforms. Name of the package changed from aws-neuron-
tools to aws-neuronx-tools. Please remove the old package before installing the new one.

New in the release:

• Added support for ECC counters on Trn1

• Added version number output to neuron-top

• Expanded support for longer process tags in neuron-monitor.

• Removed hardware counters from the default neuron-monitor config to avoid sending repeated errors - will add
back in future release.

• neuron-ls - Added option neuron-ls --topology with ASCII graphics output showing the connectivity
between Neuron Devices on an instance. This feature aims to help in understanding pathways between Neuron
Devices and in exploiting code or data locality.

Bug Fixes:

• Fix neuron-monitor and neuron-top to show the correct Neuron Device when running in a container where not
all devices are present.

Neuron Tools [2.1.4.0]

Date: 04/29/2022

• Minor updates

Neuron Tools [2.0.790.0]

Date: 03/25/2022

• neuron-monitor: fixed a floating point error when calculating CPU utilization.
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Neuron Tools [2.0.623.0]

Date: 01/20/2022

New in the release:

• neuron-top - Added “all” tab that aggregates all aggregate all running Neuron processes into a single view.

• neuron-top - Improved startup time to approximately 1.5 seconds in most cases.

• neuron-ls - Removed header message about updating tools from neuron-ls output

Bug fixes:

• neuron-top - Reduced single CPU core usage down to 0.7% from 80% on inf1.xlarge when running
neuron-top by switching to an event-driven approach for screen updates.

Neuron Tools [2.0.494.0]

Date: 12/27/2021

• Security related updates related to log4j vulnerabilities.

Neuron Tools [2.0.327.0]

Date: 11/05/2021

• Updated Neuron Runtime (which is integrated within this package) to libnrt 2.2.18.0 to fix a container issue
that was preventing the use of containers when /dev/neuron0 was not present. See details here neuron-runtime-
release-notes.

Neuron Tools [2.0.277.0]

Date: 10/27/2021

New in this release:

• Tools now support applications built with Neuron Runtime 2.x (libnrt.so).

Important:
– You must update to the latest Neuron Driver (aws-neuron-dkms version 2.1 or newer) for proper func-

tionality of the new runtime library.

– Read Introducing Neuron Runtime 2.x (libnrt.so) application note that describes why are we making this
change and how this change will affect the Neuron SDK in detail.

– Read Migrate your application to Neuron Runtime 2.x (libnrt.so) for detailed information of how to migrate
your application.

• Updates have been made to neuron-ls and neuron-top to significantly improve the interface and utility of
information provided.

• Expands neuron-monitor to include additional information when used to monitor latest Frameworks released
with Neuron 1.16.0.

neuron_hardware_info Contains basic information about the Neuron hardware.
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"neuron_hardware_info": {
"neuron_device_count": 16,
"neuroncore_per_device_count": 4,
"error": ""

}

– neuron_device_count : number of available Neuron Devices

– neuroncore_per_device_count : number of NeuronCores present on each Neuron Device

– error : will contain an error string if any occurred when getting this information (usually
due to the Neuron Driver not being installed or not running).

• neuron-cli entering maintenance mode as it’s use is no longer relevant when using ML Frameworks with an
integrated Neuron Runtime (libnrt.so). see maintenance_mxnet_1_5 for more information.

• For more information visit neuron-tools

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

6.3 Profiling Tools

This document is relevant for: Inf1, Inf2, Trn1, Trn2

6.3.1 Neuron Profile User Guide

Table of contents

• Overview

• Installation

– Ubuntu

• Capturing a profile

• Capturing profiles for multi-worker jobs

– Capturing profiles for multi-node jobs

• Processing and viewing the profile results

– Viewing a single profile

– Viewing profiles for multi-worker jobs

– Viewing multiple profiles

– Accessing the profiles

– Alternative output formats

• Understanding a Neuron profile

– Timeline
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– Features

– Performance Warnings

– Collectives

– Event Details

• Framework Stack Trace

– Searching Profiles

– Hardware Errors

• View Scratchpad Usage With Memory Tracker

• Viewing Profiles with Perfetto

– Viewing Large Profiles In Perfetto

– Showing Dependencies In Perfetto

• CLI reference

• FAQ

– Difference between TensorE and TensorMatrixE Rows in Timeline

• Troubleshooting

– InfluxDB not installed

– Too many open files

– When viewing UI “FATAL - Failed metadata query”

– Visual Artifacts when viewing profiles

Overview

neuron-profile is a tool to profile and analyze performance of a ML model compiled with the Neuron compiler and
run on NeuronDevices.

Note: Please use the aws-neuronx-tools package from Neuron SDK 2.11 or higher.

neuron-profile helps developers identify performance bottlenecks and optimize their workloads for NeuronDevices.
neuron-profile provides insights into NeuronDevice activity including the instructions executed on each compute en-
gine (ex. Tensor engine, Vector engine, etc.), DMA data movement activity, and performance metrics such as engine
utilization, DMA throughput, memory usage, and more. NeuronDevice activity is collected by the neuron-profile
capture command which runs the model with tracing enabled. Profiling typically has near zero overhead because
NeuronDevices have dedicated on-chip hardware profiling.

Additionally, neuron-profile supports Neuron Kernel Interface (NKI) developers in profiling their kernels. For
more information, please refer to Profiling NKI kernels with Neuron Profile

Note: This page refers to the existing Neuron Profiler feature set focused on capturing and viewing device profiles
(hardware activity during graph execution on NeuronCores). Neuron Profiler 2.0 is a set of new features currently in
beta that enhance and simplify capturing and viewing profiles. It is not a replacement for the features described on this
page. To learn more about Neuron Profiler 2.0, please refer to the Neuron Profiler 2.0 (Beta) User Guide.
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Installation

neuron-profile comes as part of the aws-neuronx-tools package, and will be installed to /opt/aws/neuron/
bin.

The Neuron web profile viewer utilizes InfluxDB OSS 2.x to store time series data for the profiled workloads after post
processing. Please follow the instructions provided at https://portal.influxdata.com/downloads/ for the correct OS. A
sample installation of Neuron Profile and InfluxDB is provided below.

Ubuntu

# Install Neuron Profile
. /etc/os-release
sudo tee /etc/apt/sources.list.d/neuron.list > /dev/null <<EOF
deb https://apt.repos.neuron.amazonaws.com ${VERSION_CODENAME} main
EOF

wget -qO - https://apt.repos.neuron.amazonaws.com/GPG-PUB-KEY-AMAZON-AWS-NEURON.PUB |␣
→˓sudo apt-key add -
sudo apt-get update -y
sudo apt-get install aws-neuronx-runtime-lib aws-neuronx-dkms -y
sudo apt-get install aws-neuronx-tools -y

# Install InfluxDB
wget -q https://repos.influxdata.com/influxdata-archive_compat.key
echo '393e8779c89ac8d958f81f942f9ad7fb82a25e133faddaf92e15b16e6ac9ce4c influxdata-
→˓archive_compat.key' | sha256sum -c && cat influxdata-archive_compat.key | gpg --
→˓dearmor | sudo tee /etc/apt/trusted.gpg.d/influxdata-archive_compat.gpg > /dev/null
echo 'deb [signed-by=/etc/apt/trusted.gpg.d/influxdata-archive_compat.gpg] https://repos.
→˓influxdata.com/debian stable main' | sudo tee /etc/apt/sources.list.d/influxdata.list

sudo apt-get update && sudo apt-get install influxdb2 influxdb2-cli -y
sudo systemctl start influxdb
influx setup
# Fill in the information to finish the setup

Capturing a profile

The neuron-profile tool can both capture and post-process profiling information. neuron-profile takes a com-
piled model (a NEFF), executes it, and saves the profile results to a NTFF (profile.ntff by default). For this example,
we assume a NEFF is already available as file.neff

$ neuron-profile capture -n file.neff -s profile.ntff
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Capturing profiles for multi-worker jobs

neuron-profile can capture profiles for collectives-enabled NEFFs running across multiple NeuronCores, Neuron-
Devices, or even nodes. This is useful for understanding performance and communication overheads when deploying
larger distributed models.

The following example, performs a distributed run across all NeuronDevices and NeuronCores on an inf2.24xlarge
instances, capturing profiles for all 12 workers (one for each NeuronCore).

$ neuron-profile capture -n file.neff --collectives-workers-per-node 12 -s output/
→˓profile.ntff

A profile is saved for each worker in the output directory.

$ ls output
profile_rank_0.ntff profile_rank_2.ntff profile_rank_6.ntff profile_rank_1.ntff ␣
→˓profile_rank_3.ntff profile_rank_7.ntff
profile_rank_10.ntff profile_rank_4.ntff profile_rank_8.ntff profile_rank_11.ntff ␣
→˓profile_rank_5.ntff profile_rank_9.ntff

It is also possible to run a distributed job while only capturing a profile for a specific worker instead of all workers. To
do that, use the --collectives-profile-id option.

$ neuron-profile capture -n file.neff --collectives-profile-id 5 --collectives-workers-
→˓per-node 12 -s output/profile.ntff
$ ls output
profile_rank_5.ntff

Capturing profiles for multi-node jobs

For multi-node jobs, neuron-profile must be invoked on each node using the collectives-worker-start-id
to specify the global index of the first worker on the given node. For example, for a two node job with a total of four
workers and two workers per node, the following commands are run on each node.

# on node 0
$ neuron-profile capture -n file.neff --collectives-worker-start-id 0 --collectives-
→˓workers-per-node 2 --collectives-worker-count 4
# on node 1
$ neuron-profile capture -n file.neff --collectives-worker-start-id 2 --collectives-
→˓workers-per-node 2 --collectives-worker-count 4

neuron-profile saves the profile for a worker on the node where that worker was launched. So in the case
above, profile_rank_0.ntff and profile_rank_1.ntff are saved to node 0, and profile_rank_2.ntff and
profile_rank_3.ntff are saved to node 1.
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Processing and viewing the profile results

To analyze and view the collected profiling data, use the view subcommand of neuron-profile. This command
performs two main functions: it post-processes the profiling data and starts up an HTTP server. Once the server is
running, you can access the profiling results through your web browser. Please note: Chrome is the officially supported
browser for viewing profiling results

Note: Profiles can be processed and viewed on another machine without Neuron devices. The aws-neuronx-tools
package needs to be installed so that you can run neuron-profile view. To process the profile on another instance,
you need to copy the NEFF and NTFF files from your Inf or Trn instance to that instance.

Viewing a single profile

The first way to invoke neuron-profile view is to pass both the NEFF and the NTFF to this command. It will
post-process these artifacts and print out a direct link to the profile view.

$ neuron-profile view -n file.neff -s profile.ntff
View profile at http://localhost:3001/profile/n_fdc71a0b582ee3009711a96e59958af921243921
ctrl-c to exit

Viewing profiles for multi-worker jobs

Profiles from multi-worker jobs (i.e. more than one NeuronCore) can either be viewed individually or in a combined
collectives view. Since profile data is often similar between workers and processing profile data for all workers can be
time-consuming, it is recommended to first explore the profile for a single worker or small subset of workers. Viewing
the profile for a specific worker is the same as for single-worker profiles.

$ neuron-profile view -n file.neff -s output/profile_rank_5.ntff
View profile at http://localhost:3001/profile/n_fdc71a0b582ee3009711a96e59958af921243921

To view the profile for multiple workers, pass the directory containing all worker profiles to neuron-profile.

$ neuron-profile view -n file.neff -d output
View profile at http://localhost:3001/profile_cc/p_
→˓9a69d907e1350100c9b03745eaa67aa7422842ed
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When viewing profiles with the combined collectives view you can easily switch between the timelines of different
workers by clicking the “Rank <x>” tabs.

Note: the “CC Aggregated View” currently shows no data. This will be populated in an upcoming release.

Viewing multiple profiles

Alternatively, when post-processing multiple profiles, it may be desirable to have a persistent server running while
processing results in the background. In this case, we can skip passing arguments to the command, which will direct
users to the main page listing all available profiles.

$ neuron-profile view
View a list of profiles at http://localhost:3001/

In a separate window, we can kick off the post-processing without launching another server by passing the
--ingest-only flag.

$ neuron-profile view -n file.neff -s profile.ntff --ingest-only
Profile "n_47cf9972d42798d236caa68952d0d29a76d8bd66" is ready to view

n_47cf9972d42798d236caa68952d0d29a76d8bd66 is the bucket where the data is stored. We can find this profile
at localhost:3001/profile/<bucket>.
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Accessing the profiles

If neuron-profile view is run on a remote instance, you may need to use port forwarding to access the profiles.

From the local machine, SSH to the remote instance and forward ports 3001 (the default neuron-profile HTTP
server port) and 8086 (the default InfluxDB port). Then in the browser, go to localhost:3001 to view the profiles.

$ ssh <user>@<ip> -L 3001:localhost:3001 -L 8086:localhost:8086

Alternative output formats

Besides the web view mentioned above, neuron-profile also supports other output formats such as summary-text
and summary-json for viewing overall metrics of the profile, as well as json for a parsable alternative.

Profile summary

You can see a summary of each profile using the command neuron-profile view --output-format
summary-text -n file.neff -s output/profile_rank_<i>.ntff. This output includes summary metrics
and fields for the NeuronCore (nc_idx) and NeuronDevice (nd_idx) on which the worker was run. For example,
the following shows worker 5 used core 1 on device 3 and took 0.017 seconds (17 ms) to run the model.

$ neuron-profile view --output-format summary-text -n file.neff -s output/profile_rank_5.
→˓ntff | grep -e "nd_idx" -e "nc_idx" -e "total_time"
nc_idx 1
nd_idx 2
total_time 0.017

This summary is also available as JSON using --output-format summary-json.

JSON

You can also view the profile summary and all post-processed profiler events together as a single JSON. To do that, use
the --output-format json option.

$ neuron-profile view --output-format json --output-file profile.json -n file.neff -s␣
→˓output/profile_rank_5.ntff
$ cat profile.json
{

"summary": [
{

"total_time": 0.017,
"event_count": 11215
[...]

}
],
"instruction": [

{
"timestamp": 10261883214,
"duration": 148,
"label": "TensorMatrix",

(continues on next page)
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(continued from previous page)

"hlo_name": "%add.1 = add(%dot, %custom-call.44)",
"opcode": "MATMUL",
"operands": "S[5] (Tensor)++@complete acc_flags=3 row_grp=q0␣

→˓src=fp16@0x5600[1,0,0][3,1,1] dst=0x2000000[1,0,0][3,1,1] 3*128 "
},
[...]

]
}

Understanding a Neuron profile

The section provides a quick overview on what features and information are available through the Neuron web profile
viewer.

For more information on terms used, please check out the Neuron Glossary.

Timeline

The execution timeline is plotted based on the elapsed nanoseconds since the start of execution.

Starting from the bottom, the TensorMatrix Utilization shows the efficiency of the TensorEngine, and the
Pending DMA Count and DMA Throughput rows show the DMA activity. In general, we want these to be as high as
possible, and in some cases may help give clues as to whether the workload is memory or compute bound.

Next are the individual NeuronCore engine executions. These rows show the start and end times for instructions exe-
cuted by each engine, and clicking on one of these bars will show more detailed information, as well as any dependen-
cies that were found. For models involving collective compute operations, you will additionally see rows labeled with
CC-core, which are used to synchronize the CC operations.

Towards the top is the DMA activity. These can include the transfers of input and output tensors, intermediate tensors,
and any additional spilling or loading to and from the on-chip SRAM memory.
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Features

The following are some useful features that may help with navigating a profile:

• Dragging your cursor across a portion of the timeline will zoom in to the selected window, providing a more in
depth view of the execution during that time period.

• Hovering over a point will reveal a subset of information associated with it.

• Clicking a point will open a text box below the timeline with all the information associated with it.

• Right-clicking a point will drop a marker at a certain location. This marker will persist when zooming in and
out.

– All marker information can be found by clicking the Annotations button.

– Markers can be saved and loaded by using a provided name for the marker set.

– Individual markers can be renamed or deleted in this menu as well.

– Time span between markers will automatically be shown, and users can change the marker name next to
diff vs to calculate time between other markers.

• The “Search” tab can be used to find and highlight specific points in the profile related to the queried field(s).

• Click on the “Box Select” button in the top-right corner of the timeline and then click and drag on any region
of the plot to select all events in that region and get summary statistics such as total duration and breakdowns of
opcodes, transfer_sizes, and more.

• The Edit view settings can be used to further customize the timeline view. Editing any settings will update
the URL accordingly, which can be used to re-visit the current view at a later time.

– For example, changing the Instruction Grouping dropdown option to “Layer” will re-color the time-
line based on the associated framework layer name.

– To speed up initial load times, the default will be a Minimal View which only shows the instructions
executed and the model FLOPs utilization (MFU) over time. Changing between the minimal and full
views can also be done through the Reset to Full View or Reset to Minimal View buttons.

Additionally, there are various summary tabs that can be clicked to provide more information on the model/NEFFs.
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• Layer Summary shows timing information, FLOPs and instructions counts per layer.

• Selection Summary shows summarized information for all data points in the selected window when using the
“Box Select” mode.

• NEFF Header shows details on the profiled NEFF, such as the number of NeuronCores required to execute.

• NEFF Nodes shows input, output, and weight tensor information, including name, size, and shape.

• Model Info shows a summary of the NTFF, such as the NeuronCore the model was executed on, number of
notifications, and hardware execution time.

• DMA Queues Info shows more information on the queues used for data movement.

• NC Memory Usage Info shows a snapshot of the device memory usage breakdown before profiling was started.

• Terminology shows a description of metrics provided in the summary table.

Performance Warnings

Furthermore, neuron-profile will automatically highlight some potential performance issues with warning annota-
tions. For example if a tensor has been loaded more than 2 times a warning annotation (seen below as an orange box)
will be drawn, encircling the dma instructions where the tensor was loaded many times. Hover on the annotation to
see more details about loading the tensor. Another kind of warning annotation will highlight areas of high throttling.
This provides the user a potential reason for slow down (thermal protection). Specific throttling details are shown when
hovering the annotation.

Collectives

For models involving collective operations, the timeline will show a box around all data points related to each operation.
Hovering the top left of the box will reveal more information associated with the operation.

Note: this feature requires profiles to be captured with Neuron Runtime 2.20 or higher.

1054 Chapter 6. Runtime & Tools



AWS Neuron

Additionally, for any on-device collectives synchronization barrier, a similar box will be display indicating a barrier
instead of an actual collectives operation.
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Event Details

The information when a point is clicked is grouped by categories such as Timing or IDs for convenience. Each row
will also include a tool tip on the right side, which can be hovered for an explanation on what the field represents. For
instruction Operands specifically, clicking on the tooltip will reveal a breakdown of fields that compose an operand, as
well as a generic example for reference. The examples may not apply directly to the currently viewed profile.

Framework Stack Trace

The Framework Stack Trace feature shows up in the Event Details when an instruction on the device profile is clicked.
This can we used to map the device instructions back to framework level code in JAX or PyTorch to better understand
what part of the application code resulted in a particular device instruction.
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To enable tracking of the stack trace information, you need to set environment variables before compiling your NEFF:

export XLA_IR_DEBUG=1
export XLA_HLO_DEBUG=1

Once you have the NEFF, you can simply capture the profile as usual. While viewing the profile use the
--framework-source-root to pass the path to framework source files. This is optional and is only needed if you
want to view your code along side the profile.

$ neuron-profile view -n file.neff -s profile.ntff --framework-source-root /path/to/
→˓framework/source/files
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Searching Profiles

Searching helps identify specific data points that may be worth investigating, such as all instructions related to a specific
layer or operation. In the “Search” tab, select the corresponding field of interest and enter the value to search for.
Multiple fields can be searched together. Please refer to the tooltip within the tab for more help on the query syntax.
The search results will also include a summary of all data points found within the current time range.
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Hardware Errors

Invalid code can lead to errors on Neuron hardware. These errors will be displayed in Neuron Profile’s Custom Notifi-
cation timeline, as shown below. For example an Out of Bounds (OOB) error is displayed as:

Users can correlate the error to the time it occurred and view nearby events to help debug.

View Scratchpad Usage With Memory Tracker

The Memory Tracker feature in Neuron Profiler provides detailed insights into scratchpad memory usage over time,
showing how memory is allocated and utilized by different tensors during model execution. This is particularly useful
for understanding memory bottlenecks and optimizing memory usage patterns.

To enable Memory Tracker, you need to set environment variables before compiling your NEFF:

export XLA_IR_DEBUG=1
export XLA_HLO_DEBUG=1

Then compile your model with these debug flags enabled. After compilation, capture the profile with the
--enable-dge-notifs flag or set NEURON_RT_ENABLE_DGE_NOTIFICATIONS=1:

$ neuron-profile capture -n file.neff --enable-dge-notifs

Finally, view the profile with Memory Tracker enabled:

$ neuron-profile view -n file.neff -s profile.ntff --enable-memory-tracker

The Memory Tracker displays a timeline showing scratchpad memory usage over time, with a detailed breakdown of
which tensors are consuming memory at any given point. This visualization helps identify:

• Peak scratchpad memory usage

• Memory allocation patterns

• Tensor-specific memory consumption

• Potential memory optimization opportunities
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You can interact with the Memory Tracker timeline similar to other profile views - clicking on memory usage bars will
show detailed information about the tensors using memory at that time, and you can zoom in to specific time ranges to
get a more detailed view of memory allocation patterns.

Viewing Profiles with Perfetto

Perfetto is an open-source trace analysis toolkit with a powerful UI for visualizing and analyzing trace data. Users of
Neuron Profiler have the option of viewing their profiles in the Perfetto UI.

To process your profile and generate a Perfetto trace file that can be viewed in the Perfetto UI run the following com-
mand:

$ neuron-profile view -n file.neff -s profile.ntff --output-format perfetto

This will generate a ntff.pftrace file. Go to https://ui.perfetto.dev/ in your browser and open the ntff.pftrace file to view
your profile in Perfetto.

Note: When loading trace files in the Perfetto UI, your data is processed locally and not uploaded to Perfetto’s servers.
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Viewing Large Profiles In Perfetto

Your browser may run out of memory when viewing ntff.pftrace (Perfetto trace) files that are more than a few
hundred MB. To get around this problem you can use the trace processor script by running the following command on
your local system where you wish to view the profile

curl -LO https://get.perfetto.dev/trace_processor
chmod +x ./trace_processor
./trace_processor --httpd ntff.pftrace

Now go to https://ui.perfetto.dev/ in your browser and in the dialog box that pops up click the “YES, use loaded trace”
button.

For more information on using the trace processor script and viewing large traces, please refer to the Perfetto docu-
mentation at https://perfetto.dev/docs/visualization/large-traces.

Showing Dependencies In Perfetto

By default Neuron Profiler does not process dependencies for profiles to be viewed in Perfetto because Perfetto renders
the full dependency chain which can be visually overwhelming. To include dependencies that can be viewed when
clicking instructions and DMAs in the Perfetto UI, use the --show-perfetto-flows flag when processing your
profile.

$ neuron-profile view -n file.neff -s profile.ntff --output-format perfetto --show-
→˓perfetto-flows

CLI reference

neuron-profile capture

neuron-profile capture [parameters] [inputs...]

Takes a given compiled NEFF, executes it, and collects the profile results. When no inputs are provided, all-zero
inputs are used, which may result in inf or NaNs. It is recommended to use --ignore-exec-errors

• -n,--neff (string): the compiled NEFF to profile
• -s,--session-file (string): the file to store profile session information in
• --ignore-exec-errors: ignore errors during execution
• inputs (positional args): list of inputs in the form of <NAME> <FILE_PATH> separated by space. Eg

IN1 x.npy IN2 y.npy
The following neuron-profile capture arguments are only relevant for multi-worker jobs

• --collectives-profile-id (string): worker id which will be profiled. Passing all profiles all workers.
(default: all)

• -r,--collectives-workers-per-node (int): the number of workers on the current node. The global
worker id (rank) of worker n on current node is collectives-worker-start-id+n

• --collectives-worker-count (int): total number of Neuron workers across all nodes for this collec-
tives run.

• --collectives-worker-start-id (int): The rank offset for the first worker on the current node. For
example, if node 0 has workers 0,1 and node 1 has workers 2,3 then collectives-worker-start-id
for node 0 and 1 will be 0 and 2, respectively. (default: 0)

neuron-profile view [parameters]

• -n,--neff-path (string): the compiled NEFF file location
• -s,--session-file (string): the profile results NTFF file location
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• -d,--session-dir (string): directory containing profile files for multi-worker runs
• --output-format (string): how the processed profile should be presented. The default db write pro-

cessed data to the database. summary-text and summary-json print the summary data as a table or
json, respectively, without writing to the datebase. The perfetto option writes processed data to Per-
fetto’s native protobuf based tracing format, and can be visualized in the Perfetto UI. The JSON option
writes processed data to human-readable JSON. (default: db)

• --output-file (string): file path to write results to, if applicable for the given output format
• --db-endpoint (string): the endpoint of InfluxDB (default: http://localhost:8086)
• --db-org (string): the org name of InfluxDB
• --db-bucket (string): name of the InfluxDB bucket where ingested profile data is stored. Also used in

the URL for viewing the profile (Optional)
• --port (int): the port number of the http server (default: 3001)
• --force: force overwrite an existing profile in the database
• --terminology: print a helpful table of terminology used by the profiler
• --enable-memory-tracker: Enable Memory Tracker to view scratchpad usage over time with a break-

down of usage per tensor. This requires having set XLA_IR_DEBUG=1 and XLA_HLO_DEBUG=1 before
NEFF compilation and passing --enable-dge-notifs when capturing the profile.

FAQ

Difference between TensorE and TensorMatrixE Rows in Timeline

• TensorE includes instruction trace for LoadStationary (LoadWeight)

• TensorMatrixE includes instruction trace for MultiplyMoving (Matmul)

• Both instruction traces happen on the same TensorE engine, but we separate them into two rows to de-clutter the
timeline due to the background load stationary feature (loading stationary matrix for the next matmul in parallel
to current matmul). See more info in NKI architecture guide.

Troubleshooting

InfluxDB not installed

$ neuron-profile view -n file.neff -s profile.ntff
ERRO[0001] To install influxdb, go to https://portal.influxdata.com/downloads/ and␣
→˓follow the instructions there
influxdb not setup correctly: exec: "influx": executable file not found in $PATH

$ neuron-profile view -n file.neff -s profile.ntff
ERRO[0000]
influxdb token not setup correctly: exit status 1
Try executing "systemctl start influxdb" and "influx setup"

Running neuron-profile view without InfluxDB installed will result in an error and a pointer to the InfluxDB
installation instructions. Please follow the provided instructions and retry.
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Too many open files

influxdb2client E! Write error: internal error: unexpected error writing points to␣
→˓database: [shard 10677] open /home/ubuntu/.influxdbv2/engine/data/7caae65aaa48380d/
→˓autogen/10677/index/0/MANIFEST: too many open files

InfluxDB will encounter “too many open files” and out of memory errors after a few hundred buckets have been created.
Two ways to solve this are to delete unused buckets or increase the system file descriptor limit.

To increase the file descriptor limit, add the following lines to /etc/security/limits.d/efa.conf and /etc/
security/limits.conf:

* soft nofile 1048576
* hard nofile 1048576

Add the following lines to /etc/sysctl.conf

fs.file-max = 197341270
vm.max_map_count=1048576

Commit changes by running sudo sysctl -p.

When viewing UI “FATAL - Failed metadata query”

If you are SSH port forwarding the web UI from a remote machine to your local desktop you will need to port forward
both the web UI (3001) and the database (8086) like so:

ssh -L 3001:localhost:3001 -L 8086:localhost:8086 remote_machine

Visual Artifacts when viewing profiles

Some users have reported visual artifacts when viewing certain profiles in browsers other than Chrome. If you en-
counter this issue, please try using Chrome. For more details, refer to the GitHub issue: https://github.com/aws-neuron/
aws-neuron-sdk/issues/1033

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

6.3.2 Neuron Profiler 2.0 (Beta) User Guide
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Overview

Neuron Profiler 2.0 offers a user-friendly experience for capturing and analyzing application performance through both
high-level system profiles and detailed device-level profiles. Users can profile their workloads using framework-specific
APIs within their application code or by setting an environment variable before execution. This tool supports profiling
for both single-node and distributed workloads, integrating with environments such as ParallelCluster and EKS. Once
captured, profile results can be explored through multiple interfaces: the Neuron Profiler UI, the open-source trace
viewer Perfetto, or by exporting to a human-readable JSON format. This flexibility in data capture and visualization
enables users to gain comprehensive insights into their application’s performance across various scenarios and scales.

Note: Neuron Profiler 2.0 is a set of new features currently in beta that enhance and simplify the experience of
capturing and viewing profiles. It is not a replacement of Neuron Profiler, which is the existing feature set specifically
for capturing and viewing device profiles.

Capturing profiles

Neuron Profiler 2.0 offers several flexible options for capturing profiles. Users can either set an environment variable
NEURON_RT_INSPECT_ENABLE or use the PyTorch or JAX profiling APIs from their application code for fine-grained
control over which sections of their code are profiled. PyTorch and JAX users who prefer not to modify their application
code can still enable profiling by setting the environment variable before running their application.

JAX User Experience

JAX Setup

Follow the JAX Setup instructions to install the required JAX Neuron Plugin and the latest Neuron Driver, Runtime
and Tools packages.

JAX Profiler

The JAX context-managed profiling API allows you to profile blocks of code. This will capture a system profile includ-
ing a Neuron Runtime API trace and Python trace for your application code in the captured block. This will also capture
device profiles for any compiled graphs (NEFFs) executed on NeuronCores within this block. To use the profiler, import
the jax package.

import jax

Profiling is enabled for all code enclosed in the context when using with jax.profiler.trace(os.environ[
"NEURON_RT_INSPECT_OUTPUT_DIR"]):

Note: It is important to pass the output directory os.environ["NEURON_RT_INSPECT_OUTPUT_DIR"] to with
jax.profiler.trace and run export NEURON_RT_INSPECT_OUTPUT_DIR=<your output directory> before
enabling profiling. This ensures all captured profile data is saved to the correct output directory.
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Custom Annotations in JAX

To add custom annotations to blocks of code in your profile, you can use jax.profiler.TraceAnnotation. Anno-
tation names can be created at runtime, such as in the example here using with jax.profiler.TraceAnnotation(
"my_label"+str(i)):. For more information on TraceAnnotations, see the official JAX documentation.

JAX Profiling using environment variable

Instead of using the jax.profiler context manager, you can enable profiling for your entire application using an environ-
ment variable. This is desirable if you want to capture a profile without modifying your application code. To enable
profiling with the environment variable NEURON_RT_INSPECT_ENABLE=1 and NEURON_RT_INSPECT_OUTPUT_DIR=.
/output before running your application.

For example:

# make sure to remove call to with jax.profiler.trace from python script
NEURON_RT_INSPECT_ENABLE=1 NEURON_RT_INSPECT_OUTPUT_DIR=./output python jax_script.py

When using the NEURON_RT_INSPECT_ENABLE environment variable instead of jax.profiler, system profiles will
not contain a framework and application code trace, only Neuron Runtime API trace.

Do not set the NEURON_RT_INSPECT_ENABLE environment variable and use the jax.profilerwithin your application
code at the same time. Use one or the other.

For more profiling options that can be set through environment variables, see the section Profile Capture Environment
Variables.

Full JAX Example

Create a file jax_script.py which performs repeated matrix multiplications distributed across Neuron devices.

from functools import partial
import os
import jax
import jax.numpy as jnp

from jax.sharding import Mesh, NamedSharding, PartitionSpec as P
from jax.experimental.shard_map import shard_map
from time import sleep

os.environ["XLA_FLAGS"] = "--xla_dump_hlo_snapshots --xla_dump_to=./dump"

jax.config.update("jax_default_prng_impl", "rbg")

mesh = Mesh(jax.devices(), ('i',))

def device_put(x, pspec):
return jax.device_put(x, NamedSharding(mesh, pspec))

lhs_spec = P('i', None)
lhs = device_put(jax.random.normal(jax.random.key(0), (128, 128)), lhs_spec)

rhs_spec = P('i', None)
(continues on next page)
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rhs = device_put(jax.random.normal(jax.random.key(1), (128, 16)), rhs_spec)

@jax.jit
@partial(shard_map, mesh=mesh, in_specs=(lhs_spec, rhs_spec), out_specs=rhs_spec)
def matmul_allgather(lhs_block, rhs_block):

rhs = jax.lax.all_gather(rhs_block, 'i', tiled=True)
return lhs_block @ rhs

with jax.profiler.trace(os.environ["NEURON_RT_INSPECT_OUTPUT_DIR"]):
out = matmul_allgather(lhs, rhs)
for i in range(10):

with jax.profiler.TraceAnnotation("my_label"+str(i)):
out = matmul_allgather(lhs, rhs)

sleep(0.001)

expected = lhs @ rhs
with jax.default_device(jax.devices('cpu')[0]):

equal = jnp.allclose(jax.device_get(out), jax.device_get(expected), atol=1e-3,␣
→˓rtol=1e-3)

print("Tensors are the same") if equal else print("Tensors are different")

Set your profile output directory and run the script:

export NEURON_RT_INSPECT_OUTPUT_DIR=./output
python jax_script.py

PyTorch User Experience

PyTorch Setup

Follow the PyTorch Setup instructions to install the required PyTorch Neuron packages as well as the latest Neuron
Driver, Runtime and Tools.

PyTorch Profiler

The PyTorch context-managed profiling API allows you to profile blocks of code. This will capture a system profile
including a Neuron Runtime API trace and Python trace for your application code in the captured block. This will also
capture device profiles for any compiled graphs executed on NeuronCores within this block. To use the profiler, import
it in your application:

from torch_neuronx.experimental import profiler

Then profile a block of code using:

with torch_neuronx.experimental.profiler.profile(
port=9012,
profile_type='system',
target='neuron_profile_perfetto',
output_dir=os.environ['NEURON_RT_INSPECT_OUTPUT_DIR'],
ms_duration=30000) as profiler:
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After modifying your code to call the profiler, run your application as you normally would but set the environment
variable NEURON_RT_INSPECT_OUTPUT_DIR to specify the output directory.

NEURON_RT_INSPECT_OUTPUT_DIR=./output python application.py

Note: it is essential to set output_dir=os.environ['NEURON_RT_INSPECT_OUTPUT_DIR'] when starting the
profiler from your application code. This ensures that all profile data sources dump to the same output directory.

PyTorch Profiling using Environment Variable

Instead of using the torch_neuronx.experimental.profiler.profile context manager, you can enable profil-
ing for your entire application using environment variable. This is desirable if you want to capture a profile without
modifying your application code. To enable profiling with environment variable NEURON_RT_INSPECT_ENABLE=1 and
NEURON_RT_INSPECT_OUTPUT_DIR=./output before running your application.

For example

# make sure to remove call to with torch_neuronx.experimental.profiler.profile from␣
→˓python script
NEURON_RT_INSPECT_ENABLE=1 NEURON_RT_INSPECT_OUTPUT_DIR=./output python pytorch_script.py

When using the NEURON_RT_INSPECT_ENABLE environment variable instead of torch_neuronx.experimental.
profiler.profile system profiles will not contain a framework and application code trace, only Neuron Runtime
API trace.

Do not set the NEURON_RT_INSPECT_ENABLE environment variable and use the torch_neuronx.experimental.
profiler.profile within your application code at the same time. Use one or the other.

For more profiling options that can be set through environment variables, see the section Profile Capture Environment
Variables.

Full PyTorch Example

Create a file train_torchrun_context.py with the following contents

import os

import torch
import torch.nn as nn
import torch.nn.functional as F

# XLA imports
import torch_xla
import torch_xla.core.xla_model as xm
import torch_xla.debug.profiler as xp

import torch_neuronx
from torch_neuronx.experimental import profiler

os.environ["NEURON_CC_FLAGS"] = "--cache_dir=./compiler_cache"

(continues on next page)
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# Global constants
EPOCHS = 2

# Declare 3-layer MLP Model
class MLP(nn.Module):

def __init__(self, input_size=10, output_size=2, layers=[5, 5]):
super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, layers[0])
self.fc2 = nn.Linear(layers[0], layers[1])
self.fc3 = nn.Linear(layers[1], output_size)

def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return F.log_softmax(x, dim=1)

def main():
# Fix the random number generator seeds for reproducibility
torch.manual_seed(0)

# XLA: Specify XLA device (defaults to a NeuronCore on Trn1 instance)
device = xm.xla_device()

# Start the profiler context-manager
with torch_neuronx.experimental.profiler.profile(

port=9012,
profile_type='system',
target='neuron_profile_perfetto',
output_dir=os.environ['NEURON_RT_INSPECT_OUTPUT_DIR'],
ms_duration=30000) as profiler:

# IMPORTANT: the model has to be transferred to XLA within
# the context manager, otherwise profiling won't work
model = MLP().to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
loss_fn = torch.nn.NLLLoss()

# start training loop
print('----------Training ---------------')
model.train()
for epoch in range(EPOCHS):

optimizer.zero_grad()
train_x = torch.randn(1, 10).to(device)
train_label = torch.tensor([1]).to(device)

# forward
loss = loss_fn(model(train_x), train_label)

# back
loss.backward()
optimizer.step()

(continues on next page)
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# XLA: collect ops and run them in XLA runtime
xm.mark_step()

print('----------End Training ---------------')

if __name__ == '__main__':
main()

Run this workload with the following command:

NEURON_RT_INSPECT_OUTPUT_DIR="output" python simple_demo.py

Non-framework Specific User Experience

You can also control profiling with environment variables. This is useful when you can’t easily change your application
code, such as when running an executable which calls the Neuron Runtime or in a containerized environment where
the application code is built into the container image.

Profile Capture Environment Variables

• NEURON_RT_INSPECT_ENABLE: Set to 1 to enable system and device profiles. For control over which profile
types are captured use NEURON_RT_INSPECT_SYSTEM_PROFILE and NEURON_RT_INSPECT_DEVICE_PROFILE.

• NEURON_RT_INSPECT_OUTPUT_DIR: The directory where captured profile data will be saved to. Defaults to
./output.

• NEURON_RT_INSPECT_SYSTEM_PROFILE: Set to 0 to disable the capture of system profiles. Defaults to 1 when
NEURON_RT_INSPECT_ENABLE is set to 1.

• NEURON_RT_INSPECT_DEVICE_PROFILE: Set to 0 to disable the capture of device profiles. Defaults to 0 when
NEURON_RT_INSPECT_ENABLE is set to 1.

Example Capturing Profile of Application Using Environment Variables

Instead of using the PyTorch or JAX profilers you can profile your Python application (or any application calling the
Neuron Runtime API) using environment variables.

NEURON_RT_INSPECT_ENABLE=1 NEURON_RT_INSPECT_OUTPUT_DIR=./output python app.py

See Profile Capture Environment Variables for other profiling options that can be set via environment variable.
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Example Capturing Profile of nccom-test Using Environment Variables

Profiling can be enabled using environment variables. For simplicity, we have a quick way to generate a Neuron
workload through using nccom-test. nccom-test is a benchmarking tool which is already available with Neuron AMI.

export NEURON_RT_INSPECT_ENABLE=1
export NEURON_RT_INSPECT_OUTPUT_DIR=./output
nccom-test allr allg -b 512kb -e 512kb -r 32 -n 10 -d fp32 -w 1 -f 512

Note: If you have problems with nccom-test add the –debug flag. If using a trn1.2xlarge instance, change -r 32 to -r
2 to use fewer neuron cores.

To understand the profiling output see this section: Inspect Output

CLI reference for System Profiles

In addition to controlling profiling with environment variables, you can use the neuron-profile inspect command
line interface for profiling applications. This provides the same functionality as environment variables but helps you
avoid typos, invalid arguments, and provides a useful --help command to explain available options.

Usage:
neuron-profile [OPTIONS] inspect [inspect-OPTIONS] [userscript...]

Application Options:
-v, --version Show version and exit

Help Options:
-h, --help Show this help message

[inspect command options]
-o, --output-dir= Output directory for the captured profile data,␣

→˓including system and device profiles (default: ./output)
-n, --num-trace-events= Maximum number of trace events to capture when␣

→˓profiling. Once hitting this limit, no new events are recorded
--capture-system-profiles Disable capture of system profile data. Can reduce␣

→˓output size.
--capture-device-profiles Disable capture of device profile data. Can reduce␣

→˓output size.

[inspect command arguments]
userscript: Run command/script that launches a Neuron workload. E.
→˓g. 'python app.py' or './runscript.sh'
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Example of using System Profiles CLI

User can provide any type of their own script to generate a Neuron workload such as Pytorch to the System Profiles
CLI. For simplicity, we have a quick way to generate a Neuron workload through using nccom-test. nccom-test is
a benchmarking tool which is already available with Neuron AMI and aws-neuronx-tools package.

ubuntu@ip-172-31-63-210:~$ neuron-profile inspect -o inspect-output-nccom-test nccom-
→˓test allg -b 512kb -e 512kb -r 32 -n 10 -d fp32 -w 1 -f 512
INFO[0000] Running command "nccom-test allg -b 512kb -e 512kb -r 32 -n 10 -d fp32 -w 1 -
→˓f 512" with profiling enabled

size(B) count(elems) type time:avg(us) algbw(GB/s) busbw(GB/s)
524288 131072 fp32 24.15 21.71 21.03

Avg bus bandwidth: 21.0339GB/s

Note: If you have problems with nccom-test add the –debug flag. If using a trn1.2xlarge instance, change -r 32 to -r
2 to use fewer neuron cores.

neuron-profile inspect Output

The above command shows a Neuron workload execution is being traced and output to inspect-output-nccom-test
directory. You will see the output directory contains a single NEFF file and a device profile (NTFF) for all Neuron
Cores which executed that NEFF. You will also see ntrace.pb and trace_info.pb files storing the system profile
data. Below showing what the outputs will look like:

ubuntu@ip-172-31-63-210:~$ tree inspect-output-nccom-test
inspect-output-nccom-test

i-012590440bb9fd263_pid_98399
14382885777943380728_instid_0_vnc_0.ntff
14382885777943380728_instid_0_vnc_1.ntff
14382885777943380728_instid_0_vnc_10.ntff
14382885777943380728_instid_0_vnc_11.ntff

...
14382885777943380728_instid_0_vnc_8.ntff
14382885777943380728_instid_0_vnc_9.ntff
cpu_util.pb
host_mem.pb
neff_14382885777943380728.neff
ntrace.pb
trace_info.pb

2 directories, 74 files

To view a summary of the captured profile data run the command

neuron-profile view -d inspect-output-nccom-test --output-format summary-text
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EKS User Experience

Capturing a profile on EKS is most easily done through setting of environment variables as described in the section
Non-framework specific User Experience. By using environment variables, users do not need to change application
code in their container image or modify their run commands.

Update the deployment yaml to include the NEURON_RT_INSPECT_ENABLE and NEURON_RT_INSPECT_OUTPUT_DIR
environment variables. For distributed workloads, it’s important that NEURON_RT_INSPECT_OUTPUT_DIR points to a
directory on a shared volume which all workers have access to.

apiVersion: v1
kind: Pod
metadata:
name: trn1-mlp
spec:
restartPolicy: Never
schedulerName: default-scheduler
nodeSelector:

beta.kubernetes.io/instance-type: trn1.32xlarge
containers:

- name: trn1-mlp
env:

- name: NEURON_RT_INSPECT_ENABLE
value: "1"
- name: NEURON_RT_INSPECT_OUTPUT_DIR
value: "/shared/output"

command: ['torchrun']
args:

- '--nnodes=1'
- '--nproc_per_node=32'
- 'train_torchrun.py'

image: ${ACCOUNT_ID}.dkr.ecr.${REGION}.amazonaws.com/${REPO}:mlp
imagePullPolicy: IfNotPresent
resources:

limits:
aws.amazon.com/neuron: 16

Note: EKS users running PyTorch and JAX applications are still free to change their application code and use the
PyTorch or JAX Python profiling APIs if they want finer-grained control over profiling. However, using the environment
variables conveniently allows profiling without modifying the container image or application code.

Processing and Viewing Profiles

Users have three output options for interacting with their captured profiles

• Neuron Profiler UI - Neuron’s custom UI which allows easily drilling down to detailed device profiles from high
level system profiles

• Perfetto - Allows sharing profiles as a single file and viewing your profiles in the Perfetto UI at https://ui.perfetto.
dev/

• JSON - human-readable text output that enables simple scripting

6.3. Profiling Tools 1073

https://ui.perfetto.dev/
https://ui.perfetto.dev/


AWS Neuron

Neuron Profiler UI

To view a profile in the Neuron Profiler UI run the following command to process a profile and launch the UI

neuron-profile view -d ./output

To view profiles with the Neuron Profiler UI running locally you will need to have InfluxDB installed on your system.
To install and setup InfluxDB follow the directions in the official Neuron Profile documentation.

Neuron Profiler System Profile UI

The system profile timeline shows a trace of Neuron Runtime API calls, ML framework function calls, CPU utilization,
and memory usage on each of the instances in your workload. The Neuron Runtime API trace is grouped by NeuronCore
IDX and ec2 instance ID. For example, all events in the row labeled nrt-nc-003-i-0f207fb2a99bd2d08 are associated
with NeuronCore 3 and instance i-0f207fb2a99bd2d08.

Framework function traces are grouped by thread id and ec2 instance id. For example, all events in the row framework-
3266405268-i-0f207fb2a99bd2d08 are framework or application function calls made on thread 3266405268 running
on instance i-0f207fb2a99bd2d08.

Clicking on trace events in the timeline shows a “Event attributes” view with a list of attributes associated with that
event. For example, clicking on an nrt_execute event (the Neuron Runtime API call for executing a compiled model on
a NeuronCore) will show events such as Flop count (the number of floating point operations for a single execution of
the model), the model name, and the NeuronCore idx and ec2 instance id associated with the function call.
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Neuron Profiler 2.0 allows users to drill-down from a system timeline to a device profile timeline in order to see a
detailed view of hardware activity during the execution of a graph. To do this, select an nrt_execute event in the timeline
and in the “Event attributes” view select the “Open device profile” button under the Model Name attribute. This will
open a new window with a device profile. For help understanding a device profile see the section documentation section
“Understanding a Neuron Profile”

To see a list of all device profiles that were captured during your workload press the “Device Profiles” button at the
bottom of the timeline. From this list you can see all unique compiled graphs (NEFFs) that were executed on Neu-
ronCores during your workload. For each graph there is a link to a device profile that will show a detailed view of
hardware activity on the NeuronCore during execution of this graph.
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Viewing Profiles with Perfetto

Perfetto is an open-source trace analysis toolkit with a powerful UI for visualizing and analyzing trace data. Users of
Neuron Profiler have the option of viewing their profiles in the Perfetto UI.

The --output-format perfetto option writes processed data to Perfetto’s native protobuf-based tracing format
which can be visualized in the Perfetto UI at https://ui.perfetto.dev/.

Example:

neuron-profile view -d ./output --output-format perfetto

This will generate a system_profile.pftrace file for the system profile and a
device_profile_model_<model_id>.pftrace file for each unique compiled model that was executed on a
Neuron Device.

To view the system profile, go to https://ui.perfetto.dev/ and open the system_profile.pftrace file.

Note: When loading trace files in the Perfetto UI, your data is processed locally and not uploaded to Perfetto’s servers.

To view a device profile go to https://ui.perfetto.dev/ and open the device_profile_model_<model_id>.pftrace
file. This will show a detailed view of hardware activity on the NeuronCore during execution of this graph.
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Note: Your browser may run out of memory when viewing *.pftrace (Perfetto trace) files that are more than a few
hundred MB. See the section Viewing Large Profiles in Perfetto for directions on how to view large traces using the
trace processor.

Perfetto Output View Options

When outputting to Perfetto it is possible to group your traces by different attributes. This is useful for larger profiles
involving many NeuronCores and instances. The following options are available:

CLI option Description
–system-
trace-
primary-
group

The first order grouping of trace events. In Perfetto this corresponds to a process (group of rows
in the UI). Comma-delimited list of field names (options include instance_id, thread_id, lnc_idx,
process_id) (default: instance_id,process_id)

–system-
trace-
secondary-
group

The second order grouping of trace events. In Perfetto this corresponds to a thread (single row
in the UI). Comma-delimited list of field names (options include instance_id, thread_id, lnc_idx,
process_id) (default: lnc_idx,thread_id)

For example, the following profile uses neuron-profile view --output-format=perfetto
--system-trace-primary-group=instance_id,process_id --system-trace-secondary-group=lnc_idx,
thread_id to group the system profile first by unique combinations of instance_id and process_id, and then in each
of those groups there are rows of events with unique combinations of lnc_idx and thread_id.

6.3. Profiling Tools 1077



AWS Neuron

Generating JSON Output From Profiles

The --output-format json option writes processed profile data to human-readable JSON that can be used for scripting
and manual inspection.

neuron-profile view -d ./output --output-format json

This will generate a system_profile.json file containing the system profile data and a
device_profile_model_<model_id>.json file for each unique compiled model that was executed on a
Neuron Device.

The system_profile.json JSON contains the following data types:

• trace_events: Neuron Runtime API trace events and Framework/Application trace events containing times-
tamps, durations, names, and the ec2 instance-id to differentiate between events from different compute nodes in
a distributed workload.

{
"Neuron_Runtime_API_Event": {

"duration": 27094,
"group": "nrt-nc-000",
"id": 1,
"instance_id": "i-0f207fb2a99bd2d08",
"lnc_idx": "0",
"name": "nrt_tensor_write",
"parent_id": 0,
"process_id": "1627711",
"size": "4",
"tensor_id": "4900392441224765051",
"tensor_name": "_unknown_",
"thread_id": 1627711,
"timestamp": 1729888371056597613,
"type": 11

(continues on next page)
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(continued from previous page)

},
"Framework_Event": {

"duration": 3758079,
"group": "framework-80375131",
"instance_id": "i-0f207fb2a99bd2d08",
"name": "PjitFunction(matmul_allgather)",
"process_id": "701",
"thread_id": 80375131,
"timestamp": 1729888382798557372,
"type": 99999

}
}

• mem_usage: sampled host memory usage

{
"duration": 1,
"instance_id": "i-0f207fb2a99bd2d08",
"percent_usage": 9.728179797845964,
"timestamp": 1729888369286687792,
"usage": 51805806592

}

• cpu_util: sampled CPU utilization. Results are provided per core and per ec2 instance involved in a distributed
workload

{
"cpu_id": "47",
"duration": 1,
"instance_id": "i-0f207fb2a99bd2d08",
"timestamp": 1729888371287337243,
"util": 2.3255813

},

Processing only system or device profiles

To reduce processing times it is possible to skip processing of system or device profiles. Sometimes users may only be
interested in one or want to start with a limited set of profiling data before exploring the full profile.

To skip processing of device profiles use the --ignore-device-profile option. To skip processing of system pro-
files use the --ignore-system-profile option. These options can be used with the --output-format values db
(default), perfetto, or json.

For example:

neuron-profile view -d ./output --ignore-device-profile --output-format perfetto
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Filtering System Profiles

This guide explains how to filter system trace events to optimize memory usage, reduce output size, and speed up
trace processing. Capture-time filtering reduces memory usage and trace file size by only collecting specific events,
but filtered data cannot be recovered later. Processing-time filtering preserves the complete trace and allows flexible
analysis with different filters, but requires more memory and storage during capture.

Capture-Time Filtering

Configure filters before trace capture using environment variables or API functions. You can use NeuronCore filters
to only capture events for specific NeuronCores (for example only events associated with NeuronCore 0 or all the
NeuronCores on a specific NeuronDevice). You can use event type filters to only capture specific events (for example
model execute or collectives events). It is possible to combine both NeuronCore and event type filters.

Filtering by NeuronCore

If capture is enabled for a NeuronCore then a ring buffer will be allocated in host memory for storing those core’s
events. Thus filtering by NeuronCore decreases host memory usage during capture.

Default Behavior

By default, all visible NeuronCores are enabled for capture.

Using Environment Variables

# Filter to capture events only from NeuronCore 0
export NEURON_RT_INSPECT_EVENT_FILTER_NC=0

# Filter to capture events from NeuronCores 0, 2, and 4
export NEURON_RT_INSPECT_EVENT_FILTER_NC=0,2,4

# Filter to capture events from a range of NeuronCores (0 through 3)
export NEURON_RT_INSPECT_EVENT_FILTER_NC=0-3

# Reset to default behavior
unset NEURON_RT_INSPECT_EVENT_FILTER_NC # Back to capturing all visible cores

Using API Functions

#include <nrt/nrt_sys_trace.h>

// Allocate and configure trace options
nrt_sys_trace_config_t *config;
nrt_sys_trace_config_allocate(&config);
nrt_sys_trace_config_set_defaults(config);

// Enable capture only for specific NeuronCores
(continues on next page)
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// Disable all cores since by default they are all enabled
int num_cores = 128;
for (int i=0; i<num_cores; i++) {
nrt_sys_trace_config_set_capture_enabled_for_nc(config, i, false); // disable NC i

}

// Then enable specific cores
nrt_sys_trace_config_set_capture_enabled_for_nc(config, 0, true); // Enable NC 0
nrt_sys_trace_config_set_capture_enabled_for_nc(config, 2, true); // Enable NC 2

// Start tracing with the configuration
nrt_sys_trace_start(config);

// Your application code here...

// Stop tracing and cleanup
nrt_sys_trace_stop();
nrt_sys_trace_config_free(config);

Filtering by Event Type

Default Behavior

By default, all event types are enabled for capture.

Getting Available Event Types

You can discover all available event types using the nrt_sys_trace_get_event_types API.

#include <nrt/nrt_sys_trace.h>

// Get all available event types
const char **event_types = nullptr;
size_t count = 0;
NRT_STATUS status = nrt_sys_trace_get_event_types(&event_types, &count);

if (status == NRT_SUCCESS) {
printf("Available event types:\n");
for (size_t i = 0; i < count; ++i) {

printf(" %s\n", event_types[i]);
}

// Free the event types array
for (size_t i = 0; i < count; ++i) {

free((void*)event_types[i]);
}
free((void*)event_types);

}
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Using Environment Variables

The NEURON_RT_INSPECT_EVENT_FILTER_TYPE environment variable supports:

• Default: If not set, all event types are captured

• Specific event types: Use exact event names from nrt_sys_trace_get_event_types()

• Event categories: Use hardware or software to filter by category

• Exclusion: Use ^ prefix to exclude specific events from a category

# Filter to capture only specific event types
export NEURON_RT_INSPECT_EVENT_FILTER_TYPE=model_load,nrt_execute,runtime_execute

# Filter to capture all hardware events
export NEURON_RT_INSPECT_EVENT_FILTER_TYPE=hardware

# Filter to capture all software events
export NEURON_RT_INSPECT_EVENT_FILTER_TYPE=software

# Filter to capture all hardware events EXCEPT cc_exec
export NEURON_RT_INSPECT_EVENT_FILTER_TYPE=hardware,^cc_exec

# Filter to capture all software events EXCEPT model_load
export NEURON_RT_INSPECT_EVENT_FILTER_TYPE=software,^model_load

# Mix categories and specific events
export NEURON_RT_INSPECT_EVENT_FILTER_TYPE=hardware,tensor_read,tensor_write

# Reset to default behavior
unset NEURON_RT_INSPECT_EVENT_FILTER_TYPE # Back to capturing all event types

The hardware group contains events that are executed on the ML accelerator. These are nc_exec_running,
cc_running, cc_exec_barrier, numerical_err, nrt_model_switch, timestamp_sync_point, hw_notify.
The software group contains all other events.

Using API Functions

Use the nrt_sys_trace_config_set_capture_enabled_for_event_type API to filter by event type.

#include <nrt/nrt_sys_trace.h>

// Configure trace options
nrt_sys_trace_config_t *config;
nrt_sys_trace_config_allocate(&config);
nrt_sys_trace_config_set_defaults(config); // By default, all event types are enabled

// Disable specific event types (others remain enabled)
nrt_sys_trace_config_set_capture_enabled_for_event_type(config, "device_exec", false);

// Or disable all first, then enable only specific ones
const char **all_event_types = nullptr;
size_t all_count = 0;

(continues on next page)
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nrt_sys_trace_get_event_types(&all_event_types, &all_count);

// Disable all event types first
for (size_t i = 0; i < all_count; ++i) {

nrt_sys_trace_config_set_capture_enabled_for_event_type(config, all_event_types[i],␣
→˓false);
}

// Enable only specific event types
nrt_sys_trace_config_set_capture_enabled_for_event_type(config, "model_load", true);
nrt_sys_trace_config_set_capture_enabled_for_event_type(config, "nrt_execute", true);

// Verify which event types are enabled
const char **enabled_types = nullptr;
size_t enabled_count = 0;
nrt_sys_trace_config_get_enabled_event_types(config, &enabled_types, &enabled_count);
printf("Enabled event types: %zu\n", enabled_count);
for (size_t i = 0; i < enabled_count; ++i) {

printf(" %s\n", enabled_types[i]);
}

// Clean up memory (caller is responsible)
for (size_t i = 0; i < enabled_count; ++i) {

free((void*)enabled_types[i]);
}
free((void*)enabled_types);

for (size_t i = 0; i < all_count; ++i) {
free((void*)all_event_types[i]);

}
free((void*)all_event_types);

// Start tracing
nrt_sys_trace_start(config);

// Your application code here...

// Cleanup
nrt_sys_trace_stop();
nrt_sys_trace_config_free(config);

Tips

1. Memory Optimization: Use NeuronCore filtering to avoid allocating ring buffers for unused cores and decrease
host memory usage. Use both event type or NeuronCore to decrease output trace sizes.

2. Event Type Discovery: Use nrt_sys_trace_get_event_types() to discover available event types

3. Category Filtering: Use hardware/software categories for broad filtering

4. Exclusion Filtering: Use ^ prefix to exclude specific events from categories

5. Combine Filters: Use both NeuronCore and event type filters together for maximum optimization
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Processing-Time Filtering

Apply filters when viewing or processing already captured profiles. This approach allows you to analyze the same trace
data in different ways without recapturing. The filters can be used for any neuron-profile output format including
--output-format json and --output-format perfetto.

Filtering by NeuronCore

Use the --system-trace-filter-neuron-core to only process events for specific NeuronCores. The IDs are local
to the instance and not global IDs.

If the --system-trace-filter-neuron-core argument is not set then events from all NeuronCores will be included
in the processed trace.

# Filter by single neuron core
neuron-profile view -d ./output --system-trace-filter-neuron-core "0" --output-format␣
→˓perfetto

# Filter by multiple neuron cores
neuron-profile view -d ./output --system-trace-filter-neuron-core "0,1,2,3" --output-
→˓format perfetto

Filtering by Event Type

Use the --system-trace-filter-event-type to only process specific trace events types.

If the --system-trace-filter-event-type argument is not set then all event types will be included in the pro-
cessed trace.

# Filter by single event type
neuron-profile view -d ./output --system-trace-filter-event-type "nrt_execute" --output-
→˓format perfetto

# Filter by multiple event types
neuron-profile view -d ./output --system-trace-filter-event-type "nrt_execute,nrt_load" -
→˓-output-format perfetto

Filtering by Instance ID

Use the --system-trace-filter-instance-id to only process events for specific ec2 instances.

If the --system-trace-filter-instance-id argument is not set then events from all instances will be included in
the processed trace.

# Filter by single instance
neuron-profile view -d ./output --system-trace-filter-instance-id "i-abc123" --output-
→˓format perfetto

# Filter by multiple instances (comma-separated)
neuron-profile view -d ./output --system-trace-filter-instance-id "i-abc123,i-def456,i-
→˓ghi789" --output-format perfetto
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Troubleshooting

Incomplete JAX Profiles

If your JAX profile has fewer events than expected or lacks the Runtime API trace, check whether jax.profiler.
stop_trace is being called inside a with jax.profiler.trace context block. This can prematurely stop tracing.
Use jax.profiler.stop_trace only when profiling was started with jax.profiler.start_trace, not when
using the context-managed with jax.profiler.trace API.

Also when using jax.profiler within your script ensure that the environment variable
NEURON_RT_INSPECT_ENABLE is not set to 1. Additionally, ensure that NEURON_RT_INSPECT_OUTPUT_DIR is
set to the correct output directory and this is the output directory passed to with jax.profiler.trace.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

6.4 Third-party solutions

AWS Neuron integrates with multiple third-party partner solutions that alow you to run deep learning workloads on
Amazon EC2 instances powered by AWS Trainium and AWS Inferentia chips. The following list gives an overview of
third-party solutions that work with AWS Neuron.

Table of contents

• Weights & Bias

• Datadog

6.4.1 Weights & Bias

Weights & Biases is a machine learning platform for developers to build better models faster. Use W&B’s lightweight,
interoperable tools to quickly track experiments, version and iterate on datasets, evaluate model performance, reproduce
models, visualize results and spot regressions, and share findings with colleagues.

Weights & Bias documentation

6.4.2 Datadog

Datadog, an observability and security platform, provides real-time monitoring for cloud infrastructure and ML op-
erations. Datadog is excited to launch its AWS Neuron integration, which pulls metrics collected by Neuron SDK’s
Neuron Monitor tool into Datadog, enabling users to track the performance of their Trainium and Inferentia-based
instances. By providing real-time visibility into model performance and hardware usage, Datadog helps customers
ensure efficient training and inference, optimized resource utilization, and the prevention of service slowdowns.

Datadog documentation

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2
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6.5 Other Tools

This document is relevant for: Inf1

6.5.1 Neuron Check Model

Overview

Neuron Check Model tool provides user with basic information about the compiled and uncompiled model’s opera-
tions without the use of TensorBoard-Neuron. For additional visibility into the models, please see Neuron Plugin for
TensorBoard (Inf1).

Neuron Check Model tool scans the user’s uncompiled model and provides a table of the operations within the uncom-
piled model. By default, the table shows each operation type and number of instances of that type within model, and
whether the type is supported in Neuron. If –show_names option is specified, the table shows each operation by name
and whether the type of that operation is supported in Neuron.

If the model is already compiled, the tool also provides the table of operations as for uncompiled model. The table
include the Neuron subgraph type and number of instances of that type, along with operations that have not been com-
piled to Neuron. Additionally, the tool displays a message showing the minimum number of NeuronCores required
to run the model, followed by another table which shows the list of Neuron subgraphs by name and the number of
pipelined NeuronCores used by each subgraph. More information about NeuronCore pipeline can be found in Neu-
ronCore Pipeline. If –expand_subgraph option is specified, the operations within each subgraph are printed below the
subgraph information.

Neuron Check Model tool is currently available for TensorFlow and MXNet. To check PT model,
please use torch.neuron.analyze_model function as shown in PyTorch-Neuron Getting Started tutorial
/src/examples/pytorch/resnet50.ipynb

TensorFlow-Neuron Check Model

The following example shows how to run TensorFlow-Neuron Check Model tool with TensorFlow ResNet50 tutorial.

1. Start with the TensorFlow ResNet50 tutorial at /src/examples/tensorflow/tensorflow_resnet50/resnet50.ipynb and do
the first three steps of the tutorial. Please stay in the Python environment that you setup during the tutorial.

2. Install needed tensorflow_hub package and download the tool:

pip install tensorflow_hub
wget https://raw.githubusercontent.com/aws/aws-neuron-sdk/master/src/neuron-gatherinfo/
→˓tf_neuron_check_model.py
python tf_neuron_check_model.py -h

usage: tf_neuron_check_model.py [-h] [--show_names] [--expand_subgraph]
model_path

positional arguments:
model_path a TensorFlow SavedModel directory (currently supporting

TensorFlow v1 SaveModel only).

optional arguments:
-h, --help show this help message and exit
--show_names list operation by name instead of summarizing by type

(continues on next page)
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(caution: this option will generate many lines of output
for a large model).

--expand_subgraph show subgraph operations.

3. After step 3 of the TensorFlow ResNet50 tutorial, you can check the uncompiled model to see Neuron supported
operations (currently supporting TensorFlow v1 SaveModel only):

$ python tf_neuron_check_model.py ws_resnet50/resnet50/

* The following table shows the supported and unsupported operations within this␣
→˓uncompiled model.
* Each line shows an operation type, the number of instances of that type within model,
* and whether the type is supported in Neuron.
* Some operation types are excluded from table because they are no-operations or␣
→˓training-related operations:
['Placeholder', 'PlaceholderWithDefault', 'NoOp', 'Const', 'Identity', 'IdentityN',
→˓'VarHandleOp',
'VarIsInitializedOp', 'AssignVariableOp', 'ReadVariableOp', 'StringJoin',
→˓'ShardedFilename', 'SaveV2',
'MergeV2Checkpoints', 'RestoreV2']

Op Type Num Instances Neuron Supported ?
------- ------------- ------------------
Pad 2 Yes
RandomUniform 54 Yes
Sub 54 Yes
Mul 54 Yes
Add 54 Yes
Conv2D 53 Yes
BiasAdd 54 Yes
FusedBatchNormV3 53 Yes
Relu 49 Yes
MaxPool 1 Yes
AddV2 16 Yes
Fill 56 Yes
Mean 1 Yes
MatMul 1 Yes
Softmax 1 Yes
Pack 1 Yes

* Total inference operations: 504
* Total Neuron supported inference operations: 504
* Percent of total inference operations supported by Neuron: 100.0

4. You can also check the compiled model to see the number of pipeline NeuronCores for each subgraph:

$ python tf_neuron_check_model.py ws_resnet50/resnet50_neuron/

* Found 1 Neuron subgraph(s) (NeuronOp(s)) in this compiled model.
* Use this tool on the original uncompiled model to see Neuron supported operations.
* The following table shows all operations, including Neuron subgraphs.
* Each line shows an operation type, the number of instances of that type within model,

(continues on next page)
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* and whether the type is supported in Neuron.
* Some operation types are excluded from table because they are no-operations or␣
→˓training-related operations:
['Placeholder', 'PlaceholderWithDefault', 'NoOp', 'Const', 'Identity', 'IdentityN',
→˓'VarHandleOp',
'VarIsInitializedOp', 'AssignVariableOp', 'ReadVariableOp', 'StringJoin',
→˓'ShardedFilename', 'SaveV2',
'MergeV2Checkpoints', 'RestoreV2']

Op Type Num Instances Neuron Supported ?
------- ------------- ------------------
NeuronOp 1 Yes

* Please run this model on Inf1 instance with at least 1 NeuronCore(s).
* The following list show each Neuron subgraph with number of pipelined NeuronCores used␣
→˓by subgraph
* (and subgraph operations if --expand_subgraph is used):

Subgraph Name Num␣
→˓Pipelined NeuronCores
------------- -----------
→˓--------------
conv5_block3_3_bn/FusedBatchNormV3/ReadVariableOp/neuron_op_d6f098c01c780733 1

5. When showing subgraph information, you can use –expand_subgraph to show operation types in each subgraph:

$ python tf_neuron_check_model.py ws_resnet50/resnet50_neuron/ --expand_subgraph

(output truncated to show subgraph information only)

Subgraph Name Num␣
→˓Pipelined NeuronCores
------------- -----------
→˓--------------
conv5_block3_3_bn/FusedBatchNormV3/ReadVariableOp/neuron_op_d6f098c01c780733 1

Op Type Num Instances
------- -------------
MatMul 1
Relu 49
Add 16
FusedBatchNorm 53
BiasAdd 54
Conv2D 53
Pad 2
Mean 1
MaxPool 1
Softmax 1

6. Use –show_names to see full operation names (caution: this option will generate many lines of output for a large
model):

$ python tf_neuron_check_model.py ws_resnet50/resnet50_neuron/ --show_names
(continues on next page)
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* Found 1 Neuron subgraph(s) (NeuronOp(s)) in this compiled model.
* Use this tool on the original uncompiled model to see Neuron supported operations.
* The following table shows all operations, including Neuron subgraphs.
* Each line shows an operation name and whether the type of that operation is supported␣
→˓in Neuron.
* Some operation types are excluded from table because they are no-operations or␣
→˓training-related operations:
['Placeholder', 'PlaceholderWithDefault', 'NoOp', 'Const', 'Identity', 'IdentityN',
→˓'VarHandleOp',
'VarIsInitializedOp', 'AssignVariableOp', 'ReadVariableOp', 'StringJoin',
→˓'ShardedFilename', 'SaveV2',
'MergeV2Checkpoints', 'RestoreV2']

Op Name Op Type ␣
→˓Neuron Supported ?
------- ------- -
→˓-----------------
conv5_block3_3_bn/FusedBatchNormV3/ReadVariableOp/neuron_op_d6f098c01c780733 NeuronOp ␣
→˓Yes

* Please run this model on Inf1 instance with at least 1 NeuronCore(s).
* The following list show each Neuron subgraph with number of pipelined NeuronCores used␣
→˓by subgraph
* (and subgraph operations if --expand_subgraph is used):

Subgraph Name Num␣
→˓Pipelined NeuronCores
------------- -----------
→˓--------------
conv5_block3_3_bn/FusedBatchNormV3/ReadVariableOp/neuron_op_d6f098c01c780733 1

MXNet-Neuron Check Model

The following example shows how to run MXNet-Neuron Check Model tool with MXNet ResNet50 tutorial.

1. Start with the MXNet ResNet50 tutorial at /src/examples/mxnet/resnet50/resnet50.ipynb and do the first three steps
of the tutorial. Please stay in the Python environment that you setup during the tutorial.

2. Download the tool:

wget https://raw.githubusercontent.com/aws/aws-neuron-sdk/master/src/neuron-gatherinfo/
→˓mx_neuron_check_model.py
python mx_neuron_check_model.py -h

usage: mx_neuron_check_model.py [-h] [--show_names] [--expand_subgraph]
model_path

positional arguments:
model_path path prefix to MXNet model (the part before -symbol.json)

optional arguments:
(continues on next page)
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-h, --help show this help message and exit
--show_names list operation by name instead of summarizing by type

(caution: this option will generate many lines of output
for a large model).

--expand_subgraph show subgraph operations.

3. After step 3 of MXNet ResNet50 tutorial, you can check the uncompiled model to see Neuron supported opera-
tions:

$ python mx_neuron_check_model.py resnet-50

* The following table shows the supported and unsupported operations within this␣
→˓uncompiled model.
* Each line shows an operation type, the number of instances of that type within model,
* and whether the type is supported in Neuron.
* Some operation types are excluded from table because they are no-operations or␣
→˓training-related operations:
['null']

Op Type Num Instances Neuron Supported ?
------- ------------- ------------------
BatchNorm 51 Yes
Convolution 53 Yes
Activation 50 Yes
Pooling 2 Yes
elemwise_add 16 Yes
Flatten 1 Yes
FullyConnected 1 Yes
SoftmaxOutput 1 No

* Total inference operations: 175
* Total Neuron supported inference operations: 174
* Percent of total inference operations supported by Neuron: 99.4

4. You can also check the compiled model to see the number of pipeline NeuronCores for each subgraph:

$ python mx_neuron_check_model.py resnet-50_compiled

* Found 1 Neuron subgraph(s) (_neuron_subgraph_op(s)) in this compiled model.
* Use this tool on the original uncompiled model to see Neuron supported operations.
* The following table shows all operations, including Neuron subgraphs.
* Each line shows an operation type, the number of instances of that type within model,
* and whether the type is supported in Neuron.
* Some operation types are excluded from table because they are no-operations or␣
→˓training-related operations:
['null']

Op Type Num Instances Neuron Supported ?
------- ------------- ------------------
_neuron_subgraph_op 1 Yes
SoftmaxOutput 1 No

(continues on next page)
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* Please run this model on Inf1 instance with at least 1 NeuronCore(s).
* The following list show each Neuron subgraph with number of pipelined NeuronCores used␣
→˓by subgraph
* (and subgraph operations if --expand_subgraph is used):

Subgraph Name Num Pipelined NeuronCores
------------- -------------------------
_neuron_subgraph_op0 1

5. When showing subgraph information, you can use –expand_subgraph to show operation types in each subgraph:

$ python mx_neuron_check_model.py resnet-50_compiled --expand_subgraph

(output truncated to show subgraph information only)

Subgraph Name Num Pipelined NeuronCores
------------- -------------------------
_neuron_subgraph_op0 1

Op Type Num Instances
------- -------------
BatchNorm 51
Convolution 53
Activation 50
Pooling 2
elemwise_add 16
Flatten 1
FullyConnected 1

6. Use –show_names to see full operation names (caution: this option will generate many lines of output for a large
model):

$ python mx_neuron_check_model.py resnet-50_compiled --show_names

* Found 1 Neuron subgraph(s) (_neuron_subgraph_op(s)) in this compiled model.
* Use this tool on the original uncompiled model to see Neuron supported operations.
* The following table shows all operations, including Neuron subgraphs.
* Each line shows an operation name and whether the type of that operation is supported␣
→˓in Neuron.
* Some operation types are excluded from table because they are no-operations or␣
→˓training-related operations:
['null']

Op Name Op Type Neuron Supported ?
------- ------- ------------------
_neuron_subgraph_op0 _neuron_subgraph_op Yes
softmax SoftmaxOutput No

* Please run this model on Inf1 instance with at least 1 NeuronCore(s).
* The following list show each Neuron subgraph with number of pipelined NeuronCores used␣
→˓by subgraph
* (and subgraph operations if --expand_subgraph is used):

(continues on next page)
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Subgraph Name Num Pipelined NeuronCores
------------- -------------------------
_neuron_subgraph_op0 1

This document is relevant for: Inf1

This document is relevant for: Inf1

6.5.2 Using Neuron GatherInfo Tool to collect debug and support information

Overview

The Neuron GatherInfo tool neuron-gatherinfo.py can assist in automating the collection and packaging of infor-
mation from Neuron SDK tools that is useful to both user and AWS for issue resolution. The tool gathers log files and
other system information. If being used to supply that info to AWS, the tool will redact proprietary and confidential
information. The GatherInfo tool is supplied in source code form - available here: Neuron Gatherinfo

The tool enables developers to gather compiler and inference/runtime logs. Additionally, the common usage is from
within one of the supported ML frameworks that have been integrated with Neuron, and information can be captured
from those compile/runtime environments using the frameworks.

Steps Overview:

1. Obtain a copy of neuron-gatherinfo.py from Neuron Gatherinfo

2. Install into a location in your $PATH or into a location from where you can launch the script

3. Use with compile and/or runtime environments

Neuron-CC information gathering

Step 1: Re-run the compile steps for your workload with increased verbosity or debug levels

• For TensorFlow-Neuron, change the Python code as shown. Note that ‘compiler-workdir’ is expected to be an
empty directory to prevent files from other runs from interfering with the information gathering. The call to the
compile function has to be augmented with the verbose and the **compiler_workdir **arguments. In addition,
please capture the stdout messages into a file (for example, by redirecting the stdout to a file)

tfn.saved_model.compile(model_dir, compiled_model_dir, compiler_args=['--verbose', '2',
→˓'--pipeline', 'compile', 'SaveTemps'], compiler_workdir='./compiler-workdir')

• For Neuron Apache MXNet, add compiler arguments as shown below and run the compilation process from an
empty workdir:

import mxnet as mx
import os

from packaging import version
mxnet_version = version.parse(mx.__version__)
if mxnet_version >= version.parse("1.8"):
import mx_neuron as neuron

(continues on next page)
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else:
from mxnet.contrib import neuron

...
os.environ['SUBGRAPH_INFO'] = '1'
compile_args = { '--verbose' : 2, '--pipeline' : 'compile', 'flags' : ['SaveTemps'] }
csym, cargs, cauxs = neuron.compile(sym, args, auxs, inputs=inputs, **compile_args)

Step 2: Run neuron-gatherinfo.py to gather information to share

The output result will be a tar.gz file.

Neuron Runtime information gathering

Step 1: EXECUTE inference steps for your workload with increased verbosity or debug levels

In the case of runtime information, the tool neuron-dump.py is used by **neuron-gatherinfo.py **to gather that in-
formation. Make sure that you have the neuron tools package (aws-neuron-tools) installed.

Step 2: Run neuron-gatherinfo.py to gather information to share

The output result will be a tar.gz file.

Tool Usage Reference

Run neuron-gatherinfo.py using the “—help“ option:

bash $ ~/bin/neuron-gatherinfo.py --help
usage: neuron-gatherinfo.py [-h] [--additionalfileordir ADDFLDIR] [-c CCDIR]

[-i] [-f FILTERFILE] [-m] -o OUTDIR [-r RTDIR] -s
STDOUT [-v]

Usage: /home/user/bin/neuron-gatherinfo.py [options]
This program is used to gather information from this system for analysis
and debugging

optional arguments:
-h, --help show this help message and exit
--additionalfileordir ADDFLDIR

Additional file or directory that the user wants to
provide in the archive. The user can sanitize this
file or directory before sharing

-c CCDIR, --compileroutdir CCDIR
Location of the neuron-cc generated files

-i, --include By default, only the lines containing (grep) patterns
like 'nrtd|neuron|kernel:' from the syslog are copied.
Other lines are excluded. Using this option allows the

(continues on next page)
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timestamp section of other lines to be included. The
rest of the contents of the line itself are elided.
Providing the timestamp section may provide time
continuity while viewing the copied syslog file

-f FILTERFILE, --filter FILTERFILE
-m, --modeldata By using this option, the entire compiler work

directory's contents will be included (excluding the
.pb files, unless an additional option is used). This
would include model information, etc. The files that
are included, by default, are these: graph_def.neuron-
cc.log, all_metrics.csv, hh-tr-operand-
tensortensor.json

-o OUTDIR, --out OUTDIR
The output directory where all the files and other
information will be stored. The output will be stored
as an archive as well as the actual directory where
all the contents are copied. This will allow a simple
audit of the files, if necessary. *** N O T E ***:
Make sure that this directory has enough space to hold
the files and resulting archive

-r RTDIR, --runtimeoutdir RTDIR
Location of the neuron runtime generated files

-s STDOUT, --stdout STDOUT
The file where the stdout of the compiler run was
saved

-v, --verbose Verbose mode displays commands executed and any
additional information which may be useful in
debugging the tool itself

Examples

Example 1: no ML model information gathered (default behavior)

In this case, the tool will archive just the default information gathering:

bash $ sudo ~/bin/neuron-gatherinfo.py -o compile-and-run-info-for-debugging-no-model-
→˓info -i --verbose -s stdout-from-compile_resnet50.out -c compiler-workdir

Running cmd: lscpu and capturing output in file: /home/user/tutorials-3/compile-and-run-
→˓info-for-debugging-no-model-info/neuron-gatherinfo/report-lscpu.txt
Running cmd: lshw and capturing output in file: /home/user/tutorials-3/compile-and-run-
→˓info-for-debugging-no-model-info/neuron-gatherinfo/report-lshw.txt
Running cmd: lspci | grep -i Amazon and capturing output in file: /home/user/tutorials-3/
→˓compile-and-run-info-for-debugging-no-model-info/neuron-gatherinfo/report-lspci.txt
Running cmd: neuron-cc --version and capturing output in file: /home/user/tutorials-3/
→˓compile-and-run-info-for-debugging-no-model-info/neuron-gatherinfo/report-neuron-cc.txt
Running cmd: neuron-ls and capturing output in file: /home/user/tutorials-3/compile-and-
→˓run-info-for-debugging-no-model-info/neuron-gatherinfo/report-neuron-ls.txt
<SNIP>

******
Archive created at:

(continues on next page)
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(continued from previous page)

/home/user/tutorials-3/compile-and-run-info-for-debugging-no-model-info/neuron-
→˓gatherinfo.tar.gz

From directory:
/home/user/tutorials-3/compile-and-run-info-for-debugging-no-model-info/neuron-

→˓gatherinfo
******

Example 2 : model ML information gathered using the “—modeldata” option

In this case, the tool will archive the compiler work directory in addition to the default information gathering

bash $ sudo ~/bin/neuron-gatherinfo.py -o compile-and-run-info-for-debugging -i --
→˓verbose -s stdout-from-compile_resnet50.out -c compiler-workdir --modeldata

<SNIP>
Running cmd: lscpu and capturing output in file: /home/user/tutorials-3/compile-and-run-
→˓info-for-debugging/neuron-gatherinfo/report-lscpu.txt
Running cmd: lshw and capturing output in file: /home/user/tutorials-3/compile-and-run-
→˓info-for-debugging/neuron-gatherinfo/report-lshw.txt
Running cmd: lspci | grep -i Amazon and capturing output in file: /home/user/tutorials-3/
→˓compile-and-run-info-for-debugging/neuron-gatherinfo/report-lspci.txt
Running cmd: neuron-cc --version and capturing output in file: /home/user/tutorials-3/
→˓compile-and-run-info-for-debugging-no-model-info/neuron-gatherinfo/report-neuron-cc.txt
Running cmd: neuron-ls and capturing output in file: /home/user/tutorials-3/compile-and-
→˓run-info-for-debugging-no-model-info/neuron-gatherinfo/report-neuron-ls.txt
<SNIP>

******
Archive created at:

/home/user/tutorials-3/compile-and-run-info-for-debugging/neuron-gatherinfo.tar.
→˓gz

From directory:
/home/user/tutorials-3/compile-and-run-info-for-debugging/neuron-gatherinfo

******

**************************
Based on your command line option, we're also packaging these files:

graph_def.neuron-cc.log
all_metrics.csv
hh-tr-operand-tensortensor.json

And this directory: /home/user/tutorials-3/compiler-workdir

**************************

This document is relevant for: Inf1

This document is relevant for: Inf1, Inf2, Trn1, Trn2
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6.5.3 NeuronPerf Overview

NeuronPerf is a lightweight Python library that can help you easily benchmark your models with Neuron hardware.

NeuronPerf supports Neuron releases for PyTorch, Tensorflow, and MXNet. It is used internally by the Neuron team
to generate performance benchmarking numbers.

When interacting with NeuronPerf, you will typically import the base package along with one of the submodule wrap-
pers, for example:

import neuronperf
import neuronperf.torch

You may then benchmark and/or compile one or more models with NeuronPerf. For example,

reports = neuronperf.torch.benchmark(model, inputs, ...)

The compile and benchmark methods must be accessed through one of the supported framework submodules.

Benchmarking

All NeuronPerf benchmark calls require a minimum of two arguments:

1. A filename

2. Inputs

The filename may refer to:

1. A Neuron-compiled model (e.g. my_model.pt)

2. A Model Index.

A Model Index is useful for benchmarking more than one model in a single session.

Compiling

NeuronPerf also provides a standard interface to all Neuron frameworks through the compile API.

model_index = neuronperf.torch.compile(model, inputs, ...)

This is completely optional. You may use the standard compilation guides for supported frameworks.

Next Steps

Take a look at the simple neuronperf_examples, neuronperf_benchmark_guide, neuronperf_compile_guide, and neu-
ronperf_api.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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6.5.4 Neuron Calculator

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

6.5.5 Neuron Plugin for TensorBoard (Trn1)

Table of Contents

• Overview

• Enable profiling on Trn1

• Launch TensorBoard

• View results in TensorBoard

• Neuron Trace View

• Neuron Operator View

• Neuron Operator Timeline View

• Troubleshooting

– TensorBoard launch fails

Overview

This guide is for developers who want to better understand how their model is executed using Neuron SDK through
TensorBoard.

The Neuron plugin for TensorBoard provides metrics to the performance of machine learning tasks accelerated using
the Neuron SDK. It is compatible with TensorBoard versions 1.15 and higher. It provides visualizations and profiling
results for graphs executed on NeuronCores.

Note: The following information is compatible with Neuron SDK for Trn1. For a walkthrough on Inf1, please check
out the guide Neuron Plugin for TensorBoard (Inf1).

Enable profiling on Trn1

Note: Profiling is currently only supported with PyTorch Neuron (torch-neuronx).

Please refer to the following guides:

• PyTorch-Neuron
– torch-neuronx-profiling-with-tb
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Launch TensorBoard

In this step, we will process the Neuron profile data and launch TensorBoard.

1. Install the Neuron plugin for Tensorboard on your EC2 instance.

python -m pip config set global.extra-index-url "https://pip.repos.neuron.amazonaws.com"

pip install tensorboard-plugin-neuronx

Note: If using TensorBoard >= 2.5, please use the --load_fast=false option when launching. tensorboard
--logdir results --load_fast=false

2. After you see the following message, TensorBoard is ready to use. By default, TensorBoard will be launched at
localhost:6006.

...
Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_
→˓all
TensorBoard 2.4.1 at http://localhost:6006/ (Press CTRL+C to quit)

View results in TensorBoard

In this step, we will view the Neuron plugin for TensorBoard from a browser on your local development machine.

1. Connect to the EC2 instance where TensorBoard is running while enabling port forwarding. In this example, we
assume TensorBoard has been launched using the default address localhost:6006.

# if Ubuntu-based AMI
ssh -i <PEM key file> ubuntu@<instance DNS> -L 6006:localhost:6006

# if AL2-based AMI
ssh -i <PEM key file> ec2-user@<instance DNS> -L 6006:localhost:6006

2. In a browser, visit .

3. In the top navigation bar, switch from Graphs to Neuron. If it does not show up, please wait a while and refresh
the page while the plugin loads. If the issue persists, check the Inactive dropdown list on the right and check for
Neuron.
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4. If TensorBoard failed to find the generated logs, you will see the following message:

In this case, please make sure the version of the aws-neuronx-tools package and the Neuron framework package is
from Neuron release 2.6 or newer.

Neuron Trace View

The trace view gives a high level timeline of execution by aligning Neuron events, such as Neuron Device execution,
data transfers, and Collective Compute synchronization (if applicable), with other events from the XLA profiler.

Use this view to better understand bottlenecks during the run, and potentially experiment with how execution changes
by moving the mark_step() call which will execute the graph.
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Neuron Operator View

The operator view can show timing information for both the framework operators and HLO operators by selecting the
operator-framework and operator-hlo tools respectively. The pie charts show breakdowns of the time taken by
device, as well as per operator on a single device. The table below lists out the operators and can be sorted by clicking
on the columnn headers. For fused operations, hover over the ? to see which operators are being executed.

For a quick glance at the most time consuming operators, click the Time % column in the table to sort by the relative
time spent on this type of operation compared to the rest of the model.
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Neuron Operator Timeline View

The operator timeline view is a detailed look into a single execution with Neuron. A high level overview at the top
breaks down the execution into categories, including Neuron Runtime setup time, as well as NeuronCore compute
engine and DMA engine busyness. Activity on the compute and DMA engines are further categorized as compute,
control, and data transfer intervals which are shown as separate processes, with each showing a hierarchical view of
the framework operators and their corresponding HLO operation. The fused operations can be a result of compiler
optimizations or are operations that are running in parallel on the device. Each bar can be clicked to show information
regarding which operators are overlapped.

This view can give better insight into how operators translate to Neuron, as well as how certain Neuron compiler options
may improve performance.

Troubleshooting

TensorBoard launch fails

ImportError: cannot import name 'Mapping' from 'collections'

This is an issue with Python 3.10 and a dependency of an old tensorboard version. To workaround this error, please
run pip install --upgrade tensorboard. For more information, see https://github.com/tensorflow/tensorboard/
pull/5490.

This document is relevant for: Inf2, Trn1, Trn2
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This document is relevant for: Inf1

6.5.6 Neuron Plugin for TensorBoard (Inf1)

Table of Contents

• Overview

• Compile the neural network

• Enable profiling

• Launch TensorBoard

• View results in TensorBoard

• Visualize graphs executed on Neuron

– Show how the graph was partition to run on NeuronCores

– Inspect which operators consumes the most time

– Check out Neuron support operators for each framework

– Filter view by device

– Expand/collapse subgraphs and view operator details

• Viewing the Neuron profile data

– See performance summary

– Get a breakdown of time spent per NeuronCore

– Get a breakdown of time spent per operator

Overview

This guide is for developers who want to better understand how their model is executed using Neuron SDK through
TensorBoard.

The Neuron plugin for TensorBoard provides metrics to the performance of machine learning tasks accelerated using
the Neuron SDK. It is compatible with TensorBoard versions 1.15 and higher. It provides visualizations and profiling
results for graphs executed on NeuronCores.

Note: The following information is compatible with Neuron SDK for Inf1. For a walkthrough on the latest version,
please check out the guide Neuron Plugin for TensorBoard (Trn1).

Note: Graph visualization is currently only supported for TensorFlow-Neuron. Support for MXNet-Neuron and
PyTorch-Neuron visualization will be added in a future release.

1102 Chapter 6. Runtime & Tools



AWS Neuron

Compile the neural network

3. Refer to the following guides on how to compile a graph using Neuron SDK.

• TensorFlow-Neuron
– /src/examples/tensorflow/tensorflow_resnet50/resnet50.ipynb

• PyTorch-Neuron:
– “Compile model for Neuron” in PyTorch-Neuron Resnet50 Tutorial

• MXNet-Neuron:
– /src/examples/mxnet/resnet50/resnet50.ipynb

Enable profiling

In this step, we enable Neuron profile data collection and collect results from executing an inference.

4.1. To start profiling the neural network and collect inference traces, create a directory where profile data will be
dumped and set the NEURON_PROFILE environment variable. In this example, we will assume this directory is $HOME/
profile

mkdir -p $HOME/profile
export NEURON_PROFILE=$HOME/profile

4.2. Ensure Neuron Tools are executable by setting the PATH environment variable.

export PATH=/opt/aws/neuron/bin:$PATH

4.3. Execute inference!

Note: Please run the inference script outside of Jupyter notebook. Profiling in Jupyter notebook is not supported at
this time.

Note: Please ensure the inference script executes only one inference, as profiling results are currently only supported
for a single inference.

For more info on how to execute inference, refer to the following guides:

• TensorFlow-Neuron
– /src/examples/tensorflow/tensorflow_resnet50/resnet50.ipynb

• PyTorch-Neuron
– “Run inference on Single Core” in /src/examples/pytorch/resnet50.ipynb

• MXNet-Neuron
– /src/examples/mxnet/resnet50/resnet50.ipynb

4.4. Check if profiling results were successfully saved. In the directory pointed to by NEURON_PROFILE environment
variable set in Step 4.1, there should be at least two files, one with the .neff extension and one with the .ntff
extension. For TensorFlow-Neuron users, the graph file (.pb) will also be in this directory.

6.5. Other Tools 1103



AWS Neuron

ls $NEURON_PROFILE

Launch TensorBoard

In this step, we will process the Neuron profile data and launch TensorBoard.

5.1. Install the Neuron plugin for Tensorboard.

If you are using the DLAMI TensorFlow-Neuron Conda environment, please run the following to update TensorBoard
before installing the Neuron plugin.

pip install "tensorboard<=2.4.0" --force-reinstall

Modify Pip repository configurations to point to the Neuron repository:

tee $VIRTUAL_ENV/pip.conf > /dev/null <<EOF
[global]
extra-index-url = https://pip.repos.neuron.amazonaws.com
EOF

pip install tensorboard-plugin-neuron

5.2. After collecting the raw profile data, we need to post-process it to create the log files used by the Neuron plu-
gin. This can be done when launching TensorBoard by passing an extra flag --run_neuron_profiler. Using this
flag will create the directory specified by --logdir and populate it with Neuron plugin data. Please note that the
NEURON_PROFILE environment variable set in Step 4.1 must still point to the same directory as before.

tensorboard --logdir results --run_neuron_profiler

Note: If using TensorBoard >= 2.5, please use the --load_fast=false option when launching. tensorboard
--logdir results --run_neuron_profiler --load_fast=false

5.3. After you see the following message, TensorBoard is ready to use. By default, TensorBoard will be launched at
localhost:6006 on the Deployment Instance.

...
Running neuron-profile
Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_
→˓all
TensorBoard 2.4.1 at http://localhost:6006/ (Press CTRL+C to quit)

View results in TensorBoard

In this step, we will view the Neuron plugin for TensorBoard from a browser on your local development machine.

6.1. Connect to the Deployment Instance while enabling port forwarding. In this example, we assume TensorBoard
has been launched using the default address localhost:6006 on the Deployment Instance.

# if Ubuntu-based AMI
ssh -i <PEM key file> ubuntu@<instance DNS> -L 6006:localhost:6006

(continues on next page)
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(continued from previous page)

# if AL2-based AMI
ssh -i <PEM key file> ec2-user@<instance DNS> -L 6006:localhost:6006

6.2. In a browser, visit .

6.3. In the top navigation bar, switch from Graphs to Neuron. If it does not show up, please wait a while and refresh
the page while the plugin loads. If the issue persists, check the Inactive dropdown list on the right and check for
Neuron.

6.4. If TensorBoard failed to find the generated logs, you will see the following message:

In this case, please check the console output on the Deployment Instance where TensorBoard was launched for any
warnings or error messages, and make sure the version of the aws-neuron-tools package is compatible.
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Visualize graphs executed on Neuron

Show how the graph was partition to run on NeuronCores

To view how the graph was partitioned to run on NeuronCores, select “Device” under “Graph Color Schemes” in the
left navigation bar.

Each operator will be colored according to the device used. In this example, light blue indicates an operator was
executed on CPU, and orange indicates the operator was executed on NeuronCores. Operators that are white may have
been optimized by the Neuron compiler and fused into another operation.

Inspect which operators consumes the most time

You can also view how long each operator took by changing to the “Compute time” color scheme.
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This view will show time taken by each layer and will be colored according to how much relative time the layer took
to compute. A lighter shade of red means that a relatively small portion of compute time was spent in this layer, while
a darker red shows that more compute time was used.

Check out Neuron support operators for each framework

The “Compatibility” color scheme allows you to better understand what operators are currently supported by the Neuron
compiler - green for compatible ops, red for incompatible ops, and yellow for subgraphs that contain both compatible
and incompatible ops.

Filter view by device

Additionally, you can choose to filter by CPU and NeuronCores, which will only color ops that match the selected
device(s).
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Expand/collapse subgraphs and view operator details

Each rectangular node in the graph represents a subgraph that can be expanded or collapse by clicking on the name.
Operators will be represented by ellipses, and can be clicked to reveal more information on that operator, such as inputs
and execution device.

The Expand All and Collapse All buttons can be used to expand or collapse every subgraph. When using these
features, the positioning of the graph may change when redrawing the new graph. Try using Reset Position button
and zoom out by scrolling if the graph appears to be missing.

Viewing the Neuron profile data

On the right side of the Neuron plugin, information on the profiled inference will be displayed.

See performance summary

First is the “Neuron Performance Summary,” which gives a quick overview on how Neuron executed the graph, includ-
ing information on the number of NeuronCores and both on-NeuronCore time and on-CPU time.
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Get a breakdown of time spent per NeuronCore

Next, the “Neuron Execution” will give more details on how a graph was partitioned for Neuron. Each entry in the
table will show the order it was executed in, what type of device was used, the compute time (in microseconds), and
the percentage of total time spent. To dive deeper into subgraphs, you can check the “Show Details” box to display the
breakdown per NeuronCore.
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Get a breakdown of time spent per operator

The “Op Time Table” section shows the cycle count per operator, much like the “Compute time” coloring for graph
visualization. This table can be sorted by clicking the column names, and searched using the provided text box in the
top right corner. Due to Neuron compiler optimizations, some of the compute may not be associated with any specific
operator and will be categorized as unknown. Additionally, time spent moving data to and from NeuronCores will fall
under (ND_ENGINE_LOAD).

This document is relevant for: Inf1

This document is relevant for: Inf2, Trn1, Trn2

6.5.7 Track Training Progress in TensorBoard using PyTorch Neuron

Table of Contents

• Multi-layer perceptron MNIST model

• Output TensorBoard logs

• View loss in TensorBoard

This tutorial explains how to track training progress in TensorBoard while running a multi-layer perceptron MNIST
model on Trainium using PyTorch Neuron.
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Multi-layer perceptron MNIST model

This tutorial is based on the MNIST example for PyTorch Neuron on Trainium. For the full tutorial, please see Multi-
Layer Perceptron Training Tutorial.

Output TensorBoard logs

To generate TensorBoard logs, we first modify the training script to use the SummaryWriter:

from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter('./output')

In the training loop, we can then use the add_scalar API to log the loss per step.

writer.add_scalar("step loss", loss, idx)

At the end of the script, add writer.flush() to ensure all logs are written.

Save the following code as train_tb.py and run it as python3 train_tb.py on a Trn1 instance. The generated
logs can be found in the ./output directory that was passed to SummaryWriter.

import os
import time
import torch
import torch.nn as nn
import torch.nn.functional as F

from torchvision.datasets import mnist
from torch.optim import SGD
from torch.utils.data import DataLoader
from torchvision.transforms import ToTensor

# XLA imports
import torch_xla.core.xla_model as xm

from torch.utils.tensorboard import SummaryWriter

# Declare 3-layer MLP for MNIST dataset
class MLP(nn.Module):
def __init__(self, input_size = 28 * 28, output_size = 10, layers = [120, 84]):

super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, layers[0])
self.fc2 = nn.Linear(layers[0], layers[1])
self.fc3 = nn.Linear(layers[1], output_size)

def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return F.log_softmax(x, dim=1)

# Load MNIST train dataset
train_dataset = mnist.MNIST(root='./MNIST_DATA_train', \

train=True, download=True, transform=ToTensor())
(continues on next page)
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(continued from previous page)

def main():
# Prepare data loader
train_loader = DataLoader(train_dataset, batch_size=32)

# Fix the random number generator seeds for reproducibility
torch.manual_seed(0)

# XLA: Specify XLA device (defaults to a NeuronCore on Trn1 instance)
device = 'xla'

# Move model to device and declare optimizer and loss function
model = MLP().to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
loss_fn = torch.nn.NLLLoss()

# Use SummaryWriter to generate logs for TensorBoard
writer = SummaryWriter('./output')

# Run the training loop
print('----------Training ---------------')
model.train()
start = time.time()
for idx, (train_x, train_label) in enumerate(train_loader):

optimizer.zero_grad()
train_x = train_x.view(train_x.size(0), -1)
train_x = train_x.to(device)
train_label = train_label.to(device)
output = model(train_x)
loss = loss_fn(output, train_label)
writer.add_scalar("step loss", loss, idx) # add the step loss to the TensorBoard␣

→˓logs
loss.backward()
optimizer.step()
xm.mark_step() # XLA: collect ops and run them in XLA runtime
if idx < 2: # skip warmup iterations

start = time.time()

# Compute statistics
interval = idx - 2 # skip warmup iterations
throughput = interval / (time.time() - start)
print("Train throughput (iter/sec): {}".format(throughput))
print("Final loss is {:0.4f}".format(loss.detach().to('cpu')))

# Ensure TensorBoard logs are all written
writer.flush()

# Save checkpoint for evaluation
os.makedirs("checkpoints", exist_ok=True)
checkpoint = {'state_dict': model.state_dict()}
# XLA: use xm.save instead of torch.save to ensure states are moved back to cpu
# This can prevent "XRT memory handle not found" at end of test.py execution

(continues on next page)
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(continued from previous page)

xm.save(checkpoint,'checkpoints/checkpoint.pt')

print('----------End Training ---------------')

if __name__ == '__main__':
main()

View loss in TensorBoard

In order to view your training metrics, install TensorBoard in your Python environment:

pip install tensorboard

Then, launch TensorBoard with the ./output directory

tensorboard --logdir ./output

Once running, open a new SSH connection to the instance and port-forward TCP port 6006 (ex: -L
6006:127.0.0.1:6006). Once the tunnel is established, TensorBoard can then be accessed via web browser at the fol-
lowing URL: http://localhost:6006. Please note that you will not be able to access TensorBoard if you disconnect your
port-forwarding SSH session to the Trainium instance.
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In TensorBoard, you can now see the loss per step plotted. When capturing loss for multiple runs, you can plot them
together on the same graph to compare runs. Be sure to change the output directory for different runs, for example
./output/run1 for the first, ./output/run2 for the second, etc.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

6.5.8 Neuron Plugin for TensorBoard Release Notes

Table of Contents

• Known Issues and Limitations - Updated 11/29/2022

• Neuron Plugin for TensorBoard release [2.6.7.0]

• Neuron Plugin for TensorBoard release [2.6.1.0]

• Neuron Plugin for TensorBoard release [2.5.39.0]

• Neuron Plugin for TensorBoard release [2.5.37.0]

• Neuron Plugin for TensorBoard release [2.5.26.0]

• Neuron Plugin for TensorBoard release [2.5.25.0]

• Neuron Plugin for TensorBoard release [2.5.0.0]

• Neuron Plugin for TensorBoard release [2.4.0.0]

• Neuron Plugin for TensorBoard release [2.3.0.0]

• Neuron Plugin for TensorBoard release [2.2.0.0]

• [2.1.2.0]

• [2.1.0.0]

• [2.0.29.0]

• [1.15.0.1.2.6.0]

• [1.15.0.1.1.1.0]

• [1.15.0.1.0.615.0]

• [1.15.0.1.0.600.0]

• [1.15.0.1.0.570.0]

• [1.15.0.1.0.513.0]

• [1.15.0.1.0.491.0]

• [1.15.0.1.0.466.0]

• [1.15.0.1.0.392.0]

• [1.15.0.1.0.366.0]

• [1.15.0.1.0.315.0]

• [1.15.0.1.0.306.0]

• [1.15.0.1.0.280.0]
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Known Issues and Limitations - Updated 11/29/2022

The following are not limitations in the Neuron plugin, but may affect your ability to use TensorBoard.

• The Neuron plugin for Trn1 (tensorboard-plugin-neuronx) is not compatible with the Neuron plugin for
Inf1 (tensorboard-plugin-neuron). Please ensure you only have only the correct package installed.

Neuron Plugin for TensorBoard release [2.6.7.0]

Date: 04/01/2024

Summary

• Minor updates.

Neuron Plugin for TensorBoard release [2.6.1.0]

Date: 12/21/2023

Summary

• Now uses local third-party dependencies instead of relying on a CDN.

Neuron Plugin for TensorBoard release [2.5.39.0]

Date: 7/19/2023

Summary

• Minor updates.

Neuron Plugin for TensorBoard release [2.5.37.0]

Date: 6/14/2023

Summary

• Minor updates.
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Neuron Plugin for TensorBoard release [2.5.26.0]

Date: 05/01/2023

Summary

• Neuron operator timeline view now includes Neuron Runtime setup/teardown time and a collapsed execution of
NC engines and DMA - see Tensorboard tutorial for updated views.

• Improved execution categorization to include “control” instructions

Neuron Plugin for TensorBoard release [2.5.25.0]

Date: 03/28/2023

Summary

• Supports INF2 and TRN1.

Neuron Plugin for TensorBoard release [2.5.0.0]

Date: 12/09/2022

Summary

• Added support for PyTorch Neuron on Trn1 (torch-neuronx) with new views! Includes a trace view, an op-
erator view, and an operator timeline view. For more info, check out the documentation Neuron Plugin for
TensorBoard (Trn1).

Important:
– You must update to the latest Neuron Tools (aws-neuronx-tools version 2.6 or newer) and install
tensorboard-plugin-neuronx for proper functionality of the Neuron plugin on Trn1.

– For Inf1, please continue to use tensorboard-plugin-neuron. Refer to the getting started guide on
Inf1 Neuron Plugin for TensorBoard (Inf1).

Neuron Plugin for TensorBoard release [2.4.0.0]

Date: 04/29/2022

1116 Chapter 6. Runtime & Tools



AWS Neuron

Summary

• Minor updates.

Neuron Plugin for TensorBoard release [2.3.0.0]

Date: 03/25/2022

Summary

• Minor updates.

Neuron Plugin for TensorBoard release [2.2.0.0]

Date: 10/27/2021

New in this release

• Neuron Plugin for TensorBoard now support applications built with Neuron Runtime 2.x (libnrt.so).

Important:
– You must update to the latest Neuron Driver (aws-neuron-dkms version 2.1 or newer) for proper func-

tionality of the new runtime library.

– Read Introducing Neuron Runtime 2.x (libnrt.so) application note that describes why are we making this
change and how this change will affect the Neuron SDK in detail.

– Read Migrate your application to Neuron Runtime 2.x (libnrt.so) for detailed information of how to migrate
your application.

[2.1.2.0]

Date: 8/12/2021

Summary

• Adds support for Neuron Tensorflow 2.5+
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[2.1.0.0]

Date: 5/28/2021

Summary

• No major changes or fixes. Released with other Neuron packages.

[2.0.29.0]

Date: 4/30/2021

Summary

• First release Neuron plugin for TensorBoard. Check out it out here: Neuron Plugin for TensorBoard (Inf1).

– The Neuron plugin is now compatible with TensorBoard 2.0 and higher, in addition to TensorBoard 1.15

– Provides a centralized place to better understand execution using Neuron SDK.

– Continues support visualization for TensorFlow graphs, with support for PyTorch and MXNet coming in
future releases.

• Neuron plugin for TensorBoard is supported for Neuron tools >= 1.5, which is first introduced in Neuron v1.13.0
release

• TensorBoard-Neuron is deprecated, and only supported for Neuron tools <= 1.4.12.0. The final version, 1.4.12.0
is part of Neuron v1.12.2 release.

[1.15.0.1.2.6.0]

Date: 2/24/2021

Summary

• Fix for CVE-2021-3177.

[1.15.0.1.1.1.0]

Date: 12/23/2020

Summary

• Minor internal improvements.
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[1.15.0.1.0.615.0]

Date: 11/17/2020

Summary

• Fix issue with viewing chrome trace in Neuron profile plugin in Chrome 80+.

Resolved Issues

• Updated dependencies to polyfill missing APIs used by chrome trace in newer browser versions.

[1.15.0.1.0.600.0]

Date: 09/22/2020

Summary

• Minor internal improvements.

[1.15.0.1.0.570.0]

Date: 08/08/2020

Summary

• Minor internal improvements.

[1.15.0.1.0.513.0]

Date: 07/16/2020

Summary

• Minor internal improvements.

[1.15.0.1.0.491.0]

Date 6/11/2020
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Summary

Fix issue where utilization was missing in the op-profile view.

Resolved Issues

• The op-profile view in the Neuron Profile plugin now correctly shows the overall NeuronCore utilization.

[1.15.0.1.0.466.0]

Date 5/11/2020

Summary

Fix potential installation issue when installing both tensorboard and tensorboard-neuron.

Resolved Issues

• Added tensorboard as a dependency in tensorboard-neuron. This prevents the issue of overwriting tensorboard-
neuron features when tensorboard is installed after tensorboard-neuron.

Other Notes

[1.15.0.1.0.392.0]

Date 3/26/2020

Summary

Added ability to view CPU node latency in the Graphs plugin and the Neuron Profile plugins.

Major New Features

• Added an aggregate view in addition to the current Neuron subgraph view for both the Graphs plugin and the
Neuron Profile plugin.

• When visualizing a graph executed on a Neuron device, CPU node latencies are available when coloring the
graph by “Compute time” using the “neuron_profile” tag.

• The Neuron Profile plugin now has an overview page to compare time spent on Neuron device versus on CPU.
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Other Notes

• Requires Neuron-RTD config option “enable_node_profiling” to be set to “true”

[1.15.0.1.0.366.0]

Date 02/27/2020

Summary

Reduced load times and fixed crashes when loading large models for visualization.

Resolved Issues

• Enable large attribute filtering by default

• Reduced load time for graphs with attributes larger than 1 KB

• Fixed a fail to load graphs with many large attributes totaling more than 1 GB in size

[1.15.0.1.0.315.0]

Date 12/20/2019

Summary

No major chages or fixes. Released with other Neuron packages.

[1.15.0.1.0.306.0]

Date 12/1/2019

Summary

Major New Features

Resolved Issues

Known Issues & Limits

Same as prior release
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Other Notes

[1.15.0.1.0.280.0]

Date 11/29/2019

Summary

Initial release packaged with DLAMI.

Major New Features

N/A, initial release.

See user guide here: https://github.com/aws/aws-neuron-sdk/blob/master/docs/neuron-tools/
getting-started-tensorboard-neuron.md

Resolved Issues

N/A - first release

Known Issues & Limits

• Must install TensorBoard-Neuron by itself, or after regular TensorBoard is installed. If regular Tensorboard is
installed after TensorBoard-Neuron, it may overwrite some needed files.

• Utilization missing in Op Profile due to missing FLOPs calculation (see overview page instead)

• Neuron Profile plugin may not immediately show up on launch (try reloading the page)

• Graphs with NeuronOps may take a long time to load due to attribute size

• Instructions that cannot be matched to a framework layer/operator name show as “” (blank)

• CPU Usage section in chrome-trace is not applicable

• Debugger currently supports TensorFlow only

• Visualization requires a TensorFlow-compatible graph

Other Notes

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2
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CHAPTER

SEVEN

COMPILER

This document is relevant for: Inf1, Inf2, Trn1, Trn2

7.1 Neuron Compiler

The Neuron Compiler accepts Machine Learning models in various formats (TensorFlow, MXNet, PyTorch, XLA
HLO) and optimizes them to run on Neuron devices.

The Neuron compiler is invoked within the ML framework, where ML models are sent to the compiler by the Neuron
Framework plugin. The resulting compiler artifact is called a NEFF file (Neuron Executable File Format) that in turn
is loaded by the Neuron runtime to the Neuron device.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

7.1.1 NeuronX Compiler for Trn1 & Inf2

This document is relevant for: Inf2, Trn1, Trn2

API Reference Guide

This document is relevant for: Inf2, Trn1, Trn2

Neuron Compiler CLI Reference Guide (neuronx-cc)

This document describes the command line interface of the Neuron Compiler.

This reference is not relevant for applications that run the Neuron Compiler from within a machine learning framework
(PyTorch-Neuron for example) since these options are passed from the framework directly to the compiler. Using the
compiler command line may be desirable for applications that do not use a framework or customize existing frameworks.
It is also possible to specify compiler options within the framework which will forward these options to the compiler
using NEURON_CC_FLAGS.
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Usage

Optional parameters are shown in square brackets.

Neuron Compiler Command-Line Interface

neuronx-cc <command> [parameters]

Available Commands:

• compile

• list-operators

Common parameters for the Neuron CLI:

• --help: Display a usage message of compiler options.
Use neuronx-cc <command> --help for information on a specific command.

neuronx-cc compile [parameters]

Compile a model for use on the AWS Machine Learning Accelerator.

neuronx-cc compile <model_files>
--framework <framework_name>
--target <instance_family>
[--model-type <model>]
[--auto-cast <cast_mode>]
[--auto-cast-type <data_type>]
[--distribution-strategy <distribution_type>]
[--logical-nc-config <shard_degree>], or [-lnc <shard_degree>]
[--optlevel <opt_level>], or [-O <opt_level>]
[--enable-mixed-precision-accumulation]
[--enable-saturate-infinity]
[--enable-fast-context-switch]
[--enable-fast-loading-neuron-binaries]
[--logfile <filename>]
[--output <filename>]
[--verbose <level>]

Compile Parameters:
• <model_files>: Input containing model specification.

The number of arguments required varies between frameworks:
– XLA: A local filename of a HLO file (hlo.pb) generated via XLA. See hlo.proto for the .proto

description and inspect-compiled-programs for more information on how to generate such
files.

• --framework: Framework used to generate training model.

Valid values:
– XLA

• --target: Name of the Neuron instance family on which the compiled model will be run.

Valid values:
– inf2
– trn1
– trn1n

1124 Chapter 7. Compiler

https://docs.python.org/3/using/cmdline.html#cmdoption-help
https://github.com/tensorflow/tensorflow/blob/73c8e20101ae93e9f5ff0b58f68be0b70eca44c5/tensorflow/compiler/xla/service/hlo.proto
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/xla/g3doc/index.md#user-content-inspect-compiled-programs


AWS Neuron

– trn2
• --model-type: Permit the compiler to attempt model-specific optimizations based upon type of model

being compiled. (Default: generic)

Valid values:
– generic: Perform optimizations applicable to all types of inference and training models.
– transformer: Perform optimizations specific to Transformer models.
– unet-inference: Perform optimizations specific to certain U-Net model architectures when per-

forming inference. U-Net models often have certain structures that result in excessive performance-
impacting data transfers; this option allows the compiler to apply additional memory optimizations
to prevent these data transfers and also allows the compiler to map larger normalization operators
which would otherwise not successfully execute.

• --auto-cast: Controls how the compiler makes tradeoffs between performance and accuracy for FP32
operations. (Default: matmult)

Valid values:
– matmult: Only cast FP32 operations that use the Neuron matrix-multiplication engine.
– all: Cast all FP32 operations to achieve highest performance. This option can potentially lower

precision/accuracy.
– none: Leave all data types as defined in the model. Do not apply auto-casting data type optimiza-

tions.
A more complete discussion on how to use this option and its arguments is in Mixed Precision and
Performance-accuracy Tuning for Training.

Note: If the --auto-cast option is specified, the --auto-cast-type compiler flag can be optionally
set to define which lower-precision data type the compiler should use.

• --auto-cast-type: When auto-cast mode is enabled, cast the FP32 operators to the lower-precision data
type specified by this option. (Default: bf16)

Valid values:
– bf16: Cast the FP32 operations selected via the --auto-cast option to BF16 to achieve highest

performance and preserve dynamic range.
– fp16: Cast the FP32 operations selected via the --auto-cast option to FP16 to achieve improved

performance relative to FP32 and increased precision relative to BF16.
– tf32: Cast the FP32 operations selected via the --auto-cast option to TensorFloat-32.
– fp8_e4m3: Cast the FP32 operations selected via the --auto-cast option to a signed 8-bit floating

point represented as a 4-bit exponent and 3-bit mantissa.

Note: If multiple competing options are specified then the option right-most on the command line will
supercede previous options.

• --distribution-strategy: Permit the compiler to attempt model-specific optimizations based upon
type of model being compiled. (Default: generic)

Valid values:
– llm-training: Enable the compiler to perform optimizations applicable to large language model

(LLMS) training runs that shard parameters, gradients, and optimizer states across data-parallel
workers. This is equivalent to the previously documented option argument value of NEMO, which
will be deprecated in a future release.

• --logical-nc-config: Instructs the compiler to shard the input graph across physical NeuronCore
accelerators. Possible numeric values are {1, 2}. (Only available on trn2; Default: 2)

Valid values:
– 1: instructs the compiler to shard the input graph across 1 physical NeuronCore, i.e., do not perform

any input graph sharding.
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– 2: [default on trn2] instructs the compiler to shard the input graph across 2 physical NeuronCores.
• --optlevel: Specify the level of optimization the compiler should perform. Possible numeric values are

{1, 2, 3}. (Default: 2)

Valid values:
– 1: enables the core performance optimizations in the compiler, while also minimizing compile time.
– 2: [default] provides the best balance between model performance and compile time.
– 3: may provide additional model execution performance but may incur longer compile times and

higher host memory usage during model compilation.

Note: This option supercedes, and deprecates, the —enable-experimental-O1 option introduced in an
earlier release.

• --enable-mixed-precision-accumulation: Perform intermediate calculations of accumulation op-
erators (such as softmax and layernorm) in FP32 and cast the result to the model-designated datatype. This
improves the operator’s resulting accuracy.

• --enable-saturate-infinity: Convert +/- infinity values to MAX/MIN_FLOAT for compiler-
introduced matrix-multiply transpose computations that have a high risk of generating Not-a-Number
(NaN) values. There is a potential performance impact during model execution when this conversion
is enabled. (Only needed on trn1; while the trn2 compiler will accept this flag for compatibility reasons,
it has no effect on the compilation.)

• --enable-fast-context-switch: Optimize for faster model switching rather than execution
latency.

This option will defer loading some weight constants until the start of model execution. This results
in overall faster system performance when your application switches between models frequently on
the same Neuron Core (or set of cores).

• --enable-fast-loading-neuron-binaries: Save the compilation output file in an
uncompressed format.

This creates executable files which are larger in size but faster for the Neuron Runtime to load into
memory during model execution.

• --logfile: Filename where compiler writes log messages. (Default: “log-neuron-cc.txt”).
• --output: Filename where compilation output (NEFF archive) will be recorded. (Default: “file.neff”)
• --verbose: Specify the level of output produced by the compiler. (Default: warning)

Valid values:
– info: Informational messages regarding the progress of model compilation (written to stdout).
– warning: Diagnostic messages that report model code that is not inherently erroneous but may be

risky or suggest there may have been an error (written to stderr).
– error: The compiler detected a condition causing it not complete the compilation successfully

(written to stderr).
– critical: The compiler encountered an unrecoverable error terminates immediately (written to

stderr).
– debug: Extensive information regarding the compiler’s internal execution phases (written to stdout).

Example:
Compiling an XLA HLO:

neuronx-cc compile bert-model.hlo —-framework XLA -—target trn1 —-model-type␣
→˓transformer —-output bert.neff

neuronx-cc list-operators [parameters]

Returns a newline (‘\n’) separated list of operators supported by the Neuron Compiler.

neuronx-cc list-operators
--framework <value>
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List-Operators Parameters:
• --framework: Framework in which the operators were registered.

Valid values:
– XLA: Operator names will be formatted according to the value used by XLA compiler in XlaBuilder.

Example:

neuronx-cc list-operators —framework XLA
...

Exit Statuses:

• 0: Compilation succeeded

• <>0: An error occurred during compilation.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

Developer Guide

This document is relevant for: Inf2, Trn1, Trn2

Mixed Precision and Performance-accuracy Tuning (neuronx-cc)

Table of contents

• Overview

• Neuron Hardware

• Performance-accuracy tradeoffs

• What is the difference between Data Types?

• Should I downcast operations to smaller Data Types?

Overview

The Neuron Compiler supports machine learning models with FP32, TF32, FP16 and BF16 (Bfloat16) tensors and
operators. The Neuron hardware supports a mix of 32, 16, and 8 bit datatypes. This guide explains how to apply the
available auto-cast methods and their performance / accuracy trade-offs when compiling a model with Neuron.

Note: Neuron Compiler support for INT8 is planned for a future Neuron SDK release. See Neuron Compiler: Enable
Neuron INT8 support for details.
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Neuron Hardware

The Neuron v2 hardware supports matrix multiplication using FP16, BF16, TF32, and FP32 on its matrix multiply
(“matmult”) engine, and accumulations using FP32. Operators such as activations or vector operations are supported
using FP32, TF32, FP16, and BF16. Supporting FP16 and BF16 allows Neuron to have significantly higher perfor-
mance than executing everything as FP32.

Performance-accuracy tradeoffs

By default, the Neuron Compiler will automatically cast FP32 matrix multiplication operations to BF16. The
remaining operations are performed in the data type specified by the model. The Neuron Compiler provides CLI options
that direct the compiler to cast to other data types, thereby giving the ability to choose an accuracy-to-performance
tradeoff in model execution. Deciding what CLI settings to use will be application specific and may require some
experimentation. See Neuron Compiler CLI Reference Guide for details.

What is the difference between Data Types?

The NeuronCore v2 support multiple data types (see NeuronCore v2 Data Types). Each data type provides benefits and
drawbacks due to its dynamic range and numeric precision.

Type Mini-
mum

Maxi-
mum

Strength Weakness

FP16 -65504 65504 Numeric Precision, High granularity, Mid-
range numbers

Low range, medium precision

BF16 -
3.40E+38

3.40E+38 Dynamic Range, Extremely small/large
numbers

Low precision

TF32 -
3.40E+38

3.40E+38 Dynamic Range, Extremely small/large
numbers

Medium precision

FP32 -
3.40E+38

3.40E+38 N/A Larger model size, potentially slower
computation

• FP16 provides a high density of representable values that are neither extremely small or extremely large. The
density of representable values within the range is approximately an order of magnitude greater than BF16.

– Conversion from FP32 to FP16 will perform well when values are relatively small but non-extreme (either
very small or very large).

– Conversion from FP32 to FP16 will perform badly if the original FP32 values are outside of the range of
FP16. This will produce inf/-inf values and may result in NaN depending on the operation.

• BF16 provides a wider range of representable values which includes both very small and very large values.
However, the overall density of representable values is usually lower than FP16 for more non-extreme values.
The range is nearly identical to the range of FP32 but because the number of bits is halved, this means the
individual values are sparse.

– Conversion from FP32 to BF16 will perform well when the values are well-distributed throughout the
range. Since BF16 covers the entire FP32 range, this means each original value can map to a relatively
close downcast value.

– Conversion from FP32 to BF16 will perform badly when fine granularity is needed. Since BF16 granularity
is sacrificed for greater range it will almost always map worse to values that are within the FP16 range.
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Should I downcast operations to smaller Data Types?

This choice here is driven entirely by accuracy vs performance tradeoff. Casting operations to smaller 16-bit data types
will provide a significant performance benefit but may end up sacrificing accuracy.

The compiler uses BF16 casting by default for matrix multiplication operations. The speedup from casting operations
gives a significant performance boost and the range of representable values in BF16 allows for more safety compared
to FP16 when the possible numeric range of input values is unknown.

The Neuron Compiler’s --auto-cast and --auto-cast-typeCLI options are used to direct the compiler to perform
alternate casting operations. See the detailed list of the options in Neuron v2 Compiler CLI Reference Guide.

It is recommended that you start with compiling the model to achieve high performance (default), you can then test the
accuracy of the application and, if needed, try the next higher precision casting option until the desired accuracy and
performance are achieved.

The option combinations to consider in a typical flow are:

Compiler autocast Options Effect Performance Accuracy
--auto-cast all
--auto-cast-type bf16

Best performance at the expense
of precision

Performance decreases
as you move down the
table

Accuracy increases
as you move down
the table--auto-cast matmult

--auto-cast-type bf16
(default)
--auto-cast all
—-auto-cast-type fp16

Best performance at the expense
of dynamic range

--auto-cast matmult
--auto-cast-type fp16
--auto-cast all
—-auto-cast-type tf32

Balance of performance, dy-
namic range, and precision

--auto-cast matmult
--auto-cast-type tf32
--auto-cast none Disables all auto-casting, using

the data types defined within the
model

Note that compiler has to preserve the input/output (i/o) tensor types requested by Framework, therefore no casting is
done on the i/o tensors. Additional speedup can be obtained by casting them in the Framework prior to compilation.

To learn how to configure the compiler options from within your application’s framework, please see:

• Developer Guide for Training with PyTorch Neuron

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

7.1. Neuron Compiler 1129



AWS Neuron

Misc (neuronx-cc)

This document is relevant for: Inf2, Trn1, Trn2

Neuron Compiler FAQ (neuronx-cc)

Table of contents

• Where can I compile to Neuron?

• What is the difference between neuron-cc and neuronx-cc?

• Should I use neuron-cc or neuronx-cc?

• My current neural network is based on FP32, how can I use it with Neuron?

• Which operators does Neuron support?

• Any operators that Neuron Compiler doesn’t support?

• Will I need to recompile again if I updated runtime/driver version?

• I have a NEFF binary, how can I tell which compiler version generated it?

• How long does it take to compile?

• Why is my model producing different results compared to CPU/GPU?

• Do you support model <insert model type>?

Where can I compile to Neuron?

The one-time compilation step from the standard framework-level model to NEFF binary may be performed on any
EC2 instance or even on-premises.

We recommend using a high-performance compute server of choice (C5 or z1d instance types), for the fastest compile
times and ease of use with a prebuilt DLAMI. Developers can also install Neuron in their own environments; this
approach may work well for example when building a large fleet for inference, allowing the model creation, training
and compilation to be done in the training fleet, with the NEFF files being distributed by a configuration management
application to the inference fleet.

What is the difference between neuron-cc and neuronx-cc?

• neuron-cc is the Neuron Compiler with TVM front-end, neuron-cc supports only neuroncores-v1-arch.

• neuronx-cc is the Neuron Compiler with XLA front-end, neuronx-cc currently supports neuroncores-v2-arch,
neuronx-cc support of neuroncores-v1-arch is currently a Roadmap Item.
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Should I use neuron-cc or neuronx-cc?

See What is the difference between neuron-cc and neuronx-cc?

My current neural network is based on FP32, how can I use it with Neuron?

Developers who want to train their models in FP32 for best accuracy can compile and deploy them with Neuron. The
Neuron compiler automatically converts FP32 to internally supported datatypes, such as FP16 or BF16. You can find
more details about FP32 data type support and performance and accuracy tuning in Mixed Precision and Performance-
accuracy Tuning (neuronx-cc) or Mixed precision and performance-accuracy tuning (neuron-cc). The Neuron compiler
preserves the application interface - FP32 inputs and outputs. Transferring such large tensors may become a bottleneck
for your application. Therefore, you can improve execution time by casting the inputs and outputs to FP16 or BF16 in
the ML framework prior to compilation.

Which operators does Neuron support?

You can use the neuronx-cc list-operators command on the cli to list the operators. See Neuron Compiler CLI
Reference Guide (neuronx-cc).

To request support for new operators, open an issue on our GitHub forum.

Any operators that Neuron Compiler doesn’t support?

Models with control-flow and dynamic shapes are not supported now. You will need to partition the model using the
framework prior to compilation.

Note: Starting with neuroncores-v2-arch Neuron supports control-flow and dynamic shapes.

Stay tuned and follow the Neuron Roadmap.

Will I need to recompile again if I updated runtime/driver version?

The compiler and runtime are committed to maintaining compatibility for major version releases with each other. The
versioning is defined as major.minor, with compatibility for all versions with the same major number. If the versions
mismatch, an error notification is logged and the load will fail. This will then require the model to be recompiled.

I have a NEFF binary, how can I tell which compiler version generated it?

** We will bring a utility out to help with this soon.
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How long does it take to compile?

It depends on the model and its size and complexity, but this generally takes a few minutes.

Why is my model producing different results compared to CPU/GPU?

neuroncores-v2-arch supports multiple casting modes for floating point numbers, each with associated implications
for performance and accuracy. The default casting mode is a pragmatic balance between performance and accuracy,
however on some models it may result in loss of precision.

See the --auto-cast and --auto-cast-type options in Neuron Compiler CLI Reference Guide (neuronx-cc) for
details on how to adjust the casting mode.

Do you support model <insert model type>?

neuronx-cc has explicit support for select model families using the --model-type option, though many other model
types are supported. You can also inspect supported operators using the list-operators sub-command. See th
Neuron Compiler CLI Reference Guide (neuronx-cc) for details. More generally, support for new operators and models
is continually being added. See our Roadmap for details.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

Neuron Compiler (neuronx-cc) release notes

Neuron Compiler [2.17.194.0]

Date: 04/03/2025

• Minor bug fixes and performance enhancements for both the trn1 and trn2 platforms.

Neuron Compiler [2.16.372.0]

Date: 01/14/2025

• Minor bug fixes and performance enhancements for the trn2 platform.

Neuron Compiler [2.16.345.0]

Date: 12/20/2024

• Minor bug fixes and performance enhancements for the trn2 platform.
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Neuron Compiler

Date: 12/03/2024

• This release introduces the trn2 option argument to the compiler --target option to specify that the compiler
should generate code for a trn2 instance family. Example usage: neuronx-cc compile --target=trn2 ...

• This release introduces the --logical-nc-config or -lnc compiler command line option in support of the
Logical NeuronCore Configuration feature available in Trainium2 instances. The compiler’s default is LNC=2.
Note: Use of this option is available only for Trainium2 instances.

Neuron Compiler [2.15.128.0]

Date: 09/16/2024

• This release introduces memory optimization that will reduce the generated compiler artifacts size (i.e., NEFFs)
and the models’ memory footprint. It is possible that some models may experience unexpected performance
degradation. If this occurs, these optimizations can be disabled using the –disable-dge compiler command line
option or the framework-level option additional_compile_opt=" --disable-dge"

Neuron Compiler [2.14.213.0]

Date: 07/03/2024

• Minor bug fixes and performance enhancements.

• Improved flash attention kernel performance.

Neuron Compiler [2.13.72.0]

Date: 04/25/2024

• Minor bug fixes and enhancements.

Neuron Compiler [2.13.68.0]

Date: 04/10/2024

• This release fixes hang issues related to Triton Inference Server.

Neuron Compiler [2.13.66.0]

Date: 04/01/2024

• This release introduces a new --enable-mixed-precision-accumulation compiler option. This option
instructs the compiler to perform intermediate calculations of reduction operators (such as the dot or reduce
operators) in FP32 regardless of the operation’s defined datatype. The final result of the operator will be cast from
FP32 to the model-designated datatype (e.g., BF16). This helps to improve the operator’s resulting acccuracy.
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Neuron Compiler [2.12.68.0]

Date: 01/18/2024

• Patch release with bug fixes.

Neuron Compiler [2.12.54.0]

Date: 12/21/2023

• The compiler now generates instructions to check if a model references an embedding table with an illegal in-
dex. The check is made at model execution time. If an attempted invalid table index is encountered, the model
execution will continue and the user will see an error similar to:

WARNING: Received notification generated at runtime: failed to run scatter/gather (indirect mem-
ory copy with branch_label_id = xx), due to out-of-bound access.

When this occurs, users are encouraged to review the model’s gather/scatter input values to determine if there is a
coding error.

Neuron Compiler [2.11.0.35]

Date: 11/17/2023

• This release addresses performance related issues when training through neuronx-nemo-megatron library.

Neuron Compiler [2.11.0.34]

Date: 10/26/2023

• This release introduces the option-argument llm-training to the existing --distribution_strategy com-
piler option. This option-argument allows the compiler to make specific optimizations related to training dis-
tributed models. This new option-argument is equivalent to the previously introduced nemo option-argument,
which will be deprecated in a future release.

Neuron Compiler [2.10.0.35]

Date: 09/26/2023

• This release addresses a compilation regression for certain configurations of Llama and Llama-2 inference models
when it fails compilation with this error “IndirectLoad/Save requires contiguous indirect access per partition” .

There is still a known issue for some configurations of the model with the error “Too many instructions after unroll
for function sg0000” . To mitigate this, recompile using the --optlevel 1 (-O1) option. A complete fix will be
coming in the future release which will not require this option
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Neuron Compiler [2.10.0.34]

Date: 09/15/2023

• This release introduces a new --optlevel (-O) compiler option. This option allows the user to balance be-
tween compile-time and optimizations performed. Three levels are supported. Level --optlevel 1 (-O1)
aims to minimize compile-time and allow for a more rapid model development cycle. Model execution time may
be reduced. Level --optlevel 3 (-O3) performs whole-model optimization. This level will deliver the best
performance however there will be longer compile-times and the compiler will use more host DRAM, potentially
requiring a larger instance to compile the model. The default is --optlevel 2 (-O2)which provides a balance
between model performance and compile time.

The previous —enable-experimental-O1 flag introduced in the 02/08/2023 Neuron Compiler [2.4.0.21] re-
lease is now deprecated. Using this flag will generate a message similar to:

WARNING: Option —enable-experimental-O1 is deprecated and will be removed in a future re-
lease.” Use --optlevel 1 (-O1) instead.

Neuron Compiler [2.9.0.16]

Date: 08/28/2023

• This release fixes an issue where any initial seed passed into the Random Number Generator operator was not
honored. The RngBitGenerator operator now correctly accepts and uses setting the seed. Note that the current
RNG implementation only supports 32-bit seeds.

Neuron Compiler [2.8.0.25]

Date: 07/19/2023

• This release introduces a new optional --distribution_strategy compiler option. This option informs the
compiler what type of distributed APIs are used to shard the model and allows the compiler to make API-specific
optimizations. Currently following option-arguments are supported: nemo.

Neuron Compiler [2.7.0.40]

Date: 06/14/2023

• This release introduces a new --enable-saturate-infinity compiler option. A computation that can gen-
erate +/- infinity is at a high risk of generating Not-a-Number (NaN) values when the infinity value is used in
subsequent computations. This option helps avoid this by converting +Inf/-Inf values to MAX/MIN_FLOAT
before operations that could produce NaN values for +Inf/-Inf inputs on the target architecture. While this option
helps to avoid NaN values, there is a potential performance degradation that occurs during model execution when
this conversion is enabled.
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Neuron Compiler [2.6.0.19]

Date: 05/01/2023

• This release introduces a new model-type option argument: unet-inference. This option instructs the com-
piler to perform model-specific optimizations that produce executable models with improved performance on the
specified target instance.

• Added support for the HLO operator BitcastConvertType and also added support for TopK (sampling mode)
operator.

Neuron Compiler [2.5.0.28]

Date: 03/28/2023

• This release introduces the trn1n option argument to the compiler target option to specify that it should
generate code for a trn1n instance type. Example usage: neuronx-cc compile --target=trn1n ...

• The compiler’s usage message now includes the inf2 option argument.

• A new 8-bit floating point data type, fp8_e4m3, is now supported and can be specificed using the
auto-cast-type option. This instructs the compiler to convert the FP32 operations selected via the
--auto-cast option to a signed FP8 size with 4-bit exponent and 3-bit mantissa. Care must be taken to ensure
that the down-casted values are representable within the 8-bit data range.

Neuron Compiler [2.4.0.21]

Date: 02/24/2023

• This release introduces the inf2 option argument to the compiler target option to specify that it should generate
code for an inf2 instance type. Example usage: neuronx-cc compile --target=inf2 ... The inf2 option
argument does not appear in the compiler’s usage message. It will be added in the next release.

Neuron Compiler [2.4.0.21]

Date: 02/08/2023

• Added support for the following HLO operators: SelectAndScatter.

• Beta: --enable-experimental-O1 flag: This option reduces the compile-time with a neglible impact
on model execution performance. It allows the compiler to execute compiler passes in parallel to per-
form the compilation. By default the compiler uses 8 processes. This can be changed via the CLI option
--num-parallel-jobs. This option is expected to become the default in a future SDK release.

Neuron Compiler [2.3.0.4]

Date: 12/09/2022

• Added support for the following HLO operators: rev (reverse).

• The pow() function can now handle both integer and floating-point exponents.

• Optimization enhancements and bug fixes to improve model execution performance.
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Neuron Compiler [2.2.0.73]

Date: 10/27/2022

• Adding support for the following HLO operators: LogicalNot, atan2 and DynamicUpdateSlice (for constant
index).

Neuron Compiler [2.1.0.76]

Date: 10/5/2022

The Neuron Compiler is an Ahead-of-Time compiler that accelerates models for execution on NeuronCores. This
release supports compiling models for training on a Trn1 instance using Pytorch Neuron. Users typically access the
compiler via the Framework to perform model compilation, although it can also be run as a command line tool (neuronx-
cc).

The Neuron Compiler supports compiling models for mixed precision calculations. The trn1 hardware supports ma-
trix multiplication using FP16, BF16, and FP32 on its Matrix Multiplication Engine, and accumulations using FP32.
Operators such as activations or vector operations are supported using FP16, BF16, and FP32. Tensor transpose can be
accomplished in FP16, BF16, FP32, or TF32 datatypes. By default, scalar and vector operations on FP32 values will
be done in FP32, while matrix multiplications are cast to BF16 and transpose operations are cast to FP32. This default
casting will generate the highest performance for a FP32 trained model.

By default, the compiler will target maximum performance by automatically casting the model to mixed precision.
It also provides an option (--auto-cast) that allows the user to make tradeoffs between higher performance and
optimal accuracy. The decision on what option argument to use with the --auto-cast option will be application
specific. Compiler CLI options can be passed to the compiler via the framework.

Known issues

• The Random Number Generator operation can be passed an initial seed value, however setting the seed is not
supported in this release.

• The exponent value of the pow() function must be a compile-time integer constant.

• The compiler treats INT64 datatypes as INT32 by truncating the high-order bits. If possible, cast these values to
32 bits .

• Model compilation time is proportional to the model size and operators used. For some larger NLP models it
may be upwards of 30 minutes.

Supported Operators

The following XLA operators are supported by the Neuron Compiler. Future releases will broaden model support by
providing additional XLA operators defined in https://www.tensorflow.org/xla/operation_semantics.

The list of supported operators can also be retrieved from the command line using neuronx-cc list-operators.

Supported XLA Operators Notes
Abs
Add
Allgather
Allreduce

continues on next page
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Table 7.1 – continued from previous page
Supported XLA Operators Notes
Atan2
Batchnorm
Batchnormgrad
Batchnorminference
BitcastConvertType
Broadcast
BroadcastInDim
Ceil
Clamp
Compare
Concatenate
Constant
ConstantLiteral
ConvertElementType
Cos
Customcall
Div
Dot
DotGeneral
DynamicUpdateSlice Supports only for constant index
Eq
Exp
Floor
Gather Supports only disjoint start_index_map and remapped_offset_dims
Ge
GetTupleElement
Gt
Iota
Le
Log
LogicalAnd
LogicalNot
Lt
Max
Min
Mul
Ne
Neg
Pad
Pow Exponent argument must be a compile-time integer constant
Reduce Min, Max, Add and Mul are the only supported computations. Init_values must be constant
Reshape
Rev (reverse)
RngBitGenerator Ignores user seed
RngUniform
Rsqrt
Scatter
Select
SelectAndScatter

continues on next page
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Table 7.1 – continued from previous page
Supported XLA Operators Notes
ShiftRightLogical
Sign
Sin
Slice
Sqrt
Sub
Tanh
Transpose
Tuple

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

7.1.2 Neuron Compiler for Inf1

This document is relevant for: Inf1

API Reference Guide

This document is relevant for: Inf1

Neuron compiler CLI Reference Guide (neuron-cc)

This document describes the command line interface of the Neuron compiler. This reference is not relevant for appli-
cations that run neuron-cc from within a machine learning framework (TensorFlow-Neuron for example) since these
options are passed from the framework directly to neuron-cc.

Using neuron-cc on the command line may be desirable for applications that do not use a framework, or customize
existing frameworks. It is also possible to supply CLI commands to the framework as options to be passed through to
the compiler.

Usage

Optional parameters are shown in square brackets. See the individual framework guides for the correct syntax.
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Neuron Compiler CLI

neuron-cc [options] <command> [parameters]

Common options for the Neuron CLI:

• --verbose (string) default=“WARN”:

Valid values:

– DEBUG

– INFO

– WARN

– ERROR

Use neuron-cc <command> --help for information on a specific command.

Available Commands:

• compile

• list-operators

neuron-cc compile [parameters]

Compile a model for use on the AWS Inferentia Machine Learning Accelerator.

neuron-cc compile <file names> --framework <value> --io-config <value> [--
→˓neuroncore-pipeline-cores <value>] [--enable-saturate-infinity] [--enable-fast-
→˓loading-neuron-binaries] [--enable-fast-context-switch] [--fp32-cast cast-method]␣
→˓[--fast-math cast-method] [--output <value>]

Compile Parameters:
• <file names>: Input containing model specification. The number of arguments required varies between

frameworks:
– TENSORFLOW: A local filename or URI of a TensorFlow Frozen GraphDef (.pb); or the name of

a local directory containing a TensorFlow SavedModel.

See https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/graph.proto
for the associated .proto schema for TensorFlow Frozen GraphDefs. See https://www.tensorflow.
org/guide/saved_model for more information on the SavedModel format.

– MXNET: List of local filenames or URIs where input architecture .json file and parameter .param
file are stored. These contains information related to the architecture of your graph and associated
parameters, respectively.

• --framework (string): Framework in which the model was trained.

Valid values:
– TENSORFLOW
– MXNET
– XLA

• --neuroncore-pipeline-cores (int) (default=1): Number of neuron cores to be used in “NeuronCore
Pipeline” mode. This is different from data parallel deployment (same model on multiple neuron cores).
Refer to Runtime/Framework documentation for data parallel deployment options.

Compile for the given number of neuron cores so as to leverage NeuronCore Pipeline mode.
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Note: This is not used to define the number of Neuron Cores to be used in a data parallel deployment (ie
the same model on multiple Neuron Cores). That is a runtime/framework configuration choice.

• --output (string) (default=“out.neff”): Filename where compilation output (NEFF archive) will be
recorded.

• --io-config (string): Configuration containing the names and shapes of input and output tensors.

The io-config can be specified as a local filename, a URI, or a string containing the io-config itself.

The io-config must be formatted as a JSON object with two members “inputs” and “outputs”. “inputs” is
an object mapping input tensor names to an array of shape and data type. “outputs” is an array of output
tensor names. Consider the following example:

{
"inputs": {
"input0:0": [[1,100,100,3], "float16"],
"input1:0": [[1,100,100,3], "float16"]

},
"outputs": ["output:0"]

}

• --enable-saturate-infinity : Convert +/- infinity values to MAX/MIN_FLOAT for certain compu-
tations that have a high risk of generating Not-a-Number (NaN) values. There is a potential performance
impact during model execution when this conversion is enabled.

• --enable-fast-loading-neuron-binaries : Write the compilation output (NEFF archive) in un-
compressed format which results in faster loading of the archive during inference.

• --enable-fast-context-switch : Optimize for faster model switching rather than inference latency.
This results in overall faster system performance when your application switches between models fre-
quently on the same neuron core (or set of cores). The optimization triggered by this option for example
defers loading some weight constants until the start of inference.

• --fast-math : Controls tradeoff between performance and accuracy for fp32 operators. See more sug-
gestions on how to use this option with the below arguments in Mixed precision and performance-accuracy
tuning (neuron-cc).

– all (Default): enables all optimizations that improve performance. This option can
potentially lower precision/accuracy.

– none : Disables all optimizations that improve performance. This option will provide
best precision/accuracy.

– Tensor transpose options
∗ fast-relayout: Only enables fast relayout optimization to improve perfor-

mance by using the matrix multiplier for tensor transpose. The data type used for
the transpose is either FP16 or BF16, which is controlled by the fp32-cast-xxx
keyword.

∗ no-fast-relayout: Disables fast relayout optimization which ensures that ten-
sor transpose is bit-accurate (lossless) but slightly slower.

– Casting options
∗ fp32-cast-all (Default): Cast all FP32 operators to BF16 to achieve highest

performance and preserve dynamic range. Same as setting --fp32-cast all.
∗ fp32-cast-all-fp16: Cast all FP32 operators to FP16 to achieve speed up and

increase precision versus BF16. Same setting as --fp32-cast all-fp16.
∗ fp32-cast-matmult: Only cast FP32 operators that use Neuron Matmult en-

gine to BF16 while using FP16 for matmult-based transpose to get better accu-
racy. Same as setting --fp32-cast matmult.

∗ fp32-cast-matmult-bf16: Cast only FP32 operators that use Neuron Matmult
engine (including matmult-based transpose) to BF16 to preserve dynamic range.
Same as setting --fp32-cast matmult-bf16.
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∗ fp32-cast-matmult-fp16: Cast only FP32 operators that use Neuron Matmult
engine (including matmult-based transpose) to fp16 to better preserve precision.
Same as setting --fp32-cast matmult-fp16.

Important:
– all and none are mutually exclusive
– all is equivalent to using fp32-cast-all fast-relayout (best performance)
– none is equivalent to using fp32-cast-matmult-bf16 no-fast-relayout (best

accuracy)
– fp32-cast-* options are mutually exclusive
– fast-relayout and no-fast-relayout are mutually exclusive
– The fp32-cast-* and *-fast-relayout options will overwrite the default behavior

in all and none.
– For backward compatibility, the --fp32-cast option has higher priority over
--fast-math. It will overwrite the FP32 casting options in any of the --fast-math
options if --fp32-cast option is present explicitly.

• --fp32-cast : Refine the automatic casting of fp32 tensors. This is being replaced by a newer –fast-math.

Important:
– --fp32-cast option is being deprecated and --fast-math will replace it in future

releases.
– --fast-math is introducing the no-fast-relayout option to enable lossless trans-

pose operation.

The --fp32-cast is an interface for controlling the performance and accuracy tradeoffs.
Many of the --fast-math values invoke (override) it.

– all (default): Cast all FP32 operators to BF16 to achieve speed up and preserve dy-
namic range.

– matmult: Cast only FP32 operators that use Neuron Matmult engine to BF16 while
using fp16 for matmult-based transpose to get better accuracy.

– matmult-fp16: Cast only FP32 operators that use Neuron Matmult engine (including
matmult-based transpose) to fp16 to better preserve precision.

– matmult-bf16: Cast only FP32 operators that use Neuron Matmult engine (including
matmult-based transpose) to BF16 to preserve dynamic range.

– all-fp16: Cast all FP32 operators to FP16 to achieve speed up and better preserve
precision.

Log Levels:
Logs at levels “trace”, “debug”, and “info” will be written to STDOUT.

Logs at levels “warn”, “error”, and “fatal” will be written to STDERR.
Exit Status

0 - Compilation succeeded

>0 - An error occurred during compilation.
Examples

Compiling a saved TensorFlow model:

neuron-cc compile test_graph_tfmatmul.pb --framework TENSORFLOW --io-
→˓config test_graph_tfmatmul.config

Compiling a MXNet model:
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neuron-cc compile lenet-symbol.json lenet-0001.params --framework MXNET --
→˓neuroncore-pipeline-cores 2 --output file.neff

Compiling an XLA HLO:

neuron-cc compile bert-model.hlo --framework XLA --output file.neff

neuron-cc list-operators [parameters]

Returns a newline (‘n’) separated list of operators supported by the NeuronCore.
• TENSORFLOW: Operators will be formatted according to the value passed to the associated

REGISTER_OP(“OperatorName”) macro.

See https://www.tensorflow.org/guide/create_op#define_the_op_interface for more informa-
tion regarding operator registration in TensorFlow.

• MXNET: Operator names will be formatted according to the value passed to the associated
NNVM_REGISTER_OP(operator_name) macro.

• XLA: Operator names will be formatted according to the value used by XLA compiler in
XlaBuilder.

See https://www.tensorflow.org/xla/operation_semantics for more information regarding
XLA operator semantics in XLA interface.

neuron-cc list-operators --framework <value>

• --framework (string): Framework in which the operators were registered.

Valid values:
– TENSORFLOW
– MXNET
– XLA

Exit Status
0 - Call succeeded

>0 - An error occurred

Example

$ neuron-cc list-operators --framework TENSORFLOW
AddN
AdjustContrastv2
CheckNumbers
...

This document is relevant for: Inf1

This document is relevant for: Inf1

This document is relevant for: Inf1
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Developer Guide

This document is relevant for: Inf1

Mixed precision and performance-accuracy tuning (neuron-cc)

Table of contents

• Neuron Hardware

• Performance-accuracy tradeoffs for models trained in FP32

• Compiler casting options

– --fast-math option

The Neuron Compiler supports machine learning models with FP32, FP16 and BF16 (Bfloat16) tensors and operators.
The Neuron hardware supports a mix of 32 and 16 bit datatypes. The available auto-cast methods and their performance
/ accuracy trade-offs are explained in this document.

Neuron Hardware

The Neuron hardware supports matrix multiplication using FP16 or BF16 on its Matmult Engine, and accumulations
using FP32. Similarly, operators such as activations or vector operations are supported using FP16, BF16 and FP32.
Neuron supports tensor transpose in two ways - by fast matrix multiplication in FP16/BF16 or by slower byte-by-byte
data movements.

Performance-accuracy tradeoffs for models trained in FP32

Models that are trained using FP32 data types can be deployed on Neuron through ahead of time compilation using the
Neuron Compiler.

By default, the Neuron Compiler will cast all FP32 tensors, weights and operations to BF16. Only partial sums are
left in FP32. The default, casting will generate the highest performance for a FP32 trained model.

Using the --fast-mathCLI option, you can choose the right tradeoff between performance and accuracy. The tradeoff
usually is between achieving high performance or optimal accuracy, and decision what settings to use will be application
specific.

It is recommended that the you start with compiling the model to achieve the high performance (default), you can then
test the accuracy of the application and, if needed, try the next higher precision casting option until the desired accuracy
and performance are achieved. A typical flow can be:

1. You can compile without options (default) or with --fast-math all which will optimize for performance.

2. If accuracy is not sufficient you can try --fast-math fp32-cast-matmult

3. If accuracy is not sufficient you can try --fast-math fp32-cast-matmult no-fast-relayout

4. If accuracy is not sufficient you can try --fast-math none which will optimize for accuracy .

Between step 2 and step 3, and between step 3 and step 4 you have additional options that can provide different level
of accuracy and which are explained in the below section.
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Note that compiler has to preserve the input/output (i/o) tensor types requested by Framework, therefore no casting is
done on the i/o tensors. Additional speedup can be obtained by casting them in the Framework prior compilation.

To learn how to use compiler command line interface (CLI) options with your application’s framework, please see
PyTorch-Neuron trace python API , tensorflow-ref-neuron-compile-api and TensorFlow 2.x (tensorflow-neuron) Tracing
API .

Compiler casting options

--fast-math option

The --fast-math option is intended to replace the --fp32-cast option. It is recommended to to start using or migrat-
ing to --fast-math option. The --fast-math option provides the same level of functionality as the --fp32-cast
option in addition to the following:

• The --fast-math option introduces the no-fast-relayout option to enable lossless transpose operation.
This was not possible with the --fp32-cast option.

• The --fast-math option provides finer control than the --fp32-cast option. The transpose operation and the
cast operation are controlled independently:

– no-fast-relayout and fast-relayout provide control for the transpose operation.

– fp32-cast-* provide control for casting.

See the detailed list of the options in Neuron compiler CLI Reference Guide (neuron-cc).

This document is relevant for: Inf1

This document is relevant for: Inf1

This document is relevant for: Inf1

Misc (neuron-cc)

This document is relevant for: Inf1

Neuron Compiler FAQ (neuron-cc)

Table of contents

• Where can I compile to Neuron?

• My current Neural Network is based on FP32, how can I use it with Neuron?

• What are some of the important compiler defaults I should be aware of?

• Which operators does Neuron support?

• Any operators that Neuron doesn’t support?

• Will I need to recompile again if I updated runtime/driver version?

• I have a NEFF binary, how can I tell which compiler version

• How long does it take to compile?
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Where can I compile to Neuron?

The one-time compilation step from the standard framework-level model to NEFF binary may be performed on any
EC2 instance or even on-premises.

We recommend using a high-performance compute server of choice (C5 or z1d instance types), for the fastest compile
times and ease of use with a prebuilt DLAMI. Developers can also install Neuron in their own environments; this
approach may work well for example when building a large fleet for inference, allowing the model creation, training
and compilation to be done in the training fleet, with the NEFF files being distributed by a configuration management
application to the inference fleet.

My current Neural Network is based on FP32, how can I use it with Neuron?

Developers who want to train their models in FP32 for best accuracy can compile and deploy them with Neuron. The
Neuron compiler automatically converts FP32 to internally supported datatypes, such as FP16 or BF16. You can find
more details about FP32 data type support and performance and accuracy tuning in Mixed precision and performance-
accuracy tuning (neuron-cc). The Neuron compiler preserves the application interface - FP32 inputs and outputs.
Transferring such large tensors may become a bottleneck for your application. Therefore, you can improve execution
time by casting the inputs and outputs to FP16 or BF16 in the ML framework prior to compilation for Inferentia.

What are some of the important compiler defaults I should be aware of?

The compiler compiles the input graph for a single NeuronCore by default. Using the
--neuroncore-pipeline-cores option directs the compiler to partition so as to run on a specified number
of NeuronCores. This number can be less than the total available NeuronCores on an instance. See inferentia-arch for
more information on NeuronCores.

Which operators does Neuron support?

see Neuron Supported operators.

You can also use the “neuron-cc list-operators” command on the cli to list the operators. See neuron-cc-list-operators

If your model contains operators missing from the above list, and you can’t reach your performance goals, please post
a message on the Neuron developer forum or open a github issue to let us know.

Any operators that Neuron doesn’t support?

Models with control-flow and dynamic shapes are not supported. You will need to partition the model using the
framework prior to compilation. See the neuron-cc.
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Will I need to recompile again if I updated runtime/driver version?

The compiler and runtime are committed to maintaining compatibility for major version releases with each other. The
versioning is defined as major.minor, with compatibility for all versions with the same major number. If the versions
mismatch, an error notification is logged and the load will fail. This will then require the model to be recompiled.

I have a NEFF binary, how can I tell which compiler version

generated it?** We will bring a utility out to help with this soon.

How long does it take to compile?

It depends on the model and its size and complexity, but this generally takes a few minutes.

This document is relevant for: Inf1

This document is relevant for: Inf1

Neuron Compiler (neuron-cc) for Inf1 Release Notes

Table of contents

• Introduction

• Known issues and limitations - updated 11/23/2022

• Neuron Compiler release [1.21.0.0]]

• Neuron Compiler release [1.20.3.0]]

• Neuron Compiler release [1.19.0.0]]

• Neuron Compiler release [1.17.0.0]]

• Neuron Compiler release [1.16.2.0]

• Neuron Compiler release [1.15.0.0]

• Neuron Compiler release [1.14.3.0]

• Neuron Compiler release [1.13.3.0]

• Neuron Compiler release [1.11.7.0]

• Neuron Compiler release [1.11.4.0]

• Neuron Compiler release [1.10.3.0]

• Neuron Compiler release [1.9.1.0]

• Neuron Compiler release [1.8.5.0]

• Neuron Compiler release [1.8.2.0]

• Neuron Compiler release [1.7.3.0]

• [1.6.13.0]

• [1.5.5.0]
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• [1.4.0.0]

• [1.3.0.0]

• [1.2.7.0]

• [1.2.2.0]

• [1.1.7.0]

• [1.0.24045.0]

• [1.0.20600.0]

• [1.0.18001.0]

• [1.0.17937.0]

• [1.0.16861.0]

• [1.0.15275.0]

• [1.0.12696.0]

• [1.0.9410.0]

• [1.0.7878.0]

• [1.0.6801.0]

• [1.0.5939.0]

• [1.0.5301.0]

• [1.0.4680.0]

Introduction

This document lists the release notes for AWS Neuron compiler. The Neuron Compiler is an ahead-of-time compiler
that ensures Neuron will optimally utilize the Inferentia chips.

Operator-support for each input format is provided directly from the compiler.

neuron-cc list-operators --framework {TENSORFLOW | MXNET | XLA}

The supported operators are also listed here:

Tensorflow: TensorFlow Neuron (tensorflow-neuron (TF1.x)) Supported operators

Pytorch: PyTorch Neuron (torch-neuron) Supported operators

XLA: neuron-cc-ops-xla

Apache MXNet: Neuron Apache MXNet Supported operators
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Known issues and limitations - updated 11/23/2022

• There is a known issue of increased latency and lower throughput when MLM head is compiled along with BERT
model. The workaround is to compile them separately and feed the raw Bert into the head.

• TensorFlow 2.x - In this release supported operators are limited to BERT-like models, specifically no conv2d or
reduce-window operators are available.

• Control flow Neuron only supports control flow operators which are static at compile time. For example static
length RNN, top-k, sort.

• Data layout The Neuron compiler supports multiple data layout format (NCHW, NHWC, . . . ). Non-CNHW
input/output data-layouts will require Neuron to insert additional transpose operations, causing a degradation in
performance.

• Primary inputs in NeuronCore Pipeline mode When a neural network is executed in NeuronCore Pipeline mode,
only the first operator in a neural network can receive primary inputs from the host.

• Reduce data type INT8 data type is not currently supported by the Neuron compiler.

• NeuronCore Pipeline: NeuronCorePipeline mode provides low-latency and high-throughput for small batch
sizes. We recommend to start testing with batch=1 and gradually increase batch size to fine tune your model
throughput and latency performance.

• Large input tensors support varies by model. On some models the large input tensors (eg 1024x1024) may
result in lower performance or exceeding hardware or compile-time limits, especially on models where the large
input tensor is used by many downstream operators. Workarounds may include use of smaller batch, see Neuron
Batching

• Conv2d operator is mapped to Inferentia except for specific cases of extremely large tensors and specific param-
eters.

• Conv3d operator performance is limited when the operator has small number of input channels (< 64).

• FP64 and INT64 input and output tensors are not supported. Please cast to FP32/INT32 in the machine learning
framework, prior compiling for Neuron.

Neuron Compiler release [1.21.0.0]]

Date: 12/21/2023

• Minor bug fixes.

Neuron Compiler release [1.20.3.0]]

Date: 10/26/2023

• Minor bug fixes.
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Neuron Compiler release [1.19.0.0]]

Date: 09/15/2023

• Minor bug fixes.

Neuron Compiler release [1.17.0.0]]

Date: 7/19/2023

New in this release

• This release introduces a new --enable-saturate-infinity compiler option. A computation that can gen-
erate +/- infinity is at a high risk of generating Not-a-Number (NaN) values when the infinity value is used in
subsequent computations. This option helps avoid this by converting +Inf/-Inf values to MAX/MIN_FLOAT
before operations that could produce NaN values for +Inf/-Inf inputs on the target architecture. While this option
helps to avoid NaN values, there is a potential performance degradation that occurs during model execution when
this conversion is enabled.

• Minor bug fixes.

Neuron Compiler release [1.16.2.0]

Date: 6/14/2023

• Minor bug fixes.

Neuron Compiler release [1.15.0.0]

Date: 05/01/2023

• Minor bug fixes.

Neuron Compiler release [1.14.3.0]

Date: 04/19/2023

• Minor bug fixes.

Neuron Compiler release [1.13.3.0]

Date: 11/23/2022

• Resolved long compile-times when compiling the YOLOv5 and YOLOv6 models. [GitHub · aws-neuron-sdk ·
#434]

• Improved the layout algorithm to resolve an issue compiling a transformer-based text recognition model. [GitHub
· aws-neuron-sdk · #410]

• Support was added for additional XLA operators
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Neuron Compiler release [1.11.7.0]

Date: 08/02/2022

• Fixed a bug for correct handling of mxnet dropout instruction when mode is set as ‘training’ while performing
inference.

Neuron Compiler release [1.11.4.0]

Date: 04/29/2022

• Solved an issue that caused a “false positive” reporting of a data race that may occur due to address overlap.

• Minor bug fixes.

Neuron Compiler release [1.10.3.0]

Date: 03/25/2022

• Minor bug fixes.

Neuron Compiler release [1.9.1.0]

Date: 01/20/2022

• Fixed an issue with frontend compiler for fused operators that was reported in github #362.

Neuron Compiler release [1.8.5.0]

Date: 01/05/2022

New in this release

• Minor bug fixes.

Neuron Compiler release [1.8.2.0]

Date: 12/15/2021

New in this release

• Performance enhancements as a result of improved layout and DMA optimizations.

• Minor bug fixes.
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Neuron Compiler release [1.7.3.0]

Date: 10/27/2021

New in this release

• The compiler’s list-operators command can now display the supported TensorFlow 2.x operators.

• Support added for new operators in TensorFlow 1.x - ArgMax and ArgMin.

• Introducing the –-fast-math option for better fine-tuning of accuracy/performance. See Mixed precision and
performance-accuracy tuning (neuron-cc)

[1.6.13.0]

Date 08/12/2021

New in this release

• TensorFlow 2.x - First support of TensorFlow 2.x. The support is limited to operators in BERT-like models and
was tested with Huggingface BERT small, base, large and DistillBert.

Resolved issues

• Fixed compiler backend issue in Tensor_tensor argument distance, github #269

[1.5.5.0]

Date 07/02/2021

Summary

• Robustness and performance improvements.

New in this release

• Added --enable-fast-context-switch option to optimize for faster model switching rather than inference
latency.

• Deprecated support for ONNX

• Improved robustness of Conv3d

• Corrected compilation error “too many instructions” in DLRM model
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[1.4.0.0]

Date 5/28/2021

Summary

• Performance improvements, and usability improvements.

New in this release

• Added uncompressed NEFF format for faster loading models prior inference. Enable it by –enable-fast-loading-
neuron-binaries. Some cases of large models may be detrminentally impacted as it will not be compressed but
many cases will benefit.

• Corrected compilation error in specific arguments of ResizeBilinear operator

[1.3.0.0]

Date 4/30/2021

Summary

• Performance improvements, new operators, and usability improvements.

New in this release

• Improved performance of batched CNN models like resnet50 with the default compiler options by 10%.

• Improved performance of bert base sequence 128 batch 6 by upto 16%

• Added support for group and depth wise convolution (with limited performance when the number of input chan-
nels is small).

• Added more detailed debug names to support for tensorboard.

Resolved Issues

• Corrected potential race condition in overwriting tiles of output tensors.

• Fixed various issues in pipelined inference by enabling fine grain partitioning by default.
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[1.2.7.0]

Date 2/24/2021

Summary

Fix for CVE-2021-3177.

[1.2.2.0]

Date 1/30/2021

Summary

Added suport for multiple new operators (see operators list) for Tensoflow and MXNET. Improved inference perfor-
mance of language, object recognition models on single as well as multiple pipelined cores using neuroncore-pipeline.

New in this release

• The following models are now supported: Resnext 224x224, specific BERT variations applied to natural language
processing and translation.

• A number of new operators is now supported on Inferentia, see the full lists TensorFlow Neuron (tensorflow-
neuron (TF1.x)) Supported operators

and Neuron Apache MXNet Supported operators

• Improved inference performance on yolov4 BERT base sequence 64 (on 16 pipelined cores) and openpose 184.

Resolved Issues

• Corrected a random failure to compile Resnet50 batch 5

• Corrected numerical inaccuracy in RSQRT and related operators for tensors with very large values ( > 1e20)

[1.1.7.0]

Date 12/23/2020

Summary

Added suport for PyTorch Yolo V4, a new Framework-visible progress bar and improved inference performance. We
continue to streamline the compiler usability by removing the need for options passed to control behavior. We are
aiming to remove the need for such options entirely. Some tutorials have been updated to reflect this, but Resnet50
remains in need of these options to achieve maximum performance. Other useability improvements have been added,
such as the compiler progress bar. As always, please let us know if there are other areas that we can improve.
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New in this release

• Pytorch Yolo V4 is now supported.

• Added a compiler progress bar when compilation is invoked from the Framework. This allows the user to see
that progress continues as compilation proceeds, which is useful when compilation takes several minutes. A dot
is printed every 20 seconds.

• Improved inference performance of Tensorflow BERT base seq 256 batch 3 by 10% .

Resolved Issues

• Resolved issue with depthwise convolution that manifests as a type check error

[1.0.24045.0]

Date 11/17/2020

Summary

Improved performance for pipelined execution (NeuronCore Pipeline).

New in this release

• NeuronCore Pipeline: improved partitioning to enable better static weights loading to cache.

Resolved Issues

• –static-weights : No longer needed. As this is shown in some examples, please remove the option since the
compiler now performs this auto-detection by default.

• –num-neuroncores renamed to –neuroncore-pipeline-cores. The prior option form is still functional (backwards
compatible) and will be removed in future releases.

• –batching_en: Resolved compilation failure of ResNet50 FP32 batch 1 on Ubuntu16 when “–batching_en” was
used.

[1.0.20600.0]

Date 9/22/2020
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Summary

Various performance improvements - both compilation time and inference speed of object recognition models.

• Compiler optimization ‘-O2’ option is now enabled by default.

New in this release

• Improved inference performance of YOLO v3, YOLO v4, VGG16, SSD300. BERT models were improved by
an additional 10%.

• Modifed such that -O2 is now the default behavior and does not need to be specified. Note: some tutorials still
explicitly specify “-O2”. These will be modified in forthcoming updates.

Resolved Issues

• Sped up compilation of large models that were taking hours to sub-40 minute.

[1.0.18001.0]

Date 8/08/2020

Summary

Various performance improvements.

New in this release

Improved performance of BERT base with -O2

Resolved Issues

• n/a

[1.0.17937.0]

Date 8/05/2020
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Summary

Various improvements.

[1.0.16861.0]

Date 7/16/2020

Summary

This release has some bug fixes and some functional and performance improvements to support compilation of several
neural networks.

New in this release

This release

• Supports compilation of PoseNet, tested for images of specific resolutions upto 736.

• Update the -O2 with a new memory allocator to reduce spilling to DRAM

• Improved performance of the ‘-O2’ on BERT base, and openpose pose network.

Resolved Issues

• Resolved compilation error in Vgg16 batch 1

Other Notes

• Some versions of Inception network may fail to compile in Tensorflow on Ubuntu 16 in conda environment. The
symptom is neuron-cc backend data race error. As a workaround use Ubuntu 18, Amazon Linux 2, or virtual
env, or use neuron-cc with flag -O2.

Warning: Starting with Neuron 1.14.0, Ubuntu 16 is no longer supported

[1.0.15275.0]

Date 6/11/2020
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Summary

This release has some bug fixes and some functional and performance improvements to support compilation of several
neural networks.

New in this release

This release

• Supports compilation of PoseNet for images of specific resolutions upto 400x400.

• Improves performance of resnet152.

• Supports a new command line option ‘-O2’ that can help with handling of large tensor inputs for certain models.

• increase NEFF versions to 1.0. This means new NEFFs compiled from this release forward are not compati-
ble with older versions of Neuron Runtime prior to May, 2020 (1.0.6905.0) release. Please update the Neuron
Runtime when using NEFF version 1.0.

Resolved Issues

• Compilation issues on prosotron encoder, decoder neural networks.

Other Notes

Dependencies

• This version creates NEFF 1.0 thus may require update of neuron-rtd if older than May 2020 release.

dmlc_nnvm==1.0.2574.0 dmlc_topi==1.0.2574.0 dmlc_tvm==1.0.2574.0 inferentia_hwm==1.0.1362.0
islpy==2018.2

[1.0.12696.0]

Date 5/11/2020

Summary

Bug fixes and some functional and performance improvements to several neural networks.

New in this release

• This version supports compilation of unmodified Tensorflow BERT with batch size 1, 4, 6 for input sequence
128.

• Improved Tensorflow BERT batch 4 sequence 128 performance to 45% of the accelerator peak (from 34%).

• Support for MXNET BERT base batch 8 compilation

• Support for TF Resnet152 batch 2 compilation

• Most compiler messages are migrated from cout to logging mechanisms with verbosity control
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Resolved Issues

• Fixed failure to compile unmodified Tensorflow BERT model for small batches

• Fixed run-to-run-variability in OneHot operator implementation

• Robustness improvements for ParallelWavenet and transformer decoder networks

Other Notes

Dependencies

dmlc_nnvm==1.0.2356.0
dmlc_topi==1.0.2356.0
dmlc_tvm==1.0.2356.0
inferentia_hwm==1.0.1294.0
islpy==2018.2

[1.0.9410.0]

Date 3/26/2020

Summary

Bug fixes and some functional and performance improvements to several neural networks.

New in this release

• Support compilation of modified SSD-300 (tensorflow-ssd300)

• Improved inference performance in natural language processing networks (such as prosotron encoder) by 45%

Resolved Issues

• Eliminated redundant fp32 to bfloat16 cast on input and output tensors

Known issues and limitations

• See previous releases.
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Other Notes

• Added support for faster iteration on recurrent networks (aka auto-loop)

Dependencies

dmlc_nnvm==1.0.2049.0
dmlc_topi==1.0.2049.0
pip install --upgrade dmlc_tvm==1.0.2049.0
inferentia_hwm==1.0.897.0
islpy==2018.2

[1.0.7878.0]

Date 2/27/2020

Summary

Bug fixes and minor performance improvements.

New in this release

None

Resolved Issues

• Corrected image resize operator functionallity

• Compiler internal enhancements made that will benefit models such as BERT

Known issues and limitations

• See previous releases.

Other Notes

Dependencies

dmlc_nnvm-1.0.1826.0
dmlc_topi-1.0.1826.0
dmlc_tvm-1.0.1826.0
inferentia_hwm-1.0.897.0
islpy-2018.2
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[1.0.6801.0]

Date 1/27/2020

Summary

Bug fixes and some performance enhancement related to data movement for BERT-type neural networks.

New in this release

None

Resolved Issues

• Improved throughput for operators processed in the Neuron Runtime CPU. As an example: execution of 4 single
NeuronCore NEFF models of ResNet50 v2 float16 batch = 5 in parallel on an inf1.1xlarge sped up by 30%.

• Corrected shape handling in Gather(TensorFlow)/Take(MXNet) operators that are processed by the Neuron Run-
time in the Neuron Runtime vCPU, which resolves a possible crash in Neuron Compiler when compiling models
with these operators with some shapes.

• Added support for TensorFlow OneHot operator (as a Neuron Runtime CPU operator).

• Added more internal checking for compiler correctness with newly defined error messages for this case.

“Internal ERROR: Data race between Op1 'Name1(...) [...]' and Op2 'Name2(...) [...]'”

• Fixed out-of-memory issue introduced in 1.0.5939.0 such that some large models (BERT) compiled on instances
with insufficient host memory would cause the runtime to crash with an invalid NEFF. This is actually a compiler
error, but due to additional script layers wrapping this in the [Broken] Running TensorFlow BERT-Large with
AWS Neuron, this would have likely been seen as a runtime error like this:

2020-01-09 13:40:26.002594: E tensorflow/core/framework/op_segment.cc:54] Create kernel␣
→˓failed: Invalid argument: neff is invalid
2020-01-09 13:40:26.002637: E tensorflow/core/common_runtime/executor.cc:642] Executor␣
→˓failed to create kernel. Invalid argument: neff is invalid
[[{{node bert/NeuronOp}}]]

Known issues and limitations

See previous release notes. Some tutorials show use of specific compiler options and flags, these are needed to help
provide guidance to the compiler to achieve best performance in specific cases. Please do not use in cases other than
as shown in the specific tutorial as results may not be defined. These options should be considered beta and will be
removed over time.
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Other Notes

Dependencies

dmlc_nnvm-1.0.1619.0
dmlc_topi-1.0.1619.0
dmlc_tvm-1.0.1619.0
inferentia_hwm-1.0.839.0
islpy-2018.2

[1.0.5939.0]

Date 12/20/2019

Summary

Bug fixes and some performance enhancement for NeuronCore Pipeline.

New in this release

Resolved Issues

• Fixed pipeline execution on more than 10 NeuronCores

• Improved NeuronCores Pipeline execution by improving data exchange efficiency between NeuronCores

• Added warning for unaligned memory access

• Fixed handling of cast on input FP32 tensor

• Improved handling of data layouts and transpose

• Improved dead-code elimination

• Improved efficiency of compute engine synchronization

• Improved efficiency of data transfers within the Neuron code

Known issues and limitations

See previous release notes. Some tutorials show use of specific compiler options and flags, these are needed to help
provide guidance to the compiler to achieve best performance in specific cases. Please do not use in cases other than
as shown in the specific tutorial as results may not be defined. These options should be considered beta and will be
removed over time.
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Other Notes

Dependencies

• dmlc_nnvm-1.0.1416.0

• dmlc_topi-1.0.1416.0

• dmlc_tvm-1.0.1416.0

• inferentia_hwm-1.0.720.0

• islpy-2018.2

[1.0.5301.0]

Date 12/1/2019

Summary

New in this release

Resolved Issues

• Added warning for unsupported operators and convolution sizes

• Added warning for unsupported layout / upsampling

• Added support for Relu6, AddV2, BatchMatmulV2 operators

• Added support for default MXNet outputs in –io-config

• Improved performance of batched inference for convolutional networks

• Fixed MatMult column size 1

• Fixed bf16 constant loading

• Fixed Conv2D tile accumulation

Known Issues and Limitations

See previous release notes. Resolved issues are shown in Resolved Issues.

Other Notes

Please install g++ on AMIs without g++ pre-installed (i.e. server AMIs):

# Ubuntu
sudo apt-get install -y g++

# Amazon Linux
sudo yum nstall -y gcc-c++
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Supported Python versions:

• 3.5, 3.6, 3.7

Supported Linux distributions:

• Ubuntu 16, Ubuntu 18, Amazon Linux 2

Dependencies

• dmlc_nnvm-1.0.1328.0

• dmlc_topi-1.0.1328.0

• dmlc_tvm-1.0.1328.0

• inferentia_hwm-1.0.674.0

• islpy-2018.2

[1.0.4680.0]

Date: 11/25/2019

New in this release

N/A, this is the first release.

Resolved issues

N/A, this is the first release.

Known issues and limitations

1. Control flow Inferentia has a limited support for control flow. In general, Neuron can only support control flow
operators which are static at compile time, i.e. static length RNN, top-k, sort, . . .

2. Size of neural network The size of neural network is influenced by a) type of neural network (CNN, LSTM,
MLP) , b) number of layers, c) sizes of input (dimension of the tensors, batch size, . . . ). The current Neuron
compiler release has a limitation in terms of the size of neural network it could effectively optimize. As a result,
we limit CNN models (e.g. ResNet) to have an input size of up to 480x480 FP16, batch size of 4; LSTM models
(e.g. GNMT) are limited to a time step limit of up to 900; MLP models (like BERT) are limited up to sequence-
length equal 128, batch=8.

3. Data layout The Neuron compiler supports multiple data layout formats (NCHW, NHWC, . . . ). Non-CNHW
input/output data-layouts will require Neuron to insert additional transpose operations, causing a degradation in
performance.

4. Object detection models Computer-vision object detection and segmentation models are not supported by the
current release.

5. Reduce data type INT8 data type is not currently supported by the Neuron compiler.
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6. Tensor residency When a sub-graph that is executed on the host is communicating with a sub-graph that is
executing on Neuron cores, tensors are copied via the communication queues between the host and Inferentia
memory for each inference, which may result in end-to-end performance degradation.

7. Primary inputs in NeuronCore Pipeline mode When a neural network is executed in NeuronCore Pipeline
mode, only the first operator in a neural network can receive primary inputs from the host.

Other Notes

Dependencies

• nnvm: dmlc_nnvm-1.0.1219.0

• topi: dmlc_topi-1.0.1219.0

• tvm: dmlc_tvm-1.0.1219.0

• hwm: inferentia_hwm-1.0.602.0

• islpy: islpy-2018.2+aws2018.x.73.0

This document is relevant for: Inf1

This document is relevant for: Inf1

Neuron Supported operators

This document is relevant for: Inf1

TensorFlow Neuron (tensorflow-neuron (TF1.x)) Supported operators

To see a list of supported operators for TensorFlow 1.x, run the following command:

neuron-cc list-operators --framework TENSORFLOW

Neuron Compiler Release [1.9.1.0]

Date: 01/20/2022

Added

isNan
FusedBatchNormV3
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Neuron Compiler Release [1.7.3.0]

Added

ArgMax
ArgMin

Neuron Compiler Release [1.6.13.0]

No changes

Neuron Compiler Release [1.5.5.0]

No changes

Neuron Compiler Release [1.4.0.0]

No changes

Neuron Compiler Release [1.3.0.0]

Added

Abs
Cos
DepthwiseConv2dNative
Erf
Rank
Sin
Size

Neuron Compiler Release [1.2.7.0]

No changes

Neuron Compiler Release [1.2.2.0]

Added

AdjustContrastv2
AdjustSaturation
BroadcastTo
Cholesky
Conv2DBackpropInput
Conv3D
CropAndResize

(continues on next page)
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(continued from previous page)

FloorDiv
HSVToRGB
InvertPermutation
L2Loss
Log1p
MatrixBandPart
MatrixDiag
MatrixSetDiag
MatrixTriangularSolve
MaxPool3D
MirrorPad
RGBToHSV
Range
SoftmaxCrossEntropyWithLogits
SquaredDifference
StopGradient
Unpack
UnsortedSegmentSum

Neuron Compiler Release [1.0.24045.0]

Added FloorDiv, Softplus, Unstack

Neuron Compiler Release [1.0.18001]

No changes

Neuron Compiler Release [1.0.16764]

Added:

LogSoftmax
Neg
ResizeBilinear
ResizeNearestNeighbor

Neuron Compiler Release [1.0.15275]

Added

Neg

Removed

Log

(was inadvertently advertised as supported)
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Neuron Compiler Release [1.0.12696]

No changes

Neuron Compiler Release [1.0.9410]

No changes

Neuron Compiler Release [1.0.7878]

No changes

Neuron Compiler Release [1.0.6801]

No changes

Neuron Compiler Release [1.0.5939]

No changes

Neuron Compiler Release [1.0.5301]

No changes

Neuron Compiler Release [1.0.4680.0]

Add
AddV2
All
AvgPool
BatchMatMul
BatchMatMulV2
BatchToSpaceND
BiasAdd
Cast
Ceil
Concat
ConcatV2
Const
Conv2D
Equal
Exp
ExpandDims
Fill
Floor
FusedBatchNorm
Greater

(continues on next page)
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(continued from previous page)

GreaterEqual
Identity
LRN
LeakyRelu
Less
LessEqual
Log
LogicalAnd
LogicalNot
LogicalOr
MatMul
Max
MaxPool
Maximum
Mean
Min
Minimum
Mul
NoOp
NotEqual
Pack
Pad
PadV2
Placeholder
Pow
Prod
RandomUniform
RealDiv
Reciprocal
Relu
Relu6
Reshape
ReverseV2
Round
Rsqrt
Select
Shape
Sigmoid
Sign
Slice
Softmax
SpaceToBatchND
Split
SplitV
Sqrt
Square
Squeeze
StridedSlice
Sub
Sum
Tanh
Tile

(continues on next page)
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(continued from previous page)

Transpose
ZerosLike

This document is relevant for: Inf1

This document is relevant for: Inf1

Neuron Apache MXNet Supported operators

To see a list of supported operators for MXNet, run the following command:

neuron-cc list-operators --framework MXNET

Neuron Compiler Release [1.6.13.0]

Added

amp_cast
amp_multicast

Neuron Compiler Release [1.4.1.0]

No changes

Neuron Compiler Release [1.4.0.0]

No changes

Neuron Compiler Release [1.3.0.0]

No changes

Neuron Compiler Release [1.2.7.0]

No changes

Neuron Compiler Release [1.2.2.0]

No changes
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Neuron Compiler Release [1.2.0.0]

Added

Deconvolution
LayerNorm
Pad
SwapAxis
_contrib_arange_like
_contrib_interleaved_matmul_encdec_qk
_contrib_interleaved_matmul_encdec_valatt
_contrib_interleaved_matmul_selfatt_qk
_contrib_interleaved_matmul_selfatt_valatt
arctan
broadcast_like
cos
erf
pad
sin
slice_axis

Neuron Compiler Release [1.0.24045.0]

Added _contrib_div_sqrt_dim, broadcast_axis

Neuron Compiler Release [1.0.18001.0]

No changes

Neuron Compiler Release [1.0.17937.0]

No changes

Neuron Compiler Release [1.0.16861.0]

Removed log (Was erroneously reported as added in previous release. )

Neuron Compiler Release [1.0.15275]

Added log
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Neuron Compiler Release [1.0.12696]

No changes

Neuron Compiler Release [1.0.9410]

No changes

Neuron Compiler Release [1.0.7878]

No changes

Neuron Compiler Release [1.0.6801]

No changes

Neuron Compiler Release [1.0.5939]

no changes

Neuron Compiler Release [1.0.5301]

no changes

Neuron Compiler Release [1.0.4680.0]

Activation
BatchNorm
Cast
Concat
Convolution
Convolution_v1
Dropout
Flatten
FullyConnected
LeakyReLU
Pooling
Pooling_v1
RNN
Reshape
SequenceMask
SliceChannel
Softmax
UpSampling
__add_scalar__
__div_scalar__
__mul_scalar__

(continues on next page)
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(continued from previous page)

__pow_scalar__
__rdiv_scalar__
__rpow_scalar__
__rsub_scalar__
__sub_scalar__
_arange
_copy
_div_scalar
_equal_scalar
_full
_greater_equal_scalar
_greater_scalar
_lesser_equal_scalar
_lesser_scalar
_maximum
_maximum_scalar
_minimum
_minimum_scalar
_minus_scalar
_mul_scalar
_not_equal_scalar
_ones
_plus_scalar
_power_scalar
_rdiv_scalar
_rminus_scalar
_rnn_param_concat
_zeros
batch_dot
broadcast_add
broadcast_div
broadcast_equal
broadcast_greater
broadcast_greater_equal
broadcast_lesser
broadcast_lesser_equal
broadcast_maximum
broadcast_minimum
broadcast_mod
broadcast_mul
broadcast_not_equal
broadcast_sub
ceil
clip
concat
elemwise_add
elemwise_div
elemwise_mul
elemwise_sub
exp
expand_dims
flatten

(continues on next page)
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(continued from previous page)

floor
gather_nd
log
log_softmax
max
mean
min
negative
ones_like
relu
repeat
reshape
reshape_like
reverse
rsqrt
sigmoid
slice
slice_like
softmax
split
sqrt
square
squeeze
stack
sum
tanh
tile
transpose
where
zeros_like

This document is relevant for: Inf1

This document is relevant for: Inf1

This document is relevant for: Inf1

This document is relevant for: Inf1, Inf2, Trn1, Trn2
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Neuron Compiler for Trn1 & Inf2

API Reference Guide

• Neuron Compiler CLI Reference Guide

Developer Guide

• Mixed Precision and Performance-accuracy Tuning (neuronx-cc)

Misc

• FAQ

• What’s New

Neuron Compiler for Inf1

API Reference Guide

• Neuron compiler CLI Reference Guide (neuron-cc)

Developer Guide

• Mixed precision and performance-accuracy tuning (neuron-cc)

Misc

• FAQ

• What’s New

• Neuron Supported operators

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

7.2 Neuron Kernel Interface (NKI) - Beta

Neuron Kernel Interface (NKI) is a bare-metal language and compiler for directly programming NeuronDevices avail-
able on AWS Trn/Inf instances. You can use NKI to develop, optimize and run new operators directly on NeuronCores
while making full use of available compute and memory resources. NKI empowers ML developers to self-serve and
invent new ways to use the NeuronCore hardware, starting NeuronCores v2 (Trainium1) and beyond.

NKI provides developers with direct access to the NeuronCore ISA (Instruction Set Architecture), accessible from
a Python-based programming environment, which has syntax and tile-level semantics that are similar to Triton and
NumPy. This enables developers to get started quickly and optimize performance in a familiar environment, while at
the same time get full control of the underlying hardware. At the hardware level, NeuronCore’s tensorized memory
access capability enables efficient reading and writing of multi-dimensional arrays on a per instruction basis, which
makes NKI’s tile-based programming highly suitable for the NeuronCore instruction set.
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For comparison, before NKI was introduced, the only way to program NeuronDevices was through defining high-level
ML models in frameworks such as PyTorch and JAX. Neuron Compiler takes such high-level model definitions as input,
performs multiple rounds of optimization, and eventually generates a NEFF (Neuron Executable File Format) that is
executable on NeuronDevices. At a high level, Neuron Compiler runs the following optimization stages in order:

1. Hardware-agnostic graph-level optimizations. These transformations are done in the compiler front-end, using
XLA, including optimizations like constant propagation, re-materialization and operator fusion.

2. Loop-level optimization. Compiler turns the optimized graph from Step 1 into a series of loop nests and per-
forms layout, tiling and loop fusion optimizations.

3. Hardware intrinsics mapping. Compiler maps the architecture-agnostic loop nests from Step 2 into
architecture-specific instructions.

4. Hardware-specific optimizations. These optimizations are mainly done at the instruction level1 in compiler
back-end, with a key goal of reducing memory pressure and improving instruction-level parallelism. For example,
memory allocation and instruction scheduling are done in this stage.

NKI kernels bypass the first 3 steps, and are compiled into IRs (intermediate representations) that the compiler’s back-
end (Step 4 above) can directly consume. Advanced features in NKI, such as direct allocation, also allow programmers
to bypass certain compiler passes in Step 4. As a result, NKI developers can now have great control over NeuronDevices
down to the instruction level. We highly recommend developers to study the underlying hardware architecture before
optimizing performance of their NKI kernels. See the NKI guide below to learn more!

7.2.1 Guide

NKI guide is organized in four parts:

1. API Reference Guide has the NKI API reference manual.

2. Writing Functional NKI Kernels includes guides that are designed for NKI beginners to learn NKI key concepts
and implement kernels to meet functionality requirements.

3. Writing Performant NKI Kernels includes a deep dive of NeuronDevice architecture and programmer’s guides
to optimize performance of NKI kernels.

4. General Resources include any miscellaneous guides.

API Reference Guide

NKI API Reference Manual

Writing Functional NKI Kernels

Getting Started with NKI NKI Programming Model NKI Kernel as Framework Custom-Operator
NKI Tutorials NKI Kernels

1 A small number of loop-level optimizations are performed after hardware intrinsic mappings in the current Beta release. Subject to future
changes.
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Writing Performant NKI Kernels

NeuronDevice Architecture Guide Profiling NKI kernels with Neuron Profile NKI Performance
Guide Direct Allocation Developer Guide

General Resources

NKI FAQ NKI What’s New NKI Known Issues

This document is relevant for: Inf2, Trn1, Trn2

NKI API Reference Manual

Summary of different NKI API sets:

• nki top-level module contains APIs to decorate and simulate NKI kernels as well as NKI object types.

• nki.language consists of high-level compute and data movement APIs designed for ease-of-use. nki.language
allows NKI programmers to transition from NumPy/Triton implementation to NKI quickly without the need to
fully understand underlying NeuronDevice architecture. Most language APIs invoke one or more nki.isa APIs
(that is, NeuronDevice hardware instructions) under the hood.

• nki.isa consists of low-level APIs that highly resemble hardware instructions in NeuronDevice ISA (instruction
set architecture) designed to provide fine control over the hardware. These APIs expose all the programmable
input parameters of the corresponding hardware instructions and also enforce the same tile-size and layout re-
quirements as specified in NeuronDevice ISA.

• nki.compiler consists of features that control the compilation process of a NKI kernel.

• Other documents:

– NKI API Common Fields documents common NKI API input parameters such as data types and masks,
as well as common API behavior such as type promotion.

– NKI API Errors captures common error types that are thrown by the NKI kernel compilation frontend,
including syntax, tile-size and layout violation errors.

This document is relevant for: Inf2, Trn1, Trn2

nki

Decorators

jit This decorator compiles a function to run on NeuronDe-
vices.

benchmark Benchmark a NKI kernel on a NeuronDevice by using
nki.benchmark as a decorator.

profile Profile a NKI kernel on a NeuronDevice by using nki.
profile as a decorator.

baremetal Compile and run a NKI kernel on NeuronDevice without
involving ML frameworks such as PyTorch and JAX.

simulate_kernel Simulate a nki kernel on CPU using a built-in simulator
in Neuron Compiler.

This document is relevant for: Inf2, Trn1, Trn2
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nki.jit

nki.jit(func=None, mode='auto', **kwargs)
This decorator compiles a function to run on NeuronDevices.

This decorator tries to automatically detect the current framework and compile the function as a custom oper-
ator of the current framework. To bypass the framework detection logic, you may specify the mode parameter
explicitly.

Parameters
• func – The function that define the custom op
• mode – The compilation mode, possible values: “jax”, “torchxla”, “baremetal”, “bench-

mark”, “simulation” and “auto”

Listing 7.1: An Example

from neuronxcc import nki
import neuronxcc.nki.language as nl

@nki.jit
def nki_tensor_tensor_add(a_tensor, b_tensor):
c_tensor = nl.ndarray(a_tensor.shape, dtype=a_tensor.dtype, buffer=nl.shared_hbm)

a = nl.load(a_tensor)
b = nl.load(b_tensor)

c = a + b

nl.store(c_tensor, c)

return c_tensor

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.benchmark

nki.benchmark(kernel=None, **kwargs)
Benchmark a NKI kernel on a NeuronDevice by using nki.benchmark as a decorator. You must run this API
on a Trn/Inf instance with NeuronDevices (v2 or beyond) attached and also aws-neuronx-tools installed on
the host using the following steps:

# on Ubuntu
sudo apt-get install aws-neuronx-tools=2.* -y

# on Amazon Linux
sudo yum install aws-neuronx-tools-2.* -y

You may specify a path to save your NEFF file through input parameter save_neff_name and a path to save
your NTFF file through save_trace_name. See Profiling NKI kernels with Neuron Profile for more information
on how to visualize the execution trace for profiling purposes.

Note: Similar to nki.baremetal, The decorated function using nki.benchmark expects numpy.ndarray as
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input/output tensors instead of ML framework tensor objects.

In additional to generating NEFF/NTFF files, this decorator also invokes neuron-bench to collect execution
latency statistics of the NEFF file and prints the statistics to the console.

neuron-bench is a tool that launches the NEFF file on a NeuronDevice in a loop to collect end-to-end latency
statistics. You may specify the number of warm-up iterations to skip benchmarking in input parameter warmup,
and the number of benchmarking iterations in iters. Currently, nki.benchmark only supports benchmarking
on a single NeuronCore, since NKI not yet supports collective compute. Note, neuron-bench measures not
only the device latency but also the time taken to transfer data between host and device. However, the tool does
not rely on any ML framework to launch the NEFF and therefore reports NEFF latency without any framework
overhead.

Parameters
• warmup – The number of iterations for warmup execution (10 by default).
• iters – The number of iterations for benchmarking (100 by default).
• save_neff_name – Save the compiled neff file if specify a name (unspecified by de-

fault).
• save_trace_name – Save the trace (profile) file if specified a name (unspecified by

default); at the moment, it requires that the save_neff_name is unspecified or specified
as ‘file.neff’.

• additional_compile_opt – Additional Neuron compiler flags to pass in when com-
piling the kernel.

Returns
A function object that wraps the decorating function. A property benchmark_result.
nc_latency is available after invocation. get_latency_percentile(int) of the property
returns the specified percentile latency in microsecond(us). Available percentiles: [0, 1, 10,
25, 50, 90, 99, 100]

Listing 7.2: An Example

from neuronxcc.nki import benchmark
import neuronxcc.nki.language as nl
import numpy as np

@benchmark(warmup=10, iters = 100, save_neff_name='file.neff', save_trace_name=
→˓'profile.ntff')
def nki_tensor_tensor_add(a_tensor, b_tensor):
c_tensor = nl.ndarray(a_tensor.shape, dtype=a_tensor.dtype, buffer=nl.shared_hbm)

a = nl.load(a_tensor)
b = nl.load(b_tensor)

c = a + b

nl.store(c_tensor, c)

return c_tensor

a = np.zeros([128, 1024], dtype=np.float32)
b = np.random.random_sample([128, 1024]).astype(np.float32)
c = nki_tensor_tensor_add(a, b)

metrics = nki_tensor_tensor_add.benchmark_result.nc_latency
(continues on next page)
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(continued from previous page)

print("latency.p50 = " + str(metrics.get_latency_percentile(50)))
print("latency.p99 = " + str(metrics.get_latency_percentile(99)))

Note: nki.benchmark does not use the actual inputs passed into the benchmarked function when running the
neff file. For instance, in the above example, the output c tensor is undefined and should not be used for numerical
accuracy checks.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.profile

nki.profile(func=None, **kwargs)
Profile a NKI kernel on a NeuronDevice by using nki.profile as a decorator.

Note: Similar to nki.baremetal, The decorated function using nki.benchmark expects numpy.ndarray as
input/output tensors instead of ML framework tensor objects.

Parameters
• working_directory – A path to working directory where profile artifacts are saved,

This must be specified and must also be an absolute path.
• save_neff_name – Name of the saved neff file if specified (file.neff by default).
• save_trace_name – Name of the saved trace (profile) file if specified (profile.ntff by

default)
• additional_compile_opt – Additional Neuron compiler flags to pass in when com-

piling the kernel.
• overwrite – Overwrite existing profile artifacts if set to True. Default is False.
• profile_nth – Profiles the profile_nth execution. Default is 1.

Returns
None

Listing 7.3: An Example

from neuronxcc import nki
import neuronxcc.nki.language as nl

@nki.profile(working_directory="/home/ubuntu/profiles", save_neff_name='file.neff',␣
→˓save_trace_name='profile.ntff')
def nki_tensor_tensor_add(a_tensor, b_tensor):
c_tensor = nl.ndarray(a_tensor.shape, dtype=a_tensor.dtype, buffer=nl.shared_hbm)

a = nl.load(a_tensor)
b = nl.load(b_tensor)

c = a + b

nl.store(c_tensor, c)
(continues on next page)

1180 Chapter 7. Compiler

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html


AWS Neuron

(continued from previous page)

return c_tensor

nki.profile will save file.neff, profile.ntff, along with json files containing a profile summary inside of the
working_directory.

See Profiling NKI kernels with Neuron Profile for more information on how to visualize the execution trace for
profiling purposes.

In addition, more information about neuron-profile can be found in its documentation.

Note: nki.profile does not use the actual inputs passed into the profiled function when running the neff
file. For instance, in the above example, the output c tensor is undefined and should not be used for numerical
accuracy checks. The input tensors are used mainly to specify the shape of inputs.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.baremetal

nki.baremetal(kernel=None, **kwargs)
Compile and run a NKI kernel on NeuronDevice without involving ML frameworks such as PyTorch and JAX.
If you decorate your NKI kernel function with decorator @nki.baremetal(...), you may call the NKI kernel
function directly just like any other Python function. You must run this API on a Trn/Inf instance with Neuron-
Devices (v2 or beyond) attached.

Note: The decorated function using nki.baremetal expects numpy.ndarray as input/output tensors instead of
ML framework tensor objects.

This decorator compiles the NKI kernel into an executable on NeuronDevices (NEFF) and also collects an ex-
ecution trace (NTFF) by running the NEFF on the local NeuronDevice. See Profiling NKI kernels with Neuron
Profile for more information on how to visualize the execution trace for profiling purposes.

Since nki.baremetal runs the compiled NEFF without invoking any ML framework, it is the fastest way to
compile and run any NKI kernel standalone on NeuronDevice. Therefore, this decorator is useful for quickly
iterating an early implementation of a NKI kernel to reach functional correctness before porting it to the ML
framework and injecting the kernel into the full ML model. To iterate over NKI kernel performance quickly,
NKI also provides nki.benchmark decorator which uses the same underlying mechanism as nki.baremetal but
additionally collects latency statistics in different percentiles.

Parameters
• save_neff_name – A file path to save your NEFF file. By default, this is unspecified,

and the NEFF file will be deleted automatically after execution.
• save_trace_name – A file path to save your NTFF file. By default, this is unspeci-

fied, and the NTFF file will be deleted automatically after execution. Known issue: if
save_trace_name is specified, save_neff_name must be set to “file.neff”.

• additional_compile_opt – Additional Neuron compiler flags to pass in when com-
piling the kernel.

• artifacts_dir – A directory path to save Neuron compiler artifacts. The directory
must be empty before running the kernel. A non-empty directory would lead to a com-
pilation error.
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Returns
None

Listing 7.4: An Example

from neuronxcc.nki import baremetal
import neuronxcc.nki.language as nl
import numpy as np

@baremetal(save_neff_name='file.neff', save_trace_name='profile.ntff')
def nki_tensor_tensor_add(a_tensor, b_tensor):
c_tensor = nl.ndarray(a_tensor.shape, dtype=a_tensor.dtype, buffer=nl.shared_hbm)

a = nl.load(a_tensor)
b = nl.load(b_tensor)

c = a + b

nl.store(c_tensor, c)

return c_tensor

a = np.zeros([128, 1024], dtype=np.float32)
b = np.random.random_sample([128, 1024]).astype(np.float32)
c = nki_tensor_tensor_add(a, b)

assert np.allclose(c, a + b)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.simulate_kernel

nki.simulate_kernel(kernel, *args, **kwargs)
Simulate a nki kernel on CPU using a built-in simulator in Neuron Compiler. This simulation mode is especially
useful for inspecting intermediate tensor values using nki.language.device_print (see code example below).

Note: All input and output tensors to the kernel must be numpy.ndarray when using this simulate_kernel
API.

To run the kernel on a NeuronCore instead, please refer to Getting Started with NKI .
Parameters

• kernel – The kernel to be simulated
• args – The args of the kernel
• kwargs – The kwargs of the kernel

Returns
Examples:

import neuronxcc.nki as nki
import neuronxcc.nki.language as nl
import numpy as np

(continues on next page)
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(continued from previous page)

@nki.jit
def print_kernel():
a = nl.ndarray([4, 4], dtype=nl.float32, buffer=nl.shared_hbm)

# Create (4, 4) tensor in sbuf
y = nl.zeros([4, 4], dtype=np.float32)

# Print tensor y
nl.device_print("value of y:", y)

# Directly store tensor y as a single tile
nl.store(a, value=y)

return a

np.random.seed(0)

a = nki.simulate_kernel(print_kernel)

assert np.allclose(a, np.zeros([4, 4]))

This document is relevant for: Inf2, Trn1, Trn2

Types

tensor A tensor object represents a multidimensional, homoge-
neous array of fixed-size items

This document is relevant for: Inf2, Trn1, Trn2

nki.tensor

class nki.tensor

A tensor object represents a multidimensional, homogeneous array of fixed-size items
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Methods

assert_shape Assert that the tensor has the given shape.
astype Copy of the tensor, cast to a specified type.
broadcast_to Broadcast tensor to a new shape based on numpy

broadcast rules.
expand_dims Gives a new shape to a tensor by adding a dimension

of size 1 at the specified position.
reshape Gives a new shape to an array without changing its

data.
view Return a new view of the tensor, reinterpret to a spec-

ified type.

Attributes

dtype Data type of the tensor.
itemsize Length of one tensor element in bytes.
ndim Number of dimensions of the tensor.
shape Shape of the tensor.

assert_shape(shape)
Assert that the tensor has the given shape.

Parameters
shape – The expected shape.

Returns
The tensor.

astype(dtype)
Copy of the tensor, cast to a specified type.

Parameters
dtype – The target dtype

Returns
the tensor with new type. Copy ALWAYS occur

broadcast_to(shape)
Broadcast tensor to a new shape based on numpy broadcast rules. The tensor object must be a tile or can
be implicitly converted to a tile. A tensor can be implicitly converted to a tile iff the partition dimension
is the highest dimension.

Parameters
shape – The new shape

Returns
Return a new view of the tensor, no copy will occur

property dtype

Data type of the tensor.

expand_dims(axis)
Gives a new shape to a tensor by adding a dimension of size 1 at the specified position.

Parameters
axis – the position of the new dimension.

Returns
Return a new tensor with expanded shape
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property itemsize

Length of one tensor element in bytes.

property ndim

Number of dimensions of the tensor.

reshape(shape)
Gives a new shape to an array without changing its data.

Parameters
shape – The new shape

Returns
Return a new view of the tensor, no copy will occur

property shape

Shape of the tensor.

view(dtype)
Return a new view of the tensor, reinterpret to a specified type.

Returns
A new tensor object refer to the original tensor data, NO copy will occur

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language

Memory operations

load Load a tensor from device memory (HBM) into on-chip
memory (SBUF).

store Store into a tensor on device memory (HBM) from on-
chip memory (SBUF).

load_transpose2d Load a tensor from device memory (HBM) and 2D-
transpose the data before storing into on-chip memory
(SBUF).

atomic_rmw Perform an atomic read-modify-write operation on
HBM data dst = op(dst, value)

copy Create a copy of the src tile.
broadcast_to Broadcast the src tile to a new shape based on numpy

broadcast rules.

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.load

nki.language.load(src, *, mask=None, dtype=None, **kwargs)
Load a tensor from device memory (HBM) into on-chip memory (SBUF).

See Memory hierarchy for detailed information.
Parameters

• src – HBM tensor to load the data from.
• mask – (optional) a compile-time constant predicate that controls whether/how this in-

struction is executed (see NKI API Masking for details)
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

Returns
a new tile on SBUF with values from src.

import neuronxcc.nki.language as nl

# load from in_tensor[P, F] that is on HBM
# copy into data_tile[P, F] that is on SBUF
data_tile = nl.load(in_tensor)
...

Note: Partition dimension size can’t exceed the hardware limitation of nki.language.tile_size.pmax, see
Tile size considerations.

Partition dimension has to be the first dimension in the index tuple of a tile. Therefore, data may need to be split
into multiple batches to load/store, for example:

import neuronxcc.nki.language as nl

for i_b in nl.affine_range(4):
data_tile = nl.zeros((128, 512), dtype=in_tensor.dtype)
# load from in_tensor[4, 128, 512] one batch at a time
# copy into data_tile[128, 512]
i_p, i_f = nl.mgrid[0:128, 0:512]
data_tile[i_p, i_f] = nl.load(in_tensor[i_b, i_p, i_f])
...

Also supports indirect DMA access with dynamic index values:

import neuronxcc.nki.language as nl
...

####################################################################################
→˓########
# Indirect DMA read example 1:
# - data_tensor on HBM has shape [128 x 512].
# - idx_tensor on HBM has shape [64] (with values [0, 2, 4, 6, ...]).
# - idx_tensor values read from HBM and stored in SBUF idx_tile of shape [64 x 1]
# - data_tensor values read from HBM indexed by values in idx_tile

(continues on next page)
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(continued from previous page)

# and store into SBUF data_tile of shape [64 x 512].
####################################################################################
→˓########
i_p = nl.arange(64)[:, None]
i_f = nl.arange(512)[None, :]

idx_tile = nl.load(idx_tensor[i_p]) # indices have to be in SBUF
data_tile = nl.load(data_tensor[idx_tile[i_p, 0], i_f])
...

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
...

####################################################################################
→˓########
# Indirect DMA read example 2:
# - data_tensor on HBM has shape [128 x 512].
# - idx_tile on SBUF has shape [64 x 1] (with values [[0], [2], [4], ...] generated␣
→˓by iota)
# - data_tensor values read from HBM indexed by values in idx_tile
# and store into SBUF data_tile of shape [64 x 512].
####################################################################################
→˓########
i_f = nl.arange(512)[None, :]

idx_expr = 2*nl.arange(64)[:, None]
idx_tile = nisa.iota(idx_expr, dtype=np.int32)
data_tile = nl.load(data_tensor[idx_tile, i_f])
...

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.store

nki.language.store(dst, value, *, mask=None, **kwargs)
Store into a tensor on device memory (HBM) from on-chip memory (SBUF).

See Memory hierarchy for detailed information.
Parameters

• dst – HBM tensor to store the data into.
• value – An SBUF tile that contains the values to store.
• mask – (optional) a compile-time constant predicate that controls whether/how this in-

struction is executed (see NKI API Masking for details)
Returns

import neuronxcc.nki.language as nl

...
(continues on next page)
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(continued from previous page)

# store into out_tensor[P, F] that is on HBM
# from data_tile[P, F] that is on SBUF
nl.store(out_tensor, data_tile)

Note: Partition dimension size can’t exceed the hardware limitation of nki.language.tile_size.pmax, see
Tile size considerations.

Partition dimension has to be the first dimension in the index tuple of a tile. Therefore, data may need to be split
into multiple batches to load/store, for example:

import neuronxcc.nki.language as nl

for i_b in nl.affine_range(4):
data_tile = nl.zeros((128, 512), dtype=in_tensor.dtype)

...
# store into out_tensor[4, 128, 512] one batch at a time
# from data_tile[128, 512]
i_p, i_f = nl.mgrid[0:128, 0:512]
nl.store(out_tensor[i_b, i_p, i_f], value=data_tile[i_p, i_f])

Also supports indirect DMA access with dynamic index values:

import neuronxcc.nki.language as nl
...

##################################################################################
# Indirect DMA write example 1:
# - data_tensor has shape [128 x 512].
# - idx_tensor on HBM has shape [64] (with values [0, 2, 4, 6, ...]).
# - idx_tensor values read from HBM and stored in SBUF idx_tile.
# - data_tile of shape [64 x 512] values written into
# HBM data_tensor indexed by values in idx_tile.
##################################################################################
i_p = nl.arange(64)[:, None]
i_f = nl.arange(512)[None, :]
idx_tile = nl.load(idx_tensor[i_p]) # indices have to be in SB

nl.store(data_tensor[idx_tile[i_p, 0], i_f], value=data_tile[0:64, 0:512])

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
...

####################################################################################
→˓#########
# Indirect DMA write example 2:
# - data_tensor has shape [128 x 512].
# - idx_tile on SBUF has shape [64 x 1] (with values [[0], [2], [4], ...]␣

(continues on next page)
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(continued from previous page)

→˓generated by iota)
# - data_tile of shape [64 x 512] values written into
# HBM data_tensor indexed by values in idx_tile.
####################################################################################
→˓#########
idx_expr = 2*nl.arange(64)[:, None]
idx_tile = nisa.iota(idx_expr, dtype=np.int32)

nl.store(data_tensor[idx_tile, i_f], value=data_tile[0:64, 0:512])

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.load_transpose2d

nki.language.load_transpose2d(src, *, mask=None, dtype=None, **kwargs)
Load a tensor from device memory (HBM) and 2D-transpose the data before storing into on-chip memory
(SBUF).

Parameters
• src – HBM tensor to load the data from.
• mask – (optional) a compile-time constant predicate that controls whether/how this in-

struction is executed (see NKI API Masking for details)
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

Returns
a new tile on SBUF with values from src 2D-transposed.

import neuronxcc.nki.language as nl
from neuronxcc.nki.typing import tensor
...

# load from in_tensor[F, P] that is on HBM
# transpose and copy into local_tile[P, F] that is on SBUF
N, M = in_tensor.shape
local_tile: tensor[M, N] = nl.load_transpose2d(in_tensor)
...

Note: Partition dimension size can’t exceed the hardware limitation of nki.language.tile_size.pmax, see
Tile size considerations.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.atomic_rmw

nki.language.atomic_rmw(dst, value, op, *, mask=None, **kwargs)
Perform an atomic read-modify-write operation on HBM data dst = op(dst, value)

Parameters
• dst – HBM tensor with subscripts, only supports indirect dynamic indexing currently.
• value – tile or scalar value that is the operand to op.
• op – atomic operation to perform, only supports np.add currently.
• mask – (optional) a compile-time constant predicate that controls whether/how this in-

struction is executed (see NKI API Masking for details)
Returns

import neuronxcc.nki.language as nl
from neuronxcc.nki.typing import tensor
...

value: tensor[N, M] = nl.load(value_tensor)

# dynamic indices have to be in SBUF, with shape [N, 1]
indices_tile: tensor[N, 1] = nl.load(indices_tensor)

ix = nl.arange(M)[None, :]

########################################################################
# Atomic read-modify-write example:
# - read: values of rmw_tensor is indexed by values from indices_tile
# - modify: incremented by value
# - write: saved back into rmw_tensor
# resulting in rmw_tensor = rmw_tensor + value
########################################################################
nl.atomic_rmw(rmw_tensor[indices_tile, ix], value=value, op=np.add)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.copy

nki.language.copy(src, *, mask=None, dtype=None, **kwargs)
Create a copy of the src tile.

Parameters
• src – the source of copy, must be a tile in SBUF or PSUM.
• mask – (optional) a compile-time constant predicate that controls whether/how this in-

struction is executed (see NKI API Masking for details)
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

Returns
a new tile with the same layout as src, this new tile will be in SBUF, but can be also assigned
to a PSUM tensor.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.broadcast_to

nki.language.broadcast_to(src, *, shape, **kwargs)
Broadcast the src tile to a new shape based on numpy broadcast rules. The srcmay also be a tensor object which
may be implicitly converted to a tile. A tensor can be implicitly converted to a tile if the partition dimension is
the outermost dimension. If src.shape is already the same as shape, this operation will simply return src.

Parameters
• src – the source of broadcast, a tile in SBUF or PSUM. May also be a tensor object.
• shape – the target shape for broadcasting.

Returns
a new tile broadcast along the partition dimension of src, this new tile will be in SBUF, but
can be also assigned to a PSUM tensor.

import neuronxcc.nki.language as nl

##################################################################
# Example 1: Load from in_tensor[P, F] that is on HBM and
# copy into out_tile[P, F] that is on SBUF by broadcasting
##################################################################
...

...
# broadcast into out_tile[P, F] that is on SBUF
# from data_tile[P, F] that is on SBUF
in_tile = nl.load(in_tensor, dtype=in_tensor.dtype)
out_tile = nl.broadcast_to(in_tile, shape=(128, in_tensor.shape[1]))

# store output
nl.store(out_tensor, out_tile)

This document is relevant for: Inf2, Trn1, Trn2
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Creation operations

ndarray Create a new tensor of given shape and dtype on the spec-
ified buffer.

empty_like Create a new tensor with the same shape and type as a
given tensor.

zeros Create a new tensor of given shape and dtype on the spec-
ified buffer, filled with zeros.

zeros_like Create a new tensor of zeros with the same shape and
type as a given tensor.

ones Create a new tensor of given shape and dtype on the spec-
ified buffer, filled with ones.

full Create a new tensor of given shape and dtype on the spec-
ified buffer, filled with initial value.

rand Generate a tile of given shape and dtype, filled with ran-
dom values that are sampled from a uniform distribution
between 0 and 1.

random_seed Sets a seed, specified by user, to the random number gen-
erator on HW.

shared_constant Create a new tensor filled with the data specified by data
array.

shared_identity_matrix Create a new identity tensor with specified data type.

This document is relevant for: Inf2, Trn1, Trn2

nki.language.ndarray

nki.language.ndarray(shape, dtype, *, buffer=None, name='', **kwargs)
Create a new tensor of given shape and dtype on the specified buffer.

((Similar to numpy.ndarray))
Parameters

• shape – the shape of the tensor.
• dtype – the data type of the tensor (see Supported Data Types for more information).
• buffer – the specific buffer (ie, sbuf , psum, hbm), defaults to sbuf .
• name – the name of the tensor.

Returns
a new tensor allocated on the buffer.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.empty_like

nki.language.empty_like(a, dtype=None, *, buffer=None, name='', **kwargs)
Create a new tensor with the same shape and type as a given tensor.

((Similar to numpy.empty_like))
Parameters

• a – the tensor.
• dtype – the data type of the tensor (see Supported Data Types for more information).
• buffer – the specific buffer (ie, sbuf , psum, hbm), defaults to sbuf .
• name – the name of the tensor.

Returns
a tensor with the same shape and type as a given tensor.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.zeros

nki.language.zeros(shape, dtype, *, buffer=None, name='', **kwargs)
Create a new tensor of given shape and dtype on the specified buffer, filled with zeros.

((Similar to numpy.zeros))
Parameters

• shape – the shape of the tensor.
• dtype – the data type of the tensor (see Supported Data Types for more information).
• buffer – the specific buffer (ie, sbuf , psum, hbm), defaults to sbuf .
• name – the name of the tensor.

Returns
a new tensor allocated on the buffer.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.zeros_like

nki.language.zeros_like(a, dtype=None, *, buffer=None, name='', **kwargs)
Create a new tensor of zeros with the same shape and type as a given tensor.

((Similar to numpy.zeros_like))
Parameters

• a – the tensor.
• dtype – the data type of the tensor (see Supported Data Types for more information).
• buffer – the specific buffer (ie, sbuf , psum, hbm), defaults to sbuf .
• name – the name of the tensor.

Returns
a tensor of zeros with the same shape and type as a given tensor.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.ones

nki.language.ones(shape, dtype, *, buffer=None, name='', **kwargs)
Create a new tensor of given shape and dtype on the specified buffer, filled with ones.

((Similar to numpy.ones))
Parameters

• shape – the shape of the tensor.
• dtype – the data type of the tensor (see Supported Data Types for more information).
• buffer – the specific buffer (ie, sbuf , psum, hbm), defaults to sbuf .
• name – the name of the tensor.

Returns
a new tensor allocated on the buffer.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.full

nki.language.full(shape, fill_value, dtype, *, buffer=None, name='', **kwargs)
Create a new tensor of given shape and dtype on the specified buffer, filled with initial value.

((Similar to numpy.full))
Parameters

• shape – the shape of the tensor.
• fill_value – the initial value of the tensor.
• dtype – the data type of the tensor (see Supported Data Types for more information).
• buffer – the specific buffer (ie, sbuf , psum, hbm), defaults to sbuf .
• name – the name of the tensor.

Returns
a new tensor allocated on the buffer.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.rand

nki.language.rand(shape, dtype=<class 'numpy.float32'>, **kwargs)
Generate a tile of given shape and dtype, filled with random values that are sampled from a uniform distribution
between 0 and 1.

Parameters
• shape – the shape of the tile.
• dtype – the data type of the tile (see Supported Data Types for more information).

Returns
a tile with random values.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.random_seed

nki.language.random_seed(seed, *, mask=None, **kwargs)
Sets a seed, specified by user, to the random number generator on HW. Using the same seed will generate the
same sequence of random numbers when using together with the random() API

Parameters
• seed – a 32-bit scalar value to use as the seed.
• mask – (optional) a compile-time constant predicate that controls whether/how this in-

struction is executed (see NKI API Masking for details)
Returns

none

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.shared_constant

nki.language.shared_constant(constant, dtype=None, **kwargs)
Create a new tensor filled with the data specified by data array.

Parameters
constant – the constant data to be filled into a tensor

Returns
a tensor which contains the constant data

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.shared_identity_matrix

nki.language.shared_identity_matrix(n, dtype=<class 'numpy.uint8'>, **kwargs)
Create a new identity tensor with specified data type.

This function has the same behavior to nki.language.shared_constant but is preferred if the constant matrix is an
identity matrix. The compiler will reuse all the identity matrices of the same dtype in the graph to save space.

Parameters
• n – the number of rows(and columns) of the returned identity matrix
• dtype – the data type of the tensor, default to be np.uint8 (see Supported Data Types

for more information).
Returns

a tensor which contains the identity tensor

This document is relevant for: Inf2, Trn1, Trn2
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Math operations

add Add the inputs, element-wise.
subtract Subtract the inputs, element-wise.
multiply Multiply the inputs, element-wise.
divide Divide the inputs, element-wise.
power Elements of x raised to powers of y, element-wise.
maximum Maximum of the inputs, element-wise.
minimum Minimum of the inputs, element-wise.
max Maximum of elements along the specified axis (or axes)

of the input.
min Minimum of elements along the specified axis (or axes)

of the input.
mean Arithmetic mean along the specified axis (or axes) of the

input.
var Variance along the specified axis (or axes) of the input.
sum Sum of elements along the specified axis (or axes) of the

input.
prod Product of elements along the specified axis (or axes) of

the input.
all Whether all elements along the specified axis (or axes)

evaluate to True.
abs Absolute value of the input, element-wise.
negative Numerical negative of the input, element-wise.
sign Sign of the numbers of the input, element-wise.
trunc Truncated value of the input, element-wise.
floor Floor of the input, element-wise.
ceil Ceiling of the input, element-wise.
mod Integer Mod of x / y, element-wise
fmod Floor-mod of x / y, element-wise.
exp Exponential of the input, element-wise.
log Natural logarithm of the input, element-wise.
cos Cosine of the input, element-wise.
sin Sine of the input, element-wise.
tan Tangent of the input, element-wise.
tanh Hyperbolic tangent of the input, element-wise.
arctan Inverse tangent of the input, element-wise.
sqrt Non-negative square-root of the input, element-wise.
rsqrt Reciprocal of the square-root of the input, element-wise.
sigmoid Logistic sigmoid activation function on the input,

element-wise.
relu Rectified Linear Unit activation function on the input,

element-wise.
gelu Gaussian Error Linear Unit activation function on the in-

put, element-wise.
gelu_dx Derivative of Gaussian Error Linear Unit (gelu) on the

input, element-wise.
gelu_apprx_tanh Gaussian Error Linear Unit activation function on the in-

put, element-wise, with tanh approximation.
silu Sigmoid Linear Unit activation function on the input,

element-wise.
continues on next page
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Table 7.2 – continued from previous page
silu_dx Derivative of Sigmoid Linear Unit activation function on

the input, element-wise.
erf Error function of the input, element-wise.
erf_dx Derivative of the Error function (erf) on the input,

element-wise.
softplus Softplus activation function on the input, element-wise.
mish Mish activation function on the input, element-wise.
square Square of the input, element-wise.
softmax Softmax activation function on the input, element-wise.
rms_norm Apply Root Mean Square Layer Normalization.
dropout Randomly zeroes some of the elements of the input tile

given a probability rate.
matmul x @ y matrix multiplication of x and y.
transpose Transposes a 2D tile between its partition and free di-

mension.
reciprocal Reciprocal of the the input, element-wise.

This document is relevant for: Inf2, Trn1, Trn2

nki.language.add

nki.language.add(x, y, *, dtype=None, mask=None, **kwargs)
Add the inputs, element-wise.

((Similar to numpy.add))
Parameters

• x – a tile or a scalar value.
• y – a tile or a scalar value. x.shape and y.shape must be broadcastable to a common

shape, that will become the shape of the output.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tiles, or whichever input type has the highest precision (see NKI Type Promotion
for more information);

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has x + y, element-wise.

Examples:

import neuronxcc.nki.language as nl

a = nl.load(a_tensor[0:128, 0:512])
b = nl.load(b_tensor[0:128, 0:512])
# add a and b element-wise and store in c[128, 512]
c = nl.add(a, b)
nl.store(c_tensor[0:128, 0:512], c)

a = nl.load(a_tensor[0:128, 0:512])
b = 2.2
# add constant b to each element in a
c = nl.add(a, b)

(continues on next page)
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(continued from previous page)

nl.store(c_tensor[0:128, 0:512], c)

a = nl.load(a_tensor[0:128, 0:512])
b = nl.load(b_tensor[0:128, 0:1])
# broadcast on free dimension -- [128, 1] is broadcasted to [128, 512]
c = nl.add(a, b)
nl.store(c_tensor[0:128, 0:512], c)

a = nl.load(a_tensor[0:128, 0:512])
b = nl.load(b_tensor[0:1, 0:512])
# broadcast on partition dimension -- [1, 512] is broadcasted to [128, 512]
c = nl.add(a, b)
nl.store(c_tensor[0:128, 0:512], c)

a = nl.load(a_tensor[0:128, 0:512])
b = nl.load(b_tensor[0:1, 0:1])
# broadcast on both dimensions -- [1, 1] is broadcasted to [128, 512]
c = nl.add(a, b)
nl.store(c_tensor[0:128, 0:512], c)

a = nl.load(a_tensor[0:128, 0:1])
b = nl.load(b_tensor[0:1, 0:512])
# broadcast on each dimensions -- [128, 1] and [1, 512] are broadcasted to [128,␣
→˓512]
c = nl.add(a, b)
nl.store(c_tensor[0:128, 0:512], c)

Note: Broadcasting in the partition dimension is generally more expensive than broadcasting in free dimension.
It is recommended to align your data to perform free dimension broadcast whenever possible.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.subtract

nki.language.subtract(x, y, *, dtype=None, mask=None, **kwargs)
Subtract the inputs, element-wise.

((Similar to numpy.subtract))
Parameters

• x – a tile or a scalar value.
• y – a tile or a scalar value. x.shape and y.shape must be broadcastable to a common

shape, that will become the shape of the output.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tiles, or whichever input type has the highest precision (see NKI Type Promotion
for more information);

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)
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Returns
a tile that has x - y, element-wise.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.multiply

nki.language.multiply(x, y, *, dtype=None, mask=None, **kwargs)
Multiply the inputs, element-wise.

((Similar to numpy.multiply))
Parameters

• x – a tile or a scalar value.
• y – a tile or a scalar value. x.shape and y.shape must be broadcastable to a common

shape, that will become the shape of the output.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tiles, or whichever input type has the highest precision (see NKI Type Promotion
for more information);

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has x * y, element-wise.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.divide

nki.language.divide(x, y, *, dtype=None, mask=None, **kwargs)
Divide the inputs, element-wise.

((Similar to numpy.divide))
Parameters

• x – a tile or a scalar value.
• y – a tile or a scalar value. x.shape and y.shape must be broadcastable to a common

shape, that will become the shape of the output.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tiles, or whichever input type has the highest precision (see NKI Type Promotion
for more information);

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has x / y, element-wise.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.power

nki.language.power(x, y, *, dtype=None, mask=None, **kwargs)
Elements of x raised to powers of y, element-wise.

((Similar to numpy.power))
Parameters

• x – a tile or a scalar value.
• y – a tile or a scalar value. x.shape and y.shape must be broadcastable to a common

shape, that will become the shape of the output.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tiles, or whichever input type has the highest precision (see NKI Type Promotion
for more information);

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has values x to the power of y.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.maximum

nki.language.maximum(x, y, *, dtype=None, mask=None, **kwargs)
Maximum of the inputs, element-wise.

((Similar to numpy.maximum))
Parameters

• x – a tile or a scalar value.
• y – a tile or a scalar value. x.shape and y.shape must be broadcastable to a common

shape, that will become the shape of the output.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tiles, or whichever input type has the highest precision (see NKI Type Promotion
for more information);

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has the maximum of each elements from x and y.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.minimum

nki.language.minimum(x, y, *, dtype=None, mask=None, **kwargs)
Minimum of the inputs, element-wise.

((Similar to numpy.minimum))
Parameters

• x – a tile or a scalar value.
• y – a tile or a scalar value. x.shape and y.shape must be broadcastable to a common

shape, that will become the shape of the output.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tiles, or whichever input type has the highest precision (see NKI Type Promotion
for more information);

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has the minimum of each elements from x and y.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.max

nki.language.max(x, axis, *, dtype=None, mask=None, keepdims=False, **kwargs)
Maximum of elements along the specified axis (or axes) of the input.

((Similar to numpy.max))
Parameters

• x – a tile.
• axis – int or tuple/list of ints. The axis (or axes) along which to operate; must be free

dimensions, not partition dimension (0); can only be the last contiguous dim(s) of the
tile: [1], [1,2], [1,2,3], [1,2,3,4]

• dtype – (optional) data type to cast the output type to (see Supported Data Types for
more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

• keepdims – If this is set to True, the axes which are reduced are left in the result as
dimensions with size one. With this option, the result will broadcast correctly against
the input array.

Returns
a tile with the maximum of elements along the provided axis. This return tile will have a shape
of the input tile’s shape with the specified axes removed.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.min

nki.language.min(x, axis, *, dtype=None, mask=None, keepdims=False, **kwargs)
Minimum of elements along the specified axis (or axes) of the input.

((Similar to numpy.min))
Parameters

• x – a tile.
• axis – int or tuple/list of ints. The axis (or axes) along which to operate; must be free

dimensions, not partition dimension (0); can only be the last contiguous dim(s) of the
tile: [1], [1,2], [1,2,3], [1,2,3,4]

• dtype – (optional) data type to cast the output type to (see Supported Data Types for
more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

• keepdims – If this is set to True, the axes which are reduced are left in the result as
dimensions with size one. With this option, the result will broadcast correctly against
the input array.

Returns
a tile with the minimum of elements along the provided axis. This return tile will have a shape
of the input tile’s shape with the specified axes removed.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.mean

nki.language.mean(x, axis, *, dtype=None, mask=None, keepdims=False, **kwargs)
Arithmetic mean along the specified axis (or axes) of the input.

((Similar to numpy.mean))
Parameters

• x – a tile.
• axis – int or tuple/list of ints. The axis (or axes) along which to operate; must be free

dimensions, not partition dimension (0); can only be the last contiguous dim(s) of the
tile: [1], [1,2], [1,2,3], [1,2,3,4]

• dtype – (optional) data type to cast the output type to (see Supported Data Types for
more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile with the average of elements along the provided axis. This return tile will have a shape
of the input tile’s shape with the specified axes removed. float32 intermediate and return
values are used for integer inputs.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.var

nki.language.var(x, axis, *, dtype=None, mask=None, **kwargs)
Variance along the specified axis (or axes) of the input.

((Similar to numpy.var))
Parameters

• x – a tile.
• axis – int or tuple/list of ints. The axis (or axes) along which to operate; must be free

dimensions, not partition dimension (0); can only be the last contiguous dim(s) of the
tile: [1], [1,2], [1,2,3], [1,2,3,4]

• dtype – (optional) data type to cast the output type to (see Supported Data Types for
more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile with the variance of the elements along the provided axis. This return tile will have a
shape of the input tile’s shape with the specified axes removed.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.sum

nki.language.sum(x, axis, *, dtype=None, mask=None, keepdims=False, **kwargs)
Sum of elements along the specified axis (or axes) of the input.

((Similar to numpy.sum))
Parameters

• x – a tile.
• axis – int or tuple/list of ints. The axis (or axes) along which to operate; must be free

dimensions, not partition dimension (0); can only be the last contiguous dim(s) of the
tile: [1], [1,2], [1,2,3], [1,2,3,4]

• dtype – (optional) data type to cast the output type to (see Supported Data Types for
more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

• keepdims – If this is set to True, the axes which are reduced are left in the result as
dimensions with size one. With this option, the result will broadcast correctly against
the input array.

Returns
a tile with the sum of elements along the provided axis. This return tile will have a shape of
the input tile’s shape with the specified axes removed.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.prod

nki.language.prod(x, axis, *, dtype=None, mask=None, keepdims=False, **kwargs)
Product of elements along the specified axis (or axes) of the input.

((Similar to numpy.prod))
Parameters

• x – a tile.
• axis – int or tuple/list of ints. The axis (or axes) along which to operate; must be free

dimensions, not partition dimension (0); can only be the last contiguous dim(s) of the
tile: [1], [1,2], [1,2,3], [1,2,3,4]

• dtype – (optional) data type to cast the output type to (see Supported Data Types for
more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

• keepdims – If this is set to True, the axes which are reduced are left in the result as
dimensions with size one. With this option, the result will broadcast correctly against
the input array.

Returns
a tile with the product of elements along the provided axis. This return tile will have a shape
of the input tile’s shape with the specified axes removed.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.all

nki.language.all(x, axis, *, dtype=<class 'bool'>, mask=None, **kwargs)
Whether all elements along the specified axis (or axes) evaluate to True.

((Similar to numpy.all))
Parameters

• x – a tile.
• axis – int or tuple/list of ints. The axis (or axes) along which to operate; must be free

dimensions, not partition dimension (0); can only be the last contiguous dim(s) of the
tile: [1], [1,2], [1,2,3], [1,2,3,4]

• dtype – (optional) data type to cast the output type to (see Supported Data Types for
more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a boolean tile with the result. This return tile will have a shape of the input tile’s shape with
the specified axes removed.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.abs

nki.language.abs(x, *, dtype=None, mask=None, **kwargs)
Absolute value of the input, element-wise.

Parameters
• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has absolute values of x.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.negative

nki.language.negative(x, *, dtype=None, mask=None, **kwargs)
Numerical negative of the input, element-wise.

((Similar to numpy.negative))
Parameters

• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has numerical negative values of x.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.sign

nki.language.sign(x, *, dtype=None, mask=None, **kwargs)
Sign of the numbers of the input, element-wise.

((Similar to numpy.sign))

The sign function returns -1 if x < 0, 0 if x==0, 1 if x > 0.
Parameters

• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has sign values of x.
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This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.trunc

nki.language.trunc(x, *, dtype=None, mask=None, **kwargs)
Truncated value of the input, element-wise.

((Similar to numpy.trunc))

The truncated value of the scalar x is the nearest integer i which is closer to zero than x is. In short, the fractional
part of the signed number x is discarded.

Parameters
• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has truncated values of x.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.floor

nki.language.floor(x, *, dtype=None, mask=None, **kwargs)
Floor of the input, element-wise.

((Similar to numpy.floor))

The floor of the scalar x is the largest integer i, such that i <= x.
Parameters

• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has floor values of x.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.ceil

nki.language.ceil(x, *, dtype=None, mask=None, **kwargs)
Ceiling of the input, element-wise.

((Similar to numpy.ceil))

The ceil of the scalar x is the smallest integer i, such that i >= x.
Parameters

• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has ceiling values of x.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.mod

nki.language.mod(x, y, dtype=None, mask=None, **kwargs)
Integer Mod of x / y, element-wise

Computes the remainder complementary to the floor_divide function. It is equivalent to the Python modulus x
% y and has the same sign as the divisor y.

((Similar to numpy.mod))
Parameters

• x – a tile. If x is a scalar value it will be broadcast to the shape of y. x.shape and
y.shape must be broadcastable to a common shape, that will become the shape of the
output.

• y – a tile or a scalar value. x.shape and y.shape must be broadcastable to a common
shape, that will become the shape of the output.

• dtype – (optional) data type to cast the output type to (see Supported Data Types for
more information); if not specified, it will default to be the same as the data type of the
input tiles, or whichever input type has the highest precision (see NKI Type Promotion
for more information);

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has values x mod y.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.fmod

nki.language.fmod(x, y, dtype=None, mask=None, **kwargs)
Floor-mod of x / y, element-wise.

The remainder has the same sign as the dividend x. It is equivalent to the Matlab(TM) rem function and should
not be confused with the Python modulus operator x % y.

((Similar to numpy.fmod))
Parameters

• x – a tile. If x is a scalar value it will be broadcast to the shape of y. x.shape and
y.shape must be broadcastable to a common shape, that will become the shape of the
output.

• y – a tile or a scalar value. x.shape and y.shape must be broadcastable to a common
shape, that will become the shape of the output.

• dtype – (optional) data type to cast the output type to (see Supported Data Types for
more information); if not specified, it will default to be the same as the data type of the
input tiles, or whichever input type has the highest precision (see NKI Type Promotion
for more information);

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has values x fmod y.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.exp

nki.language.exp(x, *, dtype=None, mask=None, **kwargs)
Exponential of the input, element-wise.

((Similar to numpy.exp))

The exp(x) is e^x where e is the Euler’s number = 2.718281. . .
Parameters

• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has exponential values of x.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.log

nki.language.log(x, *, dtype=None, mask=None, **kwargs)
Natural logarithm of the input, element-wise.

((Similar to numpy.log))

It is the inverse of the exponential function, such that: log(exp(x)) = x . The natural logarithm base is e.
Parameters

• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has natural logarithm values of x.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.cos

nki.language.cos(x, *, dtype=None, mask=None, **kwargs)
Cosine of the input, element-wise.

((Similar to numpy.cos))
Parameters

• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has cosine values of x.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.sin

nki.language.sin(x, *, dtype=None, mask=None, **kwargs)
Sine of the input, element-wise.

((Similar to numpy.sin))
Parameters

• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)
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Returns
a tile that has sine values of x.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.tan

nki.language.tan(x, *, dtype=None, mask=None, **kwargs)
Tangent of the input, element-wise.

((Similar to numpy.tan))
Parameters

• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has tangent values of x.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.tanh

nki.language.tanh(x, *, dtype=None, mask=None, **kwargs)
Hyperbolic tangent of the input, element-wise.

((Similar to numpy.tanh))
Parameters

• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has hyperbolic tangent values of x.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.arctan

nki.language.arctan(x, *, dtype=None, mask=None, **kwargs)
Inverse tangent of the input, element-wise.

((Similar to numpy.arctan))
Parameters

• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has inverse tangent values of x.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.sqrt

nki.language.sqrt(x, *, dtype=None, mask=None, **kwargs)
Non-negative square-root of the input, element-wise.

((Similar to numpy.sqrt))
Parameters

• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has square-root values of x.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.rsqrt

nki.language.rsqrt(x, *, dtype=None, mask=None, **kwargs)
Reciprocal of the square-root of the input, element-wise.

((Similar to torch.rsqrt))

rsqrt(x) = 1 / sqrt(x)
Parameters

• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

7.2. Neuron Kernel Interface (NKI) - Beta 1211

https://numpy.org/doc/stable/reference/generated/numpy.arctan.html
https://numpy.org/doc/stable/reference/generated/numpy.sqrt.html
https://pytorch.org/docs/master/generated/torch.rsqrt.html


AWS Neuron

Returns
a tile that has reciprocal square-root values of x.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.sigmoid

nki.language.sigmoid(x, *, dtype=None, mask=None, **kwargs)
Logistic sigmoid activation function on the input, element-wise.

((Similar to torch.nn.functional.sigmoid))

sigmoid(x) = 1/(1+exp(-x))
Parameters

• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has sigmoid of x.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.relu

nki.language.relu(x, *, dtype=None, mask=None, **kwargs)
Rectified Linear Unit activation function on the input, element-wise.

relu(x) = (x)+ = max(0,x)

((Similar to torch.nn.functional.relu))
Parameters

• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has relu of x.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.gelu

nki.language.gelu(x, *, dtype=None, mask=None, **kwargs)
Gaussian Error Linear Unit activation function on the input, element-wise.

((Similar to torch.nn.functional.gelu))
Parameters

• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has gelu of x.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.gelu_dx

nki.language.gelu_dx(x, *, dtype=None, mask=None, **kwargs)
Derivative of Gaussian Error Linear Unit (gelu) on the input, element-wise.

Parameters
• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has gelu_dx of x.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.gelu_apprx_tanh

nki.language.gelu_apprx_tanh(x, *, dtype=None, mask=None, **kwargs)
Gaussian Error Linear Unit activation function on the input, element-wise, with tanh approximation.

Parameters
• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has gelu of x.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.silu

nki.language.silu(x, *, dtype=None, mask=None, **kwargs)
Sigmoid Linear Unit activation function on the input, element-wise.

((Similar to torch.nn.functional.silu))
Parameters

• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has silu of x.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.silu_dx

nki.language.silu_dx(x, *, dtype=None, mask=None, **kwargs)
Derivative of Sigmoid Linear Unit activation function on the input, element-wise.

Parameters
• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has silu_dx of x.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.erf

nki.language.erf(x, *, dtype=None, mask=None, **kwargs)
Error function of the input, element-wise.

((Similar to torch.erf))

erf(x) = 2/sqrt(pi)*integral(exp(-t**2), t=0..x) .
Parameters

• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has erf of x.
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This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.erf_dx

nki.language.erf_dx(x, *, dtype=None, mask=None, **kwargs)
Derivative of the Error function (erf) on the input, element-wise.

Parameters
• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has erf_dx of x.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.softplus

nki.language.softplus(x, *, dtype=None, mask=None, **kwargs)
Softplus activation function on the input, element-wise.

Softplus is a smooth approximation to the ReLU activation, defined as:

softplus(x) = log(1 + exp(x))
Parameters

• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has softplus of x.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.mish

nki.language.mish(x, *, dtype=None, mask=None, **kwargs)
Mish activation function on the input, element-wise.

Mish: A Self Regularized Non-Monotonic Neural Activation Function is defined as:

𝑚𝑖𝑠ℎ(𝑥) = 𝑥 * 𝑡𝑎𝑛ℎ(𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥))

see: https://arxiv.org/abs/1908.08681
Parameters
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• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has mish of x.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.square

nki.language.square(x, *, dtype=None, mask=None, **kwargs)
Square of the input, element-wise.

((Similar to numpy.square))
Parameters

• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has square of x.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.softmax

nki.language.softmax(x, axis, *, dtype=None, compute_dtype=None, mask=None, **kwargs)
Softmax activation function on the input, element-wise.

((Similar to torch.nn.functional.softmax))
Parameters

• x – a tile.
• axis – int or tuple/list of ints. The axis (or axes) along which to operate; must be free

dimensions, not partition dimension (0); can only be the last contiguous dim(s) of the
tile: [1], [1,2], [1,2,3], [1,2,3,4]

• dtype – (optional) data type to cast the output type to (see Supported Data Types for
more information); if not specified, it will default to be the same as the data type of the
input tile.

• compute_dtype – (optional) dtype for the internal computation - currently `dtype` and
`compute_dtype` behave the same, both sets internal compute and return dtype.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has softmax of x.
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This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.rms_norm

nki.language.rms_norm(x, w, axis, n, epsilon=1e-06, *, dtype=None, compute_dtype=None, mask=None,
**kwargs)

Apply Root Mean Square Layer Normalization.
Parameters

• x – input tile
• w – weight tile
• axis – axis along which to compute the root mean square (rms) value
• n – total number of values to calculate rms
• epsilon – epsilon value used by rms calculation to avoid divide-by-zero
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• compute_dtype – (optional) dtype for the internal computation - currently `dtype` and
`compute_dtype` behave the same, both sets internal compute and return dtype.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
`` x / RMS(x) * w ``

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.dropout

nki.language.dropout(x, rate, *, dtype=None, mask=None, **kwargs)
Randomly zeroes some of the elements of the input tile given a probability rate.

Parameters
• x – a tile.
• rate – a scalar value or a tile with 1 element, with the probability rate.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile with randomly zeroed elements of x.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.matmul

nki.language.matmul(x, y, *, transpose_x=False, mask=None, **kwargs)
x @ y matrix multiplication of x and y.

((Similar to numpy.matmul))

Note: For optimal performance on hardware, use nki.isa.nc_matmul() or call nki.language.matmul
with transpose_x=True. Use nki.isa.nc_matmul also to access low-level features of the Tensor Engine.

Note: Implementation details: nki.language.matmul calls nki.isa.nc_matmul under the hood.
nc_matmul is neuron specific customized implementation of matmul that computes x.T @ y, as a result,
matmul(x, y) lowers to nc_matmul(transpose(x), y). To avoid this extra transpose instruction being
inserted, use x.T and transpose_x=True inputs to this matmul.

Parameters
• x – a tile on SBUF (partition dimension <= 128, free dimension <= 128), x’s free

dimension must match y’s partition dimension.
• y – a tile on SBUF (partition dimension <= 128, free dimension <= 512)
• transpose_x – Defaults to False. If True, x is treated as already transposed. If False,

an additional transpose will be inserted to make x’s partition dimension the contract
dimension of the matmul to align with the Tensor Engine.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
x @ y or x.T @ y if transpose_x=True

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.transpose

nki.language.transpose(x, *, dtype=None, mask=None, **kwargs)
Transposes a 2D tile between its partition and free dimension.

Parameters
• x – 2D input tile
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has the values of the input tile with its partition and free dimensions swapped.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.reciprocal

nki.language.reciprocal(x, *, dtype=None, mask=None, **kwargs)
Reciprocal of the the input, element-wise.

((Similar to numpy.reciprocal))

reciprocal(x) = 1 / x
Parameters

• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has reciprocal values of x.

This document is relevant for: Inf2, Trn1, Trn2

Bitwise operations

bitwise_and Bitwise AND of the two inputs, element-wise.
bitwise_or Bitwise OR of the two inputs, element-wise.
bitwise_xor Bitwise XOR of the two inputs, element-wise.
invert Bitwise NOT of the input, element-wise.
left_shift Bitwise left-shift x by y, element-wise.
right_shift Bitwise right-shift x by y, element-wise.

This document is relevant for: Inf2, Trn1, Trn2

nki.language.bitwise_and

nki.language.bitwise_and(x, y, *, dtype=None, mask=None, **kwargs)
Bitwise AND of the two inputs, element-wise.

((Similar to numpy.bitwise_and))

Computes the bit-wise AND of the underlying binary representation of the integers in the input tiles. This
function implements the C/Python operator &

Parameters
• x – a tile or a scalar value of integer type.
• y – a tile or a scalar value of integer type. x.shape and y.shapemust be broadcastable

to a common shape, that will become the shape of the output.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tiles, or whichever input type has the highest precision (see NKI Type Promotion
for more information);

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has values x & y.
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This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.bitwise_or

nki.language.bitwise_or(x, y, *, dtype=None, mask=None, **kwargs)
Bitwise OR of the two inputs, element-wise.

((Similar to numpy.bitwise_or))

Computes the bit-wise OR of the underlying binary representation of the integers in the input tiles. This function
implements the C/Python operator |

Parameters
• x – a tile or a scalar value of integer type.
• y – a tile or a scalar value of integer type. x.shape and y.shapemust be broadcastable

to a common shape, that will become the shape of the output.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tiles, or whichever input type has the highest precision (see NKI Type Promotion
for more information);

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has values x | y.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.bitwise_xor

nki.language.bitwise_xor(x, y, *, dtype=None, mask=None, **kwargs)
Bitwise XOR of the two inputs, element-wise.

((Similar to numpy.bitwise_xor))

Computes the bit-wise XOR of the underlying binary representation of the integers in the input tiles. This function
implements the C/Python operator ^

Parameters
• x – a tile or a scalar value of integer type.
• y – a tile or a scalar value of integer type. x.shape and y.shapemust be broadcastable

to a common shape, that will become the shape of the output.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tiles, or whichever input type has the highest precision (see NKI Type Promotion
for more information);

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has values x ^ y.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.invert

nki.language.invert(x, *, dtype=None, mask=None, **kwargs)
Bitwise NOT of the input, element-wise.

((Similar to numpy.invert))

Computes the bit-wise NOT of the underlying binary representation of the integers in the input tile. This ufunc
implements the C/Python operator ~

Parameters
• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile with bitwise NOT x element-wise.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.left_shift

nki.language.left_shift(x, y, *, dtype=None, mask=None, **kwargs)
Bitwise left-shift x by y, element-wise.

((Similar to numpy.left_shift))

Computes the bit-wise left shift of the underlying binary representation of the integers in the input tiles. This
function implements the C/Python operator <<

Parameters
• x – a tile or a scalar value of integer type.
• y – a tile or a scalar value of integer type. x.shape and y.shapemust be broadcastable

to a common shape, that will become the shape of the output.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tiles, or whichever input type has the highest precision (see NKI Type Promotion
for more information);

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has values x << y.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.right_shift

nki.language.right_shift(x, y, *, dtype=None, mask=None, **kwargs)
Bitwise right-shift x by y, element-wise.

((Similar to numpy.right_shift))

Computes the bit-wise right shift of the underlying binary representation of the integers in the input tiles. This
function implements the C/Python operator >>

Parameters
• x – a tile or a scalar value of integer type.
• y – a tile or a scalar value of integer type. x.shape and y.shapemust be broadcastable

to a common shape, that will become the shape of the output.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tiles, or whichever input type has the highest precision (see NKI Type Promotion
for more information);

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile that has values x >> y.

This document is relevant for: Inf2, Trn1, Trn2

Logical operations

equal Element-wise boolean result of x == y.
not_equal Element-wise boolean result of x != y.
greater Element-wise boolean result of x > y.
greater_equal Element-wise boolean result of x >= y.
less Element-wise boolean result of x < y.
less_equal Element-wise boolean result of x <= y.
logical_and Element-wise boolean result of x AND y.
logical_or Element-wise boolean result of x OR y.
logical_xor Element-wise boolean result of x XOR y.
logical_not Element-wise boolean result of NOT x.

This document is relevant for: Inf2, Trn1, Trn2

nki.language.equal

nki.language.equal(x, y, *, dtype=<class 'bool'>, mask=None, **kwargs)
Element-wise boolean result of x == y.

((Similar to numpy.equal))
Parameters

• x – a tile or a scalar value.
• y – a tile or a scalar value. x.shape and y.shape must be broadcastable to a common

shape, that will become the shape of the output.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
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input tiles, or whichever input type has the highest precision (see NKI Type Promotion
for more information);

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile with boolean result of x == y element-wise.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.not_equal

nki.language.not_equal(x, y, *, dtype=<class 'bool'>, mask=None, **kwargs)
Element-wise boolean result of x != y.

((Similar to numpy.not_equal))
Parameters

• x – a tile or a scalar value.
• y – a tile or a scalar value. x.shape and y.shape must be broadcastable to a common

shape, that will become the shape of the output.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tiles, or whichever input type has the highest precision (see NKI Type Promotion
for more information);

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile with boolean result of x != y element-wise.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.greater

nki.language.greater(x, y, *, dtype=<class 'bool'>, mask=None, **kwargs)
Element-wise boolean result of x > y.

((Similar to numpy.greater))
Parameters

• x – a tile or a scalar value.
• y – a tile or a scalar value. x.shape and y.shape must be broadcastable to a common

shape, that will become the shape of the output.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tiles, or whichever input type has the highest precision (see NKI Type Promotion
for more information);

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile with boolean result of x > y element-wise.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.greater_equal

nki.language.greater_equal(x, y, *, dtype=<class 'bool'>, mask=None, **kwargs)
Element-wise boolean result of x >= y.

((Similar to numpy.greater_equal))
Parameters

• x – a tile or a scalar value.
• y – a tile or a scalar value. x.shape and y.shape must be broadcastable to a common

shape, that will become the shape of the output.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tiles, or whichever input type has the highest precision (see NKI Type Promotion
for more information);

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile with boolean result of x >= y element-wise.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.less

nki.language.less(x, y, *, dtype=<class 'bool'>, mask=None, **kwargs)
Element-wise boolean result of x < y.

((Similar to numpy.less))
Parameters

• x – a tile or a scalar value.
• y – a tile or a scalar value. x.shape and y.shape must be broadcastable to a common

shape, that will become the shape of the output.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tiles, or whichever input type has the highest precision (see NKI Type Promotion
for more information);

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile with boolean result of x < y element-wise.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.less_equal

nki.language.less_equal(x, y, *, dtype=<class 'bool'>, mask=None, **kwargs)
Element-wise boolean result of x <= y.

((Similar to numpy.less_equal))
Parameters

• x – a tile or a scalar value.
• y – a tile or a scalar value. x.shape and y.shape must be broadcastable to a common

shape, that will become the shape of the output.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tiles, or whichever input type has the highest precision (see NKI Type Promotion
for more information);

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile with boolean result of x <= y element-wise.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.logical_and

nki.language.logical_and(x, y, *, dtype=<class 'bool'>, mask=None, **kwargs)
Element-wise boolean result of x AND y.

((Similar to numpy.logical_and))
Parameters

• x – a tile or a scalar value.
• y – a tile or a scalar value. x.shape and y.shape must be broadcastable to a common

shape, that will become the shape of the output.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tiles, or whichever input type has the highest precision (see NKI Type Promotion
for more information);

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile with boolean result of x AND y element-wise.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.logical_or

nki.language.logical_or(x, y, *, dtype=<class 'bool'>, mask=None, **kwargs)
Element-wise boolean result of x OR y.

((Similar to numpy.logical_or))
Parameters

• x – a tile or a scalar value.
• y – a tile or a scalar value. x.shape and y.shape must be broadcastable to a common

shape, that will become the shape of the output.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tiles, or whichever input type has the highest precision (see NKI Type Promotion
for more information);

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile with boolean result of x OR y element-wise.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.logical_xor

nki.language.logical_xor(x, y, *, dtype=<class 'bool'>, mask=None, **kwargs)
Element-wise boolean result of x XOR y.

((Similar to numpy.logical_xor))
Parameters

• x – a tile or a scalar value.
• y – a tile or a scalar value. x.shape and y.shape must be broadcastable to a common

shape, that will become the shape of the output.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tiles, or whichever input type has the highest precision (see NKI Type Promotion
for more information);

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile with boolean result of x XOR y element-wise.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.logical_not

nki.language.logical_not(x, *, dtype=<class 'bool'>, mask=None, **kwargs)
Element-wise boolean result of NOT x.

((Similar to numpy.logical_not))
Parameters

• x – a tile.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile with boolean result of NOT x element-wise.

This document is relevant for: Inf2, Trn1, Trn2

Tensor manipulation operations

ds Construct a dynamic slice for simple tensor indexing.
arange Return contiguous values within a given interval, used

for indexing a tensor to define a tile.
mgrid Same as NumPy mgrid: "An instance which returns a

dense (or fleshed out) mesh-grid when indexed, so that
each returned argument has the same shape.

expand_dims Expand the shape of a tile.

This document is relevant for: Inf2, Trn1, Trn2

nki.language.ds

nki.language.ds(start, size)
Construct a dynamic slice for simple tensor indexing.

import neuronxcc.nki.language as nl
...

@nki.jit(mode="simulation")
def example_kernel(in_tensor):
out_tensor = nl.ndarray(in_tensor.shape, dtype=in_tensor.dtype,

buffer=nl.shared_hbm)
for i in nl.affine_range(in_tensor.shape[1] // 512):

tile = nl.load(in_tensor[:, (i * 512):((i + 1) * 512)])
# Same as above but use ds (dynamic slice) instead of the native
# slice syntax
tile = nl.load(in_tensor[:, nl.ds(i * 512, 512)])

This document is relevant for: Inf2, Trn1, Trn2
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This document is relevant for: Inf2, Trn1, Trn2

nki.language.arange

nki.language.arange(*args)
Return contiguous values within a given interval, used for indexing a tensor to define a tile.

((Similar to numpy.arange))
arange can be called as:

• arange(stop): Values are generated within the half-open interval [0, stop) (the interval includ-
ing zero, excluding stop).

• arange(start, stop): Values are generated within the half-open interval [start, stop) (the
interval including start, excluding stop).

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.mgrid

nki.language.mgrid = Ellipsis

Same as NumPy mgrid: “An instance which returns a dense (or fleshed out) mesh-grid when indexed, so that
each returned argument has the same shape. The dimensions and number of the output arrays are equal to the
number of indexing dimensions.”

Complex numbers are not supported in the step length.

((Similar to numpy.mgrid))

import neuronxcc.nki.language as nl
...

i_p, i_f = nl.mgrid[0:128, 0:512]
tile = nl.load(in_tensor[i_p, i_f])
...
nl.store(out_tensor[i_p, i_f], tile)

import neuronxcc.nki.language as nl
...

grid = nl.mgrid[0:128, 0:512]
tile = nl.load(in_tensor[grid.p, grid.x])
...
nl.store(out_tensor[grid.p, grid.x], tile)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.expand_dims

nki.language.expand_dims(data, axis)
Expand the shape of a tile. Insert a new axis that will appear at the axis position in the expanded tile shape.
Currently only supports expanding dimensions after the last index of the tile.

((Similar to numpy.expand_dims))
Parameters

• data – a tile input
• axis – int or tuple/list of ints. Position in the expanded axes where the new axis (or

axes) is placed; must be free dimensions, not partition dimension (0); Currently only
supports axis (or axes) after the last index.

Returns
a tile with view of input data with the number of dimensions increased.

This document is relevant for: Inf2, Trn1, Trn2

Indexing/Searching operations

where Return elements chosen from x or y depending on con-
dition.

gather_flattened Gather elements from data according to the indices.

This document is relevant for: Inf2, Trn1, Trn2

nki.language.where

nki.language.where(condition, x, y, *, dtype=None, mask=None, **kwargs)
Return elements chosen from x or y depending on condition.

((Similar to numpy.where))
Parameters

• condition – if True, yield x, otherwise yield y.
• x – a tile with values from which to choose if condition is True.
• y – a tile or a numerical value from which to choose if condition is False.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tiles, or whichever input type has the highest precision (see NKI Type Promotion
for more information);

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
a tile with elements from x where condition is True, and elements from y otherwise.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.gather_flattened

nki.language.gather_flattened(data, indices, *, mask=None, dtype=None, **kwargs)
Gather elements from data according to the indices.

This instruction gathers elements from the data tensor using integer indices provided in the indices tensor. For
each element in the indices tensor, it retrieves the corresponding value from the data tensor using the index
value to select from the free dimension of data. The gather instruction effectively performs up to 128 parallel
gather operations, with each operation using the corresponding partition of data and indices.

The output tensor has the same shape as the indices tensor, with each output element containing the value from
data at the position specified by the corresponding index. Out of bounds indices will return garbage values.

Both data and indices must be 2-, 3-, or 4-dimensional. The indices tensor must contain uint32 values.

For indexing purposes, all free dimensions are flattened and indexed as the same “row”. Consider this example:

data =
[[[1., 2.],
[3., 4.]],
[[5., 6.],
[7., 8.]]]
indices =
[[[0, 1],
[1, 3]],
[[3, 3],
[1, 0]]]

nl.gather_flattened(data, indices) produces this result:
[[[1., 2.],
[2., 4.]],
[[8., 8.],
[6., 5.]]]

With the exception of handling out-of-bounds indices, this behavior is equivalent to:

indices_flattened = indices.reshape(indices.shape[0], -1)
data_flattened = data.reshape(data.shape[0], -1)
result = np.take_along_axis(data_flattened, indices_flattened, axis=-1)
result.reshape(indices.shape)

((Similar to torch.gather_flattened))
Parameters

• data – the source tensor to gather values from
• indices – tensor containing uint32 indices to gather across the flattened free dimen-

sion.
• mask – (optional) a compile-time constant predicate that controls whether/how this in-

struction is executed (see NKI API Masking for details)
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

Returns
a tensor with the same shape as indices containing gathered values from data

Example:
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import neuronxcc.nki.language as nl
from neuronxcc.nki.typing import tensor

##################################################################
# Example 1: Gather values from a tensor using indices
##################################################################
# Create source tensor
N = 32
M = 64
data = nl.rand((N, M), dtype=nl.float32)

# Create indices tensor - gather every 5th element
indices = nl.zeros((N, 10), dtype=nl.uint32)
for i in nl.static_range(N):

for j in nl.static_range(10):
indices[i, j] = j * 5

# Gather values from data according to indices
result = nl.gather_flattened(data=data, indices=indices)

This document is relevant for: Inf2, Trn1, Trn2

Collective communication operations

all_reduce Apply reduce operation over multiple SPMD programs.

This document is relevant for: Inf2, Trn1, Trn2

nki.language.all_reduce

nki.language.all_reduce(x, op, program_axes, *, dtype=None, mask=None, parallel_reduce=True,
asynchronous=False, **kwargs)

Apply reduce operation over multiple SPMD programs.
Parameters

• x – a tile.
• op – numpy ALU operator to use to reduce over the input tile.
• program_axes – a single axis or a tuple of axes along which the reduction operation

is performed.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

• parallel_reduce – optional boolean parameter whether to turn on parallel reduction.
Enable parallel reduction consumes additional memory.

• asynchronous – Defaults to False. If True, caller should synchronize before reading
final result, e.g. using nki.sync_thread.

Returns
the reduced resulting tile

This document is relevant for: Inf2, Trn1, Trn2
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Iterators

static_range Create a sequence of numbers for use as loop iterators in
NKI, resulting in a fully unrolled loop.

affine_range Create a sequence of numbers for use as parallel loop
iterators in NKI.

sequential_range Create a sequence of numbers for use as sequential loop
iterators in NKI.

This document is relevant for: Inf2, Trn1, Trn2

nki.language.static_range

nki.language.static_range(*args)
Create a sequence of numbers for use as loop iterators in NKI, resulting in a fully unrolled loop. Unlike
affine_range or sequential_range, Neuron compiler will fully unroll the loop during NKI kernel tracing.

Notes:
• Due to loop unrolling, compilation time may go up significantly compared to affine_range or sequen-

tial_range.
• On-chip memory (SBUF) usage may also go up significantly compared to affine_range or sequen-

tial_range.
• No loop-level optimizations will be performed in the compiler.
• static_range should only be used as a fall-back option for debugging purposes when affine_range or

sequential_range is giving functionally incorrect results or undesirable performance characteristics.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.affine_range

nki.language.affine_range(*args, **kwargs)
Create a sequence of numbers for use as parallel loop iterators in NKI. affine_range should be the default
loop iterator choice, when there is no loop carried dependency. Note, associative reductions are not considered
loop carried dependencies in this context. A concrete example of associative reduction is multiple nl.matmul
or nisa.nc_matmul calls accumulating into the same output buffer defined outside of this loop level (see code
example #2 below).

When the above conditions are not met, we recommend using sequential_range instead.

Notes:
• Using affine_range prevents Neuron compiler from unrolling the loops until entering compiler backend,

which typically results in better compilation time compared to the fully unrolled iterator static_range.
• Using affine_range also allows Neuron compiler to perform additional loop-level optimizations, such

as loop vectorization in current release. The exact type of loop-level optimizations applied is subject to
changes in future releases.

• Since each kernel instance only runs on a single NeuronCore, affine_range does not parallelize different
loop iterations across multiple NeuronCores. However, different iterations could be parallelized/pipelined
on different compute engines within a NeuronCore depending on the invoked instructions (engines) and
data dependency in the loop body.
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1 import neuronxcc.nki.language as nl
2

3 #######################################################################
4 # Example 1: No loop carried dependency
5 # Input/Output tensor shape: [128, 2048]
6 # Load one tile ([128, 512]) at a time, square the tensor element-wise,
7 # and store it into output tile
8 #######################################################################
9

10 # Every loop instance works on an independent input/output tile.
11 # No data dependency between loop instances.
12 for i_input in nl.affine_range(input.shape[1] // 512):
13 offset = i_input * 512
14 input_sb = nl.load(input[0:input.shape[0], offset:offset+512])
15 result = nl.multiply(input_sb, input_sb)
16 nl.store(output[0:input.shape[0], offset:offset+512], result)
17

18 #######################################################################
19 # Example 2: Matmul output buffer accumulation, a type of associative reduction
20 # Input tensor shapes for nl.matmul: xT[K=2048, M=128] and y[K=2048, N=128]
21 # Load one tile ([128, 128]) from both xT and y at a time, matmul and
22 # accumulate into the same output buffer
23 #######################################################################
24

25 result_psum = nl.zeros((128, 128), dtype=nl.float32, buffer=nl.psum)
26 for i_K in nl.affine_range(xT.shape[0] // 128):
27 offset = i_K * 128
28 xT_sbuf = nl.load(offset:offset+128, 0:xT.shape[1]])
29 y_sbuf = nl.load(offset:offset+128, 0:y.shape[1]])
30

31 result_psum += nl.matmul(xT_sbuf, y_sbuf, transpose_x=True)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.sequential_range

nki.language.sequential_range(*args, **kwargs)
Create a sequence of numbers for use as sequential loop iterators in NKI. sequential_range should be used
when there is a loop carried dependency. Note, associative reductions are not considered loop carried depen-
dencies in this context. See affine_range for an example of such associative reduction.

Notes:
• Inside a NKI kernel, any use of Python range(...) will be replaced with sequential_range(...) by

Neuron compiler.
• Using sequential_range prevents Neuron compiler from unrolling the loops until entering com-

piler backend, which typically results in better compilation time compared to the fully unrolled iterator
static_range.

• Using sequential_range informs Neuron compiler to respect inter-loop dependency and perform much
more conservative loop-level optimizations compared to affine_range.

• Using affine_range instead of sequential_range in case of loop carried dependency incorrectly is
considered unsafe and could lead to numerical errors.

7.2. Neuron Kernel Interface (NKI) - Beta 1233



AWS Neuron

1 import neuronxcc.nki.language as nl
2

3 #######################################################################
4 # Example 1: Loop carried dependency from tiling tensor_tensor_scan
5 # Both sbuf tensor input0 and input1 shapes: [128, 2048]
6 # Perform a scan operation between the two inputs using a tile size of [128, 512]
7 # Store the scan output to another [128, 2048] tensor
8 #######################################################################
9

10 # Loop iterations communicate through this init tensor
11 init = nl.zeros((128, 1), dtype=input0.dtype)
12

13 # This loop will only produce correct results if the iterations are performed in␣
→˓order

14 for i_input in nl.sequential_range(input0.shape[1] // 512):
15 offset = i_input * 512
16

17 # Depends on scan result from the previous loop iteration
18 result = nisa.tensor_tensor_scan(input0[:, offset:offset+512],
19 input1[:, offset:offset+512],
20 initial=init,
21 op0=nl.multiply, op1=nl.add)
22

23 nl.store(output[0:input0.shape[0], offset:offset+512], result)
24

25 # Prepare initial result for scan in the next loop iteration
26 init[:, :] = result[:, 511]

This document is relevant for: Inf2, Trn1, Trn2

Memory Hierarchy

par_dim Mark a dimension explicitly as a partition dimension.
psum PSUM - Only visible to each individual kernel in-

stance in the SPMD grid, alias of nki.compiler.
psum.auto_alloc()

sbuf State Buffer - Only visible to each individual kernel
instance in the SPMD grid, alias of nki.compiler.
sbuf.auto_alloc()

hbm HBM - Alias of private_hbm
private_hbm HBM - Only visible to each individual kernel instance in

the SPMD grid
shared_hbm Shared HBM - Visible to all kernel instances in the

SPMD grid

This document is relevant for: Inf2, Trn1, Trn2

1234 Chapter 7. Compiler



AWS Neuron

nki.language.par_dim

nki.language.par_dim = Ellipsis

Mark a dimension explicitly as a partition dimension.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.psum

nki.language.psum = Ellipsis

PSUM - Only visible to each individual kernel instance in the SPMD grid, alias of nki.compiler.psum.
auto_alloc()

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.sbuf

nki.language.sbuf = Ellipsis

State Buffer - Only visible to each individual kernel instance in the SPMD grid, alias of nki.compiler.sbuf.
auto_alloc()

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.hbm

nki.language.hbm = Ellipsis

HBM - Alias of private_hbm

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.private_hbm

nki.language.private_hbm = Ellipsis

HBM - Only visible to each individual kernel instance in the SPMD grid

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.shared_hbm

nki.language.shared_hbm = Ellipsis

Shared HBM - Visible to all kernel instances in the SPMD grid

This document is relevant for: Inf2, Trn1, Trn2

Others

program_id Index of the current SPMD program along the given axis
in the launch grid.

num_programs Number of SPMD programs along the given axes in the
launch grid.

program_ndim Number of dimensions in the SPMD launch grid.
spmd_dim Create a dimension in the SPMD launch grid of a NKI

kernel with sub-dimension tiling.
nc Create a logical neuron core dimension in launch grid.
device_print Print a message with a String prefix followed by the

value of a tile x.
loop_reduce Apply reduce operation over a loop.

This document is relevant for: Inf2, Trn1, Trn2

nki.language.program_id

nki.language.program_id(axis)
Index of the current SPMD program along the given axis in the launch grid.

Parameters
axis – The axis of the ND launch grid.

Returns
The program id along axis in the launch grid

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.num_programs

nki.language.num_programs(axes=None)
Number of SPMD programs along the given axes in the launch grid. If axes is not provided, returns the total
number of programs.

Parameters
axes – The axes of the ND launch grid. If not provided, returns the total number of programs
along the entire launch grid.

Returns
The number of SPMD(single process multiple data) programs along axes in the launch grid

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.program_ndim

nki.language.program_ndim()

Number of dimensions in the SPMD launch grid.
Returns

The number of dimensions in the launch grid, i.e. the number of axes

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.spmd_dim

nki.language.spmd_dim = Ellipsis

Create a dimension in the SPMD launch grid of a NKI kernel with sub-dimension tiling.

A key use case for spmd_dim is to shard an existing NKI kernel over multiple NeuronCores without modifying
the internal kernel implementation. Suppose we have a kernel, nki_spmd_kernel, which is launched with a 2D
SPMD grid, (4, 2). We can shard the first dimension of the launch grid (size 4) over two physical NeuronCores
by directly manipulating the launch grid as follows:

import neuronxcc.nki.language as nl

@nki.jit
def nki_spmd_kernel(a):
b = nl.ndarray(a.shape, dtype=a.dtype, buffer=nl.shared_hbm)
i = nl.program_id(0)
j = nl.program_id(1)

a_tile = nl.load(a[i, j])
nl.store(b[i, j], a_tile)

return b

############################################################################
# Example 1: Let compiler decide how to distribute the instances of spmd kernel
############################################################################
dst = nki_spmd_kernel[4, 2](src)

############################################################################
# Example 2: Distribute SPMD kernel instances to physical NeuronCores with
# explicit annotations. Expected physical NeuronCore assignments:
# Physical NC [0]: kernel[0, 0], kernel[0, 1], kernel[1, 0], kernel[1, 1]
# Physical NC [1]: kernel[2, 0], kernel[2, 1], kernel[3, 0], kernel[3, 1]
############################################################################
dst = nki_spmd_kernel[nl.spmd_dim(nl.nc(2), 2), 2](src)
dst = nki_spmd_kernel[nl.nc(2) * 2, 2](src) # syntactic sugar

############################################################################
# Example 3: Distribute SPMD kernel instances to physical NeuronCores with
# explicit annotations. Expected physical NeuronCore assignments:
# Physical NC [0]: kernel[0, 0], kernel[0, 1], kernel[2, 0], kernel[2, 1]

(continues on next page)
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(continued from previous page)

# Physical NC [1]: kernel[1, 0], kernel[1, 1], kernel[3, 0], kernel[3, 1]
############################################################################
dst = nki_spmd_kernel[nl.spmd_dim(2, nl.nc(2)), 2](src)
dst = nki_spmd_kernel[2 * nl.nc(2), 2](src) # syntactic sugar

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.nc

nki.language.nc = Ellipsis

Create a logical neuron core dimension in launch grid.

The instances of spmd kernel will be distributed to different physical neuron cores on the annotated dimension.

# Let compiler decide how to distribute the instances of spmd kernel
c = kernel[2, 2](a, b)

import neuronxcc.nki.language as nl

# Distribute the kernel to physical neuron cores around the first dimension
# of the spmd grid.
c = kernel[nl.nc(2), 2](a, b)
# This means:
# Physical NC [0]: kernel[0, 0], kernel[0, 1]
# Physical NC [1]: kernel[1, 0], kernel[1, 1]

Sometimes the size of a spmd dimension is bigger than the number of available physical neuron cores. We can
control the distribution with the following syntax:

import neuronxcc.nki.language as nl

@nki.jit
def nki_spmd_kernel(a):
b = nl.ndarray(a.shape, dtype=a.dtype, buffer=nl.shared_hbm)
i = nl.program_id(0)
j = nl.program_id(1)

a_tile = nl.load(a[i, j])
nl.store(b[i, j], a_tile)

return b

############################################################################
# Example 1: Let compiler decide how to distribute the instances of spmd kernel
############################################################################
dst = nki_spmd_kernel[4, 2](src)

############################################################################
# Example 2: Distribute SPMD kernel instances to physical NeuronCores with

(continues on next page)
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(continued from previous page)

# explicit annotations. Expected physical NeuronCore assignments:
# Physical NC [0]: kernel[0, 0], kernel[0, 1], kernel[1, 0], kernel[1, 1]
# Physical NC [1]: kernel[2, 0], kernel[2, 1], kernel[3, 0], kernel[3, 1]
############################################################################
dst = nki_spmd_kernel[nl.spmd_dim(nl.nc(2), 2), 2](src)
dst = nki_spmd_kernel[nl.nc(2) * 2, 2](src) # syntactic sugar

############################################################################
# Example 3: Distribute SPMD kernel instances to physical NeuronCores with
# explicit annotations. Expected physical NeuronCore assignments:
# Physical NC [0]: kernel[0, 0], kernel[0, 1], kernel[2, 0], kernel[2, 1]
# Physical NC [1]: kernel[1, 0], kernel[1, 1], kernel[3, 0], kernel[3, 1]
############################################################################
dst = nki_spmd_kernel[nl.spmd_dim(2, nl.nc(2)), 2](src)
dst = nki_spmd_kernel[2 * nl.nc(2), 2](src) # syntactic sugar

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.device_print

nki.language.device_print(prefix, x, *, mask=None, **kwargs)
Print a message with a String prefix followed by the value of a tile x. Printing is currently only supported in
kernel simulation mode (see nki.simulate_kernel for a code example).

Parameters
• prefix – prefix of the print message
• x – data to print out
• mask – (optional) a compile-time constant predicate that controls whether/how this in-

struction is executed (see NKI API Masking for details)
Returns

None

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.loop_reduce

nki.language.loop_reduce(x, op, loop_indices, *, dtype=None, mask=None, **kwargs)
Apply reduce operation over a loop. This is an ideal instruction to compute a high performance reduce_max or
reduce_min.

Note: The destination tile is also the rhs input to op. For example,

b = nl.zeros((N_TILE_SIZE, M_TILE_SIZE), dtype=float32, buffer=nl.sbuf)
for k_i in affine_range(NUM_K_BLOCKS):

# Skipping over multiple nested loops here.
# a, is a psum tile from a matmul accumulation group.
b = nl.loop_reduce(a, op=np.add, loop_indices=[k_i], dtype=nl.float32)

is the same as:
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b = nl.zeros((N_TILE_SIZE, M_TILE_SIZE), dtype=nl.float32, buffer=nl.sbuf)
for k_i in affine_range(NUM_K_BLOCKS):

# Skipping over multiple nested loops here.
# a, is a psum tile from a matmul accumulation group.
b = nisa.tensor_tensor(data1=b, data2=a, op=np.add, dtype=nl.float32)

If you are trying to use this instruction only for accumulating results on SBUF, consider simply using the +=
operator instead.

The loop_indices list enables the compiler to recognize which loops this reduction can be optimized across
as part of any aggressive loop-level optimizations it may perform.

Parameters
• x – a tile.
• op – numpy ALU operator to use to reduce over the input tile.
• loop_indices – a single loop index or a tuple of loop indices along which the re-

duction operation is performed. Can be numbers or loop_index objects coming from
nl.affine_range.

• dtype – (optional) data type to cast the output type to (see Supported Data Types for
more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
the reduced resulting tile

This document is relevant for: Inf2, Trn1, Trn2

Data Types

tfloat32 32-bit floating-point number (1S,8E,10M)
bfloat16 16-bit floating-point number (1S,8E,7M)
float8_e4m3 8-bit floating-point number (1S,4E,3M)
float8_e5m2 8-bit floating-point number (1S,5E,2M)

This document is relevant for: Inf2, Trn1, Trn2

nki.language.tfloat32

nki.language.tfloat32 = dtype('V4')

32-bit floating-point number (1S,8E,10M)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.language.bfloat16

nki.language.bfloat16 = dtype(bfloat16)

16-bit floating-point number (1S,8E,7M)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.float8_e4m3

nki.language.float8_e4m3 = dtype(float8_e4m3)

8-bit floating-point number (1S,4E,3M)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.float8_e5m2

nki.language.float8_e5m2 = dtype(float8_e5m2)

8-bit floating-point number (1S,5E,2M)

This document is relevant for: Inf2, Trn1, Trn2

Constants

tile_size Tile size constants.
fp32 FP32 Constants

This document is relevant for: Inf2, Trn1, Trn2

nki.language.tile_size

class nki.language.tile_size

Tile size constants.
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Attributes

bn_stats_fmax Maximum free dimension of BN_STATS
gemm_moving_fmax Maximum free dimension of the moving operand of

General Matrix Multiplication on Tensor Engine.
gemm_stationary_fmax Maximum free dimension of the stationary operand

of General Matrix Multiplication on Tensor Engine.
pmax Maximum partition dimension of a tile.
psum_fmax Maximum free dimension of a tile on PSUM buffer.
psum_min_align The minimum byte alignment requirement for PSUM

free dimension address.
sbuf_min_align The minimum byte alignment requirement for SBUF

free dimension address.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.language.fp32

class nki.language.fp32

FP32 Constants

Attributes

min FP32 Bit pattern (0xff7fffff) representing the mini-
mum (or maximum negative) FP32 value

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.isa
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NKI ISA

nc_matmul Compute stationary.T @ movingmatrix multiplica-
tion using Tensor Engine.

nc_transpose Perform a 2D transpose between the partition axis and
the free axis of input data, i.e., a PF-transpose, using
Tensor or Vector Engine.

activation Apply an activation function on every element of the in-
put tile using Scalar Engine.

activation_reduce Perform the same computation as nisa.activation
and also a reduction along the free dimension of the
nisa.activation result using Scalar Engine.

tensor_reduce Apply a reduction operation to the free axes of an input
data tile using Vector Engine.

tensor_partition_reduce Apply a reduction operation across partitions of an input
data tile using GpSimd Engine.

tensor_tensor Perform an element-wise operation of input two tiles us-
ing Vector Engine or GpSimd Engine.

tensor_tensor_scan Perform a scan operation of two input tiles using Vector
Engine.

scalar_tensor_tensor Apply up to two math operators using Vector Engine:
(data <op0> operand0) <op1> operand1.

tensor_scalar Apply up to two math operators to the input data tile by
broadcasting scalar/vector operands in the free dimen-
sion using Vector or Scalar or GpSimd Engine: (data
<op0> operand0) <op1> operand1.

tensor_scalar_reduce Perform the same computation as nisa.
tensor_scalar with one math operator and also
a reduction along the free dimension of the nisa.
tensor_scalar result using Vector Engine.

tensor_copy Create a copy of src tile within NeuronCore on-chip
SRAMs using Vector, Scalar or GpSimd Engine.

tensor_copy_dynamic_src Create a copy of src tile within NeuronCore on-chip
SRAMs using Vector or Scalar or GpSimd Engine, with
src located at a dynamic offset within each partition.

tensor_copy_dynamic_dst Create a copy of src tile within NeuronCore on-chip
SRAMs using Vector or Scalar or GpSimd Engine, with
dst located at a dynamic offset within each partition.

tensor_copy_predicated Conditionally copy elements from the src tile to the des-
tination tile on SBUF / PSUM based on a predicate
using Vector Engine.

reciprocal Compute reciprocal of each element in the input data
tile using Vector Engine.

iota Build a constant literal in SBUF using GpSimd Engine,
rather than transferring the constant literal values from
the host to device.

dropout Randomly replace some elements of the input tile data
with zeros based on input probabilities using Vector En-
gine.

affine_select Select elements between an input tile on_true_tile
and a scalar value on_false_value according to a
boolean predicate tile using GpSimd Engine.

range_select Select elements from on_true_tile based on compar-
ison with bounds using Vector Engine.

memset Initialize a tile filled with a compile-time constant value
using Vector or GpSimd Engine.

bn_stats Compute mean- and variance-related statistics for each
partition of an input tile data in parallel using Vector
Engine.

bn_aggr Aggregate one or multiple bn_stats outputs to generate
a mean and variance per partition using Vector Engine.

local_gather Gather SBUF data in src_buffer using index on Gp-
Simd Engine.

dma_copy Copy data from src to dst using DMA engine.
max8 Find the 8 largest values in each partition of the source

tile.
nc_find_index8 Find indices of the 8 given vals in each partition of the

data tensor.
nc_match_replace8 Replace first occurrence of each value in vals with imm

in data using the Vector engine and return the replaced
tensor.

nc_stream_shuffle Apply cross-partition data movement within a quadrant
of 32 partitions from source tile src to destination tile
dst using Vector Engine.
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This document is relevant for: Inf2, Trn1, Trn2

nki.isa.nc_matmul

nki.isa.nc_matmul(stationary, moving, *, is_stationary_onezero=False, is_moving_onezero=False,
is_transpose=False, tile_position=(), tile_size=(), mask=None, **kwargs)

Compute stationary.T @ moving matrix multiplication using Tensor Engine.

The nc_matmul instruction must read inputs from SBUF and write outputs to PSUM. Therefore, the stationary
and moving must be SBUF tiles, and the result tile is a PSUM tile.

The nc_matmul instruction currently supports float8_e4m3/float8_e5m2/bfloat16/float16/tfloat32/
float32 input data types as listed in Supported Data Types. The matmul accumulation and results are always
in float32.

The Tensor Engine imposes special layout constraints on the input tiles. First, the partition axis sizes of the
stationary and moving tiles must be identical and <=128, which corresponds to the contraction dimension
of the matrix multiplication. Second, the free axis sizes of stationary and moving tiles must be <= 128 and
<=512, respectively, For example, stationary.shape = (128, 126); moving.shape = (128, 512) and
nc_matmul(stationary,moving) returns a tile of shape = (126, 512). For more information about the
matmul layout, see Tensor Engine.

Fig. 7.1: MxKxN Matrix Multiplication Visualization.

If the contraction dimension of the matrix multiplication exceeds 128, you may accumulate multiple nc_matmul
instruction output tiles into the same PSUM tile. See example code snippet below.

Estimated instruction cost:
The Tensor Engine has complex performance characteristics given its data flow and pipeline design. The below
formula is the average nc_matmul cost assuming many nc_matmul instructions of the same shapes running
back-to-back on the engine:
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Cost (Tensor Engine Cycles) Condition
max(min(64, N_stationary),
N_moving)

input data type is one of float8_e4m3/float8_e5m2/
bfloat16/float16/tfloat32

4 * max(min(64, N_stationary),
N_moving)

input data type is float32

where,
• N_stationary is the number of elements per partition in stationary tile.
• N_moving is the number of elements per partition in moving tile.

The Tensor Engine, as a systolic array with 128 rows and 128 columns of processing elements (PEs), could be
underutilized for small nc_matmul instructions, i.e., the stationary tile has small free axis size or small par-
tition axis size (e.g. 32, 64). In such a case, the Tensor Engine allows PE tiling, i.e., multiple small nc_matmul
instructions to execute in parallel on the PE array, to improve compute throughput. PE tiling is enabled by
setting tile_position and tile_size. tile_position indicates the PE tile starting position (row posi-
tion, column position) for a nc_matmul instruction in the PE array. tile_size indicates the PE tile size (row
size, column size) to hold by a nc_matmul instruction starting from the tile_position. For example, setting
tile_position to (0, 0) and tile_size to (128, 128) means using full PE array.

Requirements on tile_position and tile_size are:
1. tile_position and tile_size must be both set to enable PE tiling.
2. The type of values in tile_position and tile_size must be integer or affine expression.
3. Values in tile_position and tile_size must be multiple of 32.
4. tile_size must be larger than or equal to accessed stationary tile size.
5. Both the row and column sizes in tile_size cannot be 32 for NeuronCore-v2.

Parameters
• stationary – the stationary operand on SBUF; layout: (partition axis <= 128, free

axis <= 128)
• moving – the moving operand on SBUF; layout: (partition axis <= 128, free axis <=
512)

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

• is_stationary_onezero – hints to the compiler whether the stationary operand
is a tile with ones/zeros only; setting this field explicitly could lead to 2x better per-
formance if stationary tile is in float32; the field has no impact for non-float32
stationary.

• is_moving_onezero – hints to the compiler if the moving operand is a tile with
ones/zeros only; setting this field explicitly could lead to 2x better performance if
moving tile is in float32; the field has no impact for non-float32 moving.

• is_transpose – hints to the compiler that this is a transpose operation with moving
as an identity matrix.

• tile_position – a 2D tuple (row, column) for the start PE tile position to run
nc_matmul.

• tile_size – a 2D tuple (row, column) for the PE tile size to hold by nc_matmul
starting from tile_position.

Returns
a tile on PSUM that has the result of matrix multiplication of stationary and moving tiles;
layout: partition axis comes from free axis of stationary, while free axis comes from free
axis of moving.

Example:

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl

(continues on next page)
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(continued from previous page)

##################################################################
# Example 1:
# multiply matrix a of shape (128, 128) and matrix b of shape (128, 512)
# to get matrix c in PSUM of shape (128, 512)
##################################################################
a_mgrid = nl.mgrid[0:128, 0:128]
b_mgrid = nl.mgrid[0:128, 0:512]
c_mgrid = nl.mgrid[0:128, 0:512]

a = nl.load(a_tensor[a_mgrid.p, a_mgrid.x])
b = nl.load(b_tensor[b_mgrid.p, b_mgrid.x])

c_psum = nisa.nc_matmul(a[a_mgrid.p, a_mgrid.x], b[b_mgrid.p, b_mgrid.x])

nl.store(c_tensor[c_mgrid.p, c_mgrid.x], c_psum)

##################################################################
# Example 2:
# multiply matrix d of shape (256, 128) and matrix e of shape (256, 512)
# to get matrix f in PSUM of shape (128, 512) using psum accumulation
##################################################################
d_mgrid = nl.mgrid[0:128, 0:128]
e_mgrid = nl.mgrid[0:128, 0:512]
f_mgrid = nl.mgrid[0:128, 0:512]

f_psum = nl.zeros((128, 512), nl.float32, buffer=nl.psum)

for i_contract in nl.affine_range(2):
d = nl.load(d_tensor[i_contract * 128 + d_mgrid.p, d_mgrid.x])
e = nl.load(e_tensor[i_contract * 128 + e_mgrid.p, e_mgrid.x])
f_psum += nisa.nc_matmul(d[d_mgrid.p, d_mgrid.x], e[e_mgrid.p, e_mgrid.x])

nl.store(f_tensor[f_mgrid.p, f_mgrid.x], f_psum)

##################################################################
# Example 3:
# perform batched matrix multiplication on matrix g of shape (16, 64, 64)
# and matrix h of shape (16, 64, 512) to get matrix i of (16, 64, 512)
# using Tensor Engine PE tiling mode.
##################################################################
g_mgrid = nl.mgrid[0:64, 0:64]
h_mgrid = nl.mgrid[0:64, 0:512]
i_mgrid = nl.mgrid[0:64, 0:512]

for i in nl.affine_range(4):
for j in nl.affine_range(4):
g = nl.load(g_tensor[i * 4 + j, g_mgrid.p, g_mgrid.x])
h = nl.load(h_tensor[i * 4 + j, h_mgrid.p, h_mgrid.x])
i_psum = nisa.nc_matmul(g, h, tile_position=((i % 2) * 64, (j % 2) * 64), tile_

→˓size=(64, 64))
nl.store(i_tensor[i * 4 + j, i_mgrid.p, i_mgrid.x], i_psum)

(continues on next page)
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(continued from previous page)

return c_tensor, f_tensor, i_tensor

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.isa.nc_transpose

nki.isa.nc_transpose(data, *, mask=None, dtype=None, engine=engine.unknown, **kwargs)
Perform a 2D transpose between the partition axis and the free axis of input data, i.e., a PF-transpose, using
Tensor or Vector Engine. If the data tile has more than one free axes, this API implicitly collapses all free axes
into one axis and then performs a 2D PF-transpose.

In NeuronCore, both Tensor and Vector Engine can perform a PF-transpose, but they support different input
shapes. Tensor Engine nc_transpose can handle an input tile of shape (128, 128) or smaller, while Vector
Engine can handle shape (32, 32) or smaller. Therefore, when the input tile shape is (32, 32) or smaller, we have
an option to run it on either engine, which is controlled by the engine field. If no engine is specified, Neuron
Compiler will automatically select an engine based on the input shape. Note, similar to other Tensor Engine
instructions, the Tensor Engine nc_transpose must read the input tile from SBUF and write the transposed
result to PSUM. On the other hand, Vector Engine nc_transpose can read/write from/to either SBUF or PSUM.

Note, PF-transpose on Tensor Engine is done by performing a matrix multiplication between data as the sta-
tionary tensor and an identity matrix as the moving tensor. See architecture guide for more information. On
NeuronCore-v2, such matmul-style transpose is not bit-accurate if the input data contains NaN/Inf. You may
consider replacing NaN/Inf with regular floats (float_max/float_min/zeros) in the input matrix before calling
nc_transpose(engine=nki.isa.constants.engine.tensor).

Estimated instruction cost:

Cost (Engine Cycles) Condition
max(MIN_II, N) engine set to nki.isa.constants.engine.vector
max(P, min(64, F)) engine set to nki.isa.constants.engine.tensor and as-

suming many back-to-back nc_transpose of the same shape
on Tensor Engine

where,
• N is the number of elements per partition in data.
• MIN_II is the minimum instruction initiation interval for small input tiles. MIN_II is roughly 64 engine

cycles.
• P is partition axis size of data.
• F is the number of elements per partition in data.

Parameters
• data – the input tile to be transposed
• mask – (optional) a compile-time constant predicate that controls whether/how this in-

struction is executed (see NKI API Masking for details)
• dtype – if specified and it’s different from the data type of input tile data, an additional

nki.isa.cast instruction will be inserted to cast the transposed data into the target dtype
(see Supported Data Types for more information)

• engine – specify which engine to use for transpose: nki.isa.tensor_engine or
nki.isa.vector_engine ; by default, the best engine will be selected for the given
input tile shape
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Returns
a tile with transposed result of input data tile

Example:

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
...

##################################################################
# Example 1: transpose tile a of shape (128, 64)
##################################################################
i_p_a = nl.arange(128)[:, None]
i_f_a = nl.arange(64)[None, :]
aT = nisa.nc_transpose(a[i_p_a, i_f_a])

##################################################################
# Example 2: transpose tile b of shape (32, 2) using Vector Engine
##################################################################
i_p_b = nl.arange(32)[:, None]
i_f_b = nl.arange(2)[None, :]
bT = nisa.nc_transpose(b[i_p_b, i_f_b], engine=nisa.vector_engine)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.isa.activation

nki.isa.activation(op, data, *, bias=None, scale=1.0, reduce_op=None, reduce_res=None,
reduce_cmd=reduce_cmd.idle, mask=None, dtype=None, **kwargs)

Apply an activation function on every element of the input tile using Scalar Engine. The activation function is
specified in the op input field (see Supported Activation Functions for NKI ISA for a list of supported activation
functions and their valid input ranges).

The activation instruction can optionally multiply the input data by a scalar or vector scale and then add another
vector bias before the activation function is applied, at no additional performance cost:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓𝑎𝑐𝑡(𝑑𝑎𝑡𝑎 * 𝑠𝑐𝑎𝑙𝑒+ 𝑏𝑖𝑎𝑠)

When the scale is a scalar, it must be a compile-time constant. In this case, the scale is broadcasted to all the
elements in the input data tile. When the scale/bias is a vector, it must have the same partition axis size as the
input data tile and only one element per partition. In this case, the element of scale/bias within each partition is
broadcasted to elements of the input data tile in the same partition.

There are 128 registers on the scalar engine for storing reduction results, corresponding to the 128 partitions of
the input. The scalar engine can reduce along free dimensions without extra performance penalty, and store the
result of reduction into these registers. The reduction is done after the activation function is applied.

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓𝑎𝑐𝑡(𝑑𝑎𝑡𝑎 * 𝑠𝑐𝑎𝑙𝑒+ 𝑏𝑖𝑎𝑠)𝑎𝑐𝑐𝑢_𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠 = 𝑟𝑒𝑑𝑢𝑐𝑒_𝑜𝑝(𝑎𝑐𝑐𝑢_𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠, 𝑟𝑒𝑑𝑢𝑐𝑒_𝑜𝑝(𝑜𝑢𝑡𝑝𝑢𝑡, 𝑎𝑥𝑖𝑠 =< 𝐹𝑟𝑒𝑒𝐴𝑥𝑖𝑠 >))

These registers are shared between activation and activation_accu calls, and the state of them can be
controlled via the reduce_cmd parameter.

• nisa.reduce_cmd.reset: Reset the accumulators to zero
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• nisa.reduce_cmd.idle: Do not use the accumulators
• nisa.reduce_cmd.reduce: keeps accumulating over the current value of the accumulator
• nisa.reduce_cmd.reset_reduce: Resets the accumulators then immediately accumulate the results of

the current instruction into the accumulators
We can choose to read out the current values stored in the register by passing in a tensor in the reduce_res
arguments. Reading out the accumulator will incur a small overhead.

Note that activation_accu can also change the state of the registers. It’s user’s responsibility to ensure correct
ordering. It’s recommended to not mixing the use of activation_accu and activation, when reduce_cmd
is not set to idle.

Note, the Scalar Engine always performs the math operations in float32 precision. Therefore, the engine auto-
matically casts the input data tile to float32 before performing multiply/add/activate specified in the activation
instruction. The engine is also capable of casting the float32 math results into another output data type specified
by the dtype field at no additional performance cost. If dtype field is not specified, Neuron Compiler will set
output data type of the instruction to be the same as input data type of data. On the other hand, the scale
parameter must have a float32 data type, while the bias parameter can be float32/float16/bfloat16.

The input data tile can be an SBUF or PSUM tile. Similarly, the instruction can write the output tile into either
SBUF or PSUM, which is specified using the buffer field. If not specified, nki.language.sbuf is selected
by default.

Estimated instruction cost:
max(MIN_II, N) Scalar Engine cycles, where

• N is the number of elements per partition in data.
• MIN_II is the minimum instruction initiation interval for small input tiles. MIN_II is roughly 64 engine

cycles.

Parameters
• op – an activation function (see Supported Activation Functions for NKI ISA for sup-

ported functions)
• data – the input tile; layout: (partition axis <= 128, free axis)
• bias – a vector with the same partition axis size as data for broadcast add (after broad-

cast multiply with scale)
• scale – a scalar or a vector with the same partition axis size as data for broadcast

multiply
• reduce_op – the reduce operation to perform on the free dimension of the activation

result
• reduce_res – a tile of shape (data.shape[0], 1), where data.shape[0] is the parti-

tion axis size of the input data tile. The result of sum(ReductionResult) is written
in-place into the tensor.

• reduce_cmd – an enum member from nisa.reduce_cmd to control the state of re-
duction registers

• dtype – (optional) data type to cast the output type to (see Supported Data Types for
more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
output tile of the activation instruction; layout: same as input data tile

Example:

import neuronxcc.nki.language as nl
import neuronxcc.nki.isa as nisa

(continues on next page)
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##################################################################
# Example 1: perform exponential function on matrix a of shape (128, 1024)
##################################################################
a = nl.load(a_tensor)
activated_a = nisa.activation(op=nl.exp, data=a)
nl.store(a_act_tensor, activated_a)

##################################################################
# Example 2: perform the following operations to matrix b of shape (128, 512)
# using a single activation instruction: np.square(b * 2.0) + c
# 1) compute `np.square(b * 2.0 + c)`
# 2) cast 1) results into bfloat16
##################################################################
b = nl.load(b_tensor)
c = nl.load(c_tensor)
activated_b = nisa.activation(op=np.square, data=b, bias=c, scale=2.0,

dtype=nl.bfloat16)
nl.store(b_act_tensor, activated_b)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.isa.activation_reduce

nki.isa.activation_reduce(op, data, *, reduce_op, reduce_res, bias=None, scale=1.0, mask=None,
dtype=None, **kwargs)

Perform the same computation as nisa.activation and also a reduction along the free dimension of the nisa.
activation result using Scalar Engine. The results for the reduction is stored in the reduce_res.

This API is equivalent to calling nisa.activation with reduce_cmd=nisa.reduce_cmd.reset_reduce
and passing in reduce_res. This API is kept for backward compatibility, we recommend using nisa.activation
moving forward.

Refer to nisa.activation for semantics of op/data/bias/scale.

In addition to nisa.activation computation, this API also performs a reduction along the free dimension(s) of the
nisa.activation result, at a small additional performance cost. The reduction result is returned in reduce_res
in-place, which must be a SBUF/PSUM tile with the same partition axis size as the input tile data and one
element per partition. On NeuronCore-v2, the reduce_op can only be an addition, np.add or nl.add.

There are 128 registers on the scalar engine for storing reduction results, corresponding to the 128 partitions
of the input. These registers are shared between activation and activation_accu calls. This instruction
first resets those registers to zero, performs the reduction on the value after activation function is applied, stores
the results into the registers, then reads out the reduction results from the register, eventually store them into
reduce_res.

Note that nisa.activation can also change the state of the register. It’s user’s responsibility to ensure correct
ordering. It’s the best practice to not mixing the use of activation_reduce and activation.

Reduction axis is not configurable in this API. If the input tile has multiple free axis, the API will reduce across
all of them.
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Mathematically, this API performs the following computation:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓𝑎𝑐𝑡(𝑑𝑎𝑡𝑎 * 𝑠𝑐𝑎𝑙𝑒+ 𝑏𝑖𝑎𝑠)

𝑟𝑒𝑑𝑢𝑐𝑒_𝑟𝑒𝑠 = 𝑟𝑒𝑑𝑢𝑐𝑒_𝑜𝑝(𝑜𝑢𝑡𝑝𝑢𝑡, 𝑎𝑥𝑖𝑠 =< 𝐹𝑟𝑒𝑒𝐴𝑥𝑖𝑠 >)

Estimated instruction cost:
max(MIN_II, N) + MIN_II Scalar Engine cycles, where

• N is the number of elements per partition in data, and
• MIN_II is the minimum instruction initiation interval for small input tiles. MIN_II is roughly 64 engine

cycles.

Parameters
• op – an activation function (see Supported Activation Functions for NKI ISA for sup-

ported functions)
• data – the input tile; layout: (partition axis <= 128, free axis)
• reduce_op – the reduce operation to perform on the free dimension of the activation

result
• reduce_res – a tile of shape (data.shape[0], 1), where data.shape[0] is the parti-

tion axis size of the input data tile. The result of sum(ReductionResult) is written
in-place into the tensor.

• bias – a vector with the same partition axis size as data for broadcast add (after broad-
cast multiply with scale)

• scale – a scalar or a vector with the same partition axis size as data for broadcast
multiply

• dtype – (optional) data type to cast the output type to (see Supported Data Types for
more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
output tile of the activation instruction; layout: same as input data tile

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.isa.tensor_reduce

nki.isa.tensor_reduce(op, data, axis, *, mask=None, dtype=None, negate=False, keepdims=False, **kwargs)
Apply a reduction operation to the free axes of an input data tile using Vector Engine.

The reduction operator is specified in the op input field (see Supported Math Operators for NKI ISA for a list
of supported reduction operators). There are two types of reduction operators: 1) bitvec operators (e.g., bit-
wise_and, bitwise_or) and 2) arithmetic operators (e.g., add, subtract, multiply). For bitvec operators, the in-
put/output data types must be integer types and Vector Engine treats all input elements as bit patterns without any
data type casting. For arithmetic operators, there is no restriction on the input/output data types, but the engine
automatically casts input data types to float32 and performs the reduction operation in float32 math. The float32
reduction results are cast to the target data type specified in the dtype field before written into the output tile. If
the dtype field is not specified, it is default to be the same as input tile data type.

When the reduction op is an arithmetic operator, the instruction can also multiply the output reduction results
by -1.0 before writing into the output tile, at no additional performance cost. This behavior is controlled by the
negate input field.

The reduction axes are specified in the axis field using a list of integer(s) to indicate axis indices. The reduction
axes can contain up to four free axes and must start at the most minor free axis. Since axis 0 is the partition axis in
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a tile, the reduction axes must contain axis 1 (most-minor). In addition, the reduction axes must be consecutive:
e.g., [1, 2, 3, 4] is a legal axis field, but [1, 3, 4] is not.

Since this instruction only supports free axes reduction, the output tile must have the same partition axis size as
the input data tile. To perform a partition axis reduction, we can either:

1. invoke a nki.isa.nc_transpose instruction on the input tile and then this reduce instruction to the
transposed tile, or

2. invoke nki.isa.nc_matmul instructions to multiply a nki.language.ones([128, 1],
dtype=data.dtype) vector with the input tile.

Estimated instruction cost:

Cost (Vector Engine Cy-
cles)

Condition

N/2 both input and output data types are bfloat16 and the reduction operator
is add or maximum

N otherwise

where,
• N is the number of elements per partition in data.
• MIN_II is the minimum instruction initiation interval for small input tiles. MIN_II is roughly 64 engine

cycles.

Parameters
• op – the reduction operator (see Supported Math Operators for NKI ISA for supported

reduction operators)
• data – the input tile to be reduced
• axis – int or tuple/list of ints. The axis (or axes) along which to operate; must be free

dimensions, not partition dimension (0); can only be the last contiguous dim(s) of the
tile: [1], [1,2], [1,2,3], [1,2,3,4]

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

• dtype – (optional) data type to cast the output type to (see Supported Data Types for
more information); if not specified, it will default to be the same as the data type of the
input tile.

• negate – if True, reduction result is multiplied by -1.0; only applicable when op is an
arithmetic operator

• keepdims – If this is set to True, the axes which are reduced are left in the result as
dimensions with size one. With this option, the result will broadcast correctly against
the input array.

Returns
output tile of the reduction result

Example:

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
import numpy as np
...

##################################################################
# Example 1: reduce add tile a of shape (128, 512)
# in the free dimension and return
# reduction result in tile b of shape (128, 1)
##################################################################

(continues on next page)
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i_p_a = nl.arange(128)[:, None]
i_f_a = nl.arange(512)[None, :]

b = nisa.tensor_reduce(np.add, a[i_p_a, i_f_a], axis=[1])

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.isa.tensor_partition_reduce

nki.isa.tensor_partition_reduce(op, data, *, mask=None, dtype=None, **kwargs)
Apply a reduction operation across partitions of an input data tile using GpSimd Engine.

Parameters
• op – the reduction operator (add, max, bitwise_or, bitwise_and)
• data – the input tile to be reduced
• mask – (optional) a compile-time constant predicate that controls whether/how this in-

struction is executed (see NKI API Masking for details)
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

Returns
output tile with reduced result

Example:

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
import numpy as np
...

##################################################################
# Example 1: reduce add tile a of shape (128, 32, 4)
# in the partition dimension and return
# reduction result in tile b of shape (1, 32, 4)
##################################################################
a = nl.load(a_tensor[0:128, 0:32, 0:4])
b = nisa.tensor_partition_reduce(np.add, a)
nl.store(b_tensor[0:1, 0:32, 0:4], b)

##################################################################
# Example 2: reduce add tile a of shape (b, p, f1, ...)
# in the partition dimension p and return
# reduction result in tile b of shape (b, 1, f1, ...)
##################################################################
for i in nl.affine_range(a_tensor.shape[0]):
a = nl.load(a_tensor[i])
b = nisa.tensor_partition_reduce(np.add, a)
nl.store(b_tensor[i], b)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.isa.tensor_tensor

nki.isa.tensor_tensor(data1, data2, op, *, dtype=None, mask=None, engine=engine.unknown, **kwargs)
Perform an element-wise operation of input two tiles using Vector Engine or GpSimd Engine. The two tiles must
have the same partition axis size and the same number of elements per partition.

The element-wise operator is specified using the op field and can be any binary operator supported by NKI (see
Supported Math Operators for NKI ISA for details) that runs on the Vector Engine, or can be np.power/nl.
power that runs on the GpSimd Engine. For bitvec operators, the input/output data types must be integer types
and Vector Engine treats all input elements as bit patterns without any data type casting. For arithmetic operators,
there is no restriction on the input/output data types, but the engine automatically casts input data types to float32
and performs the element-wise operation in float32 math. The float32 results are cast to the target data type
specified in the dtype field before written into the output tile. If the dtype field is not specified, it is default to
be the same as the data type of data1 or data2, whichever has the higher precision.

Since GpSimd Engine cannot access PSUM, the input or output tiles cannot be in PSUM if op is np.power/nl.
power (see NeuronCore-v2 Compute Engines for details). Otherwise, the output tile can be in either SBUF or
PSUM. However, the two input tiles, data1 and data2 cannot both reside in PSUM. The three legal cases are:

1. Both data1 and data2 are in SBUF.
2. data1 is in SBUF, while data2 is in PSUM.
3. data1 is in PSUM, while data2 is in SBUF.

Note, if you need broadcasting capability in the free dimension for either input tile, you should consider using
nki.isa.tensor_scalar API instead, which has better performance than nki.isa.tensor_tensor in general.

Estimated instruction cost:
See below table for tensor_tensor performance when it runs on Vector Engine.

Cost (Vector Engine Cycles) Condition
max(MIN_II, N) one input tile is in PSUM and the other is in SBUF
max(MIN_II, N) all of the below:

• both input tiles are in SBUF,
• input/output data types are all bfloat16,
• the operator is add, multiply or subtract,
• Input tensor data is contiguous along the free dimension

(that is, stride in each partition is 1 element)

max(MIN_II, 2N) otherwise

where,
• N is the number of elements per partition in data1/data2.
• MIN_II is the minimum instruction initiation interval for small input tiles. MIN_II is roughly 64 engine

cycles.

Parameters
• data1 – lhs input operand of the element-wise operation
• data2 – rhs input operand of the element-wise operation
• op – a binary math operator (see Supported Math Operators for NKI ISA for supported

operators)
• mask – (optional) a compile-time constant predicate that controls whether/how this in-

struction is executed (see NKI API Masking for details)
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tiles, or whichever input type has the highest precision (see NKI Type Promotion
for more information);
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• engine – (optional) the engine to use for the operation: nki.isa.vector_engine,
nki.isa.gpsimd_engine or nki.isa.unknown_engine (default, let compiler select best en-
gine based on the input tile shape).

Returns
an output tile of the element-wise operation

Example:

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
from neuronxcc.nki.typing import tensor
...

##################################################################
# Example 1: add two tiles, a and b, of the same
# shape (128, 512) element-wise and get
# the addition result in tile c
##################################################################
a: tensor[128, 512] = nl.load(a_tensor)
b: tensor[128, 512] = nl.load(b_tensor)

c: tensor[128, 512] = nisa.tensor_tensor(a, b, op=nl.add)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.isa.tensor_tensor_scan

nki.isa.tensor_tensor_scan(data0, data1, initial, op0, op1, reverse0=False, reverse1=False, *, dtype=None,
mask=None, **kwargs)

Perform a scan operation of two input tiles using Vector Engine.

Mathematically, the tensor_tensor_scan instruction on Vector Engine performs the following computation per
partition:

# Let's assume we work with numpy, and data0 and data1 are 2D (with shape[0] being␣
→˓the partition axis)
import numpy as np

result = np.ndarray(data0.shape, dtype=data0.dtype)
result[:, 0] = op1(op0(data0[:. 0], initial), data1[:, 0])

for i in range(1, data0.shape[1]):
result[:, i] = op1(op0(data0[:, i], result[:, i-1]), data1[:, i])

The two input tiles (data0 and data1) must have the same partition axis size and the same number of elements
per partition. The third input initial can either be a float32 compile-time scalar constant that will be broad-
casted in the partition axis of data0/data1, or a tile with the same partition axis size as data0/data1 and one
element per partition.

The two input tiles, data0 and data1 cannot both reside in PSUM. The three legal cases are:
1. Both data1 and data2 are in SBUF.
2. data1 is in SBUF, while data2 is in PSUM.
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3. data1 is in PSUM, while data2 is in SBUF.
The scan operation supported by this API has two programmable math operators in op0 and op1 fields. Both
op0 and op1 can be any binary arithmetic operator supported by NKI (see Supported Math Operators for NKI
ISA for details). We can optionally reverse the input operands of op0 by setting reverse0 to True (or op1 by
setting reverse1). Reversing operands is useful for non-commutative operators, such as subtract.

Input/output data types can be any supported NKI data type (see Supported Data Types), but the engine auto-
matically casts input data types to float32 and performs the computation in float32 math. The float32 results are
cast to the target data type specified in the dtype field before written into the output tile. If the dtype field is not
specified, it is default to be the same as the data type of data0 or data1, whichever has the highest precision.

Estimated instruction cost:
max(MIN_II, 2N) Vector Engine cycles, where

• N is the number of elements per partition in data0/data1.
• MIN_II is the minimum instruction initiation interval for small input tiles. MIN_II is roughly 64 engine

cycles.

Parameters
• data0 – lhs input operand of the scan operation
• data1 – rhs input operand of the scan operation
• initial – starting state of the scan; can be a SBUF/PSUM tile with 1 element/partition

or a scalar compile-time constant
• op0 – a binary arithmetic math operator (see Supported Math Operators for NKI ISA

for supported operators)
• op1 – a binary arithmetic math operator (see Supported Math Operators for NKI ISA

for supported operators)
• reverse0 – reverse ordering of inputs to op0; if false, data0 is the lhs of op0; if true,
data0 is the rhs of op0

• reverse1 – reverse ordering of inputs to op1; if false, data1 is the rhs of op1; if true,
data1 is the lhs of op1

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

• dtype – (optional) data type to cast the output type to (see Supported Data Types for
more information); if not specified, it will default to be the same as the data type of the
input tiles, or whichever input type has the highest precision (see NKI Type Promotion
for more information);

Returns
an output tile of the scan operation

Example:

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl

##################################################################
# Example 1: scan two tiles, a and b, of the same
# shape (128, 1024) using multiply/add and get
# the scan result in tile c
##################################################################
c = nl.ndarray(shape=(128, 1024), dtype=nl.float32)

c[:, 0:512] = nisa.tensor_tensor_scan(a[:, 0:512], b[:, 0:512],
initial=0, op0=np.multiply, op1=np.add)

c[:, 512:1024] = nisa.tensor_tensor_scan(a[:, 512:1024], b[:, 512:1024],
(continues on next page)
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initial=c[:, 511],
op0=np.multiply, op1=np.add)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.isa.scalar_tensor_tensor

nki.isa.scalar_tensor_tensor(*, data, op0, operand0, op1, operand1, reverse0=False, reverse1=False,
dtype=None, mask=None, **kwargs)

Apply up to two math operators using Vector Engine: (data <op0> operand0) <op1> operand1.

data input can be an SBUF or PSUM tile of 2D shape. operand0 can be SBUF or PSUM tile of shape (data.
shape[0], 1), i.e., vector, or a compile-time constant scalar. operand1 can be SBUF or PSUM tile of shape
(data.shape[0], data.shape[1]) (i.e., has to match data shape), note that operand1 and data can’t both
be on PSUM.

Estimated instruction cost:

Cost (Vector Engine Cy-
cles)

Condition

N data and operand1 are both bfloat16, op0=nl.subtract and op1=nl.
multiply, and N is even

2*N otherwise

where,
• N is the number of elements per partition in data.

Parameters
• data – the input tile
• op0 – the first math operator used with operand0 (see Supported Math Operators for

NKI ISA for supported operators)
• operand0 – a scalar constant or a tile of shape (data.shape[0], 1), where

data.shape[0] is the partition axis size of the input data tile.
• reverse0 – reverse ordering of inputs to op0; if false, operand0 is the rhs of op0; if

true, operand0 is the lhs of op0.
• op1 – the second math operator used with operand1 (see Supported Math Operators for

NKI ISA for supported operators).
• operand1 – a tile of shape with the same partition and free dimension as data input.
• reverse1 – reverse ordering of inputs to op1; if false, operand1 is the rhs of op1; if

true, operand1 is the lhs of op1.
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
an output tile of (data <op0> operand0) <op1> operand1 computation

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.isa.tensor_scalar

nki.isa.tensor_scalar(data, op0, operand0, reverse0=False, op1=None, operand1=None, reverse1=False, *,
dtype=None, mask=None, engine=engine.unknown, **kwargs)

Apply up to two math operators to the input data tile by broadcasting scalar/vector operands in the free dimension
using Vector or Scalar or GpSimd Engine: (data <op0> operand0) <op1> operand1.

The input data tile can be an SBUF or PSUM tile. Both operand0 and operand1 can be SBUF or PSUM tiles
of shape (data.shape[0], 1), i.e., vectors, or compile-time constant scalars.

op1 and operand1 are optional, but must be None (default values) when unused. Note, performing one operator
has the same performance cost as performing two operators in the instruction.

When the operators are non-commutative (e.g., subtract), we can reverse ordering of the inputs for each operator
through:

• reverse0 = True: tmp_res = operand0 <op0> data
• reverse1 = True: operand1 <op1> tmp_res

The tensor_scalar instruction supports two types of operators: 1) bitvec operators (e.g., bitwise_and) and
2) arithmetic operators (e.g., add). See Supported Math Operators for NKI ISA for the full list of supported
operators. The two operators, op0 and op1, in a tensor_scalar instruction must be of the same type (both
bitvec or both arithmetic). If bitvec operators are used, the tensor_scalar instruction must run on Vector
Engine. Also, the input/output data types must be integer types, and input elements are treated as bit patterns
without any data type casting.

If arithmetic operators are used, the tensor_scalar instruction can run on Vector or Scalar or GpSimd Engine.
However, each engine supports limited arithmetic operators (see :ref:tbl-aluop). The Scalar Engine on trn2
only supports a subset of the operator combination:

• op0=np.multiply and op1=np.add
• op0=np.multiply and op1=None
• op0=add and op1=None

Also, arithmetic operators impose no restriction on the input/output data types, but the engine automatically casts
input data types to float32 and performs the operators in float32 math. The float32 computation results are cast to
the target data type specified in the dtype field before written into the output tile, at no additional performance
cost. If the dtype field is not specified, it is default to be the same as input tile data type.

Estimated instruction cost:
max(MIN_II, N) Vector or Scalar Engine cycles, where

• N is the number of elements per partition in data.
• MIN_II is the minimum instruction initiation interval for small input tiles. MIN_II is roughly 64 engine

cycles.

Parameters
• data – the input tile
• op0 – the first math operator used with operand0 (see Supported Math Operators for

NKI ISA for supported operators)
• operand0 – a scalar constant or a tile of shape (data.shape[0], 1), where

data.shape[0] is the partition axis size of the input data tile
• reverse0 – reverse ordering of inputs to op0; if false, operand0 is the rhs of op0; if

true, operand0 is the lhs of op0
• op1 – the second math operator used with operand1 (see Supported Math Operators for

NKI ISA for supported operators); this operator is optional
• operand1 – a scalar constant or a tile of shape (data.shape[0], 1), where

data.shape[0] is the partition axis size of the input data tile
• reverse1 – reverse ordering of inputs to op1; if false, operand1 is the rhs of op1; if

true, operand1 is the lhs of op1
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• dtype – (optional) data type to cast the output type to (see Supported Data Types for
more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

• engine – (optional) the engine to use for the operation: nki.isa.vector_engine,
nki.isa.scalar_engine, nki.isa.gpsimd_engine (only allowed for rsqrt) or
nki.isa.unknown_engine (default, let compiler select best engine based on the
input tile shape).

Returns
an output tile of (data <op0> operand0) <op1> operand1 computation

Example:

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
import numpy as np
...

##################################################################
# Example 1: subtract 1.0 from all elements of tile a of
# shape (128, 512) and get the output tile in b
##################################################################
i_p = nl.arange(128)[:, None]
i_f = nl.arange(512)[None, :]

b = nisa.tensor_scalar(a[i_p, i_f], np.subtract, 1.0)

##################################################################
# Example 2: broadcast 1.0 into a shape of (128, 512) and subtract
# it with tile c to get output tile d
##################################################################
i_p = nl.arange(128)[:, None]
i_f = nl.arange(512)[None, :]

d = nisa.tensor_scalar(c[i_p, i_f], np.subtract, 1.0, reverse0=True)

##################################################################
# Example 3: broadcast multiply tile e with vector f and
# then broadcast add with scalar 2.5;
# tile e has a shape of (64, 1024) and vector f has a shape of (64, 1)
##################################################################
i_p_ef = nl.arange(64)[:, None]
i_f_e = nl.arange(1024)[None, :]
i_f_f = nl.arange(1)[None, :]

g = nisa.tensor_scalar(e[i_p_ef, i_f_e], op0=np.multiply, operand0=f[i_p_ef, i_f_f],
→˓ op1=np.add, operand1=2.5)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.isa.tensor_scalar_reduce

nki.isa.tensor_scalar_reduce(*, data, op0, operand0, reduce_op, reduce_res, reverse0=False, dtype=None,
mask=None, **kwargs)

Perform the same computation as nisa.tensor_scalar with one math operator and also a reduction along the
free dimension of the nisa.tensor_scalar result using Vector Engine.

Refer to nisa.tensor_scalar for semantics of data/op0/operand0. Unlike regular nisa.tensor_scalar
where two operators are supported, only one operator is supported in this API. Also, op0 can only be arith-
metic operation in Supported Math Operators for NKI ISA. Bitvec operators are not supported in this API.

In addition to nisa.tensor_scalar computation, this API also performs a reduction along the free dimension(s)
of the nisa.tensor_scalar result, at a small additional performance cost. The reduction result is returned in
reduce_res in-place, which must be a SBUF/PSUM tile with the same partition axis size as the input tile data
and one element per partition. The reduce_op can be any of nl.add, nl.subtract, nl.multiply, nl.max
or nl.min.

Reduction axis is not configurable in this API. If the input tile has multiple free axis, the API will reduce across
all of them.

𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑑𝑎𝑡𝑎 < 𝑜𝑝0 > 𝑜𝑝𝑒𝑟𝑎𝑛𝑑0

𝑟𝑒𝑑𝑢𝑐𝑒_𝑟𝑒𝑠 = 𝑟𝑒𝑑𝑢𝑐𝑒_𝑜𝑝(𝑑𝑠𝑡, 𝑎𝑥𝑖𝑠 =< 𝐹𝑟𝑒𝑒𝐴𝑥𝑖𝑠 >)

Estimated instruction cost:
max(MIN_II, N) + MIN_II Vector Engine cycles, where

• N is the number of elements per partition in data, and
• MIN_II is the minimum instruction initiation interval for small input tiles. MIN_II is roughly 64 engine

cycles.

Parameters
• data – the input tile
• op0 – the math operator used with operand0 (any arithmetic operator in Supported Math

Operators for NKI ISA is allowed)
• operand0 – a scalar constant or a tile of shape (data.shape[0], 1), where

data.shape[0] is the partition axis size of the input data tile
• reverse0 – (not supported yet) reverse ordering of inputs to op0; if false, operand0

is the rhs of op0; if true, operand0 is the lhs of op0. <– currently not supported yet.
• reduce_op – the reduce operation to perform on the free dimension of data <op0>
operand0

• reduce_res – a tile of shape (data.shape[0], 1), where data.shape[0] is the
partition axis size of the input data tile. The result of reduce_op(data <op0>
operand0) is written in-place into the tile.

• dtype – (optional) data type to cast the output type to (see Supported Data Types for
more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
an output tile of (data <op0> operand0) computation

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.isa.tensor_copy

nki.isa.tensor_copy(src, *, mask=None, dtype=None, engine=engine.unknown, **kwargs)
Create a copy of src tile within NeuronCore on-chip SRAMs using Vector, Scalar or GpSimd Engine.

The output tile has the same partition axis size and also the same number of elements per partition as the input
tile src.

All three compute engines, Vector, Scalar and GpSimd Engine can perform tensor copy. However, their copy
behavior is slightly different across engines:

• Scalar Engine on NeuronCore-v2 performs copy by first casting the input tile to FP32 internally and then
casting from FP32 to the output dtype (dtype, or src.dtype if dtype is not specified). Therefore, users
should be cautious with assigning this instruction to Scalar Engine when the input data type cannot be
precisely cast to FP32 (e.g., INT32).

• Both GpSimd and Vector Engine can operate in two modes: (1) bit-accurate copy when input and output
data types are the same or (2) intermediate FP32 cast when input and output data types differ, similar to
Scalar Engine.

In addition, since GpSimd Engine cannot access PSUM in NeuronCore, Scalar or Vector Engine must be chosen
when the input or output tile is in PSUM (see NeuronCore-v2 Compute Engines for details). By default, this API
returns a tile in SBUF, unless the returned value is assigned to a pre-declared PSUM tile.

Estimated instruction cost:
max(MIN_II, N) engine cycles, where N is the number of elements per partition in the input tile, and MIN_II
is the minimum instruction initiation interval for small input tiles. MIN_II is roughly 64 engine cycles.

Parameters
• src – the source of copy, must be a tile in SBUF or PSUM.
• mask – (optional) a compile-time constant predicate that controls whether/how this in-

struction is executed (see NKI API Masking for details)
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• engine – (optional) the engine to use for the operation: nki.isa.vector_engine,
nki.isa.scalar_engine, nki.isa.gpsimd_engine or nki.isa.unknown_engine (default,
compiler selects best engine based on engine workload).

Returns
a tile with the same content and partition axis size as the src tile.

Example:

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
...

############################################################################
# Example 1: Copy over the tensor to another tensor using the Vector engine.
############################################################################
x = nl.load(in_tensor)
x_copy = nisa.tensor_copy(x, engine=nisa.vector_engine)
nl.store(out_tensor, value=x_copy)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.isa.tensor_copy_dynamic_src

nki.isa.tensor_copy_dynamic_src(src, *, mask=None, dtype=None, engine=engine.unknown, **kwargs)
Create a copy of src tile within NeuronCore on-chip SRAMs using Vector or Scalar or GpSimd Engine, with
src located at a dynamic offset within each partition.

Both source and destination tiles can be in either SBUF or PSUM. By default, this API returns a tile in SBUF,
unless the returned value is assigned to a pre-declared PSUM tile.

The source and destination tiles must also have the same number of partitions and the same number of elements
per partition.

The dynamic offset must be a scalar value resided in SBUF. If you have a list of dynamic offsets for gathering
tiles in SBUF/PSUM, you may loop over each offset and call tensor_copy_dynamic_src once per offset.

Estimated instruction cost:
max(MIN_II_DYNAMIC, N) engine cycles, where:

• N is the number of elements per partition in the src tile,
• MIN_II_DYNAMIC is the minimum instruction initiation interval for instructions with dynamic source lo-

cation. MIN_II_DYNAMIC is roughly 600 engine cycles.

Parameters
• src – the source of copy, must be a tile in SBUF or PSUM that is dynamically indexed

within each partition.
• mask – (optional) a compile-time constant predicate that controls whether/how this in-

struction is executed (see NKI API Masking for details)
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• engine – (optional) the engine to use for the operation: nki.isa.vector_engine,
nki.isa.gpsimd_engine, nki.isa.scalar_engine or nki.isa.unknown_engine (default, let
compiler select best engine).

• return – the modified destination of copy.

Example:

import neuronxcc.nki.typing as nt
import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
...

####################################################################################
→˓#####
# TensorCopyDynamicSrc example 0:
# - src_tensor in HBM of shape [128, 512]
# - offsets in HBM of shape [1, 64] (with values [4, 5, 6, 7, ...])
# - Gather tiles of shape [128, 1] from src_tensor into out_tensor using offsets
####################################################################################
→˓#####

# Load src_tensor and offsets into SBUF
src_tensor_sbuf: nt.tensor[128, 512] = nl.load(src_tensor)
offsets_sbuf: nt.tensor[1, 64] = nl.load(offsets)

(continues on next page)
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(continued from previous page)

# Copy into output tensor in SBUF
out_sbuf: nt.tensor[128, 64] = nl.ndarray([128, 64], dtype=src_tensor.dtype,

buffer=nl.sbuf)

# Static indices to access a tile of shape [128, 1];
# Add dynamic offsets to iy for tensor_copy_dynamic_src
ix, iy = nl.mgrid[0:128, 0:1]

for idx in nl.affine_range(offsets_sbuf.shape[1]):
out_sbuf[ix, idx] = nisa.tensor_copy_dynamic_src(

src_tensor_sbuf[ix, offsets_sbuf[0, idx] + iy])

nl.store(out_tensor, value=out_sbuf)
...

import neuronxcc.nki.typing as nt
import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
...

####################################################################################
→˓#####
# TensorCopyDynamicSrc example 1:
# - src_tensor in HBM of shape [128, 512, 4]
# - offsets in HBM of shape [1 x 8] (with values [4, 5, 6, 7, ...]) to index into
# second axis of src_tensor
# - Gather tiles of shape [128, 4] from src_tensor into out_tensor using offsets
####################################################################################
→˓#####

# Load src_tensor and offsets into SBUF
src_tensor_sbuf: nt.tensor[128, 512, 4] = nl.load(src_tensor)
offsets_sbuf: nt.tensor[1, 8] = nl.load(offsets)

# Copy into output tensor in SBUF
out_sbuf: nt.tensor[128, 8, 4] = nl.ndarray([128, 8, 4], dtype=src_tensor.dtype,

buffer=nl.sbuf)

# Static indices to access a tile of shape [128, 1, 4];
# Use dynamic offsets directly to index the second axis for tensor_copy_dynamic_src
ix, _, iz = nl.mgrid[0:128, 0:1, 0:4]

for idx in nl.affine_range(offsets.shape[1]):
out_sbuf[ix, idx, iz] = nisa.tensor_copy_dynamic_src(

src_tensor_sbuf[ix, offsets_sbuf[0, idx], iz])

nl.store(out_tensor, value=out_sbuf)
...

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.isa.tensor_copy_dynamic_dst

nki.isa.tensor_copy_dynamic_dst(*, dst, src, mask=None, dtype=None, engine=engine.unknown, **kwargs)
Create a copy of src tile within NeuronCore on-chip SRAMs using Vector or Scalar or GpSimd Engine, with
dst located at a dynamic offset within each partition.

Both source and destination tiles can be in either SBUF or PSUM.

The source and destination tiles must also have the same number of partitions and the same number of elements
per partition.

The dynamic offset must be a scalar value resided in SBUF. If you have a list of dynamic offsets for scattering
tiles in SBUF/PSUM, you may loop over each offset and call tensor_copy_dynamic_dst once per offset.

Estimated instruction cost:
max(MIN_II_DYNAMIC, N) engine cycles, where:

• N is the number of elements per partition in the src tile,
• MIN_II_DYNAMIC is the minimum instruction initiation interval for instructions with dynamic destination

location. MIN_II_DYNAMIC is roughly 600 engine cycles.

Parameters
• dst – the destination of copy, must be a tile in SBUF of PSUM that is dynamically

indexed within each dimension.
• src – the source of copy, must be a tile in SBUF or PSUM.
• mask – (optional) a compile-time constant predicate that controls whether/how this in-

struction is executed (see NKI API Masking for details)
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• engine – (optional) the engine to use for the operation: nki.isa.vector_engine,
nki.isa.gpsimd_engine, nki.isa.scalar_engine or nki.isa.unknown_engine (default, let
compiler select best engine).

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.isa.tensor_copy_predicated

nki.isa.tensor_copy_predicated(*, src, dst, predicate, mask=None, dtype=None, reverse_pred=False,
**kwargs)

Conditionally copy elements from the src tile to the destination tile on SBUF / PSUM based on a predicate
using Vector Engine.

This instruction provides low-level control over conditional data movement on NeuronCores, optimized for sce-
narios where only selective copying of elements is needed. Either src or predicate may be in PSUM, but not
both simultaneously. Both src and predicate are permitted to be in SBUF.

Shape and data type constraints:
1. src (if it is a tensor), dst, and predicate must occupy the same number of partitions and same number

of elements per partition.
2. predicate must be of type uint8, uint16, or uint32.
3. src and dst must share the same data type.

Behavior:
• Where predicate is True: The corresponding elements from src are copied to dst tile. If src is a scalar, the

scalar is copied to the dst tile.
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• Where predicate is False: The corresponding values in dst tile are unmodified
Estimated instruction cost:

Cost (Vector Engine Cycles) Condition
max(MIN_II, N) If src is from SBUF and predicate is from PSUM or the other

way around
max(MIN_II, 2N) If both src and dst are in SBUF

• N is the number of elements per partition in src tile
• MIN_II is the minimum instruction initiation interval for small input tiles. MIN_II is roughly 64 engine

cycles.

Parameters
• src – The source tile or number to copy elements from when predicate is True
• dst – The destination tile to copy elements to
• predicate – A tile that determines which elements to copy
• mask – (optional) a compile-time constant predicate that controls whether/how this in-

struction is executed (see NKI API Masking for details)
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• reverse_pred – A boolean that reverses the effect of predicate.

Example:

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
from neuronxcc.nki.typing import tensor

##################################################################
# Example 1: Conditionally copies elements from the `on_true` tile to
# SBUF/PSUM destination tile using Vector Engine, where copying occurs
# only at positions where the predicate evaluates to True.
##################################################################

...
pre_tile: tensor[128, 512] = nl.load(predicate)
src_tile: tensor[128, 512] = nl.load(on_true_tensor)

ix, iy = nl.mgrid[0:128, 0:512]
dst_tile: tensor[128, 512] = nl.zeros(shape=src_tile.shape, dtype=src_tile.dtype)
dst_tile[ix, iy] = nl.load(on_false_tensor)

nisa.tensor_copy_predicated(src=src_tile, dst=dst_tile, predicate=pre_tile)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.isa.reciprocal

nki.isa.reciprocal(data, *, dtype=None, mask=None, **kwargs)
Compute reciprocal of each element in the input data tile using Vector Engine.

Estimated instruction cost:
max(MIN_II, 8*N)Vector Engine cycles, where N is the number of elements per partition in data, and MIN_II
is the minimum instruction initiation interval for small input tiles. MIN_II is roughly 64 engine cycles.

Parameters
• data – the input tile
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
an output tile of reciprocal computation

Example:

import neuronxcc.nki as nki
import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
...

x = nl.load(in_tensor[nl.mgrid[0:128, 0:512]])

y = nisa.reciprocal(x)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.isa.iota

nki.isa.iota(expr, dtype, *, mask=None, **kwargs)
Build a constant literal in SBUF using GpSimd Engine, rather than transferring the constant literal values from
the host to device.

The iota instruction takes an affine expression of nki.language.arange() indices as the input pattern to gen-
erate constant index values (see examples below for more explanation). The index values are computed in 32-bit
integer math. The GpSimd Engine is capable of casting the integer results into any desirable data type (specified
by dtype) before writing them back to SBUF, at no additional performance cost.

Estimated instruction cost:
150 + N GpSimd Engine cycles, where N is the number of elements per partition in the output tile.

Parameters
• expr – an input affine expression of nki.language.arange()
• dtype – output data type of the generated constant literal (see Supported Data Types

for more information)
• mask – (optional) a compile-time constant predicate that controls whether/how this in-

struction is executed (see NKI API Masking for details)
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Returns
an output tile in SBUF

Example:

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
from neuronxcc.nki.typing import tensor

##################################################################
# Example 1: Generate tile a of 512 constant values in SBUF partition 0
# that start at 0 and increment by 1:
##################################################################
# a = [0, 1, ..., 511]
expr_a = nl.arange(0, 512)[None, :]
a: tensor[1, 512] = nisa.iota(expr_a, dtype=nl.int32)

##################################################################
# Example 2: Generate tile b of 128 constant values across SBUF partitions
# that start at 0 and increment by 1, with one value per partition:
# b = [[0],
# [1],
# ...,
# [127]]
##################################################################
expr_b = nl.arange(0, 128)[:, None]
b: tensor[128, 1] = nisa.iota(expr_b, dtype=nl.int32)

##################################################################
# Example 3: Generate tile c of 512 constant values in SBUF partition 0
# that start at 0 and decrement by 1:
# c = [0, -1, ..., -511]
##################################################################
expr_c = expr_a * -1
c: tensor[1, 512] = nisa.iota(expr_c, dtype=nl.int32)

##################################################################
# Example 4: Generate tile d of 128 constant values across SBUF
# partitions that start at 5 and increment by 2
##################################################################
# d = [[5],
# [7],
# ...,
# [259]]
expr_d = 5 + expr_b * 2
d: tensor[128, 1] = nisa.iota(expr_d, dtype=nl.int32)

##################################################################
# Example 5: Generate tile e of shape [128, 512] by
# broadcast-add expr_a and expr_b
# e = [[0, 1, ..., 511],
# [1, 2, ..., 512],
# ...
# [127, 2, ..., 638]]

(continues on next page)
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##################################################################
e: tensor[128, 512] = nisa.iota(expr_a + expr_b, dtype=nl.int32)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.isa.dropout

nki.isa.dropout(data, prob, *, mask=None, dtype=None, **kwargs)
Randomly replace some elements of the input tile data with zeros based on input probabilities using Vector
Engine. The probability of replacing input elements with zeros (i.e., drop probability) is specified using the
prob field: - If the probability is 1.0, all elements are replaced with zeros. - If the probability is 0.0, all elements
are kept with their original values.

The prob field can be a scalar constant or a tile of shape (data.shape[0], 1), where each partition contains
one drop probability value. The drop probability value in each partition is applicable to the input data elements
from the same partition only.

Data type of the input data tile can be any valid NKI data types (see Supported Data Types for more information).
However, data type of prob has restrictions based on the data type of data:

• If data type of data is any of the integer types (e.g., int32, int16), prob data type must be float32
• If data type of data is any of the float types (e.g., float32, bfloat16), prob data can be any valid float type

The output data type of this instruction is specified by the dtype field. The output data type must match the input
data type of data if input data type is any of the integer types. Otherwise, output data type can be any valid NKI
data types. If output data type is not specified, it is default to be the same as input data type.

Estimated instruction cost:
max(MIN_II, N) Vector Engine cycles, where N is the number of elements per partition in data, and MIN_II
is the minimum instruction initiation interval for small input tiles. MIN_II is roughly 64 engine cycles.

Parameters
• data – the input tile
• prob – a scalar or a tile of shape (data.shape[0], 1) to indicate the probability of

replacing elements with zeros
• mask – (optional) a compile-time constant predicate that controls whether/how this in-

struction is executed (see NKI API Masking for details)
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

Returns
an output tile of the dropout result

Example:

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
from neuronxcc.nki.typing import tensor

###########################################################################
# Example 1: From an input tile a of shape [128, 512], dropout its values
# with probabilities in tile b of shape [128, 1] and store the result in c.
###########################################################################
a: tensor[128, 512] = nl.load(a_tensor)

(continues on next page)
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b: tensor[128, 1] = nl.load(b_tensor)

c: tensor[128, 512] = nisa.dropout(a, prob=b)

nl.store(c_tensor, c)

######################################################
# Example 2: From an input tile a, dropout its values
# with probability of 0.2 and store the result in b.
######################################################
a = nl.load(in_tensor)

b = nisa.dropout(a, prob=0.2)

nl.store(out_tensor, b)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.isa.affine_select

nki.isa.affine_select(pred, on_true_tile, on_false_value, *, mask=None, dtype=None, **kwargs)
Select elements between an input tile on_true_tile and a scalar value on_false_value according to a boolean
predicate tile using GpSimd Engine. The predicate tile is calculated on-the-fly in the engine by evaluating an
affine expression element-by-element as indicated in pred.

pred must meet the following requirements:
• It must not depend on any runtime variables that can’t be resolved at compile-time.
• It can’t be multiple masks combined using logical operators such as & and |.

For a complex predicate that doesn’t meet the above requirements, consider using nl.where.

The input tile on_true_tile, the calculated boolean predicate tile expressed by pred, and the returned output
tile of this instruction must have the same shape. If the predicate value of a given position is True, the corre-
sponding output element will take the element from on_true_tile in the same position. If the predicate value
of a given position is False, the corresponding output element will take the value of on_false_value.

A common use case for affine_select is to apply a causal mask on the attention scores for transformer decoder
models.

This instruction allows any float or 8-bit/16-bit integer data types for both the input data tile and output tile (see
Supported Data Types for more information). The output tile data type is specified using the dtype field. If
dtype is not specified, the output data type will be the same as the input data type of data. However, the data
type of on_false_value must be float32, regardless of the input/output tile data types.

Estimated instruction cost:
GPSIMD_START + N GpSimd Engine cycles, where N is the number of elements per partition in on_true_tile
and GPSIMD_START is the instruction startup overhead on GpSimdE, roughly 150 engine cycles.

Parameters
• pred – an affine expression that defines the boolean predicate
• on_true_tile – an input tile for selection with a True predicate value
• on_false_value – a scalar value for selection with a False predicate value
• mask – (optional) a compile-time constant predicate that controls whether/how this in-

struction is executed (see NKI API Masking for details)
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• dtype – (optional) data type to cast the output type to (see Supported Data Types for
more information); if not specified, it will default to be the same as the data type of the
input tiles, or whichever input type has the highest precision (see NKI Type Promotion
for more information);

Returns
an output tile with values selected from either on_true_tile or on_false_value according
to the following equation: output[x] = (pred[x] > 0) ? on_true_tile[x] : on_false_value

Example:

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl

##################################################################
# Example 1: Take tile a of shape [128, 128] and replace its
# upper triangle with -9984.0;
##################################################################
ix, iy = nl.mgrid[0:128, 0:128]
a = nl.load(a_tensor[ix, iy])

b = nisa.affine_select(pred=(iy <ix), on_true_tile=a[ix, iy], on_false_value=-9984.
→˓0)

nl.store(b_tensor[ix, iy], b)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.isa.range_select

nki.isa.range_select(*, on_true_tile, comp_op0, comp_op1, bound0, bound1, reduce_cmd=reduce_cmd.idle,
reduce_res=None, reduce_op=<function amax>, range_start=0,
on_false_value=<property object>, mask=None, dtype=None, **kwargs)

Select elements from on_true_tile based on comparison with bounds using Vector Engine.

For each element in on_true_tile, compares its free dimension index + range_start against bound0 and
bound1 using the specified comparison operators (comp_op0 and comp_op1). If both comparisons evaluate to
True, copies the element to the output; otherwise uses on_false_value.

Additionally performs a reduction operation specified by reduce_op on the results, storing the reduction result
in reduce_res.

Note on numerical stability:
In self-attention, we often have this instruction sequence: range_select (VectorE) -> reduce_res ->
activation (ScalarE). When range_select outputs a full row of fill_value, caution is needed to avoid
NaN in the activation instruction that subtracts the output of range_select by reduce_res (max value):

• If dtype and reduce_res are both FP32, we should not hit any NaN issue since FP32_MIN - FP32_MIN
= 0. Exponentiation on 0 is stable (1.0 exactly).

• If dtype is FP16/BF16/FP8, the fill_value in the output tile will become -INF since HW performs a
downcast from FP32_MIN to a smaller dtype. In this case, you must make sure reduce_res uses FP32
dtype to avoid NaN in activation. NaN can be avoided because activation always upcasts input
tiles to FP32 to perform math operations: -INF - FP32_MIN = -INF. Exponentiation on -INF is stable
(0.0 exactly).

Constraints:

1270 Chapter 7. Compiler



AWS Neuron

The comparison operators must be one of:
• np.equal
• np.less
• np.less_equal
• np.greater
• np.greater_equal

Partition dim sizes must match across on_true_tile, bound0, and bound1:
• bound0 and bound1 must have one element per partition
• on_true_tile must be one of the FP dtypes, and bound0/bound1 must be FP32 types.

The comparison with bound0, bound1, and free dimension index is done in FP32. Make sure range_start +
free dimension index is within 2^24 range.

Estimated instruction cost:
max(MIN_II, N) Vector Engine cycles, where:

• N is the number of elements per partition in on_true_tile, and
• MIN_II is the minimum instruction initiation interval for small input tiles.
• MIN_II is roughly 64 engine cycles.

Numpy equivalent:

indices = np.zeros(on_true_tile.shape)
indices[:] = range_start + np.arange(on_true_tile[0].size)

mask = comp_op0(indices, bound0) & comp_op1(indices, bound1)
select_out_tile = np.where(mask, on_true_tile, on_false_value)
reduce_tile = reduce_op(select_out_tile, axis=1, keepdims=True)

Parameters
• on_true_tile – input tile containing elements to select from
• on_false_value – constant value to use when selection condition is False. Due to

HW constraints, this must be FP32_MIN FP32 bit pattern
• comp_op0 – first comparison operator
• comp_op1 – second comparison operator
• bound0 – tile with one element per partition for first comparison
• bound1 – tile with one element per partition for second comparison
• reduce_op – reduction operator to apply on across the selected output. Currently only
np.max is supported.

• reduce_res – optional tile to store reduction results.
• range_start – starting base offset for index array for the free dimension of
on_true_tile Defaults to 0, and must be a compiler time integer.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

• dtype – (optional) data type to cast the output type to (see Supported Data Types for
more information); if not specified, it will default to be the same as the data type of the
input tile.

Returns
output tile with selected elements

Example:

import neuronxcc.nki as nki
import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
import numpy as np
...

(continues on next page)
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##################################################################
# Example 1: # Select elements where
# bound0 <= range_start + index < bound1 and compute max reduction
#
# on_false_value must be nl.fp32.min
##################################################################
on_true_tile = nl.load(on_true[...])
bound0_tile = nl.load(bound0[...])
bound1_tile = nl.load(bound1[...])

reduce_res_tile = nl.ndarray((on_true.shape[0], 1), dtype=nl.float32, buffer=nl.
→˓sbuf)
result = nl.ndarray(on_true.shape, dtype=nl.float32, buffer=nl.sbuf)

result[...] = nisa.range_select(
on_true_tile=on_true_tile,
comp_op0=compare_op0,
comp_op1=compare_op1,
bound0=bound0_tile,
bound1=bound1_tile,
reduce_cmd=nisa.reduce_cmd.reset_reduce,
reduce_res=reduce_res_tile,
reduce_op=np.max,
range_start=range_start,
on_false_value=nl.fp32.min

)

nl.store(select_res[...], value=result[...])
nl.store(reduce_result[...], value=reduce_res_tile[...])

Alternatively, reduce_cmd can be used to chain multiple calls to the same accumulation register to accumulate
across multiple range_select calls. For example:

import neuronxcc.nki as nki
import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
import numpy as np
...

##################################################################
# Example 2.a: Initialize reduction with first range_select
# Notice we don't pass reduce_res since the accumulation
# register keeps track of the accumulation until we're ready to
# read it. Also we use reset_reduce in order to "clobber" or zero
# out the accumulation register before we start accumulating.
#
# Note: Since the type of these tensors are fp32, we use nl.fp32.min
# for on_false_value due to HW constraints.
##################################################################
on_true_tile = nl.load(on_true[...])
bound0_tile = nl.load(bound0[...])

(continues on next page)
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bound1_tile = nl.load(bound1[...])

reduce_res_sbuf = nl.ndarray((on_true.shape[0], 1), dtype=np.float32, buffer=nl.
→˓sbuf)
result_sbuf = nl.ndarray(on_true.shape, dtype=np.float32, buffer=nl.sbuf)

result_sbuf[...] = nisa.range_select(
on_true_tile=on_true_tile,
comp_op0=compare_op0,
comp_op1=compare_op1,
bound0=bound0_tile,
bound1=bound1_tile,
reduce_cmd=nisa.reduce_cmd.reset_reduce,
reduce_op=np.max,
range_start=range_start,
on_false_value=nl.fp32.min

)

##################################################################
# Example 2.b: Chain multiple range_select operations
# with reduction in an affine loop. Adding ones just lets us ensure the reduction
# gets updated with new values.
##################################################################
ones = nl.full(on_true.shape, fill_value=1, dtype=np.float32, buffer=nl.sbuf)
# we are going to loop as if we're tiling on the partition dimension
iteration_step_size = on_true_tile.shape[0]

# Perform chained operations using an affine loop index for range_start
for i in range(1, 2):

# Update input values
on_true_tile[...] = nl.add(on_true_tile, ones)

# Continue reduction with updated values
# notice, we still don't have reduce_res specified
result_sbuf[...] = nisa.range_select(

on_true_tile=on_true_tile,
comp_op0=compare_op0,
comp_op1=compare_op1,
bound0=bound0_tile,
bound1=bound1_tile,
reduce_cmd=nisa.reduce_cmd.reduce,
reduce_op=np.max,
# we can also use index expressions for setting the start of the range
range_start=range_start + (i * iteration_step_size),
on_false_value=nl.fp32.min

)

range_start = range_start + (2 * iteration_step_size)
##################################################################
# Example 2.c: Final iteration, we actually want the results to
# return to the user so we pass reduce_res argument so the
# reduction will be written from the accumulation

(continues on next page)
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# register to reduce_res_tile
##################################################################
on_true_tile[...] = nl.add(on_true_tile, ones)
result_sbuf[...] = nisa.range_select(

on_true_tile=on_true_tile,
comp_op0=compare_op0,
comp_op1=compare_op1,
bound0=bound0_tile,
bound1=bound1_tile,
reduce_cmd=nisa.reduce_cmd.reduce,
reduce_res=reduce_res_sbuf[...],
reduce_op=np.max,
range_start=range_start,
on_false_value=nl.fp32.min

)

nl.store(select_res[...], value=result_sbuf[...])
nl.store(reduce_result[...], value=reduce_res_sbuf[...])

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.isa.memset

nki.isa.memset(shape, value, dtype, *, mask=None, engine=engine.unknown, **kwargs)
Initialize a tile filled with a compile-time constant value using Vector or GpSimd Engine. The shape of the tile
is specified in the shape field and the initialized value in the value field. The memset instruction supports all
valid NKI dtypes (see Supported Data Types).

Parameters
• shape – the shape of the output tile; layout: (partition axis, free axis). Note that memset

ignores nl.par_dim() and always treats the first dimension as the partition dimension.
• value – the constant value to initialize with
• dtype – data type of the output tile (see Supported Data Types for more information)
• mask – (optional) a compile-time constant predicate that controls whether/how this in-

struction is executed (see NKI API Masking for details)
• engine – specify which engine to use for memset: nki.isa.vector_engine or nki.
isa.gpsimd_engine ; nki.isa.unknown_engine by default, lets compiler select
the best engine for the given input tile shape

Returns
a tile with shape shape whose elements are initialized to value.

Estimated instruction cost:
Given N is the number of elements per partition in the output tile, and MIN_II is the minimum instruction
initiation interval for small input tiles. MIN_II is roughly 64 engine cycles.

• If the initialized value is zero and output data type is bfloat16/float16, max(MIN_II, N/2) Vector Engine
cycles;

• Otherwise, max(MIN_II, N) Vector Engine cycles
Example:

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl

(continues on next page)
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...

##################################################################
# Example 1: Initialize a float32 tile a of shape (128, 128)
# with a value of 0.2
##################################################################
a = nisa.memset(shape=(128, 128), value=0.2, dtype=nl.float32)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.isa.bn_stats

nki.isa.bn_stats(data, *, mask=None, dtype=None, **kwargs)
Compute mean- and variance-related statistics for each partition of an input tile data in parallel using Vector
Engine.

The output tile of the instruction has 6 elements per partition:
• the count of the even elements (of the input tile elements from the same partition)
• the mean of the even elements
• variance * count of the even elements
• the count of the odd elements
• the mean of the odd elements
• variance * count of the odd elements

To get the final mean and variance of the input tile, we need to pass the above bn_stats instruction output into
the bn_aggr instruction, which will output two elements per partition:

• mean (of the original input tile elements from the same partition)
• variance

Due to hardware limitation, the number of elements per partition (i.e., free dimension size) of the input data
must not exceed 512 (nl.tile_size.bn_stats_fmax). To calculate per-partition mean/variance of a tensor with more
than 512 elements in free dimension, we can invoke bn_stats instructions on each 512-element tile and use a
single bn_aggr instruction to aggregate bn_stats outputs from all the tiles. Refer to Example 2 for an example
implementation.

Vector Engine performs the above statistics calculation in float32 precision. Therefore, the engine automatically
casts the input data tile to float32 before performing float32 computation and is capable of casting the float32
computation results into another data type specified by the dtype field, at no additional performance cost. If
dtype field is not specified, the instruction will cast the float32 results back to the same data type as the input
data tile.

Estimated instruction cost:
max(MIN_II, N) Vector Engine cycles, where N is the number of elements per partition in data and MIN_II
is the minimum instruction initiation interval for small input tiles. MIN_II is roughly 64 engine cycles.

Parameters
• data – the input tile (up to 512 elements per partition)
• mask – (optional) a compile-time constant predicate that controls whether/how this in-

struction is executed (see NKI API Masking for details)
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

Returns
an output tile with 6-element statistics per partition
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Example:

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
from neuronxcc.nki.typing import tensor

##################################################################
# Example 1: Calculate the mean and variance for each partition
# of tile a with shape (128, 128)
##################################################################
a: tensor[128, 128] = nl.load(a_tensor)
stats_a: tensor[128, 6] = nisa.bn_stats(a)
mean_var_a: tensor[128, 2] = nisa.bn_aggr(stats_a)

# Extract mean and variance
mean_a = mean_var_a[:, 0]
var_a = mean_var_a[:, 1]
nl.store(mean_a_tensor, mean_a)
nl.store(var_a_tensor, var_a)

# ##################################################################
# # Example 2: Calculate the mean and variance for each partition of
# # tile b with shape [128, 1024]
# ##################################################################
b: tensor[128, 1024] = nl.load(b_tensor)

# Run bn_stats in two tiles because b has 1024 elements per partition,
# but bn_stats has a limitation of nl.tile_size.bn_stats_fmax
# Initialize a bn_stats output tile with shape of [128, 6*2] to
# hold outputs of two bn_stats instructions
stats_b = nl.ndarray((128, 6 * 2), dtype=nl.float32)
bn_tile = nl.tile_size.bn_stats_fmax
ix, iy = nl.mgrid[0:128, 0:bn_tile]
iz, iw = nl.mgrid[0:128, 0:6]

for i in range(1024 // bn_tile):
stats_b[iz, i * 6 + iw] = nisa.bn_stats(b[ix, i * bn_tile + iy], dtype=nl.float32)

mean_var_b = nisa.bn_aggr(stats_b)

# Extract mean and variance
mean_b = mean_var_b[:, 0]
var_b = mean_var_b[:, 1]

nl.store(mean_b_tensor, mean_b)
nl.store(var_b_tensor, var_b)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.isa.bn_aggr

nki.isa.bn_aggr(data, *, mask=None, dtype=None, **kwargs)
Aggregate one or multiple bn_stats outputs to generate a mean and variance per partition using Vector Engine.

The input data tile effectively has an array of (count, mean, variance*count) tuples per partition pro-
duced by bn_stats instructions. Therefore, the number of elements per partition of data must be a modulo of
three.

Note, if you need to aggregate multiple bn_stats instruction outputs, it is recommended to declare a SBUF
tensor and then make each bn_stats instruction write its output into the SBUF tensor at different offsets (see
example implementation in Example 2 in bn_stats).

Vector Engine performs the statistics aggregation in float32 precision. Therefore, the engine automatically casts
the input data tile to float32 before performing float32 computation and is capable of casting the float32 com-
putation results into another data type specified by the dtype field, at no additional performance cost. If dtype
field is not specified, the instruction will cast the float32 results back to the same data type as the input data tile.

Estimated instruction cost:
max(MIN_II, 13*(N/3)) Vector Engine cycles, where N is the number of elements per partition in data and
MIN_II is the minimum instruction initiation interval for small input tiles. MIN_II is roughly 64 engine cycles.

Parameters
• data – an input tile with results of one or more bn_stats
• mask – (optional) a compile-time constant predicate that controls whether/how this in-

struction is executed (see NKI API Masking for details)
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

Returns
an output tile with two elements per partition: a mean followed by a variance

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.isa.local_gather

nki.isa.local_gather(src_buffer, index, num_elem_per_idx=1, num_valid_indices=None, *, mask=None)
Gather SBUF data in src_buffer using index on GpSimd Engine.

Each of the eight GpSimd cores in GpSimd Engine connects to 16 contiguous SBUF partitions (e.g., core[0] con-
nected to partition[0:16]) and performs gather from the connected 16 SBUF partitions independently in parallel.
The indices used for gather on each core should also come from the same 16 connected SBUF partitions.

During execution of the instruction, each GpSimd core reads a 16-partition slice from index, flattens all indices
into a 1D array indices_1d (along the partition dimension first). By default with no num_valid_indices
specified, each GpSimd core will treat all indices from its corresponding 16-partition index slice as valid indices.
However, when the number of valid indices per core is not a multiple of 16, users can explicitly specify the valid
index count per core in num_valid_indices. Note, num_valid_indices must not exceed the total element
count in each 16-partition index slice (i.e., num_valid_indices <= index.size / (index.shape[0] /
16)).

Next, each GpSimd core uses the flattened indices_1d indices as partition offsets to gather from the connected
16-partition slice of src_buffer. Optionally, this API also allows gathering of multiple contiguous elements
starting at each index to improve gather throughput, as indicated by num_elem_per_idx. Behavior of out-of-
bound index access is undefined.
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Even though all eight GpSimd cores can gather with completely different indices, a common use case for this
API is to make all cores gather with the same set of indices (i.e., partition offsets). In this case, users can generate
indices into 16 partitions, replicate them eight times to 128 partitions and then feed them into local_gather.

As an example, if src_buffer is (128, 512) in shape and index is (128, 4) in shape, where the partition
dimension size is 128, local_gather effectively performs the following operation:

num_gpsimd_cores = 8
num_partitions_per_core = 16

src_buffer = np.random.random_sample([128, 512, 4]).astype(np.float32) * 100
index_per_core = np.random.randint(low=0, high=512, size=(16, 4), dtype=np.uint16)
# replicate 8 times for 8 GpSimd cores
index = np.tile(index_per_core, (num_gpsimd_cores, 1))
num_elem_per_idx = 4
index_hw = index * num_elem_per_idx
num_valid_indices = 64
output_shape = (128, 4, 16, 4)

num_active_cores = index.shape[0] / num_partitions_per_core
num_valid_indices = num_valid_indices if num_valid_indices \
else index.size / num_active_cores

output_np = np.ndarray(shape=(128, num_valid_indices, num_elem_per_idx),
dtype=src_buffer.dtype)

for i_core in range(num_gpsimd_cores):
start_par = i_core * num_partitions_per_core
end_par = (i_core + 1) * num_partitions_per_core
indices_1d = index[start_par:end_par].flatten(order='F')[0: num_valid_indices]

output_np[start_par:end_par, :, :] = np.take(
src_buffer[start_par:end_par],
indices_1d, axis=1)

output_np = output_np.reshape(output_shape)

local_gather preserves the input data types from src_buffer in the gather output. Therefore, no data type
casting is allowed in this API. The indices in index tile must be uint16 types.

This API has three tile size constraints [subject to future relaxation]:
1. The partition axis size of src_buffer must match that of index and must be a multiple of 16. In other

words, src_buffer.shape[0] == index.shape[0] and src_buffer.shape[0] % 16 == 0.
2. The number of contiguous elements to gather per index per partition num_elem_per_idx must be one of

the following values: [1, 2, 4, 8, 16, 32].
3. The number of indices for gather per core must be less than or equal to 4096.

Estimated instruction cost:
150 + (num_valid_indices * num_elem_per_idx)/C GpSimd Engine cycles, where C can be calcu-
lated using ((28 + t * num_elem_per_idx)/(t * num_elem_per_idx)) / min(4/dtype_size,
num_elem_per_idx). dtype_size is the size of src_buffer.dtype in bytes. Currently, t is a constant 4,
but subject to change in future software implementation.

Parameters
• src_buffer – an input tile for gathering.
• index – an input tile with indices used for gathering.
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• num_elem_per_idx – an optional integer value to read multiple contiguous elements
per index per partition; default is 1.

• num_valid_indices – an optional integer value to specify the number of valid indices
per GpSimd core; default is index.size / (index.shape[0] / 16).

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Returns
an output tile of the gathered data

Example:

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
from neuronxcc.nki.typing import tensor

##################################################################
# Example 1: gather src_buffer using index
# Gather input: src_buffer_tile with shape (128, 512, 4)
# Gather indices: index_tile with shape (128, 4)
# We use num_valid_indices indices per core, and read num_elem_per_idx
# contiguous elements per partition.
##################################################################
src_buffer_tile: tensor[128, 512, 4] = nl.load(src_buffer)
index_tile: tensor[128, 4] = nl.load(index)
output_tile: tensor[128, 4, 16, 4] = nisa.local_gather(
src_buffer_tile, index_tile, num_elem_per_idx, num_valid_indices)

nl.store(output, output_tile)

Click here to download the full NKI code example with equivalent numpy implementation.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.isa.dma_copy

nki.isa.dma_copy(*, dst, src, mask=None, dst_rmw_op=None, oob_mode=oob_mode.error,
dge_mode=dge_mode.unknown)

Copy data from src to dst using DMA engine. Both src and dst tiles can be in device memory (HBM)
or SBUF. However, if both src and dst tiles are in SBUF, consider using nisa.tensor_copy instead for better
performance.

Parameters
• src – the source of copy.
• dst – the dst of copy.
• dst_rmw_op – the read-modify-write operation to be performed at the destination. Cur-

rently only np.add is supported, which adds the source data to the existing destination
data. If None, the source data directly overwrites the destination. If dst_rmw_op is
specified, only oob_mode=oob_mode.error is allowed. For best performance with
Descriptor Generation Engine (DGE), unique dynamic offsets must be used to access
dst. Multiple accesses to the same offset will cause a data hazard. If duplicated offsets
are present, the compiler automatically adds synchronization to avoid hazards, which
slows down computation.
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• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

• mode – (optional) Specifies how to handle out-of-bounds (oob) array indices during
indirect access operations. Valid modes are:

– oob_mode.error: (Default) Raises an error when encountering out-of-bounds
indices.

– oob_mode.skip: Silently skips any operations involving out-of-bounds indices.
For example, when using indirect gather/scatter operations, out-of-bounds indices can
occur if the index array contains values that exceed the dimensions of the target array.

• dge_mode – (optional) specify which Descriptor Generation Engine (DGE) mode to
use for copy: nki.isa.dge_mode.none (turn off DGE) or nki.isa.dge_mode.
swdge (software DGE) or nki.isa.dge_mode.hwdge (hardware DGE) or nki.isa.
dge_mode.unknown (by default, let compiler select the best DGE mode). HWDGE is
only supported for NeuronCore-v3+.

A cast will happen if the src and dst have different dtype.

Example:

import neuronxcc.nki.isa as nisa

############################################################################
# Example 1: Copy over the tensor to another tensor
############################################################################
nisa.dma_copy(dst=b, src=a)

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
from neuronxcc.nki.typing import tensor

############################################################################
# Example 2: Load elements from HBM with indirect addressing. If addressing
# results out-of-bound access, the operation will fail.
############################################################################

...
n, m = in_tensor.shape
ix, iy = nl.mgrid[0:n//2, 0:m]

expr_arange = 2*nl.arange(n//2)[:, None]
idx_tile: tensor[64, 1] = nisa.iota(expr_arange, dtype=np.int32)

out_tile: tensor[64, 512] = nisa.memset(shape=(n//2, m), value=-1, dtype=in_tensor.
→˓dtype)
nisa.dma_copy(src=in_tensor[idx_tile, iy], dst=out_tile[ix, iy], oob_mode=nisa.oob_
→˓mode.error)

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
from neuronxcc.nki.typing import tensor

############################################################################
# Example 3: Load elements from HBM with indirect addressing. If addressing

(continues on next page)
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# results in out-of-bounds access, the operation will fail.
############################################################################

...
n, m = in_tensor.shape
ix, iy = nl.mgrid[0:n//2, 0:m]

# indices are out of range on purpose to demonstrate the error
expr_arange = 3*nl.arange(n//2)[:, None]
idx_tile: tensor[64, 1] = nisa.iota(expr_arange, dtype=np.int32)

out_tile: tensor[64, 512] = nisa.memset(shape=(n//2, m), value=-1, dtype=in_tensor.
→˓dtype)
nisa.dma_copy(src=in_tensor[idx_tile, iy], dst=out_tile[ix, iy], oob_mode=nisa.oob_
→˓mode.error)

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
from neuronxcc.nki.typing import tensor

############################################################################
# Example 4: Load elements from HBM with indirect addressing. If addressing
# results in out-of-bounds access, the operation will skip indices.
############################################################################

...
n, m = in_tensor.shape
ix, iy = nl.mgrid[0:n//2, 0:m]

# indices are out of range on purpose
expr_arange = 3*nl.arange(n//2)[:, None]
idx_tile: tensor[64, 1] = nisa.iota(expr_arange, dtype=np.int32)

out_tile: tensor[64, 512] = nisa.memset(shape=(n//2, m), value=-1, dtype=in_tensor.
→˓dtype)
nisa.dma_copy(src=in_tensor[idx_tile, iy], dst=out_tile[ix, iy], oob_mode=nisa.oob_
→˓mode.skip)

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
from neuronxcc.nki.typing import tensor

############################################################################
# Example 5: Store elements to HBM with indirect addressing and with
# read-modifed-write operation.
############################################################################

...
n, m = in_tensor.shape

(continues on next page)
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ix, iy = nl.mgrid[0:n, 0:m]

expr_arange = 2*nl.arange(n)[:, None]
inp_tile: tensor[64, 512] = nl.load(in_tensor[ix, iy])
idx_tile: tensor[64, 1] = nisa.iota(expr_arange, dtype=np.int32)

out_tile: tensor[128, 512] = nisa.memset(shape=(2*n, m), value=1, dtype=in_tensor.
→˓dtype)
nl.store(out_tensor, value=out_tile)
nisa.dma_copy(dst=out_tensor[idx_tile, iy], src=inp_tile, dst_rmw_op=np.add)

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
from neuronxcc.nki.typing import tensor

############################################################################
# Example 6: Store elements to HBM with indirect addressing. If indirect
# addressing results out-of-bound access, the operation will fail.
############################################################################

...
n, m = in_tensor.shape
ix, iy = nl.mgrid[0:n, 0:m]

expr_arange = 2*nl.arange(n)[:, None]
inp_tile: tensor[64, 512] = nl.load(in_tensor[ix, iy])
idx_tile: tensor[64, 1] = nisa.iota(expr_arange, dtype=np.int32)

out_tile: tensor[128, 512] = nisa.memset(shape=(2*n, m), value=-1, dtype=in_tensor.
→˓dtype)
nl.store(out_tensor, value=out_tile)
nisa.dma_copy(dst=out_tensor[idx_tile, iy], src=inp_tile, oob_mode=nisa.oob_mode.
→˓error)

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
from neuronxcc.nki.typing import tensor

############################################################################
# Example 7: Store elements to HBM with indirect addressing. If indirect
# addressing results out-of-bounds access, the operation will skip indices.
############################################################################

...
n, m = in_tensor.shape
ix, iy = nl.mgrid[0:n, 0:m]

# indices are out of range on purpose to demonstrate the error
expr_arange = 3*nl.arange(n)[:, None]
inp_tile: tensor[64, 512] = nl.load(in_tensor[ix, iy])
idx_tile: tensor[64, 1] = nisa.iota(expr_arange, dtype=np.int32)

(continues on next page)
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out_tile: tensor[128, 512] = nisa.memset(shape=(2*n, m), value=-1, dtype=in_tensor.
→˓dtype)
nl.store(out_tensor, value=out_tile)
nisa.dma_copy(dst=out_tensor[idx_tile, iy], src=inp_tile, oob_mode=nisa.oob_mode.
→˓error)

############################################################################
# Example 8: Store elements to HBM with indirect addressing. If indirect
# addressing results out-of-bounds access, the operation will skip indices.
############################################################################

...
n, m = in_tensor.shape
ix, iy = nl.mgrid[0:n, 0:m]

# indices are out of range on purpose
expr_arange = 3*nl.arange(n)[:, None]
inp_tile: tensor[64, 512] = nl.load(in_tensor[ix, iy])
idx_tile: tensor[64, 1] = nisa.iota(expr_arange, dtype=np.int32)

out_tile: tensor[128, 512] = nisa.memset(shape=(2*n, m), value=-1, dtype=in_tensor.
→˓dtype)
nl.store(out_tensor, value=out_tile)
nisa.dma_copy(dst=out_tensor[idx_tile, iy], src=inp_tile, oob_mode=nisa.oob_mode.
→˓skip)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.isa.max8

nki.isa.max8(*, src, mask=None, dtype=None, **kwargs)
Find the 8 largest values in each partition of the source tile.

This instruction reads the input elements, converts them to fp32 internally, and outputs the 8 largest values in
descending order for each partition. By default, returns the same dtype as the input tensor.

The source tile can be up to 5-dimensional, while the output tile is always 2-dimensional. The number of elements
read per partition must be between 8 and 16,384 inclusive. The output will always contain exactly 8 elements
per partition. The source and output must have the same partition dimension size:

• source: [par_dim, . . . ]
• output: [par_dim, 8]

Estimated instruction cost:
N engine cycles, where:

• N is the number of elements per partition in the source tile

Parameters
• src – the source tile to find maximum values from

7.2. Neuron Kernel Interface (NKI) - Beta 1283



AWS Neuron

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

• dtype – (optional) data type to cast the output type to (see Supported Data Types for
more information); if not specified, it will default to be the same as the data type of the
input tile.

Returns
a 2D tile containing the 8 largest values per partition in descending order with shape [par_dim,
8]

Example:

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
from neuronxcc.nki.typing import tensor

##################################################################
# Example 1: Generate tile b of 32 * 128 random floating point values
# and get the 8 largest values in each row:
##################################################################
expr_a = nl.rand((32, 128))
a = nisa.max8(src=expr_a)

a_tensor = nl.ndarray([32, 8], dtype=nl.float32, buffer=nl.shared_hbm)
nl.store(a_tensor, value=a)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.isa.nc_find_index8

nki.isa.nc_find_index8(*, data, vals, mask=None, dtype=None, **kwargs)
Find indices of the 8 given vals in each partition of the data tensor.

This instruction first loads the 8 values, then loads the data tensor and outputs the indices (starting at 0) of the
first occurrence of each value in the data tensor, for each partition.

The data tensor can be up to 5-dimensional, while the vals tensor must be up to 3-dimensional. The data tensor
must have between 8 and 16,384 elements per partition. The vals tensor must have exactly 8 elements per parti-
tion. The output will contain exactly 8 elements per partition and will be uint16 or uint32 type. Default output
type is uint32.

Behavior is undefined if vals tensor contains values that are not in the data tensor.

If provided, a mask is applied only to the data tensor.

Estimated instruction cost:
N engine cycles, where:

• N is the number of elements per partition in the data tensor

Parameters
• data – the data tensor to find indices from
• vals – tensor containing the 8 values per partition whose indices will be found
• mask – (optional) a compile-time constant predicate that controls whether/how this in-

struction is executed (see NKI API Masking for details)
• dtype – uint16 or uint32
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Returns
a 2D tile containing indices (uint16 or uint32) of the 8 values in each partition with shape
[par_dim, 8]

Example:

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
from neuronxcc.nki.typing import tensor

##################################################################
# Example 1: Generate tile b of 32 * 128 random floating point values,
# find the 8 largest values in each row, then find their indices:
##################################################################
# Generate random data
data = nl.rand((32, 128))

# Find max 8 values per row
max_vals = nisa.max8(src=data)

# Create output tensor for indices
indices_tensor = nl.ndarray([32, 8], dtype=nl.uint32, buffer=nl.shared_hbm)

# Find indices of max values
indices = nisa.nc_find_index8(data=data, vals=max_vals)

# Store results
nl.store(indices_tensor, value=indices)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.isa.nc_match_replace8

nki.isa.nc_match_replace8(*, data, vals, imm, dst_idx=None, mask=None, dtype=None, **kwargs)
Replace first occurrence of each value in vals with imm in data using the Vector engine and return the replaced
tensor. If dst_idx tile is provided, the indices of the matched values are written to dst_idx.

This instruction reads the input data, replaces the first occurrence of each of the given values (from vals tensor)
with the specified immediate constant and, optionally, output indices of matched values to dst_idx. When
performing the operation, the free dimensions of both data and vals are flattened. However, these dimensions
are preserved in the replaced output tensor and in dst_idx respectively. The partition dimension defines the
parallelization boundary. Match, replace, and index generation operations execute independently within each
partition.

The data tensor can be up to 5-dimensional, while the vals tensor can be up to 3-dimensional. The vals
tensor must have exactly 8 elements per partition. The data tensor must have no more than 16,384 elements per
partition. The replaced output will have the same shape as the input data tensor. data and vals must have the
same number of partitions. Both input tensors can come from SBUF or PSUM.

Behavior is undefined if vals tensor contains values that are not in the data tensor.

If provided, a mask is applied to the data tensor.

Estimated instruction cost:
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min(MIN_II, N) engine cycles, where:
• N is the number of elements per partition in the data tensor
• MIN_II is the minimum instruction initiation interval for small input tiles. MIN_II is roughly 64 engine

cycles.
NumPy equivalent:

# Let's assume we work with NumPy, and ``data``, ``vals`` are 2-dimensional arrays
# (with shape[0] being the partition axis) and imm is a constant float32 value.

import numpy as np

# Get original shapes
data_shape = data.shape
vals_shape = vals.shape

# Reshape to 2D while preserving first dimension
data_2d = data.reshape(data_shape[0], -1)
vals_2d = vals.reshape(vals_shape[0], -1)

# Initialize output array for indices
indices = np.zeros(vals_2d.shape, dtype=np.uint32)

for i in range(data_2d.shape[0]):
for j in range(vals_2d.shape[1]):
val = vals_2d[i, j]
# Find first occurrence of val in data_2d[i, :]
matches = np.where(data_2d[i, :] == val)[0]
if matches.size > 0:
indices[i, j] = matches[0] # Take first match
data_2d[i, matches[0]] = imm

output = data_2d.reshape(data.shape)
indices = indices.reshape(vals.shape) # Computed only if ``dst_idx`` is specified

Parameters
• data – the data tensor to modify
• dst_idx – (optional) the destination tile to write flattened indices of matched values
• vals – tensor containing the 8 values per partition to replace
• imm – float32 constant to replace matched values with
• mask – (optional) a compile-time constant predicate that controls whether/how this in-

struction is executed (see NKI API Masking for details)
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

Returns
the modified data tensor

Example:

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
import neuronxcc.nki.typing as nt

(continues on next page)
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##################################################################
# Example 1: Generate tile a of random floating point values,
# get the 8 largest values in each row, then replace their first
# occurrences with -inf:
##################################################################
N = 4
M = 16
data_tile = nl.rand((N, M))
max_vals = nisa.max8(src=data_tile)

result = nisa.nc_match_replace8(data=data_tile[:, :], vals=max_vals, imm=float('-inf
→˓'))
result_tensor = nl.ndarray([N, M], dtype=nl.float32, buffer=nl.shared_hbm)
nl.store(result_tensor, value=result)

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
import neuronxcc.nki.typing as nt

##################################################################
# Example 2: Read the 8 largest values in each row of the tensor,
# replace the first occurrence with imm, write indices, and return
# the replaced output.
##################################################################
n, m = in_tensor.shape

dst_idx = nl.ndarray((n, 8), dtype=idx_tensor.dtype)

ix, iy = nl.mgrid[0:n, 0:8]

inp_tile: nt.tensor[n, m] = nl.load(in_tensor)
max_vals: nt.tensor[n, 8] = nisa.max8(src=inp_tile)

out_tile = nisa.nc_match_replace8(
dst_idx=dst_idx[ix, iy], data=inp_tile[:, :], vals=max_vals, imm=imm

)

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
import neuronxcc.nki.typing as nt

##################################################################
# Example 3: Read the 8 largest values in each row of the tensor,
# after applying the specified mask, replace the first occurrence
# with imm, write indices, and return the replaced output.
##################################################################
n, m = in_tensor.shape

idx_tile = nisa.memset(shape=(n, 8), value=0, dtype=nl.uint32)
(continues on next page)
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ix, iy = nl.mgrid[0:n, 0:m]
inp_tile: nt.tensor[n, m] = nl.load(in_tensor)
max_vals: nt.tensor[n, 8] = nisa.max8(src=inp_tile[ix, iy], mask=(ix < n //2 and iy
→˓< m//2))

out_tile = nisa.nc_match_replace8(
dst_idx=idx_tile[:, :],
data=inp_tile[ix, iy],
vals=max_vals,
imm=imm,
mask=(ix < n // 2 and iy < m // 2), # mask applies to `data`

)

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
import neuronxcc.nki.typing as nt

##################################################################
# Example 4: Read the 8 largest values in each row of the tensor,
# replace the first occurrence with 0.0, write indices, and return
# the replaced output.
##################################################################
n, b, m = data_tensor.shape

n, b, m = data_tensor.shape

out_tensor = nl.ndarray([n, b, m], dtype=data_tensor.dtype, buffer=nl.hbm)
idx_tensor = nl.ndarray([n, 8], dtype=nl.uint32, buffer=nl.hbm)

imm = 0.0
idx_tile = nisa.memset(shape=(n, 8), value=0, dtype=nl.uint32)
out_tile = nisa.memset(shape=(n, b, m), value=0, dtype=data_tensor.dtype)

iq, ir, iw = nl.mgrid[0:n, 0:b, 0:m]
ip, io = nl.mgrid[0:n, 0:8]

inp_tile = nl.load(data_tensor[iq, ir, iw])
max_vals: nt.tensor[n, 8] = nisa.max8(src=inp_tile)

out_tile[iq, ir, iw] = nisa.nc_match_replace8(
dst_idx=idx_tile[ip, io],
data=inp_tile[iq, ir, iw],
vals=max_vals[ip, io],
imm=imm,

)

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl

(continues on next page)
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import neuronxcc.nki.typing as nt

##################################################################
# Example 5: Read the 8 largest values in each row of the tensor,
# replace the first occurrence with 0.0 in-place and write indices.
##################################################################
n, b, m = data_tensor.shape

n, b, m = data_tensor.shape

out_tensor = nl.ndarray([n, b, m], dtype=data_tensor.dtype, buffer=nl.hbm)
idx_tensor = nl.ndarray([n, 8], dtype=nl.uint32, buffer=nl.hbm)

imm = 0.0
idx_tile = nisa.memset(shape=(n, 8), value=0, dtype=nl.uint32)

iq, ir, iw = nl.mgrid[0:n, 0:b, 0:m]
ip, io = nl.mgrid[0:n, 0:8]

inp_tile = nl.load(data_tensor[iq, ir, iw])
max_vals: nt.tensor[n, 8] = nisa.max8(src=inp_tile)

inp_tile[iq, ir, iw] = nisa.nc_match_replace8(
dst_idx=idx_tile[ip, io],
data=inp_tile[iq, ir, iw],
vals=max_vals[ip, io],
imm=imm,

)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.isa.nc_stream_shuffle

nki.isa.nc_stream_shuffle(src, dst, shuffle_mask, *, dtype=None, mask=None, **kwargs)
Apply cross-partition data movement within a quadrant of 32 partitions from source tile src to destination tile
dst using Vector Engine.

Both source and destination tiles can be in either SBUF or PSUM, and passed in by reference as arguments.
In-place shuffle is allowed, i.e., dst same as src. shuffle_mask is a 32-element list. Each mask element
must be in data type int or affine expression. shuffle_mask[i] indicates which input partition the output
partition [i] copies from within each 32-partition quadrant. The special value shuffle_mask[i]=255means the
output tensor in partition [i] will be unmodified. nc_stream_shuffle can be applied to multiple of quadrants.
In the case with more than one quadrant, the shuffle is applied to each quadrant independently, and the same
shuffle_mask is used for each quadrant. mask applies to dst, meaning that locations masked out by mask
will be unmodified. For more information about the cross-partition data movement, see Cross-partition Data
Movement.

This API has 3 constraints on src and dst:
1. dst must have same data type as src.
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2. dst must have the same number of elements per partition as src.
3. The access start partition of src (src_start_partition), does not have to match

or be in the same quadrant as that of dst (dst_start_partition). However,
src_start_partition/dst_start_partition needs to follow some special hardware rules
with the number of active partitions num_active_partitions. num_active_partitions
= ceil(max(src_num_partitions, dst_num_partitions)/32) * 32, where
src_num_partitions and dst_num_partitions refer to the number of partitions the src and
dst tensors access respectively. src_start_partition/dst_start_partition is constrained based
on the value of num_active_partitions:

• If num_active_partitions is 96/128, src_start_partition/dst_start_partition must be 0.
• If num_active_partitions is 64, src_start_partition/dst_start_partition must be 0/64.
• If num_active_partitions is 32, src_start_partition/dst_start_partition must be

0/32/64/96.

Estimated instruction cost:
max(MIN_II, N) Vector Engine cycles, where N is the number of elements per partition in src, and MIN_II is
the minimum instruction initiation interval for small input tiles. MIN_II is roughly 64 engine cycles.

Parameters
• src – the source tile
• dst – the destination tile
• shuffle_mask – a 32-element list that specifies the shuffle source and destination par-

tition
• dtype – (optional) data type to cast the output type to (see Supported Data Types for

more information); if not specified, it will default to be the same as the data type of the
input tile.

• mask – (optional) a compile-time constant predicate that controls whether/how this in-
struction is executed (see NKI API Masking for details)

Example:

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl
from neuronxcc.nki.typing import tensor

#####################################################################
# Example 1:
# Apply cross-partition data movement to a 32-partition tensor,
# in-place shuffling the data in partition[i] to partition[(i+1)%32].
#####################################################################

...
a: tensor[32, 128] = nl.load(in_tensor)
a_mgrid = nl.mgrid[0:32, 0:128]
shuffle_mask = [(i - 1) % 32 for i in range(32)]
nisa.nc_stream_shuffle(src=a[a_mgrid.p, a_mgrid.x], dst=a[a_mgrid.p, a_mgrid.x],␣
→˓shuffle_mask=shuffle_mask)

nl.store(out_tensor, value=a)

#####################################################################
# Example 2:
# Broadcast data in 1 partition to 32 partitions.
#####################################################################

(continues on next page)
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...
a: tensor[1, 128] = nl.load(in_tensor)
b = nl.ndarray(shape=(32, 128), dtype=np.float32)
dst_mgrid = nl.mgrid[0:32, 0:128]
src_mgrid = nl.mgrid[0:1, 0:128]
shuffle_mask = [0] * 32
nisa.nc_stream_shuffle(src=a[0, src_mgrid.x], dst=b[dst_mgrid.p, dst_mgrid.x],␣
→˓shuffle_mask=shuffle_mask)

nl.store(out_tensor, value=b)

#####################################################################
# Example 3:
# In the case where src and dst access more than one quadrant (32
# partitions), the shuffle is applied to each quadrant independently,
# and the same shuffle_mask is used for each quadrant.
#####################################################################

...
a: tensor[128, 128] = nl.load(in_tensor)
b = nl.ndarray(shape=(128, 128), dtype=np.float32)
mgrid = nl.mgrid[0:128, 0:128]
shuffle_mask = [(i - 1) % 32 for i in range(32)]
nisa.nc_stream_shuffle(src=a[mgrid.p, mgrid.x], dst=b[mgrid.p, mgrid.x], shuffle_
→˓mask=shuffle_mask)

nl.store(out_tensor, value=b)

This document is relevant for: Inf2, Trn1, Trn2

NKI ISA Config Enums

engine Neuron Device engines
reduce_cmd Engine Register Reduce commands
dge_mode Neuron Descriptor Generation Engine Mode

This document is relevant for: Inf2, Trn1, Trn2

nki.isa.engine

class nki.isa.engine(value)
Neuron Device engines
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Attributes

tensor Tensor Engine
vector Vector Engine
scalar Scalar Engine
gpsimd GpSIMD Engine
sync Sync Engine
unknown Unknown Engine

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.isa.reduce_cmd

class nki.isa.reduce_cmd(value)
Engine Register Reduce commands

Attributes

idle Not using the accumulator registers
reset Resets the accumulator registers to its initial state
reset_reduce Resets the accumulator registers then immediately

accumulate the results of the current instruction into
the accumulators

reduce keeps accumulating over the current value of the ac-
cumulator registers

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.isa.dge_mode

class nki.isa.dge_mode(value)
Neuron Descriptor Generation Engine Mode

Attributes

none Not using DGE
swdge Software DGE
hwdge Hardware DGE
unknown Unknown DGE mode, i.e., let compiler decide the

DGE mode

This document is relevant for: Inf2, Trn1, Trn2
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Target

nc_version NeuronCore version
get_nc_version Returns the nc_version of the current target context.

This document is relevant for: Inf2, Trn1, Trn2

nki.isa.nc_version

class nki.isa.nc_version(value)
NeuronCore version

__init__()

Attributes

gen2 Trn1/Inf2 target
gen3 Trn2 target

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.isa.get_nc_version

nki.isa.get_nc_version()

Returns the nc_version of the current target context.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.compiler
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Allocation Control

sbuf.alloc Allocate SBUF memory space for each logical block in
a tensor using a customized allocation method.

sbuf.mod_alloc Allocate SBUF memory space for each logical tile in a
tensor through modulo allocation.

sbuf.auto_alloc Returns a maker to indicate the tensor should be auto-
matically allocated by compiler.

psum.alloc Allocate PSUM memory space for each logical block in
a tensor using a customized allocation method.

psum.mod_alloc Allocate PSUM memory space for each logical block in
a tensor through modulo allocation.

psum.auto_alloc Returns a maker to indicate the tensor should be auto-
matically allocated by compiler.

This document is relevant for: Inf2, Trn1, Trn2

nki.compiler.sbuf.alloc

nki.compiler.sbuf.alloc(func)
Allocate SBUF memory space for each logical block in a tensor using a customized allocation method.

This is one of the NKI direction allocation APIs. We recommend reading NKI Direct Allocation Developer
Guide before using these APIs.

In NKI, a SBUF tensor (declared using NKI tensor creation APIs) can have three kinds of dimensions, in order:
logical block(B), partition(P), and free(F). The partition and free dimensions directly map to the SBUF dimen-
sions. Both B and F can be multi-dimensional, while P must be one-dimensional per Neuron ISA constraints.
The block dimension describes how many (P, F) logical tiles this tensor has, but does not reflect the number of
physical tiles being allocated.

ncc.sbuf.alloc should be assigned to the buffer field of a NKI tensor declaration API. For example,

nki_tensor = nl.ndarray((4, 8, nl.par_dim(128), 4, 32), dtype=nl.bfloat16,␣
→˓buffer=ncc.sbuf.alloc(...))

ncc.sbuf.alloc allows programmers to specify the physical location of each logical tile in the tensor. The
API accepts a single input func parameter, which is a callable object that takes in:

1. a tuple of integers idx representing a logical block index,
2. an integer pdim_size for the number of partitions the logical tile has, and
3. an integer fdim_size for the number of bytes the logical tile has per partition.

The number of integers in idx must match the number of B dimensions the SBUF tensor has. For example, for
the above nki_tensor, we expect the idx tuple to have two integers for a 2D block index.

pdim_size should match the partition dimension size of the NKI tensor exactly. fdim_size should be the total
size of F dimension shapes of each logical tile in the tensor, multiplied by the data type size in bytes. For the
above sbuf_tensor, pdim_size should be 128, and fdim_size should be 4*32*sizeof(nl.bfloat16) =
256 bytes.

The func callable must return a tuple of two integers (start_partition, byte_addr) indicating the physical
tile location for the input logical block index. start_partition indicates the lowest partition the physical tile
allocation starts from and must follow the these ISA rules:

• If 64 < pdim_size <= 128, start_partition must be 0
• If 32 < pdim_size <= 64, start_partition must be 0 or 64
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• If 0 < pdim_size <= 32, start_partition must be one of 0/32/64/96
The byte_addr indicates the byte offset into each partition the physical tile starts from. On NeuronCore-
v2, a valid byte_addr can be any integer values from 0 (inclusive) to 192KiB-16KiB=(192-16)*1024 (ex-
clusive). 192KiB is the physical size of a SBUF partition (defined in architecture guide) and 16KiB is allo-
cated for compiler internal usage. In addition, the base_addr must be aligned to nki.language.constants.
sbuf_min_align.

Note: In current release, programmers cannot mix NKI tensor declarations using automatic allocation (ncc.
sbuf.auto_alloc() or the PSUM variant) and direction allocation APIs (ncc.sbuf.alloc(), ncc.sbuf.
mod_alloc() or the PSUM variants) in the same kernel.

Parameters
func – a callable object to specify how to place the logical block in SBUF memory.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.compiler.sbuf.mod_alloc

nki.compiler.sbuf.mod_alloc(*, base_addr, base_partition=0, num_par_tiles=(), num_free_tiles=())
Allocate SBUF memory space for each logical tile in a tensor through modulo allocation.

This is one of the NKI direction allocation APIs. We recommend reading NKI Direct Allocation Developer
Guide before using these APIs.

This API is equivalent to calling nisa.compiler.alloc() with a callable psum_modulo_alloc_func as defined
below.

1 from typing import Optional, Tuple
2 from functools import reduce
3 from operator import mul
4 import unittest
5

6 def num_elms(shape):
7 return reduce(mul, shape, 1)
8

9 def linearize(shape, indices):
10 return sum(i * num_elms(shape[dim+1:]) for dim, i in enumerate(indices))
11

12 def modulo_allocate_func(base, allocate_shape, scale):
13 def func(indices):
14 if not allocate_shape:
15 # default shape is always (1, 1, ...)
16 allocate_shape_ = (1, ) * len(indices)
17 else:
18 allocate_shape_ = allocate_shape
19 mod_idx = tuple(i % s for i, s in zip(indices, allocate_shape_))
20 return linearize(shape=allocate_shape_, indices=mod_idx) * scale + base
21 return func
22

23 def mod_alloc(base_addr: int, *,
24 base_partition: Optional[int] = 0,

(continues on next page)
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(continued from previous page)

25 num_par_tiles: Optional[Tuple[int, ...]] = (),
26 num_free_tiles: Optional[Tuple[int, ...]] = ()):
27 def sbuf_modulo_alloc_func(idx, pdim_size, fdim_size):
28 return (modulo_allocate_func(base_partition, num_par_tiles, pdim_size)(idx),
29 modulo_allocate_func(base_addr, num_free_tiles, fdim_size)(idx))
30 return sbuf_modulo_alloc_func
31

Here’s an example usage of this API:

nki_tensor = nl.ndarray((4, par_dim(128), 512), dtype=nl.bfloat16,
buffer=nki.compiler.sbuf.mod_alloc(base_addr=0, num_free_

→˓tiles=(2, )))

for i_block in nl.affine_range(4):
nki_tensor[i_block, :, :] = nl.load(...)
... = nl.exp(nki_tensor[i_block, :, :])

This produces the following allocation:

Table 7.3: Modulo Allocation Example
Logical Tile Index Physical Tile start_partition Physical Tile byte_addr
(0, ) 0 0 + (0 % 2) * 512 * sizeof(nl.bfloat16) = 0
(1, ) 0 0 + (1 % 2) * 512 * sizeof(nl.bfloat16) = 1024
(2, ) 0 0 + (2 % 2) * 512 * sizeof(nl.bfloat16) = 0
(3, ) 0 0 + (3 % 2) * 512 * sizeof(nl.bfloat16) = 1024

With above scheme, we are able to implement double buffering in nki_tensor, such that nl.load in one
iteration can write to one physical tile while nl.exp of the previous iteration can read from the other physical
tile simultaneously.

Note: In current release, programmers cannot mix NKI tensor declarations using automatic allocation (ncc.
sbuf.auto_alloc() or the PSUM variant) and direction allocation APIs (ncc.sbuf.alloc(), ncc.sbuf.
mod_alloc() or the PSUM variants).

Parameters
• base_addr – the base address in the free(F) dimension of the SBUF in bytes.
• base_partition – the partition where the physical tile starts from. Must be 0 in the

current version.
• num_par_tiles – the number of physical tiles on the partition dimension of SBUF

allocated for the tensor. The length of the tuple must be empty or equal to the length of
block dimension for the tensor.

• num_free_tiles – the number of physical tiles on the free dimension of SBUF allo-
cated for the tensor. The length of the tuple must be empty or equal to the length of
block dimension for the tensor.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.compiler.sbuf.auto_alloc

nki.compiler.sbuf.auto_alloc()

Returns a maker to indicate the tensor should be automatically allocated by compiler. All SBUF tensors in a
kernel must either all be marked as auto_alloc(), or all be allocated with alloc or mod_alloc.

Initialize a tensor with buffer=nl.sbuf is equivalent to buffer=ncc.sbuf.auto_alloc().

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.compiler.psum.alloc

nki.compiler.psum.alloc(func)
Allocate PSUM memory space for each logical block in a tensor using a customized allocation method.

This is one of the NKI direction allocation APIs. We recommend reading NKI Direct Allocation Developer
Guide before using these APIs.

In NKI, a PSUM tensor (declared using NKI tensor creation APIs) can have three kinds of dimensions, in order:
logical block(B), partition(P), and free(F). The partition and free dimensions directly map to the PSUM dimen-
sions. Both B and F can be multi-dimensional, while P must be one-dimensional per Neuron ISA constraints.
The block dimension describes how many (P, F) logical tiles this tensor has, but does not reflect the number of
physical tiles being allocated.

ncc.psum.alloc should be assigned to the buffer field of a NKI tensor declaration API. For example,

nki_tensor = nl.ndarray((2, 4, nl.par_dim(128), 512), dtype=nl.float32, buffer=ncc.
→˓psum.alloc(...))

ncc.psum.alloc allows programmers to specify the physical location of each logical tile in the tensor. The
API accepts a single input func parameter, which is a callable object that takes in:

1. a tuple of integers idx representing a logical block index,
2. an integer pdim_size for the number of partitions the logical tile has, and
3. an integer fdim_size for the number of bytes the logical tile has per partition.

The number of integers in idx must match the number of B dimensions the PSUM tensor has. For example, for
the above nki_tensor, we expect the idx tuple to have two integers for a 2D block index.

pdim_size should match the partition dimension size of the NKI tensor exactly. fdim_size should be the
total size of F dimension shapes of each logical tile in the tensor, multiplied by the data type size in bytes. For
the above nki_tensor, pdim_size should be 128, and fdim_size should be 512*sizeof(nl.float32) =
2048 bytes.

Note: In current release, fdim_size cannot exceed 2KiB, which is the size of a single PSUM bank per partition.
Therefore, a physical PSUM tile cannot span multiple PSUM banks. Check out Trainium/Inferentia2 Architecture
Guide for NKI for more information on PSUM banks.

The func returns a tuple of three integers (bank_id, start_partition, byte_addr) indicating the phys-
ical tile location for the input logical block index.

bank_id indicates the PSUM bank ID of the physical tile. start_partition indicates the lowest partition the
physical tile allocation starts from. The byte_addr indicates the byte offset into each PSUM bank per partition
the physical tile starts from.
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Note: In current release, start_partition and byte_addr must both be 0.

Note: In current release, programmers cannot mix NKI tensor declarations using automatic allocation (ncc.
psum.auto_alloc() or the SBUF variant) and direction allocation APIs (ncc.psum.alloc(), ncc.psum.
mod_alloc() or the SBUF variants) in the same kernel.

Parameters
func – a callable object to specify how to place the logical block in PSUM memory.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.compiler.psum.mod_alloc

nki.compiler.psum.mod_alloc(*, base_bank, base_addr=0, base_partition=0, num_bank_tiles=(),
num_par_tiles=(), num_free_tiles=())

Allocate PSUM memory space for each logical block in a tensor through modulo allocation.

This is one of the NKI direction allocation APIs. We recommend reading NKI Direct Allocation Developer
Guide before using these APIs.

This API is equivalent to calling nki.compiler.psum.alloc() with a callable psum_modulo_alloc_func as de-
fined below.

1 from typing import Optional, Tuple
2 from functools import reduce
3 from operator import mul
4 import unittest
5

6 def num_elems(shape):
7 return reduce(mul, shape, 1)
8

9 def linearize(shape, indices):
10 return sum(i * num_elems(shape[dim+1:]) for dim, i in enumerate(indices))
11

12 def modulo_allocate_func(base, allocate_shape, scale):
13 def func(indices):
14 if not allocate_shape:
15 # default shape is always (1, 1, ...)
16 allocate_shape_ = (1, ) * len(indices)
17 else:
18 allocate_shape_ = allocate_shape
19 mod_idx = tuple(i % s for i, s in zip(indices, allocate_shape_))
20 return linearize(shape=allocate_shape_, indices=mod_idx) * scale + base
21 return func
22

23 def mod_alloc(base_addr: int, *,
24 base_bank: Optional[int] = 0,
25 num_bank_tiles: Optional[Tuple[int]] = (),
26 base_partition: Optional[int] = 0,

(continues on next page)
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(continued from previous page)

27 num_par_tiles: Optional[Tuple[int]] = (),
28 num_free_tiles: Optional[Tuple[int]] = ()):
29 def psum_modulo_alloc_func(idx, pdim_size, fdim_size):
30 # partial bank allocation is not allowed
31 return (modulo_allocate_func(base_bank, num_bank_tiles, 1)(idx),
32 modulo_allocate_func(base_partition, num_par_tiles, pdim_size)(idx),
33 modulo_allocate_func(base_addr, num_free_tiles, fdim_size)(idx))
34 return psum_modulo_alloc_func
35

Here’s an example usage of this API:

psum_tensor = nl.ndarray((4, nl.par_dim(128), 512), dtype=nl.float32,
buffer=ncc.psum.mod_alloc(base_bank=0,

base_addr=0,
num_bank_tiles=(2,)))

for i_block in nl.affine_range(4):
psum[i_block, :, :] = nisa.nc_matmul(...)
... = nl.exp(psum[i_block, :, :])

This produces the following allocation:

Table 7.4: Modulo Allocation Example
Logical Tile In-
dex

Physical Tile
bank_id

Physical Tile
start_partition

Physical Tile
byte_addr

(0, ) 0 0 0
(1, ) 1 0 0
(2, ) 0 0 0
(3, ) 1 0 0

With above scheme, we are able to implement double buffering in nki_tensor, such that nisa.nc_matmul
in one iteration can write to one physical tile while nl.exp of the previous iteration can read from the other
physical tile simultaneously.

Note: In current release, programmers cannot mix NKI tensor declarations using automatic allocation (ncc.
psum.auto_alloc() or the SBUF variant) and direction allocation APIs (ncc.psum.alloc(), ncc.psum.
mod_alloc() or the SBUF variants).

Parameters
• base_addr – the base address in bytes along the free(F) dimension of the PSUM bank.

Must be 0 in the current version.
• base_bank – the base bank ID that the physical tiles start from.
• num_bank_tiles – the number of PSUM banks allocated for the tensor.
• base_partition – the partition ID the physical tiles start from. Must be 0 in the

current version.
• num_par_tiles – the number of physical tiles along the partition dimension allocated

for the tensor. The length of the tuple must be empty or equal to the length of block
dimension for the tensor. Currently must be an empty tuple or (1, 1, . . . ).

• num_free_tiles – the number of physical tiles on the free dimension per PSUM bank
allocated for the tensor. The length of the tuple must be empty or equal to the length of
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block dimension for the tensor. Currently must be an empty tuple or (1, 1, . . . ).

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.compiler.psum.auto_alloc

nki.compiler.psum.auto_alloc()

Returns a maker to indicate the tensor should be automatically allocated by compiler. All PSUM tensors in a
kernel must either all be marked as auto_alloc(), or all be allocated with alloc or mod_alloc.

Initialize a tensor with buffer=nl.psum is equivalent to buffer=ncc.psum.auto_alloc().

This document is relevant for: Inf2, Trn1, Trn2

Kernel Decorators

skip_middle_end_transformations Skip all middle end transformations on the kernel
enable_stack_allocator Use stack allocator to allocate the psum and sbuf tensors

in the kernel.
force_auto_alloc Force automatic allocation to be turned on in the kernel.

This document is relevant for: Inf2, Trn1, Trn2

nki.compiler.skip_middle_end_transformations

nki.compiler.skip_middle_end_transformations(func=None)
Skip all middle end transformations on the kernel

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

nki.compiler.enable_stack_allocator

nki.compiler.enable_stack_allocator(func=None, log_level=50)
Use stack allocator to allocate the psum and sbuf tensors in the kernel.

Must use together with skip_middle_end_transformations.

from neuronxcc import nki

@nki.compiler.enable_stack_allocator
@nki.compiler.skip_middle_end_transformations
@nki.jit
def kernel(...):
...

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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nki.compiler.force_auto_alloc

nki.compiler.force_auto_alloc(func=None)
Force automatic allocation to be turned on in the kernel.

This will ignore any direct allocation inside the kernel

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

NKI API Common Fields

Supported Data Types

Supported Data Types by NKI below lists all supported data types by NKI. Almost all the NKI APIs accept a data type
field, dtype, which can either be a NumPy equivalent type or a nki.language data type.

Table 7.5: Supported Data Types by NKI
Data Type Accepted dtype Field by NKI APIs

Integer 8-bit unsigned integer nki.language.uint8 or numpy.uint8
8-bit signed integer nki.language.int8 or numpy.int8
16-bit unsigned integer nki.language.uint16 or numpy.uint16
16-bit signed integer nki.language.int16 or numpy.int16
32-bit unsigned integer nki.language.uint32 or numpy.uint32
32-bit signed integer nki.language.int32 or numpy.int32

Float float8_e4m3 (1S,4E,3M)2 nki.language.float8_e4m3
float8_e5m2 (1S,5E,2M) nki.language.float8_e5m2
float16 (1S,5E,10M) nki.language.float16 or numpy.float16
bfloat16 (1S,8E,7M) nki.language.bfloat16
tfloat32 (1S,8E,10M) nki.language.tfloat32
float32 (1S,8E,23M) nki.language.float32 or numpy.float32

Boolean boolean stored as uint8 nki.language.bool_ or numpy.bool

Supported Math Operators for NKI ISA

Supported Math Operators by NKI ISA below lists all the mathematical operator primitives supported by NKI. Many
nki.isa APIs (instructions) allow programmable operators through the op field. The supported operators fall into two
categories: bitvec and arithmetic. In general, instructions using bitvec operators expect integer data types and treat
input elements as bit patterns. On the other hand, instructions using arithmetic operators accept any valid NKI data
types and convert input elements into float32 before performing the operators.

2 S: sign bits, E: exponent bits, M: mantissa bits
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Table 7.6: Supported Math Operators by NKI ISA
Operator op Legal Reduction

op
Supported Engine

Bitvec Bitwise Not nki.language.invert N Vector
Bitwise And nki.language.

bitwise_and
Y Vector

Bitwise Or nki.language.
bitwise_or

Y Vector

Bitwise Xor nki.language.
bitwise_xor

Y Vector

Arithmetic Shift Left nki.language.
left_shift

N Vector

Arithmetic Shift Right Not supported N Vector
Logical Shift Left nki.language.

left_shift
N Vector

Logical Shift Right nki.language.
right_shift

N Vector

Arith-
metic

Add nki.language.add Y Vec-
tor/GpSIMD/Scalar

Subtract nki.language.subtract Y Vector
Multiply nki.language.multiply Y Vec-

tor/GpSIMD/Scalar
Max nki.language.maximum Y Vector
Min nki.language.minimum Y Vector
Is Equal to nki.language.equal N Vector
Is Not Equal to nki.language.not_equal N Vector
Is Greater than or Equal
to

nki.language.
greater_equal

N Vector

Is Greater than to nki.language.greater N Vector
Is Less than or Equal to nki.language.

less_equal
N Vector

Is Less than nki.language.less N Vector
Logical Not nki.language.

logical_not
N Vector

Logical And nki.language.
logical_and

Y Vector

Logical Or nki.language.
logical_or

Y Vector

Logical Xor nki.language.
logical_xor

Y Vector

Reverse Square Root nki.language.rsqrt N GpSIMD/Scalar
Reciprocal nki.language.

reciprocal
N Vector/Scalar

Absolute nki.language.abs N Vector/Scalar
Power nki.language.power N GpSIMD

Note Add and Multiply are supported on Scalar Engine only from NeuronCore-v3. 32-bit integer Add and Multiply
are only supported on GpSIMD Engine.
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Supported Activation Functions for NKI ISA

Supported Activation Functions by NKI ISA below lists all the activation function supported by the nki.isa.
activationAPI. These activation functions are approximated with piece-wise polynomials on Scalar Engine. NOTE:
if input values fall outside the supported Valid Input Range listed below, the Scalar Engine will generate invalid output
results.

Table 7.7: Supported Activation Functions by NKI ISA
Function Name Accepted op by Scalar Engine Valid Input Range
Identity nki.language.copy or numpy.

copy
[-inf, inf]

Square nki.language.square or numpy.
square

[-inf, inf]

Sigmoid nki.language.sigmoid [-inf, inf]
Relu nki.language.relu [-inf, inf]
Gelu nki.language.gelu [-inf, inf]
Gelu Derivative nki.language.gelu_dx [-inf, inf]
Gelu with Tanh Approximation nki.language.

gelu_apprx_tanh
[-inf, inf]

Silu nki.language.silu [-inf, inf]
Silu Derivative nki.language.silu_dx [-inf, inf]
Tanh nki.language.tanh or numpy.

tanh
[-inf, inf]

Softplus nki.language.softplus [-inf, inf]
Mish nki.language.mish [-inf, inf]
Erf nki.language.erf [-inf, inf]
Erf Derivative nki.language.erf_dx [-inf, inf]
Exponential nki.language.exp or numpy.exp [-inf, inf]
Natural Log nki.language.log or numpy.log [2^-64, 2^64]
Sine nki.language.sin or numpy.sin [-PI, PI]
Arctan nki.language.arctan or numpy.

arctan
[-PI/2, PI/2]

Square Root nki.language.sqrt or numpy.
sqrt

[2^-116, 2^118]

Reverse Square Root nki.language.rsqrt [2^-87, 2^97]
Reciprocal nki.language.reciprocal or

numpy.reciprocal
±[2^-42, 2^42]

Sign nki.language.sign or numpy.
sign

[-inf, inf]

Absolute nki.language.abs or numpy.abs [-inf, inf]

NKI API Masking

All nki.language and nki.isa APIs accept an optional input field, mask. The mask field is an execution predicate
known at compile-time, which informs the compiler to skip generating the instruction or generate the instruction with a
smaller input tile shape. Masking is handled completely by Neuron compiler and hence does not incur any performance
overhead in the generated instructions.

The mask can be created using comparison expressions (e.g., a < b) or multiple comparison expressions concatenated
with & (e.g., (a < b) & (c > d)). The left- or right-hand side expression of each comparator must be an affine
expression of nki.language.arange(), nki.language.affine_range() or nki.language.program_id() .
Each comparison expression should indicate which range of indices along one of the input tile axes should be valid
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for the computation. For example, assume we have an input tile in_tile of shape (128, 512), and we would like to
perform a square operation on this tile for elements in [0:64, 0:256], we can invoke the nki.language.square()
API using the following:

import neuronxcc.nki.language as nl

...
i_p = nl.arange(128)[:, None]
i_f = nl.arange(512)[None, :]

out_tile = nl.square(in_tile, mask=((i_p<64) & (i_f<256)))

The above example will be lowered into a hardware ISA instruction that only processes 64x256 elements by Neuron
Compiler.

The above mask definition works for most APIs where there is only one input tile or both input tiles share the same
axes. One exception is the nki.language.matmul and similarly nki.isa.nc_matmul API, where the two input tiles
lhs and rhs contain three unique axes:

1. The contraction axis: both lhs and rhs partition axis (lhs_rhs_p)

2. The first axis of matmul output: lhs free axis (lhs_f)

3. The second axis of matmul output: rhs free axis (rhs_f)

As an example, let’s assume we have lhs tile of shape (sz_p, sz_m) and rhs tile of shape (sz_p, sz_n), and we
call nki.language.matmul to calculate an output tile of shape (sz_m, sz_n):

import neuronxcc.nki.language as nl

i_p = nl.arange(sz_p)[:, None]

i_lhs_f = nl.arange(sz_m)[None, :]
i_rhs_f = nl.arange(sz_n)[None, :] # same as `i_rhs_f = i_lhs_f`

result = nl.matmul(lhs[i_p, i_lhs_f], rhs[i_p, i_rhs_f], transpose_x=True)

Since both i_lhs_f and i_rhs_f are identical to the Neuron Compiler, the Neuron Compiler cannot distinguish the
two input axes if they were to be passed into the mask field directly.

Therefore, we introduce “operand masking” syntax for matmult APIs to let users to precisely define the masking on
the inputs to the matmult APIs (currently only matmult APIs support operand masking, subject to changes in future
releases). Let’s assume we need to constraint sz_m <= 64 and sz_n <= 256:

import neuronxcc.nki.language as nl

i_p = nl.arange(sz_p)[:, None]

i_lhs_f = nl.arange(sz_m)[None, :]
i_rhs_f = nl.arange(sz_n)[None, :] # same as `i_rhs_f = i_lhs_f`

i_lhs_f_virtual = nl.arange(sz_m)[None, :, None]

result = nl.matmul(lhs_T[i_lhs_f <= 64], rhs[i_rhs_f <= 256], transpose_x=True)

There are two notable use cases for masking:

1. When the tiling factor doesn’t divide the tensor dimension sizes
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2. Skip ineffectual instructions that compute known output values

We will present an example of the first use case below. Let’s assume we would like to evaluate the exponential function
on an input tensor of shape [sz_p, sz_f] from HBM. Since the input to nki.language.load/nki.language.
store/nki.language.exp expects a tile with a partition axis size not exceeding nki.language.tile_size.pmax
== 128, we should loop over the input tensor using a tile size of [nki.language.tile_size.pmax, sz_f].

However, sz_p is not guaranteed to be an integer multiple of nki.language.tile_size.pmax. In this case, one
option is to write a loop with trip count of sz_p // nki.language.tile_size.pmax followed by a single invoca-
tion of nki.language.exp with an input tile of shape [sz_p % nki.language.tile_size.pmax, sz_f]. This
effectively “unrolls” the last instance of tile computation, which could lead to messy code in a complex kernel. Using
masking here will allow us to avoid such unrolling, as illustrated in the example below:

import neuronxcc.nki.language as nl
from torch_neuronx import nki_jit

@nki_jit
def tensor_exp_kernel_(in_tensor, out_tensor):

sz_p, sz_f = in_tensor.shape

i_f = nl.arange(sz_f)[None, :]

trip_count = math.ceil(sz_p/nl.tile_size.pmax)

for p in nl.affine_range(trip_count):
# Generate tensor indices for the input/output tensors
# pad index to pmax, for simplicity
i_p = p * nl.tile_size.pmax + nl.arange(nl.tile_size.pmax)[:, None]

# Load input data from external memory to on-chip memory
# only read up to sz_p
in_tile = nl.load(in_tensor[i_p, i_f], mask=(i_p < sz_p))

# perform the computation
out_tile = nl.exp(in_tile, mask=(i_p < sz_p))

# store the results back to external memory
# only write up to sz_p
nl.store(out_tensor[i_p, i_f], value=out_tile, mask=(i_p<sz_p))

NKI Type Promotion

When the data types (dtypes) of inputs to an arithmetic operation (i.e., add, multiply, tensor_tensor, etc.) differ, we
promote the dtypes following the rules below:

(float, integer): Pick the float type. Example:

• (np.int32, np.float16) -> np.float16

• (np.uint16, nl.tfloat32) -> nl.tfloat32

(float, float): Pick the wider float type or a new widened type that fits the values range. Example:

• (np.float32, nl.tfloat32) -> np.float32

• (np.float32, nl.bfloat16) -> np.float32
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• (np.float16, nl.bfloat16) -> np.float32 (new widened type)

• (nl.float8_e4m3, np.float16) -> np.float16

• (nl.float8_e4m3, nl.bfloat16) -> nl.bfloat16

• (nl.float8_e4m3, nl.float8_e5m2) -> nl.bfloat16 (new widened type)

(int, int): Pick the wider type or a new widened type that fits the values range. Example:

• (np.int16, np.int32) -> np.int32

• (np.uint8, np.uint16) -> np.uint16

• (np.uint16, np.int32) -> np.int32

• (np.int8, np.uint8) -> np.int16 (new widened type)

• (np.int8, np.uint16) -> np.int32 (new widened type)

• (np.int32, np.uint32) -> np.float32 (new widened type is float32, since int64 isn’t supported on the
hardware)

The output of the arithmetic operation will get the promoted type by default.

Note: The Vector Engine internally performs most of the computation in FP32 (see Vector Engine) and casts the output
back to the specific type.

x = np.ndarray((N, M), dtype=nl.float8_e4m3)
y = np.ndarray((N, M), dtype=np.float16)
z = nl.add(x, y) # calculation done in FP32, output cast to np.float16
assert z.dtype == np.float16

To prevent the compiler from automatically widening output dtype based on mismatching input dtypes, you may ex-
plicitly set the output dtype in the arithmetic operation API. This would be useful if the output is passed into another
operation that benefits from a smaller dtype.

x = np.ndarray((N, M), dtype=nl.bfloat16)
y = np.ndarray((N, M), dtype=np.float16)
z = nl.add(x, y, dtype=nl.bfloat16) # without explicit `dtype`, `z.dtype` would have␣
→˓been np.float32
assert z.dtype == nl.bfloat16

Weakly Typed Scalar Type Inference

Weakly typed scalars (scalar values where the type wasn’t explicitly specified) will be inferred as the widest dtype
supported by hardware:

• bool --> uint8

• integer --> int32

• floating --> float32

Doing an arithmetic operation with a scalar may result in a larger output type than expected, for example:

• (np.int8, 2) -> np.int32

• (np.float16, 1.2) -> np.float32

To prevent larger dtypes from being inferred from weak scalar types, do either of:

1. Explicitly set the datatype of the scalar, like np.int8(2), so that the output type is what you desire:
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x = np.ndarray((N, M), dtype=np.float16)
y = np.float16(2)
z = nl.add(x, y)
assert z.dtype == np.float16

2. Explicitly set the output dtype of the arithmetic operation:

x = np.ndarray((N, M), dtype=np.int16)
y = 2
z = nl.add(x, y, dtype=nl.bfloat16)
assert z.dtype == nl.bfloat16

Note: The Vector Engine internally performs most of the computation in FP32 (see Vector Engine) and casts the output
back to the specific type.

NKI Engine Selection for Operators Supported on Multiple Engines

There is a tradeoff between precision and speed on different engines for operators with multiple engine options. Users
can select which engine to map to based on their needs. We take reciprocal and reverse square root as two examples
and explain the tradeoff below.

1. Reciprocal can run on Scalar Engine or Vector Engine:

Reciprocal can run on Vector Engine with nki.isa.reciprocal or on Scalar Engine with nki.isa.
activation(nl.reciprocal). Vector Engine performs reciprocal at a higher precision compared to
Scalar Engine; however, the computation throughput of reciprocal on Vector Engine is about 8x lower
than Scalar Engine for large input tiles. For input tiles with a small number of elements per partition (less
than 64, processed one per cycle), instruction initiation interval (roughly 64 cycles) dominates performance
so Scalar Engine and Vector Engine have comparable performance. In this case, we suggest using Vector
Engine to achieve better precision.

Estimated cycles on different engines:

Cost (Engine Cycles) Condition
max(MIN_II, N) mapped to Scalar Engine nki.isa.scalar_engine
max(MIN_II, 8*N) mapped to Vector Engine nki.isa.vector_engine

where,

• N is the number of elements per partition in the input tile.

• MIN_II is the minimum instruction initiation interval for small input tiles. MIN_II is roughly 64
engine cycles.

Note nki.isa.activation(op=nl.reciprocal) doesn’t support setting bias on NeuronCore-v2.

2. Reverse square root can run on GpSIMD Engine or Scalar Engine:

Reverse square root can run on GpSIMD Engine with nki.isa.tensor_scalar(op0=nl.rsqrt,
operand0=0.0) or on Scalar Engine with nki.isa.activation(nl.rsqrt). GpSIMD Engine per-
forms reverse square root at a higher precision compared to Scalar Engine; however, the computation
throughput of reverse square root on GpSIMD Engine is 4x lower than Scalar Engine.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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NKI API Errors

err_1d_arange_not_supported

Indexing a NKI tensor with 1D arange is not supported.

NKI expects tile indices to have at least two dimensions to match the underlying memory (SBUF or PSUM)

tmp = nl.zeros((128, 1), dtype=nl.float32, buffer=nl.sbuf)
i = nl.arange(64)
c = nl.exp(tmp[i, 0]) # Error: indexing tensor `tmp` with 1d arange is not supported,

You can workaround the problem by introducing new axes like the following code:

tmp = nl.zeros((128, 1), dtype=nl.float32, buffer=nl.sbuf)
i = nl.arange(64)[:, None]
c = nl.exp(tmp[i, 0])

Or using simple slicing:

tmp = nl.zeros((128, 1), dtype=nl.float32, buffer=nl.sbuf)
c = nl.exp(tmp[0:64, 0])

err_activation_bias_invalid_type

Bias parameter of activation or activation_reduce must be a vector of type float32, float16, or bfloat16.

nisa.activation(op=nl.exp, data=data[...], bias=nisa.memset((128, 1), 1.2, dtype=np.
→˓float32)) # ok
nisa.activation(op=nl.exp, data=data[...], bias=nisa.memset((128, 1), 1.2, dtype=nl.
→˓bfloat16)) # ok
nisa.activation(op=nl.exp, data=data[...], bias=nisa.memset((128, 1), 1.2, dtype=np.
→˓int8)) # not supported

err_activation_scale_invalid_type

Scale parameter of activation or activation_reduce must be a scalar or vector of type float32.

nisa.activation(op=nl.exp, data=data[...], scale=1.2) # ok
nisa.activation(op=nl.exp, data=data[...], scale=nisa.memset((128, 1), 1.2, dtype=np.
→˓float32)) # ok
nisa.activation(op=nl.exp, data=data[...], scale=nisa.memset((128, 1), 1.2, dtype=np.
→˓float16)) # not supported
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err_activation_scale_scalar_or_vector

Scale parameter of activation must be either a scalar value or a 1D vector spanning the partition dimension.

nisa.activation(op=nl.exp, data=data[...], scale=1.2) # ok
nisa.activation(op=nl.exp, data=data[...], scale=nisa.memset((128, 1), 1.2, dtype=np.
→˓float32)) # ok
nisa.activation(op=nl.exp, data=data[...], scale=nisa.memset((1, 128), 1.2, dtype=np.
→˓float32)) # not supported
nisa.activation(op=nl.exp, data=data[...], scale=nisa.memset((128, 128), 1.2, dtype=np.
→˓float32)) # not supported

err_ambiguous_tensor_truth_value

ValueError: Cannot evaluate truth value of a multi-element tensor/array.

This error occurs in two common scenarios: 1. Using logical operators (and, or, not) on multi-element tensors 2. Using
tensor objects in conditional statements without explicit None checks

Example of problematic code:

def func(a, b: Optional[tensor]):
ix, iy = nl.mgrid[0:128, 0:128]
a_tile: tensor[128, 128] = nl.load(a[ix, iy])

not_a_tile = not (a_tile > 0) # The truth value of an array with more than one␣
→˓element is ambiguous

if b: # The truth value of an array with more than one element is ambiguous
pass

Correct usage:

For tensor operations, use appropriate element-wise operators: - Use ~ instead of not for boolean negation - Use &
instead of and for logical AND - Use | instead of or for logical OR

For None checks, use explicit ‘is’ comparisons:

def func(a, b: Optional[tensor]):
ix, iy = nl.mgrid[0:128, 0:128]
a_tile: tensor[128, 128] = nl.load(a[ix, iy])

not_a_tile = ~(a_tile > 0) # Element-wise negation

if b is not None: # Explicit None check
pass

Note:
This error is similar to NumPy’s ValueError for ambiguous truth value of arrays, as tensors/arrays can contain
multiple boolean values and cannot be automatically reduced to a single boolean.
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err_annotation_shape_mismatch

Tensor shape and the annotated shape mismatch

NKI check the object shape based on python type annotation in the target: type = value syntax, NKI will throw an error
if the expected shape and the object shape mismatch.

For example:

import neuronxcc.nki.typing as nt
data: nt.tensor[128, 512] = nl.zeros((par_dim(128), 128), dtype=np.float32) # Error:␣
→˓shape of `data[128, 128]` does not match the expected shape of [128, 512]

err_bias_tensor_must_be_specified_in_allocation

Bias tensor of an activation op must be specified in allocated NKI kernels.

data = .... # assume data is of shape (128, 128)
exp = nl.ndarray((par_dim(128), 512), dtype=nl.bfloat16, buffer=ncc.sbuf.mod_alloc(base_
→˓addr=0))
exp[...] = nisa.activation(np.exp,

data=data[...]) # Error, bias argument must also be specified

exp[...] = nl.exp(data=data[...])
# Error, nl.exp maps to the the instruction as nisa.activation, must use nisa.activation␣
→˓and specify bias tensor in allocation kernels

err_cannot_assign_to_index

An index or mask tensor does not support item assignment.

You may explicitly call iota to convert an index tensor to a normal tile
before any assignments.

_, x = nl.mgrid[0:1, 0:8]
x[0, 5] = 1024 # Error: 'index' tensor does not support item assignment
y = nisa.iota(x, dtype=nl.uint32)
y[0, 5] = 1024 # works

err_cannot_update_immutable_parameter

Cannot update immutable parameter

By default, all parameters to the top level nki kernels are immutable, updating immutable parameters in the kernel is
not allowed.

def kernel(in_tensor):
x = nl.load(in_tensor)
y = x + 1
# Parameter `in_tensor` is immutable by default, cannot modify immutable parameter
nl.store(in_tensor, value=y) # Error: Cannot update immutable parameter

(continues on next page)
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(continued from previous page)

return in_tensor

You could explicitly annotate the parameter as mutable:

import neuronxcc.nki.typing as nt

def kernel(in_tensor: nt.mutable_tensor):
x = nl.load(in_tensor)
y = x + 1
nl.store(in_tensor, value=y) # ok, in_tensor is mutable based on the annotation

return in_tensor

Alternatively, you could return a copy of the input parameter if you don’t intend to modify the input parameter:

import neuronxcc.nki.isa as nisa import neuronxcc.nki.language as nl

def kernel(in_tensor):
out_tensor = nl.ndarray(in_tensor.shape, dtype=in_tensor.dtype,

buffer=nl.shared_hbm)

nisa.dma_copy(dst=out_tensor, src=in_tensor)

x = nl.load(out_tensor) y = x + 1 nl.store(out_tensor, value=y) # ok

return out_tensor

err_control_flow_condition_depending_on_arange

Control-flow depending on nl.arange or nl.mgrid is not supported.

for j0 in nl.affine_range(4096):
i1 = nl.arange(512)[None, :]
j = j0 * 512 + i1
if j > 2048: # Error: Control-flow depending on `nl.arange` or `nl.mgrid` is not␣

→˓supported
y = nl.add(x[0, j], x[0, j - 2048])

In the above example, j depends on the value of i1, which is nl.arange(512)[None, :]. NKI does not support using
nl.arange or nl.mgrid in control-flow condition. To workaround this error, you can use the mask parameter:

for j0 in nl.affine_range(4096):
i1 = nl.arange(512)[None, :]
j = j0 * 512 + i1
y = nl.add(x[0, j], x[0, j - 2048], mask=j > 2048)
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err_copy_dynamic_indirect_indices_not_natively_supported

If indices are dynamic (i.e. known only at runtime), copying indirect memory references is not natively supported.

For example, when overloading the assignment operator as a copy operation, the following code will throw an error:

data_tensor: tensor[128, 8, 4] = nl.load(data_tensor)
idx_tile: tensor[8, 1] = nl.load(idx_tensor)
out_sbuf: tensor[8, 4] = nl.ndarray([8, 4], dtype=data_tensor.dtype,

buffer=nl.sbuf)
iy, iz = nl.mgrid[0:8, 0:4]
out_sbuf[iy, iz] = data_tensor[0, idx_tile, iz] # idx_tile only known at runtime

To fix this error, consider using nisa.tensor_copy_dynamic_src as follows.

out_sbuf[iy, iz] = nisa.tensor_copy_dynamic_src(data_tensor[0, idx_tile, iz])

err_dynamic_control_flow_not_supported

Dynamic control-flow depending on tensor value is currently not supported by NKI.

cnd = nl.load(a) # a have shape of [1, 1]
if cnd: # Error: dynamic control-flow depending on tensor value is not␣
→˓supported.
nl.store(b, 1)

err_exceed_max_supported_dimension

NKI API tensor parameter exceeds max supported number of dimensions.

Certain NKI APIs have restrictions on how many dimensions the tensor parameter can have:

x = nl.zeros(shape=[64, 32, 2], dtype=np.float32, buffer=nl.sbuf)
b = nl.transpose(x) # Error: parameter 'x[64, 32, 2]' of 'transpose' exceed max supported␣
→˓number of dimensions of 2.

x = nl.zeros(shape=[64, 64], dtype=np.float32, buffer=nl.sbuf)
b = nl.transpose(x) # Works if input `x` only have 2 dimensions (i.e. rank=2)

err_failed_to_infer_tile_from_local_tensor

NKI requires inputs of all compute APIs to be valid tiles with the first dimension being the partition dimension.

# We mark the second dimension as the partition dimension
a = nl.zeros((4, nl.par_dim(8), 8), dtype=nl.float32, buffer=nl.sbuf)
c = nl.add(a, 32) # Error: Failed to infer tile from tensor 'a',

To fix the problem you can use index tensor a to generate a tile whose first dimension is the partition dimension
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# We mark the second dimension of tensor a as the partition dimension
a = nl.zeros((4, nl.par_dim(8), 8), dtype=nl.float32, buffer=nl.sbuf)
c = nl.ndarray((4, nl.par_dim(8), 8), dtype=nl.float32, buffer=nl.sbuf)
for i in range(4):
# result of `a[i]` is a tile with shape (8, 8) and the first dimension is the partition␣

→˓dimension
c[i] = nl.add(a[i], 32) # works
# Or explicitly generate a tile with `nl.arange`
ix = nl.arange(8)[:, None]
iy = nl.arange(8)[None, :]
# result of `a[i, ix, iy]` is a tile with shape (8, 8) and the first dimension is the␣

→˓partition dimension
c[i, ix, iy] = nl.add(a[i, ix, iy], 32) # also works

err_hbm_tensor_with_init_value_not_supported

Creating HBM tensor with init value is not supported.

t = nl.full((3, 128, 512), fill_value=1.0, buffer=nl.shared_hbm) # t on hbm and has an␣
→˓init value
# Error: Creating HBM tensor with init value is not supported.

To work around the limitation you need to explicitly initialize the tensor with nl.store:

t = nl.ndarray((3, 128, 512), buffer=nl.shared_hbm)
for i in range(3):
nl.store(dst=t[i, :, :], value=1.0)

err_indirect_indices_free_dim

Dynamic indexing for load/store only supports the indirect indexing to be on the partition or block dimension. Refer
to the code examples in nl.load and nl.store.

Also, if you’re using nl.mgrid you may get this error even though your indirect indexing was on the partition dimen-
sion, use nl.arange instead.

i_p, i_f = nl.mgrid[0:64, 0:512] # this won't work for dynamic access

i_p = nl.arange(64)[:, None] # this works for dynamic access
i_f = nl.arange(512)[None, :]

data_tile = nl.load(data_tensor[idx_tile[i_p, 0], i_f])
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err_leading_dimension_of_tensor_must_be_partition

The leading dimension of SBUF/PSUM tensors must be the partition dimension.

NKI used to allow block dimensions in front of the partition dimension, but block dimension has been deprecated.
Please refer to Migration Guide for Block Dimension

err_local_variable_used_out_of_scope

Tensors in NKI are not allowed to be used outside of their parent scope.

Tensors in NKI have a stricter scope rules than Python. In NKI, control blocks in if/else/for statements will introduce
their own scope for tensors. A tensor defined in if/else/for control blocks are not allowed to be used outside of the
scope.

for i in range(4):
if i < 2:
tmp = nl.load(a)

else:
tmp = nl.load(b)

nl.store(c, tmp) # Error: Local variable 'tmp' is referenced outside of its parent␣
→˓scope ...

To fix the problem, you can rewrite the above code as:

for i in range(4):
tmp = nl.ndarray(shape=a.shape, dtype=a.dtype)
if i < 2:
tmp[...] = nl.load(a)

else:
tmp[...] = nl.load(b)

nl.store(c, tmp)

This stricter scope rules may also introduce unexpected error like the following:

data = nl.zeros((par_dim(128), 128), dtype=np.float32)

for i in nl.sequential_range(4):
i_tile = nisa.iota(i, dtype=nl.uint32).broadcast_to(data.shape)
data = data + i_tile # Warning: shadowing local tensor 'float32 data[128, 128]' with a␣

→˓new object, use 'data[...] =' if you want to update the existing object

nl.store(ptr, value=data) # # Error: Local variable 'tmp' is referenced outside of its␣
→˓parent scope ...

To fix the problem you can follow the suggestion from the warning

data = nl.zeros((par_dim(128), 128), dtype=np.float32)

for i in nl.sequential_range(4):
i_tile = nisa.iota(i, dtype=nl.uint32).broadcast_to(data.shape)
data[...] = data + i_tile

(continues on next page)
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nl.store(ptr, value=data)

err_mutable_parameter_not_returned

A mutable kernel parameter must be returned by return

import neuronxcc.nki.typing as nt

def kernel(in_tensor: nt.mutable_tensor):
out_tensor = nl.ndarray(in_tensor.shape, dtype=in_tensor.dtype,

buffer=nl.shared_hbm)
x = nl.load(in_tensor)
y = x + 1
nl.store(out_tensor, value=y)
# Also update mutable parameter `in_tensor`
nl.store(in_tensor, value=y)

# But didnt return the mutable parameter `in_tensor`
return out_tensor # Error: Mutable kernel parameter not returned by `return` statement

To fix this error, you need to return the mutable parameter to the returned list:

import neuronxcc.nki.typing as nt

def kernel(in_tensor: nt.mutable_tensor):
out_tensor = nl.ndarray(in_tensor.shape, dtype=in_tensor.dtype,

buffer=nl.shared_hbm)
x = nl.load(in_tensor)
y = x + 1
nl.store(out_tensor, value=y)
nl.store(in_tensor, value=y)

return out_tensor, in_tensor # ok

err_nested_kernel_with_spmd_grid

Calling a NKI kernel with a SPMD grid from another NKI kernel is not supported.

@nki.trace
def kernel0(...):
...

@nki.trace
def kernel1(...):
...

@nki_jit
def kernel_top():
kernel0(...) # works

(continues on next page)
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kernel1[4, 4](...) # Error: Calling kernel with spmd grid (kernel1[4,4]) inside␣
→˓another kernel is not supported

err_nki_api_outside_of_nki_kernel

Calling NKI API outside of NKI kernels is not supported.

Make sure the NKI kernel function decorated with nki.jit.

err_num_partition_exceed_arch_limit

Number of partitions exceeds architecture limitation.

NKI requires the number of partitions of a tile to not exceed the architecture limitation of 128

For example in Trainium:

x = nl.zeros(shape=[256, 1024], dtype=np.float32, buffer=nl.sbuf) # Error: number of␣
→˓partitions 256 exceed architecture limitation of 128.
x = nl.zeros(shape=[128, 1024], dtype=np.float32, buffer=nl.sbuf) # Works

err_num_partition_mismatch

Number of partitions mismatch.

Most of the APIs in the nki.isa module require all operands to have the same number of partitions. For example, the
nki.isa.tensor_tensor() requires all operands to have the same number of partitions.

x = nl.zeros(shape=[128, 512], dtype=np.float32, buffer=nl.sbuf)
y0 = nl.zeros(shape=[1, 512], dtype=np.float32, buffer=nl.sbuf)
z = nisa.tensor_tensor(x, y0, op=nl.add) # Error: number of partitions (dimension 0 size␣
→˓of a tile) mismatch in parameters (data1[128, 512], data2[1, 512]) of 'tensor_tensor'

y1 = y0.broadcast_to([128, 512]) # Call `broadcast_to` to explicitly broadcast on␣
→˓the partition dimension
z = nisa.tensor_tensor(x, y0, op=nl.add) # works because x and y1 has the same number of␣
→˓partitions

err_shared_hbm_must_in_kernel_level

shared_hbm tensor can only be created in top level kernel scope

Creating shared_hbm tensors inside a loop, under if condition or inside another function called by the top-level nki
kernel is not supported.

Consider hoist the creation of shared_hbm tensors to the top level kernel scope.

@nki.jit
def kernel(...):
a = nl.ndarray((128, 512), dtype=nl.float32,

(continues on next page)
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buffer=nl.shared_hbm) # works

for i in range(8):
b = nl.ndarray((128, 512), dtype=nl.float32,

buffer=nl.shared_hbm) # Error: shared_hbm buffer can only be created␣
→˓top level kernel scope

if nl.program_id(0) >= 1:
c = nl.ndarray((128, 512), dtype=nl.float32,

buffer=nl.shared_hbm) # Error: shared_hbm buffer can only be created␣
→˓top level kernel scope

# Call another function
func(...)

def func(...):
d = nl.ndarray((128, 512), dtype=nl.float32,

buffer=nl.shared_hbm) # Error: shared_hbm buffer can only be created top␣
→˓level kernel scope

err_size_of_dimension_exceed_arch_limit

Size of dimension exceeds architecture limitation.

Certain NKI APIs have restrictions on dimension sizes of the parameter tensor:

x = nl.zeros(shape=[128, 512], dtype=np.float32, buffer=nl.sbuf)
b = nl.transpose(x) # Error: size of dimension 1 in 'x[128, 512]' of 'transpose' exceed␣
→˓architecture limitation of 128.

x = nl.zeros(shape=[128, 128], dtype=np.float32, buffer=nl.sbuf)
b = nl.transpose(x) # Works size of dimension 1 < 128

err_store_dst_shape_smaller_than_other_shape

Illegal shape in assignment destination.

The destination of assignment must have the same or bigger shape than the source of assignment. Assigning multiple
values to the same element in the assignment destination from a single NKI API is not supported

x = nl.zeros(shape=(128, 512), dtype=nl.float32, buffer=nl.sbuf)
y = nl.zeros(shape=(128, 1), dtype=nl.float32, buffer=nl.sbuf)

y[...] = x # Error: Illegal assignment destination shape in 'a = b': shape [128, 1] of␣
→˓parameter 'a' is smaller than other parameter shapes b[128, 512].
x[...] = y # ok, if we are broadcasting from source to the destination of the assignment
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err_tensor_access_out_of_bound

Tensor access out-of-bound.

Out-of-bound access is considered illegal in NKI. When the indices are calculated from nki indexing APIs, out-of-
bound access results in a compile-time error. When the indices are calculated dynamically at run-time, such as indirect
memory accesses, out-of-bound access results in run-time exceptions during execution of the kernel.

x = nl.ndarray([128, 4000], dtype=np.float32, buffer=nl.hbm)
for i in nl.affine_range((4000 + 512 - 1) // 512):
tile = nl.mgrid[0:128, 0:512]
nl.store(x[tile.p, i * 512 + tile.x], value=0) # Error: Out-of-bound access for␣

→˓tensor `x` on dimension 1: index range [0, 4095] exceed dimension size of 4000

You could carefully check the corresponding indices and make necessary correction. If the indices are correct and
intentional, out-of-bound access can be avoided by providing a proper mask:

x = nl.ndarray([128, 4000], dtype=np.float32, buffer=nl.hbm)
for i in nl.affine_range((4000 + 512 - 1) // 512):
tile = nl.mgrid[0:128, 0:512]
nl.store(x[tile.p, i * 512 + tile.x], value=0,

mask=i * 512 + tile.x < 4000) # Ok

err_tensor_creation_on_scratchpad_with_init_value_not_supported

Creating SBUF/PSUM tensor with init value is not supported in allocated NKI kernels.

t = nl.full((3, par_dim(128), 512), fill_value=1.0, buffer=ncc.sbuf.mod_alloc(base_
→˓addr=0)) # t is allocated and has an init value
# Error: Creating SBUF/PSUM tensor with init value is not supported in allocated NKI␣
→˓kernels.

err_tensor_output_not_written_to

A tensor was either passed as an output parameter to kernel but never written to, or no output parameter was passed to
the kernel at all. At least one output parameter must be provided to kernels.

If you did pass an output parameter to your kernel, and this still occurred, this means the tensor was never written to.
The most common cause for this is a dead-loop, such as when a range expression evaluates to 0 and the loop performing
the store operation is not actually being entered. But this can occur in any situation in which a loop is never entered,
regardless of flow-control construct (for, if, while, etc..)

def incorrect(tensor_in, tensor_out):
M = 128
N = M + 1

for i in nl.affine_range( M // N ): # This is the cause of the error, as N > M, M // N␣
→˓will evaluate to 0

a = nl.load(tensor_in)
nl.store(tensor_out, value=a) # This store will never be called.

def also_incorrect_in_the_same_way(tensor_in, tensor_out, cnd):
(continues on next page)
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(continued from previous page)

# This will cause the error if the value of `cnd` is False
while cnd:

a = nl.load(tensor_in)
nl.store(tensor_out, value=a) # This store will never be called.

Consider doing the following:

1. Evaluate your range expressions and conditionals to make sure they’re what you intended. If you were trying to
perform a computation on tiles smaller than your numerator (M in this case), use math.ceil() around your range
expression. e.g. nl.affine_range(math.ceil(M / N)). You will likely need to pass a mask to your load and store
operations as well to account for this.

2. If the possible dead-loop is intentional, you need to issue a store that writes to the entire tensor somewhere in
the kernel outside of the dead loop. One good way to do this is to invoke store() on your output tensor with a
default value.

For example:

def memset_output(input, output, cnd):
# Initialize the output if we cannot guarantee the output are always written later
nl.store(output[i_p, i_f], value=0)

while cnd: # Ok even if the value of `cnd` is False
a = nl.load(tensor_in)
nl.store(tensor_out, value=a)

err_transpose_on_tensor_engine_not_allowed_in_allocated_kernel

Unsupported transpose case in allocated NKI kernels:

• nisa.nc_transpose() with TensorEngine, or

• nl.matmul() without setting transpose_x=True.

User must use their own allocated identity matrix, and call nisa.nc_matmul() explicitly to perform transpose on Ten-
sorEngine.

a = .... # assume a has shape [128, 128]
result_a = nl.ndarray((par_dim(128), 128), dtype=nl.bfloat16, buffer=ncc.psum.mod_
→˓alloc(byte_addr=0))
result_a[...] = nisa.nc_transpose(a[...]) # Error, calling nc_transpose() with␣
→˓TensorEngine is not allowed in allocated kernels

b = ... # assume b has shape [32, 32]
result_b = nl.ndarray((par_dim(32), 32), dtype=nl.bfloat16, buffer=ncc.psum.mod_
→˓alloc(byte_addr=0))
result_b[...] = nisa.nc_transpose(b[...]) # Error, must specify engine=NeuronEngine.
→˓Vector
result_b[...] = nisa.nc_transpose(b[...], engine=NeuronEngine.Vector) # pass
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err_unexpected_output_dependencies

Unexpected output dependencies.

NKI assume kernel instances in the spmd grid and iteration between affine_range can be executed in parallel require
synchronization on the output. As a result, each iteration of the loop will write to a different memory location.

a = nl.ndarray((4, 128, 512), dtype=nl.float32, buffer=nl.sbuf)

for i in nl.affine_range(4):
a[0] = 0 # Unexpected output dependencies, different iterations of i loop write to␣

→˓`a[0]`

To fix the problem, you could either index the destination with the missing indices:

a = nl.ndarray((4, 128, 512), dtype=nl.float32, buffer=nl.sbuf)

for i in nl.affine_range(4):
a[i] = 0 # Ok

Or if you want to write to the same memory location, you could use sequential_range which allows writing to the same
memory location:

a = nl.ndarray((4, 128, 512), dtype=nl.float32, buffer=nl.sbuf)

for i in nl.sequential_range(4):
a[0] = 0 # Also ok, we dont expect the sequential_range to execute in parallel

err_unsupported_memory

NKI API parameters are in the wrong memory.

NKI enforces API-specific requirements on which memory the parameters are allocated, that is, HBM, SBUF or PSUM.
NKI will throw this error when the operands of a NKI API call are not placed in the correct memory.

tmp = nl.ndarray((4, 4), dtype=nl.float32, buffer=nl.sbuf)
x = nl.load(tmp) # Error: Expected operand 'src' of 'load' to be in address space 'hbm', but␣
→˓got a tile in 'sbuf' instead.

tmp = nl.ndarray((4, 4), dtype=nl.float32, buffer=nl.hbm)
x = nl.exp(tmp) # Error: Expected operand 'x' of 'exp' to be in address space 'psum|sbuf',␣
→˓but got a tile in 'hbm' instead.

err_unsupported_mixing_basic_advanced_tensor_indexing

Mixing basic tensor indexing and advanced tensor indexing is not supported

a = nl.zeros((4, 4), dtype=nl.float32, buffer=nl.sbuf)
i = nl.arange(4)[:, None]
c = nl.exp(a[i, :]) # Error: Mixing basic tensor indexing and advanced tensor indexing␣
→˓is not supported.

You could avoid the error by either use basic indexing or advanced indexing but not both:

1320 Chapter 7. Compiler



AWS Neuron

c = nl.exp(a[:, :]) # ok

i = nl.arange(4)[:, None]
j = nl.arange(4)[None. :]
c = nl.exp(a[i, j]) # also ok

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

NKI Developer Guides

This document is relevant for: Inf2, Trn1, Trn2

Getting Started with NKI

In this guide, we will implement a simple “Hello World” style NKI kernel and run it on a NeuronDevice
(Trainium/Inferentia2 or beyond device). We will showcase how to invoke a NKI kernel standalone through NKI
baremetal mode and also through ML frameworks (PyTorch and JAX). Before diving into kernel implementation, let’s
make sure you have the correct environment setup for running NKI kernels.

Environment Setup

You need a Trn1 or Inf2 instance set up on AWS to run NKI kernels on a NeuronDevice. Once logged into the instance,
follow steps below to ensure you have all the required packages installed in your Python environment.

NKI is shipped as part of the Neuron compiler package. To make sure you have the latest compiler package, see Setup
Guide for an installation guide.

You can verify that NKI is available in your compiler installation by running the following command:

python -c 'import neuronxcc.nki'

This attempts to import the NKI package. It will error out if NKI is not included in your Neuron compiler version
or if the Neuron compiler is not installed. The import might take about a minute the first time you run it. Whenever
possible, we recommend using local instance NVMe volumes instead of EBS for executable code.

If you intend to run NKI kernels without any ML framework for quick prototyping, you will also need NumPy installed.

To call NKI kernels from PyTorch, you also need to have torch_neuronx installed. For an installation guide, see
PyTorch Neuron Setup. You can verify that you have torch_neuronx installed by running the following command:

python -c 'import torch_neuronx'

To call NKI kernels from JAX, you need to have jax_neuronx installed. For an installation guide, see JAX Neuron
Setup. You can verify that you have jax_neuronx installed by running the following command:

python -c 'import jax_neuronx'
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Implementing your first NKI kernel

In current NKI release, all input tensors must be passed into the kernel as device memory (HBM) tensors on a Neuron-
Device. Similarly, output tensors returned from the kernel must also reside in device memory. The body of the kernel
typically consists of three main phases:

1. Load the inputs from device memory to on-chip memory (SBUF).

2. Perform the desired computation.

3. Store the outputs from on-chip memory to device memory.

For more details on the above terms, see NKI Programming Model.

Below is a small NKI kernel example. In this example, we take two tensors and add them element-wise to produce an
output tensor of the same shape.

1 from neuronxcc import nki
2 import neuronxcc.nki.language as nl
3

4

5 @nki.jit
6 def nki_tensor_add_kernel(a_input, b_input):
7

8 """NKI kernel to compute element-wise addition of two input tensors
9 """

10

11 # Check all input/output tensor shapes are the same for element-wise operation
12 assert a_input.shape == b_input.shape
13

14 # Check size of the first dimension does not exceed on-chip memory tile size limit,
15 # so that we don't need to tile the input to keep this example simple
16 assert a_input.shape[0] <= nl.tile_size.pmax
17

18 # Load the inputs from device memory to on-chip memory
19 a_tile = nl.load(a_input)
20 b_tile = nl.load(b_input)
21

22 # Specify the computation (in our case: a + b)
23 c_tile = nl.add(a_tile, b_tile)
24

25 # Create a HBM tensor as the kernel output
26 c_output = nl.ndarray(a_input.shape, dtype=a_input.dtype, buffer=nl.shared_hbm)
27

28 # Store the result to c_output from on-chip memory to device memory
29 nl.store(c_output, value=c_tile)
30

31 # Return kernel output as function output
32 return c_output

Now let us walk through the above code:
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Importing NKI

We start by importing neuronxcc.nki which includes function decorators to compile NKI kernels and also neu-
ronxcc.nki.language which implements the NKI language. We will go into more detail regarding the NKI language in
NKI Programming Model, but for now you can think of it as a tile-level domain-specific language.

from neuronxcc import nki
import neuronxcc.nki.language as nl

Defining a kernel

Next we define the nki_tensor_add_kernel Python function, which contains the NKI kernel code. The kernel is
decorated with nki.jit, which allows Neuron compiler to recognize this is NKI kernel code and trace it correctly. Input
tensors (a_input and b_input) are passed by reference into the kernel, just like any other Python function input
parameters.

@nki.jit
def nki_tensor_add_kernel(a_input, b_input):

Checking input shapes

To keep this getting started guide simple, this kernel example expects all input and output tensors have the same shapes
for an element-wise addition operation. We further restrict the first dimension of the input/output tensors to not exceed
nl.tile_size.pmax == 128. More detailed discussion on tile size limitation is available in NKI Programming
Model. Note, all of these restrictions can be lifted with tensor broadcasting/reshape and tensor tiling with loops in
NKI. For more kernel examples, check out NKI tutorials.

# Check all input/output tensor shapes are the same for element-wise operation
assert a_input.shape == b_input.shape

# Check size of the first dimension does not exceed on-chip memory tile size limit,
# so that we don't need to tile the input to keep this example simple
assert a_input.shape[0] <= nl.tile_size.pmax

Loading inputs

Most NKI kernels start by loading inputs from device memory to on-chip memory. We need to do that because com-
putation can only be performed on data in the on-chip memory.

a_tile = nl.load(a_input)
b_tile = nl.load(b_input)
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Defining the desired computation

After loading the two input tiles, it is time to define the desired computation. In this case, we perform a simple element-
wise addition between two tiles:

c_tile = nl.add(a_tile, b_tile)

Note that c_tile = a_tile + b_tile will also work, as NKI overloads simple Python operators such as +, -, *,
and /. For a complete set of available NKI APIs, refer to NKI API Reference Manual.

Storing and returning outputs

To return the output tensor of the kernel, we first declare a NKI tensor c_output in device memory (HBM) and
then store the output tile c_tile from on-chip memory to c_output using nl.store. We end the kernel execution by
returning c_output using a standard Python return call. This will allow the host to access the output tensor.

# Create a HBM tensor as the kernel output
c_output = nl.ndarray(a_input.shape, dtype=a_input.dtype, buffer=nl.shared_hbm)

# Store the result to c_output from on-chip memory to device memory
nl.store(c_output, value=c_tile)

# Return kernel output as function output
return c_output

Running the kernel

Next, we will cover three unique ways to run the above NKI kernel on a NeuronDevice:

1. NKI baremetal: run NKI kernel with no ML framework involvement

2. PyTorch: run NKI kernel as a PyTorch operator

3. JAX: run NKI kernel as a JAX operator

All three run modes can call the same kernel function decorated with the nki.jit decorator as discussed above:

1 @nki.jit
2 def nki_tensor_add_kernel(a_input, b_input):

The nki.jit decorator automatically chooses the correct run mode by checking the incoming tensor type:

1. NumPy arrays as input: run in NKI baremetal mode

2. PyTorch tensors as input: run in PyTorch mode

3. JAX tensors: run in JAX mode

See nki.jit API doc for more details.

Note: NKI baremetal mode is the most convenient way to prototype and optimize performance a NKI kernel alone.
For production ML workloads, we highly recommend invoking NKI kernels through a ML framework (PyTorch or
JAX). This allows you to integrate NKI kernels in your regular compute graph to accelerate certain operators (see NKI
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Kernel as a Framework Custom Operator for details) and leverage the more optimized host-to-device data transfer
handling available in ML frameworks.

NKI baremetal

Baremetal mode expects input tensors of the NKI kernel to be NumPy arrays. The kernel also converts its NKI output
tensors to NumPy arrays. To invoke the kernel, we first initialize the two input tensors a and b as NumPy arrays.
Finally, we call the NKI kernel just like any other Python function:

1 import numpy as np
2

3 a = np.ones((4, 3), dtype=np.float16)
4 b = np.ones((4, 3), dtype=np.float16)
5

6 # Run NKI kernel on a NeuronDevice
7 c = nki_tensor_add_kernel(a, b)
8

9 print(c)

Note: Alternatively, we can decorate the kernel with nki.baremetal or pass the mode parameter to the nki.jit
decorator, @nki.jit(mode='baremetal'), to bypass the dynamic mode detection. See nki.baremetal API doc for
more available input arguments for the baremetal mode.

PyTorch

To run the above nki_tensor_add_kernel kernel using PyTorch, we initialize the input and output tensors as PyTorch
device tensors instead.

1 import torch
2 from torch_xla.core import xla_model as xm
3

4 device = xm.xla_device()
5

6 a = torch.ones((4, 3), dtype=torch.float16).to(device=device)
7 b = torch.ones((4, 3), dtype=torch.float16).to(device=device)
8

9 c = nki_tensor_add_kernel(a, b)
10

11 print(c) # an implicit XLA barrier/mark-step (triggers XLA compilation)

Running the above code for the first time will trigger compilation of the NKI kernel, which might take a few minutes
before printing any output. The printed output should be as follows:

tensor([[2., 2., 2.],
[2., 2., 2.],
[2., 2., 2.],
[2., 2., 2.]], device='xla:1', dtype=torch.float16)
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Note: Alternatively, we can pass the mode='torchxla' parameter into the nki.jit decorator to bypass the dynamic
mode detection.

JAX

To run the above nki_tensor_add_kernel kernel using JAX, we initialize the input tensors as JAX tensors:

1 import jax.numpy as jnp
2

3 a = jnp.ones((4, 3), dtype=jnp.float16)
4 b = jnp.ones((4, 3), dtype=jnp.float16)
5

6 c = nki_tensor_add_kernel(a, b)
7

8 print(c)

Note: Alternatively, we can pass the mode='jax' parameter into the nki.jit decorator to bypass the dynamic mode
detection.

Download links

• NKI baremetal script: getting_started_baremetal.py

• PyTorch script: getting_started_torch.py

• JAX script: getting_started_jax.py

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

NKI Programming Model

The NKI programming model enables developers to create custom kernels to program NeuronCores, where every
kernel consists of three main stages:

1. Loading of inputs from device memory (High Bandwidth Memory, or HBM) to the on-chip SRAM (State Buffer,
or SBUF).

2. Computation definition, to be executed on the NeuronCore compute engines.

3. Storing of outputs from on-chip SRAM (SBUF) back to device memory (HBM).

Fig. 7.2 below is a simplified diagram of a NeuronCore along with its attached HBM device memory. NKI kernels in
current release can target a single NeuronCore-v2 or up to two NeuronCore-v3.

As shown in Fig. 7.2, a single NeuronCore consists of two on-chip SRAMs (SBUF and PSUM) and four heterogenous
compute engines: the Tensor Engine, Vector Engine, Scalar Engine, and GpSimd Engine. For more information about
the compute engine capabilities, see NeuronDevice Architecture Guide. Next, let’s dive into the memory hierarchy
design of NeuronCore, which provides the necessary architecture knowledge to understand the NKI programming
model.

1326 Chapter 7. Compiler



AWS Neuron

Fig. 7.2: NeuronCore Architecture (multiple NeuronCores available per NeuronDevice)

Memory hierarchy

Fig. 7.3 below shows the four-level memory hierarchy available to a single NeuronCore. The ranges provided in the
figure are intended to calibrate the programmer’s mental model. See NeuronDevice Architecture Guide for the exact
values.

Similar to standard memory hierarchy in other devices, memories near the top of the hierarchy are the closest to the
compute engines; therefore, they are designed to provide the highest bandwidth and lowest latency. However, the faster
memories have smaller capacities compared to memories near the bottom. Unlike memory hierarchy for traditional
processors (e.g., CPU, GPU), all the memories available to a NeuronCore are software-managed. They are managed
either directly by the programmers or the Neuron SDK. In other words, NeuronCore does not have a hardware cache
system to perform any data movement across memories that is opaque to the program. Next, let’s discuss the different
memories bottom-up.

NeuronCore external memory

The two memories at the bottom of the hierarchy, host memory and device memory, are both considered external
memory for a NeuronCore. These memories are linear memory, where multi-dimensional tensors must be stored in a
flattened manner.

The host memory is the CPU-attached DRAM, which is accessible by the host CPUs and all the NeuronCores attached
to the instance. NKI kernels currently do not provide APIs to move data in and out of the host memory directly, but
we can rely on ML frameworks such as PyTorch or JAX to send input data from host memory into NeuronDevice and
vice versa. For an example of this, see Getting Started with NKI .

The device memory resides within a NeuronDevice and uses High Bandwidth Memory (HBM) technologies starting
from NeuronDevice v2. This means that device memory and HBM refer to the same thing within NKI. Currently, the
input and output parameters to NKI kernels must be HBM tensor references. Input tensors in HBM must be loaded
into memory within a NeuronCore before any computation can take place.
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Fig. 7.3: NeuronCore Memory Hierarchy with Capacity and Bandwidth Ranges

NeuronCore internal memory

The two memories at the top of the hierarchy, SBUF and PSUM, are both considered internal, on-chip memory for a
NeuronCore. Both memories are two-dimensional memory, organized in 128 partitions. The partitions size of PSUM
is typically much smaller than SBUF, and PSUM/SBUF partition sizes vary with NeuronCore generations.

State Buffer (SBUF) memory is the main software-managed on-chip SRAM. The SBUF is accessible by all the compute
engines within a NeuronCore. NKI kernel input tensors from HBM must be loaded into the SBUF for computation
using nki.language.load, and computed output tensors of the kernel must be stored back into the HBM from SBUF
using nki.language.store before the host can access them. In addition, SBUF is used for storing intermediate data within
the kernel, generated by the compute engines. Note, SBUF has ~20x higher bandwidth than HBM, but needs to be
carefully managed to minimize HBM accesses for better performance.

Lastly, Partial Sum Buffer (PSUM) memory is a small, dedicated memory designed for storing matrix multiplication
(MatMult) results computed by the tensor engine. Tensor Engine is able to read-add-write to every address in PSUM.
Therefore, PSUM is useful for performing large MatMult calculations using multiple tiles where multiple MatMult
instructions need to accumulate into the same output tile. As is shown in Fig. 7.2, PSUM memory can also be read
and written by the vector and scalar engines. However, due to the limited capacity of PSUM, we recommend that you
reserve PSUM space for the tensor engine to write MatMult outputs and to use the vector and scalar engines to evict
MatMult results back to SBUF as soon as possible.

Note that to optimize kernel performance, it is a good practice for NKI programmers to be mindful of SBUF and PSUM
usage through careful tiling and loop fusion. However, ultimately the Neuron compiler performs memory allocation
for SBUF and PSUM and assigns memory addresses to kernel intermediate data. When the cumulative size of live data
defined by the NKI kernel overflows the capacity of any on-chip memory, the Neuron compiler inserts the necessary
spills or refills between that memory and the next-tier memory in the hierarchy.
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Representing data in NKI

NKI represents data in NeuronCore’s memory hierarchy with built-in type Tensor and its subclasses.

A Tensor is a multi-dimensional array which contains elements with the same data type. Programmers can pass
Tensor in and out of NKI kernels, and declare or initialize Tensor in any memory within the NeuronDevice (PSUM,
SBUF, HBM) using APIs such as nki.language.ndarray, nki.language.zeros, and nki.language.full. Input and output
tensors from ML frameworks to NKI kernels can be reinterpreted as NKI Tensor of hbm buffer type in the same
underlying memory buffer.

Tensor in NeuronCore’s internal memories (SBUF and PSUM) also have a dimension mapped to the partitions of the
internal memories. We call this dimension the partition dimension. By default, NKI infers the first dimension
(that is, the left most dimension) as the partition dimension of Tensor. Users could also explicitly annotate the
partition dimension with par_dim from nki.language. For example:

# NKI infers the left most dimension as the partition dimension (size 128 below)
x = nl.ndarray((128, 32, 512), dtype=nl.float32, buffer=nl.sbuf)

# Same as above but more verbose
y = nl.ndarray((nl.par_dim(128), 32, 512), dtype=nl.float32, buffer=nl.sbuf)

# We can also explicitly annotate the partition dimension if we want the partition␣
→˓dimension
# to be on the other dimensions. In the following code we are creating a tensor whose␣
→˓partition
# dimension is the second from the left most dimension
z = nl.ndarray((128, nl.par_dim(32), 512), dtype=nl.float32, buffer=nl.sbuf)

There is a special subclass of Tensor called Index. Index represents the result of the affine expression over variables
produced by index-generating APIs, such as loop variables, nki.language.program_id, nki.language.affine_range, and
nki.language.arange.

A Tensor whose partition dimension is the first dimension is also called a Tile in NKI. In the above code
example, x and y is a Tile, z is not a Tile. All NKI APIs take Tile as input and return a Tile as output. We will
give more explanation in Tile-based operations.

Tile-based operations

All NKI APIs operate on Tile, which aligns with NeuronCore instruction set architecture (NeuronCore ISA).

x = nl.ndarray((128, 32, 512), dtype=nl.float32, buffer=nl.sbuf)
xx = nl.exp(x) # works

z = nl.ndarray((128, nl.par_dim(32), 512), dtype=nl.float32, buffer=nl.sbuf)
zz = nl.exp(z) # not supported

To call NKI APIs to process data in a Tensor whose partition dimension is not the first dimension, users need to
generate Tiles from the Tensor. This can be done by indexing the Tensor with a tuple of Index, following standard
Python syntax Tensor[Index, Index, ...]. For example:

z = nl.ndarray((128, nl.par_dim(32), 512), dtype=nl.float32, buffer=nl.sbuf)
for i in range(128):
zz = nl.exp(z[i, :, :]) # works
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We will provide more discussion of the indexing in Tensor Indexing. Next, let’s discuss two important considerations
when working with tile-based operations in NKI: data layout and tile size constraints.

Layout considerations

When working with multi-dimensional arrays in any platform, it is important to consider the physical memory layout
of the arrays, or how data is stored in memory. For example, in the context of 1D linear memory, we can store a 2D
array in a row-major layout or a column-major layout. Row-major layouts place elements within each row in contiguous
memory, and column-major layouts place elements within each column in contiguous memory.

As discussed in the Memory hierarchy section, the on-chip memories, SBUF and PSUM, are arranged as 2D memory
arrays. The first dimension is the partition dimension P with 128 memory partitions that can be read and written
in parallel by compute engines. The second dimension is the free dimension F where elements are read and written
sequentially. A tensor is placed in SBUF and PSUM across both P and F, with the same start offset across all P partitions
used by the tensor. Fig. 7.4 below illustrates a default tensor layout. Note that a tile in NKI must map shape[0] to the
partition dimension.

Fig. 7.4: Tensor mapped to partition and free dimensions of SBUF and PSUM

Similar to other domain-specific languages that operate on tensors, NKI defines a contraction axis of a tensor as the
axis over which reduction is performed, for example the summation axis in a dot product. NKI also defines a parallel
axis as an axis over which the same operation is performed on all elements. For example, if we take a [100, 200]
matrix and sum each row independently to get an output of shape [100, 1], then the row-axis (axis[0], left-most)
is the parallel axis, and the column-axis (axis[1], right-most) is the contraction axis.

To summarize, the partition and free dimensions of a NKI tensor dictate how the tensor is stored in the 2D on-chip
memories physically, while the parallel and contraction axes of a tensor are logical axes that are determined by the
computation to be done on the tensor.

The NeuronCore compute engines impose two layout constraints:

• [LC#1] For matrix multiplication operations, the contraction axis of both input tiles must be mapped to the P
dimension.

• [LC#2] For operations that are not matrix multiplication operations, such as scalar or vector operations, the
parallel axis should be mapped to the P dimension.

LC#1 means that to perform a matrix multiplication of shapes [M, K] and [K, N], Tensor Engine (the engine perform-
ing this operation) requires the K dimension to be mapped to the partition dimension in SBUF for both input matrices.
Therefore, you need to pass shapes [K, M] and [K, N] into the nki.isa.nc_matmul API, as the partition dimension is
always the left-most dimension for an input tile to any NKI compute API.

To help developers get started with NKI quickly, NKI also provides a high-level API nki.language.matmul that can take
[M, K] and [K, N] input shapes and invoke the necessary layout shuffling on the input data before sending it to the
Tensor Engine matmul instruction.
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LC#2, on the other hand, is applicable to many instructions supported on Vector, Scalar and GpSimd Engines. See
nki.isa.tensor_reduce API as an example.

Tile size considerations

Besides layout constraints, NeuronCore hardware further imposes three tile-size constraints in NKI:

• [TC#1] The P dimension size of a tile in both SBUF and PSUM must never exceed nki.tile_size.pmax ==
128.

• [TC#2] For tiles in PSUM, the F dimension size must not exceed nki.tile_size.psum_fmax == 512.

• [TC#3] Matrix multiplication input tiles F dimension size must not exceed nki.tile_size.
gemm_stationary_fmax == 128 on the left-hand side (LHS), or nki.tile_size.gemm_moving_fmax ==
512 on the right-hand side (RHS).

You are responsible for breaking your tensors according to these tile-size constraints. If the constraints are not met
properly, the NKI kernel compilation throws a SyntaxError indicating which constraint is violated. For example,
below we show a simple kernel that applies the exponential function to every element of an input tensor. To start, let’s
write a kernel that expects a hard-coded shape of (128, 512) for both input and output tensors:

1 import neuronxcc.nki.language as nl
2 from neuronxcc import nki
3

4 @nki.jit
5 def tensor_exp_kernel_(in_tensor):
6 """NKI kernel to compute elementwise exponential of an input tensor
7

8 Args:
9 in_tensor: an input tensor of shape [128,512]

10 Returns:
11 out_tensor: an output tensor of shape [128,512]
12 """
13

14 out_tensor = nl.ndarray(in_tensor.shape, dtype=in_tensor.dtype,
15 buffer=nl.shared_hbm)
16

17 # Generate indices for the input/output tensors
18 i_p = nl.arange(128)[:, None]
19 i_f = nl.arange(512)[None, :]
20

21 # Load input data from HBM to on-chip memory
22 in_tile = nl.load(in_tensor[i_p, i_f])
23

24 # perform the computation:
25 out_tile = nl.exp(in_tile)
26

27 # store the results back to HBM
28 nl.store(out_tensor[i_p, i_f], value=out_tile)
29

30 return out_tensor
31

32

33 if __name__ == "__main__":
(continues on next page)
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(continued from previous page)

34 import torch
35 from torch_xla.core import xla_model as xm
36

37 device = xm.xla_device()
38

39 shape = (128, 512)
40 in_tensor = torch.ones(shape, dtype=torch.bfloat16).to(device=device)
41 out_tensor = tensor_exp_kernel_(in_tensor)
42

43 print(out_tensor) # an implicit XLA barrier/mark-step

As expected, the output tensor is an element-wise exponentiation of the input-tensor (a tensor of ones):

tensor([[2.7188, 2.7188, 2.7188, ..., 2.7188, 2.7188, 2.7188],
[2.7188, 2.7188, 2.7188, ..., 2.7188, 2.7188, 2.7188],
[2.7188, 2.7188, 2.7188, ..., 2.7188, 2.7188, 2.7188],
...,
[2.7188, 2.7188, 2.7188, ..., 2.7188, 2.7188, 2.7188],
[2.7188, 2.7188, 2.7188, ..., 2.7188, 2.7188, 2.7188],
[2.7188, 2.7188, 2.7188, ..., 2.7188, 2.7188, 2.7188]],
device='xla:1', dtype=torch.bfloat16)

Now let’s examine what happens if the input/output tensor shapes do not match the shape of the compute kernel. As
an example, we can change the input and output tensor shape from [128,512] to [256,512]:

1 if __name__ == "__main__":
2 import torch
3 from torch_xla.core import xla_model as xm
4

5 device = xm.xla_device()
6

7 shape = (256, 512) # Previously (128, 512)
8 in_tensor = torch.ones(shape, dtype=torch.bfloat16).to(device=device)
9 out_tensor = tensor_exp_kernel_(in_tensor)

10

11 print(out_tensor) # an implicit XLA barrier/mark-step

Since the compute kernel is expecting (128, 512) input/output tensors, but we used a (256, 512) input/output
tensor instead, the bottom half of the output tensor becomes garbage data:

tensor([[2.7188, 2.7188, 2.7188, ..., 2.7188, 2.7188, 2.7188],
[2.7188, 2.7188, 2.7188, ..., 2.7188, 2.7188, 2.7188],
[2.7188, 2.7188, 2.7188, ..., 2.7188, 2.7188, 2.7188],
...,
[0.5273, 0.6055, 0.4336, ..., 0.9648, 0.9414, 0.4062],
[0.7109, 0.2539, 0.7227, ..., 0.7344, 0.2539, 0.1211],
[0.8867, 0.2109, 0.8789, ..., 0.8477, 0.2227, 0.1406]],
device='xla:1', dtype=torch.bfloat16)

We could try to fix this by changing the tile size inside the compute kernel to (256, 512) as well, and see what
happens: (NOTE: This violates tile-size constraint #1!):
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1 import neuronxcc.nki.language as nl
2 from neuronxcc import nki
3

4

5 @nki.jit
6 def tensor_exp_kernel_(in_tensor):
7 """NKI kernel to compute elementwise exponential of an input tensor
8

9 Args:
10 in_tensor: an input tensor of shape [128,512]
11 Returns:
12 out_tensor: an output tensor of shape [128,512]
13 """
14 out_tensor = nl.ndarray(in_tensor.shape, dtype=in_tensor.dtype,
15 buffer=nl.shared_hbm)
16

17 # Generate indices for the input/output tensors
18 i_p = nl.arange(256)[:, None] # Previously nl.arange(128)
19 i_f = nl.arange(512)[None, :]
20

21 # Load input data from HBM to on-chip memory
22 in_tile = nl.load(in_tensor[i_p, i_f])
23

24 # perform the computation:
25 out_tile = nl.exp(in_tile)
26

27 # store the results back to HBM
28 nl.store(out_tensor[i_p, i_f], value=out_tile)
29

30

31 if __name__ == "__main__":
32 import torch
33 from torch_xla.core import xla_model as xm
34

35 device = xm.xla_device()
36

37 shape = (256, 512) # Previously (128, 512)
38 in_tensor = torch.ones(shape, dtype=torch.bfloat16).to(device=device)
39 out_tensor = tensor_exp_kernel_(in_tensor)
40

41 print(out_tensor) # an implicit XLA barrier/mark-step

Here, Neuron compiler identifies the tile-size constraint violation and fails compilation with the following exception:

SyntaxError: Size of partition dimension 256 exceeds architecture limitation of 128.

Now, let’s see how NKI developers can build a kernel that properly handles (256, 512) input/output tensors with a
simple loop. We can use the nki.language.tile_size.pmax constant defined in NKI as the maximum partition
dimension size in a tile.

1 import neuronxcc.nki.language as nl
2 from torch_neuronx import nki_jit
3

(continues on next page)
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4 @nki_jit
5 def tensor_exp_kernel_(in_tensor):
6 """NKI kernel to compute elementwise exponential of an input tensor
7

8 Args:
9 in_tensor: an input tensor of shape [256,512]

10 Returns:
11 out_tensor: an output tensor of shape [256,512]
12 """
13 out_tensor = nl.ndarray(in_tensor.shape, dtype=in_tensor.dtype,
14 buffer=nl.shared_hbm)
15

16 i_f = nl.arange(512)[None, :]
17

18 for k in nl.affine_range(2):
19 # Generate tensor indices for the input/output tensors
20 i_p = k * nl.tile_size.pmax + nl.arange(nl.tile_size.pmax)[:, None]
21

22 # Load input data from HBM to on-chip memory
23 in_tile = nl.load(in_tensor[i_p, i_f])
24

25 # perform the computation
26 out_tile = nl.exp(in_tile)
27

28 # store the results back to HBM
29 nl.store(out_tensor[i_p, i_f], value=out_tile)
30

31 return out_tensor

The nl.affine_range(2) API call returns a list of integers [0, 1]. nl.affine_range should be the default loop
iterator choice in NKI, when the loop has no loop-carried dependency. Note, associative reductions are not considered
loop carried dependencies in this context. One such example is accumulating results of multiple matrix multiplication
calls into the same output buffer using += (see Matmul Tutorial for an example). Otherwise, nl.sequential_range should
be used to handle loop-carried dependency. Note, Neuron compiler transforms any usage of Python range() API into
nl.sequential_range() under the hood. See NKI iterator API for a detailed discussion of various loop iterator
options in NKI.

While the code above does handle (256, 512) tensors correctly, it is rather inflexible since it only supports input
shape of (256, 512). Therefore, as a last step, we extend this kernel to handle varying input/output sizes:

1 import neuronxcc.nki.language as nl
2 from neuronxcc import nki
3 import math
4

5 @nki.jit
6 def tensor_exp_kernel_(in_tensor):
7 """NKI kernel to compute elementwise exponential of an input tensor
8

9 Args:
10 in_tensor: an input tensor of ANY 2D shape (up to SBUF size)
11 Returns:
12 out_tensor: an output tensor of ANY 2D shape (up to SBUF size)
13 """

(continues on next page)
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14 sz_p, sz_f = in_tensor.shape
15 out_tensor = nl.ndarray((sz_p, sz_f), dtype=in_tensor.dtype,
16 buffer=nl.shared_hbm)
17

18

19 i_f = nl.arange(sz_f)[None, :]
20

21 for p in nl.affine_range(math.ceil(sz_p / nl.tile_size.pmax)):
22 # Generate tensor indices for the input/output tensors
23 # pad index to pmax, for simplicity
24 i_p = p * nl.tile_size.pmax + nl.arange(nl.tile_size.pmax)[:, None]
25

26 # Load input data from external memory to on-chip memory
27 # only read up to sz_p
28 in_tile = nl.load(in_tensor[i_p, i_f], mask=(i_p<sz_p))
29

30 # perform the computation
31 out_tile = nl.exp(in_tile, mask=(i_p<sz_p))
32

33 # store the results back to external memory
34 # only write up to sz_p
35 nl.store(out_tensor[i_p, i_f], value=out_tile, mask=(i_p<sz_p))
36

37 return out_tensor

The above example handles cases where in_tensor.shape[0] is not a multiple of 128 by passing a mask field into the
nl.load and nl.store API calls. For more information, refer to NKI API Masking.

Later in this guide, we’ll explore another way to launch a kernel with varying input/output shapes, with a single program
multiple data programming model, or SPMD. The SPMD programming model removes the need for explicit looping
over different tiles with variable trip counts, which could lead to cleaner and more readable code.

Tensor Indexing

As mentioned above, we can index Tensor with standard Python syntax to produce Tiles. There are two styles of
indexing: Basic and Advanced Tensor Indexing. Note that currently NKI does not support mixing Basic and Advanced
Tensor Indexing in the same Index tuple.

Basic Tensor Indexing

We can index a Tensor with fewer indices than dimensions, we get a view of the original tensor as a sub-dimensional
tensor. For example:

x = nl.ndarray((2, 2, 2), dtype=nl.float32, buffer=nl.hbm)

# `x[1]` return a view of x with shape of [2, 2]
# [[x[1, 0, 0], x[1, 0 ,1]], [x[1, 1, 0], x[1, 1 ,1]]]
assert x[1].shape == [2, 2]

By indexing a Tensor like this, we can generate a Tile with the partition dimension in the first dimension and feed
the Tile to NKI compute APIs:
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# Not a tile, cannot directly feed to a NKI compute API
x = nl.ndarray((2, nl.par_dim(2), 2), dtype=nl.float32)
# Error
y = nl.exp(x)

# `x[1]` have shape [2, 2], and the first dimension is the partition dimension of the␣
→˓original
# tensor. We can feed it to a NKI compute API.
y = nl.exp(x[1])

NKI also supports slicing in basic tensor indexing:

x = nl.ndarray((2, 128, 1024), dtype=nl.float32, buffer=nl.hbm)

# `x[1, :, :]` is the same as `x[1]`
assert x[1, :, :].shape == [128, 1024]

# Get a smaller view of the third dimension
assert x[1, :, 0:512].shape == [128, 512]

# `x[:, 1, 0:2]` returns a view of x with shape of [2, 2]
# [[x[0, 1, 0], x[0, 1 ,1]], [x[1, 1, 0], x[1, 1 ,1]]]
assert x[:, 1, 0:2].shape == [2, 2]

Advanced Tensor Indexing

So far we have only shown basic indexing in tensors. However, NeuronCore offers much more flexible tensorized
memory access in its on-chip SRAMs along the free dimension. You can use this to efficiently stride the SBUF/PSUM
memories at high performance for all NKI APIs that access on-chip memories. However, such flexible indexing is not
supported along the partition dimension. That being said, device memory (HBM) is always more performant when
accessed sequentially.

In this section, we share several use cases that benefit from advanced memory access patterns and demonstrate how to
implement them in NKI.

Advanced Tensor Indexing in NKI leverages the nl.arange API.

Case #1 - Tensor split to even and odd columns

Here we split an input tensor into two output tensors, where the first output tensor gathers all the even columns from
the input tensor, and the second output tensor gathers all the odd columns from the input tensor. We assume the rows
of the input tensors are mapped to SBUF partitions. Therefore, we are effectively gathering elements along the free
dimension of the input tensor. Fig. 7.5 below visualizes the input and output tensors.

1 from neuronxcc import nki
2 import neuronxcc.nki.language as nl
3 import math
4

5 @nki.jit
6 def tensor_split_kernel_(in_tensor):
7 """NKI kernel to split an input tensor into two output tensors, along the column axis.

(continues on next page)
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Fig. 7.5: Tensor split to even and odd columns

(continued from previous page)

8

9 The even columns of the input tensor will be gathered into the first output tensor,
10 and the odd columns of the input tensor will be gathered into the second output tensor.
11

12 Args:
13 in_tensor: an input tensor
14 Returns:
15 out_tensor_even: a first output tensor (will hold the even columns of the input␣

→˓tensor)
16 out_tensor_odd: a second output tensor (will hold the odd columns of the input␣

→˓tensor)
17 """
18

19 # Extract tile sizes.
20 sz_p, sz_f = in_tensor.shape
21 sz_fout_even = sz_f - sz_f // 2
22 sz_fout_odd = sz_f // 2
23 out_tensor_even = nl.ndarray((sz_p, sz_fout_even), dtype=in_tensor.dtype, buffer=nl.

→˓shared_hbm)
24 out_tensor_odd = nl.ndarray((sz_p, sz_fout_odd), dtype=in_tensor.dtype, buffer=nl.

→˓shared_hbm)
25

26 # We assume that all three tensors have the same partition dimension size
27 # and it does not exceed pmax
28 assert in_tensor.shape[0] == out_tensor_even.shape[0] == out_tensor_odd.shape[0]
29 assert in_tensor.shape[0] <= nl.tile_size.pmax
30

31 # Make sure even/odd output tensors have correct free dimension size
32 assert sz_fout_even == math.ceil(sz_f / 2)
33 assert sz_fout_odd == math.floor(sz_f / 2)
34

35 # Generate tensor indices for the input/output tensors
36 i_p = nl.arange(sz_p)[:, None]
37 i_f = nl.arange(sz_f)[None, :]
38 i_fout_even = nl.arange(sz_fout_even)[None, :]
39 i_fout_odd = nl.arange(sz_fout_odd)[None, :]
40

41 # Split pattern:

(continues on next page)
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42 i_f_even = (2 * i_fout_even)
43 i_f_odd = (2 * i_fout_odd + 1)
44

45 # Load input data from external memory to on-chip memory
46 in_tile = nl.load(in_tensor[i_p, i_f])
47

48 # Perform the split
49 # these assignments invoke copy instructions under the hood
50 # which can execute on either Scalar or Vector Engine
51 # (decided by compiler instruction scheduler)
52 out_tile_even = in_tile[i_p, i_f_even]
53 out_tile_odd = in_tile[i_p, i_f_odd]
54

55 # Store the results back to external memory
56 nl.store(out_tensor_even[i_p, i_fout_even], value=out_tile_even)
57 nl.store(out_tensor_odd[i_p, i_fout_odd], value=out_tile_odd)
58

59 return out_tensor_even, out_tensor_odd
60

61

62 if __name__ == "__main__":
63 import torch
64 from torch_xla.core import xla_model as xm
65

66 device = xm.xla_device()
67

68 X, Y = 4, 5
69 in_tensor = torch.arange(X * Y, dtype=torch.bfloat16).reshape(X, Y).to(device=device)
70

71 out1_tensor, out2_tensor = tensor_split_kernel_(in_tensor)
72 print(in_tensor, out1_tensor, out2_tensor)

The main concept in this example is that we introduced the even (i_f_even) and odd ( i_f_odd ) indices. Note that
both indices are affine expressions of the form start + stride * nl.arange(size) with a specific start offset
(0/1 respectively) and stride (2 for both cases). This allows us to stride through the in_tile memory and copy it to
both output tiles (out_tile_even and out_tile_odd), according to the desired pattern.

Case #2 - Transpose tensor along the f axis

In this example we transpose a tensor along two of its axes. Note, there are two main types of transposition in NKI:

1. Transpose between the partition-dimension axis and one of the free-dimension axes, which is achieved via the
nki.isa.nc_transpose API.

2. Transpose between two free-dimension axes, which is achieved via a nki.language.copy API, with indexing ma-
nipulation in the transposed axes to re-arrange the data.

In this example, we’ll focus on the second case: consider a three-dimensional input tensor [P, F1, F2], where the P
axis is mapped to the different SBUF partitions and the F1 and F2 axes are flattened and placed in each partition, with
F1 being the major dimension. Our goal in this example is to transpose the F1 and F2 axes with a parallel dimension
P, which would re-arrange the data within each partition. Fig. 7.6 below illustrates the input and output tensor layouts.
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Fig. 7.6: Tensor F1:F2 Transpose

1 import neuronxcc.nki as nki
2 import neuronxcc.nki.language as nl
3

4

5 @nki.jit
6 def tensor_transpose2D_kernel_(in_tensor, shape2D):
7 """
8 NKI kernel to reorder the elements on axis[1] of the input tensor.
9

10 Every row of the input tensor is a flattened row-major 2D matrix.
11 The shape2D argument defines the dimensions of the flattened matrices (#rows,#cols).
12 Our goal in this kernel is to transpose these flattened 2D matrices, i.e. make them (

→˓#cols,#rows).
13

14 Example:
15 in_tensor = [a0,a1,a2,a3,b0,b1,b2,b3,c0,c1,c2,c3]
16 shape2D = (3,4)
17 this means that in_tensor has 3 rows and 4 columns, i.e. can be represented as:
18 [a0,a1,a2,a3]
19 [b0,b1,b2,b3]
20 [c0,c1,c2,c3]
21 after transpose, we expect to get:
22 [a0,b0,c0]
23 [a1,b1,c1]
24 [a2,b2,c2]
25 [a3,b3,c3]
26 Thus, out_tensor is expected to be [a0,b0,c0,a1,b1,c1,a2,b2,c2,a3,b3,c3]
27

28 Args:
29 in_tensor: an input tensor
30 shape2D: tuple representing the dimensions to be transposed: (#rows, #cols)
31 out_tensor: an output (transposed) tensor
32 """
33 out_tensor = nl.ndarray(in_tensor.shape, dtype=in_tensor.dtype,
34 buffer=nl.shared_hbm)
35 # Gather input shapes
36 sz_p, _ = in_tensor.shape

(continues on next page)
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37

38 # Load input data from external memory to on-chip memory
39 in_tile = nl.load(in_tensor)
40

41 # Performing f1/f2 transpose
42 # ==========================
43 # The desired transpose pattern is provided as an input:
44 sz_f1, sz_f2 = shape2D
45

46 # We're going to need 3 indices to perform f1:f2 transpose.
47 # - i_p0 is the parallel index
48 # - i_f1 and i_f2 are both free-dim indices, and will be used to transpose between the␣

→˓f1/f2 axes
49 i_p0 = nl.arange(sz_p)[:, None, None]
50 i_f1 = nl.arange(sz_f1)[None, :, None]
51 i_f2 = nl.arange(sz_f2)[None, None, :]
52

53 # Perform the transposition via a SBUF-to-SBUF copy, with access-pattern manipulation
54 # Note that we have 2D tensors and 3 indices, since we need to represent a 2D access␣

→˓pattern *per partition*
55 # RHS traverses an F1 x F2 matrix in a row major manner
56 # LHS traverses an F2 x F1 (new) matrix in a row major manner
57 out_tile = nl.ndarray(shape=(sz_p, sz_f2*sz_f1), dtype=out_tensor.dtype)
58 out_tile[i_p0, i_f2*sz_f1+i_f1] = nl.copy(in_tile[i_p0, i_f1*sz_f2+i_f2])
59

60 # Finally, we store out_tile to external memory
61 nl.store(out_tensor, value=out_tile)
62

63 return out_tensor

The main concept introduced in this example is a 2D memory access pattern per partition, via additional indices.
We copy in_tile into out_tile, while traversing the memory in different access patterns between the source and
destination, thus achieving the desired transposition.

You may download the full runnable script from Transpose2d tutorial.

Case #3 - 2D pooling operation

Lastly, we examine a case of dimensionality reduction. We implement a 2D MaxPool operation, which is used in
many vision neural networks. This operation takes C x [H,W] matrices and reduces each matrix along the H and
W axes. To leverage free-dimension flexible indexing, we can map the C (parallel) axis to the P dimension and H/W
(contraction) axes to the F dimension. Performing such a 2D pooling operation requires a 4D memory access pattern
in the F dimension, with reduction along two axes. Fig. 7.7 below illustrates the input and output tensor layouts.

1 from neuronxcc import nki
2 import neuronxcc.nki.language as nl
3

4 @nki.jit
5 def tensor_maxpool_kernel_(in_tensor, pool_size):
6 """NKI kernel to compute a 2D max-pool operation
7

8 Args:
(continues on next page)

1340 Chapter 7. Compiler



AWS Neuron

Fig. 7.7: 2D-Pooling Operation (reducing on axes F2 and F4)

(continued from previous page)

9 in_tensor: an input tensor, of dimensions C x H x W
10 pool_size: integer P representing a (square) pool-window size
11 Returns:
12 out_tensor: the resulting output tensor, of dimensions C x (H/P) x (W/P)
13 """
14

15 # Get input/output dimensions
16 sz_cin, sz_hin, sz_win = in_tensor.shape
17 sz_hout, sz_wout = sz_hin // pool_size, sz_win // pool_size
18 out_tensor = nl.ndarray((sz_cin, sz_hout, sz_wout), dtype=in_tensor.dtype,
19 buffer=nl.shared_hbm)
20

21 # Set relevant sizes
22 sz_p = sz_cin
23 sz_pool = pool_size
24

25 # Generate tensor h/w index patterns
26 # 3D indexing according to [C, H, W]
27 i_p = nl.arange(sz_p)[:, None, None] # 3D for
28 i_win = nl.arange(sz_win)[None, None, :]
29 i_hin = nl.arange(sz_hin)[None, :, None]
30

31 i_wout = nl.arange(sz_wout)[None, None, :]
32 i_hout = nl.arange(sz_hout)[None, :, None]
33

34 # Generate pool index patterns (requires two extra dimensions, for the pool window)
35 i_0 = nl.arange(sz_p)[:, None, None, None, None] #
36 i_1 = nl.arange(sz_hin//sz_pool)[None, :, None, None, None] # y_outer
37 i_2 = nl.arange(sz_pool)[None, None, :, None, None] # y_inner
38 i_3 = nl.arange(sz_win//sz_pool)[None, None, None, :, None] # x_outer
39 i_4 = nl.arange(sz_pool)[None, None, None, None, :] # x_inner
40

41 # Load input data from external memory to on-chip memory
42 # Declare ndarray to force a 3D tensor (temporary requirement)
43 in_tile = nl.ndarray([sz_p, sz_hin, sz_win], dtype=in_tensor.dtype)
44 in_tile[:,:,:] = nl.load(in_tensor[i_p, i_hin, i_win])

(continues on next page)
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45

46 # Perform the pooling operation:
47 # We use numpy's advanced indexing, in order to extend in_tile to 5D, and then reduce-

→˓max two dimension.
48 # axis[0] is the index for p_dim, and thus doesn't participate in the reduction␣

→˓operation.
49 # axis[1] and axis[2] together index the rows, with axis[2] responsible for inner␣

→˓strides
50 # (i.e. inside a pooling window), and axis[1] responsible for the outer strides. As␣

→˓such, we reduce over axis[2].
51 # Similarly, axis[3] and axis[4] together index the columns, and we thus reduce over␣

→˓axis[4].
52 out_tile = nl.max(in_tile[i_0, sz_pool*i_1+i_2, sz_pool*i_3+i_4], axis=[2,4])
53

54 # Store the results back to external memory
55 nl.store(out_tensor[i_p, i_hout, i_wout], value=out_tile)
56

57 return out_tensor
58

59

60 if __name__ == "__main__":
61 import torch
62 from torch_xla.core import xla_model as xm
63

64 device = xm.xla_device()
65

66 # Now let's run the kernel
67 POOL_SIZE = 2
68 C, HIN, WIN = 2, 6, 6
69 HOUT, WOUT = HIN//POOL_SIZE, WIN//POOL_SIZE
70

71 in_tensor = torch.arange(C * HIN * WIN, dtype=torch.bfloat16).reshape(C, HIN, WIN).
→˓to(device=device)

72 out_tensor = tensor_maxpool_kernel_(in_tensor, POOL_SIZE)
73

74 print(in_tensor, out_tensor) # an implicit XLA barrier/mark-step

SPMD: Launching multiple instances of a kernel

So far we have discussed how to launch a single NKI kernel instance, in which the full input tensor is processed. In
this section, we discuss how to launch multiple instances of the same kernel and slice the full input tensor across kernel
instances using a single program multiple data programming model (SPMD).

Note: In current NKI release, adopting the SPMD programming model has no impact on performance of NKI kernel,
and therefore is considered optional. A SPMD program is compiled into an executable that targets one NeuronCore,
and the different instances of the SPMD program are executed serially on a single NeuronCore. This is subject to
changes in future releases.

NKI allows users to launch multiple instances of a kernel, which are organized in a user-defined multi-dimensional grid.
The grid indices are then used by the different kernel instances to select which input and output data to access. There is
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no restriction on the number of dimensions in an SPMD grid, nor on the size of each dimension. Each kernel instance
can find its coordinates within the launch grid using the nki.language.program_id API. Neuron compiler translates the
SPMD launch grid into nested loops of compute-kernel invocations, which are then executed on the NeuronCore.

As an example, we’ll perform a C=A@B matrix multiplication, where A and B are of shape (512, 128) and (128,
1024) respectively. We partition the output tensor C of shape (512, 1024) into 4x2 tiles and assign the task of
computing each output tile to a different kernel instance. A 4x2 launch-grid is chosen in this case, in order to make
each compute kernel instance operate on a single tile in A and a single tile in B, while adhering to the tile-size constraints.

With a 2D 4x2 launch grid, the (i,j) kernel instance is responsible for computing the (i,j) tile of C. The computation
of the (i,j) tile requires the corresponding rows of A and columns of B. This induces a four-way row-wise partitioning
of A and a two-way column-wise partitioning of B, as shown in Fig. 7.8.

Fig. 7.8: Visualization of 512x128x1024 matrix multiplication using SPMD

In this SPMD kernel example, we will use the high-level nki.language.matmul API, so that we can focus on the concept
of SPMD without worrying about the layout requirement of Tensor Engine (LC#1). To achieve the best performance,
we suggest transposing input A and invoking another NKI kernel instead, which solely performs matmul operations
on Tensor Engine using nki.isa.nc_matmul without extra overhead in changing input layouts to meet LC#1.

1 import neuronxcc.nki.language as nl
2 from neuronxcc import nki
3

4

5 @nki.jit
6 def matmul_128x128x512_spmd(A, B):
7 """NKI kernel to compute a 128x128x512 matrix multiplication operation.
8 Use SPMD program IDs to index into the full A and B input tensor to get tiles
9 for 128x128x512 matrix multiplication.

10

11 Args:
12 A: an input tensor of shape [M=512,K=128],
13 a left hand side argument of the matrix multiplication,
14 B: an input tensor of shape [K=128,N=1024],
15 a right hand side argument of the matrix multiplication
16 result: the resulting output tensor of shape [M=512,N=1024]
17 """
18 N, K = A.shape
19 K_, M = B.shape
20 assert K == K_
21 # Create output tensor shared between all SPMD instances as result tensor
22 result = nl.ndarray((N, M), dtype=A.dtype, buffer=nl.shared_hbm)

(continues on next page)
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23

24 # Defining starting indexes for input A and B
25 i_A_row = nl.program_id(0) * 128
26 i_B_col = nl.program_id(1) * 512
27

28 # Loading the inputs (HBM->SBUF)
29 A_tile = nl.load(A[i_A_row:i_A_row+128, 0:128])
30 B_tile = nl.load(B[0:128, i_B_col:i_B_col+512])
31

32 # Perform the matrix-multiplication
33 # Note1: nl.matmul will invoke a transpose on A_tile before performing the actual␣

→˓matmul operation
34 # Note2: A NKI matmul instruction always writes to PSUM in float32 data-type
35 result_psum = nl.matmul(A_tile, B_tile)
36

37 # Copy the result from PSUM back to SBUF, and cast to expected output data-type
38 result_sbuf = nl.copy(result_psum, dtype=result.dtype)
39

40 # The result of a [128,128] x [128,512] matrix multiplication has a shape of [128,␣
→˓512].

41 # This dictates which indices to use to address the result tile.
42 nl.store(result[i_A_row:i_A_row+128, i_B_col:i_B_col+512], value=result_sbuf)
43

44 return result
45

46 if __name__ == "__main__":
47 from torch_xla.core import xla_model as xm
48 import torch
49

50 device = xm.xla_device()
51

52 A = torch.ones((512, 128), dtype=torch.bfloat16).to(device=device)
53 B = torch.ones((128, 1024), dtype=torch.bfloat16).to(device=device)
54

55 # Launch kernel with a 2D grid
56 result = matmul_128x128x512_spmd[4, 2](A, B)
57

58 print(result) # an implicit XLA barrier/mark-step

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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NKI Kernel as a Framework Custom Operator

This document demonstrates how to insert a NKI kernel as a custom operator into a PyTorch or JAX model using
simple code examples.

Using NKI kernels

To register a NKI kernel registration, you need to call a decorated NKI function.

Let’s examine a guiding example below where we randomly initialize two inputs, add them together, and then multiply
the result by the two input tensors element-wise. This effectively calculates: a * b * (a + b).

We define a common NKI kernel for addition. For more information on the kernel, see SPMD Tensor Addition.

1 import neuronxcc.nki as nki
2 import neuronxcc.nki.language as nl
3

4

5 @nki.jit
6 def nki_tensor_add_kernel_(a_input, b_input):
7 """NKI kernel to compute element-wise addition of two input tensors
8

9 This kernel assumes strict input/output sizes can be uniformly tiled to [128,512]
10

11 Args:
12 a_input: a first input tensor
13 b_input: a second input tensor
14

15 Returns:
16 c_output: an output tensor
17 """
18 # Create output tensor shared between all SPMD instances as result tensor
19 c_output = nl.ndarray(a_input.shape, dtype=a_input.dtype, buffer=nl.shared_hbm)
20

21 # Calculate tile offsets based on current 'program'
22 offset_i_x = nl.program_id(0) * 128
23 offset_i_y = nl.program_id(1) * 512
24

25 # Generate tensor indices to index tensors a and b
26 ix = offset_i_x + nl.arange(128)[:, None]
27 iy = offset_i_y + nl.arange(512)[None, :]
28

29 # Load input data from device memory (HBM) to on-chip memory (SBUF)
30 # We refer to an indexed portion of a tensor as an intermediate tensor
31 a_tile = nl.load(a_input[ix, iy])
32 b_tile = nl.load(b_input[ix, iy])
33

34 # compute a + b
35 c_tile = a_tile + b_tile
36

37 # store the addition results back to device memory (c_output)
38 nl.store(c_output[ix, iy], value=c_tile)
39

(continues on next page)
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40 # Transfer the ownership of `c_output` to the caller
41 return c_output

PyTorch

We can perform (a + b) * a * b using native PyTorch code.

import torch
from torch_xla.core import xla_model as xm

device = xm.xla_device()

a = torch.randn(256, 1024, dtype=torch.float32).to(device)
b = torch.randn(256, 1024, dtype=torch.float32).to(device)
c = a + b
out = a * b * c

print(out)

Now let’s replace the tensor addition (c = a + b) with a NKI kernel. To do this we replace the + operator with a call
to the NKI kernel caller (nki_tensor_add), and everything else works as before.

1 def nki_tensor_add(a_input, b_input):
2 """NKI kernel caller to compute element-wise addition of two input tensors
3

4 This kernel caller lifts tile-size restriction, by applying the kernel on tiles of the␣
→˓inputs/outputs

5

6 Args:
7 a_input: a first input tensor, of shape [N*128, M*512]
8 b_input: a second input tensor, of shape [N*128, M*512]
9

10 Returns:
11 a tensor of shape [N*128, M*512], the result of a_input + b_input
12 """
13

14 # The SPMD launch grid denotes the number of kernel instances.
15 # In this case, we use a 2D grid where the size of each invocation is 128x512
16 grid_x = a_input.shape[0] // 128
17 grid_y = a_input.shape[1] // 512
18

19 return nki_tensor_add_kernel_[grid_x, grid_y](a_input, b_input)

device = xm.xla_device()
a = torch.randn(256, 1024, dtype=torch.float32).to(device)
b = torch.randn(256, 1024, dtype=torch.float32).to(device)
c = nki_tensor_add(a, b) # calling a NKI kernel, instead of the built-in torch op
out = a * b * c
print(out)

To understand what happens under the hood when we compile the above code, we can print HLO IR graph generated
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by XLA by setting the NEURON_FRAMEWORK_DEBUG environment variable. For example, you may add the following
lines to your code:

import os
os.environ['NEURON_FRAMEWORK_DEBUG'] = "1"

A .pbtxt file is then written in your run directory that has the corresponding human-readable HLO IR.

Let’s examine the XLA output of this example. In line #5 we can identify that the tensor addition is now mapped to
an HLO custom-call instruction, with AwsNeuronCustomNativeKernel as custom_call_target. The output of
that custom-call is then consumed by the next instruction in line #6 as usual.

1 ENTRY %SyncTensorsGraph.22 (p0.2: f32[256,1024], p1.2: f32[256,1024]) -> (f32[256,1024])
→˓{

2 %p1.2 = f32[256,1024]{1,0} parameter(1), frontend_attributes={neff_input_name="input1"}
3 %p0.2 = f32[256,1024]{1,0} parameter(0), frontend_attributes={neff_input_name="input0"}
4 %multiply = f32[256,1024]{1,0} multiply(f32[256,1024]{1,0} %p1.2, f32[256,1024]{1,0}

→˓%p0.2)
5 %custom-call.2 = f32[256,1024]{1,0} custom-call(f32[256,1024]{1,0} %p1.2, f32[256,1024]

→˓{1,0} %p0.2), custom_call_target="AwsNeuronCustomNativeKernel", api_version=API_
→˓VERSION_UNSPECIFIED, backend_config="...")

6 %multiply.1 = f32[256,1024]{1,0} multiply(f32[256,1024]{1,0} %multiply, f32[256,1024]{1,
→˓0} %custom-call.2)

7 ROOT %tuple = (f32[256,1024]{1,0}) tuple(f32[256,1024]{1,0} %multiply.1), frontend_
→˓attributes={neff_output_names="output0"}

8 }

The Neuron compiler replaces the above custom-call with the corresponding NKI kernel implementation while opti-
mizing the rest of the compute graph as usual. At the end of the compilation process, a single compiled binary NEFF
file is generated representing the entire graph including the NKI kernel. For more information about NEFF files, see
Neuron Compiler.

JAX

We can perform (a + b) * a * b using native JAX code.

import jax
import jax.numpy as jnp

@jax.jit
def jax_customop_tutorial(a, b):

c = a + b
out = a * b * c
return out

seed = jax.random.PRNGKey(0)
seed_a, seed_b = jax.random.split(seed)
a = jax.random.normal(seed_a, (256, 1024), dtype=jnp.float32)
b = jax.random.normal(seed_b, (256, 1024), dtype=jnp.float32)

print(jax_customop_tutorial(a, b))

Similar to the PyTorch example above, let’s replace the tensor addition (c = a + b) with the addition NKI kernel.
To do this we replace the + operator with a call to the NKI kernel caller (nki_tensor_add), and everything else works
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as before.

1 def nki_tensor_add(a_input, b_input):
2 """NKI kernel caller to compute element-wise addition of two input tensors
3

4 This kernel caller lifts tile-size restriction, by applying the kernel on tiles of the␣
→˓inputs/outputs

5

6 Args:
7 a_input: a first input tensor, of shape [N*128, M*512]
8 b_input: a second input tensor, of shape [N*128, M*512]
9

10 Returns:
11 a tensor of shape [N*128, M*512], the result of a_input + b_input
12 """
13

14 # The SPMD launch grid denotes the number of kernel instances.
15 # In this case, we use a 2D grid where the size of each invocation is 128x512
16 grid_x = a_input.shape[0] // 128
17 grid_y = a_input.shape[1] // 512
18

19 return nki_tensor_add_kernel_[grid_x, grid_y](a_input, b_input)

import jax
import jax.numpy as jnp

@jax.jit
def jax_customop_tutorial(a, b):

c = nki_tensor_add(a, b) # calling a NKI kernel, instead of the built-in jax op
out = a * b * c
return out

seed = jax.random.PRNGKey(0)
seed_a, seed_b = jax.random.split(seed)
a = jax.random.normal(seed_a, (256, 1024), dtype=jnp.float32)
b = jax.random.normal(seed_b, (256, 1024), dtype=jnp.float32)
print(jax_customop_tutorial(a, b))

To understand what happens under the hood when we compile the above code, we can print the HLO IR graph by
adding the following snippet to your code:

print(jax.jit(jax_customop_tutorial)
.lower(a, b)
.compile()
.runtime_executable()
.hlo_modules()[0].to_string()

)

Let’s examine the XLA output of this example. In line #7 we can identify that the tensor addition is now mapped to an
HLO custom-call instruction, similar to PyTorch. The output of that custom-call is then consumed by the next
instruction in line #8 as usual.

1 HloModule jit_add, entry_computation_layout={(f32[256,1024]{1,0}, f32[256,1024]{1,0})->
→˓(f32[256,1024]{1,0})}, allow_spmd_sharding_propagation_to_output={true}

(continues on next page)
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2

3 ENTRY %main.11 (Arg_0.1: f32[256,1024], Arg_1.2: f32[256,1024]) -> (f32[256,1024]) {
4 %Arg_0.1 = f32[256,1024]{1,0} parameter(0), sharding={replicated}
5 %Arg_1.2 = f32[256,1024]{1,0} parameter(1), sharding={replicated}
6 %multiply.0 = f32[256,1024]{1,0} multiply(f32[256,1024]{1,0} %Arg_0.1, f32[256,1024]{1,

→˓0} %Arg_1.2), metadata={op_name="jit(add)/jit(main)/jit(jax_customop_tutorial)/mul"␣
→˓source_file="/tmp/ipykernel_3935360/2333914945.py" source_line=61}

7 %custom-call.0 = f32[256,1024]{1,0} custom-call(f32[256,1024]{1,0} %Arg_0.1, f32[256,
→˓1024]{1,0} %Arg_1.2), custom_call_target="AwsNeuronCustomNativeKernel", api_
→˓version=API_VERSION_STATUS_RETURNING, metadata={op_name="jit(add)/jit(main)/jit(jax_
→˓customop_tutorial)/nki_call[func=<function nki_tensor_add_kernel_ at 0x7f6be28f6f80>␣
→˓grid=(2, 2) out_shape=(ShapeDtypeStruct(shape=(256, 1024), dtype=float32),)]" source_
→˓file="/home/ubuntu/nki/src/jax_neuronx/core.py" source_line=34}, backend_config="..."

8 %multiply.1 = f32[256,1024]{1,0} multiply(f32[256,1024]{1,0} %multiply.0, f32[256,1024]
→˓{1,0} %custom-call.0), metadata={op_name="jit(add)/jit(main)/jit(jax_customop_
→˓tutorial)/mul" source_file="/tmp/ipykernel_3935360/2333914945.py" source_line=61}

9 ROOT %tuple.10 = (f32[256,1024]{1,0}) tuple(f32[256,1024]{1,0} %multiply.1)
10 }

The Neuron compiler replaces the above custom-call with the corresponding NKI kernel implementation while opti-
mizing the rest of the compute graph as usual. At the end of the compilation process, a single compiled binary NEFF
file is generated representing the entire graph including the NKI kernel. For more information about NEFF files, see
Neuron Compiler.

Using NKI in training graphs

If you are using NKI to implement a new operator in a training graph, you might need to make the new operator interplay
with the autograd engine in the framework. To do this, in PyTorch, you can subclass the framework’s base operator
class and implement both the forward() and backward()methods. The autograd engine then uses the backward()
method when performing auto-differentiation. See Extending torch.autograd in the PyTorch Docs for instructions on
doing this in PyTorch. To do this in JAX, you can create a custom_vjp rule (vjp stands for Vector-Jacobian product),
which binds the forward() and backward() calls. See Autodiff Cookbook in the JAX Docs for instructions on doing
this.

Let’s reuse the nki_tensor_add kernels from before and demonstrate how to train a simple compute graph (a+b)*a*b
in both PyTorch and JAX.

PyTorch

We define a NkiAddFunc class, which leverages the nki_tensor_add kernel in its forward() function. The gradients
of both input tensors in y = a + b are ones, so the backward() function propagates the dy gradients from the previous
backward function.

import torch
import torch_xla.core.xla_model as xm
device = xm.xla_device()

class NkiAddFunc(torch.autograd.Function):
@staticmethod

(continues on next page)
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def forward(ctx, a, b):
return nki_tensor_add(a, b)

@staticmethod
def backward(ctx, dy, *args):
# gradients for a and b
return dy, dy

# now, let's define the compute graph
a = torch.randn(256, 1024, dtype=torch.float32).to(device).detach().requires_grad_()
b = torch.randn(256, 1024, dtype=torch.float32).to(device).detach().requires_grad_()
c = NkiAddFunc.apply(a, b)
out = a * b * c

# here we define a (dummy) loss-function, in prep for backward propagation
loss = out.sum()

# lastly, let's invoke the auto-grad engine
loss.backward()

xm.mark_step()

JAX

We define a custom_vjp function nki_add_func by using the @jax.custom_vjp decorator which directly calls
the nki_tensor_add kernel. We then define and register the forward() and backward() implementations of the
nki_add_func function via defvjp(). Just like the PyTorch example before, the backward() implementation simply
passes the gradients through. Finally, to start training, we execute the forward pass by calling nki_add_func(a, b)
* x * y. To get the gradients, we call jax.grad directly with a loss function.

@jax.custom_vjp
def nki_add_func(a, b):
return nki_tensor_add(a, b)

def f_forward(a, b):
# operator output and residual (same as input here)
return nki_add_func(a, b), (a, b)

def f_backward(res, grad):
# gradients for a and b
return grad, grad

nki_add_func.defvjp(f_forward, f_backward) # line 11

@jax.jit
def jax_customop_tutorial_and_grad(a, b):

out = nki_add_func(a, b) * x * y

# use the same dummy loss function (output sum) as PyTorch example above
grad = jax.grad(lambda x, y: (nki_add_func(x, y) * x * y).sum(), argnums=(0, 1))(a, b)
return out, *grad

(continues on next page)
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c, grad_a, grad_b = jax_customop_tutorial_and_grad(a, b)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

NeuronDevice Architecture Guide for NKI

NKI currently supports the following NeuronDevice generations:

• Trainium/Inferentia2, available on AWS trn1, trn1n and inf2 instances

• Trainium2, available on AWS trn2 instances and UltraServers

The documents below provide an architecture deep dive of each NeuronDevice generation, with a focus on areas that
NKI developers can directly control through kernel implementation. Trainium/Inferentia2 Architecture Guide serves
as a foundational architecture guide for understanding basics of any NeuronDevice generation, while Trainium2 Archi-
tecture Guide walks through architecture enhancements compared to the previous generation in details. Therefore, we
suggest new NKI developers start with Trainium/Inferentia2 Architecture Guide before exploring newer NeuronDevice
architecture.

Trainium/Inferentia2 Architecture Guide Trainium2 Architecture Guide

This document is relevant for: Inf2, Trn1, Trn2

Trainium/Inferentia2 Architecture Guide for NKI

In this guide, we will dive into hardware architecture of second-generation NeuronDevices: Trainium/Inferentia2. Our
goal is to equip advanced Neuron users with sufficient architectural knowledge to write performant NKI kernels and
troubleshoot performance issues on NeuronDevices using neuron-profile, a profiler tool designed specifically for Neu-
ronDevices. This guide is also written assuming readers have read through NKI Programming Model and familiarized
themselves with key NKI concepts.

Fig. 7.9 shows a block diagram of a Trainium and Inferentia2 device. At a high level, both Trainium and Inferentia2
devices consist of:

• 2 NeuronCores (v2).

• 2 HBM stacks with a total device memory capacity of 32GiB and bandwidth of 820 GB/s.

• 32 DMA (Direct Memory Access) engines to move data within and across devices.

• 6 CC-Cores for collective communication.

• 2 (Inferentia2) or 4 (Trainium) NeuronLink-v2 for device-to-device collective communication.

The rest of this guide will go into details of each compute engine in NeuronCore-v2 and supported data movement
patterns across the memory hierarchy.
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Fig. 7.9: Trainium/Inferentia2 Device Diagrams.

NeuronCore-v2 Compute Engines

In this section, we will describe the architectural details within a NeuronCore-v2. The figure below is a simplified
diagram of the compute engines and their connectivity to the two on-chip SRAMs: state buffer (SBUF) and partial sum
buffer (PSUM).

A NeuronCore-v2 consists of four heterogeneous compute engines (Tensor, Vector, Scalar and GpSimd), each of which
is designed to accelerate different types of operators in modern machine learning models. These engines execute their
own instruction sequences asynchronously in parallel, but they can perform explicit synchronization to meet data and
resource dependency requirements through atomic semaphores in hardware. In NKI, programmers are not required to
program such engine synchronization manually. If the synchronization is not explicitly specified, the Neuron Compiler
will insert the required synchronizations during compilation, based on data dependencies identified in the NKI kernel.
NKI API calls without data dependencies can run in parallel if they have different target engines.

In addition, it is often useful to take engine data-path width and frequency into account when optimizing performance
for a multi-engine operator:

Device Architec-
ture

Compute En-
gine

Data-path Width (ele-
ments/cycle)

Frequency
(GHz)

Trainium/Inferentia2 Tensor 2x128 (input); 1x128 (output) 2.8
Vector 128 input/output 1.12
Scalar 1.4
GpSimd 1.4

Memory-wise, a NeuronCore-v2 consists of two software-managed on-chip SRAMs, a 24MiB SBUF as the main data
storage and a 2MiB PSUM as a dedicated accumulation buffer for Tensor Engine. Both SBUF and PSUM are considered
two-dimensional memories with 128 partitions each, i.e., one SBUF partitions has 192KiB of memory while one PSUM
partition has 16KiB. We will cover more details on data movements with SBUF/PSUM later here.

The rest of this section will cover the following topics for each compute engine:

• Key functionalities.

• Layout and tile size requirement for input and output tensors.

• Best practices to achieve good performance on the engine.

1352 Chapter 7. Compiler



AWS Neuron

Fig. 7.10: NeuronCore-v2 and its device memory (HBM).

Tensor Engine

Tensor Engine (TensorE from now on) is specially designed to accelerate matrix-multiplications (matmuls), as well as
other operators that can be executed using matrix multiplications such as 2D convolutions. We also note that TensorE
can be used for advanced data movement from SBUF to PSUM, including transposition and broadcast (more discussion
below here). Architecturally, the engine is built around a systolic array with 128 rows and 128 columns of processing
elements, which streams input data from SBUF and writes output to PSUM.

Data Types. TensorE supports BF16, FP16, TF32, and cFP8 input matrix data types at a maximum throughput of 92
TFLOPS, as well as 23 TFLOPS for FP32 inputs. TensorE performs mixed-precision calculations, with accumulations
at FP32 precision. Therefore, the output data of a TensorE calculation is always in FP32.

Layout. To understand the layout and tiling constraints of TensorE, let’s visualize its connection to SBUF and PSUM
as below. Note, PSUM partition dimension is purposely rotated 90 degrees compared to SBUF partition dimension
due to systolic array data flow.

As shown in the diagram above, TensorE must read input matrices from SBUF and write output matrices to PSUM.
PSUM also allows near-memory accumulation of multiple matrix multiplication output tiles (detailed usage discussed
here).

In NKI, to perform a multiplication of two matrices, x[M, K] and y[K, N], you may invoke the NKI language API
nki.language.matmul(x, y) directly. The returned tile has a shape of [M, N] as expected. At the hardware
level, TensorE requires both input tiles to have the contraction dimension K in the SBUF partition dimension, that
is, the first dimension of input shapes (LC #1 as discussed in NKI Programming Model). This ISA requirement is
reflected in the low-level API nki.isa.nc_matmul, which takes stationary and moving matrices as input parameters.
Therefore, nki.language.matmul(x, y) is a two-step computation: invoking nki.isa.nc_transpose(x) to get
stationary and then nki.isa.nc_matmul(stationary, moving) to get the final result. In other words, nki.
isa.nc_matmul(stationary[K,M], moving[K,N]) performs a stationary.T @ moving calculation, which
will result in an output with dimensions [M,N].

For every nki.isa.nc_matmul(stationary, moving) call, TensorE executes two distinct Neuron ISA instructions:
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Fig. 7.11: Tensor Engine and SRAM Connectivity.

• LoadStationary (short for LS): This instruction loads the stationary from SBUF and caches it in internal
storage of TensorE

• MultiplyMoving (short for MM): This instruction loads the moving from SBUF and multiplies moving across
the pre-loaded stationary matrix from the previous LoadStationary instruction. The output of this instruction
is the output of the nki.isa.nc_matmul call written to PSUM.

With the above instruction sequence, we as NKI programmers effectively map input tile stationary as the stationary
tensor and input tile moving as the moving tensor for TensorE. As a rule-of-thumb for layout analysis, the free axis
of the stationary tensor always becomes the partition (first) axis of the output tile, while the free axis of the moving
tensor becomes the free axis of the output. Fig 7.12 below visualizes this concept by showing a matrix multiplication
in both mathematical and TensorE views.

Fig. 7.12: MxKxN Matrix Multiplication Visualization.
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However, programmers are also free to map stationary tile to the moving tensor instead, which would lead to
the same output tile but transposed: nki.isa.nc_matmul(moving[K,N], stationary[K,M]) = moving.T @
stationary = outputT[N, M]. In fact, mapping high-level input tiles to the low-level stationary/moving tensors
in TensorE is an important layout decision that NKI programmers should consider to minimize data transposes. Pro-
grammers should make this decision based on layout requirements imposed by the compute engine that is going to
consume the matrix multiplication output. See NKI Performance Guide for more discussion.

Tile Size. The nki.isa.nc_matmul API enforces the following constraints on the input/output tile sizes:

1. stationary tensor free axis size (stationary_fsize) must never exceed 128, due to the number of PE
columns in TensorE.

2. stationary/moving tensor partition axis size (stationary_psize/moving_psize) must never exceed 128,
due to the number of PE rows and also the number of SBUF partitions.

3. moving tensor free axis size (moving_fsize) must never exceed 512, due to the fact that each nc_matmul can
only write to a single PSUM bank, which can only hold 512 FP32 elements per PSUM partition.

When the shapes of the input matrices defined in the user-level operator exceed any of the above tile size limitation,
we must tile the input matrices and invoke multiple nki.isa.nc_matmul calls to perform the matrix multiplica-
tion. Exceeding the stationary_fsize (#1) or moving_fsize (#3) tile limitations for M or N should lead to fully
independent nki.isa.nc_matmul with disjoint output tiles. However, when K exceeds the stationary_psize/
moving_psize limit, we need to tile the input matrices in the contraction dimension and invoke multiple nki.isa.
nc_matmul to accumulate into the same output buffer in PSUM. Refer to the Tiling Matrix Multiplications tutorial for
a NKI code example.

Alternative Use Case

One interesting use case of TensorE is low-latency data reshape within NeuronCore, which typically involves multiply-
ing a matrix to be reshaped with a compile-time constant matrix filled with zeros and ones.

As an example, we can perform a 128x128 matrix transposition (i.e., swap the free and partition axis of the matrix) using
nki.isa.nc_matmul(transpose_input, identity), where transpose_input is the matrix to be transposed
and identity is a 128x128 identity matrix. In fact, this is exactly what nki.isa.nc_transpose() does, when TensorE is
chosen as the compute engine.

Similarly, we can broadcast a vector occupying a single partition to M (M <= 128) partitions using nki.isa.
nc_matmul(ones, broadcast_input, is_stationary_onezero=True), where ones is a 1xM vector filled with
ones and broadcast_input is the vector to be broadcast. In fact, NKI invokes such matmul under the hood when
broadcast_input.broadcast_to((M, broadcast_input.shape[1])) is called.

In general, we can achieve many more complex data reshapes in TensorE, such as shuffling partitions of a SBUF tensor,
by constructing appropriate zero/one patterns as one of the matmul inputs.

Finally, we can also leverage TensorE for data summation across SBUF partitions (P-dim summation). For example,
a vector laid out across SBUF partitions can be reduced into a single sum using TensorE as shown in the diagram
below. Note, this utilizes only a single PE column of the TensorE; therefore, depending on the surrounding opera-
tors, this may not be the best use of TensorE. If you can do summation within each partition (F-dim summation), see
nki.isa.tensor_reduce for an alternative reduction implementation on Vector Engine. It is recommended to choose the
engine based on the natural layout of your input data to avoid any transpositions.

As TensorE is the most performant compute engine of the NeuronCore in terms of FLOPS, the goal is to have it execute
meaningful computation at high utilization as much as possible. The above “alternative use cases” stop TensorE from
performing useful computations at high throughput and therefore, should generally be avoided. However, there are
situations where it is advisable to use them:

• Operators that do not require heavy matmuls anyhow, e.g. normalization, softmax.

7.2. Neuron Kernel Interface (NKI) - Beta 1355



AWS Neuron

Fig. 7.13: Transposition.

Fig. 7.14: Partition Broadcast.
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Fig. 7.15: Cross-Partition Accumulation

• Layout conflicts between producer and consumer engines where broadcast/transpose are absolutely unavoidable
(see example in fused attention tutorial).

Performance Consideration

As a rule of thumb, TensorE can achieve the best throughput when it runs many back-to-back nki.isa.nc_matmul
with both input matrices at the largest possible tiles sizes (stationary is 128x128 and moving is 128x512). In this
ideal scenario, TensorE sees the below instruction sequence:

• LoadStationary (LS[0]) (128x128)

• MultiplyMoving (MM[0]) (128x512)

• LoadStationary (LS[1]) (128x128)

• MultiplyMoving (MM[1]) (128x512)

• . . .

Cost Model: TensorE is a deeply pipelined engine; therefore, the engine can have several LS&MM instruction pairs
in-flight at a given time. Due to this pipelining nature, it is often not useful to use end-to-end execution latency of
a single instruction when estimating the instruction cost. Instead, we can focus on the initiation interval of such
instructions, that is, the number of cycles between successive instruction launches. Therefore, we can estimate the cost
of an instruction I by how soon TensorE can issue the next instruction after I.

For the sake of discussion, let’s assume we have many back-to-back MM instructions with BF16/FP16/TF32/cFP8 input
data type that reuse a single pre-loaded stationary inside TensorE. The initiation interval between subsequent MM
instructions in this case is roughly max(N, MM_INIT_LATENCY), where MM_INIT_LATENCY is 64 TensorE cycles on
NeuronCore-v2, and N is the free axis size of moving of current MM (typically set to 512). For FP32 input data type,
the instruction cost is roughly 4x higher than BF16/FP16/TF32/cFP8. Therefore, whenever possible, we recommend
down-casting FP32 input matrix data type to one of BF16/FP16/TF32/cFP8 before performing matrix multiplications.

Figure below visualizes two pipelined MM instructions:
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Fig. 7.16: Pipelined multiplyMoving instructions.

Background LoadStationary: In typical workloads, TensorE would be alternating between LS and MM instructions
with different input matrices. In order to optimize TensorE’s utilization, we also enable a “background LoadStationary”
capability, which allows loading of the next stationary tensor in parallel to the computation on the current stationary
tensor.

As a result, depending on the relative sizes of the stationary and moving matrices, the overall TensorE performance
can be bounded by either LS or MM instructions. Figure below visualizes these two cases. In the ideal scenario where
stationary and moving use the largest tile sizes, TensorE should operate in case (a).

Possible execution timeline execution with background LoadStationary

Fast LoadStationary: Since LoadStationary is a pure data movement with no computation, TensorE can perform
LoadStationary up to 4x faster than a MultiplyMoving with the same free axis size. Fast LoadStationary has
an important performance implication on nki.isa.nc_matmul: When one of the input matrices has a small free axis
size and the other has a large free axis size, we prefer to put the matrix with large free axis as the stationary matrix.
For example, if we try to do a vector-matrix multiplication, it is recommended to put the matrix as stationary matrix
and vector as moving matrix to get the best performance out of TensorE.
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Vector Engine

Vector Engine (VectorE) is specially designed to accelerate vector operations where every element in the output tensor
typically depends on multiple elements from input tensor(s), such as vector reduction and element-wise operators
between two tensors. VectorE consists of 128 parallel vector lanes, each of which can stream data from a SBUF/PSUM
partition, perform mathematical operations, and write data back to each SBUF/PSUM partition in a deeply pipelined
fashion.

Data Types. VectorE supports all NKI data types (details see supported data types in NKI) in both input and output
tiles. Arithmetic operations are performed in FP32, with automatic zero-overhead input and output casting to and from
FP32. Refer to nki.isa API reference manual for any instruction-specific data type requirements.

Layout & Tile Size. VectorE instructions expect the parallel axis of the input and output data to be mapped to the
partition dimension. For example, the figure below shows reduction add of a NxM matrix along the M dimension.
Since each of N rows in the matrix can be reduced in parallel, the N dimension of the matrix should be mapped to
the SBUF partition dimension. Refer to the nki.isa API manual for instruction-specific layout constraint of different
VectorE instructions.

Fig. 7.17: Reduce add on Vector Engine.

In terms of tile size, the majority of VectorE instructions only have limitation on the input/output tile partition dimension
size which must not exceed 128, while the free dimension size can be up to 64K elements for SBUF or 4K elements
for PSUM. However, there are a few notable exceptions, such as nki.isa.bn_stats which further imposes free dimension
size of input tile cannot exceed 512. Refer to the nki.isa API manual <nki.language> for instruction-specific tile size
constraints.

Cross-partition Data Movement

The VectorE also supports a limited set of cross-partition data movement within each group of 32 partitions. The
figure below shows connectivity between SBUF and VectorE banks. VectorE consists of four Reshape and Compute
banks: each Reshape Bank connects to 32 SBUF/PSUM partitions and outputs 32 parallel streams of data, while each
Compute Bank can process 32 parallel data streams using 32 vector lanes. The Compute Bank can write back to 32
SBUF/PSUM partitions.

The Reshape Bank supports the following data movement:

1. 32x32 transpose: Each Reshape Bank can read in 32 elements per SBUF/PSUM partitions and transpose the
partition and free dimension of the incoming 32x32 matrix. This can be invoked by nki.isa.nc_transpose API by
selecting VectorE as the execution engine.

2. 32 partition shuffle: Each Reshape Bank can take an arbitrary shuffle mask SM* of length 32. The integer value
of SM[i] indicates the source partition ID (modulo 32) that the Reshape Bank output stream i will get. For
example, we can broadcast partition[0] to partition[0-31] using a SM of 32 zeros. This can be invoked by
nki.isa.nc_stream_shuffle API.

Refer here later in this doc for cross-bank data movement.
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Fig. 7.18: Vector Engine reshape and compute banks.

Performance Consideration

128 Parallel Compute Lanes: VectorE can perform computation with all 128 vector lanes in parallel, with each lane
streaming data from/to one SBUF/PSUM partition. Therefore, the performance cost of a VectorE instruction using all
128 lanes is the same as an instruction that uses fewer than 128 lanes.

As a result, we recommend NKI developers to maximize the compute lanes used per VectorE instruction, that is, the
partition axis size of input/output tiles of a single nki.isa or nki.language compute API call. When the partition
axis size of input tiles is inevitably fewer than 128 partitions due to high-level operator definition, we could adopt an op-
timization called “partition vectorization” by packing multiple “small” VectorE instructions of the same operation into
a single “large” Vector instruction. Refer to NKI Performance Guide for more detailed discussion of this optimization.

Cost Model: In the most common cases where the free axis size (N) of the input tile(s) is sufficiently large (N > 128),
the execution cost of an instruction on VectorE is correlated to N:

• If there is only one input tile, most VectorE instructions can execute in roughly N cycles (example:
nki.isa.tensor_scalar)

• If there are two input tiles, the instruction can execute in roughly 2N cycles (example: nki.isa.tensor_tensor)

There are a few exceptions to the above rule, depending on the data types and instruction type. See NKI ISA API doc
for instruction-specific instruction cost details.

In the rare cases where VectorE is running many back-to-back instructions either with N << 128 or with every instruc-
tion depending on the output tile of the previous instruction, we need to add a static instruction overhead of 100 engine
cycles to the above execution cost estimate.

The above rules are for general guidance only. To find out the exact instruction costs for your NKI kernel, you may
capture a detailed instruction execution trace on device using neuron-profiler.
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Scalar Engine

Scalar Engine (ScalarE) is specially designed to accelerate scalar operations where every element in the output tensor
only depends on one element of the input tensor. In addition, ScalarE provides hardware acceleration to evaluate non-
linear functions such as Gelu and Sqrt. The currently supported set of non-linear functions is listed in here. It it worth
noting that we can support any new non-linear functions on ScalarE as they come up in new ML model architectures
through Neuron SDK software updates. Similar to VectorE, ScalarE consists of 128 parallel lanes, each of which can
stream data from a SBUF/PSUM partition, perform mathematical operations, and write data back to each SBUF/PSUM
partition in a deeply pipelined fashion.

Data Types. ScalarE supports all NKI data types (details see supported data types in NKI) in both input and output
tiles. All internal computation is performed in FP32, with automatic zero-overhead input and output casting to and
from FP32.

Layout & Tile Size. ScalarE typically evaluates scalar operations (such as, nki.language.gelu), which does not impose
any input/output tile layout constraints. However, there are additional hardware features in ScalarE that will have layout
constraints similar to VectorE (more discussion later).

In terms of tile size, ScalarE instructions only have limitation on the input/output tile partition dimension size which
must not exceed 128, while the free dimension size can be up to 64K elements for SBUF or 4K elements for PSUM.

Pipelined Multiply-Add

Each ScalarE compute lane also supports an additional multiply-add before the non-linear function (func) is applied
in a pipeline fashion. Mathematically, ScalarE implements:

# Case 1: scale is SBUF/PSUM vector
# Input: 2D in_tile, 1D scale, 1D bias
# Output: 2D out_tile
for lane_id in range(in_tile.shape[0]):
for k in range(in_tile.shape[1])
out_tile[lane_id][k] = func(in_tile[lane_id][k] * scale[lane_id]

+ bias[lane_id])

# Case 2: scale is a compile-time scalar constant in the instruction
for lane_id in range(in_tile.shape[0]):
for k in range(in_tile.shape[1])
out_tile[lane_id][k] = func(in_tile[lane_id][k] * scale

+ bias[lane_id])

This functionality can be invoked using the nki.isa.activation API by specifying a scale for multiplication and bias
for addition. The scale can either be a tile from SBUF/PSUM with one element/partition or a compile-time constant.
On the other hand, the bias can only be a tile from SBUF/PSUM with one element/partition. A useful mental model
for this capability is combining a nki.isa.tensor_scalar instruction with a non-linear function evaluation into a single
instruction (2x speed-up than two separate instructions).
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Pipelined Reduction

Each ScalarE compute lane also supports reduction after the non-linear function (func) is applied in a pipeline fashion.
On NeuronCore-v2, the reduction operator can only be addition.

Mathematically, ScalarE with accumulation enabled implements:

# Input: 2D in_tile, 1D scale (similarly for scalar scale), 1D bias
# Output: 2D out_tile, 1D reduce_res
for lane_id in range(in_tile.shape[0]):
for k in range(in_tile.shape[1]):
out_tile[lane_id][k] = func(in_tile[lane_id][k] * scale[lane_id]

+ bias[lane_id])
reduce_res[lane_id] += out_tile[lane_id][k]

This functionality can be invoked using the nki.isa.activation_reduce API by specifying reduce_op as nki.
language.add and reduce_res as the output reduction tile, passed by reference.

A useful mental model for this capability is combining a nki.isa.activation instruction with a nki.isa.tensor_reduce
into a single API, which returns results from both APIs. Note, nki.isa.activation_reduce invokes two back-to-back ISA
instructions on hardware, Activate and ActReadAccumulator. The Activate instruction performs the regular computation
as specified in nki.isa.activation and also reduction at no additional cost. The reduction result is cached inside ScalarE
after Activate. The ActReadAccumulator instruction is a low cost (roughly 64 ScalarE cycles on NeuronCore-v2)
instruction to write the internal reduction result back to SBUF/PSUM, one element per partition.

Performance Consideration

All the performance notes discussed for Vector Engine earlier are applicable to Scalar Engine, with one exception
regarding instruction cost for two input tensors - ScalarE can only read up to one input tensor per instruction.

Instruction Combination. All nki.isa.activation instructions have the same execution cost, regardless of
whether we enable the scale multiplication or bias add. Therefore, it is recommended to combine such multiply-add
operations with non-linear function evaluation into a single ScalarE instruction if the computation allows it. This is
highly useful for ML operators that are not TensorE heavy (not matmul-bound). Softmax is one such example, where
we typically subtract the maximum value of the input elements before evaluating exponential function for numerical
stability.

GpSimd Engine

GpSimd Engine (GpSimdE) is intended to be a general-purpose engine that can run any ML operators that cannot be
lowered onto the other highly specialized compute engines discussed above efficiently, such as applying a triangular
mask to a tensor.

A GpSimdE consists of eight fully programmable processors that can execute arbitrary C/C++ programs. Therefore,
this engine provides the hardware support for Neuron Custom Operator. In addition, each processor is a 512-bit vec-
tor machine that can run high-performance vectorized kernels. Every nki.isa API running on GpSimdE such as
nki.isa.iota uses a vectorized kernel implementation that Neuron engineers hand-tune for the underlying processor
ISA.

Data Types. Each processor in GpSimd supports vectorized computation for

• 16x FP32/INT32/UINT32, or

• 32x FP16/INT16/UINT16, or

• 64x INT8/UINT8
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This is in contrast to ScalarE/VectorE which can only perform arithmetic operations in FP32. However, if the GpSimdE
program chooses to, it can also access SBUF data of any supported data types in NKI and perform data casting to- and
from-FP32 at no throughput cost similar to VectorE/ScalarE.

Layout & Tile Size. The layout and tile size requirements of GpSimdE highly depend on semantics of the exact
instruction. Refer to the nki.isa API reference guide for these requirements.

Memory Hierarchy. In Trainium/Inferentia2, each GpSimdE processor has 64KB of local data RAM, also called
tightly-coupled memory (TCM) as discussed in Neuron Custom Operator. The TCM is configured with a 3-cycle
access latency and 512-bit data width. Therefore, TCM is often used to store intermediate computation results within
a Neuron Custom Operator or GpSimdE instruction.

The eight processors in GpSimdE also have a high-bandwidth read/write interface connected to the SBUF. Figure 7.19
below illustrates the GpSimdE connectivity to SBUF. Each processor connects to 16 SBUF partitions for both reading
and writing: processor[0] connected to partition[0:15], processor[1] to partition[16:31] and so on. Each processor can
programmatically send tensor read/write requests to SBUF to access data from the connected partitions. On the read
side, once a read request is processed, the tensor read interface can deliver up to 512-bit of data from all 16 connected
partitions collectively (up to 32-bit per partition) to the processor per cycle, which matches the 512-bit SIMD width.
Similarly, on the write side, the tensor write interface can accept 512-bit of data for writing back to the connected SBUF
partitions per cycle.

Fig. 7.19: Connectivity between GpSimdE and SBUF.
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Performance Consideration

128 Parallel Compute Lanes: Similar to VectorE and ScalarE, GpSimdE has 128 parallel compute lanes for 32-
bit computation data types across SIMD lanes of all eight processors. Therefore, it is desirable to invoke GpSimdE
instructions that will utilize all the parallel compute lanes, typically through accessing all 128 SBUF partitions for input
and output. In addition, since each processor can also handle 32-wide 16-bit or 64-wide 8-bit data type computation,
GpSimdE can effectively support 256 or 512 parallel compute lanes internally.

Cost Model: Unlike VectorE/ScalarE, there is no rule-of-thumb to estimate execution cost of a GpSimdE instruction.
Refer to the nki.isa API reference manual to find out instruction-specific latency estimates.

Data Movement

In this section, we will dive into the memory subsystem and discuss how to perform data movement between different
memories and also how to do it efficiently. As a reminder, there are three main types of memory on a NeuronDevice:
HBM, SBUF, and PSUM, from highest to lowest capacity. Figure below shows the specifications of these memories
and their connectivity for one NeuronCore-v2:

Fig. 7.20: Memory hierarchy.

As shown in the above figure, data movement between HBM and SBUF is performed using on-chip DMA (Direct
Memory Access) engines, which can run in parallel to computation within the NeuronCore. Data movement between
PSUM and SBUF is done through ISA instructions on the compute engines. However, different compute engines have
different connectivity to SBUF/PSUM as indicated by the arrows in the figure. In addition, NeuronCore-v2 has the
following restrictions:

1. VectorE and GpSimdE cannot access SBUF in parallel.

2. VectorE and ScalarE cannot access PSUM in parallel.

Therefore, VectorE and GpSimdE instructions that access SBUF must be serialized, similarly for VectorE and ScalarE
instructions that access PSUM. This is enforced by Neuron Compiler during NKI kernel compilation, so NKI developers
are not required to program such serializations.

The rest of this section will discuss the following topics in detail:
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• Data movement between HBM and SBUF using DMAs.

• Accessing SBUF/PSUM tensors using compute engines.

• In-memory accumulation using TensorE and PSUM.

Data movement between HBM and SBUF using DMAs

Each NeuronCore-v2 is equipped by 16 parallel DMA engines that can perform data movement between any addressable
memories in the system. Here, we focus on using these DMA engines to move data between the local SBUF and HBM.
Each DMA engine can process one DMA transfer at a time driving a peak bandwidth of 27 GiB/s, but all DMA
engines can process different DMA transfers in parallel.

Each DMA transfer can gather a list of source DMA buffers and then scatter the data into another list of destination
DMA buffers. Data within a DMA buffer must be continuous in the memory address map. There is some performance
overhead at both DMA buffer and transfer levels, both of which can be amortized by moving a sufficiently large amount
of data (more discussion below).

Next, let’s examine how HBM and SBUF are laid out in the device memory address map. On one hand, HBM is
logically a one-dimensional memory and hence occupies a flat chunk of continuous addresses in the address map. In
the most common cases, an HBM tensor in NKI is also contiguous in the HBM address space.

On the other hand, SBUF is considered a two-dimensional memory with 128 partitions as discussed earlier here. Figure
7.21 shows how SBUF addresses fit in the device address map. sbuf_base_addr is a 64-bit address dependent on
which NeuronCore-v2 on the device the SBUF is located in. The SBUF addresses start from the first byte of partition
0, increment along the free dimension first and then advance onto the next partition.

Fig. 7.21: SBUF memory address space.

As discussed in NKI Programming Model, an SBUF tensor in NKI spans one or more partitions, with data starting at
the same offset:

As a result, a data movement involving tensor in SBUF will require at least tensor.shape[0], i.e., P dim size,
different DMA buffers, since slices of tensor data from different SBUF partitions occupy non-contiguous memory in
the address space. If the tensor data slice within each SBUF partition is not contiguous in the F dimension, more DMA
buffers will need to be unrolled along the F dim. These DMA buffers are typically grouped into different DMA transfers
so that multiple DMA engines can participate in the data movement to maximize memory bandwidth utilization.

In NKI, moving data from HBM to SBUF and from SBUF to HBM are done through nki.language.load and
nki.language.store APIs, respectively. Neuron Compiler is responsible for converting each NKI API call to DMA
transfers and assigning these transfers to different DMA engines. As an example, loading a 128x512 FP32 HBM tensor
to SBUF is best done through 16 DMA transfers (one per DMA engine), each moving a scatter-gather list of 8 DMA
buffers:
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Fig. 7.22: SBUF tensor.

import neuronxcc.nki.language as nl
tile = nl.load(in_tensor[0:128, 0:512])

To achieve good performance out of the DMAs, we generally aim to:

1. Move a large amount of contiguous data in each DMA buffer to amortize DMA buffer overhead

2. Move a large amount of data in each DMA transfer to amortize DMA transfer overhead.

3. Invoke as many parallel DMA transfers on the available DMA engines as possible.

These goals ultimately boil down to a quick optimization rule: maximize both free (4KiB or above) and partition
(ideally 128) dimension sizes when moving tensors between SBUF and HBM using nki.language.load and nki.
language.store. Refer to the NKI Performance Guide for more information on optimizing performance of data
movements between HBM and SBUF.

Accessing SBUF/PSUM tensors using compute engines

Figure 7.23 shows a simplified timeline of how compute engines stream data in and out of on-chip SRAM (SBUF or
PSUM). Refer to Figure 7.10 for the available connectivity between engines and SBUF/PSUM. At a high level, the
compute engines are able to pipeline data reads, computation and writes along the F dimension of the src/dst tensors.
In every cycle, each engine can read 128 elements across 128 SBUF/PSUM partitions, perform a computation on
previously read 128 elements, and write 128 previously computed results to SBUF/PSUM. In other words, the P axis
of a tensor is the parallel dimension for SBUF/PSUM data accessing, while the F axis of the tensor is the time dimension
for data accessing.

When accessing SBUF/PSUM tensors in an instruction, we need to follow different rules in the P and F dimensions.
First, hardware does not allow P dimension striding when accessing data from a single SBUF/PSUM tensor. Therefore,
a valid src/dst tensor of an instruction must occupy a continuous number of partitions. In addition, the hardware further
enforces which partition a tensor can start from (start_partition) based on the number of partitions the tensor
occupies (num_partition). This is currently handled by the tensor allocator in Neuron Compiler during NKI kernel
compilation process:

• If 64 < num_partition <= 128, start_partition must be 0

• If 32 < num_partition <= 64, start_partition must be 0 or 64

• If 0 < num_partition <= 32, start_partition must be one of 0/32/64/96
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Fig. 7.23: Data streaming between SBUF and compute engine.
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On the other hand, data accessing along the free dimension is a lot more flexible: the src/dst tensor of an engine
instruction can support up to four-dimensional tensorized access pattern with a stride in each dimension within each
partition. At the ISA level, each F axis in the tensor can have a size expressed in uint16 and a stride expressed in
int16, measured in data elements. As an example, if the tensor data type is BF16, and the stride of the most-minor
F dimension is set to 10, then we will stride across 20B within a partition at a time. Refer to Tile Indexing in NKI
Programming Guide to learn about how to index SBUF/PSUM tensors to achieve F dimension striding in NKI syntax.

Lastly, as implied in Figure 7.23, when accessing a SBUF/PSUM tensor, all active partitions must follow the same F
dimension access pattern. In other words, at every time step, the engine read/write interface will access data elements
at the same offset within each active partition.

Cross-Partition Connectivity

The majority of VectorE/ScalarE/GpSimdE instructions on NeuronCore-v2 require src_tensor and dst_tensor to
occupy the same number of partitions. When the number of partitions involved exceeds 64, by the start_partition
rule discussed above, the src_tensor and dst_tensor in such cases must both start from partition 0. Therefore, we effec-
tively cannot perform any cross-partition data movement when num_partition > 64 : each partition of src_tensor
data will eventually flow into the corresponding partition in dst_tensor.

However, when num_partition < 64, VectorE/ScalarE/GpSimdE on NeuronCore-v2 supports two styles of cross-
partition SBUF/PSUM data movement patterns: 1) cross-half movement for 32 < num_partition <= 64 and
2) cross-quadrant movement for 0 < num_partition <= 32. Figure below illustrates these two patterns for
num_partition=64 and num_partition=32. The shaded portion of the Engine block indicates the active lanes
for the given instruction. With these movement patterns, each partition in src_tensor still has a one-to-one mapping
to each partition in dst_tensor.

Performance Consideration

Access pattern. As discussed previously in the context of compute engine utilization, it is recommended to use as
many partitions as possible when accessing SBUF/PSUM tensors to saturate the available data streaming bandwidth.
In addition, accessing with a large stride in the most-minor (fastest) F dimension will incur performance penalty. When
the most-minor F dimension stride is less than 16 bytes, SBUF/PSUM on NeuronCore-v2 can supply a peak bandwidth
of 128 elements/cycle at 1.4 GHz for each tensor read/write interface. A 16-byte stride is equivalent to 4 elements for
32-bit data types, 8 elements for 16-bit data types or 16 elements for 8-bit data types. If the most-minor F dimension
stride exceeds 16 bytes, the achievable bandwidth of each tensor read/write interface will be half of the peak bandwidth,
which translates to roughly 50% performance hit on the instructions.

Concurrent SBUF/PSUM accesses by engines. As mentioned earlier, NeuronCore-v2 has the following on-chip RAM
access restrictions:

1. Vector Engine and GpSimd Engine cannot access SBUF in parallel

2. Vector Engine and Scalar Engine cannot access PSUM in parallel

Despite these restrictions, SBUF is capable of driving peak bandwidth in each tensor read/write interface connected
to VectorE/ScalarE/TensorE or GpSimdE/ScalarE/TensorE simultaneously without bandwidth interference. Similarly,
PSUM can drive peak bandwidth for VectorE/TensorE or ScalarE/TensorE simultaneously.

Tensor access overhead. Initiating a tensor access request from an engine to its SBUF/PSUM read/write interface
incurs a static overhead approximately 60 cycles on NeuronCore-v2. Compute engines can typically hide some of this
latency through instruction level parallelism. However, it is still highly recommended to access tensors with large P
and F dimension sizes whenever possible to amortize this overhead.
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Fig. 7.24: Cross-partition connectivity.
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Near-memory accumulation in PSUM

As shown in Figure 7.10, both VectorE and ScalarE have read and write access to PSUM, while TensorE only has write
access. In fact, PSUM is designed to be a landing buffer for TensorE with near-memory accumulation capabilities
that allows read-accumulate-write to every 4B element in memory. Note, this accumulation mechanism can only be
controlled by TensorE. VectorE and ScalarE can only access PSUM like a regular SRAM similar to SBUF.

Next, let’s discuss how TensorE can write outputs to PSUM. As previously discussed, PSUM is organized into 128
partitions, each consisting of 16KB of memory. Each partition is further divided into 8 PSUM banks, with each bank
holding up to 512 32-bit values. The output tile of a TensorE matrix multiplication instruction (nki.isa.nc_matmul)
must fit into one PSUM bank per partition, which is the fundamental reason for the free dimension size limitation for
the moving tensor. Every nc_matmul instruction can choose whether to override existing bank data with instruction
output or accumulate instruction output into existing bank data element-wise.

The accumulation mode of PSUM is particularly useful when the high-level matmul operator has a contraction dimen-
sion (i.e., stationary/moving partition dimension of nki.isa.nc_matmul) greater than 128. As an example, let’s
assume the following matmul dimensions:

• x.shape = [128, 256]

• y.shape = [256, 512]

Figure below shows this matmul mathematically and also how we would tile the contraction dimension. With tiling,
we slice both x and y in the contraction dimension to get [x0, x1] and [y0, y1] input tiles. To get the final output
result, we need to perform:

• output0 = matmul(x0, y0)

• output1 = matmul(x1, y1)

• output = output0 + output1

Fig. 7.25: Matmul tiling (mathematical view).

PSUM accumulation effectively combines Step 2 and 3 above into a single TensorE nki.isa.nc_matmul instruction.
Assuming we have x in the transposed layout in SBUF, visually the above tiled matmul example will have two back-to-
back nki.isa.nc_matmul instructions on TensorE:

Effectively, the first nki.isa.nc_matmul instruction overwrites the destination PSUM bank with the instruction out-
put. The second instruction accumulates instruction output onto the previous instruction’s result in the same PSUM.
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Fig. 7.26: Matmul tiling (hardware view).

The PSUM accumulation is always done in FP32. A series of TensorE matmul instructions with the first one writing
to a PSUM bank and more subsequent instructions accumulating into the same PSUM bank data is called a matmul
accumulation group.

In current release of NKI, the nki.isa.nc_matmul does not have an explicit control field to indicate overwrite
or accumulate for the PSUM. Instead, NeuronCompiler relies on the following NKI code pattern to trigger PSUM
accumulation:

# condition 1: a psum buffer with zeros
psum_buf = nl.zeros(..., buffer=nl.psum)

# condition 2: an affine range loop
for i in nl.affine_range(N):
# condition 3: add matmul results from TensorEngine
psum_buf += nl.matmul(stationary_tile, moving_tile) # or nisa.nc_matmul

Refer to the Tiling Matrix Multiplications tutorial for a detailed implementation.

Note: Due to current limitations in NKI, psum_buf[...] = psum_buf + nisa.nc_matmul(stationary_tile,
moving_tile) will not reliably trigger the PSUM accumulation architecture feature. Therefore, even though this
alternative syntax is functionally equivalent to the use of +=, it may get lowered to nisa.tensor_tensor on VectorEngine
for accumulation instead, leading to much lower performance.

Finally, with 8 PSUM banks per partition, TensorE can have up to eight outstanding matmul accumulation groups, which
allows flexible scheduling of matmul instructions on TensorE. Also, the extra buffering from multiple PSUM banks
allows us to pipeline TensorE computation with other compute engines: TensorE can move onto the next accumulation
group without waiting for VectorE/ScalarE to evict previous accumulation group results.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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Trainium2 Architecture Guide for NKI

This guide covers hardware architecture of third-generation NeuronDevices: Trainium2. We assume readers have gone
through Trainium/Inferentia2 Architecture Guide in detail to understand the basics of NeuronDevice Architecture.

Fig. 7.27 shows a block diagram of a Trainium2 device, which consists of:

• 8 NeuronCores (v3).

• 4 HBM stacks with a total device memory capacity of 96GiB and bandwidth of 2.9TB/s.

• 128 DMA (Direct Memory Access) engines to move data within and across devices.

• 20 CC-Cores for collective communication.

• 4 NeuronLink-v3 for device-to-device collective communication.

Fig. 7.27: Trainium2 Device Diagram.

For a high-level architecture specification comparison from Trainium1 to Trainium2, check out Neuron architecture
guide.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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Profiling NKI kernels with Neuron Profile

In this tutorial, we use Neuron Profile to view the execution trace of a NKI kernel captured on a NeuronCore. In doing
so, we learn about:

• Installation and usage of Neuron Profile.

• Inspecting a detailed execution timeline of compute engine instructions and DMA engine activities generated
from your NKI kernel.

As background, Neuron Profile is the tool you need to visualize where time is being spent during kernel execution on
NeuronDevices, which is crucial for identifying performance bottlenecks and opportunities of your kernel. Neuron
Profile produces runtime execution data for every instruction executed on each compute engine and also every data
movement activity completed by DMA engines. Neuron Profile also reports key performance metrics such as com-
pute engine and memory bandwidth utilization, which allows developers to quickly find out the achieved hardware
efficiency of their kernel. Profiling typically has near zero overhead thanks to the dedicated on-chip profiling hardware
in NeuronDevices.

Install Neuron Profile

Make sure you have the latest version of the aws-neuronx-tools, which includes updated profiling support for NKI
kernels. Neuron Profile is included within this package and is installed to /opt/aws/neuron/bin.

The aws-neuronx-tools package comes pre-installed on Neuron DLAMIs. For detailed installation instructions see
Neuron Profile User Guide: Installation.

Profile a NKI Kernel

Profile using neuron-profile capture

To profile a NKI kernel the required steps are (1) enable NEURON_FRAMEWORK_DEBUG to tell the compiler to save the
NEFF file, (2) execute the NKI kernel to generate the NEFF, and (3) run neuron-profile capture to generate a NTFF
profile. Each step is described in more detail below.

We will profile a NKI kernel which computes the element-wise exponential of an input tensor of any 2D shape. The rest
of this tutorial will use a performance profile generated from this kernel as an example. Full code of prof-kernel.py:

1 """
2 Example kernel used to demmonstrate Neuron Profile.
3 """
4 import torch
5 from neuronxcc import nki
6 import neuronxcc.nki.language as nl
7 import math
8 import os
9 os.environ["NEURON_FRAMEWORK_DEBUG"] = "1"

10 os.environ["NEURON_CC_FLAGS"]= " --disable-dge "
11

12 @nki.jit
13 def tensor_exp_kernel_(in_tensor):
14 """NKI kernel to compute elementwise exponential of an input tensor
15

16 Args:
(continues on next page)
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(continued from previous page)

17 in_tensor: an input tensor of ANY 2D shape (up to SBUF size)
18 Returns:
19 out_tensor: an output tensor of ANY 2D shape (up to SBUF size)
20 """
21 out_tensor = nl.ndarray(in_tensor.shape, dtype=in_tensor.dtype,
22 buffer=nl.shared_hbm)
23

24 sz_p, sz_f = in_tensor.shape
25

26 i_f = nl.arange(sz_f)[None, :]
27

28 for p in nl.affine_range(math.ceil(sz_p / nl.tile_size.pmax)):
29 # Generate tensor indices for the input/output tensors
30 # pad index to pmax, for simplicity
31 i_p = p * nl.tile_size.pmax + nl.arange(nl.tile_size.pmax)[:, None]
32

33 # Load input data from external memory to on-chip memory
34 # only read up to sz_p
35 in_tile = nl.load(in_tensor[i_p, i_f], mask=(i_p<sz_p))
36

37 # perform the computation
38 out_tile = nl.exp(in_tile)
39

40 # store the results back to external memory
41 # only write up to sz_p
42 nl.store(out_tensor[i_p, i_f], value=out_tile, mask=(i_p<sz_p))
43

44 return out_tensor
45

46 if __name__ == "__main__":
47 from torch_xla.core import xla_model as xm
48 device = xm.xla_device()
49

50 in_tensor = torch.rand((250, 512), dtype=torch.float32).to(device=device)
51

52 out_tensor = tensor_exp_kernel_(in_tensor)
53 print(f"output_nki={out_tensor}")

To profile this NKI kernel, follow these steps:

1. Enable Neuron debug output by setting the NEURON_FRAMEWORK_DEBUG environment variable. This will trigger the
Neuron compiler to save the Neuron Executable File Format (NEFF) artifact to the current directory after compilation of
your NKI kernel. The NEFF contains all hardware instructions required to execute your NKI kernel on a NeuronDevice,
as well as metadata and debug info needed for profiling. For example, add the following lines to your NKI kernel source
file:

import os
os.environ["NEURON_FRAMEWORK_DEBUG"] = "1"
os.environ["NEURON_CC_FLAGS"]= " --disable-dge "

Note: Use the flag --disable-dge to temporarily disable a new compiler feature which is interfering with DMA
debugging information display in neuron-profile. This is highly recommended to improve NKI performance debugging
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experience until we release a software fix for this issue.

2. Compile your NKI kernel to create a NEFF in your current directory:

$ python3 prof-kernel.py

Note: Find your NEFF named similarly to MODULE_0_SyncTensorsGraph.13_12659246067793504316.neff.

3. Profile the NEFF. This profiling step executes the NEFF on the NeuronDevice and records a raw execution trace into
an Neuron Trace File Format (NTFF) artifact.

$ neuron-profile capture -n <path_to_neff> -s profile.ntff --profile-nth-exec=2

This will save your NTFF profile to profile_exec_2.ntff.

Note: The --profile-nth-exec=2 option will profile your NEFF twice on the NeuronDevice and output a NTFF
profile for the second iteration. This is recommended to avoid one-time warmup delays which can be seen in the first
iteration of execution.

In View Neuron Profile UI , we will view the profile in a user-friendly format using the Neuron Profile UI.

Profile using nki.profile

You may also use the nki.profile API to generate a NEFF and NTFF programmatically.

Below is an example NKI kernel decorated by nki.profile. Full code of prof-kernel-profile.py:

1 """
2 Example kernel used to demonstrate Neuron Profile with nki.profile.
3 """
4 from neuronxcc import nki
5 from neuronxcc.nki.typing import tensor
6 import neuronxcc.nki.language as nl
7 import math
8 from pathlib import Path
9

10 WORKING_DIRECTORY = Path.home() / 'reports'
11

12 @nki.profile(working_directory=WORKING_DIRECTORY, save_neff_name='file.neff', save_trace_
→˓name='profile.ntff', profile_nth=2)

13 def tensor_exp_kernel_(in_tensor):
14 """NKI kernel to compute elementwise exponential of an input tensor
15 Args:
16 in_tensor: an input tensor of ANY 2D shape (up to SBUF size)
17 Returns:
18 out_tensor: an output tensor of ANY 2D shape (up to SBUF size)
19 """
20 out_tensor = nl.ndarray(in_tensor.shape, dtype=in_tensor.dtype,
21 buffer=nl.shared_hbm)
22

(continues on next page)
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(continued from previous page)

23 sz_p, sz_f = in_tensor.shape
24 i_f = nl.arange(sz_f)[None, :]
25 for p in nl.affine_range(math.ceil(sz_p / nl.tile_size.pmax)):
26 # Generate tensor indices for the input/output tensors
27 # pad index to pmax, for simplicity
28 i_p = p * nl.tile_size.pmax + nl.arange(nl.tile_size.pmax)[:, None]
29 # Load input data from external memory to on-chip memory
30 # only read up to sz_p
31 in_tile = nl.load(in_tensor[i_p, i_f], mask=(i_p<sz_p))
32 # perform the computation
33 out_tile = nl.exp(in_tile)
34 # store the results back to external memory
35 # only write up to sz_p
36 nl.store(out_tensor[i_p, i_f], value=out_tile, mask=(i_p<sz_p))
37

38 return out_tensor
39

40 if __name__ == "__main__":
41 tensor_exp_kernel_(tensor[[250, 512], nl.float32])

To use nki.profile to create a NEFF file, NTFF profile, and dump reports in your specified directory, execute the example
NKI kernel with:

$ python3 prof-kernel-profile.py

In View Neuron Profile UI , we will view the profile in a user-friendly format using the Neuron Profile UI.

View Neuron Profile UI

Neuron Profile has an interactive web based UI used to view execution traces. In this section we will open Neuron Profile
UI and view NKI specific profiling information. NKI specific information can be found in several places including
instruction hover details, instruction click details, search results, and box select results. This section assumes that you
followed the previous step to create a NEFF and NTFF.

To view the Neuron Profile web UI, execute the view command:

$ neuron-profile view -n <path_to_neff> -s <path_to_ntff> --db-bucket=my_kernel

The above command should print a URL that you can click to open the web UI:

View profile at http://localhost:3001/profile/my_kernel

Note: You must keep the view command running when viewing profiles.

Note: The --db-bucket=my_kernel argument is used to set a custom URL for the profile. Omitting this argument
will generate a URL with a unique ID.

If neuron-profile view is run on a remote instance, you may need to use port forwarding to access the web UI.
From your local machine, SSH to the remote instance and forward ports 3001 (the default neuron-profile HTTP
server port) and 8086 (the default InfluxDB port). Then in the browser, go to localhost:3001 to view the profiles.
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$ ssh <user>@<ip> -L 3001:localhost:3001 -L 8086:localhost:8086

Fig. 7.28: Screenshot of the Neuron Profile UI.

If you hover over any engine instruction in the timeline with your mouse, you will see instruction details in a pop-up
box.

If you click on any engine instruction in the timeline with your mouse, you will see instruction details in a panel below
the timeline.

Search

You can search for instructions associated with a specific line of NKI source code (for example “prof-kernel.py:33”).
Or you can search for all instructions that have an associated line of NKI code by searching for “/./”, as seen below.
This can be used to find the slowest NKI kernel instruction, for example line “prof-kernel.py:37” seen in Fig. 7.32
below. This helps with identifying performance bottlenecks while optimizing a NKI kernel. For help on what kinds of
searches are possible, click on the help tooltip in the search panel. Search queries are saved into your browser’s URL
so that you can share or revisit the same search using that URL.
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Fig. 7.29: Instruction hover details including the line of NKI source code that generated this instruction.
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Fig. 7.30: Instruction click details including the line of NKI source code that generated this instruction.

Fig. 7.31: Search panel and search help tooltip.

7.2. Neuron Kernel Interface (NKI) - Beta 1379



AWS Neuron

Fig. 7.32: Search results. The line of NKI source code that generated each instruction will appear in the search result
summary.
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Box Select

You can click and drag on the timeline to select a range of instructions using the Box Select functionality. A summary
will be produced that includes which lines of NKI source code produced these instructions. This helps with under-
standing a portion of the timeline. Selecting a large number of instructions may take some time to retrieve from the
database.

Fig. 7.33: Click on the “Box Select” button and then click and drag on a region of the timeline.

Note: An empty value for “nki_source_location” means that the instruction is not associated with a NKI source code
line.

View NKI Source Code in Neuron Profile

You may optionally include NKI source code file contents for display in Neuron Profile. This feature loads your NKI
source code into an integrated code viewer, side-by-side with the execution timeline in the web UI. Including the source
code makes it easier to navigate between instruction trace and NKI source code and also to track the version of code
that produced the profile. Note, even without uploading the source code to Neuron Profile, the NKI source filename
and line number are always available in instruction detail view as discussed in View Neuron Profile UI .

To include NKI source code in the Neuron Profile UI you can use the view command with the --nki-source-root
argument to pass in the folder of NKI source code:

$ neuron-profile view -n <path_to_neff> -s <path_to_ntff> --nki-source-root /home/ubuntu/
→˓my_nki/ --db-bucket=my_kernel

To open the NKI source code viewer, click on an instruction that has a “Nki source location” field as shown in Fig.
7.30. In the instruction’s details panel, the “nki_source_location” field should appear as a link. Clicking on the link
will open the NKI source code viewer and highlight the associated line of NKI code. Inside the source code viewer,
you can also click on any line of NKI source code to search for all instructions that were generated by that line of code.

7.2. Neuron Kernel Interface (NKI) - Beta 1381



AWS Neuron

Fig. 7.34: Box select results. The line of NKI source code that generated each instruction will appear in the box select
summary.
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Fig. 7.35: NKI source code view.

View Neuron Profile output as JSON

As an alternative to the Neuron Profile web UI, a JSON format output is available. The JSON output includes the
profile summary and all events in the execution trace. To generate the JSON output, execute the following command:

$ neuron-profile view --output-format json --output-file profile.json -n <path_to_neff> -
→˓s <path_to_ntff>
$ cat profile.json
{

"summary": [
{

"total_time": 0.017,
"event_count": 11215,
[...]

}
"instruction": [

{
"timestamp": 10261883214,
"duration": 148,
"label": "TensorMatrix",
"opcode": "MATMUL",
"nki_source_location": "prof-kernel.py:33",
[...]

},
}

7.2. Neuron Kernel Interface (NKI) - Beta 1383



AWS Neuron

See also

• Neuron Profile User Guide

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

NKI Performance Guide

In this document, we describe a recipe to find performance bottlenecks of NKI kernels and apply common software
optimizations to address such bottlenecks. During this process, we will showcase how to leverage neuron-profile, a
GUI-based performance profiler designed for NeuronDevices, to guide your performance optimization efforts. Before
proceeding with this document, make sure to read through NeuronDevice Architecture Guide to familiarize yourself
with Neuron hardware architecture.

Ideally, performance optimization efforts would end with one of two possible outcomes: the execution of a NKI kernel
is either strictly compute-bound or memory-bound. In the context of NeuronDevices, compute-bound means at
least one of the compute engines is active close to 100% of the kernel execution time (90%+ is considered good in
practice), while memory-bound typically means the achieved device memory bandwidth utilization (MBU) is close to
100% (60%+ is considered good in practice). For compute-bound kernels that are matrix-multiplication dominated,
we should also aim for close to 100% model flops utilization (MFU) in the execution. All of these metrics are available
under the Summary tab in neuron-profile GUI:

Fig. 7.36: MBU metric in neuron-profile.

The rest of this document is divided into three sections, focusing on three categories of performance optimizations.
The first section covers optimizations to maximize achieved arithmetic intensity, with the goal of minimizing compute
engine idle periods due to unnecessary data movement. The second and third sections dive into optimizations to improve
compute engine and data movement efficiency, respectively.
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Fig. 7.37: Compute-related metrics in neuron-profile.
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Improving Arithmetic Intensity

Arithmetic intensity of a computation workload is commonly defined as the average number of computation operations
performed per byte of data accessed from memory. In the context of NeuronDevices, the definition refers to data
accessed from device memory (HBM), since the on-chip memory (SBUF) has sufficient bandwidth to keep all compute
engines busy.

When arithmetic intensity is overly low, compute engines would be consuming data much faster than DMA engines
fetching data from device memory into the on-chip memory SBUF. In this case, the execution is bounded by the
available device memory bandwidth. Once arithmetic intensity is beyond certain threshold, that is, ratio of maximum
compute throughput over memory bandwidth, the performance bottleneck shifts to how fast compute engines can
perform computation, which leads to a compute-bound execution.

Figure below visualizes the Roofline Model, which captures this idea by plotting the projected attainable compute
throughput with respective to the arithmetic intensity of an algorithm.

Fig. 7.38: The Roofline Model.

Algorithmic arithmetic intensity is an intrinsic characteristic of the particular workload and solely dependent on the
compute algorithm. In reality, due to limited capacity in SBUF, the achieved arithmetic intensity of a NKI kernel
implementation of such workload could be lower than the algorithmic arithmetic intensity. This could lead to excessive
compute engine idle time blocked by completion of data movements. The two typical reasons behind this are input
data reloading and intermediate data spillage. Let’s discuss how to identify their symptoms in neuron-profile and
how to mitigate these issues to improve arithmetic intensity next.

Opt #1. Exploit temporal locality to minimize input data reloading

Symptom: In neuron-profile, if a NKI kernel triggers DMAs (nl.load) for the same input tensor multiple times, you
would see the relevant DMA activities (on the timeline row with a label starting with q and ending with IO) being
highlighted in an orange box. Hovering over the “+” sign of the box in top-left corner, a performance warning pop-up
will show up, indicating which input tensor is being reloaded, the size of it and how many times it was reloaded. For
example, figure below is a screenshot of such warning pop-up showing the u input tensor defined in my NKI kernel
was reloaded ~7 times:

Optimization: Input tensor reloading could be avoided if the same data stay in SBUF across all the operations that
consume it at different points of the execution. However, keeping too much data in SBUF across operations can increase
the memory pressure in SBUF, leading to more spilling of intermediate data. Therefore, avoiding input reload should
be a trade-off programmers need to make carefully. Figure below illustrates this trade-off conceptually.

A classic example of using this optimization technique is in a matrix multiplication kernel, where we need to exploit
data reuse in the same rows of the left hand-side input matrix across different columns of the right hand-side matrix.
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Fig. 7.39: Performance warning on input data reloading.

Fig. 7.40: SBUF usage impact with and without input reloading.
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See Matmul NKI Tutorial Optimization 1-3 for more detailed discussion. Another great example is in the Fused Mamba
kernel tutorial, where programmers can minimize reloading of largest input tensors through loop reordering.

Opt #2. Fuse operations to minimize intermediate data spilling

Symptom: In neuron-profile , we can find many useful data movement related metrics in the Summary tab:

Fig. 7.41: neuron-profile Summary tab.

Below we highlight four relevant metrics to assess severity of data spilling under the data_movement section (tip:
hovering over any metric name will show a detailed description of the metric):

Here, spill_save_bytes refers to the total size of intermediate data in bytes the workload spills from SBUF into
device memory, while spill_reload_bytes indicates total size of spilled data in bytes the workload reloads back
into SBUF. By comparing spill_save_bytes against sb_read_bytes, you can get a feel on how much of the data
movement traffic from SBUF to device memory is related to spilling. Similarly, comparing spill_reload_bytes
against sb_write_bytes indicates how much of traffic from device memory back to SBUF is related to spilling. If
the spill related traffic takes up a significant portion (for example over 30%), it is likely worthwhile to take a close look
at this optimization.

Optimization: To reduce spilling, the key is to find operator fusion opportunities in the kernel. To achieve fusion, we
typically also need to slice up computation of each operator and perform computation for a portion of the input tensor
at a time. As a simple example, assume a chain of operators op0 → op1 on a large input tensor kernel_in_hbm
that cannot fit in SBUF all at once. If we were to do the operators one at a time, we will effectively have the following
sequence of events:

for tile in kernel_in_hbm:
tile_sbuf = load(tile)
op0_out_sbuf = op0(tile_sbuf)
# compiler generated spilling, or NKI programmers explicitly perform a store
spill_save(op0_out_sbuf, op0_out_hbm)

for tile in op1_out_device_memory:
tile_sbuf = spill_reload(tile)
op1_out_sbuf = op1(tile_sbuf)
store(op1_out_sbuf, kernel_out_hbm)

However, if we fuse the operators from above:

for tile in kernel_in_hbm:
tile_sbuf = load(tile)
op0_out_sbuf = op0(tile_sbuf)
op1_out_sbuf = op1(op0_out_sbuf)
store(op1_out_sbuf, kernel_out_hbm)

Inside a NKI kernel, operator fusion is exactly done as the above through explicit loop fusion.
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Fig. 7.42: Data movement metrics
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One great use of this optimization is the self attention operator commonly found in Transformer models. Self attention
performs a chain of operators: matmul_0→ softmax→matmul_1, where matmul_0 of a single attention head produces
a large intermediate tensor shape that overflows SBUF in common Transformer models with a context length in the
thousands. See Fused Attention Tutorial for more detailed discussion.

Optimization Gotchas: Certain code patterns in NKI might lead to unexpected spilling from programmers’ perspec-
tives. We are working on improving these in future releases. As an example, buffers sometimes need to be declared
within the inner loop to avoid spilling. In other words, instead of:

buf = nl.ndarray((2, 4, nl.par_dim(128), 512), buffer=nl.sbuf)
for i0 in nl.affine_range(2):
for i1 in nl.affine_range(4):

buf[i0, i1, ....] = nl.load(...)
...

we need to implement:

for i0 in nl.affine_range(2):
for i1 in nl.affine_range(4):

buf = nl.ndarray((nl.par_dim(128), 512), buffer=nl.sbuf)
buf[...] = nl.load(...)

With the above aforementioned optimizations, the kernel execution should achieve an arithmetic intensity that is some-
what close to the algorithmic arithmetic intensity. At this point, you should be able to observe from the execution
timeline in neuron-profile whether the kernel spends more time in compute or DMA engines. The engine/
dma_active_time_percent metrics reported in the Summary tab should also give you good hints. If your kernel
execution is dominated by computation, we recommend going over Optimizing Compute Efficiency first to optimize
compute efficiency. Otherwise, jump straight to Optimizing Data Movement Efficiency to understand how to optimize
data movement efficiency.

Optimizing Compute Efficiency

Compute efficiency optimizations typically fall into two categories:

1. “time” domain engine utilization: reduce engine idle time to keep the compute engine on critical path as busy
as possible, such as enabling pipelining among engines.

2. “spatial” domain engine utilization: within the engine active periods, increase instruction efficiency to use as
many hardware units within the engine as possible, such as combining multiple instructions into one.

Let’s dive into each category below.

Reducing engine idle time

To improve the active time of a compute engine, we need to understand the exact reasons for the engine to enter an idle
state. In neuron-profile, we can focus on the execution trace of the bottlenecked engine and zoom into the visually large
engine idle gaps. For example, in the below profile, we expect VectorE to be the bottlenecked engine and therefore
focus on the idle gaps on VectorE:

Side note, for faster GUI rendering, neuron-profile enables data sampling by default and “hides” certain instructions
from the timeline with a large profile. To confirm whether an engine indeed has an idle gap, we recommend zooming
into a smaller region of the profile and turn on “Show unsampled data” in View Edit Settings to make sure all
instructions are rendered:
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Fig. 7.43: Engine idle gaps.

Fig. 7.44: Show unsampled data in neuron-profile.
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For each engine idle gap, you can find out the reasons why the engine cannot execute instructions by inspecting the
semaphore wait condition of the first instruction executed on the engine after the gap. Broadly speaking, these
semaphore wait conditions are either waiting for 1) other compute engine instructions or 2) DMA activities to fin-
ish. We have different techniques to shrink the idle gaps caused by either of these wait conditions (that is, engine stall
reasons).

Opt #3. Overlap execution across compute engines through pipelining

Symptom: The semaphore wait condition of the first instruction after an idle gap is on a semaphore name that matches
a compute engine name in NeuronCore: Vector, Scalar, GpSimd and Tensor. These semaphores are associated with
instruction completion on the corresponding compute engine.

For example, the below TENSOR_TENSOR instruction on VectorE is waiting for S[4] (Scalar) to reach a value of 36.
This means VectorE was waiting for ScalarE to finish certain instructions.

Fig. 7.45: Semaphore wait on another compute engine.

Optimization: When there is a sequence of operators on different compute engines, we can slice the computation in
a way that the compute engines can process tiles of the original operator in a pipeline fashion. As an example, let’s
assume we have two operator back to back on a large (say, thousands of elements) tensor X: X → op0 → Y → op1
→ Z. op0 is performed on ScalarE while op1 is on VectorE. For simplicity, let’s assume tensor X/Y/Z have the same
shape.

Figure below shows two possible execution timelines with and without engine pipelining. Without pipelining, VectorE
is fully idle when ScalarE is executing op0 on tensor X in the first half of the execution. Similarly, ScalarE is idle
while VectorE is running op1. However, with pipelining, ScalarE is able to produce partial results in tiles and unblock
VectorE as soon as the first tile is processed. Overall, engine pipelining shortens the end to end latency to complete
op0 and op1, through shrinking engine idle time and improving hardware utilization.

Choosing a proper tile size is crucial to the performance of such engine pipelining. It is up to NKI programmers to
make this choice in kernel implementation and iterate on it using performance profiling data in neuron-profile. For
complex kernels, we often need to schedule a pipeline among all engines: Tensor/Scalar/Vector/GpSimd Engine.

For example, in Transformer’s self-attention layer, in addition to fusing matmul_0(Q, K) → softmax → mat-
mul_1(softmax_out, V) in a single kernel to minimize spilling as discussed in Opt #2, we also need to form a complex
engine pipeline for the operators to maximize utilization of the compute engines:

• matmul_0/matmul_1: TensorE

• softmax:

– exponential: ScalarE

– summation: VectorE

– scale by reciprocal of summation: ScalarE
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Fig. 7.46: Engine timeline with and without engine pipelining.

– for causal self attention, triangular masking: GpSimdE

See Fused Self Attention tutorial for more detailed discussion.

Opt #4. Overlap data loading with computation

Symptom: The semaphore wait condition of the first instruction after an idle gap is on a semaphore name that starts
with letter q. These semaphores are associated with completion of DMA activities.

For example, hovering on an instruction will bring up the key instruction details as follows:

Fig. 7.47: Instruction waiting for input data loading.

In this particular screenshot, the EVENT_SEMAPHORE instruction could not start earlier even though VectorE was idle
because it was waiting for semaphore S[22] (qSyncIO0) to reach a value of 240. The semaphore is only incre-
mented whenever the corresponding DMA activities shown on the qSyncIO0 execution trace are completed. Click-
ing on the DMA activities on qSyncIO0 immediately before the EVENT_SEMAPHORE instruction, you may follow the
nki_source_location to find out which line of code is related to this DMA activity (nl.load() call).
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Similarly, if an instruction is blocked on S[47] (qSyncSpillReload0), that means it is blocked by DMA activities
for spilling:

Fig. 7.48: Instruction waiting for spilled data reloading.

Clicking on the DMA activities on qSyncSpillReload0 immediately before the EVENT_SEMAPHORE instruction, you
may find out the name of the intermediate NKI tensor that was spilled/reloaded. For example, the below DMA transfer
reloads the tensor named deltaU as defined in our NKI kernel. Note, spill/reload DMA transfers are generated by
Neuron Compiler automatically by analyzing SBUF usage in NKI kernels. Therefore, these DMA transfers do not have
an associated explicit NKI API call or nki_source_location information.

Fig. 7.49: Spilled tensor variable name.

Optimization: Overlapping data loading with compute is highly similar to enabling compute engine pipelining in Opt
#3, since DMA engines can move data in parallel to compute engine execution, just like how compute engines can run
different operators in parallel.

However, it is also possible that even after maximizing overlapping of compute and data movement the best you can, the
data movement duration is still not hidden behind compute even though your kernel has a compute-bound arithmetic
intensity. In these cases, the most common cause is the data movement in your kernel is not using the DMA engines
efficiently. Refer to a later section to see relevant optimization techniques to improve DMA bandwidth utilization.

As a concrete example, we demonstrate how to properly overlap compute and data movement in a compute-bound
(VectorE as the bottlenecked engine) kernel in Mamba tutorial.
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Fig. 7.50: DMA and engine timeline with and without overlapping.

Improving engine efficiency

Once done with “avoiding engine idle gaps” as much as possible, we can focus on improving “engine efficiency”
during the busy periods of the engine. We will start with two optimizations techniques that are generally applicable to
all compute engines, followed by TensorE-specific optimization techniques.

Opt #5a: Use sufficiently large input tiles in free dimension

Symptom: Certain operators might trigger many back-to-back instructions with small free dimension sizes in the input
tensors. For example, in the below profile, ScalarE is busy with many repeated activation instructions with IDEN-
TITY (scale/bias enabled) activation function, which is equivalent to calling nki.isa.tensor_scalar(op0=nl.
multiply, op1=add) APIs. If you click on one of the instructions to pull up the instruction detailed view, you can
see the source tensor access pattern is fp32@20580[1,1,1][1,1,1] , where the first set of bracket indicates 3D strides
and the second set indicates 3D shape in FP32 elements. More detailed discussion of ISA access pattern can be found
by clicking on the i button at the end of the Operands row.

In this example, each of the back-to-back instructions is reading one element per partition from SBUF, which would
take about one engine cycle to perform useful computation within the instruction. Such instructions are extremely
inefficient since the static instruction overhead in the order of ~100 cycles would be limiting the overall throughput.

To make things worse, these instructions also have data dependency (read after write) between consecutive instructions,
which means the next instruction cannot start data read until the previous instruction has all of its output committed to
the local SRAM. In neuron-profile, you can inspect data dependency between instructions by clicking on an instruction
of interests (Inst1 in the below profile), which will highlight the clicked instruction and also the instruction that
produces input for the clicked instruction (Inst0 in the below profile). The dependency information can also be viewed
in the details “instruction dependency pcs”. In fact, all the neighboring instructions also have a similar dependency
patterns in this profile.

With the above inefficiencies, the initiation interval (the time between the starting points of two consecutive instructions)
for these instructions on ScalarE is around 189 ns (264 ScalarE cycles on NC-v2) , which is much higher than
the useful computation cost (one ScalarE cycle throughput-wise).

7.2. Neuron Kernel Interface (NKI) - Beta 1395



AWS Neuron

Fig. 7.51: Many back-to-back ScalarE instructions with small tensor shapes
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Optimization: The trick of this optimization is to increase the free dimension size of instruction input tiles. As
discussed in the architecture guide, NeuronCore compute engines typically require at least 128 elements/partition in
the source tensor to be efficient. However, it is worth mentioning that increasing free dimension sizes might not be trivial
due to the high-level computation definition. We suggest developers walking through the architecture guide in detail
to better understand capabilities of different compute engines, and mapping/reformulating the high-level operators
onto the engines using the most suitable instructions. Such instructions could be invoked either through the high-level
[nki.lanaguage](api/nki.language) or low-level [nki.isa](api/nki.isa) APIs.

In addition, keep in mind there is a trade-off in choosing the free dimension size in instruction input tiles: Too small
of a tile size exposes significant instruction overhead leading to inefficient engine execution, while too large of a tile
size often leads to inefficient pipelining between engines (working against Opt #3) and high memory pressure in SBUF
(working against Opt #2).

As an example, a naive implementation of the prefix sum scan operation in Mamba v1 would trigger seq_len back-to-
back single element nki.isa.tensor_scalar instructions as shown in the above profile example, where seq_len
is the sequence length of the model typically in the range of thousands. A more efficient way to implement this
operation is through a special VectorE instruction nisa.tensor_tensor_scan. See the Mamba tutorial <tutori-
als/fused_mamba> for more discussion.

Opt #5b: Use sufficiently large input tiles in partition dimension

Symptom: When instructions use input/output tiles that span fewer than 128 partitions, they typically under-utilize the
compute engine capabilities. This is because each SBUF/PSUM partition has a one-to-one mapping to parallel vector
lanes in the compute engines. As an example, the TENSOR_TENSOR instruction (equivalent to nki.tensor_tensor)
on VectorE takes a source tensor in SBUF that occupies 64 partitions only, as indicated by the channels=64 instruction
operand field. If we were to increase the channels field to 128, the instruction would have taken the same amount of
time as channels=64.

Fig. 7.52: An instruction that read/write less than 128 partitions.

Similarly, for a MultiplyMoving instruction (Matmul opcode in neuron-profile) TensorE, if the instruction
reads/writes tiles do not span the full SBUF/PSUM partitions, we would be underutilizing TensorE. As an example, the
below MultiplyMoving instruction only writes to 96 partitions in PSUM, as indicated by the operand 128*96, which
means the instruction only uses 128 rows and 96 columns of the processing elements out of the available 128x128
systolic array.

Optimization: If we see many back-to-back instructions on the compute engine that have fewer than 128 partitions
in the input/output tiles as discussed above, we should consider an optimization called “partition vectorization”.

As an example, say we have two nki.isa.nc_matmul() instructions with each generating a 64-partition PSUM tile of
the same shape. Then VectorE needs to run nki.isa.tensor_reduce() on both tiles to generate a reduction result.
Note, on trn1/inf2, VectorE cannot run the two independent nki.isa.tensor_reduce() instructions in parallel in
this case, even though the total number of compute lanes required for these instructions does not exceed 128. To improve
VectorE utilization in this case, we can:
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Fig. 7.53: MultiplyMoving instruction that uses <128 TensorE columns

1. The two nc_matmul() instructions write to disjoint PSUM partitions: partition 0-63 for the first nc_matmul
and partition 64-127 for the second one.

2. Invoke a single nki.isa.tensor_reduce() instruction to process output of both nki.isa.nc_matmul()
instructions.

The below pseudo-code illustrates the above computation without and with partition vectorization.

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl

################################################################
# option 1: No partition vectorization
# two 64-partition vector instructions running serially

# By default, NKI creates mm_tile0 and mm_tile1 in partition 0-63
mm_tile0 = nisa.nc_matmul(...)
mm_tile1 = nisa.nc_matmul(...)

# Both nki.isa.reduce instructions move data from psum partition 0-63
# in a serialized fashion
reduce0 = nisa.tensor_reduce(mm_tile0, ...)
reduce1 = nisa.tensor_reduce(mm_tile1, ...)

################################################################
# option 2: Partition vectorization
# vectorized into one 128-partition vector instructions

# Here, we explicitly declare a 128-partition tensor in PSUM
mm_tile = nl.zeros((128, ...), np.float32, buffer=nl.psum)

i_output0_p = nl.arange(64)[:, None]
i_output1_p = 64 + nl.arange(64)[:, None]
# Assign first part of mm_tile to partition 0-63
mm_tile[i_output0_p, ...] = nki.isa.nc_matmul(...)
# Assign second part of mm_tile to partition 64-127
mm_tile[i_output1_p, ...] = nki.isa.nc_matmul(...)

# A single nki.isa.reduce instruction, using all 128 partitions
reduce = nisa.tensor_reduce(mm_tile, ...)

Option #2 above is able to perform the reduction 2x faster, by vectorizing the partition dimension and performing a
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single reduction instead of two.

Opt #6: Combine instructions

Symptom: Even though the majority of popular ML models are matrix multiplication heavy, certain operators can be
vector/scalar operation heavy instead, such as self-attention in Transformer models. These operators typically have a
performance bottleneck in VectorE or ScalarE or both. As an example, the below profile shows the inner loop of self
attention, where either VectorE or ScalarE is busy at any moment in time, while TensorE has clear engine idle gaps.

Fig. 7.54: A VectorE/ScalarE-bound profile.

Optimization: A common optimization to tackle vector/scalar-operation-heavy operators is combining instructions
using low-level nki.isa APIs. Combining instructions can leverage the deep pipelined stages within VectorE and
ScalarE engine data path to increase hardware utilization per instruction and reduce the instruction count. Check out
the architecture guide to learn what operations can be done in a pipeline fashion in a single VectorE/ScalarE instruction.

For example, below pseudo-code showcase combining three instructions into a single one on ScalarE. impl 1 and
impl 2 are functionally equivalent, but impl 2 is 3x faster in terms of latency by touching the input data only once
and running all three operations (multiply, add, exp) in a pipeline.

import neuronxcc.nki.isa as nisa
import neuronxcc.nki.language as nl

# input: data (tile[128, 512]), scale (tile[128, 1]) , bias (tile[128, 1])

# impl 1:
scaled = nl.multiply(data, scale)
shifted = nl.add(scaled, bias)
exp = nl.exp(shifted)

# impl 2:
exp = nisa.activation(nl.exp, data,

bias, scale)

Check out nki.isa APIs to understand low-level ISA API semantics, limitations, engine mapping, and rough estimates
of performance cost.

See Fused Mamba tutorial for a concrete example to combine matrix-vector multiplication and exponential evaluation
in a single nisa.activation instruction. Similarly, in Fused Self Attention tutorial, we combine the subtraction of
the maximum with exponential in a single nisa.activation instruction in the Softmax operator.
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Opt #7: TensorE only: Leverage fast weight load

Symptom: Let’s consider a matrix multiplication between two matrices of shape [M, K] and [K, N], with one of the
following conditions:

1. M is significantly smaller than 128, while N is much larger than 128, or

2. the other way around: N is significantly smaller than 128, while M is much larger than 128

In NKI, if the matrix with min(M, N) dimension is mapped to the stationary tensor (x input tensor in nl.matmul and
nisa.nc_matmul) for the TensorE LoadStationary instruction (details see architecture guide ), we will typically
end up under-utilizing TensorE more severely compared to mapping such matrix to the moving tensor.

In neuron-profile, programmers can identify also this inefficient case by inspecting the src access patterns for
LoadStationary and MultiplyMoving instructions on TensorE. For example, the below screenshot indicates a stationary
tensor with 1 element per partition and a moving tensor with 128 elements per partition:

Fig. 7.55: Example instructions for matrix-vector multiplication.

If you have many back-to-back TensorE instructions with the above pattern, we recommend applying the below opti-
mization.

Optimization: The key idea of this optimization is to simply swap the stationary and moving tensor positions for the
given matmul in NKI, in order to leverage the “Fast LoadStationary” support in TensorE (more discussion in architecture
guide). To better understand the intuition behind this, let’s walk through a concrete example.

Consider a [1, 128] x [128, 128] matrix multiplication as below:

Fig. 7.56: Illustration of matrix-vector multiplication.

Since K=128 is the contraction dimension, it will get mapped to the partition dimension of the SBUF for both the x
and y matrices. M and N will therefore get mapped to the free dimension of the SBUF. and we will refer to x as the
“short” tensor, and y as the “long” tensor (short and long in the free dimension, respectively). We have two possible
ways of performing this computation on the TensorE, which we’ll refer to as “Short Moving” and “Short Stationary“,
depending on which tensor has the short free dimension.
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Fig. 7.57: Two possible TensorE instruction mapping for matrix-vector multiplication.

Based on the multiplication property of transpose, we have A×B=(B.T×A.T).T. Meanwhile, based on the semantics
of TensorE, when we want to compute A×B, we need to call nc_matmul(A.T, B), and for BT×AT, we need to call
nc_matmul(B.T.T, A.T) -> nc_matmul(B, A.T). Notice how the parameters to nc_matmul are swapped! Thus,
when we swap stationary and moving tensors and perform the matrix multiplication, the output tensor will be transposed
from the original output.

Recall, if there is a difference in initiation interval between LoadStationary and MultiplyMoving, one of them can
end up limiting the throughput of TensorE:

Fig. 7.58: Two possible TensorE performance characteristics.

In the above scenarios, we expect TensorE performance to be bound by whichever instruction reads the longer tensor
- LoadStationary in “Short Moving”, and MultiplyMoving in “Short Stationary”. However, with TensorE Fast Load-
Stationary, TensorE can perform LoadStationary up to 4x faster than a MultiplyMoving with the same free axis
size.

So in the two above scenarios:
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1. Short Moving - LoadStationary initiation interval is roughly equal to the number of elements divided by
4 (because of fast LoadStationary), and MultiplyMoving initiation interval is dominated TensorE instruction
turnaround time MM_INIT_LATENCY (64 cycles on trn1). Therefore, we have LS_II ~= 128/4 = 32
cycles , and MM_II ~= max(1, MM_INIT_LATENCY=64 cycles)which leads to issuing a MM roughly every
64 cycles.

2. Short Stationary - MultiplyMoving initiation interval will dominate, which leads to issuing a MM roughly
every 128 cycles.

Because of the above, we will prefer to map short tensors to the moving tensor in MultiplyMoving instruction in
TensorE.

A classic example is a matrix-vector product. This is commonly seen in auto-regressive token generation in LLMs,
where most of the matmuls occur only on a single token (vector) as the feature map, while the weight tensor remains
large and hence must be broken into tiles to meet TensorE tile size constraints.

Opt #8: TensorE only: Mitigating overhead from tensor transposes

Symptom: Since TensorE accounts for over 90% of the hardware FLOPS on a NeuronCore, we would like the engine
to perform useful computations as much as possible, especially in matmul-heavy kernels. The most common “not
useful” computation that could occupy precious TensorE cycles is tensor PF-transposes, which swap the partition and
free dimensions of a NKI tile. When you have a profile with TensorE visually extremely busy, we recommend doing a
sanity check on how much of the TensorE activities are performing transposes. One easy way to check is by selecting
Instruction Type as the Instruction Grouping in View Settings :

With this instruction coloring, TensorE instructions will be highlighted in two different colors: one for Transpose and
one for Regular (useful matmuls). As an example, the below profile has an execution trace with TensorE being the
performance bottleneck. Visually, we can see the bulk of the TensorE execution is for regular matmuls, but there is a
noticeable chunk of engine time spent on transpose-induced instructions in red. Note, the colors for transpose versus
regular instructions are chosen randomly by the profiler each time. You should hover over the instructions to check the
Instruction Type field on the pop-up to confirm the color mapping.

Optimization: The key goal of this optimization is to reduce the number of transpose-induced instructions on TensorE,
when such instructions are taking up a large portion of the execution. Before diving into techniques to reduce transposes,
it is important to understand the root cause of these transposes.

At a high level, tensor transposes are needed to adjust the data layout of tensors to match the partition dimension
requirements of different ISA instructions. Refer to the architecture guide for layout requirements of each compute
engine. Transposes are inserted explicitly into NKI kernels through nl.transpose or nisa.sb_transpose APIs, or calling
nl.matmul with transpose_x=False. These transposes are most commonly lowered down to Tensor Engine.

Broadly speaking, there are 2 different types of tensor transposes, with different root causes:

1. IO tensor transpose (abbreviated as IO transpose)

2. intermediate tensor transpose (abbreviated as intermediate transpose)

IO transpose. These transposes are ** done on NKI kernel IO (input/output) tensors, which must reside in device
memory in current NKI releases. The transposes are needed when the NKI compute API consuming input tensors or
producing the output tensors expect a different layout than their IO layout in device memory. To simplify discussion,
we dive into input tensor layout discussion below, but the same reasoning also applies to output tensors.

For example, say we have an input tensor in device memory with layout [out_channel=128, in_channel=128]
(major-to-minor ordering), but the nisa.nc_matmul call in our NKI kernel expects [in_channel, out_channel]
as input tile layout. In this case, we can perform a nl.load to load the input into SBUF, with out_channel being
the partition dimension because out_channel is the most major dimension in device memory. Then, a PF-transpose
on TensorE is required before the loaded data can be consumed by nisa.nc_matmul . Alternatively, we can invoke
nl.load_transpose2d to transpose the input tensor on the fly in the DMA engine, with a major caveat of much lower
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Fig. 7.59: Change view settings to visualize transposes.

Fig. 7.60: Example timeline with a transpose instruction type.
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DMA bandwidth compared to nl.load. nl.load_transpose2d could make sense in a compute-bound kernel, but
should certainly be avoided in memory-bound kernels.

Either way, an IO transpose is inevitable here due to the IO tensor layout choice we made as NKI programmers. In
the naive case scenario where we only care about reaching the best performance for a single kernel, we can carefully
decide on the IO tensor layout to make sure it is compatible with the NKI compute API layout requirements. When
the input tensor is consumed by multiple compute APIs with conflicting layout requirements, IO-transposes cannot be
avoided but should still be minimized as much as possible with a careful trade-off.

However, NKI kernels are often injected into a larger model defined at the framework such as PyTorch and JAX, in
which case the kernel IO tensors are also input/output of the surrounding framework operators. These cases will require
more complex reasoning on the optimal IO tensor layout for the NKI kernel, but the optimization goal of minimizing
IO transposes remains the same.

One last complexity in deciding IO tensor layout is the layout choice also has a potential impact on DMA efficiency.
See more discussion in a later section discussion optimizing data movement efficiency.

Intermediate Transpose. These transposes are done on intermediate tensors produced within a NKI kernel. These
transposes arise due to layout requirement mismatches between producer and consumer NKI compute APIs.

There are two common techniques to reduce intermediate transposes: 1) swapping moving/stationary tensors in nisa.
nc_matmul (or equivalently, nl.matmul) and 2) mapping a computation to an alternative engine with different layout
requirements.

One example for technique 1) is in an operator chain commonly seen in Transformer models: linear_layer →
layernorm. Normally, we tend to map the weight [hidden_size, 4xhidden_size] tensor in linear_layer to the
stationary tensor and the input feature map [hidden_size, seq_len] to the moving tensor when performing nisa.
nc_matmul on TensorE. The output feature map of this matmul will be in a layout of [4xhidden_size, seq_len].
However, the first step in layernorm to calculate mean and variance, nisa.bn_stats, requires 4xhidden_size to be
the free dimension because we need to calculate mean/variance within a single token. Therefore, a naive implementation
of this operator chain will trigger a PF-transpose between the nisa.nc_matmul and nisa.bn_stats instructions.
However, if we were to instead map the weight tensor to the moving tensor and input feature map to stationary tensor,
we can skip this PF-transpose entirely because the nisa.nc_matmul output will be in the expected layout by nisa.
bn_stats.

An example for technique 2) is in a similar operator chain: linear_layer → RMSnorm with the same intermediate
tensor dimensions as the above example. RMSnorm is considered a cheaper normalization operator compared com-
pared Layernorm, because it replaces the mean/variance calculation with squared and summation. Unlike nisa.
bn_stats for mean/variance calculations which must be done along the free dimension, for RMSnorm the scalar
squared operator has no layout requirement and the summation can be done along either dimensions: use Vec-
torE nisa.tensor_reduce for free dimension summation or use TensorE nisa.nc_matmul for partition dimen-
sion summation (see TensorE alternative use case in the architecture guide). Since RMSnorm can be done with either
[4xhidden_size, seq_len] or [seq_len, 4xhidden_size], we should make the layout choice based on more
surrounding operator: RMSnorm in Transformer models is typically followed by yet another linear_layer, which re-
quires the [4xhidden_size, seq_len] layout. Therefore, to minimize intermediate transposes in an operator chain
like linear_layer → RMSnorm → linear_layer , we should map the weight tensor of the first linear_layer
to the stationary tensor and leverage TensorE to perform cross-partition summation for RMSnorm.
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Optimizing Data Movement Efficiency

The key goal of optimizing memory-bound kernels is to keep the DMA engines running at high bandwidth utilization
as much as possible. If you are seeing major DMA engine idle gaps in neuron-profile, you should first find ways to
hide compute behind DMA activities using techniques discussed in Opt #4. The rest of this section is going to focus
on optimizations to improve DMA bandwidth utilization. All the optimizations below are applicable to a common
symptom: computation blocked by DMA activities, which are keeping the DMA engines “busy” but at low bandwidth
utilization (< 60%):

Fig. 7.61: Busy DMA engines with relatively idle compute engines.

Note, the current NKI release only supports running a kernel on a single NeuronCore (subject to changes in future
releases). Therefore, the optimizations below will focus solely on movement between device memory and on-chip
memory SBUF for now.

Opt #9: Perform sufficiently large DMA transfers

Symptoms: A quick way to determine whether the DMA transfers are moving large enough amount of data per transfer
is to visualize the DMA activities per engine in neuron-profile:

Fig. 7.62: Change view settings to visualize DMA transfer per DMA engine.

With the above view settings, each DMA transfer will be shown with a continuous bar on the execution trace, grouped
by DMA engines. Below is a profile example with small DMA transfers going on all 16 DMA engines. Visually, we
can see DMA engine empty gaps (due to DMA overhead) are taking up more time than active DMA transfers. Hovering
over some of DMA transfers, we can also see a transfer size of 4B, which is extremely tiny. For reference, the transfer
size on Trainium/Inferential2 should be larger than 32KiB to achieve ideal bandwidth.

For comparison, here’s another profile with sufficiently large DMA transfers, achieving close 70% DMA throughput
utilization:
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Fig. 7.63: Example timeline with tiny DMA transfers.

Fig. 7.64: Example timeline with large DMA transfers.
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Optimizations: Refer to the architecture guide for more detailed discussion on DMA engines and intuitions behind
the need for large DMA transfer sizes to achieve good DMA efficiency. Here, we will discuss simple rule of thumbs
in NKI to trigger large DMA transfers: maximize the partition and free dimension sizes in both nl.load and nl.store.
For example, the below data loading will trigger 16 DMA transfers that can be run on all 16 DMA engines, which each
transfer loading 8 SBUF partitions’ worth of data with a transfer size of 32KiB:

import neuronxcc.nki.language as nl

def load_store_32kib_contiguous(in_tensor, out_tensor):
# both in_tensor and out_tensor have FP32 data type, 4B/element
assert in_tensor.dtype == out_tensor.dtype == nl.float32
# both have shape 128x1024 in device memory
assert in_tensor.shape == out_tensor.shape == [128, 1024]

# partition dim size is at maximum supported by the architecture: 128
# free dim size is at the ideal size to achieve good bandwidth usage: 1024
# Beyond 1024 has diminished return on bandwidth and
# runs the risk of degrading compute/data movement pipelining efficiency
i_p, i_f = nl.mgrid[0:128, 0:1024]

# This access pattern should map to 16 DMA transfers (1 transfer/DMA engine),
# with each DMA transfer moving 8 partitions worth of data:
# 8 partitions * 1024 elements * 4B/element = 32 KiB
data_tile = nl.load(in_tensor[i_p, i_f])

# Do some useful computation
...

# Store, similar size as the load
nl.store(out_tensor[i_p, i_f], data_tile)

Opt #10: Minimize use of DMA transposes.

Symptom: Excessive use of DMA transposes, invoked through nl.load_transpose2d, can degrade DMA band-
width significantly. In neuron-profile, you can find out whether nl.load_transpose2d is taking up substantial
amount of execution time by using the search functionality, which will highlight all the DMA activities that perform
transposes on the fly:

Fig. 7.65: Search for DMA activities that perform transposes.

7.2. Neuron Kernel Interface (NKI) - Beta 1407



AWS Neuron

Optimizations: Refer to Opt #8 for a detailed discussion on how to eliminate the need of transposes on device mem-
ory input data. When the transposes are inevitable and the kernel is memory bound, we recommend replacing nl.
load_transpose2dwith nl.load() and nisa.nc_transpose(). For example, if you have an in_tensor of shape
[8192, 128] in device memory but you would like an SBUF tile of shape [128, 8192] spread across 128 partitions for
computation, the following two code snippets can achieve the same functionality:

# Option 1, low DMA bandwidth usage:
sbuf_opt1 = nl.load_transpose2d(in_tensor[0:8192, 0:128])

# Option 2, better DMA bandwidth usage, fastest transpose:
sbuf_opt2 = nl.ndarray((128, 8192), dtype=in_tensor.dtype)
for i_in_tile in nl.affine_range(8192 // 128):

i_start = i_in_tile*128
current_tile = nl.load(in_tensor[i_start:i_start+128, 0:128])
sbuf_opt2[0:128, i_start:i_start+128] = nisa.nc_transpose(current_tile)

Option 2 above is especially great for cases where nl.load_transpose2d is slowing down data movement in the
critical path and TensorE is otherwise idle. Occasionally Option 1 can still be the right call, when the amount of
data to be transposed is small and the overhead of nl.load_transpose2d can be well hidden behind other useful
computation.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

NKI Direct Allocation Developer Guide

In this document, we will discuss how to perform direct allocation in NeuronCore on-chip memory (SBUF and PSUM)
correctly and efficiently to improve NKI kernel performance. This document is organized into five sections:

• Background: NKI Tensors Semantics

• Introduction to NKI Direct Allocation API

• Development Best Practices

• Common Errors

• Known Limitations

Background: NKI Tensors Semantics

As discussed in NKI programming model, a multi-dimensional NKI Tensor in SBUF/PSUM must have a dimension
mapped to the partition (P) dimension of the physical memory, labeled using nl.par_dim. We also define any NKI
Tensor with the first dimension as the partition dimension is considered a NKI Tile, which is the data type that NKI
compute APIs operate on. The remaining dimensions after the partition dimension in a NKI Tile are considered free
(F) dimensions. The free dimensions describe how data is organized within each SBUF/PSUM partition.

To introduce NKI allocation API, let’s define the block (B) dimension as any dimension before the partition dimension
in a NKI Tensor. Therefore, a NKI Tensor has three types of dimensions: (B, P, F). Note, a NKI Tensor can have
one or more dimensions in both B and F, but there can only be one dimension in P due to Neuron ISA requirements.
The block dimension effectively describes how many (P, F) NKI Tiles the tensor has, which commonly corresponds
to how many NKI API compute API invocations we need to process the entire tensor.

As an example, we can declare a NKI Tensor in SBUF as follows:
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nki_tensor = nl.ndarray((16, nl.par_dim(128), 512), dtype=nl.bfloat16, buffer=nl.sbuf)

for i_block in nl.affine_range(16):
nki_tensor[i_block, :, :] = nl.load(...)
... = nl.exp(nki_tensor[i_block, :, :])

Here, nki_tensor has a block dimension of 16, and we use it as an intermediate SBUF tensor for loading data from
device memory and feeding inputs to the exponential operator. The different tiles in nki_tensor are processed by
different iterations of a loop constructed with nl.affine_range(...), indicating no loop-carried dependency across
iterations.

In fact, the block dimension of nki_tensor as defined above is only considered logical in NKI. Neuron Compiler
inspects the above code and uses a heuristic-driven allocator to decide how many physical tiles are allocated to each
tensor. The key performance goal of the allocator is to achieve instruction parallelism across different engines in
NeuronCore while minimizing memory usage in the on-chip memory.

Let’s first consider the case where nki_tensor has only one physical tile, T, allocated in SBUF. The different loop
iterations will end up completely serialized:

i_block = 0
1. nl.load(nki_tensor[0, :, :]) => write ``T``
2. nl.exp(nki_tensor[0, :, :]) => read ``T``

i_block = 1
3. nl.load(nki_tensor[1, :, :]) => write ``T``
4. nl.exp(nki_tensor[1, :, :]) => read ``T``

...

Here, we say only one logical tile in nki_tensor is alive at a time, because there is only one physical tile as the
backing storage for nki_tensor. However, in NeuronCore, nl.load and nl.exp are executed using two independent
resources: DMA Engine and Scalar Engine. In this serialized execution, there is no instruction parallelism achieved
between these engines.

An obvious improvement is to adopt “double buffering”, by allocating two physical tiles for nki_tensor, T0 and T1.
Now, the execution enables much better computation and data movement overlapping:

i_block = 0
1. nl.load(nki_tensor[0, :, :]) => write ``T0``

i_block = 0 & 1
2. nl.load(nki_tensor[1, :, :]) => write ``T1`` | nl.exp(nki_tensor[0, :, :]) => read␣
→˓``T0``

i_block = 1 & 2
3. nl.load(nki_tensor[1, :, :]) => write ``T0`` | nl.exp(nki_tensor[1, :, :]) => read␣
→˓``T1``

...

Here, we reuse, or rotate, the same physical tiles across the loop iterations. No physical tile is being read from and
written to in the same time step, while the DMA and Scalar Engines can operate in parallel. Besides DMA and Scalar
Engines, NeuronCore also consists of Tensor, Vector, Gpsimd Engines that can execute instructions in parallel.

Given the amount of parallelism available in hardware and the complex parallel programs seen in common machine
learning workloads, the heuristic-based memory allocator in Neuron Compiler may not yield the optimal allocation
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decisions. Bad allocation decisions typically lead to sub-optimal engine parallelism and/or on-chip memory over-
subscription causing excessive spills of intermediate data to device memory. With NKI direct allocation API, pro-
grammers can now bypass the compiler allocator and take full control of memory allocation in SBUF/PSUM for NKI
Tensors.

Direct Allocation API

This section will go over the SBUF allocation in detail, including ncc.sbuf.alloc() API that provides the most
flexibility for tensor allocation and ncc.sbuf.mod_alloc() API that provides ease-of-use using a modulo alloca-
tion strategy. Both of these APIs can be used to replace the automatic allocated buffer type buffer=nl.sbuf when
declaring a NKI tensor:

# Automatic allocation
nki_tensor = nl.ndarray((16, nl.par_dim(128), 512), ..., buffer=ncc.sbuf.auto_alloc())
nki_tensor = nl.ndarray((16, nl.par_dim(128), 512), ..., buffer=nl.sbuf) # alias of auto_
→˓alloc

# Direct allocation, full flexibility
nki_tensor = nl.ndarray((16, nl.par_dim(128), 512), ..., buffer=ncc.sbuf.alloc(...))

# Direct allocation, modulo allocation
nki_tensor = nl.ndarray((16, nl.par_dim(128), 512), ..., buffer=ncc.sbuf.mod_alloc(...))

The PSUM allocation APIs, ncc.psum.alloc() and ncc.psum.mod_alloc() follow a highly similar design. For
more information on the semantics of these APIs, check out API reference page for allocation control.

ncc.sbuf.alloc()

This SBUF allocation API enables user to control:

• the number of physical tiles to allocate for a given NKI Tensor, and

• the exact mapping between logical tile and physical tile in SBUF

ncc.sbuf.alloc() accepts a single input parameter, func, which is a user-defined callable object that takes in:

1. a tuple of integers idx representing a logical block index,

2. an integer pdim_size for the number of partitions the logical tile has, and

3. an integer fdim_size for the number of bytes the logical tile has per partition.

The func returns a tuple of two integers, (start_partition, byte_addr), representing the memory location of
the mapped physical tile for the given logical block. start_partition indicates the starting partition of physical tile
and must follow these ISA rules:

• If 64 < pdim_size <= 128, start_partition must be 0

• If 32 < pdim_size <= 64, start_partition must be 0 or 64

• If 0 < pdim_size <= 32, start_partition must be one of 0/32/64/96

The byte_addr indicates the byte offset into each partition the physical tile allocation starts from. For example, on
NeuronCore-v2, a valid byte_addr can be any integer values from 0 (inclusive) to 192KiB-16KiB=(192-16)*1024
(exclusive). 192KiB is the physical size of a SBUF partition and 16KiB is allocated for compiler internal usage. Refer
to NeuronDevice Architecture Guide for the physical SBUF partition size on each NeuronCore version. In addition,
byte_addr must be aligned to nki.language.constants.sbuf_min_align.
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At compile time, the compiler will statically evaluate func over indices of all the logical tiles defined in the NKI tensor
to calculate physical addresses for each tile. As an example, consider the following simple allocation that allocates four
physical tiles back to back along the free dimension of SBUF, with every logical tile mapped to a different physical tile
sequentially.

def simple_1d_alloc_func(idx, pdim_size, fdim_size):
idx, = idx # unpack the tuple
return (0, idx * fdim_size)

t = nl.ndarray((4, par_dim(128), 512), dtype=nl.bfloat16,
buffer=ncc.sbuf.alloc(simple_1d_alloc_func))

In this example, the compiler will query simple_1d_alloc_func with idx ranging from (0, ) to (3, ),
pdim_size=128, and fdim_size=512*sizeof(nl.bfloat16)=1024. We can visualize the final allocation in Fig.
7.66.

Fig. 7.66: Visualization of simple_1d_alloc_func in SBUF.

This ncc.sbuf.alloc API provides great flexibility through the customizable function to perform logical to physical
tile mapping. With Python closures, the function can carry arbitrary metadata, which enables programmers to define
their own memory allocator. As another example, here’s a simple allocator that queries a global variable next_addr
to keep track of the next available byte address in the free dimension.

next_addr = 0
def simple_1d_alloc_factory(total_fdim_size):
base_addr = next_addr
next_addr += total_fdim_size

def simple_1d_alloc_func(idx, pdim_size, fdim_size):
# unpack the tuple
idx, = idx

# hard-code to partition 0, since each tile takes up 128 partitions
start_partition = 0

return (start_partition, base_addr + idx * fdim_size)

return simple_1d_alloc_func

# Using simple_1d_alloc_factory, next_addr is automatically incremented.
# Physical tiles of t0 and t1 start at 0 and 4096, respectively
t0 = nl.ndarray((4, par_dim(128), 512), dtype=nl.bfloat16,

(continues on next page)
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(continued from previous page)

buffer=ncc.sbuf.alloc(simple_1d_alloc_factory(512*2*4)))
t1 = nl.ndarray((4, par_dim(128), 512), dtype=nl.bfloat16,

buffer=ncc.sbuf.alloc(simple_1d_alloc_factory(512*2*4)))

ncc.sbuf.mod_alloc()

Alternative to the ncc.sbuf.alloc()API which requires programmers to define an allocation algorithm from scratch,
NKI also provides the ncc.sbuf.mod_alloc()API which invokes a pre-defined modulo allocation scheme in Neuron
Compiler.

Modulo allocation works as follows. Suppose that we allocate two physical tiles for a tensor with a logical shape of
(8, par_dim(128), 512). The eight logical tiles are assigned to the two physical tiles by taking a modulo of two on
the logical tile index (that is, block index). Therefore, logical tiles with index (0, ), (2, ), (4, ), (6, ) share
the same physical tile, while logical tiles (1, ), (3, ), (5, ), (7, ) share the other physical tile.

The ncc.sbuf.mod_alloc API takes four input parameters:

1. base_addr indicates the starting byte offset within each SBUF partition of the physical tiles.

2. base_partition indicates the starting SBUF partition of the physical tiles.

3. num_par_tiles indicates the number of physical tiles to be allocated along the partition dimension of SBUF.
This is only applicable for tiles that use fewer than 64 partitions per ISA constraints.

4. num_free_tiles indicates the number of physical tiles to be allocated along the free dimension of SBUF.

Given the above input parameters and the modulo allocation scheme, Neuron Compiler is then able to calculate the
physical tile memory location, (start_partition, byte_addr) for each logical tile in the tensor. Note, this is the
same information that the callable allocation function passed into ncc.sbuf.mod_alloc() would return. See API
reference manual for ncc.sbuf.mod_alloc for the exact formula to calculate (start_partition, base_addr).

Next, we discuss a common use case of ncc.sbuf.mod_alloc, which specifies only the base_addr
and num_free_tiles fields while leaving the remaining parameters to default (base_partition=0 and
num_par_tiles=(1,)) .

nki_tensor = nl.ndarray((4, par_dim(128), 512), dtype=nl.bfloat16,
buffer=ncc.sbuf.mod_alloc(base_addr=0, num_free_tiles=(2, )))

This produces the following allocation:

Table 7.8: Modulo Allocation Example
Logical Tile Index Physical Tile start_partition Physical Tile byte_addr
(0, ) 0 0 + (0 % 2) * 512 * sizeof(nl.bfloat16) = 0
(1, ) 0 0 + (1 % 2) * 512 * sizeof(nl.bfloat16) = 1024
(2, ) 0 0 + (2 % 2) * 512 * sizeof(nl.bfloat16) = 0
(3, ) 0 0 + (3 % 2) * 512 * sizeof(nl.bfloat16) = 1024

The above example is an easy way to implement double buffering without having to define a callable function manually
like how we did for ncc.sbuf.alloc(). We can also implement multi-buffering using ncc.sbuf.mod_alloc() by
changing the value of num_free_tiles (or num_par_tiles when each tile occupies less than 64 partitions).
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Development Best Practices

First and foremost, direct allocation APIs are considered advanced NKI features for performance optimizations. We
highly recommend using direct allocation API only after your kernel is functionally correct with automatic alloca-
tion. Automatic allocation is invoked when NKI tensors are declared with buffer=nl.sbuf (alias of ncc.sbuf.
auto_alloc) or buffer=nl.psum (alias of buffer=ncc.psum.auto_alloc).

The rest of this section goes over best practices of direct allocation APIs to optimize kernel performance.

#1. Hoist allocations outside of the loop-nests you want to block across

To parallelize a loop, every tensor used in the loop must have multiple live tiles so that the different hardware engines
can read/write from/to different memory locations in parallel. To achieve this, make sure to allocate tensors with logical
block dimensions above any loop you want to run in parallel. For example, the following loop will be serialized because
t has only one tile alive,

for i in affine_range(8):
t = nl.ndarray((128, 512), dtype=..., buffer=ncc.sbuf.mod_alloc(base_addr=0))
t[i] = ...
# do something with t

To improve parallelism, programmers should hoist the tensor declaration and allocation above the loop, like this:

t = nl.ndarray((8, 128, 512), dtype=...,
buffer=ncc.sbuf.mod_alloc(base_addr=0, num_free_tiles=(8,))

for i in affine_range(8):
t[i] = ...
# do something with t

#2. Avoid PSUM Bank Collisions

As discussed in NeuronDevice Architecture Guide, PSUM in each NeuronCore has eight banks that can accumulate
TensorE matrix multiplication results independently. Especially in complex loops where PSUM tensors have multiple
logical block dimensions, programmers should pay close attention to PSUM bank allocations so that they do not collide.

More examples coming soon.

Common Errors

This section goes over the common compilation error programmers may encounter while using direction allocation
APIs.
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#1. Mixing direct allocation with automatic allocation.

Automatically allocated tensors from default arguments or lowering need to be explicitly passed to those NKI APIs or
their allocations will collide. When direct allocation is used, all tensors, including the tensor returned from a instruction,
in that kernel must also use direct allocation. For example,

t = nl.load(input) # t is a new tensor, this will fail

# the correct way
t = nl.ndarray(shape=..., buffer=ncc.sbuf.alloc(...))
t[...] = nl.load(input)

#2. Calling compute APIs that introduce implicit tensors while direction allocation is used.

Certain NKI compute APIs implicitly create constant or intermediate tensors that are not in programmers’ control.
For example, invoking nisa.nc_transpose with engine=nisa.tensor_engine creates an identity matrix under the
hood, which cannot be allocated explicitly using direct allocation APIs. Similarly, many high-level nki.language APIs,
such as nl.softmax <api/generated/nki.language.softmax>, are lowered down to several nisa APIs in the compiler. The
intermediate tensors between these lowered nisa APIs also cannot be explicitly allocated by NKI programmers.

Therefore, due to restrictions discussed in common error #1, such APIs are not allowed when direction allocation is
used in the kernel. A compiler error would occur when this is violated.

#3. Lifetime Conflicts

Each NKI kernel has its own address space, and any physical tiles that must be alive simultaneously due to compute
definitions of the kernel should be assigned unique addresses in the kernel address space. For example, tensors below
have partially overlapping physical memory addresses, which would cause errors if the two tensors need to be alive at
the same time.

# t0 physical tiles occupy:
# partition [0:128],
# byte_addr [0:512*num_free_tiles*sizeof(nl.bfloat16)] = [0:2048]
t0 = nl.ndarray((4, par_dim(128), 512), dtype=nl.bfloat16,

buffer=ncc.sbuf.mod_alloc(base_addr=0, num_free_tiles=(2, )))

# t1 physical tiles occupy:
# partition dim - [0:128],
# free dim (byte_addr) - [1024:1024+512*num_free_tiles*sizeof(nl.bfloat16)] = [1024:3072]
t1 = nl.ndarray((4, par_dim(128), 512), dtype=nl.bfloat16,

buffer=ncc.sbuf.mod_alloc(base_addr=1024, num_free_tiles=(2, )))

Another common lifetime conflict error is when the number of physical tiles is insufficient to hold all the logical tiles
that need to be alive at the same time. For example,

# Lifetime conflict #
t1 = nl.ndarray((8, par_dim(128), 512),
buffer=ncc.sbuf.mod_alloc(byte_addr=0, num_free_tiles=(2, )))

for i in nl.affine_range(8):
t1[i] = nl.load(...)

(continues on next page)
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(continued from previous page)

# End of loop: we need all eight logical tiles in t1 to be
# alive in SBUF so that we can start the next loop.
# Only two tiles can be alive according to our allocation above -> ERROR

for i in nl.affine_range(8):
result[i] = nl.exp(t1[i])

##############

# Correct way #
for i in nl.affine_range(4):
t1 = nl.ndarray((2, par_dim(128), 512),

buffer=ncc.sbuf.mod_alloc(byte_addr=0, num_free_tiles=(2, )))
for i in nl.affine_range(2):
t1[i] = nl.load(...).
result[i] = nl.exp(t1[i]) # t[i] are dead after iteration, thus no error

Neuron Compiler has built-in checks for such lifetime conflicts. For example, when there is a PSUM tensor lifetime
conflict, an error like “[SCH713] Violation of accumulation group interleaving” will be thrown. How-
ever, the lifetime checks in the current release are in-complete, which may not catch all the lifetime violations in
the kernel.

If the kernel using direction allocation API generates incorrect results numerically, one plausible cause is the kernel
has tensor lifetime conflicts that are not caught during compilation. One way to verify this is to re-compile the same
kernel with automatic allocation forced on using the force_auto_alloc decorator.

Known Limitations

1. When direct allocation API is used, HBM tensors cannot be declared unless they are used as kernel outputs.

• All tensors declared with buffer=nl.shared_hbm must be returned as the result of the kernel.

• Tensors declared with buffer=nl.hbm or buffer=nl.private_hbm are not allowed.

• A compilation error Non IO HBM tensor is not supported in allocated NKI kernel:
<list of tensor names> will be thrown when such a tensor is encountered.

2. For ncc.psum.mod_alloc, the base_addr and start_partition input fields must be 0. This implies that
only one physical tile can live in a PSUM bank at a time and the PSUM tile must start from partition 0.

3. A PSUM tile cannot cross bank boundaries. Therefore, the size of the free dimension of each tile has a maximum
of 2KiB, or 512 FP32 elements.

4. The compiler’s ability to check for race condition and lifetime conflicts is limited. It is not guaranteed to catch
all race conditions.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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NKI Block Dimension Migration Guide

The SBUF/PSUM tensors in NKI used to allow block dimensions in front of the partition dimension. The block
dimension support has been removed due the following reasons.

• Removing block dimensions does not hurt the expressivity of NKI.

• Block dimension is a pure software concept and does not have direct hardware mapping.

• The block dimension is unintuitive and causes confusion.

• Using block dimension has no inherit performance benefit, particularly using block dimension has no relationship
with memory throughput whatsoever.

• Multi-buffering is implicit with block dimension. Removing block dimension will make multi-buffering more
natural.

This document will first explain the semantics of block dimensions in detail, then it will provide information on how
to migrate existing code that uses block dimensions while maintain the functional correctness and performance.

What are block dimensions?

Consider the following NKI tensor.

1 a = nl.ndarray((4, 8, nl.par_dim(128), 2, 512), buffer=nl.sbuf)
2

3 # - (4, 8): (B) block dimensions
4 # - 128: (P) partition dimension
5 # - (2, 512): (F) free dimension

As explained in the Direct Allocation Guide, a NKI tensor has three types of dimensions: (B, P, F) . The partition
dimension maps to the partition dimension of the physical memory, and the free dimensions describe how data is
organized in each SBUF/PSUM partition. The block dimensions described how many physical (P, F) tiles the tensor
has.

The block dimension of tensors is a logical dimension and is a pure software concept. The compiler analyzes the
memory dependency and allocates physical address to each tiles. This means that the physical tiles may not be alive
in the memory simultaneously, and in most of the cases they don not. Consider the following code snippet that access
the tensor a.

1 @nki.jit
2 def exp_func(inp):
3 output = nl.ndarray((4, 8, 128, 2, 512), dtype=float32,
4 buffer=nl.shared_hbm)
5 a = nl.ndarray((4, 8, nl.par_dim(128), 2, 512), dtype=float32, buffer=nl.sbuf)
6 for i in range(4):
7 for j in range(8):
8 a[i, j] = nl.load(inp[i, j])
9 a[i, j] = nl.exp(a[i, j])

10 nl.store(output[i, j], value=result)

At the very minimum, only 1 physical tile of a needs to be alive. Then the execution is completely serialized. Essentially,
all physical tiles would have the exact same memory address.

1 Physical Address Map
2

(continues on next page)
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3 output[0, 0] --> Partition 0 - 128, Free 0 - 2048B
4 output[0, 1] --> Partition 0 - 128, Free 0 - 2048B
5 ...

Instead, compiler could choose to allocate 2 physical tiles to a, then the dma copy from HBM to SBUF can overlap
with the exponential operation. In other word, the block dimension allows compiler to perform space-time tradeoff
at liberty.

1 Physical Address Map
2

3 output[0, 0] --> Partition 0 - 128, Free 0 - 2048B
4 output[0, 1] --> Partition 0 - 128, Free 2048 - 4096B
5 output[0, 2] --> Partition 0 - 128, Free 0 - 2048B
6 output[0, 3] --> Partition 0 - 128, Free 2048 - 4096B
7 ...

When performing the migration, it is important to understand the dependency relationship between blocks and choose
the correct migration method accordingly.

Migration for SBUF tensors

If blocks need to be alive at the same time, move the block dimension into free dimension

1 a = nl.ndarray((8, par_dim(128), 512), buffer=nl.sbuf, dtype=bfloat16)
2

3 # ----> Migrate to
4 a = nl.ndarray((128, 8, 512), buffer=nl.sbuf, dtype=bfloat16)

As an example, all 8 blocks of add_buf needs to be alive at the same time when the first for loop finishes. Therefore,
the block dimension need to be fold into the free dimension.

1 @nki.jit
2 def sb_blocks(inp):
3 res = nl.ndarray(shape=(8, 128, 512), dtype=inp.dtype, buffer=nl.shared_hbm)
4 add_buf = nl.ndarray(shape=(8, nl.par_dim(128), 512), dtype=inp.dtype, buffer=nl.

→˓sbuf)
5 for i in range(8):
6 add_buf[i] = nl.load(inp[i])
7 for i in range(8):
8 nl.store(res[i], add_buf[i])
9 return res

10

11 # should migrate to
12 @nki.jit
13 def sb_blocks_migrated(inp):
14 res = nl.ndarray(shape=(8, 128, 512), dtype=inp.dtype, buffer=nl.shared_hbm)
15 add_buf = nl.ndarray(shape=(128, 8, 512), dtype=inp.dtype, buffer=nl.sbuf)
16 for i in range(8):
17 add_buf[0:128, i, 0:512] = nl.load(inp[i])
18 for i in range(8):

(continues on next page)
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19 nl.store(res[i], add_buf[0:128, i, 0:512])
20 return res

If blocks does not need to be alive at the same time, remove the block dimension and hoist it down

1 a = nl.ndarray((8, par_dim(128), 256))
2 for i in nl.affine_range(8):
3 <do something with a[i]>
4

5 # should be transformed to ....
6 for i in nl.affine_range(8):
7 a = nl.ndarray((128, 256))
8 <do something with a>

As an example, all 8 blocks of add_buf does not need to be alive at the same time. We can remove the block dimension
and hoist down the tensor inside the loop.

1 @nki.jit
2 def sb_blocks(inp):
3 res = nl.ndarray(shape=(8, 128, 512), dtype=inp.dtype, buffer=nl.shared_hbm)
4 add_buf = nl.ndarray(shape=(8, nl.par_dim(128), 512), dtype=inp.dtype, buffer=nl.

→˓sbuf)
5 for i in range(8):
6 add_buf[i] = nl.load(inp[i])
7 nl.store(res[i], add_buf[i])
8 return res
9

10 # should migrate to
11 @nki.jit
12 def sb_blocks_migrated(inp):
13 res = nl.ndarray(shape=(8, 128, 512), dtype=inp.dtype, buffer=nl.shared_hbm)
14 for i in range(8):
15 add_buf = nl.ndarray(shape=(128, 512), dtype=inp.dtype, buffer=nl.sbuf)
16 add_buf[0:128, 0:512] = nl.load(inp[i])
17 nl.store(res[i], add_buf[0:128, 0:512])
18 return res

Warning: To preserve performance, it is important to hoist down the tensor inside the loop.

It is important to note that the dependency relationship betweens loop iterations is different in sb_blocks_migrated
and the following sb_blocks_migrated_incorrect.

1 @nki.jit
2 def sb_blocks_migrated_incorrect(inp):
3 res = nl.ndarray(shape=(8, 128, 512), dtype=inp.dtype, buffer=nl.shared_hbm)
4 add_buf = nl.ndarray(shape=(128, 512), dtype=inp.dtype, buffer=nl.sbuf)
5 for i in range(8):
6 add_buf[0:128, 0:512] = nl.load(inp[i])

(continues on next page)
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7 nl.store(res[i], add_buf[0:128, 0:512])
8 return res

In sb_blocks_migrated, compiler could unroll the loop and materialize multiple copies of the tensor add_buf. How-
ever, in the sb_blocks_migrated_incorrect, the execution will be serialized because the loop carries dependency
on add_buf.

Migration for PSUM tensors

Note: To be filled, the backend support for removing blocks in PSUM tensor is still in progress.

Migration of direct allocation & multi-buffering

Note: For more information on direct allocation API, please refer to Direct Allocation Guide

When we have block dimensions, we allocate interleaved address for blocks to achieve multi-buffering.

1 def interleave_alloc_func(idx, pdim_size, fdim_size):
2 """
3 This function assumes 1d block dimension, and will allocate unique
4 address by modulo of 2.
5

6 For a tensor of 4 blocks, block 0 and 2 will have the same address, while
7 block 1 and 3 will have the same address that is different to that of 0 and 2.
8 """
9 # unpack the tuple

10 idx, = idx
11

12 # hard-code to partition 0, since each tile takes up 128 partitions
13 start_partition = 0
14

15 return (start_partition, (idx % 2) * fdim_size)
16

17 @nki.jit
18 def copy_func(inp):
19 output = nl.ndarray((4, 128, 512), dtype=float32, buffer=nl.shared_hbm)
20 a = nl.ndarray((4, nl.par_dim(128), 512), dtype=float32, buffer=ncc.sbuf.

→˓alloc(interleave_alloc_func))
21 for i in range(4):
22 a[i] = nl.load(inp[i])
23 nl.store(output[i], value=a[i])

After removing the block dimension, we could write the following to implement the same multi-buffering, which is
actually more natural and closer to that on CPU.

1 def interleave_alloc_func(idx, pdim_size, fdim_size):
2 """

(continues on next page)
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3 This function assumes 1d block dimension, and will allocate unique
4 address by modulo of 2.
5

6 For a tensor of 4 blocks, block 0 and 2 will have the same address, while
7 block 1 and 3 will have the same address that is different to that of 0 and 2.
8 """
9 # unpack the tuple

10 assert idx == () # We don't have any block dimension
11

12 # hard-code to partition 0, since each tile takes up 128 partitions
13 start_partition = 0
14

15 return (start_partition, (idx % 2) * fdim_size)
16

17 @nki.compiler.skip_middle_end_transformations
18 @nki.jit
19 def exp_func(inp):
20 output = nl.ndarray((4, 128, 512), dtype=nl.float32, buffer=nl.shared_hbm)
21 a = nl.ndarray((128, 2, 512), dtype=nl.float32, buffer=ncc.sbuf.alloc(interleave_alloc_

→˓func))
22 for i in range(4):
23 a[0:128, i % 2, 0:512] = nl.load(inp[i])
24 nl.store(output[i], value=a[0:128, i % 2, 0:512])

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

NKI Tutorials

The full source code of the following tutorials can be also viewed on the nki-samples repository on GitHub.

This document is relevant for: Inf2, Trn1, Trn2

Single program, multiple data tensor addition

In this tutorial we write a simple tensor addition kernel using NKI in PyTorch and JAX. In doing so, we learn about:

• The NKI syntax and the SPMD programming model.

• Best practices for validating and benchmarking your custom kernel against a reference native PyTorch or JAX
implementation.

Note: This tutorial is written using the SPMD programming model in NKI. However, as discussed in NKI program-
ming guide, adopting the SPMD programming model has no impact on performance of NKI kernel, and therefore is
considered optional in current NKI release.
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PyTorch

Compute kernel

We start by defining the compute kernel that has large tensor inputs, but operates on a subset of the tensor at
a tile size of [128, 512]. The partition dimension tile size is chosen according to the tile size restrictions
(nki.language.tile_size.pmax), while the free dimension tile size is chosen arbitrarily (512).

1 import neuronxcc.nki as nki
2 import neuronxcc.nki.language as nl
3

4

5 @nki.jit
6 def nki_tensor_add_kernel_(a_input, b_input):
7 """NKI kernel to compute element-wise addition of two input tensors
8

9 This kernel assumes strict input/output sizes can be uniformly tiled to [128,512]
10

11 Args:
12 a_input: a first input tensor
13 b_input: a second input tensor
14

15 Returns:
16 c_output: an output tensor
17 """
18 # Create output tensor shared between all SPMD instances as result tensor
19 c_output = nl.ndarray(a_input.shape, dtype=a_input.dtype, buffer=nl.shared_hbm)
20

21 # Calculate tile offsets based on current 'program'
22 offset_i_x = nl.program_id(0) * 128
23 offset_i_y = nl.program_id(1) * 512
24

25 # Generate tensor indices to index tensors a and b
26 ix = offset_i_x + nl.arange(128)[:, None]
27 iy = offset_i_y + nl.arange(512)[None, :]
28

29 # Load input data from device memory (HBM) to on-chip memory (SBUF)
30 # We refer to an indexed portion of a tensor as an intermediate tensor
31 a_tile = nl.load(a_input[ix, iy])
32 b_tile = nl.load(b_input[ix, iy])
33

34 # compute a + b
35 c_tile = a_tile + b_tile
36

37 # store the addition results back to device memory (c_output)
38 nl.store(c_output[ix, iy], value=c_tile)
39

40 # Transfer the ownership of `c_output` to the caller
41 return c_output

In this example:

1. We define the NKI kernel in nki_tensor_add_kernel_, decorate it with the nki.jit decorator to call the nki
compiler to compile the kernel.
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2. Inside, we first allocate tensor c_output as the result of the kernel

3. Next, we define offsets into the tensors, based on the ID of the worker executing the code (nl.program_id),
and generate tile indices using these offsets with nl.arange. We use advanced indexing here to showcase how
it works. Basic indexing with slicing can also work. See NKI Programming Model for more information on
different tensor indexing modes.

4. We use nl.program_id to enable SPMD execution (single-program, multiple-data, see SPMD: Launching Mul-
tiple Instances of a Kernel), where each worker only operates on a (sub-tensor) tile of the input/output tensors.
By accessing its own program_id, each worker can calculate the offsets it needs to access the correct tiles.

5. The first axis of the tensor (mapped to the partition-dimension) is tiled into blocks of 128, based on hardware
restrictions (see Tile Size Considerations). The second axis (mapped to the free-dimension) is tiled into blocks
of 512 (no tile-size constraint, since the addition operation is performed on the Vector engine, the only restriction
is on-chip memory capacity).

6. We then load sub-tensors data from tensors a_input and b_input using nl.load, to place the tiles a_tile
and b_tile in the on-chip memory (SBUF)

7. We sum them to compute c_tile, and store it back to DRAM in the relevant portion of the c_output tensor,
using nl.store. Since both inputs and output are the same shape, we can use the same set of indices to access
all three tensors.

8. At the end, we use return statement to transfer the ownership of tensor c_output to the caller of the kernel.

SPMD execution

We declare a helper function, to launch the compute-kernel with appropriate grid/block sizes, to perform the compu-
tation over the whole input tensors.

1 def nki_tensor_add(a_input, b_input):
2 """NKI kernel caller to compute element-wise addition of two input tensors
3

4 This kernel caller lifts tile-size restriction, by applying the kernel on tiles of the␣
→˓inputs/outputs

5

6 Args:
7 a_input: a first input tensor, of shape [N*128, M*512]
8 b_input: a second input tensor, of shape [N*128, M*512]
9

10 Returns:
11 a tensor of shape [N*128, M*512], the result of a_input + b_input
12 """
13

14 # The SPMD launch grid denotes the number of kernel instances.
15 # In this case, we use a 2D grid where the size of each invocation is 128x512
16 grid_x = a_input.shape[0] // 128
17 grid_y = a_input.shape[1] // 512
18

19 return nki_tensor_add_kernel_[grid_x, grid_y](a_input, b_input)

We are using a two-dimensional grid, where the first dimension of the tensor is tiled in the X dimension of the grid,
while the second dimension is tiled in the Y dimension of the grid. In this scenario we assume that tensor sizes are a
multiple of maximum tile sizes allowed, so we do not need to handle partial tiles.
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Launching kernel and testing correctness

To execute the kernel, we prepare tensors a and b, and call the nki_tensor_add helper function. We also verify the
correctness of the NKI kernel against, torch by comparing the outputs of both, using torch.allclose:

1 import torch
2 from torch_xla.core import xla_model as xm
3

4 if __name__ == "__main__":
5 device = xm.xla_device()
6

7 a = torch.rand((256, 1024), dtype=torch.bfloat16).to(device=device)
8 b = torch.rand((256, 1024), dtype=torch.bfloat16).to(device=device)
9

10 output_nki = nki_tensor_add(a, b)
11 print(f"output_nki={output_nki}")
12

13 output_torch = a + b
14 print(f"output_torch={output_torch}")
15

16 allclose = torch.allclose(output_torch, output_nki, atol=1e-4, rtol=1e-2)
17 if allclose:
18 print("NKI and Torch match")
19 else:
20 print("NKI and Torch differ")
21

22 assert allclose

Output:

2023-12-29 15:18:00.000558: 14283 INFO ||NEURON_CACHE||: Compile cache path: /var/tmp/
→˓neuron-compile-cache
2023-12-29 15:18:00.000559: 14283 INFO ||NEURON_CC_WRAPPER||: Call compiler with cmd: [
→˓'neuronx-cc', '--target=trn1', 'compile', '--framework', 'XLA', '/tmp/neuroncc_compile_
→˓workdir/49f554a2-2c55-4a88-8054-cc9f20824a46/model.MODULE_5007921933048625946+d41d8cd9.
→˓hlo.pb', '--output', '/tmp/neuroncc_compile_workdir/49f554a2-2c55-4a88-8054-
→˓cc9f20824a46/model.MODULE_5007921933048625946+d41d8cd9.neff', '--verbose=35']
.
Compiler status PASS
output_nki=tensor([[0.9297, 0.8359, 1.1719, ..., 0.4648, 0.2188, 0.9336],

[0.3906, 1.3125, 0.8789, ..., 1.6562, 1.7734, 0.9531],
[0.6445, 1.1406, 1.3281, ..., 0.9531, 0.8711, 0.9336],
...,
[0.4023, 0.6406, 1.5312, ..., 0.7617, 0.7734, 0.3359],
[0.8125, 0.7422, 1.2109, ..., 0.8516, 1.2031, 0.5430],
[1.3281, 1.2812, 1.3984, ..., 1.2344, 0.8711, 0.5664]],
device='xla:1', dtype=torch.bfloat16)

2023-12-29 15:18:02.000219: 14463 INFO ||NEURON_CACHE||: Compile cache path: /var/tmp/
→˓neuron-compile-cache
2023-12-29 15:18:02.000220: 14463 INFO ||NEURON_CC_WRAPPER||: Call compiler with cmd: [
→˓'neuronx-cc', '--target=trn1', 'compile', '--framework', 'XLA', '/tmp/neuroncc_compile_
→˓workdir/2e135b73-1c3b-45e4-a6f0-2c4b105c20e5/model.MODULE_
→˓10032327759287407517+d41d8cd9.hlo.pb', '--output', '/tmp/neuroncc_compile_workdir/

(continues on next page)
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→˓2e135b73-1c3b-45e4-a6f0-2c4b105c20e5/model.MODULE_10032327759287407517+d41d8cd9.neff',
→˓'--verbose=35']
.
Compiler status PASS
output_torch=tensor([[0.9297, 0.8359, 1.1719, ..., 0.4648, 0.2188, 0.9336],

[0.3906, 1.3125, 0.8789, ..., 1.6562, 1.7734, 0.9531],
[0.6445, 1.1406, 1.3281, ..., 0.9531, 0.8711, 0.9336],
...,
[0.4023, 0.6406, 1.5312, ..., 0.7617, 0.7734, 0.3359],
[0.8125, 0.7422, 1.2109, ..., 0.8516, 1.2031, 0.5430],
[1.3281, 1.2812, 1.3984, ..., 1.2344, 0.8711, 0.5664]],
device='xla:1', dtype=torch.bfloat16)

2023-12-29 15:18:03.000797: 14647 INFO ||NEURON_CACHE||: Compile cache path: /var/tmp/
→˓neuron-compile-cache
2023-12-29 15:18:03.000798: 14647 INFO ||NEURON_CC_WRAPPER||: Call compiler with cmd: [
→˓'neuronx-cc', '--target=trn1', 'compile', '--framework', 'XLA', '/tmp/neuroncc_compile_
→˓workdir/74f8b6ae-76d9-4dd8-af7f-e5e1c40a27a3/model.MODULE_5906037506311912405+d41d8cd9.
→˓hlo.pb', '--output', '/tmp/neuroncc_compile_workdir/74f8b6ae-76d9-4dd8-af7f-
→˓e5e1c40a27a3/model.MODULE_5906037506311912405+d41d8cd9.neff', '--verbose=35']
.
Compiler status PASS
NKI and Torch match

Note that the tensor values you see will differ from what’s printed above, since this example uses torch.rand to initialize
the inputs.

JAX

Compute kernel

We can reuse the same NKI compute kernel defined for PyTorch above.

1 import neuronxcc.nki as nki
2 import neuronxcc.nki.language as nl
3

4

5 @nki.jit
6 def nki_tensor_add_kernel_(a_input, b_input):
7 """NKI kernel to compute element-wise addition of two input tensors
8

9 This kernel assumes strict input/output sizes can be uniformly tiled to [128,512]
10

11 Args:
12 a_input: a first input tensor
13 b_input: a second input tensor
14

15 Returns:
16 c_output: an output tensor
17 """
18 # Create output tensor shared between all SPMD instances as result tensor
19 c_output = nl.ndarray(a_input.shape, dtype=a_input.dtype, buffer=nl.shared_hbm)

(continues on next page)
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20

21 # Calculate tile offsets based on current 'program'
22 offset_i_x = nl.program_id(0) * 128
23 offset_i_y = nl.program_id(1) * 512
24

25 # Generate tensor indices to index tensors a and b
26 ix = offset_i_x + nl.arange(128)[:, None]
27 iy = offset_i_y + nl.arange(512)[None, :]
28

29 # Load input data from device memory (HBM) to on-chip memory (SBUF)
30 # We refer to an indexed portion of a tensor as an intermediate tensor
31 a_tile = nl.load(a_input[ix, iy])
32 b_tile = nl.load(b_input[ix, iy])
33

34 # compute a + b
35 c_tile = a_tile + b_tile
36

37 # store the addition results back to device memory (c_output)
38 nl.store(c_output[ix, iy], value=c_tile)
39

40 # Transfer the ownership of `c_output` to the caller
41 return c_output

SPMD execution

Now we can also declare a helper function, to launch the compute-kernel with appropriate grid/block sizes, to perform
the computation:

1 def nki_tensor_add(a_input, b_input):
2 """NKI kernel caller to compute element-wise addition of two input tensors
3

4 This kernel caller lifts tile-size restriction, by applying the kernel on tiles of the␣
→˓inputs/outputs

5

6 Args:
7 a_input: a first input tensor, of shape [N*128, M*512]
8 b_input: a second input tensor, of shape [N*128, M*512]
9

10 Returns:
11 a tensor of shape [N*128, M*512], the result of a_input + b_input
12 """
13

14 # The SPMD launch grid denotes the number of kernel instances.
15 # In this case, we use a 2D grid where the size of each invocation is 128x512
16 grid_x = a_input.shape[0] // 128
17 grid_y = a_input.shape[1] // 512
18

19 return nki_tensor_add_kernel_[grid_x, grid_y](a_input, b_input)

We are using a two-dimensional grid, where the first dimension of the tensor is tiled in the X dimension of the grid,
while the second dimension is tiled in the Y dimension of the grid. In this scenario we assume that tensor sizes are a

7.2. Neuron Kernel Interface (NKI) - Beta 1425



AWS Neuron

multiple of maximum tile sizes allowed, so we do not need to handle partial tiles.

Launching kernel and testing correctness

To execute the kernel, we prepare arrays a and b, and call the nki_tensor_add helper function. We also verify the
correctness of the NKI kernel against, JAX by comparing the outputs of both, using jax.numpy.allclose:

1 import jax
2 import jax.numpy as jnp
3

4 if __name__ == "__main__":
5

6 seed_a, seed_b = jax.random.split(jax.random.PRNGKey(42))
7 a = jax.random.uniform(seed_a, (256, 1024), dtype=jnp.bfloat16)
8 b = jax.random.uniform(seed_b, (256, 1024), dtype=jnp.bfloat16)
9

10 output_nki = nki_tensor_add(a, b)
11 print(f"output_nki={output_nki}")
12

13 output_jax = a + b
14 print(f"output_jax={output_jax}")
15

16 allclose = jnp.allclose(output_jax, output_nki, atol=1e-4, rtol=1e-2)
17 if allclose:
18 print("NKI and JAX match")
19 else:
20 print("NKI and JAX differ")
21

22 assert allclose

Output:

.
Compiler status PASS
.
Compiler status PASS
.
Compiler status PASS
output_nki=[[0.992188 1.27344 1.65625 ... 0.90625 1.34375 1.77344]
[0 0.90625 1.34375 ... 0.390625 0.703125 0.914062]
[0.5 0.390625 0.703125 ... 1.22656 1.15625 1.01562]
...
[1.98438 1.98438 1.98438 ... 1.33594 1.64062 1.35938]
[0.992188 1.33594 1.64062 ... 1.16406 1.67188 1.20312]
[1.49219 1.16406 1.67188 ... 1.375 1 1.6875]]
.
Compiler status PASS
output_jax=[[0.992188 1.27344 1.65625 ... 0.90625 1.34375 1.77344]
[0 0.90625 1.34375 ... 0.390625 0.703125 0.914062]
[0.5 0.390625 0.703125 ... 1.22656 1.15625 1.01562]
...
[1.98438 1.98438 1.98438 ... 1.33594 1.64062 1.35938]
[0.992188 1.33594 1.64062 ... 1.16406 1.67188 1.20312]

(continues on next page)
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[1.49219 1.16406 1.67188 ... 1.375 1 1.6875]]
.
Compiler status PASS
NKI and JAX match

Note that the array values you see will differ from what’s printed above, since this example uses jax.random.uniform
to initialize the inputs.

Download All Source Code

Click the links to download source code of the kernels and the testing code discussed in this tutorial.

• NKI baremetal implementation: spmd_tensor_addition_nki_kernels.py

• PyTorch implementation: spmd_tensor_addition_torch.py
– You must also download spmd_tensor_addition_nki_kernels.py into the same folder to run

this PyTorch script.

• JAX implementation: spmd_tensor_addition_jax.py
– You must also download spmd_tensor_addition_nki_kernels.py into the same folder to run

this PyTorch script.

You can also view the source code in the GitHub repository nki_samples

Example usage of the scripts:

Run NKI baremetal implementation:

python3 spmd_tensor_addition_nki_kernels.py

Run PyTorch implementation:

python3 spmd_tensor_addition_torch.py

Run JAX implementation:

python3 spmd_tensor_addition_jax.py

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

Single program, multiple data tensor addition using multiple Neuron Cores

In this tutorial we reuse the simple tensor addition kernel, but directly control how our kernels and tensors are distributed
across multiple neuron cores.

Doing so, we expand our knowledge about:

• The NKI syntax and the SPMD programming model.

• nki.language.spmd_dim() and nki.language.nc()
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PyTorch

Reusing existing compute kernel in helper function

We start by reusing the nki_tensor_add_kernel_ compute kernel that has large tensor inputs, but operates on a
subset of the tensor at a tile size of [128, 512]. The partition dimension tile size is chosen according to the tile size
restrictions (nki.language.tile_size.pmax), while the free dimension tile size is chosen arbitrarily (512).

1 def nki_tensor_add_nc2(a_input, b_input):
2 """NKI kernel caller to compute element-wise addition of two input tensors using␣

→˓multiple Neuron cores.
3

4 This kernel caller lifts tile-size restriction, by applying the kernel on tiles of the␣
→˓inputs/outputs.

5 a_input and b_input are sharded across Neuron cores, directly utilizing Trn2␣
→˓architecture capabilities

6

7 Args:
8 a_input: a first input tensor, of shape [N*128, M*512]
9 b_input: a second input tensor, of shape [N*128, M*512]

10

11 Returns:
12 a tensor of shape [N*128, M*512], the result of a_input + b_input
13 """
14

15 # The SPMD launch grid denotes the number of kernel instances.
16 # In this case, we use a 2D grid where the size of each invocation is 128x512
17 # Since we're sharding across neuron cores on the 1st dimension we want to do our␣

→˓slicing at
18 # 128 per core * 2 cores = 256
19 grid_x = a_input.shape[0] // (128 * 2)
20 grid_y = a_input.shape[1] // 512
21

22 # In addition, we distribute the kernel to physical neuron cores around the first␣
→˓dimension

23 # of the spmd grid.
24 # This means:
25 # Physical NC [0]: kernel[n, m] where n is even
26 # Physical NC [1]: kernel[n, m] where n is odd
27 # notice, by specifying this information in the SPMD grid, we can use multiple neuron␣

→˓cores
28 # without updating the original `nki_tensor_add_kernel_` kernel.
29 return nki_tensor_add_kernel_[nl.spmd_dim(grid_x, nl.nc(2)), grid_y](a_input, b_input)

In this example:

1. We reuse the NKI kernel in nki_tensor_add_kernel_ which is decorated with the nki.jit decorator to call the
nki compiler to compile the kernel.

2. Recall this kernel defines offsets into the tensors based on the ID of the worker executing the code (nl.
program_id), and generates tile indices using these offsets with nl.arange.

3. Using SPMD execution as discussed in SPMD: Launching Multiple Instances of a Kernel, note that each worker
only operates on a (sub-tensor) tile of the input/output tensors. By accessing its own program_id, each worker
can calculate the offsets it needs to access the correct tiles.
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4. When multiple Neuron Cores are specified in the SPMD launch grid, these tensors are further sharded across
available cores. On Trainium 2, we have 2 local cores that have shared HBM.

5. As before, the first axis of the tensor (mapped to the partition-dimension) is tiled into blocks of 128, based on
hardware restrictions (see Tile Size Considerations). The second axis (mapped to the free-dimension) is tiled
into blocks of 512 (no tile-size constraint, since the addition operation is performed on the Vector engine, the
only restriction is on-chip memory capacity).

6. nl.store for kernels running on both cores will write to an c_output in shared HBM, dramatically increasing
the throughput of the computation.

SPMD execution

1. We want to shard the workload across 2 cores, so for every nl.nc(2) we determine our initial axis=0 to be 128
from the expected slice size in the kernel * the number of cores = 256.

2. Thus we alter our previous sample and change grid_x to a_input.shape[0] // (128 * 2) to account for
this.

3. Launch the kernel with launch grid [nl.spmd_dim(grid_x, nl.nc(2)), grid_y]

As before, we are using a two-dimensional grid where the first dimension of the tensor is tiled in the X dimension of
the grid while the second dimension is tiled in the Y dimension of the grid. We similarly assume that tensor sizes are
a multiple of maximum tile sizes allowed, so we do not need to handle partial tiles.

However, this time we also directly specify how each instance of our kernel will be distributed across multiple local
Neuron Cores such that:

# Physical NC [0]: kernel[n, m] where n is 0 or even
# Physical NC [1]: kernel[n, m] where n is odd

Launching kernel and testing correctness

To execute the kernel, we prepare tensors a and b, and call the nki_tensor_add_nc2 helper function. We also verify
the correctness of the NKI kernel against, torch by comparing the outputs of both, using torch.allclose:

1 import torch
2 from torch_xla.core import xla_model as xm
3

4 if __name__ == "__main__":
5 device = xm.xla_device()
6

7 a = torch.rand((512, 2048), dtype=torch.bfloat16).to(device=device)
8 b = torch.rand((512, 2048), dtype=torch.bfloat16).to(device=device)
9

10 output_nki = nki_tensor_add_nc2(a, b)
11 print(f"output_nki={output_nki}")
12

13 output_torch = a + b
14 print(f"output_torch={output_torch}")
15

16 allclose = torch.allclose(output_torch, output_nki, atol=1e-4, rtol=1e-2)
17 if allclose:
18 print("NKI and Torch match")

(continues on next page)
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19 else:
20 print("NKI and Torch differ")
21

22 assert allclose

Output:

2023-12-29 15:18:00.000558: 14283 INFO ||NEURON_CACHE||: Compile cache path: /var/tmp/
→˓neuron-compile-cache
2023-12-29 15:18:00.000559: 14283 INFO ||NEURON_CC_WRAPPER||: Call compiler with cmd: [
→˓'neuronx-cc', '--target=trn1', 'compile', '--framework', 'XLA', '/tmp/neuroncc_compile_
→˓workdir/49f554a2-2c55-4a88-8054-cc9f20824a46/model.MODULE_5007921933048625946+d41d8cd9.
→˓hlo.pb', '--output', '/tmp/neuroncc_compile_workdir/49f554a2-2c55-4a88-8054-
→˓cc9f20824a46/model.MODULE_5007921933048625946+d41d8cd9.neff', '--verbose=35']
.
Compiler status PASS
output_nki=tensor([[1.459 1.488 1.607 ... 1.217 0.7354 1.457 ]

[1.793 0.7373 0.8877 ... 1.813 0.8936 1.39 ]
[0.7285 0.9473 1.531 ... 1.04 1.302 0.8413]
...
[0.7705 1.195 1.047 ... 1.307 0.588 0.7725]
[1.21 1.719 1.209 ... 1.171 0.583 0.5034]
[1.307 1.521 0.9526 ... 0.5825 1.518 0.673 ]],
device='xla:1', dtype=torch.bfloat16)

2023-12-29 15:18:02.000219: 14463 INFO ||NEURON_CACHE||: Compile cache path: /var/tmp/
→˓neuron-compile-cache
2023-12-29 15:18:02.000220: 14463 INFO ||NEURON_CC_WRAPPER||: Call compiler with cmd: [
→˓'neuronx-cc', '--target=trn1', 'compile', '--framework', 'XLA', '/tmp/neuroncc_compile_
→˓workdir/2e135b73-1c3b-45e4-a6f0-2c4b105c20e5/model.MODULE_
→˓10032327759287407517+d41d8cd9.hlo.pb', '--output', '/tmp/neuroncc_compile_workdir/
→˓2e135b73-1c3b-45e4-a6f0-2c4b105c20e5/model.MODULE_10032327759287407517+d41d8cd9.neff',
→˓'--verbose=35']
.
Compiler status PASS
output_torch=tensor([[1.459 1.488 1.607 ... 1.217 0.7354 1.457 ]

[1.793 0.7373 0.8877 ... 1.813 0.8936 1.39 ]
[0.7285 0.9473 1.531 ... 1.04 1.302 0.8413]
...
[0.7705 1.195 1.047 ... 1.307 0.588 0.7725]
[1.21 1.719 1.209 ... 1.171 0.583 0.5034]
[1.307 1.521 0.9526 ... 0.5825 1.518 0.673 ]],
device='xla:1', dtype=torch.bfloat16)

2023-12-29 15:18:03.000797: 14647 INFO ||NEURON_CACHE||: Compile cache path: /var/tmp/
→˓neuron-compile-cache
2023-12-29 15:18:03.000798: 14647 INFO ||NEURON_CC_WRAPPER||: Call compiler with cmd: [
→˓'neuronx-cc', '--target=trn1', 'compile', '--framework', 'XLA', '/tmp/neuroncc_compile_
→˓workdir/74f8b6ae-76d9-4dd8-af7f-e5e1c40a27a3/model.MODULE_5906037506311912405+d41d8cd9.
→˓hlo.pb', '--output', '/tmp/neuroncc_compile_workdir/74f8b6ae-76d9-4dd8-af7f-
→˓e5e1c40a27a3/model.MODULE_5906037506311912405+d41d8cd9.neff', '--verbose=35']
.
Compiler status PASS
NKI and Torch match
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Note that the tensor values you see will differ from what’s printed above, since this example uses torch.rand to initialize
the inputs.

JAX

Helper function and SPMD execution

We can reuse the same NKI compute kernel defined for PyTorch above and declare a helper function to launch the
compute-kernel with appropriate grid/block sizes, to perform the computation:

1 def nki_tensor_add_nc2(a_input, b_input):
2 """NKI kernel caller to compute element-wise addition of two input tensors using␣

→˓multiple Neuron cores.
3

4 This kernel caller lifts tile-size restriction, by applying the kernel on tiles of the␣
→˓inputs/outputs.

5 a_input and b_input are sharded across Neuron cores, directly utilizing Trn2␣
→˓architecture capabilities

6

7 Args:
8 a_input: a first input tensor, of shape [N*128, M*512]
9 b_input: a second input tensor, of shape [N*128, M*512]

10

11 Returns:
12 a tensor of shape [N*128, M*512], the result of a_input + b_input
13 """
14

15 # The SPMD launch grid denotes the number of kernel instances.
16 # In this case, we use a 2D grid where the size of each invocation is 128x512
17 # Since we're sharding across neuron cores on the 1st dimension we want to do our␣

→˓slicing at
18 # 128 per core * 2 cores = 256
19 grid_x = a_input.shape[0] // (128 * 2)
20 grid_y = a_input.shape[1] // 512
21

22 # In addition, we distribute the kernel to physical neuron cores around the first␣
→˓dimension

23 # of the spmd grid.
24 # This means:
25 # Physical NC [0]: kernel[n, m] where n is even
26 # Physical NC [1]: kernel[n, m] where n is odd
27 # notice, by specifying this information in the SPMD grid, we can use multiple neuron␣

→˓cores
28 # without updating the original `nki_tensor_add_kernel_` kernel.
29 return nki_tensor_add_kernel_[nl.spmd_dim(grid_x, nl.nc(2)), grid_y](a_input, b_input)

As before, we are using a two-dimensional grid where the first dimension of the tensor is tiled in the X dimension of
the grid, while the second dimension is tiled in the Y dimension of the grid. We similarly assume that tensor sizes are
a multiple of maximum tile sizes allowed, so we do not need to handle partial tiles.

However, this time we also directly specify how each instance of our kernel will be distributed across multiple local
Neuron Cores such that:
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# Physical NC [0]: kernel[n, m] where n is 0 or even
# Physical NC [1]: kernel[n, m] where n is odd

Launching kernel and testing correctness

To execute the kernel, we prepare arrays a and b, and call the nki_tensor_add_nc2 helper function. We also verify
the correctness of the NKI kernel against, JAX by comparing the outputs of both, using jax.numpy.allclose:

1 import jax
2 import jax.numpy as jnp
3

4 if __name__ == "__main__":
5

6 seed_a, seed_b = jax.random.split(jax.random.PRNGKey(42))
7 a = jax.random.uniform(seed_a, (512, 2048), dtype=jnp.bfloat16)
8 b = jax.random.uniform(seed_b, (512, 2048), dtype=jnp.bfloat16)
9

10 output_nki = nki_tensor_add_nc2(a, b)
11 print(f"output_nki={output_nki}")
12

13 output_jax = a + b
14 print(f"output_jax={output_jax}")
15

16 allclose = jnp.allclose(output_jax, output_nki, atol=1e-4, rtol=1e-2)
17 if allclose:
18 print("NKI and JAX match")
19 else:
20 print("NKI and JAX differ")
21

22 assert allclose

Output:

.
Compiler status PASS
.
Compiler status PASS
.
Compiler status PASS
output_nki=[[0.992188 1.27344 1.65625 ... 0.90625 1.34375 1.77344]
[0 0.90625 1.34375 ... 0.390625 0.703125 0.914062]
[0.5 0.390625 0.703125 ... 1.22656 1.15625 1.01562]
...
[1.98438 1.98438 1.98438 ... 1.33594 1.64062 1.35938]
[0.992188 1.33594 1.64062 ... 1.16406 1.67188 1.20312]
[1.49219 1.16406 1.67188 ... 1.375 1 1.6875]]
.
Compiler status PASS
output_jax=[[0.992188 1.27344 1.65625 ... 0.90625 1.34375 1.77344]
[0 0.90625 1.34375 ... 0.390625 0.703125 0.914062]
[0.5 0.390625 0.703125 ... 1.22656 1.15625 1.01562]
...

(continues on next page)
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[1.98438 1.98438 1.98438 ... 1.33594 1.64062 1.35938]
[0.992188 1.33594 1.64062 ... 1.16406 1.67188 1.20312]
[1.49219 1.16406 1.67188 ... 1.375 1 1.6875]]
.
Compiler status PASS
NKI and JAX match

Note that the array values you see will differ from what’s printed above, since this example uses jax.random.uniform
to initialize the inputs.

Download all source code

Click the links to download source code of the kernels and the testing code discussed in this tutorial.

• NKI baremetal implementation: spmd_multiple_nc_tensor_addition_nki_kernels.py
– You must also download spmd_tensor_addition_nki_kernels.py into the same folder to run

this script.

• PyTorch implementation: spmd_multiple_nc_tensor_addition_torch.py
– You must also download spmd_multiple_nc_tensor_addition_nki_kernels.py and
spmd_tensor_addition_nki_kernels.py into the same folder to run this PyTorch script.

• JAX implementation: spmd_multiple_nc_tensor_addition_jax.py
– You must also download spmd_multiple_nc_tensor_addition_nki_kernels.py and
spmd_tensor_addition_nki_kernels.py into the same folder to run this PyTorch script.

You can also view the source code in the GitHub repository nki_samples

Example usage of the scripts:

Run NKI baremetal implementation:

python3 spmd_multiple_nc_tensor_addition_nki_kernels.py

Run PyTorch implementation:

python3 spmd_multiple_nc_tensor_addition_torch.py

Run JAX implementation:

python3 spmd_multiple_nc_tensor_addition_jax.py

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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Transpose2D

In this tutorial, we transpose a tensor along two of its axes using NKI. In doing so, we learn about:

• The NKI syntax and programming model.

• Multi-dimensional memory address patterns in NKI.

As background, there are two main types of transposition in NKI:

1. Transposition between the partition-dimension axis and one of the free-dimension axes, which is achieved via
the nki.isa.nc_transpose instruction.

2. Transposition between two axes on the free-dimension, which is achieved via a nki.language.copy instruction,
with indexing manipulation in the free axis to re-arrange the data.

In this example, we’ll focus on the second case: consider a three-dimensional input tensor [P, F1, F2], where the P
axis is mapped to the different SBUF partitions and the F1 and F2 axes are flattened and placed in each partition, with
F1 being the major dimension. Our goal in this example is to transpose the F1 and F2 axes with a parallel dimension
P, to re-arrange the data within each partition. Figure below illustrates the input and output tensor layouts.

Fig. 7.67: Tensor F1:F2 Transpose

PyTorch

Compute kernel

1 import neuronxcc.nki as nki
2 import neuronxcc.nki.language as nl
3

4

5 @nki.jit
6 def tensor_transpose2D_kernel_(in_tensor, shape2D):
7 """
8 NKI kernel to reorder the elements on axis[1] of the input tensor.
9

10 Every row of the input tensor is a flattened row-major 2D matrix.
11 The shape2D argument defines the dimensions of the flattened matrices (#rows,#cols).
12 Our goal in this kernel is to transpose these flattened 2D matrices, i.e. make them (

→˓#cols,#rows).
13

(continues on next page)
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14 Example:
15 in_tensor = [a0,a1,a2,a3,b0,b1,b2,b3,c0,c1,c2,c3]
16 shape2D = (3,4)
17 this means that in_tensor has 3 rows and 4 columns, i.e. can be represented as:
18 [a0,a1,a2,a3]
19 [b0,b1,b2,b3]
20 [c0,c1,c2,c3]
21 after transpose, we expect to get:
22 [a0,b0,c0]
23 [a1,b1,c1]
24 [a2,b2,c2]
25 [a3,b3,c3]
26 Thus, out_tensor is expected to be [a0,b0,c0,a1,b1,c1,a2,b2,c2,a3,b3,c3]
27

28 Args:
29 in_tensor: an input tensor
30 shape2D: tuple representing the dimensions to be transposed: (#rows, #cols)
31 out_tensor: an output (transposed) tensor
32 """
33 out_tensor = nl.ndarray(in_tensor.shape, dtype=in_tensor.dtype,
34 buffer=nl.shared_hbm)
35 # Gather input shapes
36 sz_p, _ = in_tensor.shape
37

38 # Load input data from external memory to on-chip memory
39 in_tile = nl.load(in_tensor)
40

41 # Performing f1/f2 transpose
42 # ==========================
43 # The desired transpose pattern is provided as an input:
44 sz_f1, sz_f2 = shape2D
45

46 # We're going to need 3 indices to perform f1:f2 transpose.
47 # - i_p0 is the parallel index
48 # - i_f1 and i_f2 are both free-dim indices, and will be used to transpose between the␣

→˓f1/f2 axes
49 i_p0 = nl.arange(sz_p)[:, None, None]
50 i_f1 = nl.arange(sz_f1)[None, :, None]
51 i_f2 = nl.arange(sz_f2)[None, None, :]
52

53 # Perform the transposition via a SBUF-to-SBUF copy, with access-pattern manipulation
54 # Note that we have 2D tensors and 3 indices, since we need to represent a 2D access␣

→˓pattern *per partition*
55 # RHS traverses an F1 x F2 matrix in a row major manner
56 # LHS traverses an F2 x F1 (new) matrix in a row major manner
57 out_tile = nl.ndarray(shape=(sz_p, sz_f2*sz_f1), dtype=out_tensor.dtype)
58 out_tile[i_p0, i_f2*sz_f1+i_f1] = nl.copy(in_tile[i_p0, i_f1*sz_f2+i_f2])
59

60 # Finally, we store out_tile to external memory
61 nl.store(out_tensor, value=out_tile)
62

63 return out_tensor
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Launching kernel and testing correctness

To execute the kernel, we prepare tensors a and call tensor_transpose2D_kernel_:

1 import torch
2 from torch_xla.core import xla_model as xm
3

4 if __name__ == "__main__":
5 device = xm.xla_device()
6

7 P, X, Y = 5, 3, 4
8 a = torch.arange(P*X*Y, dtype=torch.int8).reshape((P, X*Y)).to(device=device)
9 a_t_nki = torch.zeros((P, Y*X), dtype=torch.int8).to(device=device)

10

11 a_t_nki = tensor_transpose2D_kernel_(a, (X, Y))
12

13 a_t_torch = torch.transpose(a.reshape(P, X, Y), 1, 2).reshape(P, X * Y)
14

15 print(a, a_t_nki, a_t_torch)
16

17 allclose = torch.allclose(a_t_torch, a_t_nki)
18 if allclose:
19 print("NKI and PyTorch match")
20 else:
21 print("NKI and PyTorch differ")
22

23 assert allclose

JAX

Compute kernel

We can reuse the same NKI compute kernel defined for PyTorch above.

1 import neuronxcc.nki as nki
2 import neuronxcc.nki.language as nl
3

4

5 @nki.jit
6 def tensor_transpose2D_kernel_(in_tensor, shape2D):
7 """
8 NKI kernel to reorder the elements on axis[1] of the input tensor.
9

10 Every row of the input tensor is a flattened row-major 2D matrix.
11 The shape2D argument defines the dimensions of the flattened matrices (#rows,#cols).
12 Our goal in this kernel is to transpose these flattened 2D matrices, i.e. make them (

→˓#cols,#rows).
13

14 Example:
15 in_tensor = [a0,a1,a2,a3,b0,b1,b2,b3,c0,c1,c2,c3]
16 shape2D = (3,4)

(continues on next page)
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17 this means that in_tensor has 3 rows and 4 columns, i.e. can be represented as:
18 [a0,a1,a2,a3]
19 [b0,b1,b2,b3]
20 [c0,c1,c2,c3]
21 after transpose, we expect to get:
22 [a0,b0,c0]
23 [a1,b1,c1]
24 [a2,b2,c2]
25 [a3,b3,c3]
26 Thus, out_tensor is expected to be [a0,b0,c0,a1,b1,c1,a2,b2,c2,a3,b3,c3]
27

28 Args:
29 in_tensor: an input tensor
30 shape2D: tuple representing the dimensions to be transposed: (#rows, #cols)
31 out_tensor: an output (transposed) tensor
32 """
33 out_tensor = nl.ndarray(in_tensor.shape, dtype=in_tensor.dtype,
34 buffer=nl.shared_hbm)
35 # Gather input shapes
36 sz_p, _ = in_tensor.shape
37

38 # Load input data from external memory to on-chip memory
39 in_tile = nl.load(in_tensor)
40

41 # Performing f1/f2 transpose
42 # ==========================
43 # The desired transpose pattern is provided as an input:
44 sz_f1, sz_f2 = shape2D
45

46 # We're going to need 3 indices to perform f1:f2 transpose.
47 # - i_p0 is the parallel index
48 # - i_f1 and i_f2 are both free-dim indices, and will be used to transpose between the␣

→˓f1/f2 axes
49 i_p0 = nl.arange(sz_p)[:, None, None]
50 i_f1 = nl.arange(sz_f1)[None, :, None]
51 i_f2 = nl.arange(sz_f2)[None, None, :]
52

53 # Perform the transposition via a SBUF-to-SBUF copy, with access-pattern manipulation
54 # Note that we have 2D tensors and 3 indices, since we need to represent a 2D access␣

→˓pattern *per partition*
55 # RHS traverses an F1 x F2 matrix in a row major manner
56 # LHS traverses an F2 x F1 (new) matrix in a row major manner
57 out_tile = nl.ndarray(shape=(sz_p, sz_f2*sz_f1), dtype=out_tensor.dtype)
58 out_tile[i_p0, i_f2*sz_f1+i_f1] = nl.copy(in_tile[i_p0, i_f1*sz_f2+i_f2])
59

60 # Finally, we store out_tile to external memory
61 nl.store(out_tensor, value=out_tile)
62

63 return out_tensor
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Launching kernel and testing correctness

To execute the kernel, we prepare array a and call tensor_transpose2D_kernel_:

1 import jax
2 import jax.numpy as jnp
3

4 if __name__ == "__main__":
5 P, X, Y = 5, 37, 44
6 a = jax.random.uniform(jax.random.PRNGKey(42), (P, X * Y))
7 a_t_nki = tensor_transpose2D_kernel_(a, shape2D=(X, Y))
8

9 a_t_jax = jnp.transpose(a.reshape(P, X, Y), axes=(0, 2, 1)).reshape(P, X * Y)
10 print(a, a_t_nki, a_t_jax)
11

12 allclose = jnp.allclose(a_t_jax, a_t_nki)
13 if allclose:
14 print("NKI and JAX match")
15 else:
16 print("NKI and JAX differ")
17

18 assert allclose

Note: We pass shape2D as kwargs to pass the shape as a compile-time constant to the kernel function.

Download All Source Code

Click the links to download source code of the kernels and the testing code discussed in this tutorial.

• NKI baremetal implementation: transpose2d_nki_kernels.py

• PyTorch implementation: transpose2d_torch.py
– You must also download transpose2d_nki_kernels.py into the same folder to run this PyTorch

script.

• JAX implementation: transpose2d_jax.py
– You must also download transpose2d_nki_kernels.py into the same folder to run this JAX

script.

You can also view the source code in the GitHub repository nki_samples

Example usage of the scripts:

Run NKI baremetal implementation:

python3 transpose2d_nki_kernels.py

Run PyTorch implementation:

python3 transpose2d_torch.py
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Run JAX implementation:

python3 transpose2d_jax.py

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

AveragePool2D

In this tutorial, we examine a case of dimensionality reduction. We implement a 2D AveragePool operation, which is
used in many vision neural networks. In doing so, we learn about:

• NKI syntax and programming model.

• multi-dimensional memory access patterns in NKI.

The 2D AveragePool operation takes C x [H,W] matrices and reduces each matrix along the H and W axes. To leverage
free-dimension flexible indexing, we can map the C (parallel) axis to the P dimension and H/W (contraction) axes to the
F dimension. Performing such a 2D pooling operation requires a 4D memory access pattern in the F dimension, with
reduction along two axes. Figure below illustrates the input and output tensor layouts.

Fig. 7.68: 2D-Pooling Operation (reducing on axes F2 and F4)

PyTorch

Compute kernel

1 import neuronxcc.nki as nki
2 import neuronxcc.nki.language as nl
3 from neuronxcc.nki.typing import tensor
4

5 @nki.jit
6 def tensor_avgpool_kernel(in_tensor, pool_size):
7 """NKI kernel to compute a 2D avg-pool operation
8

9 Args:
10 in_tensor: an input tensor, of shape C x H x W
11 pool_size: an integer representing a (square) pool-window size

(continues on next page)
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(continued from previous page)

12

13 Return:
14 out_tensor: the resulting output tensor, of shape C x (H/pool_size) x (W/pool_size)
15 """
16

17 # Get input/output dimensions
18 sz_cin, sz_hin, sz_win = in_tensor.shape
19 sz_hout = sz_hin // pool_size
20 sz_wout = sz_win // pool_size
21 # Create output tensor shared between all SPMD instances as result tensor
22 out_tensor = nl.ndarray((sz_cin, sz_hout, sz_wout), dtype=in_tensor.dtype,
23 buffer=nl.shared_hbm)
24

25 # Set relevant sizes
26 sz_p = sz_cin
27 sz_pool = pool_size
28

29 # Generate pool index patterns (requires two extra dimensions, for the pool window)
30 i0, i1, i2, i3, i4 = nl.mgrid[0:sz_p, 0:sz_hin//sz_pool, 0:sz_pool, 0:sz_win//sz_pool,␣

→˓0:sz_pool]
31

32 # Load input data from external memory to on-chip memory
33 in_tile: tensor[sz_p, sz_hin, sz_win] = nl.load(in_tensor)
34

35 # Perform the pooling operation:
36 # We use numpy's advanced indexing, in order to extend in_tile to 5D, and then reduce-

→˓average two dimension.
37 # axis[0] is the index for p_dim, and thus doesn't participate in the reduction␣

→˓operation.
38 # axis[1] and axis[2] together index the rows, with axis[2] responsible for inner␣

→˓strides
39 # (i.e. inside a pooling window), and axis[1] responsible for the outer strides. As␣

→˓such, we reduce over axis[2].
40 # Similarly, axis[3] and axis[4] together index the columns, and we thus reduce over␣

→˓axis[4].
41 out_tile : tensor[sz_p, sz_hout, sz_wout] = nl.sum(in_tile[i0, sz_pool*i1+i2, sz_

→˓pool*i3+i4],
42 axis=[2,4]) / (pool_size*pool_size)
43

44 # Store the results back to hbm
45 nl.store(out_tensor, value=out_tile)
46

47 # Transfer the ownership of `out_tensor` to the caller
48 return out_tensor
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Launching kernel and testing correctness

To execute the kernel, we prepare tensors in_tensor and call tensor_avgpool_kernel:

1 import torch
2 from torch_xla.core import xla_model as xm
3

4 if __name__ == "__main__":
5 device = xm.xla_device()
6

7 # Now let's run the kernel
8 POOL_SIZE = 2
9 C, HIN, WIN = 2, 6, 6

10 HOUT, WOUT = HIN//POOL_SIZE, WIN//POOL_SIZE
11

12 in_tensor = torch.arange(C * HIN * WIN, dtype=torch.bfloat16).reshape(C, HIN, WIN).
→˓to(device=device)

13 out_nki = torch.zeros((C, HOUT, WOUT), dtype=torch.bfloat16).to(device=device)
14

15 out_nki = tensor_avgpool_kernel(in_tensor, POOL_SIZE)
16

17 out_torch = torch.nn.functional.avg_pool2d(in_tensor, POOL_SIZE, POOL_SIZE)
18

19 print(in_tensor, out_nki, out_torch) # an implicit XLA barrier/mark-step
20

21 if (out_nki == out_torch).all():
22 print("NKI and Torch match")
23 else:
24 print("NKI and Torch differ")

JAX

Compute kernel

Let’s reuse the same NKI kernel implementation defined for PyTorch above:

1 import neuronxcc.nki as nki
2 import neuronxcc.nki.language as nl
3 from neuronxcc.nki.typing import tensor
4

5 @nki.jit
6 def tensor_avgpool_kernel(in_tensor, pool_size):
7 """NKI kernel to compute a 2D avg-pool operation
8

9 Args:
10 in_tensor: an input tensor, of shape C x H x W
11 pool_size: an integer representing a (square) pool-window size
12

13 Return:
14 out_tensor: the resulting output tensor, of shape C x (H/pool_size) x (W/pool_size)
15 """

(continues on next page)
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16

17 # Get input/output dimensions
18 sz_cin, sz_hin, sz_win = in_tensor.shape
19 sz_hout = sz_hin // pool_size
20 sz_wout = sz_win // pool_size
21 # Create output tensor shared between all SPMD instances as result tensor
22 out_tensor = nl.ndarray((sz_cin, sz_hout, sz_wout), dtype=in_tensor.dtype,
23 buffer=nl.shared_hbm)
24

25 # Set relevant sizes
26 sz_p = sz_cin
27 sz_pool = pool_size
28

29 # Generate pool index patterns (requires two extra dimensions, for the pool window)
30 i0, i1, i2, i3, i4 = nl.mgrid[0:sz_p, 0:sz_hin//sz_pool, 0:sz_pool, 0:sz_win//sz_pool,␣

→˓0:sz_pool]
31

32 # Load input data from external memory to on-chip memory
33 in_tile: tensor[sz_p, sz_hin, sz_win] = nl.load(in_tensor)
34

35 # Perform the pooling operation:
36 # We use numpy's advanced indexing, in order to extend in_tile to 5D, and then reduce-

→˓average two dimension.
37 # axis[0] is the index for p_dim, and thus doesn't participate in the reduction␣

→˓operation.
38 # axis[1] and axis[2] together index the rows, with axis[2] responsible for inner␣

→˓strides
39 # (i.e. inside a pooling window), and axis[1] responsible for the outer strides. As␣

→˓such, we reduce over axis[2].
40 # Similarly, axis[3] and axis[4] together index the columns, and we thus reduce over␣

→˓axis[4].
41 out_tile : tensor[sz_p, sz_hout, sz_wout] = nl.sum(in_tile[i0, sz_pool*i1+i2, sz_

→˓pool*i3+i4],
42 axis=[2,4]) / (pool_size*pool_size)
43

44 # Store the results back to hbm
45 nl.store(out_tensor, value=out_tile)
46

47 # Transfer the ownership of `out_tensor` to the caller
48 return out_tensor

In order to pass pool_size as a compile time constant, we pass pool_size as kwargs.

out_nki = tensor_avgpool_kernel(in_array, pool_size=POOL_SIZE)

We write a reference JAX implementation of AveragePool2D as JAX does not have a primitive for it.

1 import jax.numpy as jnp
2

3 # Reference JAX implementation
4 def jax_average_pool_2D(in_tensor, pool_size):
5 c, h_in, w_in = in_tensor.shape

(continues on next page)
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6 reshaped = in_tensor.reshape(c, h_in // pool_size, pool_size, w_in // pool_size, pool_
→˓size)

7 return jnp.nanmean(reshaped, axis=(2, 4))

Launching kernel and testing correctness

To execute the kernel, we prepare array in_array and invoke the kernel caller function tensor_avgpool_kernel:

1 if __name__ == "__main__":
2 POOL_SIZE = 2
3 C, HIN, WIN = 2, 6, 6
4 HOUT, WOUT = HIN//POOL_SIZE, WIN//POOL_SIZE
5

6 in_array = jnp.arange(C * HIN * WIN, dtype=jnp.float32).reshape(C, HIN, WIN)
7

8 out_nki = tensor_avgpool_kernel(in_array, pool_size=POOL_SIZE)
9 out_jax = jax_average_pool_2D(in_array, pool_size=POOL_SIZE)

10

11 print(in_array, out_nki, out_jax)
12

13 if jnp.allclose(out_nki, out_jax):
14 print("NKI and JAX match")
15 else:
16 print("NKI and JAX differ")

Download All Source Code

Click the links to download source code of the kernels and the testing code discussed in this tutorial.

• NKI baremetal implementation: average_pool2d_nki_kernels.py

• PyTorch implementation: average_pool2d_torch.py
– You must also download average_pool2d_nki_kernels.py into the same folder to run this Py-

Torch script.

• JAX implementation: average_pool2d_jax.py
– You must also download average_pool2d_nki_kernels.py into the same folder to run this JAX

script.

You can also view the source code in the GitHub repository nki_samples
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Example usage of the scripts:

Run NKI baremetal implementation:

python3 average_pool2d_nki_kernels.py

Run PyTorch implementation:

python3 average_pool2d_torch.py

Run JAX implementation:

python3 average_pool2d_jax.py

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

Matrix multiplication

In this tutorial, we will start with a simple NKI matrix multiplication kernel and optimize it step by step. In doing so,
we learn about:

• The NKI syntax and programming model.

• Layout, tiling, and memory management considerations when performing matrix multiplication in NKI.

• Best practices for validating and benchmarking your custom kernel against a reference native torch implementa-
tion.

Basic compute kernel

Fig. 7.69: MxKxN Matrix Multiplication Visualization

Fig. 7.69 illustrates how a simple matrix multiplication: lhs [M, K] * rhs [K, N] = output [M, N] would be
mapped to the Tensor Engine (TensorE) and SRAMs from its original mathematical view. Note, the PSUM partition
dimension is rotated 90 degrees from SBUF partition dimension solely for layout visualization. The copy preserves
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the output tile layout from PSUM to SBUF, by copying data from each PSUM partition to the corresponding SBUF
partition.

The NKI example below implements a compute kernel for a single-tile matrix multiplication. It computes a 64(M) x
128(K) x 512 (N) matrix multiplication operation.

1 @nki.jit
2 def nki_matmul_basic_(lhsT, rhs):
3 """NKI kernel to compute a 64x128x512 matrix multiplication operation
4

5 Args:
6 lhsT: an input tensor of shape [128,64], a left hand side argument of the
7 matrix multiplication, delivered transposed for optimal performance
8 rhs: an input tensor of shape [128,512], a right hand side argument of the
9 matrix multiplication

10 Returns:
11 result: the resulting output tensor of shape [64,512]
12 """
13 result = nl.ndarray((64, 512), dtype=lhsT.dtype, buffer=nl.shared_hbm)
14

15 # Defining indexes for input LHS.T
16 # - Note: here we take LayoutConstraint #1 into account:
17 # "For MatMult, contraction axis must be mapped to P-dim"
18 i_lhsT_p, i_lhsT_f = nl.mgrid[0:128, 0:64]
19

20 # Defining indexes for input RHS
21 # - Note: here we take LayoutConstraint #1 into account:
22 # "For MatMult, contraction axis must be mapped to P-dim"
23 i_rhs_p, i_rhs_f = nl.mgrid[0:128, 0:512]
24

25 # Defining indexes for the output ([64,128]@[128,512] -> [64,512])
26 i_out_p, i_out_f = nl.mgrid[0:64, 0:512]
27

28 # Loading the inputs (HBM->SBUF)
29 # Note: here we take Tile dtype definition into account,
30 # which forces P-dim as the left most index
31 lhs_tile = nl.load(lhsT[i_lhsT_p, i_lhsT_f])
32 rhs_tile = nl.load(rhs[i_rhs_p, i_rhs_f])
33

34 # Perform the matrix-multiplication
35 # Note1: We set transpose_x to True, to indicate that the LHS input is transposed
36 # Note2: A NKI matmul instruction always writes to PSUM in float32 data-type
37 result_psum = nl.matmul(lhs_tile, rhs_tile, transpose_x=True)
38

39 # Copy the result from PSUM back to SBUF, and cast to expected output data-type
40 result_sbuf = nl.copy(result_psum, dtype=result.dtype)
41

42 # The result of a [64,128] x [128,512] matrix multiplication has a shape of [64, 512].
43 # This dictates which indices to use to address the result tile.
44 nl.store(result[i_out_p, i_out_f], value=result_sbuf)
45

46 return result

In this example, we define the NKI kernel as nki_matmul_basic_:
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1. We define indices to access the LHS and RHS input tensors.

2. To adhere to NKI’s layout considerations (Layout Considerations), we map the contraction axis of both LHS and
RHS to the P-dimension, which means we load LHS in transposed form.

3. To adhere to NKI’s tile size considerations (Tile Size Considerations), we limit the matmul instruction arguments
to tiles of up to [128,128] for LHS, and [128,512] for RHS.

4. Using the nl.load operation, we load the inputs from HBM tensors to SBUF tiles.

5. We then use the nl.matmul operation to perform the matrix multiplication. Note that we set the transpose_x
argument to True, since the LHS argument is transposed. Also note that the 64x128 dimension here actually
under-utilizes the TensorE, but it helps to distinguish the M, K and N dimensions for education purposes in this
first code example.

6. nl.matmul always writes its result to PSUM, and since nl.store only moves data from SBUF to HBM, we
copy the multiplication result from PSUM back to SBUF using nl.copy.

We can then execute the kernel and verify correctness against the torch implementation as follows. Note that we use
torch.allclose to tolerate numerical error inherent to floating-point arithmetic.

1 device = xm.xla_device()
2 cpu = torch.device('cpu')
3

4 # Test the small workload with basic kernel
5 lhs_small = torch.rand((64, 128), dtype=torch.bfloat16, device=device)
6 rhs_small = torch.rand((128, 512), dtype=torch.bfloat16, device=device)
7

8 # Run NKI kernel
9 output_small = nki_matmul_basic_(lhs_small.T, rhs_small)

10

11 # Run torch reference
12 output_small_torch = torch.matmul(lhs_small, rhs_small)
13

14 # Compare results
15 print("Checking correctness of nki_matmul_basic")
16 if torch.allclose(output_small_torch, output_small, atol=1e-4, rtol=1e-2):
17 print("NKI and Torch match")
18 else:
19 print("NKI and Torch differ")

Tiling matrix multiplications

So far, we’ve limited our matrix multiplication to the tile sizes allowed by NKI’s tile size and layout constraints. Next,
we’ll see how to handle larger matrix multiplications. Let’s start with a pseudo-code for tiling an [M,K] @ [K,N]
matrix-multiplication. Note that we assume the left-hand-side matrix ([M,K]) is already transposed to LHS_T ([K,
M]) for optimal performance of the underlying TensorE.

# LHS_T: left-hand-side matmul argument (shape [K,M])
# RHS: right-hand-side matmul argument (shape [K,N])
# RES: matmul result (shape [M,N])

# Tile LHS_T free dimension
for m in range(0, M, 128):
# Tile RHS free dimension

(continues on next page)
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for n in range(0, N, 512):
# Zero-out the accumulator buffer
accum = zeros((128, 512))
# Tile contraction dimension
for k in range(0, K, 128):
lhsT_tile = LHS_T[m : m+128, k : k+128]
rhs_tile = RHS[k : k+128, n : n+512]
accum += dot(lhsT_tile, rhs_tile)

RES[m : m+128, n : n+512] = accum

This form of tiling can be achieved in NKI as follows:

1 @nki.jit
2 def nki_matmul_tiled_(lhsT, rhs):
3 """NKI kernel to compute a matrix multiplication operation in a tiled manner
4

5 Args:
6 lhsT: an input tensor of shape [K,M], where both K and M are multiples for
7 128. It is the left-hand-side argument of the matrix multiplication,
8 delivered transposed for optimal performance.
9 rhs: an input tensor of shape [K,N], where K is a multiple of 128, and N

10 is a multiple of 512. It is the right-hand-side argument of the matrix
11 multiplication.
12 Returns:
13 result: the resulting output tensor of shape [M,N]
14 """
15

16 K, M = lhsT.shape
17 K_, N = rhs.shape
18 assert K == K_, "lhsT and rhs must have the same contraction dimension"
19 result = nl.ndarray((M, N), dtype=lhsT.dtype, buffer=nl.shared_hbm)
20

21 TILE_M = nl.tile_size.gemm_stationary_fmax # 128
22 TILE_K = nl.tile_size.pmax # 128
23 TILE_N = nl.tile_size.gemm_moving_fmax # 512
24

25 # Use affine_range to loop over tiles
26 for m in nl.affine_range(M // TILE_M):
27 for n in nl.affine_range(N // TILE_N):
28 # Allocate a tensor in PSUM
29 res_psum = nl.zeros((TILE_M, TILE_N), nl.float32, buffer=nl.psum)
30

31 for k in nl.affine_range(K // TILE_K):
32 # Declare the tiles on SBUF
33 lhsT_tile = nl.ndarray((TILE_K, TILE_M), dtype=lhsT.dtype, buffer=nl.sbuf)
34 rhs_tile = nl.ndarray((TILE_K, TILE_N), dtype=rhs.dtype, buffer=nl.sbuf)
35

36 # Load tiles from lhsT and rhs
37 lhsT_tile[...] = nl.load(lhsT[k * TILE_K:(k + 1) * TILE_K,
38 m * TILE_M:(m + 1) * TILE_M])
39 rhs_tile[...] = nl.load(rhs[k * TILE_K:(k + 1) * TILE_K,
40 n * TILE_N:(n + 1) * TILE_N])

(continues on next page)
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41

42 # Accumulate partial-sums into PSUM
43 res_psum += nl.matmul(lhsT_tile[...], rhs_tile[...], transpose_x=True)
44

45 # Copy the result from PSUM back to SBUF, and cast to expected output data-type
46 res_sb = nl.copy(res_psum, dtype=result.dtype)
47 nl.store(result[m * TILE_M:(m + 1) * TILE_M, n * TILE_N:(n + 1) * TILE_N],
48 value=res_sb)
49

50 return result

A few notes about the above code example:

First, in current release of NKI, the following NKI code pattern is the only way to trigger PSUM accumulation for
matmuls on TensorEngine reliably:

# condition 1: a psum buffer with zeros
psum_buf = nl.zeros(..., buffer=nl.psum)

# condition 2: an affine range loop
for i in nl.affine_range(N):
# condition 3: add matmul results from TensorEngine
psum_buf += nl.matmul(stationary_tile, moving_tile) # or nisa.nc_matmul

The nki_matmul_tiled_ kernel meets all three conditions above, and so do the kernels in the rest of this tutorial.
The use of PSUM accumulation architecture feature is critical to achieve good performance out of TensorEngine when
the contraction dimension of the matmul is greater than 128.

Second, note the use of nl.mgrid to define indices, this is the same as the mgrid in NumPy. It is similar to the
other way to define indexes through nl.arange but it enables a more concise way to introduce indexes from multiple
dimensions. nl.affine_range is used to define loop-level iterators, which is the recommended iterator type when the loop
does not have loop-carried dependency (Note, associative reductions are not considered loop carried dependencies in
this context).

Finally, there is an alternative way to implement this tiled matrix multiplication kernel using the SPMD programming
model. We can use the SPMD model to launch (M/128) x (N/512) instances of the kernel to complete the innermost
loop. For more details, refer to the SPMD programming model.

Optimization 1: Removing Redundant Loads

Currently, every nl.matmul is accompanied with two nl.load calls in the inner loop, both of which move data from
HBM to SBUF. Let’s introduce a metric, arithmetic intensity, to help understand why this is problematic. The arithmetic
intensity of a workload is defined as the number of computation operations performed per byte of data accessed from
HBM on average. The reason why we do not consider data accessed from SBUF in this metric is because the SBUF
bandwidth (~20x higher than HBM) is high enough to sustain the peak computation throughput in TensorE.

Fig. 7.70 shows the roofline model, which models the relationship between arithmetic intensity of a workload and its
achievable performance on a given computing platform. To saturate TensorE in a NeuronCore-v2, the arithmetic inten-
sity threshold of a workload is 222 Flops/Byte for bfloat16 data type. Inside the inner loop of nki_matmul_tiled_,
accessing lhsT_tile and rhs_tile requires 160 KB of data read from HBM, while the nl.matmul call involves
16 MFlops. This leads to an arithmetic intensity of 102, which is significantly lower than the saturation threshold of
222. Therefore, nki_matmul_tiled_ operates in the memory bound region of the roofline model and under-utilizes
TensorE. To make the best out of TensorE, we need to improve the arithmetic intensity of the matmul kernel.
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Fig. 7.70: Roofline Model: The Relationship Between Arithmetic Intensity and Performance

With NKI, programmers can control when and how to load data from HBM into SBUF and also perform computation.
We will demonstrate in the upcoming steps how to increase the arithmetic intensity of the matmul kernel using NKI,
thereby maximizing the utilization of TensorE.

First, we notice that in nki_matmul_tiled_, the same tiles from lhsT and rhs matrices are loaded more than once
across different iterations of the inner loop. The following example reduces these redundant loads through hoisting
them out of the innermost loop.

Fig. 7.71: Memory Pattern After Hoisting Loads Out of the Innermost Loop

1 @nki.jit
2 def nki_matmul_hoist_load_(lhsT, rhs):
3 """NKI kernel to compute a matrix multiplication operation in a tiled manner
4 while hoisting the load of the lhsT and rhs to outer loops.
5

6 Args:
7 lhsT: an input tensor of shape [K,M], where both K and M are multiples for
8 128. It is the left-hand-side argument of the matrix multiplication,
9 delivered transposed for optimal performance.

10 rhs: an input tensor of shape [K,N], where K is a multiple of 128, and N
11 is a multiple of 512. It is the right-hand-side argument of the matrix
12 multiplication.
13 Returns:
14 result: the resulting output tensor of shape [M,N]
15 """
16

(continues on next page)
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17 K, M = lhsT.shape
18 K_, N = rhs.shape
19 assert K == K_, "lhsT and rhs must have the same contraction dimension"
20 result = nl.ndarray((M, N), dtype=lhsT.dtype, buffer=nl.shared_hbm)
21

22 TILE_M = nl.tile_size.gemm_stationary_fmax # 128
23 TILE_K = nl.tile_size.pmax # 128
24 TILE_N = nl.tile_size.gemm_moving_fmax # 512
25

26 # Define the indices (shape) of the tiles
27 i_lhsT = nl.mgrid[0:TILE_K, 0:TILE_M]
28 i_rhs = nl.mgrid[0:TILE_K, 0:TILE_N]
29 i_res = nl.mgrid[0:TILE_M, 0:TILE_N]
30

31 # Use affine_range to loop over tiles
32 for m in nl.affine_range(M // TILE_M):
33 # Load a whole column tiles from lhsT (with K * TILE_N numbers)
34 # This corresponds to the whole row in the original lhs
35 lhsT_tiles = nl.ndarray((K // TILE_K, nl.par_dim(TILE_K), TILE_N),
36 dtype=lhsT.dtype,
37 buffer=nl.sbuf)
38

39 for k in nl.affine_range(K // TILE_K):
40 # use `.p` for partition dimension and `.x` for the first free dimension
41 lhsT_tiles[k, i_lhsT.p, i_lhsT.x] = nl.load(lhsT[k * TILE_K + i_lhsT.p,
42 m * TILE_M + i_lhsT.x])
43

44 for n in nl.affine_range(N // TILE_N):
45

46 # Load a whole column tiles from rhs (with K * TILE_M numbers)
47 rhs_tiles = nl.ndarray((K // TILE_K, nl.par_dim(TILE_K), TILE_N),
48 dtype=rhs.dtype,
49 buffer=nl.sbuf)
50 for k in nl.affine_range(K // TILE_K):
51 rhs_tiles[k, i_rhs.p, i_rhs.x] = nl.load(rhs[k * TILE_K + i_rhs.p,
52 n * TILE_N + i_rhs.x])
53

54 # Allocate a tile in PSUM for the result
55 res_psum = nl.zeros((TILE_M, TILE_N), nl.float32, buffer=nl.psum)
56 for k in nl.affine_range(K // TILE_K):
57 # Accumulate partial-sums into PSUM
58 res_psum[...] += nl.matmul(lhsT_tiles[k, i_lhsT.p, i_lhsT.x],
59 rhs_tiles[k, i_rhs.p, i_rhs.x],
60 transpose_x=True)
61

62 # Copy the result from PSUM back to SBUF, and cast to expected output data-type
63 res_sb = nl.copy(res_psum, dtype=result.dtype)
64 nl.store(result[m * TILE_M + i_res.p, n * TILE_N + i_res.x], value=res_sb)
65

66 return result
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Optimization 2: Reuse More Load Through Blocking

While hoisting the load out of the innermost loop eliminates some redundant loads, we can push this further by re-
ordering the computation and the associated memory accesses. The technique we are going to use is called blocking.
Blocking explicitly improves temporal locality and reduces memory accesses. It is very similar to the tiling step we
did earlier in spirit.

Note that we reserve the word “tile” for defining the granularity of computation and “tiling” for the previous optimiza-
tion technique that maps the high-level computation onto multiple matrix multiplication instructions executed on the
TensorE. TensorE processes a specific “tile size” in a single instruction, leveraging the inherent parallelism in matrix
multiplication.

Here, we do blocking, by grouping the work associated with a set of tiles together at another loop nest level. Blocking
effectively interleaves a set of compute instructions and loading (DMA) instructions. This optimization does not bring
us additional parallelism in computation, but rather improve the arithmetic intensity. This shifts a memory-bound
matrix multiplication implementation to a compute-bound one, in order to fully leverage the compute capabilities of
TensorE.

Fig. 7.72 below visualizes the memory pattern after blocking both free dimensions.

Fig. 7.72: Memory Pattern After Blocking Free Dimensions

1 @nki.jit
2 def nki_matmul_block_free_dimension_(lhsT, rhs):
3 """NKI kernel to compute a matrix multiplication operation while blocking the
4 free dimensions of the LHS and RHS to improve memory access pattern.
5

6 Args:
7 lhsT: an input tensor of shape [K,M], where both K and M are multiples for
8 128. It is the left-hand-side argument of the matrix multiplication,
9 delivered transposed for optimal performance.

10 rhs: an input tensor of shape [K,N], where K is a multiple of 128, and N
11 is a multiple of 512. It is the right-hand-side argument of the matrix
12 multiplication.
13 Returns:
14 result: the resulting output tensor of shape [M,N]
15 """
16

17 K, M = lhsT.shape
18 K_, N = rhs.shape
19 assert K == K_, "lhsT and rhs must have the same contraction dimension"
20 result = nl.ndarray((M, N), dtype=lhsT.dtype, buffer=nl.shared_hbm)
21

(continues on next page)
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22 TILE_M = nl.tile_size.gemm_stationary_fmax # 128
23 TILE_K = nl.tile_size.pmax # 128
24 TILE_N = nl.tile_size.gemm_moving_fmax # 512
25

26 # Define the indices (shape) of the tiles
27 i_lhsT = nl.mgrid[0:TILE_K, 0:TILE_M]
28 i_rhs = nl.mgrid[0:TILE_K, 0:TILE_N]
29 i_res = nl.mgrid[0:TILE_M, 0:TILE_N]
30

31 # Configuring the blocking size for the free dimensions
32 TILES_IN_BLOCK_M = 2
33 TILES_IN_BLOCK_N = 2
34

35 BLOCK_M = TILE_M * TILES_IN_BLOCK_M # 256
36 BLOCK_N = TILE_N * TILES_IN_BLOCK_N # 1024
37

38 # the size has to be multiple of block size
39 assert M % BLOCK_M == 0
40 assert N % BLOCK_N == 0
41

42 # Loop over blocks over the M dimension
43 for m in nl.affine_range(M // BLOCK_M):
44 # Load TILES_IN_BLOCK_M columns tiles from lhsT
45 lhsT_tiles = nl.ndarray(
46 (TILES_IN_BLOCK_M, K // TILE_K, nl.par_dim(TILE_K), TILE_M),
47 dtype=lhsT.dtype,
48 buffer=nl.sbuf)
49 for bm in nl.affine_range(TILES_IN_BLOCK_M):
50 for k in nl.affine_range(K // TILE_K):
51 lhsT_tiles[bm, k, i_lhsT.p, i_lhsT.x] = nl.load(
52 lhsT[k * TILE_K + i_lhsT.p,
53 (m * TILES_IN_BLOCK_M + bm) * TILE_M + i_lhsT.x])
54

55 for n in nl.affine_range(N // BLOCK_N):
56 # Load TILES_IN_BLOCK_N columns from rhs
57 rhs_tiles = nl.ndarray(
58 (TILES_IN_BLOCK_N, K // TILE_K, nl.par_dim(TILE_K), TILE_N),
59 dtype=rhs.dtype,
60 buffer=nl.sbuf)
61 for bn in nl.affine_range(TILES_IN_BLOCK_N):
62 for k in nl.affine_range(K // TILE_K):
63 rhs_tiles[bn, k, i_rhs.p, i_rhs.x] = nl.load(
64 rhs[k * TILE_K + i_rhs.p,
65 (n * TILES_IN_BLOCK_N + bn) * TILE_N + i_rhs.x])
66

67 for bm in nl.affine_range(TILES_IN_BLOCK_M):
68 for bn in nl.affine_range(TILES_IN_BLOCK_N):
69 # Allocate a tensor in PSUM
70 res_psum = nl.zeros((TILE_M, TILE_N), nl.float32, buffer=nl.psum)
71 for k in nl.affine_range(K // TILE_K):
72 # Accumulate partial-sums into PSUM
73 res_psum += nl.matmul(lhsT_tiles[bm, k, i_lhsT.p, i_lhsT.x],

(continues on next page)
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74 rhs_tiles[bn, k, i_rhs.p, i_rhs.x],
75 transpose_x=True)
76

77 # Copy the result from PSUM back to SBUF, and cast to expected output data-type
78 res_sb = nl.copy(res_psum, dtype=result.dtype)
79 nl.store(result[(m * TILES_IN_BLOCK_M + bm) * TILE_M + i_res.p,
80 (n * TILES_IN_BLOCK_N + bn) * TILE_N + i_res.x],
81 value=res_sb)
82

83 return result

Optimization 3: Further Blocking and DMA Efficiency Optimization

Next, let’s also consider blocking the contraction dimension. Without blocking the contraction dimension, each block
of computation leads to the final result of each output block directly, since the input blocks in both lhs_T and rhs cover
the entire contraction dimension. After contraction dimension blocking, the accumulation is separated into different
groups. We can accumulate the partial sum from each computation block back to an SBUF tensor for the final result.
A small amount of HBM traffic might also be introduced if the partial sum cannot be kept in SBUF before being
consumed. On the bright side, we can increase the block size for the free dimensions, which continues to improve the
arithmetic intensity.

Fig. 7.73: Memory Pattern After Blocking All Dimensions

One final step we can do with NKI is to optimize the layout of the loaded tiles to improve DMA efficiency. This is done
through arranging the order of dimensions in nl.ndarray and marking the partition dimension.

By putting all these optimizations together, we can use NKI to implement optimized matrix multiplication for different
sizes. Note that different sizes of input matrices require different optimization plans. The following code optimizes for
large matrix multiplication where the free dimensions of both input matrices are multiples of 2048 and the contraction
dimension is a multiple of 512.

With the blocking configuration in the code (16 tiles or 2048 numbers in the M dimension; 2 tiles or 1024 numbers in
the N dimension; and 8 tiles or 1024 numbers in the K dimension), this computation has an arithmetic intensity of 683
Flops/Byte (2048*1024*1024/(2048*1024 + 1024*1024)). This is certainly above the threshold of 222.

At the same time, this blocking configuration keeps all the tensors within the SBUF limit as much as possible. With
all matrices in BF16 data type, the lhsT_tiles requires 4MB and rhs_tiles requires 2MB SBUF memory. The
result_tiles requires 4 * NUM_BLOCK_M MB SBUF memory, where NUM_BLOCK_M is M // 2048. Thus, as long
as M <= 8192, the required SBUF memory is under the 24 MB budget (4 + 2 + 4 * (8192 // 2048) == 22 MB). When
the M dimension becomes bigger, spilling and reloading of the result_tiles will happen, but because the frequency
is relatively low, the computation can still be sufficient.
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Since the K blocking loop is hand optimized for our ideal data locality, we do not actually want the compiler to
rewrite this loop during its vectorization and other loop-level optimization passes. To communicate this we use nl.
sequential_range() to construct the K blocking loop.

1 @nki.jit
2 def nki_matmul_fully_optimized_(
3 lhsT,
4 rhs,
5 # Meta-parameters
6 TILES_IN_BLOCK_M=16,
7 TILES_IN_BLOCK_N=2,
8 TILES_IN_BLOCK_K=8,
9 ):

10 """NKI kernel to compute a large matrix multiplication efficiently by
11 blocking all dimensions and doing layout optimization.
12

13 Args:
14 lhsT: an input tensor of shape [K,M], where K is a multiple of 128 *
15 TILES_IN_BLOCK_K and M is a multiple of 128 * TILES_IN_BLOCK_M. It is the
16 left-hand-side argument of the matrix multiplication, delivered transposed
17 for optimal performance.
18 rhs: an input tensor of shape [K,N], where K is a multiple of 128 *
19 TILES_IN_BLOCK_K and N is a multiple of 512 * TILES_IN_BLOCK_N. It is
20 the right-hand-side argument of the matrix multiplication.
21 TILES_IN_BLOCK_*: meta parameters to control blocking dimensions
22 Returns:
23 result: the resulting output tensor of shape [M,N]
24 """
25

26 K, M = lhsT.shape
27 K_, N = rhs.shape
28 assert K == K_, "lhsT and rhs must have the same contraction dimension"
29 result = nl.ndarray((M, N), dtype=lhsT.dtype, buffer=nl.shared_hbm)
30

31 TILE_M = nl.tile_size.gemm_stationary_fmax # 128
32 TILE_K = nl.tile_size.pmax # 128
33 TILE_N = nl.tile_size.gemm_moving_fmax # 512
34

35 BLOCK_M = TILE_M * TILES_IN_BLOCK_M
36 BLOCK_N = TILE_N * TILES_IN_BLOCK_N
37 BLOCK_K = TILE_K * TILES_IN_BLOCK_K
38

39 # the size has to be multiple of block size
40 assert M % BLOCK_M == 0
41 assert N % BLOCK_N == 0
42 assert K % BLOCK_K == 0
43

44 NUM_BLOCK_M = M // BLOCK_M
45 NUM_BLOCK_N = N // BLOCK_N
46 NUM_BLOCK_K = K // BLOCK_K
47

48 # Blocking N dimension (the RHS free dimension)
49 for n in nl.affine_range(NUM_BLOCK_N):

(continues on next page)
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50 result_tiles = nl.zeros((NUM_BLOCK_M, TILES_IN_BLOCK_M, TILES_IN_BLOCK_N,
51 nl.par_dim(TILE_M), TILE_N),
52 dtype=lhsT.dtype,
53 buffer=nl.sbuf)
54

55 # Blocking K dimension (the contraction dimension)
56 # Use `sequential_range` because we do not want the compiler to change this loop by,
57 # for example, vectorizing it
58 for k in nl.sequential_range(NUM_BLOCK_K):
59 # Loading tiles from rhs
60 # setting the load tile to `TILE_K x BLOCK_SIZE_N` to optimize DMA performance
61 i_rhs = nl.mgrid[0:TILE_K, 0:BLOCK_N]
62 rhs_tiles = nl.ndarray((TILES_IN_BLOCK_K, nl.par_dim(TILE_K), BLOCK_N),
63 dtype=rhs.dtype,
64 buffer=nl.sbuf)
65

66 for bk_r in nl.affine_range(TILES_IN_BLOCK_K):
67 rhs_tiles[bk_r, i_rhs.p, i_rhs.x] = nl.load(
68 rhs[(TILES_IN_BLOCK_K * k + bk_r) * TILE_K + i_rhs.p,
69 BLOCK_N * n + i_rhs.x])
70

71 # Blocking M dimension (the LHS free dimension)
72 for m in nl.affine_range(NUM_BLOCK_M):
73 # Loading tiles from lhsT
74 i_lhsT = nl.mgrid[0:TILE_K, 0:BLOCK_M]
75 lhsT_tiles = nl.ndarray((TILES_IN_BLOCK_K, nl.par_dim(TILE_K), BLOCK_M),
76 dtype=lhsT.dtype,
77 buffer=nl.sbuf)
78 for bk_l in nl.affine_range(TILES_IN_BLOCK_K):
79 lhsT_tiles[bk_l, i_lhsT.p, i_lhsT.x] = nl.load(
80 lhsT[(TILES_IN_BLOCK_K * k + bk_l) * TILE_K + i_lhsT.p,
81 BLOCK_M * m + i_lhsT.x])
82

83 # Do matmul with all tiles in the blocks
84 i_lhsT_mm = nl.mgrid[0:TILE_K, 0:TILE_M]
85 i_rhs_mm = nl.mgrid[0:TILE_K, 0:TILE_N]
86 i_res_mm = nl.mgrid[0:TILE_M, 0:TILE_N]
87 for bn in nl.affine_range(TILES_IN_BLOCK_N):
88 for bm in nl.affine_range(TILES_IN_BLOCK_M):
89 res_tile = nl.zeros((TILE_M, TILE_N), dtype=nl.float32, buffer=nl.psum)
90

91 for bk in nl.affine_range(TILES_IN_BLOCK_K):
92 res_tile[...] += nisa.nc_matmul(
93 lhsT_tiles[bk, i_lhsT_mm.p, bm * TILE_M + i_lhsT_mm.x],
94 rhs_tiles[bk, i_rhs_mm.p, bn * TILE_N + i_rhs_mm.x])
95

96 # Accumulate on corresponding SBUF tile
97 result_tiles[m, bm, bn, i_res_mm.p,
98 i_res_mm.x] += res_tile[i_res_mm.p, i_res_mm.x]
99

100 # Copying the result from SBUF to HBM
101 for m in nl.affine_range(NUM_BLOCK_M):

(continues on next page)
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102 for bm in nl.affine_range(TILES_IN_BLOCK_M):
103 i_res = nl.mgrid[0:TILE_K, 0:TILE_N]
104 i_res_packed = nl.mgrid[0:TILE_K, 0:BLOCK_N]
105 result_packed = nl.ndarray((TILE_K, BLOCK_N),
106 dtype=result_tiles.dtype,
107 buffer=nl.sbuf)
108

109 # coalesce result tiles for better DMA performance
110 for bn in nl.affine_range(TILES_IN_BLOCK_N):
111 result_packed[i_res.p,
112 bn * TILE_N + i_res.x] = nl.copy(result_tiles[m, bm, bn,
113 i_res.p,
114 i_res.x])
115 nl.store(result[(TILES_IN_BLOCK_M * m + bm) * TILE_K + i_res_packed.p,
116 BLOCK_N * n + i_res_packed.x],
117 value=result_packed[i_res_packed.p, i_res_packed.x])
118

119 return result

Testing Correctness and Benchmarking

To test the correctness of the kernels, we compare the result with the torch.matmul with torch.allclose.

1 # Test the large workload with tiled kernels
2 lhs = torch.rand((4096, 1024), dtype=torch.bfloat16, device=device)
3 rhs = torch.rand((1024, 2048), dtype=torch.bfloat16, device=device)
4

5 # Run torch reference
6 output_torch = torch.matmul(lhs, rhs).to(device=cpu)
7

8 def check_match(nki_func):
9 output = nki_func(lhs.T, rhs)

10 output_nki = output.to(device=cpu)
11 if torch.allclose(output_torch, output_nki, atol=1e-4, rtol=1e-2):
12 print("NKI and Torch match")
13 else:
14 print("NKI and Torch differ")
15

16 print("Checking correctness of nki_matmul_tiled")
17 check_match(nki_matmul_tiled_)
18

19 print("Checking correctness of nki_matmul_hoist_load")
20 check_match(nki_matmul_hoist_load_)
21

22 print("Checking correctness of nki_matmul_block_free_dimension")
23 check_match(nki_matmul_block_free_dimension_)
24

25 print("Checking correctness of nki_matmul_fully_optimized")
26 check_match(nki_matmul_fully_optimized_)

Output from the test:
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Checking correctness of nki_matmul_tiled
NKI and Torch match
Checking correctness of nki_matmul_hoist_load
NKI and Torch match
Checking correctness of nki_matmul_block_free_dimension
NKI and Torch match
Checking correctness of nki_matmul_fully_optimized
NKI and Torch match

To test for performance of each kernel here, we can use NKI’s benchmark capability to measure the performance of the
four different kernels on [4096,8192] @ [8192,8192] matrix multiplication.

1 if __name__ == "__main__":
2 # Benchmarking with large matrices to show the differences more clearly
3 lhsT = nt.tensor[[8192, 4096], nl.bfloat16]
4 rhs = nt.tensor[[8192, 8192], nl.bfloat16]
5

6 def benchmark_nki(nki_func):
7 bench_func = nki.benchmark(warmup=5, iters=10)(nki_func)
8 bench_func(lhsT, rhs)
9 latency_res = bench_func.benchmark_result.nc_latency

10 p99 = latency_res.get_latency_percentile(99)
11 print("Latency: {:.2f} ms (P99)".format(p99 / 1000.0))
12

13 print("Benchmarking nki_matmul_tiled")
14 benchmark_nki(nki_matmul_tiled_)
15

16 print("Benchmarking nki_matmul_hoist_load")
17 benchmark_nki(nki_matmul_hoist_load_)
18

19 print("Benchmarking nki_matmul_block_free_dimension")
20 benchmark_nki(nki_matmul_block_free_dimension_)
21

22 print("Benchmarking nki_matmul_fully_optimized")
23 benchmark_nki(nki_matmul_fully_optimized_)

Kernels Latency (ms) Hardware FLOPs Utilization (HFU, %)
Original Tiled 51.80 10.98
Optimization 1 42.96 13.24
Optimization 2 22.07 26.51
Optimization 3 6.97 85.24

As shown in the table above, with all the optimizations, the matrix multiplication kernel is 7x faster comparing to the
original tiled version. We also profile the four different kernel implementations for the HFU (hardware FLOPs utiliza-
tion). With all the optimizations, the final version reaches a HFU of 85.2%. The performance numbers here are specific
to input matrix sizes ([4096,8192] @ [8192,8192]), data types (BF16), and server instance (Trn1.32xlarge).
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Download All Source Code

Click the links to download source code of the kernels and the testing code discussed in this tutorial.

• All matrix multiplication NKI kernels: matrix_multiplication_nki_kernels.py

• PyTorch implementation: matrix_multiplication_torch.py

You can also view the source code in the GitHub repository nki_samples

Example usage of the scripts:

Run benchmarking of different NKI kernels:

python3 matrix_multiplication_nki_kernels.py

Run PyTorch implementation to validate the NKI results against the PyTorch implementation:

python3 matrix_multiplication_torch.py

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

RMSNorm

In this tutorial, we implement a kernel to perform RMSNorm of a 2D tensor, as described in Root Mean Square Layer
Normalization. In doing so, we learn about:

• The NKI syntax and programming model

• Broadcasting tensors in different axis

• Mapping embarrassingly parallel vector operations efficiently to the NeuronCore

• Disable ineffectual data movement or compute within a tile using an execution mask

Before diving into RMSNorm of 2D input, let’s go over the RMSNorm operator for a 1D vector a defined as below:

𝑎𝑖 =
𝑎𝑖

RMS(𝑎)
𝑔𝑖, where RMS(𝑎) =

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=0

𝑎2𝑖

Note, g is the RMSNorm weight, which has the same shape as the input vector a. The function RMS(a) produces a
single scalar element, and we divide every element in the input vector a by the RMS(a) scalar (i.e., a broadcast divide).

In Transformer models, we typically perform RMSNorm on a 2D input tensor instead (with shape [sequence
length, embedding size]). 2D-RMSNorm simply performs 1D-RMSNorm as discussed above for every row of
the input 2D tensor. The g RMSNorm weight vector is shared (i.e., broadcasted) across the rows for the multiplica-
tion. Figure below visualizes the tensor shapes involved in 2D-RMSNorm, where a_tensor is the 2D input tensor and
g_tensor is the 1D RMSNorm weight:

We are going to map the rows (a_tensor.shape[0]) to the partition dimension of the SBUF once we load the tensor
from HBM. This is a natural layout choice since each SBUF partition has a one-to-one mapping to a parallel vector
lane in the compute engines for calculating RMS(a_tensor).

Note, the division of RMS(a_tensor) requires broadcasting of one scalar across all elements of a_tensorwithin each
partition, which is considered a free-axis broadcast and supported by the flexible memory access pattern in hardware.
On the other hand, the multiplication with g_tensor requires broadcasting of a vector across all partitions, which is
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Fig. 7.74: RMSNorm tensor shapes

considered a partition-axis broadcast and must invoke another instruction for the broadcasting (broadcast_to() API,
details see below implementation) .

Compute kernel

1 import math
2 import neuronxcc.nki as nki
3 import neuronxcc.nki.language as nl
4

5

6 @nki.jit
7 def nki_rmsnorm_kernel(a_tensor, g_tensor):
8 # Calculate out_tensor = a_tensor/RMS(a_tensor) * g_tensor
9 # Where RMS(a_tensor) = sqrt((1/N) * sum(a_tensor * a_tensor))

10 # and N = a_tensor.shape[1]
11 # Reduction (mean) is performed in the free (2nd) dimension
12 out_tensor = nl.ndarray(a_tensor.shape, dtype=a_tensor.dtype,
13 buffer=nl.shared_hbm)
14

15 # Make sure shapes match
16 assert a_tensor.shape[1] == g_tensor.shape[0]
17

18 # Generate tensor indices to index input tensor
19 ix = nl.arange(128)[:, None]
20 iw = nl.arange(1)[:, None]
21 iy = nl.arange(a_tensor.shape[1])[None, :]
22

23 num_rows = a_tensor.shape[0]
24

25 # Load RMSNorm weight once, reused by rows/tiles of a_tensor
26 g_tile = nl.load(g_tensor.reshape((1, g_tensor.shape[0]))[iw, iy])
27

28 # Process 128 rows at a time due to 128-partition tile size limitation
29 # Since we're not reducing across the first dimension
30 # Tiles can be processed independently
31 for i in nl.affine_range(math.ceil(a_tensor.shape[0]/128)):

(continues on next page)
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32

33 # Load input data from external memory to on-chip memory
34 a_tile = nl.load(a_tensor[i * 128 + ix, iy],
35 mask=(i * 128 + ix < num_rows))
36

37 # Compute element-wise square of a_tensor
38 in_square = nl.square(a_tile)
39

40 # Calculate sum of squared elements, along last dimension
41 square_sum = nl.sum(in_square, axis=[1])
42

43 # Scale and get a reciprocal
44 mean = square_sum / a_tensor.shape[1]
45

46 # Take square root of mean and then reciprocal with
47 # rsqrt API (one ISA instruction)
48 rms_reciprocal = nl.rsqrt(mean)
49

50 # Scale the input tensor
51 out_tile = nl.multiply(a_tile, rms_reciprocal)
52

53 # Broadcast weight along first axis to match tensor shape
54 # num_rows_active = min(num_rows - i * 128, 128)
55 g_bcast = g_tile.broadcast_to((128, g_tensor.shape[0]))
56

57 # Multiply with the RMSNorm weight
58 out_tile[...] = nl.multiply(out_tile, g_bcast,
59 mask=(i * 128 + ix < num_rows))
60

61 # store the addition results back to external memory (out_tensor)
62 nl.store(out_tensor[i * 128 + ix, iy], value=out_tile,
63 mask=(i * 128 + ix < num_rows))
64

65 return out_tensor

In this example, we implement RMSNorm for a 2D input tensor in nki_rmsnorm_kernel:

• We assume each SBUF partition is large enough to fit at least one row of a_tensor and one copy of g_tensor
simultaneously.

• We load g_tensor once into the SBUF outside the main loop that iterates over tiles of a_tensor to achieve
maximum reuse. The g_tensor is reshaped into a 2D tensor because SBUF is a two-dimensional memory and
hence expects at least two dimension for any SBUF tensor. A reshape of an HBM tensor without changing the
underlying storage format is in fact a no-op with no performance cost in the final compiled executable.

• To adhere to NKI’s tile-size considerations (Tile Size Considerations), we limit the partition axis size of
g_tensor tile to be 128.

• The trip count of the compute loop is math.ceil(a_tensor.shape[0]/128). In cases where a_tensor.
shape[0] is not a multiple of 128, we can disable ineffectual data movement or compute in the last iteration
using the mask field (discussions below).

• Within the compute loop:

– We load one tile of g_tensor with shape (128, g_tensor.shape[1]) using nl.load API. We guard
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the loading boundary by specifying mask=(i * 128 + ix < num_rows), which ensures we don’t ac-
cess out-of-bound memory when the number of rows in a_tensor is not a multiple of 128.

– We perform the free-axis broadcast multiply (division of RMS(a)) using nl.multiply(a_tile,
rms_reciprocal), which is lowered into nki.isa.tensor_scalar instruction under the hood.

– To broadcast multiply with the RMSNorm weight g_tensor, we need to perform a partition-axis broadcast
of the g_tensor. The number of partitions to broadcast to depends on how many active rows are being
normalized in the current loop iteration: min(num_rows - i * 128, 128). Next, we can do element-
wise multiplication of the broadcasted g_tensor and the intermediate normalized tile out_tile, which
is lowered into nki.isa.tensor_tensor instruction under the hood.

– Finally, we store the normalized tile back into HBM using the nl.store API. We guard the store boundary
similar to load boundary using the mask field.

Launching kernel and testing correctness

PyTorch

Below we write a reference PyTorch implementation of RMSNorm and verify our NKI kernel output against the refer-
ence in the same script as the kernel.

1 # Reference torch implementation
2 def torch_rmsnorm_kernel(a_tensor, g_tensor):
3 # Square the tensor (element-wise)
4 in_square = a_tensor.pow(2)
5 # Calculate means in the free dimension
6 mean = in_square.mean(dim=1, keepdim=True)
7 # Scale by reciprocal of sqrt(mean)
8 tensor = a_tensor * torch.rsqrt(mean)
9

10 # Scale the output by the weight
11 return tensor * g_tensor
12

13 from torch_xla.core import xla_model as xm
14 device = xm.xla_device()
15

16 a_tensor = torch.rand((250, 512), dtype=torch.float32).to(device=device)
17 g_tensor = torch.rand((512), dtype=torch.float32).to(device=device)
18

19 output_nki = nki_rmsnorm_kernel(a_tensor, g_tensor)
20 print(f"output_nki={output_nki}")
21

22 output_torch = torch_rmsnorm_kernel(a_tensor, g_tensor)
23 print(f"output_torch={output_torch}")
24

25 if torch.allclose(output_torch, output_nki, atol=1e-5, rtol=1e-3):
26 print("NKI and Torch match")
27 else:
28 print("NKI and Torch differ")

Output:
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2024-07-27 15:22:50.000670: 7592 INFO ||NEURON_CACHE||: Compile cache path: /var/tmp/
→˓neuron-compile-cache
2024-07-27 15:22:50.000672: 7592 INFO ||NEURON_CC_WRAPPER||: Call compiler with cmd:␣
→˓neuronx-cc compile --target=trn1 --framework=XLA /tmp/ubuntu/neuroncc_compile_workdir/
→˓54c8e689-108c-433e-832a-f9282acdf114/model.MODULE_7170924315921358669+d41d8cd9.hlo_
→˓module.pb --output /tmp/ubuntu/neuroncc_compile_workdir/54c8e689-108c-433e-832a-
→˓f9282acdf114/model.MODULE_7170924315921358669+d41d8cd9.neff --verbose=35
DGE ON Levels: {'scalar_dynamic_offset', 'io'}
.
Compiler status PASS
output_nki=tensor([[0.8418, 1.3092, 0.7372, ..., 0.1458, 0.8831, 0.2339],

[0.1745, 0.3416, 0.1519, ..., 0.3358, 0.1832, 0.4795],
[0.0111, 1.1799, 0.8628, ..., 0.3107, 0.8328, 0.5663],
...,
[1.1213, 0.5449, 0.3020, ..., 0.4050, 0.4838, 0.0834],
[0.8246, 0.5027, 0.2745, ..., 0.4069, 1.0456, 1.0978],
[0.6415, 0.3637, 0.1462, ..., 0.2441, 1.0535, 0.4138]],
device='xla:0')

2024-07-27 15:22:51.000907: 7592 INFO ||NEURON_CACHE||: Compile cache path: /var/tmp/
→˓neuron-compile-cache
2024-07-27 15:22:51.000908: 7592 INFO ||NEURON_CC_WRAPPER||: Call compiler with cmd:␣
→˓neuronx-cc compile --target=trn1 --framework=XLA /tmp/ubuntu/neuroncc_compile_workdir/
→˓6d2046fc-c02d-4d3d-8746-50399ad50832/model.MODULE_18272098496972694952+d41d8cd9.hlo_
→˓module.pb --output /tmp/ubuntu/neuroncc_compile_workdir/6d2046fc-c02d-4d3d-8746-
→˓50399ad50832/model.MODULE_18272098496972694952+d41d8cd9.neff --verbose=35
DGE ON Levels: {'scalar_dynamic_offset', 'io'}
.
Compiler status PASS
output_torch=tensor([[0.8418, 1.3092, 0.7372, ..., 0.1458, 0.8831, 0.2339],

[0.1745, 0.3416, 0.1519, ..., 0.3358, 0.1832, 0.4795],
[0.0111, 1.1799, 0.8628, ..., 0.3107, 0.8328, 0.5663],
...,
[1.1213, 0.5449, 0.3020, ..., 0.4050, 0.4838, 0.0834],
[0.8246, 0.5027, 0.2745, ..., 0.4069, 1.0456, 1.0978],
[0.6415, 0.3637, 0.1462, ..., 0.2441, 1.0535, 0.4138]],
device='xla:0')

2024-07-27 15:22:53.000466: 7592 INFO ||NEURON_CACHE||: Compile cache path: /var/tmp/
→˓neuron-compile-cache
2024-07-27 15:22:53.000467: 7592 INFO ||NEURON_CC_WRAPPER||: Call compiler with cmd:␣
→˓neuronx-cc compile --target=trn1 --framework=XLA /tmp/ubuntu/neuroncc_compile_workdir/
→˓32c983cd-2c40-4723-8342-d4422107708c/model.MODULE_968738949480579147+d41d8cd9.hlo_
→˓module.pb --output /tmp/ubuntu/neuroncc_compile_workdir/32c983cd-2c40-4723-8342-
→˓d4422107708c/model.MODULE_968738949480579147+d41d8cd9.neff --verbose=35
DGE ON Levels: {'io', 'scalar_dynamic_offset'}
.
Compiler status PASS
NKI and Torch match
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JAX

Below we write a reference JAX implementation of RMSNorm and verify our NKI kernel output against the reference
in the same script as the kernel.

1 # Reference JAX implementation
2 def jax_rms_norm(a_tensor, g_tensor):
3 # Square the tensor (element-wise)
4 in_square = jnp.square(a_tensor)
5 # Calculate means in the free dimension
6 mean = in_square.mean(axis=1, keepdims=True)
7 # Scale by reciprocal of sqrt(mean)
8 tensor = a_tensor * jnp.reciprocal(jnp.sqrt(mean))
9

10 # Scale the output by the weight
11 return tensor * g_tensor
12

13 a_key, g_key = jax.random.split(jax.random.PRNGKey(42))
14 a_tensor = jax.random.uniform(a_key, (250, 512))
15 g_tensor = jax.random.uniform(g_key, (512,))
16

17 output_nki = nki_rmsnorm_kernel(a_tensor, g_tensor)
18

19 print(a_tensor)
20

21 print(f"output_nki={output_nki}")
22

23 output_jax = jax_rms_norm(a_tensor, g_tensor)
24 print(f"output_jax={output_jax}")
25

26 if jnp.allclose(output_jax, output_nki, atol=1e-5, rtol=1e-3):
27 print("NKI and JAX match")
28 else:
29 print("NKI and JAX differ")

Download All Source Code

Click the links to download source code of the kernels and the testing code discussed in this tutorial.

• NKI baremetal implementation: rmsnorm_nki_kernels.py

• PyTorch reference implementation: rmsnorm_torch.py

• JAX reference implementation: rmsnorm_jax.py

You can also view the source code in the GitHub repository nki_samples
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Example usage of the scripts:

Run NKI baremetal implementation:

python3 rmsnorm_nki_kernels.py

Run PyTorch implementation:

python3 rmsnorm_torch.py

Run JAX implementation:

python3 rmsnorm_jax.py

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

LayerNorm

In this tutorial, we implement a kernel to perform LayerNorm of a 2D tensor, as described in Layer Normalization.
LayerNorm is a common normalization mechanism used in Transformer models, similar to RMSNorm. However,
LayerNorm requires more vector operations to optimize compute efficiency in Vector Engine. In doing so, we will
revisit the key concepts we learned in the RMSNorm and additionally learn about:

• Using nki.isa APIs to efficiently compute mean and variance, and minimize the number of traversals over input
data by combining multiple vector instructions into one

• Take surrounding compute into consideration when deciding tensor layouts

Before diving into LayerNorm for a 2D tensor, let’s go over the LayerNorm operator for a 1D vector y defined as below:

𝑦 =
𝑥− E[𝑥]√︀
var[𝑥] + 𝜖

* 𝛾 + 𝛽

The parameters are:

• 𝑥: Input 1D vector

• 𝑦: Output 1D vector, same shape as x

• E[𝑥]: Mean of x

• var[𝑥]: Variance of x

• 𝜖 : A small constant scalar for numerical stability

• 𝛾, 𝛽: LayerNorm affine transform parameters, each has the same shape as x

In Transformer models, we typically need to perform LayerNorm on a 2D input tensor (with shape:
[sequence_length, hidden_size]), where the first dimension is sequence_length long corresponding to the num-
ber of tokens currently being processed, and the second dimension is the embedding dimension of each token.

Different tokens (i.e., rows in the [sequence_length, hidden_size] 2D vector) undergo different 1D LayerNorm
independently. Therefore, we need to calculate different mean and variance for different rows and broadcast (i.e., share)
the same 𝛾 , 𝛽 parameters across the rows.

Figure below visualizes the tensor shape involved in 2D-LayerNorm, where input_tensor is 2D input vector and
gamma_vector and beta_vector are affine transform parameters:
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Fig. 7.75: LayerNorm tensor shapes

Compared to RMSNorm, LayerNorm requires calculations of mean and variance, instead of simple square and sum-
mation. Also, LayerNorm performs two instances of free-axis broadcast and two instances of partition-axis broadcast,
while RMSNorm requires one instance of each. Therefore, LayerNorm involves way more computation (vector opera-
tions in particular) than RMSNorm.

Implement NKI kernel

Next, we will present two versions of LayerNorm implementation, starting from a naive version using nki.language
APIs and ending with an optimized version using nki.isa APIs.

Version 1: nki.language APIs only

1 import neuronxcc.nki as nki
2 import neuronxcc.nki.language as nl
3 import neuronxcc.nki.isa as nisa
4 import numpy as np
5 import math
6

7 @nki.jit
8 def nki_layernorm_kernel_v1(input_tensor, epsilon, gamma_vector, beta_vector):
9 """Computes LayerNorm.

10 Used nki.language APIs only.
11 """
12 output_tensor = nl.ndarray(input_tensor.shape, dtype=input_tensor.dtype,
13 buffer=nl.shared_hbm)
14

15 # Ensure that the shapes of tensors match
16 assert input_tensor.shape[1] == gamma_vector.shape[0] == beta_vector.shape[0]
17

18 # Generate tile indices for loading/storing data
19 i_p_io = nl.arange(nl.tile_size.pmax)[:, None]
20 i_f_io = nl.arange(input_tensor.shape[1])[None, :]
21 i_p_param = nl.arange(1)[:, None]
22

23 # Number of rows in the input tensor
24 num_rows = input_tensor.shape[0]
25

26 # Load gamma and beta, which will be reused across rows/tiles of input_tensor
(continues on next page)
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27 gamma_sb = nl.load(gamma_vector.reshape((1, gamma_vector.shape[0]))[i_p_param, i_f_io])
28 beta_sb = nl.load(beta_vector.reshape((1, beta_vector.shape[0]))[i_p_param, i_f_io])
29

30 # Broadcast the gamma and beta to match the dimensions of the tiles
31 gamma_sb_bcast = gamma_sb.broadcast_to((nl.tile_size.pmax, gamma_vector.shape[0]))
32 beta_sb_bcast = beta_sb.broadcast_to((nl.tile_size.pmax, beta_vector.shape[0]))
33

34 # Tile partition dimension of the input tensor by nl.tile_size.pmax
35 for i in nl.affine_range(math.ceil(input_tensor.shape[0]/nl.tile_size.pmax)):
36 # Load input tile
37 input_sb = nl.load(input_tensor[i * nl.tile_size.pmax + i_p_io, i_f_io],
38 mask=(i * nl.tile_size.pmax + i_p_io < num_rows))
39

40 # Compute mean and variance
41 mean = nl.mean(input_sb, axis=1)
42 # Trick to calculate var with mean: mean(x^2) - mean(x)^2
43 var = nl.mean(nl.square(input_sb), axis=1) - mean * mean
44

45 # Normalize the input by shifting with the mean
46 # and scaling with rsqrt of variance and epsilon
47 shift_scale_tensor = (input_sb - mean) * nl.rsqrt(var + epsilon)
48

49 # Scale the normalized tile using gamma and add beta
50 output_sb = shift_scale_tensor * gamma_sb_bcast + beta_sb_bcast
51

52 nl.store(output_tensor[i * nl.tile_size.pmax + i_p_io, i_f_io], value=output_sb,
53 mask=(i * nl.tile_size.pmax + i_p_io < num_rows))
54

55 return output_tensor

• To adhere to NKI’s tile-size considerations (Tile Size Considerations), we limit the partition axis size of
input_tensor tile to be 128 (nl.tile_size.pmax).

• Load gamma and beta, and perform the partition-axis broadcast:
– The multiplication with shift_scale_tensor requires broadcasting of gamma and beta across

all partitions(broadcast_to() API)

• The trip count of the compute loop is math.ceil(input_tensor.shape[0]/nl.tile_size.pmax). In cases
where input_tensor.shape[0] is not a multiple of nl.tile_size.pmax, we can disable ineffectual data move-
ment or compute in the last iteration using the mask field.

• Within the compute loop:
– We load one tile of input_tensor with shape (nl.tile_size.pmax, input_tensor.
shape[1]) using nl.load API. We guard the loading boundary by specifying mask=(i * nl.
tile_size.pmax + i_p_io < input_tensor.shape[0]), which ensures we don’t access out-
of-bound memory when the number of rows in input_tensor is not a multiple of nl.tile_size.pmax.

– Compute the mean and variance using nki.language.mean

– Normalize one tile of input_tensor using mean and variance. The variance is preprocessed
using nki.language.rsqrt

– Scale the normalized tile using gamma and add beta
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– Finally, we store the normalized tile back into HBM using the nl.store API. We guard the store
boundary similar to load boundary using the mask field.

Next, we will optimize the above implementation using nki.isa APIs in version 2

Version 2: nki.isa APIs to calculate mean/variance and perform shift/scale

1 @nki.jit
2 def nki_layernorm_kernel_v2(input_tensor, epsilon, gamma_vector, beta_vector):
3 """Computes LayerNorm.
4 Used nki.isa APIs to calculate mean/variance and perform shift/scale.
5 """
6 output_tensor = nl.ndarray(input_tensor.shape, dtype=input_tensor.dtype,
7 buffer=nl.shared_hbm)
8

9 # Ensure that the shapes of tensors match
10 assert input_tensor.shape[1] == gamma_vector.shape[0] == beta_vector.shape[0]
11

12 # Generate tile indices for loading/storing data
13 i_p_io = nl.arange(nl.tile_size.pmax)[:, None]
14 i_f_io = nl.arange(input_tensor.shape[1])[None, :]
15 i_p_param = nl.arange(1)[:, None]
16

17 # Number of rows in the input tensor
18 num_rows = input_tensor.shape[0]
19

20 # Load gamma and beta, which will be reused across rows/tiles of input_tensor
21 gamma_sb = nl.load(gamma_vector.reshape((1, gamma_vector.shape[0]))[i_p_param, i_f_io])
22 beta_sb = nl.load(beta_vector.reshape((1, beta_vector.shape[0]))[i_p_param, i_f_io])
23

24 # Broadcast the gamma and beta to match the dimensions of the tiles
25 gamma_sb_bcast = gamma_sb.broadcast_to((nl.tile_size.pmax, gamma_vector.shape[0]))
26 beta_sb_bcast = beta_sb.broadcast_to((nl.tile_size.pmax, beta_vector.shape[0]))
27

28 # Tile partition dimension of the input tensor by nl.tile_size.pmax
29 for i in nl.affine_range(math.ceil(input_tensor.shape[0]/nl.tile_size.pmax)):
30 # Load input tile
31 input_sb = nl.load(input_tensor[i * nl.tile_size.pmax + i_p_io, i_f_io],
32 mask=(i * nl.tile_size.pmax + i_p_io < num_rows))
33

34 # Tile free dimension of the input tensor by nl.tile_size.bn_stats_fmax,
35 # as bn_stats has a free dimension size limit
36 i_f_bn = nl.arange(nl.tile_size.bn_stats_fmax)[None, :]
37 i_f_stats = nl.arange(6)[None, :]
38 num_bn_stats = math.ceil(input_tensor.shape[1]/nl.tile_size.bn_stats_fmax)
39 stats_results = nl.ndarray((nl.tile_size.pmax, 6*num_bn_stats), dtype=np.float32)
40 for j in nl.affine_range(num_bn_stats):
41 stats_results[i_p_io, j * 6 + i_f_stats] = nisa.bn_stats(
42 input_sb[i_p_io, j * nl.tile_size.bn_stats_fmax + i_f_bn],
43 mask=(j * nl.tile_size.bn_stats_fmax + i_f_bn < input_tensor.shape[1]),
44 dtype=np.float32)
45

(continues on next page)
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46 # Aggregate bn_stats results to compute mean and var
47 i_f_aggr = nl.arange(6*num_bn_stats)[None, :]
48 mean_var = nisa.bn_aggr(stats_results[i_p_io, i_f_aggr])
49 mean = mean_var[i_p_io, 0]
50 var = mean_var[i_p_io, 1]
51

52 # Get reciprocal of sqrt(var + epsilon)
53 scale_var = nl.rsqrt(var + epsilon)
54

55 # Putting the shift and scale together in one line to trigger two alu_op tensor_
→˓vector instruction

56 # shift_scale_tensor = (input_sb - mean_var[i_p_stats, i_f_mean]) * scale_var
57 shift_scale_tensor = nisa.tensor_scalar(data=input_sb, op0=np.subtract,
58 operand0=mean,
59 op1=np.multiply,
60 operand1=scale_var)
61

62 # Scale the normalized tile using gamma and add beta
63 output_sb = shift_scale_tensor * gamma_sb_bcast + beta_sb_bcast
64

65 nl.store(output_tensor[i * nl.tile_size.pmax + i_p_io, i_f_io], value=output_sb,
66 mask=(i * nl.tile_size.pmax + i_p_io < num_rows))
67

68 return output_tensor

• Considering the free dimension size limit of nki.isa.bn_stats, which is 512(nl.tile_size.bn_stats_fmax),
the trip count of bn_stats compute loop is math.ceil(input_tensor.shape[1]/nl.tile_size.
bn_stats_fmax).

• Used nki.isa.bn_stats and nki.isa.bn_aggr to calculate the mean and variance

• Used nki.isa.tensor_scalar to do shift and scale of mean and variance in a single instruction

Performance in Version 1 and Version 2

Let’s assume the data type for the kernel is float32 and that the SBUF partition is sufficiently large to hold the interme-
diate data simultaneously without significant spilling. Define the variable N = input_tensor.shape[1].

• Compute mean and variance:
– Version 1 : The performance cost of the mean calculation is NVector Engine cycles, and the variance

calculation is N Scalar Engine + 2N Vector Engine cycles.

– Version 2 : By replacing these calculations with bn_stats and bn_aggr APIs, the cost is roughly
reduced to N Vector Engine cycles, ignoring the cost of nki.isa.bn_aggr, assuming N is sufficiently
large.

• Perform shift and scale of mean and variance in a single instruction:
– Version 1 : The performance cost of the shift/scale calculation requires two small instructions

(nl.rsqrt(var + epsilon)) and two instructions with each iterating over N elements per partition (shift
and scale, 2N).

– Version 2 : By replacing these calculations with the tensor_scalar API, the cost is reduced to N
Vector Engine cycles
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The latency measured on trn1 using an input tensor of (300, 1000) shows a 14.9% improvement.

>>>> Running version v1.
Latency results are:
NCLatency:
p0 = 2306us
p1 = 2306us
p10 = 2308us
p25 = 2309us
p50 = 2311us
p90 = 2313us
p99 = 2314us
p100 = 2314us

>>>> Running version v2.
Latency results are:
NCLatency:
p0 = 1963us
p1 = 1963us
p10 = 1965us
p25 = 1966us
p50 = 1969us
p90 = 1972us
p99 = 1974us
p100 = 1975us

Launching kernel and testing correctness

Below is a reference PyTorch implementation of LayerNorm, which we use to verify our NKI kernel output against the
reference output

1 import torch
2 from torch_xla.core import xla_model as xm
3 import argparse
4 import os
5

6 os.environ["NEURON_FRAMEWORK_DEBUG"] = "1"
7

8 # Reference torch implementation
9 def layernorm_layer(input_tensor, epsilon, gamma_vector, beta_vector):

10 # Compute the mean and variance of the input tensor along the last dimension
11 mean = input_tensor.mean(dim=-1, keepdim=True)
12 variance = input_tensor.var(dim=-1, keepdim=True, unbiased=False)
13 # Subtract the mean from the input and divide by the square root of the variance␣

→˓plus epsilon
14 normalized_input = (input_tensor - mean) / torch.sqrt(variance + epsilon)
15 # Apply the affine transformation
16 normalized_input = normalized_input * gamma_vector + beta_vector
17 return normalized_input
18

19 def parse_args():
20 parser = argparse.ArgumentParser(

(continues on next page)
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21 """Run LayerNorm pytorch implementation.
22 """)
23 parser.add_argument("--nrows",
24 default=4*1024,
25 type=int,
26 help="""The number of input rows""")
27 parser.add_argument("--ncols",
28 default=8*1024,
29 type=int,
30 help="""The number of input columns""")
31 parser.add_argument("--version",
32 default="v1",
33 choices=["v1", "v2"],
34 help="Test versions")
35 args = parser.parse_args()
36 return args
37

38

39 from neuronxcc.nki.docs.examples.layernorm.layernorm_nki_kernel import nki_layernorm_
→˓kernel_v1, \

40 nki_layernorm_kernel_v2
41

42 if __name__ == "__main__":
43 args = parse_args()
44 func_dict = {"v1": nki_layernorm_kernel_v1,
45 "v2": nki_layernorm_kernel_v2,
46 }
47

48 device = xm.xla_device()
49 num_rows = args.nrows
50 num_cols = args.ncols
51

52 # Generate toy example
53 input_tensor = torch.rand((num_rows, num_cols), dtype=torch.float32)
54 gamma_vector = torch.rand((num_cols), dtype=torch.float32)
55 beta_vector = torch.rand((num_cols), dtype=torch.float32)
56 epsilon = 1e-5
57

58 # Compute torch layernorm layer in cpu
59 output_torch = layernorm_layer(input_tensor, epsilon, gamma_vector, beta_vector)
60

61 # Copy tensors to NeuronDevice
62 input_tensor = input_tensor.to(device=device)
63 gamma_vector = gamma_vector.to(device=device)
64 beta_vector = beta_vector.to(device=device)
65

66 print(f">>>> Running version {args.version}.")
67 func = func_dict[args.version]
68

69 # add nki_jit decorator
70

71 # Compute NKI layernorm kernel in NeuronDevice

(continues on next page)
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72 xm.mark_step()
73 output_nki = func(input_tensor, epsilon, gamma_vector, beta_vector)
74 xm.mark_step()
75 output_nki = output_nki.to(device='cpu')
76

77 # Accuracy check : Compare the output tensors
78 allclose = torch.allclose(output_torch, output_nki, atol=1e-3, rtol=1e-2)
79 if allclose:
80 print("NKI and Torch match")
81 else:
82 print("NKI and Torch differ")

Download All Source Code

Click the links to download source code of the kernels and the testing code discussed in this tutorial.

• PyTorch reference implementation: layernorm_torch.py

• Two versions of NKI kernels: layernorm_nki_kernel.py

You can also view the source code in the GitHub repository nki_samples

Example usage of the scripts

Performance mode
Check the performance numbers for nki_layernorm_kernel_v1 and nki_layernorm_kernel_v2, and generate NEFF files
for profiling:

python3 layernorm_nki_kernel.py --mode perfs

Accuracy mode
Check NKI kernel accuracy against PyTorch implementation:

python3 layernorm_torch.py --version v1
python3 layernorm_torch.py --version v2

Check optimized Layernorm kernel(nki_layernorm_kernel_v2) accuracy against nki_layernorm_kernel_v1:

python3 layernorm_nki_kernel.py --mode accuracy

Input tensor size

python3 layernorm_torch.py --nrows 4096 --ncols 8192
python3 layernorm_nki_kernel.py --nrows 4096 --ncols 8192

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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Fused Self Attention

In this tutorial, we implement a kernel to perform the self attention seen in Stable Diffusion 2.1(SD2.1) from Stability
AI. The model is available here. In doing so, we learn about:

• The NKI syntax and programming model

• Layout, tiling, and memory management considerations when performing attention computation in NKI

• Fusion techniques for implementing efficient attention kernel

Background

In SD2.1, the core computation of the self attention is the following. Given

• Q: (seqlen, d_head)

• K: (seqlen, d_head)

• V: (seqlen, d_head)

where d_head and seqlen represents the head dimension and the seqlen length of the model. The batch dimensions
have been removed for simplicity. We would like to compute,

𝑆 = 𝑄 *𝐾.𝑇

𝑅 = softmax(𝑆) * 𝑉

When generating images of size 512x512,

seqlen = 4096

dℎ𝑒𝑎𝑑dℎ𝑒𝑎𝑑dℎ𝑒𝑎𝑑dℎ𝑒𝑎𝑑 = 64

We assume the data type of all inputs and outputs to be bfloat16.

Naive Algorithm

Fig. 7.76 shows the scenario if we compute the attention naively. We would first compute S=Q * K.T, which has a size
of [4096, 4096]. Since the result is in bfloat16, this intermediate matrix has a size of 4096 * 4096 * 2 bytes
= 32MB, far exceeding the total space available in the SBUF(24MB on NeuronCore-v2). This means that we have to
spill data from SBUF to HBM after S is computed, and load it back into SBUF when we compute softmax. This leads
to lots of data movements between HBM and SBUF, degrading performance.

Fusion to Save SBUF Space

To avoid exhausting SBUF space, we would like to avoid computing the entirety of the multiplication of Q and K.T at
once. One way is to fuse the softmax computation with the second matrix multiplication.

As shown in the Fig. 7.77, in order to produce one block of the final result, we only need to compute the highlighted
strip S1 to compute the block r1 in the final result.

Recall the TensorEngine on NeuronCore-v2 can process a maximum 128 contraction dimension, and the free dimension
of the left hand side matrix has a maximum of 128. In the matrix multiplication S1 = q1 * K.T, as labeled in Fig.
7.77, the size of the free dimension of q1 should be 128 and S1 has a shape of [128, 4096]. Therefore, the size of
S1 is 128 * 4096 * 2 bytes=1MB, which is 32 times smaller than computing the full intermediate matrix.
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Fig. 7.76: Naively multiple Q and K.T produces a large intermediate matrix
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Fig. 7.77: We only need to compute S1 to produce r1
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We can then produce the entire result by looping over the tiles in Q.

Softmax implementation

Fig. 7.78: Softmax implementation

We need to perform softmax activation on Q*K.T, the scheme is shown in the Fig. 7.78. We first compute partial
row-wise maximum on each s_i tile to produce m1, m2... , then we find the global row-wise maximum m of S
by computing row-wise maximum on m1, m2... . After subtracting m from s1, s2... , we compute the natural
exponential and sum them together to find the row-wise sum rs.

In a regular softmax, we would divide each s1, s2... with rs, however, here we can delay the division to after we
compute r1 due to the associativity of scalar-matrix multiplication. Since rs is smaller than r1, we save FLOPS by
delaying the division. This is also a major optimization deployed in FlashAttention-v2.

We finally multiply s_i and v_i, and sum them together to get r1. By looping over tiles in Q, we produce the entire
result R.
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Compute kernel

1 @nki.jit
2 def fused_self_attn_for_SD_small_head_size(q_ref, k_ref, v_ref, use_causal_mask=False,
3 mixed_precision=True):
4 """
5 Fused self attention kernel for small head dimension Stable Diffusion workload,
6 simplified for this tutorial.
7

8 Computes softmax(QK^T)V. Decoder model can optionally include a causal mask
9 application. Does not include QKV projection, output projection, dropout,

10 residual connection, etc.
11

12 This kernel is designed to be used for Stable Diffusion models where the
13 d_head is smaller or equal to 128. Assertion is thrown if `d_head` does
14 not satisfy the requirement.
15

16 IO tensor layouts:
17 - q_ptr: shape (seq_q, d_head)
18 - k_ptr: shape (seq_k, d_head)
19 - v_ptr: shape (seq_v, d_head)
20 - out_ptr: shape (seq_q, d_head)
21 - We use seq_q and seq_k and seq_v just for clarity, this kernel requires
22 seq_q == seq_k == seq_v
23

24 IO tensor dtypes:
25 - This kernel assumes all IO tensors have the same dtype
26 - If mixed_precision is True, then all Tensor Engine operation will be performed in
27 bfloat16 and accumulation will be performed in float32. Otherwise the intermediates
28 will be in the same type as the inputs.
29 """
30 # Use q_ref dtype as the intermediate tensor dtype
31 # Assume all IO tensors have the same dtype
32 kernel_dtype = q_ref.dtype
33 pe_in_dt = nl.bfloat16 if mixed_precision else np.float32
34 assert q_ref.dtype == k_ref.dtype == v_ref.dtype
35

36 # Shape checking
37 seqlen, d_head = q_ref.shape
38 assert d_head <= 128, "Cannot use this kernel for d_head > 128"
39 assert tuple(q_ref.shape) == (seqlen, d_head), 'Input shape mismatch!'
40 assert tuple(k_ref.shape) == (seqlen, d_head), 'Input shape mismatch!'
41 assert tuple(v_ref.shape) == (seqlen,d_head), \
42 f'Input shape mismatch! Expected: {(seqlen, d_head)} Actual: {tuple(v_ref.shape)}'
43 out_ref = nl.ndarray((seqlen, d_head), dtype=q_ref.dtype, buffer=nl.shared_hbm)
44

45 # Softmax scaling factor, multiplied onto Q
46 softmax_scale = 0.125
47

48 q_seq_n_tiles, q_seq_tile_size = seqlen // 128, 128
49 k_seq_n_tiles, k_seq_tile_size = seqlen // 128, 128
50 # No tiling on d_head dimension since the dimension of d_head fits in SB

(continues on next page)
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51 d_head_tile_size = d_head
52 v_seq_n_tiles, v_seq_tile_size = seqlen // 128, 128
53

54 ###################################
55 # Step 1. transpose(tensor_v)
56 ###################################
57 # Buffer for v matrix transposed
58 # Pre-fetch and keep it in SBUF throughout different softmax tiles
59 trans_v = nl.ndarray((par_dim(v_seq_tile_size), v_seq_n_tiles, d_head), dtype=pe_in_dt)
60

61 for i_k_seq_tile in nl.affine_range(k_seq_n_tiles):
62 ip_v = nl.arange(v_seq_tile_size)[:, None]
63 if_v = nl.arange(d_head_tile_size)[None, :]
64 trans_v[ip_v, i_k_seq_tile, if_v] = nl.load(
65 v_ref[i_k_seq_tile * k_seq_tile_size + ip_v, if_v],
66 dtype=pe_in_dt)
67

68 q_local = nl.ndarray((q_seq_n_tiles, par_dim(d_head_tile_size), q_seq_tile_size),␣
→˓dtype=pe_in_dt)

69 ip_q = nl.arange(d_head_tile_size)[:, None]
70 if_q = nl.arange(q_seq_tile_size)[None, :]
71 for i_q_seq_tile in nl.affine_range(q_seq_n_tiles):
72 q_local[i_q_seq_tile, ip_q, if_q] = nl.load_transpose2d(
73 q_ref[i_q_seq_tile * q_seq_tile_size + nl.arange(q_seq_tile_size)[:, None],
74 nl.arange(d_head_tile_size)[None, :]
75 ],
76 dtype=pe_in_dt) * softmax_scale
77

78 k_local = nl.ndarray((k_seq_n_tiles, par_dim(d_head_tile_size), k_seq_tile_size),␣
→˓dtype=pe_in_dt)

79 ip_k = nl.arange(d_head_tile_size)[:, None]
80 if_k = nl.arange(k_seq_tile_size)[None, :]
81 for i_k_seq_tile in nl.affine_range(k_seq_n_tiles):
82 k_local[i_k_seq_tile, ip_k, if_k] = nl.load_transpose2d(
83 k_ref[i_k_seq_tile * k_seq_tile_size + nl.arange(k_seq_tile_size)[:, None],
84 nl.arange(d_head_tile_size)[None, :]],
85 dtype=pe_in_dt)
86

87 for i_q_seq_tile in nl.affine_range(q_seq_n_tiles): # indent = 2
88 # A SBUF buffer for an independent softmax tile
89 qk_res_buf = nl.ndarray((par_dim(q_seq_tile_size), seqlen), dtype=kernel_dtype)
90

91 neg_max_res = nl.ndarray((par_dim(q_seq_tile_size), k_seq_n_tiles), dtype=kernel_
→˓dtype)

92 ip_max = nl.arange(q_seq_tile_size)[:, None]
93 if_max = nl.arange(k_seq_n_tiles)[None, :]
94

95 # Loop over RHS free of matmul(stationary=tensor_q, moving=tensor_k, contract=d_head)
96 for i_k_seq_tile in nl.affine_range(k_seq_n_tiles): # indent = 4
97

98 # Since the K^T tile is the RHS, the q_seq_len dimension will be P in the result
99 # PSUM buffer shape: [q_seq_tile_size P, k_seq_tile_size F]

(continues on next page)

7.2. Neuron Kernel Interface (NKI) - Beta 1477



AWS Neuron

(continued from previous page)

100 qk_psum = nl.zeros((par_dim(q_seq_tile_size), k_seq_tile_size),
101 dtype=np.float32, buffer=nl.psum)
102

103 # Tensor indices for accessing qk result in k_seq_tile_size
104 ip_qk = nl.arange(q_seq_tile_size)[:, None]
105 if_qk = nl.arange(k_seq_tile_size)[None, :]
106

107 ##############################################################
108 # Step 2. matmul(stationary=tensor_q, moving=tensor_k, contract=d_head)
109 ##############################################################
110 qk_psum[ip_qk, if_qk] += nisa.nc_matmul(moving=k_local[i_k_seq_tile, ip_k, if_k],
111 stationary=q_local[i_q_seq_tile, ip_q, if_

→˓q])
112

113 ###################################
114 # Step 3. Apply optional causal mask
115 ###################################
116 if use_causal_mask:
117 # Magic number -9984.0 to replace -inf similar to what neuronx-cc uses
118 qk_res_buf[ip_qk, i_k_seq_tile * k_seq_tile_size + if_qk] = nisa.affine_select(
119 pred=(i_q_seq_tile * q_seq_tile_size + ip_qk >= i_k_seq_tile * k_seq_tile_size␣

→˓+ if_qk),
120 on_true_tile=qk_psum[ip_qk, if_qk], on_false_value=-9984.0, dtype=kernel_dtype)
121 else:
122 # Simply send psum result back to sbuf
123 qk_res_buf[ip_qk, i_k_seq_tile * k_seq_tile_size + if_qk] = nl.copy(qk_psum[ip_

→˓qk, if_qk],
124 ␣

→˓dtype=kernel_dtype)
125

126 ###################################
127 # Step 4. Softmax
128 ###################################
129 neg_max_res[ip_max, i_k_seq_tile] = nisa.tensor_reduce(
130 np.max, data=qk_res_buf[ip_qk, i_k_seq_tile * k_seq_tile_size + if_qk],
131 axis=(1,), dtype=kernel_dtype, negate=True)
132

133 neg_max_res_final = nisa.tensor_reduce(
134 np.min, data=neg_max_res[ip_max, if_max],
135 axis=(1,), dtype=kernel_dtype, negate=False)
136

137 ip_softmax = nl.arange(q_seq_tile_size)[:, None]
138 if_softmax = nl.arange(seqlen)[None, :]
139 ip_sum_res = nl.arange(q_seq_tile_size)[:, None]
140 if_sum_res = nl.arange(d_head_tile_size)[None, :]
141

142 softmax_res = nl.ndarray((par_dim(q_seq_tile_size), seqlen), dtype=pe_in_dt)
143 sum_divisor = nl.ndarray((par_dim(q_seq_tile_size), d_head_tile_size), dtype=kernel_

→˓dtype)
144

145 # Simply use a large tile of seq_len in size since this is a "blocking" instruction
146 # Assuming the compiler will merge exp and reduce_add into a single instruction on␣

(continues on next page)
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→˓ACT
147 exp_res = nisa.activation(np.exp,
148 data=qk_res_buf[ip_softmax, if_softmax],
149 bias=neg_max_res_final, scale=1.0)
150

151 sum_res = nisa.tensor_reduce(np.add, data=exp_res, axis=(1,),
152 dtype=kernel_dtype)
153 softmax_res[ip_softmax, if_softmax] = nl.copy(exp_res, dtype=pe_in_dt)
154

155 sum_reciprocal_broadcast = (1.0 / sum_res).broadcast_to((q_seq_tile_size, d_head_
→˓tile_size))

156 sum_divisor[ip_sum_res, if_sum_res] = nl.copy(sum_reciprocal_broadcast, dtype=kernel_
→˓dtype)

157

158 # Buffer for transposed softmax results (FP32 in PSUM)
159 trans_softmax_res = nl.ndarray(
160 (par_dim(k_seq_tile_size), k_seq_n_tiles, q_seq_tile_size),
161 dtype=pe_in_dt)
162

163 # Result psum buffer has the hidden dim as P
164 attn_res_psum = nl.zeros((par_dim(d_head_tile_size), q_seq_tile_size),
165 dtype=np.float32, buffer=nl.psum)
166

167 ip_scores_t = nl.arange(k_seq_tile_size)[:, None]
168 if_scores_t = nl.arange(q_seq_tile_size)[None, :]
169 # Loop over matmul_1 contraction
170 for i_k_seq_tile in nl.affine_range(k_seq_n_tiles):
171 ###################################
172 # Step 5. transpose(softmax_res)
173 ###################################
174 ip_scores = nl.arange(q_seq_tile_size)[:, None]
175 if_scores = nl.arange(k_seq_tile_size)[None, :]
176

177 trans_softmax_res[ip_scores_t, i_k_seq_tile, if_scores_t] = nisa.nc_transpose(
178 softmax_res[ip_scores, i_k_seq_tile * k_seq_tile_size + if_scores])
179

180 ip_out = nl.arange(d_head_tile_size)[:, None]
181 if_out = nl.arange(q_seq_tile_size)[None, :]
182 for i_k_seq_tile in nl.affine_range(k_seq_n_tiles):
183 ######################################################################
184 # Step 6. matmul_1(stationary=trans_v, moving=trans_softmax_res, contract=seqlen_

→˓v=seqlen_k)
185 ######################################################################
186 ip_v_t = nl.arange(k_seq_tile_size)[:, None]
187 if_v_t = nl.arange(d_head_tile_size)[None, :]
188 attn_res_psum[ip_out, if_out] += \
189 nisa.nc_matmul(moving=trans_softmax_res[ip_scores_t, i_k_seq_tile, if_scores_t],
190 stationary=trans_v[ip_v_t, i_k_seq_tile, if_v_t])
191

192 attn_res_sbuf = nl.copy(attn_res_psum[ip_out, if_out], dtype=kernel_dtype)
193

194 attn_res_div = attn_res_sbuf * nisa.nc_transpose(sum_divisor[ip_sum_res, if_sum_res])

(continues on next page)
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195

196 nl.store(
197 out_ref[i_q_seq_tile * q_seq_tile_size + if_out, ip_out],
198 value=attn_res_div)
199

200 return out_ref

Launching kernel and testing correctness

Below we write a reference PyTorch implementation of the attention and verify our NKI kernel output against the
reference in the same script as the kernel.

1 import torch
2 from torch_xla.core import xla_model as xm
3

4 from sd_attention_nki_kernels import fused_self_attn_for_SD_small_head_size
5

6

7 if __name__ == "__main__":
8

9 device = xm.xla_device()
10

11 def cpu_golden_attn(q, k, v):
12 softmax_scale = 0.125
13 q_scaled = q * softmax_scale
14 raw_score = torch.matmul(q_scaled, k.transpose(1, 0))
15

16 norm_score = torch.nn.functional.softmax(raw_score, dim=-1)
17

18 return torch.matmul(norm_score, v)
19

20 q_tensor = torch.rand((4096, 64), dtype=torch.float32).to(device=device)
21 k_tensor = torch.rand((4096, 64), dtype=torch.float32).to(device=device)
22 v_tensor = torch.rand((4096, 64), dtype=torch.float32).to(device=device)
23

24 output_nki = fused_self_attn_for_SD_small_head_size(q_tensor, k_tensor, v_tensor)
25

26 output_torch = cpu_golden_attn(q_tensor, k_tensor, v_tensor)
27

28 allclose = torch.allclose(output_torch, output_nki, atol=1e-5, rtol=1e-3)
29

30 if allclose:
31 print("NKI and Torch match")
32 else:
33 print("NKI and Torch differ")
34

35 assert allclose
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Download All Source Code

Click the links to download source code of the kernels and the testing code discussed in this tutorial.

• Kernel Definition, accuracy testing and performance benchmark using baremetal mode:
sd_attention_nki_kernels.py

• Use the kernel in PyTorch: sd_attention_torch.py

You can also view the source code in the GitHub repository nki_samples

Example usage of the scripts:

Performance mode
Check performance numbers of the attention kernel

python3 sd_attention_nki_kernels.py --mode perf

Accuracy mode
Run PyTorch reference implementation and check correctness:

python3 sd_attention_torch.py

Run baremetal mode and check correctness:

python3 sd_attention_nki_kernels.py --mode accuracy

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

Fused Mamba

In this tutorial, we implement a NKI kernel for the Mamba Large Language Model, a State Space Model (SSM) which
replaces the attention of a regular Transformer model with a custom layer inspired by Recurrent Neural Networks. We
will walk through the core computation step-by-step and map it to NKI APIs to form a functional kernel. Next, by
scaling the input shapes of the kernel (both channel size and sequence length), we will iterate on a more hardware-
efficient kernel implementation to improve the scaling efficiency.

In this tutorial, we learn about:

• Mapping different vector operations efficiently to NeuronCore compute engines, such as associative scan and
element-wise operations between tensors

• Leveraging data reuse and tiling to reduce excessive data movement and keep compute engines busy

• Using neuron-profile to identify performance bottlenecks and opportunities
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PyTorch Reference Implementation

Before jumping to NKI, let’s examine the compute definition of a Mamba-v1 layer using the below PyTorch script
(mamba_torch.py):

1 import torch
2 import torch_neuronx
3 import torch_xla.core.xla_model as xm
4 import os
5 import argparse
6

7 os.environ["NEURON_FRAMEWORK_DEBUG"] = "1"
8 os.environ["NEURON_CC_FLAGS"]= " --model-type=transformer --disable-dge "
9

10

11 def associative_scan(deltaA, deltaB_u):
12 """
13 Args:
14 deltaA: [batch_size, channels, state_size, seq_len]
15 deltaB_u: [batch_size, channels, state_size, seq_len]
16

17 Mamba uses an associative scan operator to aggregate information across
18 time sequentially (sequence length, e.g. sequence of tokens),
19 from the past to the present.
20 """
21 batch_size, channels, state_size, seq_len = deltaA.shape
22 out = torch.empty(batch_size, channels, state_size, seq_len,
23 device=deltaA.device, dtype=deltaA.dtype)
24 for i in range(seq_len):
25 prev_state = out[..., i - 1] if i > 0 else 0
26 out[..., i] = deltaA[..., i] * prev_state + deltaB_u[..., i]
27 return out
28

29

30 def mamba_layer(delta, A, B, u, C):
31 """
32 Args:
33 delta: [batch, channels, seq_len]
34 u: [batch, channels, seq_len]
35 A: [channels, state_size]
36 B: [batch, state_size, seq_len]
37 C: [batch, state_size, seq_len]
38 """
39 # expand the tensors so they all have the same dimensions and compute elementwise␣

→˓products (with broadcast)
40 # deltaA and deltaB_u have shape [batch_size, channels, state_size, seq_len]
41 deltaA = torch.exp(delta[:, :, None, :] * A[None, :, :, None])
42 deltaB_u = delta[:, :, None, :] * B[:, None, :, :] * u[:, :, None, :]
43 scan_res = associative_scan(deltaA, deltaB_u)
44 # y sums over the `state_size` axis and has shape [batch_size, channels, seq_len]
45 mamba_out = (C[:, None, :, :] * scan_res).sum(dim=-2)
46 return mamba_out
47

(continues on next page)
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48

49 def parse_args():
50 parser = argparse.ArgumentParser(
51 """Run Mamba PyTorch implementation. Hard-coded small example only since
52 PyTorch implementation is very slow for larger configs.
53 """)
54 parser.add_argument("--mode",
55 choices=["accuracy", "perf"],
56 default="accuracy",
57 help="""Do accuracy test or perf test.
58 Accuracy test compares mamba_v1 kernel against PyTorch␣

→˓implementation.
59 Perf test will generate a NEFF for the PyTorch␣

→˓implementation in local directory
60 for a manual run of neuron-profile.
61 """)
62 args = parser.parse_args()
63 return args
64

65

66 if __name__ == "__main__":
67 args = parse_args()
68

69 # Toy example
70 batch = 1
71 seq_len = 512
72 channels = 256
73 state_size = 16
74

75 dtype = torch.float32
76

77 device = xm.xla_device()
78

79 delta = torch.ones(batch, channels, seq_len, dtype=dtype, device=device)
80 u = torch.ones(batch, channels, seq_len, dtype=dtype, device=device)
81

82 # For numerical accuracy testing purposes, we choose negative numbers for A on␣
→˓purpose.

83 # Otherwise, the associative scan will integrate too fast and overflow, which would
84 # mask any real numerical issues in our computation.
85 # A negative A will ensure we catch numerical issues when we have them.
86 A = -torch.ones(channels, state_size, dtype=dtype, device=device)
87 B = torch.ones(batch, state_size, seq_len, dtype=dtype, device=device)
88

89 C = torch.ones(batch, state_size, seq_len, dtype=dtype, device=device)
90

91 xm.mark_step()
92 torch_out = mamba_layer(delta, A, B, u, C)
93 xm.mark_step()
94 print(torch_out)

The input tensor shapes are as follows:
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• delta: [batch, channels, seq_len]

• u: [batch, channels, seq_len]

• A: [channels, state_size]

• B: [batch, state_size, seq_len]

• C: [batch, state_size, seq_len]

The key model parameters are:

• batch: batch size of the model.

• seq_len: sequence length of the model.

• channels: hidden size of a token.

• state_size: number of model states.

We use [batch=1, seq_len=512, channels = 256, state_size = 16] as a simple test case for initial perfor-
mance evaluation.

Running the above Python script will compile the PyTorch compute graph using Neuron Compiler and generate a
Neuron executable file (NEFF) in the same directory. We can then profile the NEFF on a single NeuronCore using
neuron-profiler. Figure below is a screenshot of the profile. We see this initial PyTorch implementation takes 151.83
ms to execute on device.

Fig. 7.79: Profile of Mamba PyTorch Implementation

Zooming into a portion of the profile, we notice the compute activities on different engines (Ten-
sorE/VectorE/ScalarE/GpSimdE) are quite sparse compared to data movement activities (the qSyncIO0 and
qVectorSpillReload rows):

In this seemingly “memory-bound” execution trace, the achieved DMA throughput is also extremely low, hovering
around 0.33% utilization throughout execution. Therefore, we are stressing neither the compute nor the memory sub-
system, hinting the workload is running at low efficiency on the NeuronCore. In the rest of this tutorial, we will
showcase how to re-write the above computation using NKI to achieve a device execution latency of 172.93 usec ,
which is a 878x speedup compared to the PyTorch reference implementation.
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Fig. 7.80: Profile of Mamba PyTorch Implementation (Zoomed-in)

Mapping Mamba Layer to NeuronCore

In this section, we will discuss how the computation can be mapped onto the NeuronCore architecture. We will also
highlight the importance of choosing appropriate data layouts to achieve good compute efficiency.

Recall we have the following input tensor shapes in device memory:

• delta: [batch_size, channels, seq_len]

• u: [batch_size, channels, seq_len]

• A: [channels, state_size]

• B: [batch_size, state_size, seq_len]

• C: [batch_size, state_size, seq_len]

In fact, the above tensor layout has been chosen carefully based on the computation done in NeuronCore, which we
will discuss in more detail below.

In Mamba models, both seq_len and channels are typically in the thousands (such as seq_len=16K,
channels=4K), while batch_size and state_size are much smaller by 2-3 order of magnitudes (such as
batch_size=4, state_size=16). To simplify visualization of computation on multi-dimensional tensors, let’s hold
batch and state_size dimension constant and focus on computation per batch per state. Note, the batch_size di-
mension is considered a fully parallel axis in a Mamba layer, while state_size is only a partial parallel axis where
results from different states will be accumulated together.

By extracting batch and state_size dimensions, we get the following input tensor shapes in device memory:

• delta_i: [channels, seq_len]

• u_i: [channels, seq_len]

• A_i: [channels]

• B_i: [seq_len]

• C_i: [seq_len]

Next, let’s visualize the data flow and computation using 2D matrices or vectors step-by-step.
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Step 1: Element-wise multiplication of delta_i and A_i

We have the following PyTorch reference code for Step 1:

# delta[batch, channels, seq_len]
# A [channels, state_size]
delta[:, :, None, :] * A[None, :, :, None]

# Holding batch and state_size constant
# delta_i: [channels, seq_len]
# A_i: [channels]
delta_i[:, :] * A_i[:]

After the above transformation, the multiplication between delta_i and A_i involves a broadcasting across the
seq_len dimension of delta_i. In NKI, free-dimension broadcast can often be folded into the actual computa-
tion instruction at no additional performance cost, while partition-dim broadcast often requires a separate instruction
on TensorE (see TensorE alternative use case in Trainium/Inferentia2 Architecture Guide). As a result, we have two
options for executing Step 1.

Option 1: Map ``seq_len`` to free dimension. Element-wise multiplication of delta_i and A_i on NeuronCore can
be done through nisa.tensor_scalar on either VectorE or ScalarE, which automatically broadcast A_i along the free
dimension to match the seq_len dimension in A_i.

Note, the channels dimension is mapped to SBUF partition dimension. Since the input channels dimension has
a size of 256 in our initial setup, which exceeds the architectural limitation of nl.tile_size.pmax=128 , we must
tile delta_i in the channels dimension (tiled dimension denoted as channels_tiled) and feed one tile into nisa.
tensor_scalar at a time. Figure below illustrates the computation done for Option 1.

Fig. 7.81: Step 1, Option 1: nisa.tensor_scalar

As an example, the associated NKI code for batch i_batch, state i_state and tile i_tile_channels in channels
is:

# Input shape in device memory matches the computation layout
# Device memory layout:
# delta_i: [channels, seq_len]
# A_i: [channels]

# Computation layout in SBUF:
# delta_i: [par_dim(channels), seq_len]
# A_i: [par_dim(channels)]

deltaA_i = nisa.tensor_scalar(delta_i, op0=nl.multiply, operand0=A_i)

Note, with this compute layout option, the delta_i tensor shape [channels, seq_len] in device memory can be
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loaded into SBUF efficiently with seq_len as the free dimension and fed into VectorE/ScalarE for computation. No
extra transposes are needed.

Option 2: Map ``seq_len`` to partition dimension. Alternatively, if we choose a transposed layout for delta_i in
SBUF for computation, we will need a partition-dimension broadcast of A_i using a separate instruction on TensorE
(A_i.broadcast_to(...)) and then a nisa.tensor_tensor operation between delta_i and the broadcast A_i on
VectorE. As a reminder, we need to tile the seq_len dimension to meet the tile size constraint nl.tile_size.
pmax=128. Figure below illustrates the computation done for Option 2.

Fig. 7.82: Step 1, Option 2: p-dim broadcast + nisa.tensor_tensor

The associated NKI code is as follows:

# Input shape in device memory does NOT match the computation layout
# Device memory layout:
# delta_i: [channels, seq_len]
# A_i: [channels]

# Computation layout in SBUF:
# delta_i: [par_dim(seq_len_tiled), channels]
# A_i: [par_dim(1), channels]

A_i_bcast = A_i.broadcast_to((nl.tile_size.pmax, channels))
deltaA_i = nisa.tensor_tensor(delta_i, A_i_bcast, op=ml.multiply)

Assuming the same delta_i device memory layout [channels, seq_len], before performing the nisa.
tensor_tensor instruction, we will need to either:

• Do a regular load of delta_i into SBUF using nl.load and an explicit transpose on the loaded delta_i using
nl.transpose to make seq_len lie in the free dimension, or

• Do a transposed load of delta_i using nl.load_transpose2d, which is significantly less efficient in memory
bandwidth usage compared to nl.load

If Option2 was chosen as the compute layout, we would have incentives to define the delta input tensor shape as
[seq_len, channels] in device memory instead.

From computation perspectives, Option 2 is less efficient than Option 1 because:

1. Option 2 needs an extra TensorE instruction performing partition dimension broadcast.

2. nisa.tensor_tensor is 2x slower than nisa.tensor_scalar for our input data type FP32 (see API doc for
instruction cost estimates).

Therefore, for Step 1 only, Option 1 is the winner compared to Option 2. Let’s continue with the rest of the steps to see
if we need to revise this selection due to surrounding operator layout preferences.
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Step 2: Exponential of deltaA_i.

Step 2 is evaluating exponential on deltaA_i from the previous step:

torch.exp(...)

In NeuronCore, evaluating an exponential function on a tensor is considered a scalar operation, which runs on ScalarE.
This operation can be invoked through nl.exp or nisa.activation. However, ScalarE is able to perform a “pipelined
multiply-add” on the input before evaluating a non-linear function (detail see Trainium/Inferentia2 Architecture Guide).
In other words, we can fold Step 1 (Option 1) nisa.tensor_scalar and Step 2 into a single ScalarE instruction at
no additional cost. This functionality is only exposed in the nisa.activation API. This folding is not feasible if we
chose Option 2 nisa.tensor_tensor in Step 1. Figure below illustrates our new execution plan to combine Step 1
and 2 into nisa.activation :

Fig. 7.83: Step 1&2: nisa.activation

The associated NKI code is as follows:

# Input shape in device memory matches the computation layout
deltaA_i = nisa.activation(op=nl.exp, data=delta_i, scale=A_i)

Step 3: Element-wise multiplication of delta_i, B_i and u_i.

PyTorch reference code for Step 3 is:

# delta[batch, channels, seq_len]
# B: [batch, state_size, seq_len]
# u: [batch, channels, seq_len]
delta[:, :, None, :] * B[:, None, :, :] * u[:, :, None, :]

# Holding batch and state_size constant
# delta_i: [channels, seq_len]
# B_i: [seq_len]
# u_i: [channels, seq_len]
delta_i[:, :] * B_i[None, :] * u_i[:, :]

This step involves similar compute layout and instruction choices as Step 1:

• channels is either partition or free dimension for both delta_i and u_i

• multiplication with B_i is either through nisa.tensor_tensor or nisa.tensor_scalar

Since we preferred Step 1 to consume delta_i using channels as the partition dimension in previous steps, it is wise
to follow the same layout choice here for delta_i to avoid any transposes. Given this layout choice, the multiplication
with B_i will have to be a nisa.tensor_tensor. Figure below visualizes the computation in Step 3:
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Fig. 7.84: Step 3: p-dim broadcast + 2x nisa.tensor_tensor

The associated NKI code is as follows:

# Input shape in device memory does NOT match the computation layout
# Device memory layout:
# delta_i: [channels, seq_len]
# u_i: [channels, seq_len]
# B_i: [seq_len]

# Computation layout in SBUF:
# delta_i: [par_dim(channels_tiled), seq_len]
# u_i: [par_dim(channels_tiled), seq_len]
# B_i: [par_dim(1), seq_len]

deltaU_i = nisa.tensor_tensor(delta_i, u_i, op=ml.multiply)
B_i_bcast = B_i.broadcast_to((nl.tile_size.pmax, seq_len))
deltaBu_i = nisa.tensor_tensor(deltaU_i, B_i_bcast, op=ml.multiply)

Step 4: Associative scan between deltaA_i and deltaBu_i

In this step, we use an associative scan operator between deltaA and deltaBu to aggregate information across time
sequentially (sequence length, e.g. sequence of tokens), from the past to the present. Here is a PyTorch reference
implementation:

# deltaA: [batch_size, channels, state_size, seq_len]
# deltaB_u: [batch_size, channels, state_size, seq_len]
out = torch.empty(batch_size, channels, state_size, seq_len,

device=deltaA.device, dtype=deltaA.dtype)

for i in range(seq_len):
# starting state is 0
prev_state = out[..., i - 1] if i > 0 else 0
# multiply deltaA by the previous time step state and then add deltaB_u
out[..., i] = deltaA[..., i] * prev_state + deltaB_u[..., i]

By holding batch and state_size dimensions constant, we get deltaA_i and deltaBu_i both with [channels_tiled,
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seq_len], where channels_tiled is the partition dimension. The associative scan between these two tile shapes
can be implemented in NKI naively through the following loop:

scan_i = nl.ndarray((channels_tiled, seq_len), ...)

# Peeling the first iteration out, which is
# equivalent to loop iterator dependent control flow within the loop
scan_i[0:channels_tiled, 0] = deltaBu[0:channels_tiled, 0]

for i in nl.sequential_range(seq_len - 1):
scan_i[0:channels_tiled, i+1] = deltaA_i[0:channels_tiled, i+1] * scan_i[0:

→˓channels_tiled, i]
+ deltaBu_i[0:channels_tiled, i+1]

Within the loop, the current implementation invokes one instruction for multiplication and another for addition. Since
both instructions are performed among tiles of shape [channels_tiled, 1], we can combine these two instructions
using nisa.tensor_scalar which supports two operators in a pipelined fashion within an instruction at the same cost as
a single operator. Below is a new implementation that could provide 2x speedup compared to the above:

scan_i = nl.ndarray((channels_tiled, seq_len), dtype=deltaA.dtype, buffer=nl.sbuf)
scan_i[0:channels_tiled, 0] = deltaBu[i_p, 0]

for i in nl.sequential_range(seq_len - 1):
scan_i[0:channels_tiled, i+1] = nisa.tensor_scalar(

deltaA[0:channels_tiled, i+1],
op0=nl.multiply,
operand0=scan_i[0:channels_tiled, i],
op1=nl.add,
operand1=deltaBu[0:channels_tiled, i+1])

However, the above loop nest will turn into seq_len many instructions with input tiles that have a single element
per partition in SBUF. In addition, every nisa.tensor_scalar instruction has a data dependency on the output of
the previous instruction. As discussed in the Trainium/Inferentia2 Architecture Guide, these two traits combined in
the instruction sequence is considered extremely inefficient on ScalarE/VectorE, where the static instruction overhead
instead of the useful execution time would be dominating the engine timeline.

Conveniently, NKI exposes another instruction nisa.tensor_tensor_scan on VectorE, which can perform the above loop
nest in a single instruction by caching the intermediate scan result from the previous time step internally in VectorE
without going through SBUF.

scan_i = nisa.tensor_tensor_scan(deltaA_i, deltaBu_i, initial=0,
op0=np.multiply, op1=np.add)

Note, the shape of scan_i is exactly the same as the input deltaA_i/deltaBu_i: [channels_tiled, seq_len].
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Step 5: Element-wise multiplication of C_i and scan_i

The PyTorch reference implementation is:

# scan_res: [batch_size, channels, state_size, seq_len]
# C: [batch_size, state_size, seq_len]
scanC = C[:, None, :, :] * scan_res

# Holding batch and state constant
# scan_i: [channels_tiled, seq_len]
# C_i: [seq_len]
scanC_i = C_i[None, :] * scan_i[:, :]

You know the drill - Since channels_tiled is the partition dimension in scan_i from the previous step, we need to
perform a partition-dimension broadcast on C_i before invoking nisa.tensor_tensor:

Fig. 7.85: Step 5: p-dim broadcast + nisa.tensor_tensor

The corresponding NKI code is:

C_i_bcast = C_i.broadcast((nl.tile_size.pmax, seq_len))
scanC_i = nisa.tensor_tensor(scan_i, C_i_bcast, op=ml.multiply)

Step 6: Accumulation of scanC_i along state_size dimension

So far in Step 1-5, all the computation is logically parallel across the state_size dimension in a Mamba layer. The
next step of computation introduces data dependency along the state_size dimension for the first time. The PyTorch
reference implementation is:

# scan_res: [batch_size, channels, state_size, seq_len]
# C: [batch_size, state_size, seq_len]
# -2 dim is state_size
scanC.sum(dim=-2)

# Holding batch constant only.
# scan_i_states: [channels_tiled, state_size, seq_len]
(scanC_i).sum(dim=-2)

In NKI, we can accumulate the scanC_i results across states element-wise using state_size-1 number of nisa.
tensor_tensor instructions:

Since we will be looping over different states, we can also declare an empty accumulation buffer scanC_accum of
shape [channels_tiled, seq_len] outside of the loop structure and accumulate into this buffer at the end of the
every loop iteration using += operator. The use of a single accumulation buffer avoids allocating memory for scanC_i
across all states in SBUF. The corresponding NKI code is:
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Fig. 7.86: Step 6: state_size-1 number of nisa.tensor_tensor

scanC_accum = nl.zeros(...)

for i_state in nl.affine_range(state_size):
scanC_i = ...
scanC_accum += scanC_i

Initial NKI Kernel

Putting all the pieces together from the previous section, we can arrive at the below kernel implementation mamba_v1:

1 import neuronxcc.nki as nki
2 import neuronxcc.nki.language as nl
3 import neuronxcc.nki.isa as nisa
4 import numpy as np
5

6 @nki.jit
7 def mamba_v1(delta, u, A, B, C):
8 """Computes the SSM operation in the Mamba model.
9

10 :param delta: (batch_size, channels, seq_len)
11 :param u: (batch_size, channels, seq_len)
12 :param A: (channels, state_size)
13 :param B: (batch_size, state_size, seq_len)
14 :param C: (batch_size, state_size, seq_len)
15 :return: (batch_size, channels, seq_len)
16 """
17 batch_size, channels, seq_len = delta.shape
18 output = nl.ndarray((batch_size, channels, seq_len), dtype=delta.dtype,
19 buffer=nl.shared_hbm)
20

21 _, state_size = A.shape
22

23 # We can relax this using mask paramters in all the NKI API calls
24 assert channels % 128 == 0
25

26 # Map channels to the partition dimension
27 # Tile channels to comply with NKI tile size constraints
28 channel_psize = nl.tile_size.pmax
29 n_channel_tile = channels // channel_psize
30

31 # Most outer loop with batch_size, parallel_for
32 for i_batch in nl.affine_range(batch_size):

(continues on next page)
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(continued from previous page)

33 # partial accumulated scanC result with processed states
34 scanC_accum = nl.zeros((n_channel_tile, nl.par_dim(channel_psize), seq_len),␣

→˓dtype=delta.dtype)
35

36 # Second outer loop with state_size, partial parallel
37 for i_state in nl.affine_range(state_size):
38

39 # Inner loop: tiling channels
40 for i_channel_tile in nl.affine_range(n_channel_tile):
41 channel_start = i_channel_tile * channel_psize
42

43 # Load the relevant tile from delta and A
44 delta_i = nl.load(delta[i_batch, channel_start:channel_start+channel_

→˓psize, 0:seq_len])
45 A_i = nl.load(A[channel_start:channel_start+channel_psize, i_state])
46

47 # Step 1&2: Element-wise multiplication of delta_i and A_i and then␣
→˓exponential

48 deltaA = nisa.activation(op=nl.exp, data=delta_i, scale=A_i)
49

50 # Load the relevant tile from u and B
51 u_i = nl.load(u[i_batch, channel_start:channel_start+channel_psize, 0:

→˓seq_len])
52 B_i = nl.load(B[i_batch, i_state:i_state+1, 0:seq_len])
53

54 # Step 3: Element-wise multiplication of delta_i, B_i and u_i
55 deltaU = nisa.tensor_tensor(delta_i, u_i, op=nl.multiply)
56 B_i_bcast = B_i.broadcast_to((channel_psize, seq_len))
57 deltaBu = nisa.tensor_tensor(deltaU, B_i_bcast, op=nl.multiply)
58

59 # Step 4: Associative scan between deltaA and deltaBu
60 scan_res = nki.isa.tensor_tensor_scan(deltaA, deltaBu, initial=0,
61 op0=np.multiply, op1=np.add)
62

63 # Load the relevant tile from C
64 C_i = nl.load(C[i_batch, i_state:i_state+1, 0:seq_len])
65

66 # Step 5: Element-wise multiplication of scan_res and C_i
67 C_i_bcast = C_i.broadcast_to((channel_psize, seq_len))
68 scanC = nisa.tensor_tensor(scan_res, C_i_bcast, op=nl.multiply)
69

70 # Step 6: Accumulation of scanC along state_size dimension
71 # scanC_accum[i_channel_tile, 0:channel_psize, 0:seq_len] = nisa.tensor_

→˓tensor(
72 # scanC_accum[i_channel_tile, 0:channel_psize, 0:seq_len], scanC,

→˓ op=nl.add)
73 scanC_accum[i_channel_tile, 0:channel_psize, 0:seq_len] += scanC
74

75 # Store scanC_accum for a single batch to output
76 for i_channel_tile in nl.affine_range(n_channel_tile):
77 channel_start = i_channel_tile * channel_psize
78 nl.store(output[i_batch, channel_start:channel_start+channel_psize, 0:seq_

(continues on next page)
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(continued from previous page)

→˓len],
79 scanC_accum[i_channel_tile, 0:channel_psize, 0:seq_len])
80

81 return output

In the above code example,

• We have three levels of loop nests. From the outer-most to inner-most:
– Iterating over batch: Different batch samples perform completely different computation. A tensor

is the only input parameter that is shared among batch samples.

– Iterating over state_size: Different states perform parallel computation until Step 6 as discussed
in the previous section. Both delta and u tensors are shared across different states.

– Iterating over channels: This is the most-inner dimension where we tile the input channels di-
mension into nl.tile_size.pmax=128 chunks. Both B and C tensors are shared across different
channels.

• The kernel above assumes channels is a multiple of nl.tile_size.pmax=128 . We can relax this by adding a
mask parameter in all the NKI API call in the kernel. To simplify the code example, we omit this change. See
NKI API Masking for more information.

• We declare an empty intermediate tensor scanC_accum to hold partial summation from every state.

• Within the inner loop, we process data for nl.tile_size.pmax=128 channels for one batch sample in
one state.

– We use the slicing syntax to index a tensor. For example, delta[i_batch, channel_start:
channel_start+channel_psize, 0:seq_len] grabs data from the input delta tensor for the
current range of channels at the current batch sample.

– Note, in tensor slicing, the first index dimension from the left with a slicing range will be
chosen as the partition dimension. When loading B, since we intend to load only one state’s
worth of data into one partition of SBUF (discussed in Step 3), we need to explicitly slice the
state using: nl.load(B[i_batch, **i_state:i_state+1**, 0:seq_len]). Otherwise, nl.
load(B[i_batch, **i_state**, 0:seq_len]) will treat seq_len as the partition dimension,
which is not what we planned for in Step 3 and would also trigger a NKI compilation error since
seq_len exceeds nl.tile_size.pmax.

– We accumulate partial scanC_i results into the accumulation buffer using the += operator. This
creates a loop-carried dependency for scanC_accum on the i_state loop.

Performance Check

Let’s re-run neuron-profile on the above NKI kernel:

Hooray! This NKI kernel implementation now takes 172.93 usec, which is 878x speedup compared to the reference
PyTorch implementation. Based on the profile, VectorE is the busiest compute engine in the Mamba layer. This makes
sense because the bulk of computation in the kernel is in nisa.tensor_tensor, which can only run on VectorE.

Therefore, our goal is to keep VectorE as busy as possible throughout execution. Note, every NEFF execution involves
certain start-up and tear-down overhead. We can use the Selection Summary feature in neuron-profile to find
out the percentage of time VectorE is busy during the actual execution period:

As indicated by the above profile, VectorE is active over 98.71% of the time, which is rather impressive. However,
remember we used small input shapes as a toy example to get started: [batch=1, seq_len=512, channels =
256, n = 16]. Next, let’s increase the channels and seq_len dimensions one by one and observe how VectorE
efficiency changes.
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Fig. 7.87: Profile of initial Mamba kernel implementation mamba_v1

Fig. 7.88: Profile of initial Mamba kernel implementation mamba_v1 (zoomed in)
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Increasing input channels size

Let’s increase the size of channels by 16x, from 256 to a more realistic value 4096. We obtain the following profile:

Fig. 7.89: Profile of mamba_v1 kernel with 4K channels

The new device execution time with increased channels is now 2.34 ms. We can see that VectorE active duration has
dropped to 92.16% during the core execution period, compared to 98.71% previously with the toy example. Let’s
zoom into an arbitrary region of the profile to see what could be causing VectorE to go idle:

Fig. 7.90: mamba_v1 kernel blocking on input tensor loading

By identifying a gap where VectorE is completely idle, we can hover over the first executed instruction after the gap
to find out what’s the reason for idleness in the instruction semaphore wait condition. In the above screenshot, the
instruction is pending on S[22] to reach a value of 240, which is set by qSyncIO0 activities. This means VectorE has
been waiting for input tensors to be loaded before performing more computation. If you hover over qSyncIO0 activities
during the VectorE idle period, you can also see the exact input tensor name defined in NKI being loaded in the DMA:

We can find similar VectorE gaps through the execution trace. At this point, we can conclude one of the reasons why we
have a lower VectorE active time percentage is due to blocking input tensor loading (nl.load) activities in the DMA.
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Fig. 7.91: DMA loading tensor u in mamba_v1 profile

Next, let’s spend some time analyzing DMA efficiency.

Zooming out, we can make several observations. First, we see two orange boxes around the qSyncIO0 row. Hovering
over the top left corners of the boxes shows two similar performance warnings for loading IO tensors:

Fig. 7.92: Performance warnings for reloading u and delta tensors

This indicates we reload both the input u and delta tensors around 7 times. This could be inevitable when we don’t
have sufficient on-chip memory (SBUF) to allow full reuse of the input data tensors. However, the profiler shows we
are only hitting around 50% capacity usage throughout execution:

Fig. 7.93: Low SBUF usage

Therefore, the input tensor reloading is likely not justified, and we should investigate whether we can optimize the NKI
kernel to avoid it.

Minimizing data reloading by loop reordering

To understand why delta and u are being reloaded, let’s revisit our input tensor shapes:

• delta: [batch_size, channels, seq_len]

• u: [batch_size, channels, seq_len]

• A: [channels, state_size]

• B: [batch_size, state_size, seq_len]

• C: [batch_size, state_size, seq_len]

7.2. Neuron Kernel Interface (NKI) - Beta 1497



AWS Neuron

Let’s hold batch_size constant since the majority of input tensors have completely different slices for different batch
samples:

• delta: [channels, seq_len]

• u: [channels, seq_len]

• A: [channels, state_size]

• B: [state_size, seq_len]

• C: [state_size, seq_len]

delta and u tensors have the same shape with channels as the outer dimensions, while B and C have the same
shape with state_size as the outer dimension. All four of these input tensors have seq_len as the inner dimension.
Therefore, we say delta/u is reused across different states, while B/C are reused across different channels. Given
this conflicting reuse dimensions, we further say it is more important to prioritize reuse of ``delta/u`` because the
expected size of channels is much higher than state_size:

• state_size is now 16 and typically stay small

• channels is now 4096 and typically in the thousands

In NKI, we can prioritize delta/u reuse through loop ordering. Recall in the initial NKI kernel implementation, we
have the following inner loops:

...
for i_state in nl.affine_range(state_size):

for i_channel_tile in nl.affine_range(n_channel_tile):
# step 1-6

...

Since these two loops are executed serially within a single NeuronCore, the loop instances will be unrolled by Neuron
Compiler. With the channel dimension in the fastest dimension, we will need to load delta/u across all channels in
the first state, and then likely reload them again in the later states due to a large total memory size in delta and u
(16MB in this case).

To prioritize reuse of delta/u, we should reorder the above loop nests. To further enforce the reuse, we can hoist the
nl.load calls for delta/u outside of the i_state inner loop:

...
for i_channel_tile in nl.affine_range(n_channel_tile):

delta_i = nl.load(...)
u_i = nl.load(...)

for i_state in nl.affine_range(state_size):
# step 1-6

...

As a side effect of this loop re-ordering, we can also spot a loop fusion opportunity since we have two i_channel_tile
loop nests at the same level now:

scanC_accum = nl.zeros((n_channel_tile, nl.par_dim(channel_psize), seq_len), ...)
...

# First i_channel_tile loop
for i_channel_tile in nl.affine_range(n_channel_tile):

delta_i = nl.load(...)
u_i = nl.load(...)

(continues on next page)
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(continued from previous page)

for i_state in nl.affine_range(state_size):
# step 1-6

# Second i_channel_tile loop
for i_channel_tile in nl.affine_range(n_channel_tile):

nl.store(..., scanC_accum[i_channel_tile, 0:channel_psize, 0:seq_len])

...

By fusing the two i_channel_tile loop nests into a single loop nest, we can pull the declaration of scanC_accum in-
side the i_channel_tile loop and further reduce the scanC_accum size requirement by a factor of n_channel_tile
:

...

# First i_channel_tile loop
for i_channel_tile in nl.affine_range(n_channel_tile):

scanC_accum = nl.zeros((nl.par_dim(channel_psize), seq_len), ...)

delta_i = nl.load(...)
u_i = nl.load(...)

for i_state in nl.affine_range(state_size):
# step 1-6

nl.store(..., scanC_accum[i_channel_tile, 0:channel_psize, 0:seq_len])

...

Let’s modify our initial NKI kernel implementation accordingly to get mamba_v2:

1 @nki.jit
2 def mamba_v2(delta, u, A, B, C):
3 """Computes the SSM operation in the Mamba model.
4

5 :param delta: (batch_size, channels, seq_len)
6 :param u: (batch_size, channels, seq_len)
7 :param A: (channels, state_size)
8 :param B: (batch_size, state_size, seq_len)
9 :param C: (batch_size, state_size, seq_len)

10 :return: (batch_size, channels, seq_len)
11 """
12 batch_size, channels, seq_len = delta.shape
13 output = nl.ndarray((batch_size, channels, seq_len), dtype=delta.dtype,
14 buffer=nl.shared_hbm)
15 _, state_size = A.shape
16

17 assert channels % 128 == 0
18

19 # Map channels to the partition dimension
20 # Tile channels to comply with NKI tile size constraints

(continues on next page)
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(continued from previous page)

21 channel_psize = nl.tile_size.pmax
22 n_channel_tile = channels // channel_psize
23

24 # Most outer loop with batch_size, parallel_for
25 for i_batch in nl.affine_range(batch_size):
26

27 # Second outer loop: tiling channels
28 for i_channel_tile in nl.affine_range(n_channel_tile):
29 channel_start = i_channel_tile * channel_psize
30

31 # partial accumulated scanC result with processed states
32 scanC_accum = nl.zeros((nl.par_dim(channel_psize), seq_len), dtype=delta.

→˓dtype)
33

34 # Load delta/u once to be reused across states
35 delta_i = nl.load(delta[i_batch, channel_start:channel_start+channel_psize,␣

→˓0:seq_len])
36 u_i = nl.load(u[i_batch, channel_start:channel_start+channel_psize, 0:seq_

→˓len])
37

38 # Inner loop with state_size, partial parallel
39 for i_state in nl.affine_range(state_size):
40 # Load the relevant tile from A
41 A_i = nl.load(A[channel_start:channel_start+channel_psize, i_state])
42

43 # Step 1&2: Element-wise multiplication of delta_i and A_i and then␣
→˓exponential

44 deltaA = nisa.activation(op=nl.exp, data=delta_i, scale=A_i)
45

46 # Load the relevant tile from B
47 B_i = nl.load(B[i_batch, i_state:i_state+1, 0:seq_len])
48

49 # Step 3: Element-wise multiplication of delta_i, B_i and u_i
50 deltaU = nisa.tensor_tensor(delta_i, u_i, op=nl.multiply)
51 B_i_bcast = B_i.broadcast_to((channel_psize, seq_len))
52 deltaBu = nisa.tensor_tensor(deltaU, B_i_bcast, op=nl.multiply)
53

54 # Step 4: Associative scan between deltaA and deltaBu
55 scan_res = nki.isa.tensor_tensor_scan(deltaA, deltaBu, initial=0,
56 op0=np.multiply, op1=np.add)
57

58 # Load the relevant tile from C
59 C_i = nl.load(C[i_batch, i_state:i_state+1, 0:seq_len])
60

61 # Step 5: Element-wise multiplication of scan_res and C_i
62 C_i_bcast = C_i.broadcast_to((channel_psize, seq_len))
63 scanC = nisa.tensor_tensor(scan_res, C_i_bcast, op=nl.multiply)
64

65 # Step 6: Accumulation of scanC along state_size dimension
66 scanC_accum[0:channel_psize, 0:seq_len] += scanC
67

68 # Store scanC_accum for a single batch to output

(continues on next page)
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69 nl.store(output[i_batch, channel_start:channel_start+channel_psize, 0:seq_
→˓len],

70 scanC_accum[0:channel_psize, 0:seq_len])
71

72 return output

We recapture the profile for the new kernel implementation:

Fig. 7.94: Profile of mamba_v2 kernel with loop reordering optimization

The device execution time is now 1.61 ms, which is a 31% reduction in latency compared to our initial kernel im-
plementation. We can also see VectorE active duration is back up to 99.63% and the performance warnings on input
tensor reloading are now gone. In case you are curious, the above loop reordering optimization alone provides around
30% of latency reduction, while the loop fusion optimization contributes the remaining 1% performance boost. This
makes sense because the loop reordering addresses our key performance concern around input data reloading, while
reducing intermediate tensor size is only a nice-to-have given we were quite low on SBUF usage to begin with.

Increasing input seq_len size

Next, let’s increase the input seq_len by 16x, from 512 to 8192 and recompile the above NKI kernel. Below is the
associated performance profile:

The new profile now takes 53.33 ms, which is 33x longer than the previous profile. VectorE active duration has
dropped down to a new low: 58.93%. Compared to the profile captured with a smaller seq_len, we notice new DMA
activity rows qSyncSpillReload0 and qVectorSpillReload0 , which are associated with data movement traffic
for intermediate data spill from SBUF into device memory or reload back to SBUF. Zooming into a smaller portion of
the profile:

We can see VectorE enters idle states due to a blocking semaphore wait for qSyncSpillReload0 activities, which
indicates the extra spill/reload is indeed degrading overall computation performance. In addition, we can see low
SBUF usage peaking at merely 50%. Computation and data movement are also not overlapped properly, leading to low
average utilization in both compute engines and DMA throughput in the overall timeline.
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Fig. 7.95: Profile of mamba_v2 kernel with 8K seq_len

Fig. 7.96: Poor overlap of computation and data movement
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Intuitively, increasing seq_len of the kernel increases the active tile sizes of input and intermediate tensors in the free
dimension, which could cause severe fragmentation in SBUF and excessive data movements to spill/reload tensors in
SBUF. To mitigate these inefficiencies, we must tile the seq_len dimension in our NKI kernel through a new loop
level.

Mitigate spilling by tiling seq_len

We have three key considerations when adding this new loop level:

1. tile size selection,

2. loop-carried dependency handling

3. loop ordering with other loop nests.

Tile size of ``seq_len``. Since previously with seq_len=512 in our toy example, we were able to achieve close to
100% VectorE utilization, let’s set the tile size seq_len_fsize to 512 as a starting point. We can revisit this decision
as needed once we obtain a new profile.

Loop-carried dependency. Splitting seq_len into chunks is straightforward for all computation steps except for Step
4. In the associative scan operation, the next loop iteration requires results from the previous iteration for computation.
As a result, we will introduce another loop-carried dependency here with the scan tiles. This dependency can be
handled through the initial input parameter:

scan_init = nl.zeros((channel_psize, 1), ...)

for i_seq_len_tile in static_range(seq_len // seq_len_fsize):
scan_i = nisa.tensor_tensor_scan(deltaA, deltaBu, initial=scan_init,

op0=np.multiply, op1=np.add)
scan_init = scan_i[0:channel_psize, seq_len_fsize-1]

Note, we choose to use static_range instead of affine_range due to the new loop-carried dependencies.

Loop ordering. Recall from our latest NKI kernel implementation, we have the following loop nest:

...
for i_batch in nl.affine_range(batch_size):

for i_channel_tile in nl.affine_range(n_channel_tile):
scanC_accum = nl.zeros((nl.par_dim(channel_psize), **seq_len**), ...)

delta_i = nl.load(delta[i_batch, channel_start:channel_start+channel_psize, 0:
→˓**seq_len**])

u_i = nl.load(u[i_batch, channel_start:channel_start+channel_psize, 0:**seq_
→˓len**])

for i_state in nl.affine_range(state_size):
A_i = nl.load(A[channel_start:channel_start+channel_psize, i_state])

B_i = nl.load(B[i_batch, i_state:i_state+1, 0:**seq_len**])
C_i = nl.load(C[i_batch, i_state:i_state+1, 0:**seq_len**])

deltaA = ...
deltaBu = ...
scanC = ...
...

(continues on next page)
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scanC_accum += ...

nl.store(..., scanC_accum[i_channel_tile, 0:channel_psize, 0:**seq_len**])
...

Let’s denote the above loop ordering as [batch_size, n_channel_tile, state_size], and our key question here
is where to insert seq_len in this list.

Appending seq_len to the above list, that is, making seq_len the new inner-most loop, would involve the least amount
of code changes to our current NKI kernel. However, it will lead to the least amount of SBUF usage reduction, since
this loop ordering won’t be tiling scanC_accum, delta_i and u_i tensors. Given seq_len=8192 and FP32 data
types, these three tensors will occupy 81924B3 = 96 KiB/partition, half of the available SBUF capacity. Let’s go ahead
and experiment this loop ordering in a new kernel mamba_v3:

Fig. 7.97: Profile of mamba_v3 kernel with seq_len tiling optimization

With the above profile, the kernel now takes 27.8 ms, which is 48% reduction in latency compared to no seq_len
tiling. VectorE is now 94.85% active, and we no longer have spilling related DMA activities.

Finally, since the key advantage of Mamba compared to Transformer models is Mamba’s computation and latency
should scale linearly with respect to seq_len, instead of quadratically in Transformers, let’s plot the measured kernel
latencies across different seq_len up to 8K (what we have optimized so far) and compare it against “perfect latencies”
assuming linear scaling from seq_len=512. We evaluate scaling efficiency using perfect latency / measured
latency, which is a higher the better metric. Finally, to showcase the importance of the last seq_len tiling optimization
for scaling seq_len, we also compare scaling efficiency for mamba_v2 (no seq_len tiling) and mamba_v3 (seq_len tiling).
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seq_lenPerfect La-
tency (ms)

mamba_v2 Mea-
sured Latency (ms)

mamba_v2
Scaling Effi-
ciency

mamba_v3 Mea-
sured Latency (ms)

mamba_v3
Scaling Effi-
ciency

512 N/A 1.6 N/A 1.6 N/A
1024 3.2 4.4 72.73% 3.3 96.97%
2048 6.4 8.9 71.91% 6.6 96.97%
3072 9.6 13.1 73.28% 10.1 95.05%
4096 12.8 17.6 72.73% 13.3 96.24%
5120 16 23.7 67.51% 17.3 92.49%
6144 19.2 27.5 69.82% 19.6 97.96%
7168 22.4 41.3 54.24% 24.2 92.56%
8192 25.6 52.2 49.04% 27.8 92.09%

The above data shows the last NKI kernel implementation mamba_v3 can reach 90%+ scaling efficiency up to 8K
seq_len. To support even larger seq_len, we will need more aggressive tiling by pulling the seq_len loop level
further towards the outer-loop level to tile more input/intermediate tensors to keep spilling low and VectorE busy.

Download All Source Code

Click the links to download source code of the kernels and the testing code discussed in this tutorial.

• PyTorch reference implementation: mamba_torch.py

• Three versions of NKI kernels: mamba_nki_kernels.py

You can also view the source code in the GitHub repository nki_samples

Example usage of the scripts:

Performance mode
Run PyTorch reference implementation to generate a NEFF for profiling:

python3 mamba_torch.py --mode perf

Check performance numbers of mamba_v1/mamba_v2/mamba_v3:

python3 mamba_nki_kernels.py --mode perf --version v1 v2 v3 --batch 1 --seq_len 2048 --
→˓channels 512 --state_size 16

Accuracy mode
Check mamba_v1 NKI kernel accuracy against PyTorch implementation:

python3 mamba_torch.py --mode accuracy

Check optimized Mamba kernel (mamba_v2, mamba_v3) accuracy against mamba_v1:

python3 mamba_nki_kernels.py --mode accuracy --version v1 v2 v3 --batch 1 --seq_len 2048␣
→˓--channels 512 --state_size 16

This document is relevant for: Inf2, Trn1, Trn2

• SPMD Tensor addition
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• SPMD Tensor addition with multiple Neuron Cores

• Transpose2D

• AveragePool2D

• Matrix multiplication

• RMSNorm

• Fused Self Attention

• LayerNorm

• Fused Mamba

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

NKI Kernels

nki.kernels

The source code of the kernels in the neuronxcc.nki.kernels namespace is available at the GitHub Repository nki-
samples. They are optimized kernels from the Neuron Team serving as samples. The repository also contains numeric
tests, performance benchmarks, as well as scripts to use them in real models.

You are welcome to customize them to fit your unique workloads, and contributing to the repository by opening a PR.
Note that these kernels are already being deployed as part of the Neuron stack. With flash attention as an example, com-
piling Llama models with transformers-neuronx will automatically invoke the flash_fwd kernel listed here. Therefore,
replacing the framework operators with these NKI kernels likely won’t result in extra performance benefit.

See the README page of the GitHub Repository nki-samples for more details.

The documentation of the kernels is available at https://aws-neuron.github.io/nki-samples.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

Misc

This document is relevant for: Inf2, Trn1, Trn2

NKI FAQ

When should I use NKI?

NKI enables customers to self serve, onboard novel deep learning architectures, and implement operators currently
unsupported by traditional ML Framework operators. With NKI, customers can experiment with models and operators
and can create unique differentiation. Additionally, in cases where the compiler’s optimizations are too generalized
for a developers’ particular use case, NKI enables customers to program directly against the Neuron primitives and
therefore optimize performance of existing operators that are not being compiled efficiently.
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Which AWS chips does NKI support?

NKI supports all families of chips included in AWS custom-built machine learning accelerators, Trainium and Inferen-
tia. This includes the second generation chips and beyond, available in the following instance types: Inf2, Trn1, Trn1n
and Trn2.

Which compute engines are supported?

The following AWS Trainium and Inferentia compute engines are supported: Tensor Engine, Vector Engine, Scalar
Engine, and GpSimd Engine. For more details, see the NeuronDevice Architecture Guide, and refer to nki.isa APIs to
identify which engines are utilized for each instruction.

How do I launch a NKI kernel onto a logical NeuronCore with Trainium2 from NKI?

A logical NeuronCore (LNC) can consist of multiple physical NeuronCores. In the current Neuron release, an LNC on
Trainium2 can have up to two physical NeuronCores (subject to future changes).

For more details on NeuronCore configurations, see Logical NeuronCore configurations.

In NKI, users can launch a NKI kernel onto multiple physical NeuronCores within a logical NeuronCore using single
program, multiple data (SPMD) grids.

For a step-by-step guide, refer to the tutorial here: SPMD Tensor addition with multiple NeuronCores.

What ML Frameworks support NKI kernels?

NKI is integrated with PyTorch and JAX frameworks. For more details, see the NKI Kernel as a Framework Custom
Operator.

What Neuron software does not currently support NKI?

NKI does not currently support integration with Neuron Custom C++ Operators, Transformers NeuronX, and Neuron
Collective Communication.

Where can I find NKI sample kernels?

NKI hosts an open source sample repository nki-samples which includes a set of reference kernels and tutorial kernels
built by the Neuron team and external contributors. For more information, see nki.kernels and NKI tutorials.

What should I do if I have trouble resolving a kernel compilation error?

Refer to NKI Error Manual for a detailed guidance on how to resolve some of the common NKI compilation errors.

If you encounter compilation errors from Neuron Compiler that you cannot understand or resolve, you may check out
NKI sample GitHub issues and open an issue if no similar issues exist.
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How can I debug numerical issues in NKI kernels?

We encourage NKI programmers to build kernels incrementally and verify output of small operators one at a time. NKI
also provides a CPU simulation mode that supports printing of kernel intermediate tensor values to the console. See
nki.simulate for a code example.

How can I optimize my NKI kernel?

To learn how to optimize your NKI kernel, see the NKI Performance Guide.

Does NKI support entire Neuron instruction set?

Neuron will iteratively add support for the Neuron instruction set through adding more nki.isa (Instruction Set Archi-
tecture) APIs in upcoming Neuron releases.

Will NKI APIs guarantee backwards compatibility?

The NKI APIs follow the Neuron Software Maintenance policy for Neuron APIs. For more information, see the SDK
Maintenance Policy.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

Neuron Kernel Interface (NKI) release notes

Neuron Kernel Interface (NKI) (Beta) [2.24]

Date: 06/24/2025

• sqrt valid data range extended for accuracy improvement with wider numerical values support.

• nki.language.gather_flattened new API

• nki.isa.nc_match_replace8 additional param dst_idx

• improved docs/examples on nki.isa.nc_match_replace8, nki.isa.nc_stream_shuffle

• improved error messages

Neuron Kernel Interface (NKI) (Beta) [2.23]

Date: 05/20/2025

• nki.isa.range_select (for trn2) new instruction

• abs, power ops supported on to nki.isa tensor instruction

• abs op supported on nki.isa.activation instruction

• GpSIMD engine support added to add, multiply in 32bit integer to nki.isa tensor operations

• nki.isa.tensor_copy_predicated support for reversing predicate.

• nki.isa.tensor_copy_dynamic_src, tensor_copy_dynamic_dst engine selection.
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• nki.isa.dma_copy additional support with dge_mode, oob_mode, and in-place add rmw_op.

• +=, -=, /=, *= operators now work consistently across loop types, PSUM, and SBUF,

• fixed simulation for instructions: nki.language.rand, random_seed, nki.isa.dropout

• fixed simulation masking behavior

• Added warning when the block dimension is used for SBUF and PSUM tensors, see: NKI Block Dimension
Migration Guide

Neuron Kernel Interface (NKI) (Beta) [2.22]

Date: 04/03/2025

• New modules and APIs:

– nki.profile

– nki.isa new APIs:

∗ tensor_copy_dynamic_dst

∗ tensor_copy_predicated

∗ max8, nc_find_index8, nc_match_replace8

∗ nc_stream_shuffle

– nki.language new APIs: mod, fmod, reciprocal, broadcast_to, empty_like

• Improvements:

– nki.isa.nc_matmul now supports PE tiling feature

– nki.isa.activation updated to support reduce operation and reduce commands

– nki.isa.engine enum

– engine parameter added to more nki.isa APIs that support engine selection (ie, tensor_scalar,
tensor_tensor, memset)

– Documentation for nki.kernels have been moved to the Github: https://aws-neuron.github.io/
nki-samples. The source code can be viewed at https://github.com/aws-neuron/nki-samples.

∗ These kernels are still shipped as part of Neuron package in neuronxcc.nki.kernels module

• Documentation updates:

– Kernels public repository https://aws-neuron.github.io/nki-samples

– Updated profiling guide to use nki.profile instead of nki.benchmark

– NKI ISA Activation functions table now have valid input data ranges listed

– NKI ISA Supported Math operators now have supported engine listed

– Clarify += syntax support/limitation
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Neuron Kernel Interface (NKI) (Beta) [2.21]

Date: 12/16/2024

• New modules and APIs:

– nki.compiler module with Allocation Control and Kernel decorators, see guide for more info.

– nki.isa: new APIs (activation_reduce, tensor_partition_reduce, scalar_tensor_tensor,
tensor_scalar_reduce, tensor_copy, tensor_copy_dynamic_src, dma_copy), new activation
functions(identity, silu, silu_dx), and target query APIs (nc_version, get_nc_version).

– nki.language: new APIs (shared_identity_matrix, tan, silu, silu_dx, left_shift,
right_shift, ds, spmd_dim, nc).

– New datatype: float8_e5m2

– New kernels (allocated_fused_self_attn_for_SD_small_head_size,
allocated_fused_rms_norm_qkv) added, kernels moved to public repository.

• Improvements:

– Semantic analysis checks for nki.isa APIs to validate supported ops, dtypes, and tile shapes.

– Standardized naming conventions with keyword arguments for common optional parameters.

– Transition from function calls to kernel decorators (jit, benchmark, baremetal, simulate_kernel).

• Documentation updates:

– New Direct Allocation Developer Guide

– Tutorial for SPMD usage with multiple Neuron Cores on Trn2

Neuron Kernel Interface (NKI) (Beta)

Date: 12/03/2024

• NKI support for Trainium2, including full integration with Neuron Compiler. Users can directly shard NKI
kernels across multiple Neuron Cores from an SPMD launch grid. See tutorial for more info. See Trainium2
Architecture Guide for an initial version of the architecture specification (more details to come in future releases).

• New calling convention in NKI kernels, where kernel output tensors are explicitly returned from the kernel
instead of pass-by-reference. See any NKI tutorial for code examples.

Neuron Kernel Interface (NKI) (Beta) [2.20]

Date: 09/16/2024

• This release includes the beta launch of the Neuron Kernel Interface (NKI) (Beta). NKI is a programming inter-
face enabling developers to build optimized compute kernels on top of Trainium and Inferentia. NKI empowers
developers to enhance deep learning models with new capabilities, performance optimizations, and scientific in-
novation. It natively integrates with PyTorch and JAX, providing a Python-based programming environment with
Triton-like syntax and tile-level semantics offering a familiar programming experience for developers. Addition-
ally, to enable bare-metal access precisely programming the instructions used by the chip, this release includes
a set of NKI APIs (nki.isa) that directly emit Neuron Instruction Set Architecture (ISA) instructions in NKI
kernels.
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• In addition to documentation, we’ve included many of the innovative kernels used with-in the neuron-compiler
such as mamba and flash attention as open-source samples in a new nki-samples GitHub repository. New kernel
contributions are welcome via GitHub Pull-Requests as well as feature requests and bug reports as GitHub Issues.
For more information see the latest documentation. Included in this initial beta release is an in-depth getting
started, architecture, profiling, and performance guide, along with multiple tutorials, api reference documents,
documented known issues and frequently asked questions.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

NKI Known Issues

This document outlines some of the known issues and limitations for the NKI beta release.

Unsupported Syntax:

1. Top-level tensors must be on HBM. The input and output tensors of the top-level NKI kernel (the kernel function
decorated with nki_jit/nki.baremetal or called by JAX nki_call) must be located in HBM. We currently
do not support using tensors stored in SBUF or PSUM as the input or output of the top-level kernel. Tensors
must be loaded from HBM into SBUF before use, and output tensors must be stored from SBUF back into HBM.
See nl.load and nl.store.

2. Indexing:

• Tile on SBUF/PSUM must have at least 2 dimensions as described here. If using a 1D tile on SBUF/PSUM,
users may get an “Insufficient rank” error. Workaround this by creating a 2D tile, e.g.,

buf = nl.zeros((128, ), dtype=dtype, buffer=nl.sbuf) # this won't work
buf = nl.zeros((128, 1), dtype=dtype, buffer=nl.sbuf) # this works

• Users must index their [N, 1] or [1, M] shaped 2D buffers with both indices, do my_sbuf[0:N, 0] or
my_sbuf[0, 0:M] to access them, since accessing in 1D my_sbuf[0:N] won’t work.

• Use nl.arange for indirect load/store access indexing, nl.mgrid won’t work. See code examples in
nl.load and nl.store.

• If indexing with [0, 0] gets internal errors, try using [0:1, 0:1] or nl.mgrid[0:1, 0:1] instead.

• If indexing with [0:1, ...] gets internal errors, try using [0, ...] instead.

3. Masks conjunction: Use & to combine masks. We do not support using and for masks. See examples in NKI
API Masking.

4. nisa.bn_stats does not support mask on the reduce dimension, the mask sent to bn_stats could not contain any
indices from the reduction dimension.

5. Partition dimension broadcasting is not supported on operator overloads (i.e, +, -, *, /, <<, >>, etc), use nki.
language APIs instead (i.e, nl.add, nl.multiply, . . . ).

6. When direct allocation API is used, non-IO HBM tensors are not supported.

• All tensors declared with buffer=nl.shared_hbm must be returned as the result of the kernel.

• Tensors declared with buffer=nl.hbm or buffer=nl.private_hbm are not allowed.

• An error “[NKI005] (float32 [128, 512] %'<name of the hbm tensor>':5)0: DRAM
location of kind Internal mapping failed. Only input/output/const DRAM location
is supported!” will be thrown when such tensor is encountered.
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Unexpected Behavior:

1. Simulation using nki.simulate_kernel:

• Custom data types like nl.float32r, nl.bfloat16, nl.float8_e4m3, and nl.float8_e5m2 simulate
in fp32 precision. Also, NumPy API calls outside of the NKI kernel, such as np.allclose may not work
with the above types.

2. Execution:

• Unwritten output tensor will have garbage data. See detail here.

• nl.invert (aka bitwise_not) produces incorrect result with bool input type, use int8 type instead.

3. Profiler:

• When using neuron-profile use the flag --disable-dge to workaround a temporary issue with DMA
information. See the Profile using neuron-profile section for more details.

4. Optimization:

• Users need to declare their NKI buffers as small as possible to avoid buffer overflow errors. An error
“[GCA046] Some infinite-cost nodes remain” may mean there’s a buffer overflow, workaround
this by creating smaller local buffers.

5. Compiler passes:

• NKI ISA API may not be one-to-one with generated hardware ISA instructions. The compiler may aid in
the support of these instruction calls by adding additional instructions.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

7.3 Neuron Custom C++ Operators [Beta]

Neuron Custom C++ Operators enable developers to write C++ Custom Operators (“CustomOps”) that run on Neu-
ronCores. This enables developers to extend operator support beyond what is officially supported by Neuron.

Developers can use standard PyTorch custom operators programming interfaces to leverage Neuron Custom C++ Op-
erators feature. This makes it easy to migrate CPU Custom Operators to Neuron, and implement new beta operators,
all without any intimate knowledge of the NeuronCore hardware.

Note: Neuron Custom C++ Operators feature is currently supported on NeuronCore-v2 architecture only, which is
found in Trainium (Trn1) and second-generation Inferentia (Inf2) chips.

This document is relevant for: Inf2, Trn1, Trn2
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7.3.1 API Reference Guide

This document is relevant for: Inf2, Trn1, Trn2

Custom Operators API Reference Guide [Beta]

This page provides the documentation for the C++ API available to creators of Neuron custom C++ operators (see
Neuron Custom C++ Operators [Beta]).

Table of contents

• Tensor Library

• Tensor Accessors

• Streaming Accessors

• TCM Accessor

• Writing Directly to Output Tensor

• Using multiple GPSIMD cores

• printf()

• Library Limitations

Tensor Library

The tensor library used for Neuron custom C++ operators is based upon the PyTorch ATen tensor library. This includes
the core Tensor class as well as select operations defined below. Users need to include the <torch/torch.h> header
to access the tensor library. A small example of using the tensor library looks as follows.

#include <torch/torch.h>
...
torch::Tensor a = torch::zeros({32, 32, 3}, torch::kFloat);

Tensor Factory Functions

The tensor factory functions provide different means for creating new tensors.

They each take in a size argument that specifies the size of each dimension of the tensor created (with the exception
of eye, which takes in two int64’s and creates a strictly 2-dimensional identity matrix.)

c10::TensorOptions allows the specification of optional properties for the tensor being created. Currently, only the
dtype property has an effect on tensor construction, and it must be specified. Other properties, such as layout may
be supported in the future. The example above shows a common way to use factory functions.

The following dtypes are supported:

• torch::kFloat

• torch::kBFloat16

• torch::kHalf
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• torch::kInt

• torch::kChar

• torch::kLong

• torch::kShort

• torch::kByte

torch::Tensor empty(torch::IntArrayRef size, c10::TensorOptions options)
Creates a tensor filled with uninitialized data, with the specified size and options. Slightly faster than other
factory functions since it skips writing data to the tensor.

torch::Tensor full(torch::IntArrayRef size, const Scalar &fill_value, c10::TensorOptions options)
Creates a tensor filled with the specified fill_value, with the specified size and options.

torch::Tensor zeros(torch::IntArrayRef size, c10::TensorOptions options)
Creates a tensor filled with zeros, with the specified size and options.

torch::Tensor ones(torch::IntArrayRef size, c10::TensorOptions options)
Creates a tensor filled with ones, with the specified size and options.

torch::Tensor eye(int64_t n, int64_t m, c10::TensorOptions options)
Creates a 2-D tensor with ones on the diagonal and zeros elsewhere.

Tensor Operation Functions

The tensor library provides commonly used operations defined below. The tensor operation functions do not support
broadcasting; the shape of the operands must match if applicable.

The library provides two styles of functions for each tensor operation. For functions ending with _out, a tensor with
the proper size must be provided to which the output is written. This is illustrated in the example below.

torch::exp_out(t_out, t_in);

Alternatively, for functions that do not end in _out, a new tensor that contains the results of the operation is allocated
and returned as seen in the example below.

torch::Tensor t_out = torch::exp(t_in);

Warning: Only operations that are documented below are supported.

torch::Tensor &abs_out(torch::Tensor &result, torch::Tensor &self)

torch::Tensor abs(torch::Tensor &self)
Computes the absolute value of each element in self.

torch::Tensor &ceil_out(torch::Tensor &result, torch::Tensor &self)

torch::Tensor ceil(torch::Tensor &self)
Computes the ceiling of the elements of self, the smallest integer greater than or equal to each element.

torch::Tensor &floor_out(torch::Tensor &result, torch::Tensor &self)
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torch::Tensor floor(torch::Tensor &self)
Computes the floor of the elements of self, the largest integer less than or equal to each element.

torch::Tensor &sin_out(torch::Tensor &result, torch::Tensor &self)

torch::Tensor sin(torch::Tensor &self)
Computes the sine value of the elements of self.

torch::Tensor &cos_out(torch::Tensor &result, torch::Tensor &self)

torch::Tensor cos(torch::Tensor &self)
Computes the cosine value of the elements of self.

torch::Tensor &tan_out(torch::Tensor &result, torch::Tensor &self)

torch::Tensor tan(torch::Tensor &self)
Computes the tangent value of the elements of self.

torch::Tensor &log_out(torch::Tensor &result, torch::Tensor &self)

torch::Tensor log(torch::Tensor &self)
Computes the natural logarithm of the elements of self.

torch::Tensor &log2_out(torch::Tensor &result, torch::Tensor &self)

torch::Tensor log2(torch::Tensor &self)
Computes the base-2 logarithm of the elements of self.

torch::Tensor &log10_out(torch::Tensor &result, torch::Tensor &self)

torch::Tensor log10(torch::Tensor &self)
Computes the base-10 logarithm of the elements of self.

torch::Tensor &exp_out(torch::Tensor &result, torch::Tensor &self)

torch::Tensor exp(torch::Tensor &self)
Computes the exponential of the elements of self.

torch::Tensor &pow_out(torch::Tensor &result, const torch::Tensor &self, const torch::Scalar &exponent)

torch::Tensor &pow_out(torch::Tensor &result, const torch::Scalar &self, const torch::Tensor &exponent)

torch::Tensor &pow_out(torch::Tensor &result, const torch::Tensor &self, const torch::Tensor &exponent)

torch::Tensor pow(const torch::Tensor &self, const torch::Scalar &exponent)

torch::Tensor pow(const torch::Scalar &self, const torch::Tensor &exponent)

torch::Tensor pow(const torch::Tensor &self, const torch::Tensor &exponent)
Takes the power of each element in self with exponent.

torch::Tensor &clamp_out(torch::Tensor &result, const torch::Tensor &self, const torch::Scalar &minval, const
torch::Scalar &maxval)

torch::Tensor clamp(const torch::Tensor &self, const torch::Scalar &minval, const torch::Scalar &maxval)
Clamps all elements in self into the range [minval, maxval].

torch::Tensor &add_out(torch::Tensor &result, const torch::Tensor &self, const torch::Scalar &other, const
torch::Scalar &alpha = 1)
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torch::Tensor &add_out(torch::Tensor &result, const torch::Tensor &self, const torch::Tensor &other, const
torch::Scalar &alpha = 1)

torch::Tensor add(const torch::Tensor &self, const torch::Scalar &other, const torch::Scalar &alpha = 1)

torch::Tensor add(const torch::Tensor &self, const torch::Tensor &other, const torch::Scalar &alpha = 1)
Adds other, scaled by alpha, to input,

𝑜𝑢𝑡 = 𝑠𝑒𝑙𝑓 + 𝑎𝑙𝑝ℎ𝑎× 𝑜𝑡ℎ𝑒𝑟.

torch::Tensor &sub_out(torch::Tensor &result, const torch::Tensor &self, const torch::Scalar &other, const
torch::Scalar &alpha = 1)

torch::Tensor &sub_out(torch::Tensor &result, const torch::Tensor &self, const torch::Tensor &other, const
torch::Scalar &alpha = 1)

torch::Tensor sub(const torch::Tensor &self, const torch::Tensor &other, const torch::Scalar &alpha = 1)

torch::Tensor sub(const torch::Tensor &self, const torch::Scalar &other, const torch::Scalar &alpha = 1)
Subtracts other, scaled by alpha, to input,

𝑜𝑢𝑡 = 𝑠𝑒𝑙𝑓 − 𝑎𝑙𝑝ℎ𝑎× 𝑜𝑡ℎ𝑒𝑟.

torch::Tensor &mul_out(torch::Tensor &result, const torch::Tensor &self, const torch::Scalar &other)

torch::Tensor &mul_out(torch::Tensor &result, const torch::Tensor &self, const torch::Tensor &other)

torch::Tensor mul(const torch::Tensor &self, const torch::Scalar &other)

torch::Tensor mul(const torch::Tensor &self, const torch::Tensor &other)
Multiplies self by other.

torch::Tensor &div_out(torch::Tensor &result, const torch::Tensor &self, const torch::Scalar &other)

torch::Tensor &div_out(torch::Tensor &result, const torch::Tensor &self, const torch::Tensor &other)

torch::Tensor div(const torch::Tensor &self, const torch::Scalar &other)

torch::Tensor div(const torch::Tensor &self, const torch::Tensor &other)
Divides self by other.

Note: For tensor-tensor bitwise operations, all the bitwise operations are elementwise between two tensors. For scalar-
tensor bitwise operations, the scalar is casted to the datatype of the tensor before computing the bitwise operation.

torch::Tensor &bitwise_and_out(torch::Tensor &result, const torch::Tensor &self, const torch::Tensor &other)

torch::Tensor &bitwise_and_out(torch::Tensor &result, const torch::Tensor &self, const torch::Scalar &other)

torch::Tensor &bitwise_and_out(torch::Tensor &result, const torch::Scalar &self, const torch::Tensor &other)
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torch::Tensor bitwise_and(const torch::Tensor &self, const torch::Tensor &other)

torch::Tensor bitwise_and(const torch::Tensor &self, const torch::Scalar &other)

torch::Tensor bitwise_and(const torch::Scalar &self, const torch::Tensor &other)
Computes the bitwise AND of self and other. The input tensors must be of integral types.

torch::Tensor &bitwise_or_out(torch::Tensor &result, const torch::Tensor &self, const torch::Tensor &other)

torch::Tensor &bitwise_or_out(torch::Tensor &result, const torch::Tensor &self, const torch::Scalar &other)

torch::Tensor &bitwise_or_out(torch::Tensor &result, const torch::Scalar &self, const torch::Tensor &other)

torch::Tensor bitwise_or(const torch::Tensor &self, const torch::Tensor &other)

torch::Tensor bitwise_or(const torch::Tensor &self, const torch::Scalar &other)

torch::Tensor bitwise_or(const torch::Scalar &self, const torch::Tensor &other)
Computes the bitwise OR of self and other. The input tensors must be of integral types.

torch::Tensor &bitwise_not_out(torch::Tensor &result, const torch::Tensor &self)

torch::Tensor bitwise_not(torch::Tensor &result, const torch::Tensor &self)
Computes the bitwise NOT of self. The input tensor must be of integral types.

Class torch::Tensor

Constructors

Users should not call the Tensor constructor directly but instead use one of the Tensor factory functions.

Member Functions

template<typename T, size_t N>
TensorAccessor<T , N , true> accessor() const &

Return a TensorAccessor for element-wise random access of a Tensor’s elements. Scalar type and dimension
template parameters must be specified. This const-qualified overload returns a read-only TensorAccessor,
preventing the user from writing to Tensor elements. See the Tensor Accessors section below for more details.

template<typename T, size_t N>
TensorAccessor<T , N , false> accessor() &

Return a TensorAccessor for element-wise random access of a Tensor’s elements. Scalar type and dimension
template parameters must be specified. This non-const-qualified overload returns a TensorAccessor that can
be used to both read and write to Tensor elements. See the Tensor Accessors section below for more details.

template<typename T>
TensorReadStreamAccessor<T> read_stream_accessor() const &

Opens a streaming accessor for read on a tensor. Template parameter T is the scalar type of the tensor data. See
Streaming Accessors section below for more details.

template<typename T>
TensorWriteStreamAccessor<T> write_stream_accessor() &

Opens a streaming accessor for write on a tensor. Template parameter T is the scalar type of the tensor data. See
Streaming Accessors section below for more details.
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CoherencyEnforcer::Policy get_accessor_coherence_policy() const
Get the Tensor accessor coherence policy. See Coherence section below for more details.

void set_accessor_coherence_policy(CoherencyEnforcer::Policy policy) const
Set the Tensor accessor coherence policy. See Coherence section below for more details.

TensorTcmAccessor<true> tcm_accessor() const &
Opens a TCM accessor on a tensor. This const-qualified overload returns a read-only TensorTcmAccessor,
preventing the user from writing to Tensor elements. See TCM Accessor section below for more details.

TensorTcmAccessor<false> tcm_accessor() &
Opens a TCM accessor on a tensor. This non-const-qualified overload returns a TensorTcmAccessor that can
be used to both read and write to Tensor elements. See TCM Accessor section below for more details.

torch::Tensor &fill_(const torch::Scalar &value) const
Fill a tensor with the specified value.

Tensor Operators

Tensor &operator=(const Tensor &x) &

Tensor &operator=(Tensor &&x) &
Assignment operators

Tensor Accessors

The standard tensor accessor provides element-wise random access to Tensor elements. They can be created by calling
Tensor::accessor(). It can be used similarly to the Pytorch ATen version (see https://pytorch.org/cppdocs/notes/
tensor_basics.html#cpu-accessors). However, it is not as fast as other methods of accessing a Tensor, such as the
streaming accessor or TCM accessor.

Warning: The standard tensor accessors can only be used in single core mode. Using standard tensor accessors
in multicore mode is undefined behaviour and is going to cause race condition, yielding incorrect result.

Example Usage

Element-wise add of two 1D tensors using TensorAccessor.

torch::Tensor tensor_add_compute(const torch::Tensor& t1, const torch::Tensor& t2) {
size_t num_elem = t1.numel();
assert(t1.sizes() == t2.sizes());
torch::Tensor t_out = torch::empty({num_elem}, torch::kFloat);

auto t1_acc = t1.accessor<float, 1>();
auto t2_acc = t2.accessor<float, 1>();
auto t_out_acc = t_out.accessor<float, 1>();
for (size_t i = 0; i < num_elem; i++) {

t_out_acc[i] = t1_acc[i] + t2_acc[i];
}
return t_out;

}

1518 Chapter 7. Compiler

https://pytorch.org/cppdocs/notes/tensor_basics.html#cpu-accessors
https://pytorch.org/cppdocs/notes/tensor_basics.html#cpu-accessors


AWS Neuron

Memory Architecture

Tensor data is stored in HBM. The various types of accessors enable users to access tensor data from their custom C++
operator code running on the GPSIMD engine.
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Streaming Accessors

Streaming accessors provide the user the ability to access Tensor elements in sequential order, faster than the standard
tensor accessor. There are two stream accessor classes, one for reading and one for writing. Users should not construct
stream accessors directly, but should get them from a Tensor using Tensor::read_stream_accessor and Tensor:
:write_stream_accessor().

An active stream accessor is defined as a stream accessor that has been instantiated and not yet closed (via the close()
method or by going out-of-scope).

The user is responsible for managing stream accessors concurrently accessing the same Tensor. For safest usage,
no stream accessor should be active while there is an active TensorWriteStreamAccessor on the same Tensor.
The user may either have multiple TensorReadStreamAccessors active on the same Tensor, or only have a sin-
gle TensorWriteStreamAccessor active on that Tensor. Stream accessors should not be used concurrently with
standard tensor accessors on the same Tensor.

An unlimited number of active stream accessors (in total, across all Tensors) are functionally supported, but only up
to 4 active stream accessors will be performant. Additional stream accessors beyond the 4th will have performance
similar to that of a standard tensor accessor.

Warning: Streaming Accessors can only be used in single core mode. Using streaming accessors in multicore
mode is undefined behaviour and is going to cause race condition, yielding incorrect result.

Example Usage

Element-wise add of two tensors using TensorWriteStreamAccessor and TensorWriteStreamAccessor.

torch::Tensor tensor_add_compute(const torch::Tensor& t1, const torch::Tensor& t2) {
assert(t1.sizes() == t2.sizes());
torch::Tensor t_out = torch::empty(t1.sizes(), torch::kFloat);

auto t1_rd_stm_acc = t1.read_stream_accessor<float>();
auto t2_rd_stm_acc = t2.read_stream_accessor<float>();
auto t_out_wr_stm_acc = t_out.write_stream_accessor<float>();
for (int i = 0; i < t1.numel(); i++) {

auto sum = t1_rd_stm_acc.read() + t2_rd_stm_acc.read();
t_out_wr_stm_acc.write(sum);

}
return t_out;

}

Class torch::TensorWriteStreamAccessor

template<typename T> class TensorReadStreamAccessor

The class template parameter T is the scalar type of the tensor data.
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Member Functions

T read()
Reads from next element in the stream. User is responsible for knowing when to stop reading from
TensorReadStreamAccessor. Reading past the end of the stream or on a closed stream results in undefined
behaviour.

int close()
Closes stream. Do not read from the stream after calling close().

Class torch::TensorWriteStreamAccessor

template<typename T> class torch::TensorWriteStreamAccessor

The class template parameter T is the scalar type of the tensor data.

Member Functions

void write(T value)
Writes to next element in the stream. Written value is not guaranteed to be written back to the Tensor’s mem-
ory until the TensorWriteStreamAccessor goes out of scope, or the user explicitly calls close(). User is
responsible for knowing when to stop writing to a stream accessor. Writing past the end of the stream or on a
closed stream results in undefined behaviour.

int close()
Closes stream. Flushes write data to the Tensor’s memory. Do not write to the stream after calling close().

Coherence

Stream accessors cache Tensor data in GPSIMD tightly-coupled memory (TCM), but do not ensure their caches remain
coherent. When exactly they read from or write back to HBM is opaque to the user (except for close() which forces
a write back).

The safest way to use them is to ensure that no stream accessor is active (instantiated and not yet closed) while there is
an active write stream accessor on the same Tensor. The user should either have multiple read stream accessors active
on the same Tensor, or only have a single write stream accessor active on that Tensor.

The standard tensor accessors read/write HBM directly. Therefore, tensor accessors can safely concurrently access the
same Tensor, but it is safest not to use them concurrently with stream accessors since HBM isn’t guaranteed to be
coherent with the stream accessor caches.

These coarse-grained guidelines are best practices, but it is possible to ignore them with careful usage of the accessors
(making sure elements are read before they are written to, elements written to are written back before being read again,
etc).

The coherence policy of a Tensor determines what to do when there is potentially incoherent access by an accessor
of that Tensor. It can either cause an error, or allow it but print a warning, or do nothing. In the case of the latter
two options, it is the user’s responsibility to ensure they carefully use accessors coherently. Coherence policy for
Tensors is torch::CoherencyEnforcer::Policy::COHERENT by default, but can be changed using Tensor::
set_accessor_coherence_policy().
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// class torch::CoherencyEnforcer
enum Policy {

// Enforce a resource is acquired in a way that guarantees coherence
// Causes an error if it encounters potentially incoherent access
COHERENT,

// Allows potentially incoherent access, but will print a warning
INCOHERENT_VERBOSE,

// Allows potentially incoherent access, no error or warnings
INCOHERENT_QUIET

};

TCM Accessor

TCM accessors provide the fastest read and write performance. TCM accessors allow the user to manually manage
copying data between larger, but slower-access HBM to faster GPSIMD tightly-coupled memory (TCM). It may be
beneficial to see the diagram under Memory Architecture. Create a TensorTcmAccessor from a Tensor by calling
Tensor::tcm_accessor(). Users can allocate and free TCM memory using tcm_malloc() and tcm_free().
Users have access to a 16KB pool of TCM memory. Note the streaming accessors also allocate from this pool (4KB
each). TCM accessors do not do any coherence checks.

Note: See Neuron Custom C++ Operators Performance Optimization for a tutorial on how to use TCM accessors.

Example Usage

Element-wise negate of a tensor using TensorTcmAccessor.

torch::Tensor tensor_negate_compute(const torch::Tensor& t_in) {
size_t num_elem = t_in.numel();
torch::Tensor t_out = torch::empty(t_in.sizes(), torch::kFloat);

static constexpr size_t buffer_size = 1024;
float *tcm_buffer = (float *)torch::neuron::tcm_malloc(sizeof(float) * buffer_size);

if (tcm_buffer != nullptr) {
// tcm_malloc allocated successfully, use TensorTcmAccessor
auto t_in_tcm_acc = t_in.tcm_accessor();
auto t_out_tcm_acc = t_out.tcm_accessor();
for (size_t i = 0; i < num_elem; i += buffer_size) {

size_t remaining_elem = num_elem - i;
size_t copy_size = (remaining_elem > buffer_size) ? buffer_size : remaining_

→˓elem;

t_in_tcm_acc.tensor_to_tcm<float>(tcm_buffer, i, copy_size);
for (size_t j = 0; j < copy_size; j++) {

tcm_buffer[j] *= -1;
}
t_out_tcm_acc.tcm_to_tensor<float>(tcm_buffer, i, copy_size);

(continues on next page)
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(continued from previous page)

}

torch::neuron::tcm_free(tcm_buffer);
} else {

// Handle not enough memory...
}

return t_out;
}

TCM Management Functions

void *torch::neuron::tcm_malloc(size_t nbytes)
Allocate nbytes bytes of memory from TCM and return pointer to this memory. Upon failure, returns null.

void torch::neuron::tcm_free(void *ptr)
Free memory that was allocated by tcm_malloc(). Undefined behaviour if ptrwas not returned from a previous
call to tcm_malloc().

Class torch::TensorTcmAccessor

template<bool read_only> class torch::TensorTcmAccessor

The read_only template parameter controls whether or not you can write to the accessor’s Tensor. A const
Tensor will return a read-only TensorTcmAccessor from Tensor::tcm_accessor().

Member Functions

template<typename T>
void tensor_to_tcm(T *tcm_ptr, size_t tensor_offset, size_t num_elem)

Copy num_elem elements from the accessor’s Tensor starting at the index tensor_offset to a TCM buffer
starting at tcm_ptr. Tensor indexing is performed as if the tensor was flattened. Template parameter T is the
scalar type of the tensor data. The TCM buffer’s size should be at least sizeof(T) * num_elem bytes.

template<typename T>
void tcm_to_tensor(T *tcm_ptr, size_t tensor_offset, size_t num_elem)

Copy num_elem elements from a TCM buffer starting at tcm_ptr to the accessor’s Tensor starting at the index
tensor_offset. Tensor indexing is performed as if the tensor was flattened. The TCM buffer’s size should be
at least sizeof(T) * num_elem bytes.
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Writing Directly to Output Tensor

torch::Tensor get_dst_tensor()
Returns a reference to the Custom C++ operator output tensor (return value). If this method is called, it is
assumed that data will be written to this output tensor, and the tensor returned from the C++ operator will be
ignored. Using this method will improve performance by avoiding additional copying of the return value. See
example below for function usage.

// Example of write to get_dst_tensor()
torch::Tensor example_kernel(const torch::Tensor& t_in) {

size_t num_elem = t_in.numel();
torch::Tensor t_out = get_dst_tensor();
auto t_out_tcm_acc = t_out.tcm_accessor();

float *tcm_buffer = (float *)torch::neuron::tcm_malloc(sizeof(float) * buffer_
→˓size);

// Populate tcm_buffer with results
...
// Write to t_out throught tcm_accessor
t_out_acc.tcm_to_tensor<float>(tcm_buffer, offset, copy_size);

...
}

Using multiple GPSIMD cores

Note: See Neuron Custom C++ Operators Performance Optimization for a tutorial on how to use multiple GPSIMD
cores to execute the Custom C++ Operator

By default, Custom C++ operators target a single core of the GPSIMD-Engine. Performance of Custom C++ operators
can be improved by targeting multiple cores. To enable usage of multiple GPSIMD cores, multicore=True should
be passed to custom_op.load().

custom_op.load(
name=name,
compute_srcs=compute_srcs,
shape_srcs=shape_srcs,
build_directory=os.getcwd(),
multicore=True

)

Each GPSIMD core executes the same kernel function. The user can control the execution on each core by conditioning
the Custom C++ operator logic on the core id (obtained via get_cpu_id() API). This is illustrated in the example
below.

Warning: In multicore mode, tensors can only be accessed through TCM accessors. Using regular tensor accessors
and streaming accessors are going to yield incorrect result.

The following functions are defined in neuron/neuron-utils.hpp
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uint32_t get_cpu_id()
Return the id of the core that the Custom C++ operator is executing on, id is in range [0, get_cpu_count())

uint32_t get_cpu_count()
Return the total number of available GPSIMD cores.

torch::Tensor example_kernel(const torch::Tensor& t_in) {
size_t num_elem = t_in.numel();
torch::Tensor t_out = get_dst_tensor();

uint32_t cpu_id = get_cpu_id();
uint32_t cpu_count = get_cpu_count();

uint32_t partition = num_elem / cpu_count;

float *tcm_buffer = (float *)torch::neuron::tcm_malloc(sizeof(float) * buffer_size);
// Populate tcm_buffer with desired results
...

// Write to t_out with a offset computed from cpu_id and cpu_count
t_out_tcm_acc.tcm_to_tensor<float>(tcm_buffer, partition*cpu_id, copy_size);

...
}

Return Value Handling

When using multiple GPSIMD cores, the get_dst_tensor() API must be used to write the return value of the
Custom C++ operators. Data not written to the tensor reference returned by get_dst_tensor(), or not invoking
get_dst_tensor() will result in undefined behavior. The user is responsible for writing the appropriate portion of
the output reference tensor from a given GPSIMD core. Since there is no synchronization between GPSIMD cores, it
is advised that each GPSIMD core writes to a mutually exclusive partition of the output reference tensor.

printf()

Custom C++ operators support the use of C++’s printf() to send information to the host’s terminal. Using printf()
is the recommended approach to functional debug. With it, the programmer can check the value of inputs, outputs,
intermediate values, and control flow within their operator.

Usage

To use printf() within a Custom C++ operator, the programmer must set the following environment variables before
running their model in order to receive the messages printed by their operator:
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Table 7.9: Environment Variables
Name Description TypeValue to Enable printf Default Value
NEURON_RT_LOG_LEVELRuntime log verbose level StringAt least INFO See (NeuronX Runtime Configu-

ration) for more options.
NEURON_RT_GPSIMD_STDOUT_QUEUE_SIZE_BYTESSize of the printf output buffer,

in bytes
In-
te-
ger

Any power of two that is equal
to or less than 131072 (128KB)

Recommend setting a value of
131072 to maximize the size of
printf’s buffer. Setting a value of
0 disables printf.

Within a Custom C++ operator, printf() can be used as normal from within a C++ program. For more information,
consult a reference such as (https://cplusplus.com/reference/cstdio/printf/)

Example

#include <torch/torch.h>
#include <stdio.h> // Contains printf()

torch::Tensor tensor_negate_compute(const torch::Tensor& t_in) {
size_t num_elem = t_in.numel();
torch::Tensor t_out = torch::zeros({num_elem}, torch::kFloat);

auto t_in_acc = t_in.accessor<float, 1>();
auto t_out_acc = t_out.accessor<float, 1>();
for (size_t i = 0; i < num_elem; i++) {

float tmp = -1 * t_in_acc[i];
printf("Assigning element %d to a value of %f\n", i, tmp);
t_out_acc[i] = tmp;

}
return t_out;

}

Print statements then appear on the host’s terminal with a header message prepended:

2023-Jan-26 00:25:02.0183 4057:4131 INFO TDRV:pool_stdio_queue_consume_all_entries ␣
→˓ Printing stdout from GPSIMD:
Assigning element 0 to a value of -1.000000
Assigning element 1 to a value of -2.000000
Assigning element 2 to a value of -3.000000
Assigning element 3 to a value of -4.000000
Assigning element 4 to a value of -5.000000
Assigning element 5 to a value of -6.000000
Assigning element 6 to a value of -7.000000
Assigning element 7 to a value of -8.000000
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Limitations

• Performance: using printf() significantly degrades the operator’s performance.

– The programmer can disable it by unsetting NEURON_RT_GPSIMD_STDOUT_QUEUE_SIZE_BYTES or setting
it to 0.

∗ We recommend that you disable printf() if you are running the model in a performance-sensitive
context.

– To maximize performance, remove calls to printf() from within the operator.

∗ Even if printf() is disabled, calling the function incurs overhead.

• Buffer size: output from printf() is buffered during model execution and read by the Neuron runtime after
execution.

– The model can still execute successfully if you overflow the buffer.

– Overflowing the buffer causes the oldest data in the buffer to be overwritten.

• Print statements are processed and printed to the host’s terminal at the end of model execution, not in real time.

• printf() is only supported in single core mode, or on GPSIMD core 0 only when using multiple GPSIMD
cores.

Library Limitations

• Tensors passed into and returned from CustomOp functions can either have up to 8 dimensions where the max-
imum size of each dimension is 65535, or up to 4 dimensions where the maximum size of each dimension is
4294967295.

• When using multiple GPSIMD cores, only TensorTcmAccessor is supported. Usage of other accessors results
in undefined behaviour.

• Each model can only have one CustomOp library, and the library can have 10 functions registered. For more
information on function registration in PyTorch, see Implementing an operator in C++ in the Neuron Custom
C++ Operators Developer Guide [Beta].

– However, models using torch.sort cannot have any CustomOps.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

7.3.2 Developer Guide

This document is relevant for: Inf2, Trn1, Trn2
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Neuron Custom C++ Operators Developer Guide [Beta]

This document gives an overview of the Neuron Custom C++ Operator feature and APIs . Currently, CustomOp support
is limited to the PyTorch framework.

Please refer to the following documents for further information regarding Neuron Custom C++ Operators:

• Neuron Custom C++ Operators in MLP Training

• Neuron Custom C++ Operators Performance Optimization

• Custom Operators API Reference Guide [Beta]

Table of contents

• Setup & Installation

• Implementing an operator in C++

• Building and executing operators

• Performance Guidance

• Functional Debug

Setup & Installation

Note: The name of aws-neuronx-gpsimd-customop has been changed to aws-neuronx-gpsimd-customop-lib
as of the neuron 2.10 release.

We provide tooling and library packages (RPM and DEB) that can be installed on TRN1 and INF2 instances:

aws-neuronx-gpsimd-tools-0.3
aws-neuronx-gpsimd-customop-lib-0.3

For AL2023 only, the following packages need be installed as dependencies:

sudo yum install libnsl
sudo yum install libxcrypt-compat

On AL2 and AL2023, they can be installed with the following commands:

sudo yum remove python3-devel -y
sudo yum remove aws-neuronx-gpsimd-tools-0.* -y
sudo yum remove aws-neuronx-gpsimd-customop-lib-0.* -y

sudo yum install python3-devel -y
sudo yum install aws-neuronx-gpsimd-tools-0.* -y
sudo yum install aws-neuronx-gpsimd-customop-lib-0.* -y

On Ubuntu, they can be installed with the following commands:

sudo apt-get remove python3-dev -y
sudo apt-get remove aws-neuronx-gpsimd-tools=0.* -y

(continues on next page)
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(continued from previous page)

sudo apt-get remove aws-neuronx-gpsimd-customop-lib=0.* -y

sudo apt-get install python3-dev -y
sudo apt-get install aws-neuronx-gpsimd-tools=0.* -y
sudo apt-get install aws-neuronx-gpsimd-customop-lib=0.* -y

Implementing an operator in C++

Custom operators require a function that defines the custom computation. We define this as the kernel function.
Neuron Custom C++ Operators also contain a shape function separate from the normal compute code. This shape
function defines the shapes of output tensors for a given set of inputs to the operator. This is needed because PyTorch
Neuron (torch-neuronx) is based on the PyTorch/XLA software package and uses a Just-In-Time (JIT) compilation
strategy. At runtime the operators in the model will be compiled into a binary to be executed on the NeuronCore.
During compilation the shapes of the input and output tensors to operators are computed. The shape function is
executed on the host, whereas the kernel function is executed on the NeuronCore.

Kernel Function

The kernel function contains the C++ implementation of the CustomOp, as shown in the example below. By including
torch.h in the source, the developer has access to a NeuronCore-ported subset of the torch C++ api (https://pytorch.
org/cppdocs/). The port contains everything required for CustomOp development and model integration, specifically
Tensor and Scalar classes in c10, and a subset of aTen operators.

#include <stdint.h>
#include <stdlib.h>
#include <torch/torch.h>

torch::Tensor tensor_negate_compute(const torch::Tensor& t_in) {
size_t num_elem = t_in.numel();
torch::Tensor t_out = torch::zeros({num_elem}, torch::kFloat);

auto t_in_acc = t_in.accessor<float, 1>();
auto t_out_acc = t_out.accessor<float, 1>();
for (size_t i = 0; i < num_elem; i++) {

t_out_acc[i] = -1 * t_in_acc[i];
}
return t_out;

}

The kernel function is the main computational code for the operator. We support a subset of the input types usable
by regular PyTorch Custom Operators: torch::Tensor, torch::Scalar, double, and int64_t. However we do
not support std::vector or std::tuple of these types at this time. Note that similar to regular PyTorch Custom
Operators, only double and not float, and only int64_t and not other integral types such as int, short or long
are supported. The return value must be a torch::Tensor.

Warning: Tensors passed into and returned from CustomOp functions can either have up to 8 dimensions where
the maximum size of each dimension is 65535, or up to 4 dimensions where the maximum size of each dimension
is 4294967295.
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The body of the kernel function may exercise C/C++ libraries, torch::Tensor classes, and select aTen operators, as
is customary for Torch programming. For high performance, feature offerings provide faster memory access, via new
Tensor Accessor classes and stack management compiler flags. Additionally, higher performance can be obtained by
parallelizing execution of the kernel over multiple GPSIMD cores. See the Custom Operators API Reference Guide
[Beta] for more details.

Finally, because the kernel is specially compiled for and run by the NeuronCore target, its tooling, libraries, and en-
vironment differ from the host pytorch installation. For example, while the host may run Pytorch 1.13 and a C++17
compatible compiler in a linux environment, the NeuronCore may run a port of Pytorch 1.12 (c10) and LLVM’s libc++
C++14 version 10.0.1 without linux. Developers must develop for the compiler, torch version, and environment of their
targeted NeuronCore. See the Custom Operators API Reference Guide [Beta] for more details.

Shape Function

The shape function has the same function signature as the kernel function, but does not perform any computations.
Rather, it only defines the shape of the output tensor but not the actual values.

#include <stdint.h>
#include <stdlib.h>
#include <torch/torch.h>

torch::Tensor tensor_negate_shape(torch::Tensor t1) {
size_t num_elem = t1.numel();
torch::Tensor t_out = torch::zeros({num_elem}, torch::kFloat);

return t_out;
}

The body of the shape function may exercise C/C++ libraries or torch::Tensor classes. The body may not access
the data of input tensors since these are XLA Tensors and do not have any data storage allocated yet. However, any of
the functions that access shape information such as numel (to get the number of elements) may be used.

Building and executing operators

Once you have the kernel and shape functions for your operators you can build them into a library to use them from
PyTorch in your model. Just like regular PyTorch Custom Operators, Neuron Custom C++ Operators use a registration
macro to associate the kernel and shape functions with the name of the operator that will be called from Python.

Similar to PyTorch, Neuron Custom C++ Operators are grouped into libraries defined within the
NEURON_LIBRARY(<lib_name>, m) scope, where lib_name is the name of your library of custom operators.
Within this scope, calls to m.def(<op_name>, <shape_fcn>, <kernel_fcn>) define each operator in your
library. The op_name is the name to call the operator with in the model (i.e. torch.ops.lib_name.op_name()).
The shape_fcn is a function pointer to the shape function to call during compilation. Finally the kernel_fcn is the
name of the function to be executed on the NeuronCore at runtime.

#include <stdint.h>
#include <stdlib.h>
#include <torch/torch.h>
#include "torchneuron/register.h"

torch::Tensor tensor_negate_shape(torch::Tensor t1) {
size_t num_elem = t1.numel();
torch::Tensor t_out = torch::zeros({num_elem}, torch::kFloat);

(continues on next page)
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return t_out;
}

NEURON_LIBRARY(my_ops, m) {
m.def("tensor_negate", &tensor_negate_shape, "tensor_negate_compute");

}

Notice that the NEURON_LIBRARY macro is used in the same C++ file as the shape function. This is because the
registration is loaded on the host.

Warning: Each model can only have one CustomOp library, and the library can have 10 functions registered.
However, models using torch.sort cannot have any CustomOps.

The custom op library is built by calling the load API in Python like:

import torch_neuronx
from torch_neuronx.xla_impl import custom_op

custom_op.load(
name='my_ops',
compute_srcs=['kernel.cpp'],
shape_srcs=['shape.cpp'],
multicore=False

)

In the example above, name refers to the name of the library file to be created (i.e. libmy_ops.so) and the
compute_srcs and shape_srcs are lists of files to be compiled. After the load API completes, the library will
have been compiled and loaded into the current PyTorch process.

Warning: The library file name should not be “builtin” as it is a reserved keyword.

CustomOp also supports multicore execution mode. If you want to the library to run in multicore mode, pass the flag
multicore=True into the loadAPI. Notice that the execution mode is specified at the library level, so all the functions
in the library run in the same mode. For more details of multicore CustomOp, please refer to Using multiple GPSIMD
cores section in Custom Operators API Reference Guide [Beta].

Similar to PyTorch, the Neuron custom op will be available at torch.ops.<lib_name>.<op_name>where lib_name
is defined in the NEURON_LIBRARY macro, and op_name is defined in the call to m.def.

import torch

out_tensor = torch.ops.my_ops.tensor_negate(in_tensor)
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Loading a previously built library

The library can also be built ahead of time or in a separate process and loaded later. In the load API, specify the
build_directory argument and the library will be written to that location on disk.

import torch_neuronx
from torch_neuronx.xla_impl import custom_op

custom_op.load(
name='my_ops',
compute_srcs=['kernel.cpp'],
shape_srcs=['shape.cpp'],
build_directory*=*os.getcwd(),

)

Then, later, this library can be loaded by calling the load_library API and using the ops in the exact same way.

import torch
import torch_neuronx
from torch_neuronx.xla_impl import custom_op

custom_op.load_library('/home/user/libmy_ops.so')

out_tensor = torch.ops.my_ops.tensor_negate(in_tensor)

Note: The load_library API does not need to be called in the same process where the library is built with the load
API. Similar to regular PyTorch Custom Operators, Neuron Custom C++ Operators are built and loaded at the same
time when the load API is called.

Performance Guidance

When possible, it is recommended that operators supported by the designated framework with supported compilation
onto Neuron devices are used. These operators have been have been highly optimized for the Neuron architecture.
However, for other scenarios where Custom C++ operators are the required solution, the following recommendations
can be followed to improve performance:

• Use the provided memory management accessors (streaming and tcm accessor). Both of these accessors improve
data fetch overhead. See the Custom Operators API Reference Guide [Beta] for more information.

• You can optionally specify the estimated amount of stack space (in bytes) used in your Custom C++ operator via
the extra_cflags argument in the call to custom_op.load(). For instance, if you anticipate your operator
using ~20KB of stack space, include the argument extra_cflags=['-DSTACK_SIZE=20000'] in the call to
custom_op.load(). This is necessary only if you anticipate the stack to grow beyond ~8KB. This flag is used
to decide whether to place the stack in faster local memory, which significantly improves performance, or if we
will need to place the stack in larger NeuronCore memory with longer access latency. If you do not specify this
flag, or the estimate you provide is small enough (less than ~8KB), the stack will go in local memory. Note, when
placed in local memory, the stack space will not be restricted by your estimate, but if your stack grows beyond
~8KB, there’s a risk of a stack overflow, and you will be notified with an error message from GPSIMD should
such a case occur. If you do specify a stack size, the maximum supported stack size is 400KB.

• Use multiple GPSIMD cores when possible to parallelize (and hence improve performance) of Custom C++
operator, refer to Using multiple GPSIMD cores section in Custom Operators API Reference Guide [Beta] for
more information.
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Functional Debug

Custom C++ operators support the use of the C++ language’s printf(). For functional debug, the recommended
approach is using printf() to print input, intermediate, and final values. Consult the Custom Operators API Reference
Guide [Beta] for more information.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

7.3.3 Tutorials

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

7.3.4 Misc (Neuron Custom C++ Operators)

This document is relevant for: Inf1, Inf2, Trn1, Trn2

Neuron Custom C++ Tools Release Notes

Note: Neuron Custom C++ Operators feature is currently supported on NeuronCore-v2 architecture only, which is
found in Trainium (Trn1) and second-generation Inferentia (Inf2) chips.

aws-neuronx-gpsimd-tools [0.13]

Date: 12/12/2024

• Neuron Custom C++ Operators feature is currently supported on NeuronCore-v2 architecture only, which is
found in Trainium (Trn1) and second-generation Inferentia (Inf2) chips.

aws-neuronx-gpsimd-tools [0.1]

Date: 02/08/2023

• First release of aws-neuronx-gpsimd-tools. This release provides the required tools to support the building of
Neuron Custom C++ operators.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2
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Neuron Custom C++ Library Release Notes

Note: Neuron Custom C++ Operators feature is currently supported on NeuronCore-v2 architecture only, which is
found in Trainium (Trn1) and second-generation Inferentia (Inf2) chips.

aws-neuronx-gpsimd-customop-lib [0.13]

Date: 12/12/2024

• Neuron Custom C++ Operators feature is currently supported on NeuronCore-v2 architecture only, which is
found in Trainium (Trn1) and second-generation Inferentia (Inf2) chips.

aws-neuronx-gpsimd-customop-lib [0.3]

Date: 04/28/2023

• Add initial support for using Multiple GPSIMD Cores for Custom C++ Operators

• Package name was changed to aws-neuronx-gpsimd-customop-lib

aws-neuronx-gpsimd-customop [0.1]

Date: 02/08/2023

• First release of aws-neuronx-gpsimd-customop. This release provides tensor library support required for building
Neuron Custom C++ operators.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

API Reference Guide

• Custom Operators API Reference Guide [Beta]

Developer Guide

• Neuron Custom C++ Operators Developer Guide [Beta]

Tutorials

• Neuron Custom C++ Operators in MLP Training

• Neuron Custom C++ Operators Performance Optimization
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Misc

• Neuron Custom C++ Tools Release Notes

• Neuron Custom C++ Library Release Notes

This document is relevant for: Inf2, Trn1, Trn2
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CHAPTER

EIGHT

LEARNING NEURON

This document is relevant for: Inf1, Inf2, Trn1, Trn2

8.1 Neuron Architecture

The Neuron Architecture provides insights into Neuron enabled instances system, software and chip capabilities. The
Amazon EC2 Trn and Inf instance architecture provides an overview of the Amazon EC2 instances powered by AWS
Inferentia and AWS Trainium chips (Neuron devices), and the corresponding system features like inbox and network
connectivity, memory hierarchy, and NeuronCore versions and capabilities. The Neuron model architecture fit provides
insights to what is the best match between deep-learning model architectures and the NeuronCore version.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

8.1.1 Instance and UltraServer Architecture

For a detailed description of Trn Instances:

• Amazon EC2 Trn2 Architecture

• Amazon EC2 Trn1 Architecture

For a detailed description of Inf Instances:

• Amazon EC2 Inf2 Architecture

• Amazon EC2 Inf1 Architecture

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

8.1.2 Amazon EC2 AI Chips Architecture

Amazon EC2 AI Chips (Neuron Devices) are the accelerated machine learning chips (e.g. Inferentia or Trainium) that
enable Trn and Inf instance.

For a detailed description of current Neuron chips:

• trainium2-arch

• trainium-arch

• inferentia2-arch

• inferentia-arch
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This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

8.1.3 AWS NeuronCore Architecture

NeuronCores are fully-independent heterogenous compute-units that power Tranium, Tranium2, Inferentia, and Infer-
entia2 chips. For a detailed description of current generation NeuronCore (NeuronCore-v3) hardware engines, see:

• neuroncores-v3-arch

For more information about previous generation NeuronCores, see:

• neuroncores-v2-arch

• neuroncores-v1-arch

This document is relevant for: Inf1, Inf2, Trn1, Trn2

• Instance and UltraServer Architecture

• Amazon EC2 AI Chips Architecture

• AWS NeuronCore Architecture

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

8.2 Neuron Features

Neuron features provide insights into Neuron capabilities that enable high-performance and improve usability of de-
veloping and deploying deep learning acceleration on top of Inferentia and Trainium based instances.

Data types Neuron rounding modes Neuron batching NeuronCore pipeline
Neuron persistent cache Neuron collective communication Logical NeuronCore

configuration Neuron custom C++ operators

This document is relevant for: Inf1, Inf2, Trn1, Trn2

8.2.1 Data Types

Table of contents

• Introduction

• NeuronCore v1 Data Types

– Neuron Data-Types

• NeuronCore v2 Data Types

– Model Type Conversion

– NeuronCore v2 Rounding Modes
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Introduction

Inferentia and Trainium NeuronDevices include different NeuronCore versions, which support different data-types.
This section describes what data-types are supported in each NeuronCore version, for details about NeuronCore ver-
sions see neuron_hw_arch.

NeuronCore v1 Data Types

Neuron Data-Types

Neuron enables developers to choose from multiple data-types. The supported data-types are FP32, FP16, and BF16.
Developers can train their models on their platform of choice (e.g. EC2 P3 instances), and then easily move their trained
models to EC2 Inf1 for execution.

FP16/BF16 models

Models natively trained in FP16/BF16 will be executed in their trained data-types. This is a straightforward migration
from the training platform to Inf1.

FP32 models

Neuron SDK supports automatic model conversion from FP32 to BF16 by default. This capability allows developers
to train their models using FP32 format for the highest accuracy, and achieve performance benefits without having to
worry about low-precision training (e.g. no need for loss-scaling during training). ML models are typically robust
to FP32 to BF16 conversion, with minimal to no impact on accuracy. The conversion accuracy is model dependent;
therefore, users are encouraged to benchmark the accuracy of the auto-converted model against the original FP32
trained model.

When the compiler is supplied with an unmodified FP32 model input it will automatically compile the model to run as
BF16 on Inferentia. During inference the FP32 input data will be auto-converted internally by Inferentia to BF16 and
the output will be converted back to FP32 data-type. For explicit FP16 inferencing, either use an FP16 trained model,
or use an external tool (like AMP) to make the explicit conversions.

NeuronCore v2 Data Types

The NeuronCore v2 supports the following data types:

• 32 and 16-bit Floating Point (FP32 / FP16)

• TensorFloat-32 (TF32)

• Brain Floating Point (BFloat16)

• 8-bit Floating point with configurable range and precision (cFP8)

• Unsigned 8-bit integer (UINT8)

Note: Neuron Compiler support for cFP8 and UINT8 is planned for a future Neuron SDK release. For INT8, see
Neuron Compiler: Enable Neuron INT8 support for details.

The layout for these is as follows:
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Model Type Conversion

The Neuron SDK supports automatic model conversion from FP32 to BF16 by default. This capability allows devel-
opers to train their models using FP32 format for the highest accuracy, and then achieve run-time performance benefits
without having to worry about low-precision training (e.g. no need for loss-scaling during training). ML models are
typically robust to FP32 to BF16 conversion, with minimal to no impact on accuracy. Since conversion accuracy is
model dependent, users are encouraged to benchmark the accuracy of the auto-converted model against the original
FP32 trained model.

See Mixed Precision and Performance-accuracy Tuning for Training for more details on supported data types and their
properties.

The Neuron compiler offers the --auto-cast and --auto-cast-type options to specify automatic casting of FP32
tensors to other data types to address performance and accuracy tradeoffs. See the Neuron Compiler CLI Reference
Guide for a description of these options.

NeuronCore v2 Rounding Modes

Because floating point values are represented by a finite number of bits, they cannot represent all real numbers ac-
curately. Floating point calculations that exceed their defined data type size are rounded. The NeuronCore v2 per-
forms a Round-to-Nearest (RNE) algorithm with ties to Even by default. It also provides a new Stochastic Rounding
mode. When Stochastic Rounding is enabled, the hardware will round the floating point value up or down using
a proportional probability. This could lead to improved model convergence. Use the environment variable NEU-
RON_RT_STOCHASTIC_ROUNDING_EN to select a rounding mode.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2

8.2.2 Neuron Rounding Modes

Table of contents

• Round Nearest, ties to Even (RNE)

• Stochastic Rounding (SR)

• Quick Tests

Round Nearest, ties to Even (RNE)

When the exact result of a floating point operation cannot be exactly represented as a floating point value, it must be
rounded. The IEEE 754-2008 standard defines the default rounding mode to be ‘Round Nearest, ties to Even’ (RNE
for short). Under this scheme, numbers are rounded to the nearest representable value, and in case of a ‘tie’ (i.e. the
number is exactly between the two nearest representable values) numbers will be rounded to the nearest even number.

All NeuronCore generations support the RNE rounding scheme, which is the most commonly used rounding scheme
for Machine Learning workloads. Below is an illustration of the RNE rounding scheme:
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Stochastic Rounding (SR)

One downside of the RNE rounding scheme (and other rounding schemes described in the IEEE 754-2008 standard),
is that when adding floating point values of significantly different magnitudes, rounding can squash small values and
prevent them from accumulating over time.

To improve this, starting from the second generation of the NeuronCore (NeuronCore-v2), customers can choose be-
tween the RNE rounding scheme described above, and a second rounding scheme called ‘Stochastic Rounding’ (SR
for short). Stochastic rounding prevents the computation precision-loss described above, by performing the rounding
operations in a probabilistic manner, according to the relative distance from the two nearest representable values, as
illustrated below:

By performing the rounding in a probabilistic manner, this scheme allows for small increments to accumulate over time,
even when added to numbers of significantly higher magnitude, which leads to more precise results when performing
large floating point computations (as done for machine learning).

8.2. Neuron Features 1541



AWS Neuron

Quick Tests

As an example, we examine the code-snippet below:

import torch
import torch_xla
import torch_xla.core.xla_model as xm
device = xm.xla_device()

a = torch.tensor(1024.0).half().to(device)

for i in range(2048) :
a = (a + 0.5)
xm.mark_step()

print(a)

This code shows that rounding can significantly impact the calculation’s precision over time. To use standard RNE
rounding, use the environment variable NEURON_RT_STOCHASTIC_ROUNDING_EN=0. To enable stochastic rounding,
use the environment variable NEURON_RT_STOCHASTIC_ROUNDING_EN=1.

NOTE: Stochastic rounding mode is enabled by default in PyTorch-Neuron when XLA_USE_BF16=1.

The first test continues to show 1024 due to RNE rounding after each addition, and the second test shows result that is
mostly in line with expectation.

$ NEURON_RT_STOCHASTIC_ROUNDING_EN=0 python3 rounding_mode_test.py

tensor(1024., device='xla:1', dtype=torch.float16)

$ NEURON_RT_STOCHASTIC_ROUNDING_EN=1 python3 rounding_mode_test.py

tensor(2056., device='xla:1', dtype=torch.float16)

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

8.2.3 Neuron Batching

Batching refers to the process of grouping multiple samples together, and processing them as a group (i.e. passing
them together through the neural network). Batching is typically used as an optimization for improving throughput at
the expense of higher latency (and potentially higher memory footprint). Batching considerations are slightly different
between inference and training workloads, and we thus cover them separately below.

Table of contents

• Batching in inference workloads

– What is batched inference?

– What are the benefits of batched Inference?

– How to determine the optimal batch-size for inference workloads?

– How to set the batch-size?
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• Batching in training workloads

– Batch-size naming

– How to determine the optimal batch-size for training workloads?

Batching in inference workloads

What is batched inference?

The concept of batched inference is conceptually illustrated below, with a single NeuronCore performing batched
computation of a 3 layer neural network with a batch-size of 4. The NeuronCore reads the parameters for a certain
layer from the external memory, and then performs the corresponding computations for all 4 inference-requests, before
reading the next set of parameters (thus, performing more compute for every parameter read from memory).

What are the benefits of batched Inference?

For inference, batching is typically used as a trade-off knob between throughput and latency: higher batch-size typically
leads to better hardware utilization and thus higher throughput, but at the same time batching requires to perform more
computation until getting the first results, and hence leads to higher latency.

To understand why batching tends to improve throughput (up to a certain max value), it is useful to consider an intu-
itive visual performance-model called ‘the roofline model’, which provides with a theoretical bound on the system’s
performance:
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The X-axis indicates the arithmetic intensity (AI) of the workload, which is the ratio between the number of operations
and the number of bytes read-from/written-to memory. The Y-axis indicates the theoretical extractable performance.
For small(large) AI values, the workload is expected to be memory(compute) bound. For inference workloads, AI is
often approximated by dividing the model’s number of operations by its memory footprint (#params x dtype_size).
To a first order approximate, the AI value is linearly dependent on the batch-size, which means that the workloads
performance (throughput) is expected to increase with the batch-size. To understand this more intuitively, for a larger
batch size, Neuron can better amortize the cost of reading parameters from the external memory, and thus improve
the overall hardware efficiency. It should be noted that while the roofline model can be very useful, it is not perfectly
accurate (e.g. it doesn’t take into account spill/fills from/to on-chip SRAM memories), and thus users are encouraged
to use it as a tool for estimating the optimal batch-size for their workloads.

How to determine the optimal batch-size for inference workloads?

The optimal batch size is dependent on the application-level requirements: some applications require strict latency
guarantees (in which case, check out the NeuronCore Pipeline technology), while other applications strictly aim to
maximize throughput. We thus encourage our users to try out multiple batch-sizes, and compare performance between
them. A good starting for batch-size exploration can be identified using the roofline model: we can choose a batch-size
that achieves an Arithmetic Intensity which is at the edge of the compute bound region. By doing that, we aim to
achieve max throughput with a minimal batch-size, and thus minimal impact to latency.

This can be expressed via the following equation: batch-size(Inference) = ceiling[0.5 x (<NeuronDevice
PeakFLOPS>/<NeuronDevice MemBW>) / (<model FLOPs>/(<#model-dense-params> x <dtype_size>))]
(for NeuronDevice PeakFLOPS and MemBW, see the trainium-arch, inferentia-arch and inferentia2-arch pages.

For example, a BF16 BERT-Large model, with a sequence length of 128, will have the following approximated batch
sizes:
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Model Neu-
ron-
De-
vice

Peak
TFLOPS
(BF16)

MemBW
(GB/sec)

Model
GFLOPs

Model Dense
Params (Mil-
lions)

Data-
type size
(BF16)

Approximated
optimal batch-
size

BERT-
Large (Se-
qLen=128)

Infer-
entia

64 50 77.3 302 2 6

BERT-
Large (Se-
qLen=128)

Trainium 210 820 77.3 302 2 2

ResNet-50 Infer-
entia

64 50 7.8 25 2 5

ResNet-50 Trainium 210 820 7.8 25 2 1

We recommend to evaluate multiple batch sizes and compare the performance between them, in order to determine the
optimal latency/throughput deployment-point.

How to set the batch-size?

The Neuron compiler takes a model and its sample input, as inputs for the compilation process. For example, the code
snippet below will compile a model with a batch-size of 4:

import torch
import torch_neuron
from torchvision import models

# Load the model and set it to evaluation mode
model = models.resnet50(pretrained=True)
model.eval()

# Compile with an example input of batch size 4
image = torch.rand([4, 3, 224, 224])

model_neuron = torch.neuron.trace(model, image, dynamic_batch_size=True)

# Execute with a batch of 12 images
batch = torch.rand([12, 3, 224, 224])
results = model_neuron(batch)

For ahead-of-time compiled inference graphs (i.e. Inf1), dynamic batching can be used (as shown in the above code
snippet) to process a larger client-side inference batch-size, and allow the framework to automatically break up the
user-batch (12 in our case) into smaller batch sizes, to match the compiled batch-size (4 in our case). This technique
increases the achievable throughput by hiding the framework-to-neuron overhead, and amortizing it over a larger batch
size.

See also:
• Dynamic Batching in torch-neuronx

• Special Flags in tensorflow-neuronx.
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Batching in training workloads

Unlike inference workloads, training is inherently an offline process, and thus doesn’t have latency requirements. This
means that training is almost always batched to some degree.

Batch-size naming

For distributed processing, defining the batch size depends on the observation level. There are multiple terms you should
be aware of when running a distributed training job, especially global batch size (GBS) and micro-batch. Knowing the
batch size in advance is crucial for precompiling the computational graph and for setting the hyperparameters.

micro-batch size
Smallest unit of the number of samples getting processed in a single step in the accelerator. For very
large models, it is frequently chosen to be 1.

gradient accumulation
Process of iterating over a micro-batch multiple times and summing up the gradients before an opti-
mizer update. This can happen in a dedicated loop for gradient accumulation or as part of multiple
iterations of samples in pipeline parallelism. See Developer guide for Pipeline Parallelism for more
details on pipeline parallelism.

data-parallel size (or DP degree)
Number of model replicas that process different portions of data in parallel. Each replica maintains
a complete copy of the model while processing unique data chunks, after which their gradients are
synchronized for the optimizer update. See Neuron Glossary for more details.

global batch-size
Number of total samples used for an update of the optimizer. This includes all the respective gra-
dients that get added up from data-parallel processing or gradient accumulation. global batch
size = micro_batch_size * data_parallel_size * gradient_accumulation_steps

mini-batch or replica-batch size
Number of samples that contribute to a gradient within one data-parallel rank. A mini-
batch gradient is obtained by aggregating multiple micro-batch gradients within or with-
out a pipeline (aka. gradient accumulation). mini_batch_size = micro_batch_size *
gradient_accumulation_steps

worker batch
The portion of mini-batch samples processed by a worker. The idea behind a worker batch is that
one worker (node) might have a subset of the dp-degrees and we care about how much data gets
tackled by this worker.

How to determine the optimal batch-size for training workloads?

Determining the optimal batch-size for training workloads can be a non-trivial task. In most cases, we’d want to choose
the largest batch-size that we can get away with.

The most dominant factor for determining the optimal batch-size in training workloads is memory footprint: training
workloads have higher memory footprint compared to inference, as they require saving more tensors aside from the
model parameters, such as gradients, intermediate activations (passed between forward-pass and backward-pass), and
optimizer-state. If the batch-size is increased beyond a certain point, one can run out of device memory (indicated by
an ‘Out of device memory’ error, typically abbreviated as OOM).

To estimate the memory footprint of a model, we look at the different contributors:

1. Weights and gradients:
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1. typically 2B each, thus 4B per parameter

2. Optimizer state:

1. typically 4B - 12B per parameter

3. Intermediate activations:

1. sum of all tensor sizes for forward pass

2. for example, for a transformer neural network, this is roughly 16 x x <num_layers> x x x = 100MB x

For training workloads, determining the optimal batch size can be a little more tricky, due to two reasons:

1. Higher memory footprint: Training workloads have higher memory footprint compared to inference, as they
require saving more tensors aside from the model parameters, such as gradients, intermediate-state and optimizer-
state. If the batch-size is increased too much, one can run out of device memory (indicated by an ‘Out of memory’
error, typically abbreviated as OOM).

2. Arithmetic intensity estimation: Arithmetic intensity is harder to estimate in training workloads, compared to
inference workloads, as the majority of the external memory access are due to reads/writes of intermediate acti-
vation state (rather than parameters), which requires lower level familiarity with the model to estimate correctly.

A good first order approximate for the optimal batch-size in a training workload, is the largest one
that can fit in the device’s memory (i.e. won’t lead to OOM error). batch-size(Training) =
0.6 x (<TP-Rank> x <PP-Rank> x ``<NeuronCore MemoryCapacity>) / ``(<#model-dense-params> x
``<model-state-bytes-per-parameter>)

Note TP-rank stands for Tensor-Parallelism rank, i.e. how many NeuronCores participate in a single Tensor-Parallelism
group. Similarly, PP-rank stands for Pipeline-Parallelism rank, i.e. how many NeuronCores participate in a single
Pipeline-Parallelism group.

For example, for BERT-Large Ph1 training, with a model-state of 4B per parameter (2B weights, 2B param-
eters), and TP-rank = PP-rank = 1, the approximated optimal per-NeuronCore training batch-size would be:
batch-size(Training/Trainium) = 0.6 x (1 x 1 x 16e+9`) / (300e+6 x 4) = 8`

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1

8.2.4 NeuronCore Pipeline

The Neuron software feature referred to as a NeuronCore Pipeline refers to the process of sharding a compute-
graph across multiple NeuronCores, caching the model parameters in each core’s on-chip memory (cache),
and then streaming inference requests across the cores in a pipelined manner. Based on the number of
NeuronCores selected, the model might get seamlessly sharded across up-to 16 Inferentia devices (i.e. 64
NeuronCores). This enables users to optimize for both throughput and latency, as it enables the Neuron-
Cores to process neural-networks with locally cached data and avoid the cost of accessing external memory.
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One benefit to this approach is that NeuronCore Pipeline can typically hit maximal hardware efficiency without the
need for batching (e.g. BERT, ResNet50).

For maximal performance, users should choose an instance-size that can cache the entire model by using sufficient
NeuronCores. Inf1 instance types have different number of Inferentia devices, each of which has 4 NeuronCores, as
shown here https://aws.amazon.com/ec2/instance-types/inf1/

To enable the NeuronCore Pipeline optimization, the compiler should be invoked with the following flags:
--neuroncore-pipeline-cores N. The number of NeuronCores is typically chosen to be the minimal number that
can fit the entire model, which is currently done through a trial-and-error process (compiling to different number of
cores and looking for compilation success/failure message). This process will be automated in the future. A simple
formula to help define the number of NeuronCores that may be an appropriate choice is

neuroncore-pipeline-cores = 4 * round( number-of-weights-in-model/(2 * 10^7) )

This allocates a set of NeuronCores based on the size of the given model’s weights and normalizes to multiples of 4 so
it uses full Inferentias.

The code snippet below shows how to compile a model with NeuronCore Pipeline for 16 NeuronCores (instance size
inf1.6xlarge).

import numpy as np
import tensorflow.neuron as tfn

example_input = np.zeros([1,224,224,3], dtype='float16')
tfn.saved_model.compile("rn50_fp16",

"rn50_fp16_compiled/1",
model_feed_dict={'input_1:0' : example_input },
compiler_args = ['--neuroncore-pipeline-cores', '16'])

This document is relevant for: Inf1

This document is relevant for: Inf2, Trn1, Trn2
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8.2.5 Neuron Collective Communication

Table of contents

• Introduction

• trn1.32xlarge topology

• trn1.2xlarge topology

• inf2.48xlarge topology

• Inf2 other instance sizes topologies

Introduction

Collective Communications is an integral component of distributed ML training. Multiple training nodes exchange
information during ML training via Collective Communication operators such as all-reduce. Neuron provides hardware
support for the execution of Collective Communication with the Neuron SDK responsible for the hardware configuration
and for the execution orchestration. Neuron provides the following Collective Communication operators:

• all-reduce

• all-gather

• reduce-scatter

Neuron also provides the following peer to peer operators:

• send

• receive

Support for additional Collective Communication operators might be added in future releases. Neuron devices are
connected via NeuronLinks within a single instance and EFA links between instances. All NeuronLinks transfer the
data directly between Neuron device and between Neuron devices and EFA devices bypassing the host to achieve high
bandwidth and low latency.

Collective Communication support on Neuron requires installation of 3 separate packages:

• aws-neuronx-runtime-lib - supports execution on Neuron, not specific to Collective Communication and is
always required

• aws-neuronx-collectives - supports Collective Communication execution on a single instance and on mul-
tiple instances.

• efa_installer - low level libraries and drivers to support Collective Communication execution over EFA,
required to support Collective Communication on multiple instances.

ML models need to be compiled by the Neuron compiler before they can be executed on Neuron devices. The result of
the compilation is a binary object containing computational instruction and data movement instructions. Any Collective
Communication operators encountered during compilation are converted to the place holder instructions to be filled
by the runtime/collectives libraries during load and execution. This approach allows Neuron compiler to be unaware
of the specific physical topology connecting Neuron devices. Once a compiled mode is placed on Neuron devices the
runtime/collectives libraries generate the appropriate data movement instructions based on the placement. For example,
a different set of instructions is generated when the next rank is connected via NeuronLinks or via EFA. Neuron executes
Collective Communication operators using dedicated hardware that is not shared with computational resources. That
allows Neuron to execute compute and communication in parallel. For example Neuron can all-reduce gradients of one
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layer while the gradients for another layer are computed. Overlapping compute and communication can result is lower
latency and higher performance.

trn1.32xlarge topology

Trn1.32xl 2D torus topology
On a single trn1.32xlarge instance Neuron devices are connected in a 2D torus topology supporting Collective Commu-
nication operators in sets of 2, 8 and 32 ranks. Other set sizes might be supported in future releases. A single instance
topology can be further extended across multiple instances using EFA NeuronLinks.

For example an 8x4 topology on a single instance, such as 8 rank tensor parallel and 4 ranks data parallel can be
extended across multiple instances creating a large tensor/data parallel training cluster.
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trn1.2xlarge topology

Trn1.2xlarge instance type contains a single Neuron device with two NeuronCores. This instance type supports only
2 ranks Collective Communication operators. EFA is not available on trn1.2xlarge and the ranks cannot be extended
beyond a single instance.

inf2.48xlarge topology

inf2.48xlarge topology
On inf2.48xlarge instance Neuron devices are connected in a ring via NeuronLink. Any even number of ranks for Col-
lective Communication operators is supported provided that the ranks occupy consecutive Neuron devices. However,
when using any number of ranks other than 24 (full instance) full performance of the ring is not utilized.

Inf2 other instance sizes topologies

inf2 other instance sizes topologies
On other inf2 instance sizes Neuron devices are connected bi-directionally. Any even number of ranks for Collec-
tive Communication operators is supported provided that the ranks occupy consecutive Neuron devices. Collective
Communication performance is similar to the performance on inf2.48xlarge when fewer than 24 ranks are used.

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

8.2.6 Logical NeuronCore configuration

Logical NeuronCore configuration (LNC) is a set of compiler and runtime settings for instances powered by AWS
Trainium2 that determines the number of NeuronCores exposed to your machine learning (ML) applications. LNC
configuration works by combining the compute and memory resources of multiple physical NeuronCores into a single
logical NeuronCore. You can configure these settings to reduce the number of worker process needed for training and
deployment of large-scale models.
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Concepts

• Logical NeuronCores

• Compiler and runtime settings

• Logical NeuronCore configurations

Logical NeuronCores

A logical NeuronCore is a grouping of physical NeuronCores that the Neuron Compiler, Neuron Runtime, Neuron
Tools, and Frameworks handle as a single unified NeuronCore. Every Trainium2 device contains eight physical
NeuronCore-v3.

Compiler and runtime settings

LNC configuration is controlled with the following runtime and compiler settings:

Neuron Runtime
The NEURON_LOGICAL_NC_CONFIG runtime environment variable controls how many physical NeuronCores are
grouped to make up a logical NeuronCore.

Neuron compiler flags
The --logical-nc-config or -lnc command-line options control the degree of model sharding the compiler
performs on an input graph. You must compile your Models to use the LNC configuration set by the Neuron Runtime
environment variable. AWS Neuron currently doesn’t support setting the compiler flag to a different LNC
configuration than the Neuron Runtime environment variable.

Logical NeuronCore configurations

AWS Neuron supports the following Logical NeuronCore configurations:

LNC = 2

A Logical NeuronCore configuration (LNC) of two is the default setting on Trainium2 devices. It combines two physical
NeuronCore-v3 into a logical NeuronCore with the software id NC_V3d. When you set Logical NeuronCore config-
uration to two, it directs Trainium2 devices to expose four NC_v3d to your machine learning applications. On this
setting, a Trn2.48xlarge instance presents 64 available NeuronCores. The folowing high-level diagram shows a
Trn2.48xlarge instance, connected in a 2D torus topology, with the Logical NeuronCore configuration set to two.
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Trainium2 devices contain four 24GB HBM banks. Each bank is shared by two physical NeuronCore-v3. When
LNC=2, the two physical NeuronCores share a single address space. Workers on each of the two physical NeuronCores
can access tensors and perform local collective operations without accessing the network. The following diagram shows
how a logical NeuronCore is presented to the software under this configuration.
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To set the Logical NeuronCore configuration to two, use the following runtime and compiler flag combination:

Runtime environment variable:
NEURON_LOGICAL_NC_CONFIG = 2

Compiler flag:
-lnc = 2

1554 Chapter 8. Learning Neuron



AWS Neuron

LNC = 1

When you set the Logical NeuronCore configuration to one, it assigns each physical NeuronCore-v3 to a single logical
NeuronCore with the software id NC_V3. This directs Trainium2 devices to expose eight NC_v3 to your machine
learning applications. On this setting, a Trn2.48xlarge instance presents 128 available NeuronCores. The following
high-level diagram shows a Trn2.48xlarge instance, connected in a 2D torus topology, with the Logical NeuronCore
configuration set to one.

Trainium2 devices contain four 24GB HBM banks. Each bank is shared by two physical NeuronCore-v3. When the
Logical NeuronCore configuration is set to one, both physical NeuronCores have access to the entire 24GB HBM bank.
The following diagram shows how logical NeuronCores are presented to the software under this configuration.
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To set the Logical NeuronCore configuration to one, use the following runtime and compiler flag combination:

Runtime environment variable:
NEURON_LOGICAL_NC_CONFIG = 1

Compiler flag:
-lnc = 1

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf2, Trn1, Trn2
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8.2.7 Neuron Custom C++ Operators

Neuron Custom C++ Operators enable developers to write C++ Custom Operators (“CustomOps”) that run on Neu-
ronCores. This enables developers to extend operator support beyond what is officially supported by Neuron.

Developers can use standard PyTorch custom operators programming interfaces to leverage Neuron Custom C++ Op-
erators feature. This makes it easy to migrate CPU Custom Operators to Neuron, and implement new beta operators,
all without any intimate knowledge of the NeuronCore hardware.

For more details see Neuron Custom C++ Operators [Beta]

This document is relevant for: Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

8.3 Neuron Application Notes

Neuron 2.x

This document is relevant for: Inf1, Inf2, Trn1, Trn2

8.3.1 Introducing the first release of Neuron 2.x enabling EC2 Trn1 General Avail-
ability (GA)

Neuron release 2.3 is the first release of Neuron 2.x that enables GA of the new EC2 Trn1 instances. Neuron release
2.3 extends the latest release of Neuron 1.x (Neuron 1.19.2), adding support for Deep Learning training on the AWS
Trainium chips.

Starting with Neuron release 2.3, developers can run Deep Learning training workloads on Trn1 instances, saving
training costs by up to 50% over equivalent GPU-based EC2 instances, while achieving the highest training performance
in the AWS cloud for popular NLP models. Neuron 2.x introduces new capabilities and major architectural updates to
support training neural-networks with the Trn1 instances.

In addition, starting with this release, Neuron introduces new packages, renames several packages, and updates Neuron
installation and update instructions. This release also ends support for Neuron Runtime 1.x.
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More about the release

What’s New
• rn2.3.0_new

• neuron-packages-changes

• announce-aws-neuron-github-org

• announce-neuron-rtd-eol

Get started with Neuron
• torch_quick_start

• Neuron Quick Links

Tested workloads and known issues
• rn2.3.0_tested

• rn2.3.0-known-issues

Frequently Asked Questions (FAQ)
• neuron2-intro-faq

• neuron-training-faq

Troubleshooting
• PyTorch Neuron Troubleshooting on Trn1

• Neuron Runtime Troubleshooting on Inf1 and
Trn1

Neuron architecture and features
• Neuron Architecture

• Neuron Features

Neuron Components release notes • components-rn

This document is relevant for: Inf1, Inf2, Trn1, Trn2

Neuron Runtime library

This document is relevant for: Inf1

8.3.2 Introducing Neuron Runtime 2.x (libnrt.so)

Table of contents

• What are we changing?

• Why are we making this change?

• How will this change affect the Neuron SDK?

– Neuron Driver

1558 Chapter 8. Learning Neuron



AWS Neuron

– Neuron Runtime

– Neuron framework extensions

– TensorFlow model server

– Neuron tools

• How will this change affect me?

– Neuron installation and upgrade

– Migrate your application to Neuron Runtime 2.x (libnrt.so)

• Troubleshooting

– Application fails to start

– Application fails to start although I installed latest aws-neuron-dkms

– Application unexpected behavior when upgrading to release Neuron 1.16.0 or newer

– Application unexpected behavior when downgrading to releases before Neuron 1.6.0 (from Neuron
1.16.0 or newer)

– Neuron Core is in use

• Frequently Asked Questions (FAQ)

– Do I need to recompile my model to run it with Neuron Runtime 2.x (libnrt.so)?

– Do I need to change my application launch command?

– Can libnrt.so and neuron-rtd co-exist in the same environment?

– Are there Neuron framework versions that will not support Neuron Runtime 2.x (libnrt.so)?

What are we changing?

Starting with the Neuron 1.16.0 release, Neuron Runtime 1.x (neuron-rtd) is entering maintenance mode and is
being replaced by Neuron Runtime 2.x, a shared library named (libnrt.so). For more information on Runtime 1.x
see maintenance_rtd.

Upgrading to libnrt.so simplifies the Neuron installation and upgrade process, introduces new capabilities for allo-
cating NeuronCores to applications, streamlines container creation, and deprecates tools that are no longer needed.

This document describes the capabilities of Neuron Runtime 2.x in detail, provides information needed for successful
installation and upgrade, and provides information needed for successful upgrade of Neuron applications using Neuron
Runtime 1.x (included in releases before Neuron 1.16.0) to Neuron Runtime 2.x (included in releases Neuron 1.16.0 or
newer).

Why are we making this change?

Before Neuron 1.16.0, Neuron Runtime was delivered as a daemon (neuron-rtd), and communicated with Neu-
ron framework extensions through a gRPC interface. neuron-rtd was packaged as an rpm or debian package
(aws-neuron-runtime) and required a separate installation step.

Starting with Neuron 1.16.0, Neuron Runtime 2.x is delivered as a shared library (libnrt.so) and is directly linked to
Neuron framework extensions. libnrt.so is packaged and installed as part of the Neuron framework extensions (e.g.
TensorFlow Neuron, PyTorch Neuron or MXNet Neuron), and does not require a separate installation step. Installing
Neuron Runtime as part of the Neuron framework extensions simplifies installation and improves the user experience.
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In addition, since libnrt.so is directly linked to the Neuron framework extensions, faster communication between
the Neuron Runtime and Neuron Frameworks is enabled by eliminating the gRPC interface overhead.

For more information see How will this change affect the Neuron SDK? and Migrate your application to Neuron Runtime
2.x (libnrt.so).

How will this change affect the Neuron SDK?

Neuron Driver

Use the latest Neuron Driver. For successful installation and upgrade to Neuron 1.16.0 or newer, you must install or
upgrade to Neuron Driver (aws-neuron-dkms) version 2.1.5.0 or newer. Neuron applications using Neuron 1.16.0
will fail if they do not detect Neuron Driver version 2.1.5.0 or newer. For installation and upgrade instructions see
install-guide-index.

Important: Starting with Neuron version 2.3, the aws-neuron-dkms package name has been changed to
aws-neuronx-dkms. See Introducing the first release of Neuron 2.x enabling EC2 Trn1 General Availability (GA)

To see details of Neuron component versions please see neuron-release-content.

Important:
For successful installation or update to Neuron 1.16.0 and newer from previous releases:

• Stop Neuron Runtime 1.x daemon (neuron-rtd) by running: sudo systemctl stop neuron-rtd

• Uninstall neuron-rtd by running: sudo apt remove aws-neuron-runtime or sudo yum remove
aws-neuron-runtime

• Install or upgrade to the latest Neuron Driver (aws-neuron-dkms) by following the install-guide-index
instructions.

• Starting with Neuron version 2.3, aws-neuron-dkms the package name has been changed to
aws-neuronx-dkms, see Introducing the first release of Neuron 2.x enabling EC2 Trn1 General Avail-
ability (GA)

Neuron Runtime

• Installation Starting from Neuron 1.16.0, Neuron releases will no longer include the aws-neuron-runtime
packages and Neuron Runtime will be part of the Neuron framework extension of choice (TensorFlow Neuron,
PyTorch Neuron or MXNet Neuron). Installing any Neuron framework package will install the Neuron Runtime
library (libnrt.so).

– For installation and upgrade instructions see install-guide-index.

• Configuring Neuron Runtime
Before Neuron 1.16.0, Neuron Runtime 1.x was configured in configuration files (e.g.
/opt/aws/neuron/config/neuron-rtd.config). Starting from Neuron 1.16.0, Neuron Runtime 2.x can
be configured through environment variables. See NeuronX Runtime Configuration for details.

• Starting and Stopping Neuron Runtime
Before introducing libnrt.so, neuron-rtd ran as a daemon that communicated through a gRPC inter-
face. Whenever neuron-rtd took ownership of a Neuron device, it continued owning that device until
it was stopped. This created the need to stop neuron-rtd in certain cases. With the introduction of
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libnrt.so, Neuron Runtime as it runs inside the context of the application. With Neuron Runtime 2.x,
the act of starting and stopping a Neuron application causes libnrt.so to automatically claim or release
ownership of the required Neuron devices.

• NeuronCore Groups (NCG) deprecation
Before the introduction of Neuron Runtime 2.x, NeuronCore Group (NCG) was used to define an execution
group of one or more NeuronCores where models could be loaded and executed. It also provided separation
between processes.

With the introduction of Neuron Runtime 2.x, strict separation of NeuronCores into groups is no longer
necessary and NeuronCore Groups (NCG) has been deprecated. See eol-ncg for more information.

• Running multiple Neuron Runtimes
Before the introduction of libnrt.so, it was necessary to run multiple neuron-rtd daemons to allocate
Neuron devices for each neuron-rtd, using configuration files. After the introduction of libnrt.so, it
will no longer necessary to run multiple neuron-rtd daemons to allocate Neuron devices to a specific
Neuron application. With libnrt.soNeuronCores (A Neuron device includes multiple NeuronCores) are
allocated to a particular application by using NEURON_RT_VISIBLE_CORES or NEURON_RT_NUM_CORES
environment variables, for example:

NEURON_RT_VISIBLE_CORES=0-3 myapp1.py
NEURON_RT_VISIBLE_CORES=4-11 myapp2.py

Or

NEURON_RT_NUM_CORES=3 myapp1.py &
NEURON_RT_NUM_CORES=4 myapp2.py &

See NeuronX Runtime Configuration for details.

• Logging
Similar to Neuron Runtime 1.x, Neuron Runtime 2.x logs into syslog (verbose logging). To make debugging
easier, Neuron Runtime 2.x also logs into the console (error-only logging). Refer to NeuronX Runtime
Configuration to see how to increase or decrease logging verbosity.

• Multi-process access to NeuronCores
With the introduction of libnrt.so, it is no longer possible to load models from multiple processes on
the same NeuronCore. A NeuronCore can only be accessed from the same process. Instead you can load
models on a specific NeuronCore, using multiple threads from the same process.

Note: For optimal performance of multi-model execution, each NeuronCore executes a single model.

• Neuron Runtime architecture
Neuron Runtime 2.x is delivered as a shared library (libnrt.so) and is directly linked to Neuron frame-
work extensions. libnrt.so is packaged and installed as part of Neuron framework extensions (e.g.
TensorFlow Neuron, PyTorch Neuron, or MXNet Neuron), and does not require a separate installation
step. Installing Neuron Runtime as part of the Neuron framework extensions simplifies installation and
improves the user experience. In addition, since libnrt.so is directly linked to Neuron framework exten-
sions, it enables faster communication between Neuron Runtime and Neuron Frameworks by eliminating
gRPC interface overhead.
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Neuron framework extensions

Starting from Neuron 1.16.0, Neuron framework extensions (TensorFlow Neuron, PyTorch Neuron, or MXNet Neuron)
are packaged together with libnrt.so. It is required to install the aws-neuron-dkms Driver version 2.1.5.0 or newer
for proper operation. The neuron-rtd daemon that was installed in previous releases no longer works starting with
Neuron 1.16.0.

To see details of Neuron component versions see neuron-release-content.

TensorFlow model server

Starting from Neuron 1.16.0, the TensorFlow Neuron model server is packaged together with libnrt.so and expects
aws-neuron-dkms version 2.1.5.0 or newer for proper operation.

Note: The TensorFlow Neuron model server included in Neuron 1.16.0 runs from the directory in which it was installed
and will not run properly if copied to a different location, due to its dependency on libnrt.so.

Important: Starting with Neuron version 2.3, the aws-neuron-dkms package name has been changed to
aws-neuronx-dkms. See Introducing the first release of Neuron 2.x enabling EC2 Trn1 General Availability (GA)

Neuron tools

• neuron-cli - Starting from Neuron 1.16.0, neuron-cli enters maintenance mode. See maintenance_neuron-
cli for more information.

• neuron-top - Starting from Neuron 1.16.0, neuron-top has a new user interface. See Neuron Top User Guide
for more information.

• neuron-monitor - neuron-monitor was updated to support Neuron Runtime 2.x (libnrt.so)

– See Neuron Monitor User Guide for an updated user guide of neuron-monitor.

– See neuron-monitor-upg for a list of changes between Neuron Monitor 2.x and Neuron Monitor 1.0

– See neuron-monitor-bwc for instructions for using Neuron Monitor 2.x with Neuron Runtime 1.x
(neuron-rtd) .

How will this change affect me?

Neuron installation and upgrade

As explained in “How will this change affect the Neuron SDK?”, starting from Neuron 1.16.0, libnrt.so requires the
latest Neuron Driver (aws-neuron-dkms). In addition, it is no longer necessary to install aws-neuron-runtime. To
install Neuron or to upgrade to latest Neuron version, follow the installation and upgrade instructions below:

• PyTorch Neuron
– install-neuron-pytorch.

– update-neuron-pytorch.

• TensorFlow Neuron
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– install-neuron-tensorflow.

– update-neuron-tensorflow.

• MXNet Neuron
– install-neuron-mxnet.

– update-neuron-mxnet.

Important: Starting with Neuron version 2.3, the aws-neuron-dkms package name has been changed to
aws-neuronx-dkms. See Introducing the first release of Neuron 2.x enabling EC2 Trn1 General Availability (GA)

Migrate your application to Neuron Runtime 2.x (libnrt.so)

For a successful migration from previous releases of your application to Neuron 1.16.0 or newer, make sure you perform
the following:

1. Prerequisite
Read “How will this change affect the Neuron SDK?”.

2. Make sure you are not using Neuron Runtime 1.x (aws-neuron-runtime)
• Remove any code that installs aws-neuron-runtime from any CI/CD scripts.

• Stop neuron-rtd by running sudo systemctl stop neuron-rtd

• Uninstall neuron-rtd by running sudo apt remove aws-neuron-runtime or sudo yum
remove aws-neuron-runtime

3. Upgrade to your Neuron Framework of choice:
• update-neuron-pytorch.

• update-neuron-tensorflow.

• update-neuron-mxnet.

4. If you have code that starts and/or stops neuron-rtd
Remove any code that starts or stops neuron-rtd from any CI/CD scripts.

5. Application running multiple neuron-rtd
If your application runs multiple processes and requires running multiple neuron-rtd daemons:

• Remove the code that runs multiple neuron-rtd daemons.

• Instead of allocating Neuron devices to neuron-rtd through configuration files, use
NEURON_RT_VISIBLE_CORES or NEURON_RT_NUM_CORES environment variables to allocate
NeuronCores. See NeuronX Runtime Configuration for details.

If you application uses NEURONCORE_GROUP_SIZES, see the next item.

Note: NEURON_RT_VISIBLE_CORES and NEURON_RT_NUM_CORES environment variables enable you to
allocate NeuronCores to an application. Allocating NeuronCores improves application granularity, be-
cause Neuron devices include multiple NeuronCores.

6. Application running multiple processes using NEURONCORE_GROUP_SIZES
• Consider using NEURON_RT_VISIBLE_CORES or NEURON_RT_NUM_CORES environment variables

instead of NEURONCORE_GROUP_SIZES, which is being deprecated.
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See NeuronX Runtime Configuration for details.

• If you are using TensorFlow Neuron (tensorflow-neuron (TF2.x)) and you are replacing
NEURONCORE_GROUP_SIZES=AxB which enables auto multicore replication, see the new API Ten-
sorFlow 2.x (tensorflow-neuron) Auto Multicore Replication (Beta) for usage and documentation.

• The behavior of your application will remain the same as before if you do not set
NEURON_RT_VISIBLE_CORES and do not set NEURON_RT_NUM_CORES.

• If you are considering migrating to NEURON_RT_VISIBLE_CORES or NEURON_RT_NUM_CORES:

– NEURON_RT_VISIBLE_CORES takes precedence over NEURON_RT_NUM_CORES.

– If you are migrating to NEURON_RT_VISIBLE_CORES:

∗ For TensorFlow applications or PyTorch applications make sure that
NEURONCORE_GROUP_SIZES is unset, or that NEURONCORE_GROUP_SIZES allocates the
same or smaller number of NeuronCores as allocated by NEURON_RT_VISIBLE_CORES.

∗ For MXNet applications, setting NEURONCORE_GROUP_SIZES and
NEURON_RT_VISIBLE_CORES environment variables at the same time is not sup-
ported. Use NEURON_RT_VISIBLE_CORES only.

∗ See NeuronX Runtime Configuration for more details on how to use
NEURON_RT_VISIBLE_CORES.

– If you are migrating to NEURON_RT_NUM_CORES:

∗ Make sure that NEURONCORE_GROUP_SIZES is unset.

∗ See NeuronX Runtime Configuration for more details on how to use
NEURON_RT_NUM_CORES.

7. Application running multiple processes accessing the same NeuronCore
If your application accesses the same NeuronCore from multiple processes, this is no longer possible with
libnrt.so. Instead, modify your application to access the same NeuronCore from multiple threads.

Note: Optimal performance of multi-model execution is achieved when each NeuronCore executes a
single model.

8. Neuron Tools
• If you are using Neuron Monitor, see neuron-monitor-upg for details.

• If you are using neuron-cli remove any call to neuron-cli. For more information, see
maintenance_neuron-cli.

9. Containers
If your application is running within a container, and it previously executed neuron-rtd within the con-
tainer, you need to re-build your container, so it will not include or install aws-neuron-runtime. See
neuron-containers and containers-migration-to-runtime2 for details.
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Troubleshooting

Application fails to start

Description

Starting with the Neuron 1.16.0 release, Neuron Runtime (libnrt.so) requires Neuron Driver 2.0 or greater
(aws-neuron-dkms). Neuron Runtime requires the Neuron Driver (aws-neuron-dkms package) to access Neuron
devices.

If aws-neuron-dkms is not installed, the application will fail with an error message on the console and syslog similar
to the following:

NRT:nrt_init Unable to determine Neuron Driver version. Please check aws-neuron-
→˓dkms package is installed.

If an old aws-neuron-dkms is installed, the application will fail with an error message on the console and syslog
similar to the following:

NRT:nrt_init This runtime requires Neuron Driver version 2.0 or greater. Please␣
→˓upgrade aws-neuron-dkms package.

Solution

Follow the installation steps in install-guide-index to install aws-neuron-dkms.

Important: Starting with Neuron version 2.3, the aws-neuron-dkms package name has been changed to
aws-neuronx-dkms. See Introducing the first release of Neuron 2.x enabling EC2 Trn1 General Availability (GA)

Application fails to start although I installed latest aws-neuron-dkms

Description

Starting from the Neuron 1.16.0 release, Neuron Runtime (libnrt.so) requires Neuron Driver 2.0 or greater
(aws-neuron-dkms). If an old aws-neuron-dkms is installed, the application will fail. You may try to install
aws-neuron-dkms and still face application failure, because the aws-neuron-dkms installation failed as a result
of neuron-rtd daemon that was still running.

Solution

• Stop neuron-rtd by running: sudo systemctl stop neuron-rtd

• Uninstall neuron-rtd by running: sudo apt remove aws-neuron-runtime or sudo yum remove
aws-neuron-runtime

• Install aws-neuron-dkms by following steps in install-guide-index

Important: Starting with Neuron version 2.3, the aws-neuron-dkms package name has been changed to
aws-neuronx-dkms. See Introducing the first release of Neuron 2.x enabling EC2 Trn1 General Availability (GA)
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Application unexpected behavior when upgrading to release Neuron 1.16.0 or newer

Description

When upgrading to release Neuron 1.16.0 or newer from previous releases, the OS may include two different versions
of Neuron Runtime: the libnrt.so shared library and neuron-rtd daemon. This can happen if the user did not stop
neuron-rtd daemon or did not make sure to uninstall the existing Neuron version before upgrade. In this case the
user application may behave unexpectedly.

Solution

If the OS includes two different versions of Neuron Runtime, libnrt.so shared library and neuron-rtd daemon:

• Before running applications that use neuron-rtd, restart neuron-rtd by calling sudo systemctl restart
neuron-rtd.

• Before running applications linked with libnrt.so, stop neuron-rtd by calling sudo systemctl stop
neuron-rtd.

Application unexpected behavior when downgrading to releases before Neuron 1.6.0 (from Neuron
1.16.0 or newer)

Description

When upgrading to release Neuron 1.16.0 or newer from previous releases, and then downgrading back to releases
before Neuron 1.6.0, the OS may include two different versions of Neuron Runtime: the libnrt.so shared library and
neuron-rtd daemon. This can happen if the user did not make sure to uninstall the existing Neuron version before
the upgrade or downgrade. In this case the user application may behave unexpectedly.

Solution

If the OS include two different versions of Neuron Runtime, libnrt.so shared library and neuron-rtd daemon:

• Before running applications that use neuron-rtd, restart neuron-rtd by calling sudo systemctl restart
neuron-rtd.

• Before running applications linked with libnrt.so, stop neuron-rtd by calling sudo systemctl stop
neuron-rtd.

Neuron Core is in use

Description

A Neuron Core cannot be shared between two applications. If an application started using a Neuron Core all other
applications trying to use the NeuronCore will fail during runtime initialization with the following message in the
console and in syslog:

ERROR NRT:nrt_allocate_neuron_cores NeuronCore(s) not available -␣
→˓Requested:nc1-nc1 Available:0
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Solution

Terminate the the process using NeuronCore and then try launching the application.

Frequently Asked Questions (FAQ)

Do I need to recompile my model to run it with Neuron Runtime 2.x (libnrt.so)?

No.

Do I need to change my application launch command?

No.

Can libnrt.so and neuron-rtd co-exist in the same environment?

Although we recommend upgrading to the latest Neuron release, we understand that for a transition period you may
continue using neuron-rtd for old releases. If you are using Neuron Framework (PyTorch,TensorFlow or MXNet)
from releases before Neuron 1.16.0:

• Install the latest Neuron Driver (aws-neuron-dkms)

Important: Starting with Neuron version 2.3, the aws-neuron-dkms package name has been changed to
aws-neuronx-dkms. See Introducing the first release of Neuron 2.x enabling EC2 Trn1 General Availability (GA)

• For development, we recommend using different environments for Neuron Framework (PyTorch,TensorFlow or
MXNet) from releases before Neuron 1.16.0 and for Neuron Framework (PyTorch,TensorFlow or MXNet) from
Neuron 1.16.0 and newer. If that is not possible, make sure to stop neuron-rtd before executing models using
Neuron Framework (PyTorch,TensorFlow or MXNet) from Neuron 1.16.0 and newer.

• For deployment, when you are ready to upgrade, upgrade to Neuron Framework (PyTorch,TensorFlow or MXNet)
from Neuron 1.16.0 and newer. See Migrate your application to Neuron Runtime 2.x (libnrt.so) for more infor-
mation.

Warning: Executing models using Neuron Framework (PyTorch,TensorFlow or MXNet) from Neuron 1.16.0
and newer in an environment where neuron-rtd is running may cause undefined behavior. Make sure to stop
neuron-rtd before executing models using Neuron Framework (PyTorch,TensorFlow or MXNet) from Neuron
1.16.0 and newer.

Are there Neuron framework versions that will not support Neuron Runtime 2.x (libnrt.so)?

All supported PyTorch Neuron and TensorFlow framework extensions, in addition to Neuron MXnet 1.8.0 framework
extensions support Neuron Runtime 2.x.

Neuron MxNet 1.5.1 does not support Neuron Runtime 2.x (libnrt.so) and has now entered maintenance mode. See
maintenance_mxnet_1_5 for details.

This document is relevant for: Inf1
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Performance (Inf1)

This document is relevant for: Inf1

8.3.3 Performance Tuning

Important: NeuronCore Groups (NCG) have been deprecated. See eol-ncg and Migrate your application to Neuron
Runtime 2.x (libnrt.so) for more details.

This guide is intended to provide the reader with an in-depth understanding of how to optimize neural network per-
formance on Inferentia for both throughput and latency. For simplicity, the guide uses the TensorFlow and ResNet-50
models as teaching examples to show how to choose between different compile-time optimizations (e.g., Batching and
NeuronCore Pipeline), as well as model-serving optimizations (e.g., multi-threading and dynamic-batching) to improve
inference performance.

The following guides are considered to be prerequisites for this tutorial:

• /src/examples/tensorflow/tensorflow_resnet50/resnet50.ipynb

• tensorflow-serving-neurocore-group

• Neuron Batching

• NeuronCore Pipeline

Batching and pipelining (technical background)

Neuron provides developers with various performance optimization features.

Two of the most widely used features are batching and pipelining. Both techniques aim to keep the data close to the
compute engines, but they achieve this data locality in different ways. In batching it is achieved by loading the data into
an on-chip cache and reusing it multiple times for multiple different model-inputs, while in pipelining it is achieved by
caching all model parameters into the on-chip cache across multiple NeuronCores and streaming the calculation across
them.

As a general rule of thumb, batching is preferred for applications that aim to optimize throughput and cost at the
expense of latency, while pipelining is preferred for applications with a high-throughput requirement under a strict
latency budget.

Compiling for batching optimization

To enable batching optimization, the model must first be compiled for a target batch-size. This is done by specifying
the batch size in the input tensor’s batch dimension during compilation. Users are encouraged to evaluate multiple
batch size, in order to determine the optimal latency/throughput deployment-point, which is application-dependent.

For example, the code snippet below enables batching on a ResNet50 model, with a batch-size of 5:

import numpy as np
import tensorflow.neuron as tfn

# To change the batch size, change the first dimension in example_input
batch_size = 5
example_input = np.zeros([batch_size,224,224,3], dtype='float16')

(continues on next page)

1568 Chapter 8. Learning Neuron



AWS Neuron

(continued from previous page)

tfn.saved_model.compile("rn50_fp16",
"rn50_fp16_compiled/1",
model_feed_dict={'input_1:0': example_input },
dynamic_batch_size=True)

Note: Depending on the size of the neural network, Neuron has a maximum batch size that works optimally on
Inferentia. If an unsupported batch size is used, an internal compiler error message will be displayed. A simple way to
explore optimal batch size for your specific model is to increment the batch size from 1 upward, one at a time, and test
application performance.

Compiling for pipeline optimization

In NeuronCore Pipeline mode, Neuron stores the model parameters in Inferentias’ local cache and streams inference
requests across the available NeuronCores, as specified by the --neuroncore-pipeline-cores compiler argument.
For example, to compile the model to fit a pipeline size of four Inferentia devices (16 NeuronCores) avaliable in the
inf1.6xlarge instance size:

import numpy as np
import tensorflow.neuron as tfn

compiler_args = ['--neuroncore-pipeline-cores', '16']
example_input = np.zeros([1,224,224,3], dtype='float16')
tfn.saved_model.compile("rn50_fp16",

"rn50_fp16_compiled/1",
model_feed_dict={'input_1:0': example_input },
compiler_args=compiler_args)

The minimum number of NeuronCores needed to run a compiled model can be found using the Neuron Check Model
tool. See Neuron Check Model.

Model-serving inference optimizations

To fully realize the maximum throughput of the compiled model (for either batching and pipelining), users need to
launch multiple host CPU threads to feed inputs into the Neuron pipeline. The number of threads needs to be larger
than the specified maximum number of NeuronCores.

Additionally, dynamic batching can be used to process a larger client-side inference batch-size and the framework
automatically breaks up the user-batch into smaller batch sizes, to match the compiled batch-size. This technique
increases the achievable throughput by hiding the framework-to-neuron overhead, and amortizing it over a larger batch
size. To use dynamic batching, set the argument --dynamic_batch_size=True during compilation and send a larger
inference batch size (user inference batch size) that is equal to a multiple of the compiled batch size.

Both methods can be applied together if this improves performance. However, multi-threading is always needed as a
first step to achieve high throughput. You need to experiment to find optimal settings for your application.

By default the framework sets the number of outstanding inference requests to the total number of NeuronCores plus
three. This can be changed by setting the NEURON_MAX_NUM_INFERS environment variable. For example, if the
compiled model includes CPU partitions (e.g., if the Neuron compiler decides that some operations are more efficient
to execute on CPU), the number of threads needs to be increased to account for the additional compute performed on the
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CPU. Note that the available instance host memory size needs to be taken into consideration to prevent out-of-memory
errors. As above, you need to experiment in order to find the optimal settings for your application.

Note: By default the framework allocates a NeuronCore Group size to match the size of the compiled
model. The size of the model is the number of NeuronCores limit passed to compiler during compilation
(--neuroncore-pipeline-cores option). For more information see the tensorflow-serving-neurocore-group.

Other considerations

Mixed Precision

You can find more information about performance and accuracy trade offs in Mixed precision and performance-
accuracy tuning (neuron-cc).

Operator support

The Neuron Compiler maintains an evolving list of supported operators for each framework: Neuron Supported oper-
ators

AWS Neuron handles unsupported operators by partitioning the graph into subgraphs and executing them on different
targets (e.g., NeuronCore partition, CPU partition). If the entire model can run on Inferentia (i.e., all operators are
supported), then it will be compiled into a single subgraph, which will be executed by a NeuronCore Group.

Debug

You can examine the post-compiled model to view the compilation results using the Neuron plugin for TensorBoard.
See Visualize graphs executed on Neuron.

ResNet-50 optimization example

For an example demonstrating the concepts described here, see /src/examples/tensorflow/keras_resnet50/keras_resnet50.ipynb

This document is relevant for: Inf1

This document is relevant for: Inf1

8.3.4 Parallel Execution using NEURON_RT_NUM_CORES

Important: NEURONCORE_GROUP_SIZES will no longer be supported starting with the Neuron 1.19.0 release. If
your application uses NEURONCORE_GROUP_SIZES see Migrate your application to Neuron Runtime 2.x (libnrt.so) and
eol-ncgs-env_2 for more details.
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Introduction

Inf1 instances are available with a different number of Inferentia chips. Each Inferentia chip consists of 4 NeuronCores
and an Inf1 instance includes 4 to 64 NeuronCores, depending on the size of the instance. This guide shows you how to
load one or more compiled models into different consecutive groups of NeuronCores using your framework of choice.

Data Parallel Execution

In PyTorch and TensorFlow, the same compiled model can run in parallel on an Inf1 instance by load-
ing it multiple times, up to the total number of NeuronCores specified in NEURON_RT_NUM_CORES
or NEURON_RT_VISIBLE_CORES. For more information about NEURON_RT_NUM_CORES and NEU-
RON_RT_VISIBLE_CORES, refer to Neuron Runtime Configuration.

Running multiple models using single process

To run multiple models using a single process, set the environment variable NEURON_RT_NUM_CORES with a list of the
number of cores in each group, separated by commas.

You can set the NEURON_RT_NUM_CORES environment variable at runtime:

#!/bin/bash
NEURON_RT_NUM_CORES=13 python your_neuron_application.py

Or from within the Python process running your models (NOTE: You can only set it once in the same process at the
beginning of the script):

#!/usr/bin/env python
import os

# Set Environment
os.environ['NEURON_RT_NUM_CORES']='13'

# Load models and run inferences ...

The following examples allow you to load 4 models into 4 groups of NeuronCores within one process. For example, if
there are 4 models A, B, C, D compiled to 2, 4, 3, and 4 NeuronCores respectively, directly load the models A, B, C, D
in sequence within your TensorFlow or PyTorch Neuron process. This example requires an inf1.6xlarge instance with
16 NeuronCores, as the total number of NeuronCores within the NeuronCore Groups is 13.

In MXNet, mapping from models to NeuronCores is controlled by context mx.neuron(neuron_core_index) where
neuron_core_index is the NeuronCore index at the start of the group. In the example above, map model A to
mx.neuron(0) context, model B to mx.neuron(2) context, model C to mx.neuron(6) context and model D to
mx.neuron(9) context. For further details, refer to Flexible Execution Group (FlexEG) in Neuron-MXNet.

For PyTorch

See Data Parallel Inference on Torch Neuron for more details.

For Tensorflow

# Set Environment
os.environ['NEURON_RT_NUM_CORES']='13'

# Load models (TF2)
(continues on next page)
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model0 = tf.keras.models.load_model(model0_file) # loaded into the first group of NC0-NC1
model1 = tf.keras.models.load_model(model1_file) # loaded into the second group of NC2-
→˓NC5
model2 = tf.keras.models.load_model(model1_file) # loaded into the third group of NC6-NC8
model3 = tf.keras.models.load_model(model1_file) # loaded into the fourth group of NC9-
→˓NC12

# run inference by simply calling the loaded model
results0 = model0(inputs0)
results1 = model1(inputs1)
results2 = model2(inputs2)
results3 = model3(inputs3)

For MXNet 2.x:

# Set Environment
os.environ['NEURON_RT_NUM_CORES']='13'

# Load models (MXNet)
# loaded into the first group of NC0-NC1
sym, args, aux = mx.model.load_checkpoint(mx_model0_file, 0)
model0 = sym.bind(ctx=mx.neuron(0), args=args, aux_states=aux, grad_req='null')
# loaded into the second group of NC2-NC5
sym, args, aux = mx.model.load_checkpoint(mx_model1_file, 0)
model1 = sym.bind(ctx=mx.neuron(2), args=args, aux_states=aux, grad_req='null')
# loaded into the third group of NC6-NC8
sym, args, aux = mx.model.load_checkpoint(mx_model2_file, 0)
model2 = sym.bind(ctx=mx.neuron(6), args=args, aux_states=aux, grad_req='null')
# loaded into the fourth group of NC9-NC12
sym, args, aux = mx.model.load_checkpoint(mx_model3_file, 0)
model3 = sym.bind(ctx=mx.neuron(9), args=args, aux_states=aux, grad_req='null')

# run inference by simply calling the loaded model
results0 = model0.forward(data=inputs0)
results1 = model1.forward(data=inputs1)
results2 = model2.forward(data=inputs2)
results3 = model3.forward(data=inputs3)

You can identify the NeuronCores used by each application with the neuron-top command line tool. For more
information about the neuron-top user interface, see Neuron Top User Guide.

$ neuron-top
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Running multiple models using multiple processes

You can also run multiple models in parallel processes, when you set NEURON_RT_NUM_CORES per process:

$ NEURON_RT_NUM_CORES=2 python your_1st_neuron_application.py
$ NEURON_RT_NUM_CORES=2 python your_2nd_neuron_application.py

The first process automatically selects a first set of 2 unused NeuronCores for its new group. The second process
automatically selects a new set of 2 unused NeuronCores for its new group.
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Running multiple models on the same NeuronCore group

You can load more than one model in a NeuronCore group within one process. Neuron runtime handles switching
from one model to the next model within the NeuronCore group, when the next model is run within the application. In
TensorFlow or PyTorch, simply load the additional models after the initial number of models have been loaded, to fill
the NeuronCore groups associated with the process.

For PyTorch:

# Set Environment
os.environ['NEURON_RT_NUM_CORES']='2'

# Load models (PT)
model0 = torch.jit.load(model0_file) # loaded into the first group of NC0-NC1
model1 = torch.jit.load(model1_file) # loaded into the first group of NC0-NC1

# run inference by simply calling the loaded model
results0 = model0(inputs0)
results1 = model1(inputs1)

For TensorFlow 2.x:

# Set Environment
os.environ['NEURON_RT_NUM_CORES']='2'

# Load models (TF2)
model0 = tf.keras.models.load_model(model0_file) # loaded into the first group of NC0-NC1
model1 = tf.keras.models.load_model(model1_file) # loaded into the first group of NC0-NC1

# run inference by simply calling the loaded model
results0 = model0(inputs0)
results1 = model1(inputs1)

In MXNet, use context mx.neuron(neuron_core_index) and use the same NeuronCore start index for the additional
models.

# Set Environment
os.environ['NEURON_RT_NUM_CORES']='2'

# Load models (MXNet)
# loaded into the first group of NC0-NC1
sym, args, aux = mx.model.load_checkpoint(mx_model0_file, 0)
model0 = sym.bind(ctx=mx.neuron(0), args=args, aux_states=aux, grad_req='null')
# loaded into the first group of NC0-NC1
sym, args, aux = mx.model.load_checkpoint(mx_model1_file, 0)
model1 = sym.bind(ctx=mx.neuron(0), args=args, aux_states=aux, grad_req='null')

# run inference by simply calling the loaded model
results0 = model0.forward(data=inputs0)
results1 = model1.forward(data=inputs1)

The total NEURON_RT_NUM_CORES across all processes cannot exceed the number of NeuronCores available on the
instance. For example, on an inf1.xlarge with default configurations where the total number of NeuronCores visible to
TensorFlow-Neuron is 4, you can launch one process with NEURON_RT_NUM_CORES=2 (pipelined) and another process
with NEURON_RT_NUM_CORES=2 (data-parallel).
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Examples using NEURON_RT_NUM_CORES include:

• PyTorch example

• MXNet example

Auto Model Replication in TensorFlow Neuron (tensorflow-neuron) (Beta)

Refer to the following API documentation to see how to perform automatic replication on multiple cores. Note auto-
replication will only work on models compiled with pipeline size 1: via --neuroncore-pipeline-cores=1. If
automatic replication is not enabled, the model will default to replicate on up to 4 cores.

Python API (TF 2.x only):

TensorFlow 2.x (tensorflow-neuron) Auto Multicore Replication (Beta)

CLI API (TF 1.x and TF 2.x):

TensorFlow Neuron TF2.x (tensorflow-neuronx TF2.x) Auto Multicore Replication CLI (Beta)

Auto Model Replication (Being Deprecated)

The Auto Model Replication feature in TensorFlow-Neuron enables you to load the model once and the data parallel
replication will occur automatically. This reduces framework memory usage, as the same model is not loaded multiple
times. This feature is beta and available in TensorFlow-Neuron only.

To enable Auto Model Replication, set NEURONCORE_GROUP_SIZES to Nx1, where N is the desired replication
count (the number of NeuronCore groups, each group has size 1). For example, NEURONCORE_GROUP_SIZES=8x1
would automatically replicate the single-NeuronCore model 8 times.

os.environ['NEURONCORE_GROUP_SIZES'] = '4x1'

or

NEURONCORE_GROUP_SIZES=4x1 python3 application.py

When NEURONCORE_GROUP_SIZES is not set, the default is 4x1, where a single-NeuronCore model is replicated
4 times on any size of inf1 machine.

This feature is only available for models compiled with neuroncore-pipeline-cores set to 1 (default).

You will still need to use threads in the scaffolding code, to feed the loaded replicated model instance, to achieve high
throughput.

Example of auto model replication: /src/examples/tensorflow/openpose_demo/openpose.ipynb

FAQ

Can I mix data parallel and NeuronCore Pipelines?

Yes. You can compile the model using the neuroncore-pipeline-cores option. This tells the compiler to set compilation
to the specified number of cores for NeuronCore Pipeline. The Neuron Compiler returns a NEFF that fits within this
limit. See the Neuron compiler CLI Reference Guide (neuron-cc) for instructions on how to use this option.

For example, on an inf1.2xlarge, you can load two model instances, each compiled with neuroncore-pipeline-cores set
to 2, so they can run in parallel. The model instances can be loaded from different saved models or from the same saved
model.
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Can I have a mix of multiple models in one Neuroncore group and single model in another one
Neuroncore group?

Currently, you can do this in MXNet, by setting up two Neuroncore groups, then loading, for example, multiple models
in one NCG, using context mx.neuron(0), and loading a single model in the second NCG, using context mx.neuron(2).
You can also load a single model in the first NCG and multiple models in the second NCG. For example:

# Set Environment
os.environ['NEURON_RT_NUM_CORES']='6'

# Load models (MXNet)
# loaded into the first group of NC0-NC1
sym, args, aux = mx.model.load_checkpoint(mx_model0_file, 0)
model0 = sym.bind(ctx=mx.neuron(0), args=args, aux_states=aux, grad_req='null')
# loaded into the second group of NC2-NC5
sym, args, aux = mx.model.load_checkpoint(mx_model1_file, 0)
model1 = sym.bind(ctx=mx.neuron(2), args=args, aux_states=aux, grad_req='null')
# loaded into the second group of NC2-NC5
sym, args, aux = mx.model.load_checkpoint(mx_model2_file, 0)
model2 = sym.bind(ctx=mx.neuron(2), args=args, aux_states=aux, grad_req='null')
# loaded into the second group of NC2-NC5
sym, args, aux = mx.model.load_checkpoint(mx_model3_file, 0)
model3 = sym.bind(ctx=mx.neuron(2), args=args, aux_states=aux, grad_req='null')

# run inference by simply calling the loaded model
results0 = model0.forward(data=inputs0)
results1 = model1.forward(data=inputs1)
results2 = model2.forward(data=inputs2)
results3 = model3.forward(data=inputs3)

Loading multiple models in one NCG and a single model in another NCG is currently not supported in TensorFlow
and PyTorch.

This document is relevant for: Inf1

PyTorch Neuron (torch-neuron)

This document is relevant for: Inf1

8.3.5 Running R-CNNs on Inf1

This application note demonstrates how to compile and run Detectron2-based R-CNNs on Inf1. It also provides guid-
ance on how to use profiling to improve performance of R-CNN models on Inf1.

Table of contents

• R-CNN Model Overview

– R-CNN Limitations and Considerations on Inferentia (NeuronCore-v1)

• Requirements

• Installation
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• Compiling an R-CNN for Inf1

– Create a Detectron2 R-CNN Model

– Profile the Model

– Compiling the ResNet backbone to Inf1

• Optimize the R-CNN model

– Compiling the RPN

– Fusing the Backbone and RPN Head

– Compiling the RoI Heads

• End-to-end Compilation and Inference

– Benchmarking

– Other improvements

∗ For latency sensitive applications:

∗ For throughput sensitive applications:

R-CNN Model Overview

Region-based CNN (R-CNN) models are commonly used for object detection and image segmentation tasks. A typical
R-CNN architecture consists of the following components:

• Backbone: The backbone extracts features from input images. In some models the backbone is a Feature Pyramid
Network (FPN), which uses a top-down architecture with lateral connections to build an in-network feature
pyramid from a single-scale input. The backbone is commonly a ResNet or Vision Transformer based network.

• Region Proposal Network (RPN): The RPN predicts region proposals with a wide range of scales and aspect
ratios. RPNs are constructed using convolutional layers and anchor boxes, which that serve as references for
multiple scales and aspect ratios.

• Region of Interest (RoI): The RoI component is used to resize the extracted features of varying size to the same
size so that they can be consumed by a fully connected layer. RoI Align is typically used instead of RoI Pooling,
because RoI Align provides better alignment.

The Detectron2 library provides many popular PyTorch R-CNN implementations, including R-CNN, Fast R-CNN,
Faster R-CNN, and Mask R-CNN. This application note focuses on the Detectron2 R-CNN models.
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R-CNN Limitations and Considerations on Inferentia (NeuronCore-v1)

R-CNN models may have limitations and considerations on Inferentia (NeuronCore-v1). See the Model Architecture
Fit Guidelines for more information. These limitations are not applicable to NeuronCore-v2.

Requirements

The process described in this application note is intended to be run on an inf1.2xlarge. In practice, R-CNN models
can be run on any Inf1 instance size.

Verify that this Jupyter notebook is running the Python kernel environment that was set up according to the PyTorch
Installation Guide. Select the kernel from the “Kernel -> Change Kernel” option at the top of the Jupyter notebook
page.

Installation

This process requires the following pip packages:

• torch==1.11.0

• torch-neuron

• neuron-cc

• opencv-python

• pycocotools

• torchvision==0.12.0

• detectron2==0.6

The following section explains how to build torchvision from source and install the Detectron2 package. It also
reinstalls the Neuron packages, to ensure version compatibility.

The torchvision roi_align_kernel.cpp kernel is modified to use OMP threading for a multi-threaded inference
on the CPU. This significantly improves the performance of RoI Align kernels on Inf1: OMP threading leads to a RoI
Align latency reduction two to three times larger than the default roi_align_kernel.cpp kernel configuration.

# Install python3.7-dev for pycocotools (a Detectron2 dependency)
!sudo apt install python3.7-dev -y

# Install Neuron packages
!pip config set global.extra-index-url https://pip.repos.neuron.amazonaws.com
!pip uninstall -y torchvision
!pip install --force-reinstall torch-neuron==1.11.0.* neuron-cc[tensorflow] "protobuf==3.
→˓20.1" ninja opencv-python

# Change cuda to 10.2 for Detectron2
!sudo rm /usr/local/cuda
!sudo ln -s /usr/local/cuda-10.2 /usr/local/cuda

# Install Torchvision 0.12.0 from source
!git clone -b release/0.12 https://github.com/pytorch/vision.git

# Update the RoI Align kernel to use OMP multithreading
with open('vision/torchvision/csrc/ops/cpu/roi_align_kernel.cpp', 'r') as file:

(continues on next page)
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(continued from previous page)

content = file.read()

# Enable OMP Multithreading and set the number of threads to 4
old = "// #pragma omp parallel for num_threads(32)"
new = "#pragma omp parallel for num_threads(4)"
content = content.replace(old, new)

# Re-write the file
with open('vision/torchvision/csrc/ops/cpu/roi_align_kernel.cpp', 'w') as file:

file.write(content)

# Build Torchvision with OMP threading
!cd vision && CFLAGS="-fopenmp" python setup.py bdist_wheel
%pip install vision/dist/*.whl

# Install Detectron2 release v0.6
!python -m pip install 'git+https://github.com/facebookresearch/detectron2.git@v0.6'

Compiling an R-CNN for Inf1

By default, R-CNN models are not compilable on Inf1, because they cannot be traced with torch.jit.trace, which
is a requisite for inference on Inf1. The following section demonstrates techniques for compiling a Detectron2 R-CNN
model for inference on Inf1.

Specifically, this section explains how to create a standard Detectron2 R-CNN model, using a ResNet-101 backbone. It
demonstrates how to use profiling to identify the most compute-intensive parts of the R-CNN that need to be compiled
for accelerated inference on Inf1. It then explains how to manually extract and compile the ResNet backbone (the
dominant compute component) and inject the compiled backbone back into the full model, for improved performance.

Create a Detectron2 R-CNN Model

Create a Detectron2 R-CNN model using the COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml pretrained
weights and config file. Download a sample image from the COCO dataset and run an example inference.

from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg

def get_model():

# Configure the R-CNN model
CONFIG_FILE = "COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml"
WEIGHTS_FILE = "COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml"
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file(CONFIG_FILE))
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(WEIGHTS_FILE)
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
cfg.MODEL.DEVICE = 'cpu' # Send to CPU for Neuron Tracing

# Create the R-CNN predictor wrapper
(continues on next page)
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(continued from previous page)

predictor = DefaultPredictor(cfg)
return predictor

import os
import urllib.request

# Define a function to get a sample image
def get_image():

filename = 'input.jpg'
if not os.path.exists(filename):

url = "http://images.cocodataset.org/val2017/000000439715.jpg"
urllib.request.urlretrieve(url, filename)

return filename

import time
import cv2

# Create an R-CNN model
predictor = get_model()

# Get a sample image from the COCO dataset
image_filename = get_image()
image = cv2.imread(image_filename)

# Run inference and print inference latency
start = time.time()
outputs = predictor(image)
print(f'Inference time: {(time.time() - start):0.3f} s')

Profile the Model

Use the PyTorch Profiler to identify which operators contribute the most to the model’s runtime on CPU. Ideally, you
can compile these compute intensive operators onto Inf1 for accelerated inference.

import torch.autograd.profiler as profiler

with profiler.profile(record_shapes=True) as prof:
with profiler.record_function("model_inference"):

predictor(image)
print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=30))

We see that convolution operators (aten::convolution) contribute the most to inference time. By compiling these
convolution operators to Inf1, you can improve performance of the R-CNN model. Print the R-CNN model architecture
to see which layers contain the aten::convolution operators:

print(predictor.model)

Note that the ResNet FPN backbone (predictor.model.backbone L17-L162) contains the majority of convolution op-
erators in the model. The RPN (predictor.model.proposal_generator L181-L533) also contains several convolutions.
Based on this, compile the ResNet backbone and RPN onto Inf1 to maximize performance.
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Compiling the ResNet backbone to Inf1

This section demonstrates how to compile the ResNet backbone to Inf1 and use it for inference.

Eextract the backbone by accessing it with predictor.model.backbone. Compile the backbone using
strict=False, because the backbone outputs a dictionary. Use a fixed input shape (800 x 800) for compilation, as
all inputs will be resized to this shape during inference. This section also defines a basic preprocessing function (mostly
derived from the Detectron2 R-CNN DefaultPredictor module L308-L318) that reshapes inputs to 800 x 800.

Create a NeuronRCNN wrapper to inject the compiled backbone back into the model by dynamically replacing the
predictor.model.backbone attribute with the compiled model.

import torch
import torch_neuron

example = torch.rand([1, 3, 800, 800])

# Use `with torch.no_grad():` to avoid a jit tracing issue in the ResNet backbone
with torch.no_grad():

neuron_backbone = torch_neuron.trace(predictor.model.backbone, example, strict=False)

backbone_filename = 'backbone.pt'
torch.jit.save(neuron_backbone, backbone_filename)

from detectron2.modeling.meta_arch.rcnn import GeneralizedRCNN
from torch.jit import ScriptModule

class NeuronRCNN(torch.nn.Module):
"""
Creates a `NeuronRCNN` wrapper that injects the compiled backbone into
the R-CNN model. It also stores the `size_divisibility` attribute from
the original backbone.
"""

def __init__(self, model: GeneralizedRCNN, neuron_backbone: ScriptModule) -> None:
super().__init__()

# Keep track of the backbone variables
size_divisibility = model.backbone.size_divisibility

# Load and inject the compiled backbone
model.backbone = neuron_backbone

# Set backbone variables
setattr(model.backbone, 'size_divisibility', size_divisibility)

self.model = model

def forward(self, x):
return self.model(x)

# Create the R-CNN with the compiled backbone
neuron_rcnn = NeuronRCNN(predictor.model, neuron_backbone)

(continues on next page)
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neuron_rcnn.eval()

# Print the R-CNN architecture to verify the backbone is now the
# `neuron_backbone` (shows up as `RecursiveScriptModule`)
print(neuron_rcnn)

def preprocess(original_image, predictor):
"""
A basic preprocessing function that sets the input height=800 and
input width=800. The function is derived from the preprocessing
steps in the Detectron2 `DefaultPredictor` module.
"""

height, width = original_image.shape[:2]
resize_func = predictor.aug.get_transform(original_image)
resize_func.new_h = 800 # Override height
resize_func.new_w = 800 # Override width
image = resize_func.apply_image(original_image)
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
inputs = {"image": image, "height": height, "width": width}
return inputs

# Get a resized input using the sample image
inputs = preprocess(image, get_model())

# Run inference and print inference latency
start = time.time()
for _ in range(10):

outputs = neuron_rcnn([inputs])[0]
print(f'Inference time: {((time.time() - start)/10):0.3f} s')

with profiler.profile(record_shapes=True) as prof:
with profiler.record_function("model_inference"):

neuron_rcnn([inputs])
print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=30))

By running the backbone on Inf1, the overall runtime is already significantly improved. The count and runtime of
aten::convolution operators is also decreased. We now see a neuron::forward_v2 operator that is the compiled
backbone.

Optimize the R-CNN model

Compiling the RPN

Examine the profiling and note that there are still several aten::convolution, aten::linear, and aten::
addmm operators that significantly contribute to the model’s overall latency. By inspecting the model’s architec-
ture and code, we can determine that the majority of these operators are contained in the RPN module (predic-
tor.model.proposal_generator L181-L533).

To improve the model’s performance, extract the RPN Head and compile it on Inf1 to increase the number of operators
running on Inf1. You need to compile the RPN Head, because the RPN Anchor Generator contains objects that are not
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traceable with torch.jit.trace.

The RPN Head contains five layers that run inference on multiple resized inputs. To compile the RPN Head, cre-
ate a list of tensors that contain the input (“features”) shapes used by RPN Head on each layer. These tensor
shapes can be determined by printing the input shapes in the RPN Head forward function (predictor.model.
proposal_generator.rpn_head.forward).

Create a new NeuronRCNN wrapper that injects both the compiled backbone and RPN Head into the R-CNN model.

import math

input_shape = [1, 3, 800, 800] # Overall input shape at inference time

# Create the list example of RPN inputs using the resizing logic from the RPN Head
features = list()
for i in [0, 1, 2, 3, 4]:

ratio = 1 / (4 * 2**i)
x_i_h = math.ceil(input_shape[2] * ratio)
x_i_w = math.ceil(input_shape[3] * ratio)
feature = torch.zeros(1, 256, x_i_h, x_i_w)
features.append(feature)

# Extract and compile the RPN Head
neuron_rpn_head = torch_neuron.trace(predictor.model.proposal_generator.rpn_head,␣
→˓[features])
rpn_head_filename = 'rpn_head.pt'
torch.jit.save(neuron_rpn_head, rpn_head_filename)

class NeuronRCNN(torch.nn.Module):
"""
Creates a wrapper that injects the compiled backbone and RPN Head
into the R-CNN model.
"""

def __init__(self, model: GeneralizedRCNN, neuron_backbone: ScriptModule, neuron_rpn_
→˓head: ScriptModule) -> None:

super().__init__()

# Keep track of the backbone variables
size_divisibility = model.backbone.size_divisibility

# Inject the compiled backbone
model.backbone = neuron_backbone

# Set backbone variables
setattr(model.backbone, 'size_divisibility', size_divisibility)

# Inject the compiled RPN Head
model.proposal_generator.rpn_head = neuron_rpn_head

self.model = model

def forward(self, x):
return self.model(x)
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# Create the R-CNN with the compiled backbone and RPN Head
predictor = get_model()
neuron_rcnn = NeuronRCNN(predictor.model, neuron_backbone, neuron_rpn_head)
neuron_rcnn.eval()

# Print the R-CNN architecture to verify the compiled modules show up
print(neuron_rcnn)

# Run inference and print inference latency
start = time.time()
for _ in range(10):

outputs = neuron_rcnn([inputs])[0]
print(f'Inference time: {((time.time() - start)/10):0.3f} s')

with profiler.profile(record_shapes=True) as prof:
with profiler.record_function("model_inference"):

neuron_rcnn([inputs])
print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=30))

By running the compiled backbone and RPN Head on Inf1, overall runtime is improved. Once again, the number and
runtime of aten::convolution operators is also decreased. There are now two neuron::forward_v2 operators,
which correspond to the compiled backbone and RPN Head.

Fusing the Backbone and RPN Head

It is usually preferable to compile fewer independent models (“subgraphs”) on Inf1. Combining models and compiling
them as a single subgraph enables the Neuron compiler to perform additional optimizations and reduces I/O data transfer
between CPU and NeuronCores between each subgraph.

In this section, the ResNet backbone and RPN Head are “fused” into a single model to compile on Inf1. Cre-
ate the NeuronFusedBackboneRPNHead wrapper as a compilable model that contains both the ResNet backbone
(predictor.model.backbone L17-L162) and RPN Head (predictor.model.proposal_generator L181-L533). Output the
features to be used downstream by the RoI Heads. Compile this NeuronFusedBackboneRPNHead wrapper
as neuron_backbone_rpn, then create a separate BackboneRPN wrapper to inject the neuron_backbone_rpn
in place of the original backbone and RPN Head. Copy the remainder of the RPN forward code (predic-
tor.model.proposal_generator.forward L431-L480) to create a “fused” backbone + RPN module. Lastly, re-write the
NeuronRCNN wrapper to use the fused backbone + RPN module. The NeuronRCNN wrapper also uses the predictor.
model forward code to re-write the rest of the R-CNN model forward function.

class NeuronFusedBackboneRPNHead(torch.nn.Module):
"""
Wrapper to compile the fused ResNet backbone and RPN Head.
"""

def __init__(self, model: GeneralizedRCNN) -> None:
super().__init__()
self.backbone = model.backbone
self.rpn_head = model.proposal_generator.rpn_head
self.in_features = model.proposal_generator.in_features

def forward(self, x):
features = self.backbone(x)

(continues on next page)
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features_ = [features[f] for f in self.in_features]
return self.rpn_head(features_), features

# Create the wrapper with the combined backbone and RPN Head
predictor = get_model()
backbone_rpn_wrapper = NeuronFusedBackboneRPNHead(predictor.model)
backbone_rpn_wrapper.eval()

# Compile the wrapper
example = torch.rand([1, 3, 800, 800])

with torch.no_grad():
neuron_backbone_rpn_head = torch_neuron.trace(

backbone_rpn_wrapper, example, strict=False)

backbone_rpn_filename = 'backbone_rpn.pt'
torch.jit.save(neuron_backbone_rpn_head, backbone_rpn_filename)

class BackboneRPN(torch.nn.Module):
"""
Wrapper that uses the compiled `neuron_backbone_rpn` instead
of the original backbone and RPN Head. We copy the remainder
of the RPN `forward` code (`predictor.model.proposal_generator.forward`)
to create a "fused" backbone + RPN module.
"""

def __init__(self, model: GeneralizedRCNN) -> None:
super().__init__()
self.backbone_rpn_head = NeuronFusedBackboneRPNHead(model)
self._rpn = model.proposal_generator
self.in_features = model.proposal_generator.in_features

def forward(self, images):
preds, features = self.backbone_rpn_head(images.tensor)
features_ = [features[f] for f in self.in_features]
pred_objectness_logits, pred_anchor_deltas = preds
anchors = self._rpn.anchor_generator(features_)

# Transpose the Hi*Wi*A dimension to the middle:
pred_objectness_logits = [

# (N, A, Hi, Wi) -> (N, Hi, Wi, A) -> (N, Hi*Wi*A)
score.permute(0, 2, 3, 1).flatten(1)
for score in pred_objectness_logits

]
pred_anchor_deltas = [

# (N, A*B, Hi, Wi) -> (N, A, B, Hi, Wi) -> (N, Hi, Wi, A, B) -> (N, Hi*Wi*A,␣
→˓B)

x.view(x.shape[0], -1, self._rpn.anchor_generator.box_dim,
x.shape[-2], x.shape[-1])

.permute(0, 3, 4, 1, 2)

.flatten(1, -2)
(continues on next page)
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for x in pred_anchor_deltas
]

proposals = self._rpn.predict_proposals(
anchors, pred_objectness_logits, pred_anchor_deltas, images.image_sizes

)
return proposals, features

class NeuronRCNN(torch.nn.Module):
"""
Wrapper that uses the fused backbone + RPN module and re-writes
the rest of the R-CNN `model` `forward` function.
"""

def __init__(self, model: GeneralizedRCNN) -> None:
super().__init__()

# Use the fused Backbone + RPN
self.backbone_rpn = BackboneRPN(model)

self.roi_heads = model.roi_heads

self.preprocess_image = model.preprocess_image
self._postprocess = model._postprocess

def forward(self, batched_inputs):
images = self.preprocess_image(batched_inputs)
proposals, features = self.backbone_rpn(images)
results, _ = self.roi_heads(images, features, proposals, None)
return self._postprocess(results, batched_inputs, images.image_sizes)

# Create the new NeuronRCNN wrapper with the combined backbone and RPN Head
predictor = get_model()
neuron_rcnn = NeuronRCNN(predictor.model)
neuron_rcnn.eval()

# Inject the Neuron compiled models
neuron_rcnn.backbone_rpn.backbone_rpn_head = neuron_backbone_rpn_head

# Print the R-CNN architecture to verify the compiled modules show up
print(neuron_rcnn)

# Run inference and print inference latency
start = time.time()
for _ in range(10):

outputs = neuron_rcnn([inputs])[0]
print(f'Inference time: {((time.time() - start)/10):0.3f} s')

with profiler.profile(record_shapes=True) as prof:
with profiler.record_function("model_inference"):

neuron_rcnn([inputs])
(continues on next page)
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print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=30))

By running the fused backbone + RPN Head on Inf1, overall runtime is improved even more. We now see a single
neuron::forward_v2 operator with a lower runtime than the previous combined runtime of the two separate neuron:
:forward_v2 operators.

Compiling the RoI Heads

This section describes how to extract and compile part of RoI Heads module (predictor.model.roi_heads L530-
L778) which runs most of the remaining aten::linear and aten::addmm operators on Inf1. The entire
RoI Heads module cannot be extracted, because it contains unsupported operators. So you need to create a
NeuronBoxHeadBoxPredictor wrapper, extracts specific parts of the roi_heads for compilation. The example in-
put for compilation is the shape of the input into the self.roi_heads.box_head.forward function. Write another
wrapper, ROIHead that combines the compiled roi_heads into the rest of the RoI module. The _forward_box and
forward functions are from the predictor.model.roi_heads module. Lastly, re-write the NeuronRCNN wrapper
to use the optimized RoI Heads wrapper as well as the fused backbone + RPN module.

class NeuronBoxHeadBoxPredictor(torch.nn.Module):
"""
Wrapper that extracts the RoI Box Head and Box Predictor
for compilation.
"""

def __init__(self, model: GeneralizedRCNN) -> None:
super().__init__()
self.roi_heads = model.roi_heads

def forward(self, box_features):
box_features = self.roi_heads.box_head(box_features)
predictions = self.roi_heads.box_predictor(box_features)
return predictions

# Create the NeuronBoxHeadBoxPredictor wrapper
predictor = get_model()
box_head_predictor = NeuronBoxHeadBoxPredictor(predictor.model)
box_head_predictor.eval()

# Compile the wrapper
example = torch.rand([1000, 256, 7, 7])
neuron_box_head_predictor = torch_neuron.trace(box_head_predictor, example)

roi_head_filename = 'box_head_predictor.pt'
torch.jit.save(neuron_box_head_predictor, roi_head_filename)

class ROIHead(torch.nn.Module):
"""
Wrapper that combines the compiled `roi_heads` into the
rest of the RoI module. The `_forward_box` and `forward`
functions are from the `predictor.model.roi_heads` module.
"""

(continues on next page)
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def __init__(self, model: GeneralizedRCNN) -> None:
super().__init__()
self.roi_heads = model.roi_heads
self.neuron_box_head_predictor = NeuronBoxHeadBoxPredictor(model)

def _forward_box(self, features, proposals):
features = [features[f] for f in self.roi_heads.box_in_features]
box_features = self.roi_heads.box_pooler(

features, [x.proposal_boxes for x in proposals])
predictions = self.neuron_box_head_predictor(box_features)
pred_instances, _ = self.roi_heads.box_predictor.inference(

predictions, proposals)
return pred_instances

def forward(self, images, features, proposals, targets=None):
pred_instances = self._forward_box(features, proposals)
pred_instances = self.roi_heads.forward_with_given_boxes(

features, pred_instances)
return pred_instances, {}

class NeuronRCNN(torch.nn.Module):
"""
Wrapper that uses the fused backbone + RPN module and the optimized RoI
Heads wrapper
"""

def __init__(self, model: GeneralizedRCNN) -> None:
super().__init__()

# Create fused Backbone + RPN
self.backbone_rpn = BackboneRPN(model)

# Create Neuron RoI Head
self.roi_heads = ROIHead(model)

# Define pre and post-processing functions
self.preprocess_image = model.preprocess_image
self._postprocess = model._postprocess

def forward(self, batched_inputs):
images = self.preprocess_image(batched_inputs)
proposals, features = self.backbone_rpn(images)
results, _ = self.roi_heads(images, features, proposals, None)
return self._postprocess(results, batched_inputs, images.image_sizes)

# Initialize an R-CNN on CPU
predictor = get_model()

# Create the Neuron R-CNN on CPU
neuron_rcnn = NeuronRCNN(predictor.model)
neuron_rcnn.eval()

(continues on next page)
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# Inject the Neuron compiled models
neuron_rcnn.backbone_rpn.backbone_rpn_head = neuron_backbone_rpn_head
neuron_rcnn.roi_heads.neuron_box_head_predictor = neuron_box_head_predictor

# Run inference and print inference latency
start = time.time()
for _ in range(10):

outputs = neuron_rcnn([inputs])[0]
print(f'CPU Inference time: {((time.time() - start)/10):0.3f} s')

with profiler.profile(record_shapes=True) as prof:
with profiler.record_function("model_inference"):

neuron_rcnn([inputs])
print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=30))

Although the overall latency did not change significantly, running more of the model on Inf1 instead of CPU frees up
CPU resources when multiple models are running in parallel.

End-to-end Compilation and Inference

This section provides standalone code that compiles and runs an optimized Detectron2 R-CNN on Inf1. Most of the
code in this section is from the previous sections in this application note and is consolidated here for easy deployment.
This section has the following main components:

• Preprocessing and compilation functions

• Wrappers that extract the R-CNN ResNet backbone, RPN Head, and RoI
Head for compilation on Inf1.

• A NeuronRCNN wrapper that creates an optimized end-to-end
Detectron2 R-CNN model for inference on Inf1

• Benchmarking code that runs parallelized inference for optimized
throughput on Inf1

Benchmarking

The benchmarking section explains how to load multiple optimized RCNN models and run them in parallel, to maximize
throughput.

Use the beta NeuronCore placement API, torch_neuron.experimental.neuron_cores_context(), to ensure all
compiled models in an optimized RCNN model are loaded onto the same NeuronCore. Note that the functionality and
API of torch_neuron.experimental.neuron_cores_context() might change in future releases.

Define a simple benchmark function that loads four optimized RCNN models onto four separate NeuronCores, runs
multithreaded inference, and calculates the corresponding latency and throughput. Benchmark various numbers of
loaded models, to show the impact of parallelism.

Note that throughput increases (at the cost of latency) when more models are run in parallel on Inf1. Increasing the
number of worker threads also improves throughput.
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Other improvements

There are many additional optimizations that can be applied to RCNN models on Inf1 depending on the application:

For latency sensitive applications:

• Each of the five layers in the RPN head can be parallelized to decrease overall latency.

• The number of OMP Threads can be increased in the ROI Align kernel. Both of these optimizations improve
latency, at the cost of decreasing throughput.

For throughput sensitive applications:

• The input batch size can be increased to improve NeuronCore utilization.

import time
import os
import urllib.request
from typing import Any, Union, Callable

import cv2
import numpy as np
from concurrent.futures import ThreadPoolExecutor

import torch
import torch_neuron

from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.modeling.meta_arch.rcnn import GeneralizedRCNN

# -----------------------------------------------------------------------------
# Helper functions
# -----------------------------------------------------------------------------

def get_model():

# Configure the R-CNN model
CONFIG_FILE = "COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml"
WEIGHTS_FILE = "COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml"
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file(CONFIG_FILE))
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(WEIGHTS_FILE)
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
cfg.MODEL.DEVICE = 'cpu' # Send to CPU for Neuron Tracing

# Create the R-CNN predictor wrapper
predictor = DefaultPredictor(cfg)
return predictor

(continues on next page)
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def get_image():

# Get a sample image
filename = 'input.jpg'
if not os.path.exists(filename):

url = "http://images.cocodataset.org/val2017/000000439715.jpg"
urllib.request.urlretrieve(url, filename)

return filename

def preprocess(original_image, predictor):
"""
A basic preprocessing function that sets the input height=800 and
input width=800. The function is derived from the preprocessing
steps in the Detectron2 `DefaultPredictor` module.
"""

height, width = original_image.shape[:2]
resize_func = predictor.aug.get_transform(original_image)
resize_func.new_h = 800 # Override height
resize_func.new_w = 800 # Override width
image = resize_func.apply_image(original_image)
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
inputs = {"image": image, "height": height, "width": width}
return inputs

# -----------------------------------------------------------------------------
# Neuron modules
# -----------------------------------------------------------------------------

class NeuronFusedBackboneRPNHead(torch.nn.Module):
"""
Wrapper to compile the fused ResNet backbone and RPN Head.
"""

def __init__(self, model: GeneralizedRCNN) -> None:
super().__init__()
self.backbone = model.backbone
self.rpn_head = model.proposal_generator.rpn_head
self.in_features = model.proposal_generator.in_features

def forward(self, x):
features = self.backbone(x)
features_ = [features[f] for f in self.in_features]
return self.rpn_head(features_), features

class BackboneRPN(torch.nn.Module):
"""
Wrapper that uses the compiled `neuron_backbone_rpn` instead

(continues on next page)
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of the original backbone and RPN Head. We copy the remainder
of the RPN `forward` code (`predictor.model.proposal_generator.forward`)
to create a "fused" backbone + RPN module.
"""

def __init__(self, model: GeneralizedRCNN) -> None:
super().__init__()
self.backbone_rpn_head = NeuronFusedBackboneRPNHead(model)
self._rpn = model.proposal_generator
self.in_features = model.proposal_generator.in_features

def forward(self, images):
preds, features = self.backbone_rpn_head(images.tensor)
features_ = [features[f] for f in self.in_features]
pred_objectness_logits, pred_anchor_deltas = preds
anchors = self._rpn.anchor_generator(features_)

# Transpose the Hi*Wi*A dimension to the middle:
pred_objectness_logits = [

# (N, A, Hi, Wi) -> (N, Hi, Wi, A) -> (N, Hi*Wi*A)
score.permute(0, 2, 3, 1).flatten(1)
for score in pred_objectness_logits

]
pred_anchor_deltas = [

# (N, A*B, Hi, Wi) -> (N, A, B, Hi, Wi) -> (N, Hi, Wi, A, B) -> (N, Hi*Wi*A,␣
→˓B)

x.view(x.shape[0], -1, self._rpn.anchor_generator.box_dim,
x.shape[-2], x.shape[-1])

.permute(0, 3, 4, 1, 2)

.flatten(1, -2)
for x in pred_anchor_deltas

]

proposals = self._rpn.predict_proposals(
anchors, pred_objectness_logits, pred_anchor_deltas, images.image_sizes

)
return proposals, features

class NeuronBoxHeadBoxPredictor(torch.nn.Module):
"""
Wrapper that extracts the RoI Box Head and Box Predictor
for compilation.
"""

def __init__(self, model: GeneralizedRCNN) -> None:
super().__init__()
self.roi_heads = model.roi_heads

def forward(self, box_features):
box_features = self.roi_heads.box_head(box_features)
predictions = self.roi_heads.box_predictor(box_features)

(continues on next page)
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return predictions

class ROIHead(torch.nn.Module):
"""
Wrapper that combines the compiled `roi_heads` into the
rest of the RoI module. The `_forward_box` and `forward`
functions are from the `predictor.model.roi_heads` module.
"""

def __init__(self, model: GeneralizedRCNN) -> None:
super().__init__()
self.roi_heads = model.roi_heads
self.neuron_box_head_predictor = NeuronBoxHeadBoxPredictor(model)

def _forward_box(self, features, proposals):
features = [features[f] for f in self.roi_heads.box_in_features]
box_features = self.roi_heads.box_pooler(

features, [x.proposal_boxes for x in proposals])
predictions = self.neuron_box_head_predictor(box_features)
pred_instances, _ = self.roi_heads.box_predictor.inference(

predictions, proposals)
return pred_instances

def forward(self, images, features, proposals, targets=None):
pred_instances = self._forward_box(features, proposals)
pred_instances = self.roi_heads.forward_with_given_boxes(

features, pred_instances)
return pred_instances, {}

class NeuronRCNN(torch.nn.Module):
"""
Wrapper that uses the fused backbone + RPN module and the optimized RoI
Heads wrapper
"""

def __init__(self, model: GeneralizedRCNN) -> None:
super().__init__()

# Create fused Backbone + RPN
self.backbone_rpn = BackboneRPN(model)

# Create Neuron RoI Head
self.roi_heads = ROIHead(model)

# Define pre and post-processing functions
self.preprocess_image = model.preprocess_image
self._postprocess = model._postprocess

def forward(self, batched_inputs):
images = self.preprocess_image(batched_inputs)

(continues on next page)

8.3. Neuron Application Notes 1593



AWS Neuron

(continued from previous page)

proposals, features = self.backbone_rpn(images)
results, _ = self.roi_heads(images, features, proposals, None)
return self._postprocess(results, batched_inputs, images.image_sizes)

# -----------------------------------------------------------------------------
# Compilation functions
# -----------------------------------------------------------------------------

def compile(
model: Union[Callable, torch.nn.Module],
example_inputs: Any,
filename: str,
**kwargs

) -> torch.nn.Module:
"""
Compiles the model for Inf1 if it doesn't already exist and saves it as the provided␣

→˓filename.

model: A module or function which defines a torch model or computation.
example_inputs: An example set of inputs which will be passed to the

`model` during compilation.
filename: Name of the compiled model
kwargs: Extra `torch_neuron.trace` kwargs
"""

if not os.path.exists(filename):
with torch.no_grad():

compiled_model = torch_neuron.trace(model, example_inputs, **kwargs)
torch.jit.save(compiled_model, filename)

# -----------------------------------------------------------------------------
# Benchmarking function
# -----------------------------------------------------------------------------

def benchmark(backbone_rpn_filename, roi_head_filename, inputs,
n_models=4, batch_size=1, n_threads=4, iterations=200):

"""
A simple benchmarking function that loads `n_models` optimized
models onto separate NeuronCores, runs multithreaded inference,
and calculates the corresponding latency and throughput.
"""

# Load models
models = list()
for i in range(n_models):

with torch_neuron.experimental.neuron_cores_context(i):
# Create the RCNN with the fused backbone + RPN Head and compiled RoI Heads
# Initialize an R-CNN on CPU
predictor = get_model()

(continues on next page)
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# Create the Neuron R-CNN on CPU
neuron_rcnn = NeuronRCNN(predictor.model)
neuron_rcnn.eval()

# Inject the Neuron compiled models
neuron_rcnn.backbone_rpn.backbone_rpn_head = torch.jit.load(backbone_rpn_

→˓filename)
neuron_rcnn.roi_heads.neuron_box_head_predictor = torch.jit.load(roi_head_

→˓filename)

models.append(neuron_rcnn)

# Warmup
for _ in range(8):

for model in models:
model([inputs])

latencies = []

# Thread task
def task(i):

start = time.time()
models[i]([inputs])
finish = time.time()
latencies.append((finish - start) * 1000)

begin = time.time()
with ThreadPoolExecutor(max_workers=n_threads) as pool:

for i in range(iterations):
pool.submit(task, i % n_models)

end = time.time()

# Compute metrics
boundaries = [50, 95, 99]
names = [f'Latency P{i} (ms)' for i in boundaries]
percentiles = np.percentile(latencies, boundaries)
duration = end - begin

# Display metrics
results = {

'Samples': iterations,
'Batch Size': batch_size,
'Models': n_models,
'Threads': n_threads,
'Duration (s)': end - begin,
'Throughput (inf/s)': (batch_size * iterations) / duration,
**dict(zip(names, percentiles)),

}

print('-' * 80)
pad = max(map(len, results))
for key, value in results.items():

(continues on next page)
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if isinstance(value, float):
print(f'{key + ":" :<{pad + 1}} {value:0.3f}')

else:
print(f'{key + ":" :<{pad + 1}} {value}')

print()

if __name__ == "__main__":

# Create and compile the combined backbone and RPN Head wrapper
backbone_rpn_filename = 'backbone_rpn.pt'
predictor = get_model()
backbone_rpn_wrapper = NeuronFusedBackboneRPNHead(predictor.model)
backbone_rpn_wrapper.eval()
example = torch.rand([1, 3, 800, 800])
compile(backbone_rpn_wrapper, example, backbone_rpn_filename, strict=False)

# Create and compile the RoI Head wrapper
roi_head_filename = 'box_head_predictor.pt'
predictor = get_model()
box_head_predictor = NeuronBoxHeadBoxPredictor(predictor.model)
box_head_predictor.eval()
example = torch.rand([1000, 256, 7, 7])
compile(box_head_predictor, example, roi_head_filename)

# Download a sample image from the COCO dataset and read it
image_filename = get_image()
image = cv2.imread(image_filename)
inputs = preprocess(image, get_model())

# Benchmark the Neuron R-CNN model for various numbers of loaded models
benchmark(backbone_rpn_filename, roi_head_filename, inputs, n_models=1, n_threads=1)
benchmark(backbone_rpn_filename, roi_head_filename, inputs, n_models=1, n_threads=2)
benchmark(backbone_rpn_filename, roi_head_filename, inputs, n_models=2, n_threads=2)
benchmark(backbone_rpn_filename, roi_head_filename, inputs, n_models=2, n_threads=4)
benchmark(backbone_rpn_filename, roi_head_filename, inputs, n_models=4, n_threads=4)
benchmark(backbone_rpn_filename, roi_head_filename, inputs, n_models=4, n_threads=8)

This document is relevant for: Inf1
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PyTorch Neuronx (torch-neuronx)

This document is relevant for: Inf1, Inf2, Trn1, Trn2

8.3.6 Graph Partitioner on torch_neuronx

Table of Contents

• Introduction

• The Purpose of the Graph Partitioner

• How it Works

– Determining Unsupported Operators

– Customizability

• Examples

– Default Usage

– Specifying requirements

– Specifying additional operators to partition

Introduction

This guide introduces the graph partitioner for torch-neuronx. The following sections explain the purpose of the graph
partitioner, how it works, and go over a few examples.

The Purpose of the Graph Partitioner

While neuronx-cc is very sophisticated and can compile most operators, there are some operator configurations that
are not supported by the compiler. Usually in a model that contains unsupported operators, these are only a few operators
while the supported parts of the model can benefit from the acceleration benefits that Neuron offers. With this in mind,
we developed a graph partitioner that will partition out unsupported operators to be executed on CPU, while compiling
and executing the supported operators on Neuron.

How it Works

Determining Unsupported Operators

Operator support is determined by the neuronx-cc compiler frontend. This is done because this gives us more flexi-
bility than a static list. This is evident in cases where a specific operator configuration is supported but another config-
uration is not supported. For example, we support the square root operator, but do not support it with a C64 data type
for example.

To check operator support, we use the torch_neuronx.analyze()API, which queries the compiler for device place-
ment: Neuron or CPU, which gives the graph partitioner a base graph to start partitioning.

The below image shows the flow of the graph partitioner:
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Customizability

The graph partitioner has a wide range of customizability for a variety of situations. The customization options include:

1. Minimum Operator Support: Only partition the model if a minimum percentage of operators are supported.

2. Minimum Subgraph Size: The minimum number of operators in any given subgraph. This can be useful if
having compute chokepoints with single operator subgraphs is not desired.

3. Maximum Subgraph Count: The maximum number of subgraphs. Too many subgraphs can fragment the
computation graph causing performance degredation.

4. Ops to Partition: Additional operators to partition to CPU beyond the unsupported operators. This can be useful
to suggest to the graph partitioner to partition to create a more balanced graph.

Furthermore, compiler flags/args can be passed into all Neuron subgraphs through the graph partitioner.

For the API Reference, visit torch_neuronx.trace() and torch_neuronx.PartitionerConfig

Note: Dynamic batching has a case-by-case support with partitioned models, because it is highly dependent on how
the final partition scheme looks like.
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Examples

The following sections provide example usages of the graph partitioner.

Default Usage

The below model is a simple MLP model with sorted log softmax output. The sort operator, torch.sort() or aten:
:sort, is not supported by neuronx-cc at this time, so the graph partitioner will partition out the sort operator to
CPU.

import torch
import torch_neuronx
import torch.nn as nn

import logging

# adjust logger level to see what the partitioner is doing
logger = logging.getLogger("Neuron")

class MLP(nn.Module):
def __init__(

self, input_size=28 * 28, output_size=10, layers=[4096, 2048]
):

super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, layers[0])
self.fc2 = nn.Linear(layers[0], layers[1])
self.fc3 = nn.Linear(layers[1], output_size)
self.relu = nn.ReLU()

def forward(self, x):
f1 = self.fc1(x)
r1 = self.relu(f1)
f2 = self.fc2(r1)
r2 = self.relu(f2)
f3 = self.fc3(r2)
out = torch.log_softmax(f3, dim=1)
sort_out,_ = torch.sort(out)
return sort_out

n = MLP()
n.eval()

inputs = torch.rand(32,784)

# Configure the graph partitioner with the default values
partitioner_config = torch_neuronx.PartitionerConfig()

# Trace a neural network with graph partitioner enabled
neuron_net = torch_neuronx.trace(n, inputs, partitioner_config=partitioner_config)

# Run inference on the partitioned model
output = neuron_net(inputs)
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Specifying requirements

This example is very similar to the previous example, but has two differences. The unsupported sort operator is sand-
wiched between the ReLU activation function after the first linear layer and the second linear layer. The second differ-
ence is that we are specifying a max subgraph count of 2.

import torch
import torch_neuronx
import torch.nn as nn

import logging

# adjust logger level to see what the partitioner is doing
logger = logging.getLogger("Neuron")

class MLP(nn.Module):
def __init__(

self, input_size=28 * 28, output_size=10, layers=[4096, 2048]
):

super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, layers[0])
self.fc2 = nn.Linear(layers[0], layers[1])
self.fc3 = nn.Linear(layers[1], output_size)
self.relu = nn.ReLU()

def forward(self, x):
f1 = self.fc1(x)
r1 = self.relu(f1)
sort_r1,_ = torch.sort(r1)
f2 = self.fc2(sort_r1)
r2 = self.relu(f2)
f3 = self.fc3(r2)
out = torch.log_softmax(f3, dim=1)
return out

n = MLP()
n.eval()

inputs = torch.rand(32,784)

# Configure the graph partitioner with the default values
partitioner_config = torch_neuronx.PartitionerConfig(max_subgraph_count=2)

# This trace will fail since the min_subgraph_size requirement can't be satisfied by the␣
→˓graph partitioner
neuron_net = torch_neuronx.trace(n, inputs, partitioner_config=partitioner_config)

Output:

ValueError: The partitioner has found 3 subgraphs which exceeds the specified max␣
→˓subgraph count of 2.

This example fails because the sort operator placement generates 3 subgraphs, which is more than 2.
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Specifying additional operators to partition

This example shows a situation where we want to partition out the log_softmax operator despite it being supported.
We also specify an 80% support percentage threshold.

import torch
import torch_neuronx
import torch.nn as nn

import logging

# adjust logger level to see what the partitioner is doing
logger = logging.getLogger("Neuron")
logger.setLevel(logging.INFO)

class MLP(nn.Module):
def __init__(

self, input_size=28 * 28, output_size=10, layers=[4096, 2048]
):

super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, layers[0])
self.fc2 = nn.Linear(layers[0], layers[1])
self.fc3 = nn.Linear(layers[1], output_size)
self.relu = nn.ReLU()

def forward(self, x):
f1 = self.fc1(x)
r1 = self.relu(f1)
f2 = self.fc2(r1)
r2 = self.relu(f2)
f3 = self.fc3(r2)
out = torch.log_softmax(f3, dim=1)
sort_out,_ = torch.sort(out)
return sort_out

n = MLP()
n.eval()

inputs = torch.rand(32,784)

# Configure the graph partitioner with the default values
partitioner_config = torch_neuronx.PartitionerConfig(min_operator_percentage_threshold=0.
→˓8,ops_to_partition=set(["aten::log_softmax"]))

# This trace succeeds
neuron_net = torch_neuronx.trace(n, inputs, partitioner_config=partitioner_config)

Key Output logs:

...
Neuron: The following operations are currently supported:
Neuron: aten::linear
Neuron: aten::relu

(continues on next page)
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(continued from previous page)

Neuron: aten::log_softmax
Neuron: The following operations are currently not supported:
Neuron: aten::sort, unsup.py(28): <stack_trace>
...
Neuron: 85.71% of arithmetic operations (6 of 7) are supported
Neuron: Num Partitions: 2

Neuron: Creating Partition #1 for device: Device.NEURON
Neuron: The following operators will be included in this partition:
Neuron: prim::GetAttr:9
Neuron: aten::linear:3
Neuron: aten::relu:2
...
Neuron: Creating Partition #2 for device: Device.CPU
Neuron: The following operators will be included in this partition:
Neuron: prim::Constant:4
Neuron: aten::sort:1
Neuron: aten::log_softmax:1

Notice that we still report that aten::log_softmax is still supported, but also report that aten::log_softmax is in
Partition #2 which is for Device.CPU.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

Transformers Neuron (transformers-neuronx)

This document is relevant for: Inf2, Trn1, Trn2

8.3.7 Generative LLM inference with Neuron

Table of contents

• Background

• Performance optimizations

– KV-caching:

– Model sharding:

– Computation/communication overlap:

– Compact data-types:

– Bucketing:

• Model partitioning

– How many NeuronCores do I need?

– Which parallelism technique should I use?

– What batch-size should I use?
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Background

Large Language Models (LLMs) generate human-like text through a process known as generative inference. Funda-
mentally, given an input prompt, generative LLM inference generates text outputs, by iteratively predicting the next
token in a sequence.

These models typically take a sequence of integers as input, which represent a sequence of tokens (words/subwords),
and generate a prediction for the next token to be emitted. Below is a simple example that illustrates this in code:

# Vocabulary of tokens the model can parse. The position of each token in the
# vocabulary is used as the token_id (an integer representing that token)
vocab = ["having", "I", "fun", "am", "learning", ".", "Neuron"]

# input token_ids: list of integers that represent the input tokens in this
# case: "I", "am", "having", "fun"
input_token_ids = [1, 3, 0, 2]

# The LLM gets a vector of input token_ids, and generates a probability-distribution
# for what the output token_id should be (with a probability score for each token_id
# in the vocabulary)
output = LLM(input_token_ids)

# by taking argmax on the output, we effectively perform a 'greedy sampling' process,
# i.e. we choose the token_id with the highest probability. Other sampling techniques
# also exist, e.g. Top-K. By choosing a probabilistic sampling method we enable the model
# to generate different outputs when called multiple times with the same input.
next_token_id = np.argmax(output)

# map the token_id back into an output token
next_token = vocab[next_token_id]

To generate entire sentences, the application iteratively invokes the LLM to generate the next token’s prediction, and at
each iteration we append the predicted token back into the input:

def generate(input_token_ids, n_tokens_to_generate):
for _ in range(n_tokens_to_generate): # decode loop

output = LLM(input_token_ids) # model forward pass

next_token_id = np.argmax(output) # greedy sampling

if (next_token_id == EOS_TOK_ID)
break # break if generated End Of Sentence (EOS)

# append the prediction to the input, and continue to the next out_token
input_token_ids.append(int(next_token_id))

return input_token_ids[-n_tokens_to_generate :] # only return generated token_ids

input_token_ids = [1, 3] # "I" "am"
output_token_ids = generate(input_tokens_ids, 4) # output_token_ids = [0, 2, 4, 6]
output_tokens = [vocab[i] for i in output_token_ids] # "having" "fun" "learning" “Neuron”
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This process, of predicting a future value (regression) and adding it back into the input (auto), is sometimes referred to
as autoregression. For more details, Jay Mody’s GPT in 60 Lines of NumPy is an excellent writeup on GPTs (Generative
Pre-trained Transformers).

Performance optimizations

The sheer size of state-of-the-art LLMs, as well as the sequential nature of text generation, poses multiple challenges
for efficient generative LLM deployment.

First, the model is typically sharded across multiple devices, in order to fit the model in device memory. This creates
communication overhead and complexity among devices. Secondly, certain deployments have strict application-level
latency bounds, thus requiring substantial latency optimizations. This is especially challenging, due to the sequential
nature of token-by-token generation. Finally, generating one token at a time often leads to poor device utilization, due
to low arithmetic intensity, which can be improved via batching (see What batch-size should I use?).

The Neuron SDK provides several built-in optimizations, allowing you to extract optimal performance when deploying
LLM models, including:

KV-caching:

The transformers-neuronx library implements KV-cache optimization, which saves compute resources by reusing pre-
viously calculated SelfAttention key-value pairs, instead of recalculating them for each generated token.

To illustrate this concept, see the inner workings of the MaskedSelfAttention operator in the figure below.

At each token generation step, the Query vector of a single current token is multiplied by the Key vectors of all previous
tokens in the sequence to create attention scores and these scores are further multiplied by the Value vectors of all
previous tokens.

The core idea behind this optimization is that instead of re-computing the Key and Value vectors for all previous
tokens at each token generation step, Neuron can perform only incremental computation for the current token and re-
use previously computed Key/Value vectors from the KV-cache. The Key/Value vector of the current token is also
appended to the KV-cache, for the next token generation step.
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Note that the first token in the output sequence is unique in two ways:

• No KV-cache is available at this point.

• Neuron needs to compute the entire KV-cache for <input_len> tokens (the input prompt), rather than one incre-
mental KV-cache entry.

This means that first-token latency is typically higher than the following tokens.

Model sharding:

Neuron enables you to shard the model across devices via Tensor Parallelism, Pipeline Parallelism (coming soon), or
a combination of the two (coming soon).

Tensor Parallelism shards each layer across multiple devices, enabling you to achieve the optimal latency.

Pipeline Parallelism places different layers on different devices and creates a pipeline between them (as the name
suggests) and is useful mainly when optimizing throughput and/or cost-per-inference.

To find the optimal Tensor/Pipeline parallelism configuration for your model, see the Model partitioning section.

Computation/communication overlap:

The Neuron compiler automatically fuses Collective Communication primitives (e.g., AllReduce) with the following
computation (e.g., GEMM) in the compute graph. This helps minimize any overhead caused by sharding the model
across devices.
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Compact data-types:

Neuron supports INT8 and FP8 (coming soon), which can significantly reduce the model’s memory bandwidth and
capacity requirements. This is especially useful for Generative LLM inference, which is typically memory-bound.
Therefore, using a compact data-type can improve the overall LLM inference performance with lower latency and
higher throughput.

Bucketing:

The transformers-neuronx library automatically uses bucketing to process the input prompt and output tokens. Buck-
eting makes it possible to handle variable sequence lengths, without requiring support for dynamic shapes. Using
multiple progressively larger buckets helps minimize the portion of the KV-cache that needs to be read for each token.

Model partitioning

How many NeuronCores do I need?

Transformer models are typically defined via a hyper-parameter configuration, such as the following:

{
"n_vocab": 50257, # number of tokens in our vocabulary
"n_ctx": 2048, # maximum possible sequence length of the input
"n_embd": 9216, # embedding dimension (determines the "width" of the network)
"n_head": 72, # number of attention heads (n_embd must be divisible by n_head)
"n_layer": 64 # number of layers (determines the "depth" of the network)
}

To determine the number of NeuronCores needed to fit the model, perform the following calculation:

weight_mem_footprint = 12 x <n_layer> x <n_embd>^2 x <dtype-size>
KV_cache_mem_footprint = <batch-size> x <n_layer> x <n_ctx> x <n_embd> x 2 x <dtype-size>
# <dtype-size> is 2 for BF16/FP16, or 1 for FP8/INT8

mem_footprint = weight_mem_footprint + KV_cache_mem_footprint

And from here, determining the number of NeuronCores is straightforward:

num_neuron_cores = ceil_to_closest_supported_size (mem_footprint / <NC-HBM-capacity>,
→˓<instance-type>) # 16GiB per Inferentia2/Trainium1 NeuronCore

For example, when running OPT-66B on Inf2, with a batch-size of 16, the number of required NeuronCores can be
computed as follows.

# OPT-66B example (BF16, Inf2)
# n_layer=64, n_ctx=2048, n_embd=9216, batch=16
weight_mem_footprint = 12 x 64 x 9216^2 x 2 = 121.5 GiB
KV_cache_mem_footprint = 16 x 64 x 2048 x 9216 x 2 x 2 = 72 GiB

mem_footprint = 121.5GiB + 72GiB = 193.5 GiB

num_neuron_cores = ceil_to_closest_supported_size (193.5GiB / 16GiB, Inf2)
= ceil_to_closest_supported_size (12.1) = 24

(continues on next page)
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(continued from previous page)

## Currently, the Neuron runtime supports tensor-parallelism degrees 2,␣
→˓8, and 32 on Trn1

## and supports tensor-parallelism degrees 2, 4, 8, 12 and 24 on Inf2.

Use the Neuron Calculator to compute the number of cores needed for a custom hyper-parameter configuration.

Which parallelism technique should I use?

Tensor parallelism improves latency, at the expense of increased intra-layer communication. Thus, as a general rule,
it is recommended to use the smallest tensor parallelism degree that meets your latency requirement and then use
pipeline/data parallelism from that point on.

If latency is not a major concern in your application (e.g., model evaluation) and the primary goal is to maximize
throughput (i.e., minimize total cost per token), then it is most efficient to use pipeline parallelism and increase the
batch-size as much as possible.

What batch-size should I use?

Due to the serial token generation nature of generative LLM inference, this workload tends to be extremely memory
bound. This means that throughput (and thus cost per inference) improves significantly by batching.

As a general rule, we recommend increasing the batch-size to the maximum amount that fits within the latency budget
(up to batch=256. A larger batch-size typically does not help with performance.)

Note that the KV-cache grows linearly with the batch-size and can grow until it runs out of memory (typically referred
to as OOM). If the latency budget allows, we recommend increasing the batch-size to the maximum value that does not
result in OOM.

Users may also consider pipelining the model beyond what is necessary to fit model parameters / KV-cache on devices,
in order to free up device-memory space and thus allow the batch-size to increase without causing OOM issues.

This document is relevant for: Inf2, Trn1, Trn2

PyTorch 2.x

This document is relevant for: Inf1, Inf2, Trn1, Trn2

8.3.8 Introducing PyTorch 2.7 Support

Table of contents

• What are we introducing?

• How is PyTorch NeuronX 2.7 different compared to PyTorch NeuronX 2.5?

• How can I install PyTorch NeuronX 2.7?

• Migrate your application to PyTorch 2.7

– Migrating training scripts

– Migrating inference scripts
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• Troubleshooting and Known Issues

– TypeError: AdamW.__init__() got an unexpected keyword argument ‘decoupled_weight_decay’

– Tensor split on second dimension of 2D array not working

– Lower BERT pretraining performance when switch to using model.to(torch.bfloat16)

– Warning “XLA_DOWNCAST_BF16 will be deprecated after the 2.6 release, please downcast your
model directly”

– AttributeError: <module ‘torch_xla.core.xla_model’ . . . does not have the attribute ‘xrt_world_size’

– AttributeError: <module ‘torch_xla.core.xla_model’ . . . does not have the attribute ‘get_ordinal’

– AttributeError: <module ‘torch_xla.core.xla_model’ . . . does not have the attribute
‘get_local_ordinal’

– Socket Error: Socket failed to bind

– AttributeError: module 'torch' has no attribute 'xla' Failure

– Error Attempted to access the data pointer on an invalid python storage when us-
ing HF Trainer API

– ImportError: libcrypt.so.1: cannot open shared object file: No such file or
directory on Amazon Linux 2023

– FileNotFoundError: [Errno 2] No such file or directory: 'libneuronpjrt-path'
Failure

– Input dimension should be either 1 or equal to the output dimension it is
broadcasting into or IndexError: index out of range error during Neuron Parallel
Compile

– Compiler assertion error when running Stable Diffusion training

• Frequently Asked Questions (FAQ)

– Do I need to recompile my models with PyTorch 2.7?

– Do I need to update my scripts for PyTorch 2.7?

– What environment variables will be changed with PyTorch NeuronX 2.7 ?

– What features will be missing with PyTorch NeuronX 2.7?

– Can I use Neuron Distributed and Transformers Neuron libraries with PyTorch NeuronX 2.7?

– Can I still use PyTorch 2.6 version?

– Can I still use PyTorch 2.5 version?

– Can I still use PyTorch 2.1 version?
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What are we introducing?

Starting with the Neuron 2.24 release, customers will be able to upgrade to PyTorch NeuronX(torch-neuronx)
supporting PyTorch 2.7.

PyTorch Neuron (torch-neuronx) Setup is updated to include installation instructions for PyTorch NeuronX 2.7 for
Amazon Linux 2023 and Ubuntu 22. Note that PyTorch NeuronX 2.7 is supported on Python 3.9, 3.10, and 3.11.

Please review migration guide for possible changes to training scripts. No code changes are required for inference
scripts.

How is PyTorch NeuronX 2.7 different compared to PyTorch NeuronX 2.5?

PyTorch NeuronX 2.7 uses Torch-XLA v2.7 and PyTorch v2.7 which have C++11 ABI enabled by default.

Additionally, Torch-XLA v2.7 includes a fix for training performance issue https://github.com/pytorch/xla/issues/9037
.

See Torch-XLA 2.7 release for a full list.

See Migrate your application to PyTorch 2.7 for changes needed to use PyTorch NeuronX 2.7.

Note: GSPMD and Torch Dynamo (torch.compile) support in Neuron will be available in a future release.

How can I install PyTorch NeuronX 2.7?

To install PyTorch NeuronX 2.7 please follow the PyTorch Neuron (torch-neuronx) Setup guides for Amazon Linux
2023 and Ubuntu 22 AMI. Please also refer to the Neuron multi-framework DLAMI setup guide for Ubuntu 22 with a
pre-installed virtual environment for PyTorch NeuronX 2.7 that you can use to get started. PyTorch NeuronX 2.7 can
be installed using the following:

python -m pip install --upgrade neuronx-cc==2.* torch-neuronx==2.7.* torchvision

Note: PyTorch NeuronX 2.7 is currently available for Python 3.9, 3.10, 3.11.

Migrate your application to PyTorch 2.7

Please make sure you have first installed the PyTorch NeuronX 2.7 as described above in installation guide

Migrating training scripts

To migrate the training scripts from PyTorch NeuronX 2.5/2.6 to PyTorch NeuronX 2.7, implement the following
changes:

Note: xm below refers to torch_xla.core.xla_model, xr refers to torch_xla.runtime, and xmp refers to
torch_xla.distributed.xla_multiprocessing
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• The environment variables XLA_DOWNCAST_BF16 and XLA_USE_BF16 are deprecated (warning when used) and
will be removed in an upcoming release. Please switch to automatic mixed-precision or use model.to(torch.
bfloat16) command to convert model to BF16 format. (see migration_from_xla_downcast_bf16)

• The functions xm.xrt_world_size(), xm.xla_model.get_ordinal(), and xm.xla_model.
get_local_ordinal() are deprecated and removed so there’s error when used. Please switch to xr.
world_size(), xr.global_ordinal(), and xr.local_ordinal() respectively as replacements.

• The default behavior of torch.load parameter weights_only is changed from False to True. Leaving
weights_only as True can cause issues with pickling.

• If using xmp.spawn, the nprocs argument limited to 1 or None since v2.1. Previously, passing a value > 1 would
result in a warning. In torch-xla 2.6+, passing a value > 1 would result in an error with an actionable message to
use NEURON_NUM_DEVICES to set the number of NeuronCores to use.

See v2.6 migration guide for additional changes needed if you are migrating from PyTorch NeuronX 2.5. See v2.5
migration guide for additional changes needed if you are migrating from PyTorch NeuronX 2.1.

Migrating inference scripts

There are no code changes required in the inference scripts.

Troubleshooting and Known Issues

TypeError: AdamW.__init__() got an unexpected keyword argument ‘decoupled_weight_decay’

AdamW now has an additional argument “decoupled_weight_decay” which is default to False. If you get “TypeEr-
ror: AdamW.__init__() got an unexpected keyword argument ‘decoupled_weight_decay’” with NeuronX Distributed,
please update to the latest version.

Tensor split on second dimension of 2D array not working

Currently, when using tensor split operation on a 2D array in the second dimension, the resulting ten-
sors don’t have the expected data (https://github.com/pytorch/xla/issues/8640). The work-around is to set
XLA_DISABLE_FUNCTIONALIZATION=0. Another work-around is to use torch.tensor_split.

Lower BERT pretraining performance when switch to using model.to(torch.bfloat16)

Currently, BERT pretraining performance is ~11% lower when switching to using model.to(torch.bfloat16) as
part of migration away from the deprecated environment variable XLA_DOWNCAST_BF16 due to https://github.com/
pytorch/xla/issues/8545. As a work-around to recover the performance, you can set XLA_DOWNCAST_BF16=1 which
would still work in torch-neuronx 2.5 and 2.7 although there will be deprecation warnings (as noted below).
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Warning “XLA_DOWNCAST_BF16 will be deprecated after the 2.6 release, please downcast your
model directly”

Environment variables XLA_DOWNCAST_BF16 and XLA_USE_BF16 are deprecated (warning when used). Please switch
to automatic mixed-precision or use model.to(torch.bfloat16) command to cast model to BF16. (see migra-
tion_from_xla_downcast_bf16)

AttributeError: <module ‘torch_xla.core.xla_model’ . . . does not have the attribute ‘xrt_world_size’

This is an error that torch_xla.core.xla_model.xrt_world_size() is removed in torch-xla version 2.7. Please
switch to using torch_xla.runtime.world_size() instead. If using Hugging Face transformers/accelerate li-
braries, please use transformers==4.53.* and accelerate==1.7.*.

AttributeError: <module ‘torch_xla.core.xla_model’ . . . does not have the attribute ‘get_ordinal’

This is an error that torch_xla.core.xla_model.xla_model.get_ordinal() is removed in torch-xla version
2.7. Please switch to using torch_xla.runtime.global_ordinal() instead. If using Hugging Face transform-
ers/accelerate libraries, please use transformers==4.53.* and accelerate==1.7.*.

AttributeError: <module ‘torch_xla.core.xla_model’ . . . does not have the attribute
‘get_local_ordinal’

This is an error that torch_xla.core.xla_model.xla_model.get_local_ordinal() is removed in torch-xla
version 2.7. Please switch to using torch_xla.runtime.local_ordinal() instead. If using Hugging Face trans-
formers/accelerate libraries, please use transformers==4.53.* and accelerate==1.7.*.

Socket Error: Socket failed to bind

In PyTorch 2.7, there needs to be a socket available for both torchrun and the init_process_group to bind. Both of
these, by default, will be set to unused sockets. If you plan to use a MASTER_PORT environment variable then this error
may occur, if the port you set it to is already in use.

[W socket.cpp:426] [c10d] The server socket has failed to bind to [::]:2.700 (errno: 98 -
→˓ Address already in use).
[W socket.cpp:426] [c10d] The server socket has failed to bind to ?UNKNOWN? (errno: 98 -␣
→˓Address already in use).
[E socket.cpp:462] [c10d] The server socket has failed to listen on any local network␣
→˓address.
RuntimeError: The server socket has failed to listen on any local network address.
The server socket has failed to bind to ?UNKNOWN? (errno: 98 - Address already in use).

To resolve the issue, please ensure if you are setting MASTER_PORT that the port you’re setting it to is not used anywhere
else in your scripts. Otherwise, you can leave MASTER_PORT unset, and torchrun will set the default port for you.
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AttributeError: module 'torch' has no attribute 'xla' Failure

In PyTorch 2.7, training scripts might fail during activation checkpointing with the error shown below.

AttributeError: module 'torch' has no attribute 'xla'

The solution is to use torch_xla.utils.checkpoint.checkpoint instead of torch.utils.checkpoint.
checkpoint as the checkpoint function while wrapping pytorch modules for activation checkpointing. Refer to the
pytorch/xla discussion regarding this issue. Also set use_reentrant=True while calling the torch_xla checkpoint
function. Failure to do so will lead to XLA currently does not support use_reentrant==False error. For
more details on checkpointing, refer the documentation.

Error Attempted to access the data pointer on an invalid python storage when using HF
Trainer API

While using HuggingFace Transformers Trainer API to train (i.e. HuggingFace Trainer API fine-tuning tutorial), you
may see the error “Attempted to access the data pointer on an invalid python storage”. This is a known issue and has
been fixed in the version 4.37.3 of HuggingFace Transformers.

ImportError: libcrypt.so.1: cannot open shared object file: No such file or directory on
Amazon Linux 2023

torch-xla version 2.5+ now requires libcrypt.so.1 shared library. Currently, Amazon Linux 2023 includes
libcrypt.so.2 shared library by default so you may see ImportError: libcrypt.so.1: cannot open shared object
file: No such file or directory` when using torch-neuronx 2.1+ on Amazon Linux 2023. To install libcrypt.so.
1 on Amazon Linux 2023, please run the following installation command (see also https://github.com/amazonlinux/
amazon-linux-2023/issues/182 for more context):

sudo yum install libxcrypt-compat

FileNotFoundError: [Errno 2] No such file or directory: 'libneuronpjrt-path' Failure

In PyTorch 2.7, users might face the error shown below due to incompatible libneuronxla and torch-neuronx
versions being installed.

FileNotFoundError: [Errno 2] No such file or directory: 'libneuronpjrt-path'

Check that the version of libneuronxla that support PyTorch NeuronX 2.7 is 2.2.*. If not, then uninstall
libneuronxla using pip uninstall libneuronxla and then reinstall the packages following the installation guide
installation guide

1612 Chapter 8. Learning Neuron

https://github.com/pytorch/xla/issues/5766
https://pytorch.org/docs/stable/checkpoint.html
https://github.com/huggingface/transformers/issues/2.778
https://github.com/amazonlinux/amazon-linux-2023/issues/182
https://github.com/amazonlinux/amazon-linux-2023/issues/182


AWS Neuron

Input dimension should be either 1 or equal to the output dimension it is broadcasting
into or IndexError: index out of range error during Neuron Parallel Compile

When running Neuron Parallel Compile with HF Trainer API, you may see the error Status: INVALID_ARGUMENT:
Input dimension should be either 1 or equal to the output dimension it is broadcasting
into or IndexError: index out of range in Accelerator’s pad_across_processes function. This is due to
data-dependent operation in evaluation metrics computation. Data-dependent operations would result in undefined
behavior with Neuron Parallel Compile trial execution (execute empty graphs with zero outputs). To work-around this
error, please disable compute_metrics when NEURON_EXTRACT_GRAPHS_ONLY is set to 1:

compute_metrics=None if os.environ.get("NEURON_EXTRACT_GRAPHS_ONLY") else compute_metrics

Compiler assertion error when running Stable Diffusion training

Currently, with PyTorch 2.7 (torch-neuronx), we are seeing the following compiler assertion error with Stable Diffusion
training when gradient accumulation is enabled. This will be fixed in an upcoming release. For now, if you would like
to run Stable Diffusion training with Neuron SDK release 2.23, please disable gradient accumulation in torch-neuronx
2.7.

ERROR 222163 [NeuronAssert]: Assertion failure in usr/lib/python3.9/concurrent/futures/
→˓process.py at line 239 with exception:
too many partition dims! {{0,+,960}[10],+,10560}[10]

Frequently Asked Questions (FAQ)

Do I need to recompile my models with PyTorch 2.7?

Yes.

Do I need to update my scripts for PyTorch 2.7?

Please see the migration guide

What environment variables will be changed with PyTorch NeuronX 2.7 ?

The environment variables XLA_DOWNCAST_BF16 and XLA_USE_BF16 are deprecated (warning when used). Please
switch to automatic mixed-precision or use model.to(torch.bfloat16) command to cast model to BF16. (see
migration_from_xla_downcast_bf16)
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What features will be missing with PyTorch NeuronX 2.7?

PyTorch NeuronX 2.7 has all of the supported features in PyTorch NeuronX 2.6, with known issues listed above, and
unsupported features as listed in PyTorch Neuron (torch-neuronx) release notes.

Can I use Neuron Distributed and Transformers Neuron libraries with PyTorch NeuronX 2.7?

Yes, NeuronX Distributed and Transformers NeuronX are supported by PyTorch NeuronX 2.7. AWS Neuron Reference
for NeMo Megatron has reached end-of-support in release 2.23.

Can I still use PyTorch 2.6 version?

PyTorch 2.6 is supported since release 2.23.

Can I still use PyTorch 2.5 version?

PyTorch 2.5 is supported for releases 2.21 to 2.24 and will reach end-of-life in a future release. Additionally, the CVE
CVE-2025-32434 affects PyTorch version 2.5. We recommend upgrading to the new version of Torch-NeuronX by
following PyTorch Neuron (torch-neuronx) Setup.

Can I still use PyTorch 2.1 version?

PyTorch 2.1 is supported for release 2.21 and has reached end-of-life in release 2.22. Additionally, the CVEs CVE-
2024-31583 and CVE-2024-31580 affect PyTorch versions 2.1 and earlier. We recommend upgrading to the new
version of Torch-NeuronX by following PyTorch Neuron (torch-neuronx) Setup.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

8.3.9 Introducing PyTorch 2.6 Support

Table of contents

• What are we introducing?

• How is PyTorch NeuronX 2.6 different compared to PyTorch NeuronX 2.5?

• How can I install PyTorch NeuronX 2.6?

• Migrate your application to PyTorch 2.6

– Migrating training scripts

– Migrating inference scripts

• Troubleshooting and Known Issues

– Tensor split on second dimension of 2D array not working

– Lower BERT pretraining performance with torch-neuronx 2.6 compared to torch-neuronx 2.5
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– Lower BERT pretraining performance when switch to using model.to(torch.bfloat16)

– Warning “XLA_DOWNCAST_BF16 will be deprecated after the 2.6 release, please downcast your
model directly”

– WARNING:root:torch_xla.core.xla_model.xrt_world_size() will be removed in release 2.7. is depre-
cated. Use torch_xla.runtime.world_size instead.

– WARNING:torch_xla.core.xla_model.xla_model.get_ordinal() will be removed in release 2.7. is dep-
recated. Use torch_xla.runtime.global_ordinal instead.

– WARNING:torch_xla.core.xla_model.xla_model.get_local_ordinal() will be removed in release 2.7. is
deprecated. Use torch_xla.runtime.local_ordinal instead.

– Socket Error: Socket failed to bind

– AttributeError: module 'torch' has no attribute 'xla' Failure

– Error Attempted to access the data pointer on an invalid python storage when us-
ing HF Trainer API

– ImportError: libcrypt.so.1: cannot open shared object file: No such file or
directory on Amazon Linux 2023

– FileNotFoundError: [Errno 2] No such file or directory: 'libneuronpjrt-path'
Failure

– Input dimension should be either 1 or equal to the output dimension it is
broadcasting into or IndexError: index out of range error during Neuron Parallel
Compile

– Compiler assertion error when running Stable Diffusion training

• Frequently Asked Questions (FAQ)

– Do I need to recompile my models with PyTorch 2.6?

– Do I need to update my scripts for PyTorch 2.6?

– What environment variables will be changed with PyTorch NeuronX 2.6 ?

– What features will be missing with PyTorch NeuronX 2.6?

– Can I use Neuron Distributed and Transformers Neuron libraries with PyTorch NeuronX 2.6?

– Can I still use PyTorch 2.5 version?

– Can I still use PyTorch 2.1 version?

What are we introducing?

Starting with the Neuron 2.23 release, customers will be able to upgrade to PyTorch NeuronX(torch-neuronx)
supporting PyTorch 2.6.

PyTorch Neuron (torch-neuronx) Setup is updated to include installation instructions for PyTorch NeuronX 2.6 for
Amazon Linux 2023 and Ubuntu 22. Note that PyTorch NeuronX 2.6 is supported on Python 3.9, 3.10, and 3.11.

Please review migration guide for possible changes to training scripts. No code changes are required for inference
scripts.
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How is PyTorch NeuronX 2.6 different compared to PyTorch NeuronX 2.5?

PyTorch NeuronX 2.6 uses Torch-XLA 2.6 which has improved support for Automatic Mixed Precision and buffer
aliasing. Additionally:

• Reintroduced XLA_USE_32BIT_LONG to give customers the flexibility to use INT32 for their workloads. This
flag was removed in v2.5.

• Added xm.xla_device_kind() to return XLA device kind string (‘NC_v2’ for Trainium1, ‘NC_v3’ and ‘NC_v3d’
for Trainium2). See Logical NeuronCore configuration for more info.

See Torch-XLA 2.6 release for a full list.

See Migrate your application to PyTorch 2.6 for changes needed to use PyTorch NeuronX 2.6.

Note: GSPMD and Torch Dynamo (torch.compile) support in Neuron will be available in a future release.

How can I install PyTorch NeuronX 2.6?

To install PyTorch NeuronX 2.6 please follow the PyTorch Neuron (torch-neuronx) Setup guides for Amazon Linux
2023 and Ubuntu 22 AMI. Please also refer to the Neuron multi-framework DLAMI setup guide for Ubuntu 22 with a
pre-installed virtual environment for PyTorch NeuronX 2.6 that you can use to get started. PyTorch NeuronX 2.6 can
be installed using the following:

python -m pip install --upgrade neuronx-cc==2.* torch-neuronx==2.6.* torchvision

Note: PyTorch NeuronX 2.6 is currently available for Python 3.9, 3.10, 3.11.

Migrate your application to PyTorch 2.6

Please make sure you have first installed the PyTorch NeuronX 2.6 as described above in installation guide

Migrating training scripts

To migrate the training scripts from PyTorch NeuronX 2.5 to PyTorch NeuronX 2.6, implement the following changes:

Note: xm below refers to torch_xla.core.xla_model, xr refers to torch_xla.runtime, and xmp refers to
torch_xla.distributed.xla_multiprocessing

• The environment variables XLA_DOWNCAST_BF16 and XLA_USE_BF16 are deprecated (warning when used) and
will be removed in an upcoming release. Please switch to automatic mixed-precision or use model.to(torch.
bfloat16) command to convert model to BF16 format. (see migration_from_xla_downcast_bf16)

• The functions xm.xrt_world_size(), xm.xla_model.get_ordinal(), and xm.xla_model.
get_local_ordinal() are deprecated (warning when used). Please switch to xr.world_size(), xr.
global_ordinal(), and xr.local_ordinal() respectively as replacements.

• The default behavior of torch.load parameter weights_only is changed from False to True. Leaving
weights_only as True can cause issues with pickling.
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• If using xmp.spawn, the nprocs argument limited to 1 or None since v2.1. Previously, passing a value > 1 would
result in a warning. In torch-xla 2.6, passing a value > 1 would result in an error with an actionable message to
use NEURON_NUM_DEVICES to set the number of NeuronCores to use.

See v2.5 migration guide for additional changes needed if you are migrating from PyTorch NeuronX 2.1.

Migrating inference scripts

There are no code changes required in the inference scripts.

Troubleshooting and Known Issues

Tensor split on second dimension of 2D array not working

Currently, when using tensor split operation on a 2D array in the second dimension, the resulting ten-
sors don’t have the expected data (https://github.com/pytorch/xla/issues/8640). The work-around is to set
XLA_DISABLE_FUNCTIONALIZATION=0. Another work-around is to use torch.tensor_split.

Lower BERT pretraining performance with torch-neuronx 2.6 compared to torch-neuronx 2.5

Currently, BERT pretraining performance is ~10% lower with torch-neuronx 2.6 compared to torch-neuronx 2.5. This
is due to a known regression in torch-xla https://github.com/pytorch/xla/issues/9037 and can affect other models with
high graph tracing overhead. To work-around this issue, please build the r2.6_aws_neuron branch of torch-xla as
follows (see pytorch-neuronx-install-cxx11 for C++11 ABI version):

# Setup build env (make sure you are in a python virtual env). Replace "apt" with "yum"␣
→˓on AL2023.
sudo apt install cmake
pip install yapf==0.30.0
wget https://github.com/bazelbuild/bazelisk/releases/download/v1.20.0/bazelisk-linux-
→˓amd64
sudo cp bazelisk-linux-amd64 /usr/local/bin/bazel
# Clone repos
git clone --recursive https://github.com/pytorch/pytorch --branch v2.6.0
cd pytorch/
git clone --recursive https://github.com/pytorch/xla.git --branch r2.6_aws_neuron
_GLIBCXX_USE_CXX11_ABI=0 python setup.py bdist_wheel
# pip wheel will be present in ./dist
cd xla/
CXX_ABI=0 python setup.py bdist_wheel
# pip wheel will be present in ./dist and can be installed instead of the torch-xla␣
→˓released in pypi.org
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Lower BERT pretraining performance when switch to using model.to(torch.bfloat16)

Currently, BERT pretraining performance is ~11% lower when switching to using model.to(torch.bfloat16) as
part of migration away from the deprecated environment variable XLA_DOWNCAST_BF16 due to https://github.com/
pytorch/xla/issues/8545. As a work-around to recover the performance, you can set XLA_DOWNCAST_BF16=1 which
would still work in torch-neuronx 2.5 and 2.6 although there will be deprecation warnings (as noted below).

Warning “XLA_DOWNCAST_BF16 will be deprecated after the 2.6 release, please downcast your
model directly”

Environment variables XLA_DOWNCAST_BF16 and XLA_USE_BF16 are deprecated (warning when used). Please switch
to automatic mixed-precision or use model.to(torch.bfloat16) command to cast model to BF16. (see migra-
tion_from_xla_downcast_bf16)

WARNING:root:torch_xla.core.xla_model.xrt_world_size() will be removed in release 2.7. is depre-
cated. Use torch_xla.runtime.world_size instead.

This is a warning that torch_xla.core.xla_model.xrt_world_size()will be removed in a future release. Please
switch to using torch_xla.runtime.world_size instead.

WARNING:torch_xla.core.xla_model.xla_model.get_ordinal() will be removed in release 2.7. is dep-
recated. Use torch_xla.runtime.global_ordinal instead.

This is a warning that torch_xla.core.xla_model.xla_model.get_ordinal() will be removed in a future re-
lease. Please switch to using torch_xla.runtime.global_ordinal instead.

WARNING:torch_xla.core.xla_model.xla_model.get_local_ordinal() will be removed in release 2.7. is
deprecated. Use torch_xla.runtime.local_ordinal instead.

This is a warning that torch_xla.core.xla_model.xla_model.get_local_ordinal() will be removed in a fu-
ture release. Please switch to using torch_xla.runtime.local_ordinal instead.

Socket Error: Socket failed to bind

In PyTorch 2.6, there needs to be a socket available for both torchrun and the init_process_group to bind. Both of
these, by default, will be set to unused sockets. If you plan to use a MASTER_PORT environment variable then this error
may occur, if the port you set it to is already in use.

[W socket.cpp:426] [c10d] The server socket has failed to bind to [::]:2.600 (errno: 98 -
→˓ Address already in use).
[W socket.cpp:426] [c10d] The server socket has failed to bind to ?UNKNOWN? (errno: 98 -␣
→˓Address already in use).
[E socket.cpp:462] [c10d] The server socket has failed to listen on any local network␣
→˓address.
RuntimeError: The server socket has failed to listen on any local network address.
The server socket has failed to bind to ?UNKNOWN? (errno: 98 - Address already in use).

To resolve the issue, please ensure if you are setting MASTER_PORT that the port you’re setting it to is not used anywhere
else in your scripts. Otherwise, you can leave MASTER_PORT unset, and torchrun will set the default port for you.
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AttributeError: module 'torch' has no attribute 'xla' Failure

In PyTorch 2.6, training scripts might fail during activation checkpointing with the error shown below.

AttributeError: module 'torch' has no attribute 'xla'

The solution is to use torch_xla.utils.checkpoint.checkpoint instead of torch.utils.checkpoint.
checkpoint as the checkpoint function while wrapping pytorch modules for activation checkpointing. Refer to the
pytorch/xla discussion regarding this issue. Also set use_reentrant=True while calling the torch_xla checkpoint
function. Failure to do so will lead to XLA currently does not support use_reentrant==False error. For
more details on checkpointing, refer the documentation.

Error Attempted to access the data pointer on an invalid python storage when using HF
Trainer API

While using HuggingFace Transformers Trainer API to train (i.e. HuggingFace Trainer API fine-tuning tutorial), you
may see the error “Attempted to access the data pointer on an invalid python storage”. This is a known issue and has
been fixed in the version 4.37.3 of HuggingFace Transformers.

ImportError: libcrypt.so.1: cannot open shared object file: No such file or directory on
Amazon Linux 2023

torch-xla version 2.6+ now requires libcrypt.so.1 shared library. Currently, Amazon Linux 2023 includes
libcrypt.so.2 shared library by default so you may see ImportError: libcrypt.so.1: cannot open shared object
file: No such file or directory` when using torch-neuronx 2.1+ on Amazon Linux 2023. To install libcrypt.so.
1 on Amazon Linux 2023, please run the following installation command (see also https://github.com/amazonlinux/
amazon-linux-2023/issues/182 for more context):

sudo yum install libxcrypt-compat

FileNotFoundError: [Errno 2] No such file or directory: 'libneuronpjrt-path' Failure

In PyTorch 2.6, users might face the error shown below due to incompatible libneuronxla and torch-neuronx
versions being installed.

FileNotFoundError: [Errno 2] No such file or directory: 'libneuronpjrt-path'

Check that the version of libneuronxla that support PyTorch NeuronX 2.6 is 2.2.*. If not, then uninstall
libneuronxla using pip uninstall libneuronxla and then reinstall the packages following the installation guide
installation guide
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Input dimension should be either 1 or equal to the output dimension it is broadcasting
into or IndexError: index out of range error during Neuron Parallel Compile

When running Neuron Parallel Compile with HF Trainer API, you may see the error Status: INVALID_ARGUMENT:
Input dimension should be either 1 or equal to the output dimension it is broadcasting
into or IndexError: index out of range in Accelerator’s pad_across_processes function. This is due to
data-dependent operation in evaluation metrics computation. Data-dependent operations would result in undefined
behavior with Neuron Parallel Compile trial execution (execute empty graphs with zero outputs). To work-around this
error, please disable compute_metrics when NEURON_EXTRACT_GRAPHS_ONLY is set to 1:

compute_metrics=None if os.environ.get("NEURON_EXTRACT_GRAPHS_ONLY") else compute_metrics

Compiler assertion error when running Stable Diffusion training

Currently, with PyTorch 2.6 (torch-neuronx), we are seeing the following compiler assertion error with Stable Diffusion
training when gradient accumulation is enabled. This will be fixed in an upcoming release. For now, if you would like
to run Stable Diffusion training with Neuron SDK release 2.23, please disable gradient accumulation in torch-neuronx
2.6.

ERROR 222163 [NeuronAssert]: Assertion failure in usr/lib/python3.9/concurrent/futures/
→˓process.py at line 239 with exception:
too many partition dims! {{0,+,960}[10],+,10560}[10]

Frequently Asked Questions (FAQ)

Do I need to recompile my models with PyTorch 2.6?

Yes.

Do I need to update my scripts for PyTorch 2.6?

Please see the migration guide

What environment variables will be changed with PyTorch NeuronX 2.6 ?

The environment variables XLA_DOWNCAST_BF16 and XLA_USE_BF16 are deprecated (warning when used). Please
switch to automatic mixed-precision or use model.to(torch.bfloat16) command to cast model to BF16. (see
migration_from_xla_downcast_bf16)
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What features will be missing with PyTorch NeuronX 2.6?

PyTorch NeuronX 2.6 has all of the supported features in PyTorch NeuronX 2.5, with known issues listed above, and
unsupported features as listed in PyTorch Neuron (torch-neuronx) release notes.

Can I use Neuron Distributed and Transformers Neuron libraries with PyTorch NeuronX 2.6?

Yes, NeuronX Distributed, and Transformers NeuronX, and AWS Neuron Reference for NeMo Megatron libraries will
work with PyTorch NeuronX 2.6.

Can I still use PyTorch 2.5 version?

PyTorch 2.5 is supported for releases 2.21/2.22/2.23 and will reach end-of-life in a future release. Additionally, the
CVE CVE-2025-32434 affects PyTorch version 2.5. We recommend upgrading to the new version of Torch-NeuronX
by following PyTorch Neuron (torch-neuronx) Setup.

Can I still use PyTorch 2.1 version?

PyTorch 2.1 is supported for release 2.21 and has reached end-of-life in release 2.22. Additionally, the CVEs CVE-
2024-31583 and CVE-2024-31580 affect PyTorch versions 2.1 and earlier. We recommend upgrading to the new
version of Torch-NeuronX by following PyTorch Neuron (torch-neuronx) Setup.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

8.3.10 Introducing PyTorch 2.5 Support

Table of contents

• What are we introducing?

• How is PyTorch NeuronX 2.5 different compared to PyTorch NeuronX 2.1?

• How can I install PyTorch NeuronX 2.5?

• Migrate your application to PyTorch 2.5

– Migrating training scripts

– Migrating inference scripts

• Troubleshooting and Known Issues

– Neuronx-Distributed Training Llama 3.1 70B 8-node tutorial failed with OSError when the Neuron
Cache is placed on FSx mount

– Running in-place update operations (e.g. all_reduce) on 0-dimensional tensors result in buffer aliasing
errors in torch 2.5 and earlier

– Tensor split on second dimension of 2D array not working

– Import torch_xla crashed with TypeError: must be called with a dataclass type or
instance with torch-xla 2.5 and torch 2.5.1+cpu (CPU flavor)
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– Certain sequence of operations with xm.save() could corrupt tensors

– Lower BERT pretraining performance when switch to using model.to(torch.bfloat16)

– Warning “XLA_DOWNCAST_BF16 will be deprecated after the 2.5 release, please downcast your
model directly”

– WARNING:root:torch_xla.core.xla_model.xrt_world_size() will be removed in release 2.7. is depre-
cated. Use torch_xla.runtime.world_size instead.

– WARNING:torch_xla.core.xla_model.xla_model.get_ordinal() will be removed in release 2.7. is dep-
recated. Use torch_xla.runtime.global_ordinal instead.

– AttributeError: module ‘torch_xla.runtime’ has no attribute ‘using_pjrt’

– Socket Error: Socket failed to bind

– AttributeError: module 'torch' has no attribute 'xla' Failure

– Error Attempted to access the data pointer on an invalid python storage when us-
ing HF Trainer API

– ImportError: libcrypt.so.1: cannot open shared object file: No such file or
directory on Amazon Linux 2023

– FileNotFoundError: [Errno 2] No such file or directory: 'libneuronpjrt-path'
Failure

– GlibC error on Amazon Linux 2

– Input dimension should be either 1 or equal to the output dimension it is
broadcasting into or IndexError: index out of range error during Neuron Parallel
Compile

– Compiler assertion error when running Stable Diffusion training

• Frequently Asked Questions (FAQ)

– Do I need to recompile my models with PyTorch 2.5?

– Do I need to update my scripts for PyTorch 2.5?

– What environment variables will be changed with PyTorch NeuronX 2.5 ?

– What features will be missing with PyTorch NeuronX 2.5?

– Can I use Neuron Distributed and Transformers Neuron libraries with PyTorch NeuronX 2.5?

– Can I still use PyTorch 2.1 version?

What are we introducing?

Starting with the Neuron 2.21 release, customers will be able to upgrade to PyTorch NeuronX(torch-neuronx)
supporting PyTorch 2.5.

PyTorch Neuron (torch-neuronx) Setup is updated to include installation instructions for PyTorch NeuronX 2.5 for
Amazon Linux 2023 and Ubuntu 22. Note that PyTorch NeuronX 2.5 does not support Python 3.8 which is default in
Ubuntu 20. To use Ubuntu 20, customers will need to install Python 3.9+.

Please review migration guide for possible changes to training scripts. No code changes are required for inference
scripts.
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How is PyTorch NeuronX 2.5 different compared to PyTorch NeuronX 2.1?

PyTorch NeuronX 2.5 uses Torch-XLA 2.5 which has improved support for eager debug mode, Automatic Mixed
Precission, PJRT device auto-detection, FP8, and others. See Torch-XLA 2.5 release for a full list.

See Migrate your application to PyTorch 2.5 for changes needed to use PyTorch NeuronX 2.5.

Note: GSPMD and Torch Dynamo (torch.compile) support in Neuron will be available in a future release.

How can I install PyTorch NeuronX 2.5?

To install PyTorch NeuronX 2.5 please follow the PyTorch Neuron (torch-neuronx) Setup guides for Amazon Linux
2023 and Ubuntu 22 AMI. Please also refer to the Neuron multi-framework DLAMI setup guide for Ubuntu 22 with a
pre-installed virtual environment for PyTorch NeuronX 2.5 that you can use to get started. PyTorch NeuronX 2.5 can
be installed using the following:

python -m pip install --upgrade neuronx-cc==2.* torch-neuronx==2.5.* torchvision

Note: PyTorch NeuronX 2.5 is currently available for Python 3.9, 3.10, 3.11.

Migrate your application to PyTorch 2.5

Please make sure you have first installed the PyTorch NeuronX 2.5 as described above in installation guide

Migrating training scripts

To migrate the training scripts from PyTorch NeuronX 2.1 to PyTorch NeuronX 2.5, implement the following changes:

Note: xm below refers to torch_xla.core.xla_model and xr refers to torch_xla.runtime

• The environment variables XLA_DOWNCAST_BF16 and XLA_USE_BF16 are deprecated (warning when used).
Please switch to automatic mixed-precision or use model.to(torch.bfloat16) command to convert model
to BF16 format. (see migration_from_xla_downcast_bf16)

• The torch_xla.experimental.pjrt module which was replaced by torch_xla.runtime in Torch-XLA
2.1, has been removed in Torch-XLA 2.5. Users should now utilize the torch_xla.runtime module as a
replacement.

• torch_xla.runtime.using_pjrt is removed because PJRT is the sole Torch-XLA runtime.

• xm.all_reduce no longer operates in-place for single tensors. To fix this, please convert the single tensor to an
array (e.g.. [single_tensor]) or assign the output of xm.all_reduce to a variable.

• The functions xm.xrt_world_size(), xm.xla_model.get_ordinal(), and xm.xla_model.
get_local_ordinal() are deprecated (warning when used). Please switch to xr.world_size, xr.
global_ordinal, and xr.local_ordinal respectively as replacements.

• torch_xla.experimental.xla_sharding is now replaced by torch_xla.distributed.spmd.
xla_sharding.
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• Class ZeroRedundancyOptimizer now has two new arguments that replaces the optional boolean
argument coalesce_cc:

– bucket_cap_mb_all_gather (int, Optional): Number of MegaBytes of the tensor bucket to fill
before doing all-gather. Default: 0 (disable all gather coalescing).

– bucket_cap_mb_reduce_scatter (int, Optional): Number of MegaBytes of the tensor bucket to
fill before doing reduce-scatter. Default: 0 (disable reduce scatter coalescing).

Migrating inference scripts

There are no code changes required in the inference scripts.

Troubleshooting and Known Issues

Neuronx-Distributed Training Llama 3.1 70B 8-node tutorial failed with OSError when the Neuron
Cache is placed on FSx mount

Currently, the Neuronx-Distributed Training Llama 3.1 70B 8-node tutorial failed with OSError (Errno 61) when the
Neuron Cache is placed on FSx mount:

[rank197]: RuntimeError: Bad StatusOr access: INVALID_ARGUMENT: RunNeuronCCImpl: error␣
→˓condition !(error != 400): <class 'OSError'>: [Errno 61] No data available: '/fsxl/
→˓neuron_cache/neuronxcc-2.16.372.0+4a9b2326/MODULE_3540044791706521849+4eb52b03/model.
→˓neff' -> '/tmp/tmpx7bvfpmm/model.neff'

We found that the error is due to FSx failing during file copy when there are multiple readers (13 workers fail to copy
out of 256). This issue doesn’t affect simpler models like BERT.

To work-around the issue, please use the shared NFS mount (/home directory on a Parallel Cluster) instead of FSx to
store Neuron Cache. This will be fixed in an upcoming release.

Running in-place update operations (e.g. all_reduce) on 0-dimensional tensors result in buffer alias-
ing errors in torch 2.5 and earlier

Torch’s lazy tensor core has a feature where 0-dimensional tensors are stored in a device cache, so scalar constant values
can be transferred once and then reused. The values in the device cache are supposed to be marked read-only and never
participate in parameter aliasing. However, due to a bug in torch-xla 2.5 (#8499), sometimes the read-only flag can be
dropped, allowing these tensors to be donated, resulting in aliasing errors later when the cached value is used again.

A work-around is to avoid using 0-dimensional tensors by changing them to be 1d tensor of length 1 (exam-
ple). If modifying library code is not possible, disable XLA parameter aliasing by setting environment variable
XLA_ENABLE_PARAM_ALIASING=0
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Tensor split on second dimension of 2D array not working

Currently, when using tensor split operation on a 2D array in the second dimension, the resulting ten-
sors don’t have the expected data (https://github.com/pytorch/xla/issues/8640). The work-around is to set
XLA_DISABLE_FUNCTIONALIZATION=0. Another work-around is to use torch.tensor_split.

Import torch_xla crashed with TypeError: must be called with a dataclass type or instance
with torch-xla 2.5 and torch 2.5.1+cpu (CPU flavor)

When using torch 2.5.1+cpu (CPU flavor) on python 3.10, importing torch_xla crashed with TypeError: must be
called with a dataclass type or instance due to installed triton version 3.2.0 (https://github.com/pytorch/
xla/issues/8560). To work-around, please remove the installed triton package or downgrade to triton==3.1.0 or use the
regular torch 2.5.1 (GPU flavor).

Certain sequence of operations with xm.save() could corrupt tensors

When using the xm.save function to save tensors, please use xm.mark_step() before xm.save to avoid the error
described in https://github.com/pytorch/xla/issues/8422 where parameter aliasing could corrupt other tensor values.
This issue will be fixed in a future release.

(Here xm is torch_xla.core.xla_model following PyTorch/XLA convention)

Lower BERT pretraining performance when switch to using model.to(torch.bfloat16)

Currently, BERT pretraining performance is ~11% lower when switching to using model.to(torch.bfloat16) as
part of migration away from the deprecated environment variable XLA_DOWNCAST_BF16 due to https://github.com/
pytorch/xla/issues/8545. As a work-around to recover the performance, you can set XLA_DOWNCAST_BF16=1 which
would still work in torch-neuronx 2.5 and 2.6 although there will be deprecation warnings (as noted below).

Warning “XLA_DOWNCAST_BF16 will be deprecated after the 2.5 release, please downcast your
model directly”

Environment variables XLA_DOWNCAST_BF16 and XLA_USE_BF16 are deprecated (warning when used). Please switch
to automatic mixed-precision or use model.to(torch.bfloat16) command to cast model to BF16. (see migra-
tion_from_xla_downcast_bf16)

WARNING:root:torch_xla.core.xla_model.xrt_world_size() will be removed in release 2.7. is depre-
cated. Use torch_xla.runtime.world_size instead.

This is a warning that torch_xla.core.xla_model.xrt_world_size()will be removed in a future release. Please
switch to using torch_xla.runtime.world_size instead.
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WARNING:torch_xla.core.xla_model.xla_model.get_ordinal() will be removed in release 2.7. is dep-
recated. Use torch_xla.runtime.global_ordinal instead.

This is a warning that torch_xla.core.xla_model.xla_model.get_ordinal() will be removed in a future re-
lease. Please switch to using torch_xla.runtime.global_ordinal instead.

AttributeError: module ‘torch_xla.runtime’ has no attribute ‘using_pjrt’

In Torch-XLA 2.5, torch_xla.runtime.using_pjrt is removed because PJRT is the sole Torch-XLA runtime. See
commit PR.

Socket Error: Socket failed to bind

In PyTorch 2.5, there needs to be a socket available for both torchrun and the init_process_group to bind. Both of
these, by default, will be set to unused sockets. If you plan to use a MASTER_PORT environment variable then this error
may occur, if the port you set it to is already in use.

[W socket.cpp:426] [c10d] The server socket has failed to bind to [::]:29500 (errno: 98 -
→˓ Address already in use).
[W socket.cpp:426] [c10d] The server socket has failed to bind to ?UNKNOWN? (errno: 98 -␣
→˓Address already in use).
[E socket.cpp:462] [c10d] The server socket has failed to listen on any local network␣
→˓address.
RuntimeError: The server socket has failed to listen on any local network address.
The server socket has failed to bind to ?UNKNOWN? (errno: 98 - Address already in use).

To resolve the issue, please ensure if you are setting MASTER_PORT that the port you’re setting it to is not used anywhere
else in your scripts. Otherwise, you can leave MASTER_PORT unset, and torchrun will set the default port for you.

AttributeError: module 'torch' has no attribute 'xla' Failure

In PyTorch 2.5, training scripts might fail during activation checkpointing with the error shown below.

AttributeError: module 'torch' has no attribute 'xla'

The solution is to use torch_xla.utils.checkpoint.checkpoint instead of torch.utils.checkpoint.
checkpoint as the checkpoint function while wrapping pytorch modules for activation checkpointing. Refer to the
pytorch/xla discussion regarding this issue. Also set use_reentrant=True while calling the torch_xla checkpoint
function. Failure to do so will lead to XLA currently does not support use_reentrant==False error. For
more details on checkpointing, refer the documentation.
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Error Attempted to access the data pointer on an invalid python storage when using HF
Trainer API

While using HuggingFace Transformers Trainer API to train (i.e. HuggingFace Trainer API fine-tuning tutorial), you
may see the error “Attempted to access the data pointer on an invalid python storage”. This is a known issue and has
been fixed in the version 4.37.3 of HuggingFace Transformers.

ImportError: libcrypt.so.1: cannot open shared object file: No such file or directory on
Amazon Linux 2023

torch-xla version 2.5+ now requires libcrypt.so.1 shared library. Currently, Amazon Linux 2023 includes
libcrypt.so.2 shared library by default so you may see ImportError: libcrypt.so.1: cannot open shared object
file: No such file or directory` when using torch-neuronx 2.1+ on Amazon Linux 2023. To install libcrypt.so.
1 on Amazon Linux 2023, please run the following installation command (see also https://github.com/amazonlinux/
amazon-linux-2023/issues/182 for more context):

sudo yum install libxcrypt-compat

FileNotFoundError: [Errno 2] No such file or directory: 'libneuronpjrt-path' Failure

In PyTorch 2.5, users might face the error shown below due to incompatible libneuronxla and torch-neuronx
versions being installed.

FileNotFoundError: [Errno 2] No such file or directory: 'libneuronpjrt-path'

Check that the version of libneuronxla that support PyTorch NeuronX 2.5 is 2.1.*. If not, then uninstall
libneuronxla using pip uninstall libneuronxla and then reinstall the packages following the installation guide
installation guide

GlibC error on Amazon Linux 2

If using Torch-NeuronX 2.5 on Amazon Linux 2, you will see a GlibC error below. Please switch to a newer supported
OS such as Ubuntu 22 or Amazon Linux 2023.

ImportError: /lib64/libc.so.6: version `GLIBC_2.27' not found (required by /tmp/debug/_
→˓XLAC.cpython-38-x86_64-linux-gnu.so)

Input dimension should be either 1 or equal to the output dimension it is broadcasting
into or IndexError: index out of range error during Neuron Parallel Compile

When running Neuron Parallel Compile with HF Trainer API, you may see the error Status: INVALID_ARGUMENT:
Input dimension should be either 1 or equal to the output dimension it is broadcasting
into or IndexError: index out of range in Accelerator’s pad_across_processes function. This is due to
data-dependent operation in evaluation metrics computation. Data-dependent operations would result in undefined
behavior with Neuron Parallel Compile trial execution (execute empty graphs with zero outputs). To work-around this
error, please disable compute_metrics when NEURON_EXTRACT_GRAPHS_ONLY is set to 1:

compute_metrics=None if os.environ.get("NEURON_EXTRACT_GRAPHS_ONLY") else compute_metrics
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Compiler assertion error when running Stable Diffusion training

Currently, with PyTorch 2.5 (torch-neuronx), we are seeing the following compiler assertion error with Stable Diffusion
training when gradient accumulation is enabled. This will be fixed in an upcoming release. For now, if you would like
to run Stable Diffusion training with Neuron SDK release 2.21/2.22, please disable gradient accumulation in torch-
neuronx 2.5.

ERROR 222163 [NeuronAssert]: Assertion failure in usr/lib/python3.9/concurrent/futures/
→˓process.py at line 239 with exception:
too many partition dims! {{0,+,960}[10],+,10560}[10]

Frequently Asked Questions (FAQ)

Do I need to recompile my models with PyTorch 2.5?

Yes.

Do I need to update my scripts for PyTorch 2.5?

Please see the migration guide

What environment variables will be changed with PyTorch NeuronX 2.5 ?

The environment variables XLA_DOWNCAST_BF16 and XLA_USE_BF16 are deprecated (warning when used). Please
switch to automatic mixed-precision or use model.to(torch.bfloat16) command to cast model to BF16. (see
migration_from_xla_downcast_bf16)

What features will be missing with PyTorch NeuronX 2.5?

PyTorch NeuronX 2.5 now has most of the supported features in PyTorch NeuronX 2.1, with known issues listed above,
and unsupported features as listed in PyTorch Neuron (torch-neuronx) release notes.

Can I use Neuron Distributed and Transformers Neuron libraries with PyTorch NeuronX 2.5?

Yes, NeuronX Distributed, and Transformers NeuronX, and AWS Neuron Reference for NeMo Megatron libraries will
work with PyTorch NeuronX 2.5.

Can I still use PyTorch 2.1 version?

PyTorch 2.1 is supported for release 2.21 and will reach end-of-life in a future release. Additionally, the CVEs CVE-
2024-31583 and CVE-2024-31580 affect PyTorch versions 2.1 and earlier. We recommend upgrading to the new
version of Torch-NeuronX by following PyTorch Neuron (torch-neuronx) Setup.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2
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8.4 Neuron FAQ

Table of contents

• Neuron 2.x FAQ

• Training Only FAQ

• Inference Only FAQ

• Runtime FAQ

• Compiler FAQ

• Neuron Containers

• ONNX FAQ

• Support

8.4.1 Neuron 2.x FAQ

• neuron2-intro-faq

8.4.2 Training Only FAQ

• neuron-training-faq

8.4.3 Inference Only FAQ

• neuron-f1-faq

• trouble-shooting-inf1-faq

• tf1_faq

• tf2_faq

• NeuronPerf

8.4.4 Runtime FAQ

• Neuron Runtime FAQ
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8.4.5 Compiler FAQ

• Neuron Compiler FAQ (neuronx-cc)

• Neuron Compiler FAQ (neuron-cc)

8.4.6 Neuron Containers

• Neuron Containers FAQ

8.4.7 ONNX FAQ

• onnx-faq

8.4.8 Support

• neuron_roadmap_faq

• contribute-faq

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

8.5 Troubleshooting Guide

Table of contents

• Training Only Troubleshooting

• Inference Only Troubleshooting

• Runtime Troubleshooting

• Containers Troubleshooting

• Setup Troubleshooting

8.5.1 Training Only Troubleshooting

• PyTorch Neuron for Training
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8.5.2 Inference Only Troubleshooting

• PyTorch Neuron for Inference

• NeuronPerf

• MXNet Neuron

8.5.3 Runtime Troubleshooting

• Neuron Runtime Troubleshooting on Inf1 and Trn1

8.5.4 Containers Troubleshooting

• Containers

8.5.5 Setup Troubleshooting

• neuron-setup-troubleshooting

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

8.6 Neuron Glossary

Table of contents

• Terms

– Neuron Devices (Accelerated Machine Learning chips)

– Neuron powered Instances

– NeuronCore terms

– Neuron SDK terms

• Abbreviations

8.6.1 Terms
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Neuron Devices (Accelerated Machine Learning chips)

Term Description

Inferentia
AWS first generation accelerated machine learning chip
supporting inference only

Trainium/Inferentia2
AWS second generation accelerated machine learning
chip supporting training and inference

Trainium2
AWS second generation accelerated machine learning
chip supporting training and inference

Neuron Device
Accelerated machine learning chip (e.g. Inferentia or
Trainium)

Neuron powered Instances

Term Description

Inf1
Inferentia powered accelerated compute EC2 instance

Trn1
Trainium powered accelerated compute EC2 instance

Inf2
Inferentia2 powered accelerated compute EC2 instance

Trn2
Trainium2 powered accelerated compute EC2 instance
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NeuronCore terms

Term Description

NeuronCore
The machine learning compute cores within Inferen-
tia/Trainium

NeuronCore-v1
Neuron Core within Inferentia

NeuronCore-v2
Neuron Core within Trainium1/Inferentia2

NeuronCore-v3
Neuron Core within Trainium2

Tensor Engine
2D systolic array (within the NeuronCore), used for ma-
trix computations

Scalar Engine
A scalar-engine within each NeuronCore, which can ac-
celerate element-wise operations (e.g. GELU, ReLU, re-
ciprocal, etc)

Vector Engine
A vector-engine with each NeuronCore, which can ac-
celerate spatial operations (e.g. layerNorm, TopK, pool-
ing, etc)

GPSIMD Engine
Embedded General Purpose SIMD cores, within each
NeuronCore, to accelerate custom-operators

Sync Engine
The SP engine, which is integrated inside NeuronCore.
Used for synchronization and DMA triggering.

Collective Communication Engine
Dedicated engine for collective communication, allows
for overlapping computation and communication

High Bandwidth Memory
High Bandwidth Memory, used as device memory for
NeuronCore-v2 and beyond.

State Buffer
The main software-managed on-chip memory in
NeuronCore-v1 and beyond.

Partial Sum Buffer
A second software-managed on-chip memory in
NeuronCore-v1 and beyond, with near-memory accu-
mulation support for TensorE output data.

NeuronLink
Interconnect between NeuronCores

NeuronLink-v1
Interconnect between NeuronCores in Inferentia device

NeuronLink-v2
Interconnect between NeuronCores in
Trainium1/Inferentia2 device

NeuronLink-v3
Interconnect between NeuronCores in Trainium2 device
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Neuron SDK terms

Term Description

Neuron Kernel Interface
A bare-metal language and compiler for directly
programming Neuron devices available on AWS
Trainium/Inferentia2 and beyond devices.

8.6.2 Abbreviations

Abbreviation Description

NxD Core
NeuronX Distributed Core Library

NxD Training
NeuronX Distributed Training Library

NxD Inference
NeuronX Distributed Inference Library

NC
Neuron Core

NeuronCore
Neuron Core

ND
Neuron Device

NeuronDevice
Neuron Device

TensorE
Tensor Engine

ScalarE
Scalar Engine

VectorE
Vector Engine

GpSimdE
GpSimd Engine

CCE
Collective Communication Engine

HBM
High Bandwidth Memory

continues on next page
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Table 8.1 – continued from previous page
Abbreviation Description

SBUF
State Buffer

PSUM
Partial Sum Buffer

FP32
Float32

TF32
TensorFloat32

FP16
Float16

BF16
Bfloat16

cFP8
Configurable Float8

RNE
Round Nearest Even

SR
Stochastic Rounding

NKI
Neuron Kernel Interface

CustomOps
Custom Operators

RT
Neuron Runtime

DP
Data Parallel

DPr
Data Parallel degree

TP
Tensor Parallel

TPr
Tensor Parallel degree

continues on next page
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Table 8.1 – continued from previous page
Abbreviation Description

PP
Pipeline Parallel

PPr
Pipeline Parallel degree

This document is relevant for: Inf1, Inf2, Trn1, Trn2
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NINE

LEGACY SOFTWARE

This document is relevant for: Inf1

9.1 MXNet Neuron (maintenance)

MXNet Neuron unlocks high-performance and cost-effective deep learning acceleration on AWS Trainium-based and
Inferentia-based Amazon EC2 instances.

MXNet Neuron enables native MXNet models to be accelerated on Neuron devices, so you can use your existing
framework application and get started easily with minimal code changes.

This document is relevant for: Inf1

9.1.1 MXNet Neuron Setup

MxNet Neuron (mxnet-neuron) Setup for Inf1 Instances This document is relevant for: Inf1

This document is relevant for: Inf1

9.1.2 Inference (mxnet-neuron) (maintenance)

This document is relevant for: Inf1

Tutorials (mxnet-neuron)

This document is relevant for: Inf1

Computer Vision Tutorials (mxnet-neuron)

• ResNet-50 tutorial [html] [notebook]

• Model Serving tutorial [html]

• Getting started with Gluon tutorial [html] [notebook]

This document is relevant for: Inf1

This document is relevant for: Inf1
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Natural Language Processing (NLP) Tutorials (mxnet-neuron)

• MXNet 1.8: Using data parallel mode tutorial [html] [notebook]

This document is relevant for: Inf1

This document is relevant for: Inf1

Utilizing Neuron Capabilities Tutorials (mxnet-neuron)

• NeuronCore Groups tutorial [html] [notebook]

This document is relevant for: Inf1

Computer Vision Tutorials

• ResNet-50 tutorial [html] [notebook]

• Model Serving tutorial [html]

• Getting started with Gluon tutorial [html] [notebook]

Natural Language Processing (NLP) Tutorials

• MXNet 1.8: Using data parallel mode tutorial [html] [notebook]

Utilizing Neuron Capabilities Tutorials

• NeuronCore Groups tutorial [html] [notebook]

Note: To use Jupyter Notebook see:

• setup-jupyter-notebook-steps-troubleshooting

• running-jupyter-notebook-as-script

This document is relevant for: Inf1

This document is relevant for: Inf1

API Reference Guide (mxnet-neuron)

This document is relevant for: Inf1
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Neuron Apache MXNet Compilation Python API

The MXNet-Neuron compilation Python API provides a method to compile model graph for execution on Inferentia.

Description

Within the graph or subgraph, the compile method selects and sends Neuron-supported operations to Neuron-Compiler
for compilation and saves the compiled artifacts in the graph. Uncompilable operations are kept as original operations
for framework execution.

The compiled graph can be saved using the MXNet save_checkpoint and served using MXNet Model Serving. Please
see mxnet-neuron-model-serving for more information about exporting to saved model and serving using MXNet
Model Serving.

Options can be passed to Neuron compiler via the compile function. For example, the
“--neuroncore-pipeline-cores” option directs Neuron compiler to compile each subgraph to fit in the
specified number of NeuronCores. This number can be less than the total available NeuronCores on an Inf1 instance.
See Neuron compiler CLI Reference Guide (neuron-cc) for more information about compiler options.

For debugging compilation, use SUBGRAPH_INFO=1 environment setting before calling the compilation script. The
extract subgraphs are preserved as hidden files in the run directory. For more information, see Using Neuron GatherInfo
Tool to collect debug and support information

MXNet 1.5

Method

from mxnet.contrib import neuron
neuron.compile(sym, args, aux, inputs, **compile_args)

Arguments

• sym - Symbol object loaded from symbol.json file

• args - args/params dictionary loaded from params file

• aux - aux/params dictionary loaded from params file

• inputs - a dictionary with key/value mappings for input name to input numpy arrays

• kwargs (optional) - a dictionary with key/value mappings for MXNet-Neuron compilation and Neuron Compiler
options.

– For example, to limit the number of NeuronCores per subgraph, use
compile_args={'--neuroncore-pipeline-cores' : N} where N is an integer representing
the maximum number of NeuronCores per subgraph.

– Additional compiler flags can be passed using 'flags' : [<flags>] where is a comma separated list
of strings. See Using Neuron GatherInfo Tool to collect debug and support information for example of
passing debug flags to compiler.

– Advanced option to exclude node names: compile_args={'excl_node_names' : [<node
names>]} where is a comma separated list of node name strings.
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Returns

• sym - new partitioned symbol

• args - modified args/params

• auxs - modified aux/params

Example Usage: Compilation

The following is an example usage of the compilation, with default compilation arguments:

from mxnet.contrib import neuron
...
neuron.compile(sym, args, aux, inputs={'data' : img})

MXNet 1.8

Method

import mx_neuron as neuron
neuron.compile(obj, args=None, aux=None, inputs=None, **compile_args)

Arguments

• obj - Symbol object loaded from symbol.json file or gluon.HybridBlock object

• args (optional) - args/params dictionary loaded from params file. Only needed in case of Symbol object

• aux (optional) - aux/params dictionary loaded from params file. Only needed in case of Symbol object

• inputs - a dictionary with key/value mappings for input name to input numpy arrays.

• kwargs (optional) - a dictionary with key/value mappings for MXNet-Neuron compilation and Neuron Compiler
options.

– For example, to limit the number of NeuronCores per subgraph, use
compile_args={'--neuroncore-pipeline-cores' : N} where N is an integer representing
the maximum number of NeuronCores per subgraph.

– Additional compiler flags can be passed using 'flags' : [<flags>] where is a comma separated list
of strings. See Using Neuron GatherInfo Tool to collect debug and support information for example of
passing debug flags to compiler.

– Advanced option to exclude node names: compile_args={'excl_node_names' : [<node
names>]} where is a comma separated list of node name strings.

– work_dir: relative or absolute path for storing compiler artifacts (including params and jsons) generated
during compilation when SUBGRAPH_INFO=1.
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Returns

• (sym, args, auxs) - for symbol object as input. sym, args and auxs are new partitioned symbol, modified
args/params and modified aux/params repectively.

• (obj) - for gluon.HybridBlock object as input. obj is the parititioned and optimized gluon.Hybrid block object
for Neuron backend.

Example Usage: Compilation

The following is an example usage of the compilation, with default compilation arguments for symbol object:

import mx_neuron as neuron
...
neuron.compile(sym, args, aux, inputs={'data' : img})

The following is an example usage of the compilation, with default compilation arguments for gluon.HybridBlock
object (only supported in MXNet-Neuron 1.8):

import mx_neuron as neuron
...
neuron.compile(obj, inputs={'data' : img})

Example Usage: Extract Compilation Statistics

To extract operation counts, insert the following code after compile step (assume csym is the compiled MXNet symbol):

import json

# Return list of nodes from MXNet symbol
def sym_nodes(sym):
return json.loads(sym.tojson())['nodes']

# Return number of operations in node list
def count_ops(graph_nodes):
return len([x['op'] for x in graph_nodes if x['op'] != 'null'])

# Return triplet of compile statistics
# - count of operations in symbol database
# - number of Neuron subgraphs
# - number of operations compiled to Neuron runtime
def get_compile_stats(sym):
cnt = count_ops(sym_nodes(sym))
neuron_subgraph_cnt = 0
neuron_compiled_cnt = 0
for g in sym_nodes(sym):
if g['op'] == '_neuron_subgraph_op':

neuron_subgraph_cnt += 1
for sg in g['subgraphs']:
neuron_compiled_cnt += count_ops(sg['nodes'])

return (cnt, neuron_subgraph_cnt, neuron_compiled_cnt)
(continues on next page)
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(continued from previous page)

original_cnt = count_ops(sym_nodes(sym))
post_compile_cnt, neuron_subgraph_cnt, neuron_compiled_cnt = get_compile_stats(csym)
print("INFO:mxnet: Number of operations in original model: ", original_cnt)
print("INFO:mxnet: Number of operations in compiled model: ", post_compile_cnt)
print("INFO:mxnet: Number of Neuron subgraphs in compiled model: ", neuron_subgraph_cnt)
print("INFO:mxnet: Number of operations placed on Neuron runtime: ", neuron_compiled_cnt)

INFO:mxnet: Number of operations in original model: 67
INFO:mxnet: Number of operations in compiled model: 4
INFO:mxnet: Number of Neuron subgraphs in compiled model: 2
INFO:mxnet: Number of operations placed on Neuron runtime: 65

This document is relevant for: Inf1

• Neuron Apache MXNet Compilation Python API

This document is relevant for: Inf1

This document is relevant for: Inf1

Developer Guide

This document is relevant for: Inf1, Inf2, Trn1, Trn2

Flexible Execution Group (FlexEG) in Neuron-MXNet

Introduction

Inf1 instances are available with a different number of Inferentia chips, each Inferentia chip is combined of 4 Neuron-
Cores and an Inf1 instance includes 4 to 64 NeuronCores depending on the instance size. With Neuron Runtime 1.x
(neuron-rtd server), NeuronCores could be combined into NeuronCore Groups (NCG), which were basic scheduling
units of compiled neural network in Neuron. Creation of desired sized NCGs was done at the start of the application
and could not be modified afterwards.

Starting with Neuron SDK 1.16.0, and with the introduction of Neuron Runtime 2.x, MXNet Neuron 1.8 introduces
Flexible Execution Groups (FlexEG) feature. With FlexEG, you do not have to create NCGs at the start of the process,
instead you will set the index of the first NeuronCore you want to load models onto, and FlexEG feature will enable
the flexibility of loading models onto any available NeuronCore on the inf1 instance starting from the first NeuronCore
you set. This guide will show you how to efficiently utilize NeuronCores using FlexEG feature in NeuronMXNet.

FlexEG

With the introduction of FlexEG, you don’t need to create NCGs and can load models onto a group of consecutive
NeuronCores by providing the index of the first NeuronCore in the group. Neuron runtime takes care of figuring out
the number of NeuronCores required for the given compiled model and loads the model using the required number of
cores (sequentially starting with the NeuronCore index provided by the user).

For example, assuming that you have an Inf1.6xl machine and there are 4 models A, B, C, D compiled to 2, 4, 3, and 4
NeuronCores respectively, you can map any model to any core by context mx.neuron(neuron_core_index) where
neuron_core_index is the NeuronCore index (0,1,2,3,4 . . . ).
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In the example below, you map model A to mx.neuron(0) context, model B to mx.neuron(2) context, model C to
mx.neuron(6) context and model D to mx.neuron(9) context.

The above configuration is achieved by using application code similar to below:

# Load models (MXNet)
# loaded into the 2 cores starting with core 0
sym, args, aux = mx.model.load_checkpoint(mx_model0_file, 0)
model0 = sym.bind(ctx=mx.neuron(0), args=args, aux_states=aux, grad_req='null')
# loaded into the 4 cores starting with core 2
sym, args, aux = mx.model.load_checkpoint(mx_model1_file, 0)
model1 = sym.bind(ctx=mx.neuron(2), args=args, aux_states=aux, grad_req='null')
# loaded into the 3 cores starting with core 6
sym, args, aux = mx.model.load_checkpoint(mx_model2_file, 0)
model2 = sym.bind(ctx=mx.neuron(6), args=args, aux_states=aux, grad_req='null')
# loaded into the 4 cores starting with core 9
sym, args, aux = mx.model.load_checkpoint(mx_model3_file, 0)
model3 = sym.bind(ctx=mx.neuron(9), args=args, aux_states=aux, grad_req='null')

# run inference by simply calling the loaded model
results0 = model0.forward(data=inputs0)
results1 = model1.forward(data=inputs1)
results2 = model2.forward(data=inputs2)
results3 = model3.forward(data=inputs3)

Since there is no NCG creation at the start of the process, you can load the same four models but in a different configura-
tion by changing the context being used for inference. For example, you could map model C to mx.neuron(0) context,
model A to mx.neuron(3) context, model D to mx.neuron(5) context and model B to mx.neuron(9) context.
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Migration from NeuronCore Groups to FlexEG

NeuronCore Groups are defined by setting the environment variable NEURONCORE_GROUP_SIZES with a comma
separated list of number of cores in each group. In this mode of operation, number of devices (defined in
NEURONCORE_GROUP_SIZES) are grouped together to create a single entity.

NEURONCORE_GROUP_SIZES environment variable is set at runtime:

#!/bin/bash
export NEURONCORE_GROUP_SIZES=2,4,3,4
python your_neuron_application.py

NeuronCore groups are created once at the start of the application and cannot be modified / re-created till the appli-
cation process runs. The above flow creates 4 neuron devices with 2,4,3 and 4 devices each. In order to get the same
configuration as the example from before , you map model A to mx.neuron(0) context, model B to mx.neuron(1)
context, model C to mx.neuron(2) context and model D to mx.neuron(3) context.

This can be achieved programmatically as shown below:

# Set Environment
os.environ['NEURONCORE_GROUP_SIZES']='2,4,3,4'

# Load models (MXNet)
(continues on next page)
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(continued from previous page)

# loaded into the first group of NC0-NC1
sym, args, aux = mx.model.load_checkpoint(mx_model0_file, 0)
model0 = sym.bind(ctx=mx.neuron(0), args=args, aux_states=aux, grad_req='null')
# loaded into the second group of NC2-NC5
sym, args, aux = mx.model.load_checkpoint(mx_model1_file, 0)
model1 = sym.bind(ctx=mx.neuron(1), args=args, aux_states=aux, grad_req='null')
# loaded into the third group of NC6-NC8
sym, args, aux = mx.model.load_checkpoint(mx_model2_file, 0)
model2 = sym.bind(ctx=mx.neuron(2), args=args, aux_states=aux, grad_req='null')
# loaded into the fourth group of NC9-NC12
sym, args, aux = mx.model.load_checkpoint(mx_model3_file, 0)
model3 = sym.bind(ctx=mx.neuron(3), args=args, aux_states=aux, grad_req='null')

# run inference by simply calling the loaded model
results0 = model0.forward(data=inputs0)
results1 = model1.forward(data=inputs1)
results2 = model2.forward(data=inputs2)
results3 = model3.forward(data=inputs3)

So comparing to FlexEG, we see that in case of NCGs neuron context requires the index of the execution group, while
in FlexEG neuron context requires the NeuronCore index of the first NeuronCore on which the model is supposed to
be loaded and executed. For example, with NEURONCORE_GROUP_SIZES='2,4,3,4', ctx=mx.neuron(1) loads the
model on execution group 1 which effectively loads the model on the 2nd NCG group which has 4 NeuronCores.

Best practices when using FlexEG

FlexEG gives the user most flexibility in terms of accessing cores and loading models on specific cores. With this the
users can effortlessly load and execute new models on NeuronCores without closing the application. Here we shall
outline some of the best practices that should be kept in mind while using FlexEG.

Choosing starting core

FlexEG tries to use the required number of cores (based on the input model) starting with the core index provided by
the user. Incase the system, doesnt have the required number of cores after the starting core index, model load will
fail. For example: We have a model X which needs 2 cores and an inf1.xl machine with 4 NeuronCores (NeuronCore
indexes are: 0, 1, 2 and 3). As the model needs at least 2 cores, valid start indexes for this model are: 0, 1, 2. However
if the user gives 3 as the neuron context, then there are no 2 cores available starting from core 3. So it will fail.

Performance vs. Flexibility tradeoff

While using data parallel model of operation (were models are executed in parallel), for optimal performance the user
should make sure that the models are not sharing any cores. That is because NeuronCores can execute one model at
a time, when two or more models are executed on the same core (assuming that they are already loaded), it executes
the first model, stops it, starts the second model and then executes it. This is called model switiching and involves
additional overhead and prevents execution on model in parallel. For example: assuming that you have an Inf1.6xl
machine and there are 4 models A, B, C, D compiled to 2, 4, 3, and 4 NeuronCores respectively. Loading model A to
mx.neuron(0) context, model B to mx.neuron(2) context, model C to mx.neuron(6) context and model D to mx.
neuron(9) context is a good configuration because no two models are sharing NeuronCores and thus can be executed
in parallel. However, Loading model A to mx.neuron(0) context, model B to mx.neuron(2) context, model C to
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mx.neuron(5) context and model D to mx.neuron(9) context is a not a good configuration as models B and C share
NeuronCore 5 and thus cannot be executed in parallel.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

• Flexible Execution Group (FlexEG) in Neuron-MXNet

This document is relevant for: Inf1

This document is relevant for: Inf1

Misc (mxnet-neuron)

This document is relevant for: Inf1

Troubleshooting Guide for Neuron Apache MXNet

Table of Contents

• Inference Runtime Error

– Out-of-memory error when calling Symbol API bind() too many times

– Inference crashed with MXNetError: InferShapeKeyword argument name xyz not found

– Inference crashed at mx.nd.waitall() with MXNetError: Check failed: bin.dtype() ==
mshadow::kUint8

– Inference crashed with NRTD error 1002

• Multi-Model Server

– Failed to create NEURONCORE Group with GRPC Error. Status Error: 14, Error message: “Connect
Failed”

– Multiple MMS workers die with “Backend worker process die.” message

– MMS throws a “mxnet.base.MXNetError: array::at” error

– MXNet Model Server is not able to clean up Neuron RTD states after model is unloaded
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– Pipeline mode is not able to execute inferences requests in parallel

– Features only in MXNet-Neuron 1.5

– Features only in MXNet-Neuron 1.8

Inference Runtime Error

Out-of-memory error when calling Symbol API bind() too many times

Important: NEURONCORE_GROUP_SIZES will no longer be supported starting Neuron 1.19.0 release if your applica-
tion is using NEURONCORE_GROUP_SIZES please see Migrate your application to Neuron Runtime 2.x (libnrt.so) and
eol-ncgs-env_2 for more details.

If you see out-of-memory error when using Symbol API’s bind() function, please ensure that the bind() function is called
once for each desired model instance. For example, on inf1.xlarge, use Symbol API to create 4 parallel instances of a
model that was compiled to 1 NeuronCore (–neuroncore-pipeline-cores=1), each is bound to an different mx.neuron(i)
context where i is the NeuronCore Group index ranging from 0 to 3. Then use 4 threads to feed the 4 instances in
parallel. For example:

NUM_PARALLEL = 4
os.environ['NEURONCORE_GROUP_SIZES'] = ','.join('1' for _ in range(NUM_PARALLEL))

data_iter = []
for i in range(NUM_PARALLEL):

data_iter.append(mx.io.ImageRecordIter(
path_imgrec=recfile_base, data_shape=(3, 224, 224), batch_size=1,
prefetch_buffer=1,
num_parts=NUM_PARALLEL, part_index=i))

sym, args, auxs = mx.model.load_checkpoint('resnet-50_compiled', 0)

exec_list = []
for i in range(NUM_PARALLEL):

exec = sym.bind(ctx=mx.neuron(i), args=args, aux_states=auxs, grad_req='null')
exec_list.append(exec)

def single_thread_infer(i):
for batch in data_iter[i]:

img = batch.data[0]
label = batch.label
feed_dict = {'data': img}
exe = exec_list[i]
exe.copy_params_from(feed_dict)
exe.forward()
out = exe.outputs[0]

future_list = []
with futures.ThreadPoolExecutor(max_workers=NUM_PARALLEL) as executor:

for i in range(NUM_PARALLEL):
future_list.append(executor.submit(single_thread_infer, i))
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Inference crashed with MXNetError: InferShapeKeyword argument name xyz not found

If you see MXNetError:

mxnet.base.MXNetError: [11:55:39] src/c_api/c_api_symbolic.cc:508: InferShapeKeyword␣
→˓argument name xyz not found."

This is followed by a list of “Candidate arguments”. This list shows all the input argument names that the model knows
about, and ‘xyz’ is not in the list. To fix this, remove entry xyz from the feed dictionary.

Inference crashed at mx.nd.waitall() with MXNetError: Check failed: bin.dtype() == mshadow::kUint8

When executing Symbol API’s forward function followed by mx.nd.waitall(), where MXNetError exception occurs
with ‘Check failed: bin.dtype() == mshadow::kUint8’.

Inference crashed with NRTD error 1002

During inference, the user may encounter an error with details “[NRTD:infer_wait] error: 1002”:

mxnet.base.MXNetError: [11:26:56] src/operator/subgraph/neuron/./neuron_util.h:1175:␣
→˓Check failed: rsp_wait.status().code() == 0 || rsp_wait.status().code() == 1003: Failed
Infer Wait with Neuron-RTD Error. Neuron-RTD Status Code: 1002, details: "[NRTD:infer_
→˓wait] error: 1002
"

Runtime errors are listed in rtd-return-codes. In particular, 1002 means that some invalid input has been submitted to
infer, e.g. missing some of the input tensors, incorrect input tensor sizes. Please examine /var/log/syslog to see imore
details on the error. For example, you may see:

Oct 30 19:13:39 ip-172-31-93-131 nrtd[1125]: [TDRV:io_queue_prepare_input_nonhugetlb]␣
→˓Unexpected input size, for data00, expected: 2097152, received: 33554432

This means that the input tensor size is larger than what the model was compiled for (i.e. the example input tensor
shapes passed during compilation.

Multi-Model Server

Failed to create NEURONCORE Group with GRPC Error. Status Error: 14, Error message: “Connect
Failed”

NOTE: This error only applies to MXNet 1.5.

If the client is unable to start workers and you get a message that MMS is unable to create NeuronCore Group, please
check that Neuron RTD is running (neuron-rtd process).

{
"code": 500,
"type": "InternalServerException",
"message": "Failed to start workers“
}
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2019-10-23 19:56:23,187 [INFO ] W-9000-squeezenet_v1.1_compiled-stdout com.amazonaws.ml.
→˓mms.wlm.WorkerLifeCycle - [19:56:23] src/operator/subgraph/inferentia/./inferentia_
→˓util.h:218: Check failed: status.ok() Failed to create NeuronCore Group with GRPC␣
→˓Error. Status Error: 14, Error message: "Connect Failed"

Multiple MMS workers die with “Backend worker process die.” message

Important: NEURONCORE_GROUP_SIZES will no longer be supported starting Neuron 1.19.0 release if your applica-
tion is using NEURONCORE_GROUP_SIZES please see Migrate your application to Neuron Runtime 2.x (libnrt.so) and
eol-ncgs-env_2 for more details.

If you run inference with MMS and get multiple messages “Backend worker process die”, please ensure that the number
of workers (“intial_workers”) passed during load model is less than or equal to number of NeuronCores available
divided by number of NeuronCores required by model.

com.amazonaws.ml.mms.wlm.WorkerLifeCycle - Backend worker process die.
com.amazonaws.ml.mms.wlm.WorkerLifeCycle - Traceback (most recent call last):
com.amazonaws.ml.mms.wlm.WorkerLifeCycle - File "/usr/local/lib/python3.6/site-packages/
→˓mxnet/symbol/symbol.py", line 1524, in simple_bind
com.amazonaws.ml.mms.wlm.WorkerLifeCycle - ctypes.byref(exe_handle)))
com.amazonaws.ml.mms.wlm.WorkerLifeCycle - File "/usr/local/lib/python3.6/site-packages/
→˓mxnet/base.py", line 252, in check_call
com.amazonaws.ml.mms.wlm.WorkerLifeCycle - raise MXNetError(py_str(_LIB.
→˓MXGetLastError()))
com.amazonaws.ml.mms.wlm.WorkerLifeCycle - mxnet.base.MXNetError: [00:26:32] src/
→˓operator/subgraph/neuron/./neuron_util.h:221: Check failed: 0 == create_eg_rsp.
→˓status().code() Failed to create NeuronCore Group with KRTD Error. KRTD Status Code: 4,
→˓ details: ""

As indicated in Performance Tuning, for greater flexibility user can use NEURONCORE_GROUP_SIZES to spec-
ify the groupings of NeuronCores into Neuron devices, each device consisting of one or more NeuronCores. Each
worker would take a device. The total number of NeuronCores taken by all the workers should be less than or
equal the total number of NeuronCores visible to neuron-rtd. This situation should be considered at full load (MMS
scales up to max_workers). Additionally, to properly assign model to Neuron device, the environment NEURON-
CORE_GROUP_SIZES must be specified within the model server class (ie. mxnet_model_service.py in the example
above). For example, add the following line within mxnet_model_service.py for model compiled to 1 NeuronCore:

os.environ['NEURONCORE_GROUP_SIZES'] = '1'

More information about max_worker limit setting can be found at MMS Management API Documentation. For exam-
ple, to run up to 4 workers in inf1.xlarge where 4 NeuronCores are available by default to Neuron-RTD, set max_workers
to 4:

curl -v -X PUT "http://localhost:8081/models/squeezenet_v1.1_compiled?min_worker=1?max_
→˓worker=4"
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MMS throws a “mxnet.base.MXNetError: array::at” error

If you see “mxnet.base.MXNetError: array::at” when running MMS please check that NDArray/Gluon API is not used
as they are not supported in MXNet-Neuron. If you would like to use NDArray or Gluon API, please upgrade to MXNet
1.8.

[INFO ] W-9000-squeezenet_v1.1_compiled-stdout com.amazonaws.ml.mms.wlm.WorkerLifeCycle -
→˓ array::at
[INFO ] W-9000-squeezenet_v1.1_compiled com.amazonaws.ml.mms.wlm.WorkerThread - Backend␣
→˓response time: 30
[INFO ] W-9000-squeezenet_v1.1_compiled-stdout com.amazonaws.ml.mms.wlm.WorkerLifeCycle -
→˓ Traceback (most recent call last):
[INFO ] W-9000-squeezenet_v1.1_compiled-stdout com.amazonaws.ml.mms.wlm.WorkerLifeCycle -
→˓ File "/tmp/models/6606fa046f68a34df87f15362a7a2d9a49749878/model_handler.py", line␣
→˓82, in handle
[INFO ] W-9000-squeezenet_v1.1_compiled-stdout com.amazonaws.ml.mms.wlm.WorkerLifeCycle -
→˓ data = self.inference(data)
[INFO ] W-9000-squeezenet_v1.1_compiled-stdout com.amazonaws.ml.mms.wlm.WorkerLifeCycle -
→˓ File "/tmp/models/6606fa046f68a34df87f15362a7a2d9a49749878/mxnet_model_service.py",␣
→˓line 153, in inference
[INFO ] W-9000-squeezenet_v1.1_compiled-stdout com.amazonaws.ml.mms.wlm.WorkerLifeCycle -
→˓ d.wait_to_read()
[INFO ] W-9000-squeezenet_v1.1_compiled-stdout com.amazonaws.ml.mms.wlm.WorkerLifeCycle -
→˓ File "/home/user/regression_venv_p3.6/lib/python3.6/site-packages/mxnet/ndarray/
→˓ndarray.py", line 1819, in wait_to_read
[INFO ] W-9000-squeezenet_v1.1_compiled-stdout com.amazonaws.ml.mms.wlm.WorkerLifeCycle -
→˓ check_call(_LIB.MXNDArrayWaitToRead(self.handle))
[INFO ] W-9000-squeezenet_v1.1_compiled-stdout com.amazonaws.ml.mms.wlm.WorkerLifeCycle -
→˓ File "/home/user/regression_venv_p3.6/lib/python3.6/site-packages/mxnet/base.py",␣
→˓line 253, in check_call
[INFO ] W-9000-squeezenet_v1.1_compiled-stdout com.amazonaws.ml.mms.wlm.WorkerLifeCycle -
→˓ raise MXNetError(py_str(_LIB.MXGetLastError()))
[INFO ] W-9000-squeezenet_v1.1_compiled-stdout com.amazonaws.ml.mms.wlm.WorkerLifeCycle -
→˓ mxnet.base.MXNetError: array::at
[INFO ] W-9000-squeezenet_v1.1_compiled-stdout com.amazonaws.ml.mms.wlm.WorkerLifeCycle -
→˓ Invoking custom service failed.

MXNet Model Server is not able to clean up Neuron RTD states after model is unloaded

NOTE: This issue is resolved in version 1.5.1.1.1.88.0 released 11/17/2020 and only applies for MXNet 1.5.

MXNet Model Server is not able to clean up Neuron RTD states after model is unloaded (deleted) from model server.
Restarting the model server may fail with “Failed to create NEURONCORE_GROUP” error:

mxnet.base.MXNetError: [00:26:59] src/operator/subgraph/neuron/./neuron_util.h:348:␣
→˓Check failed: 0 == create_eg_rsp.status().code(): Failed to create NEURONCORE_GROUP␣
→˓with Neuron-RTD Error. Neuron-RTD Status Code: 9, details: ""

The workaround is to run “/opt/aws/neuron/bin/neuron-cli reset“ to clear Neuron RTD states after all models are un-
loaded and server is shut down before restarting the model server.
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Pipeline mode is not able to execute inferences requests in parallel

If you see that multiple executors in a neuron pipeline setup (one model compiled for more than one neuron-cores using
–neuroncore-pipeline-cores option during compilation) are not running in parallel, please set the following MXNet’s
environment variables before inference to allow mxnet to execute the CPU ops in parallel. Otherwise it will be sequen-
tial and stall the executors.

MXNET_CPU_WORKER_NTHREADS is used to do that. Setting its value to __subgraph_opt_neuroncore__ in the com-
piled model json will ensure that all the executors (threads) can be run in parallel.

Features only in MXNet-Neuron 1.5

• Shared memory for IFMaps transfer to neuron runtime (has higher performance compared to GRPC mode)

• Neuron profiling using MXNet

Features only in MXNet-Neuron 1.8

• Gluon API support

• Library mode neuron runtime

This document is relevant for: Inf1

This document is relevant for: Inf1

Apache MXNet Neuron Release Notes
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• Apache MXNet Neuron release [1.8.0.2.0.276.0]

• Apache MXNet Neuron release [1.8.0.2.0.271.0]

• [1.5.1.1.7.0.0]

• [1.5.1.1.6.5.0]

• [1.8.0.1.3.4.0]

• [1.5.1.1.6.1.0]

• [1.8.0.1.3.0.0]

• [1.8.0.1.2.1.0]
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• [1.5.1.1.4.4.0]

• [1.5.1.1.3.8.0]

• [1.5.1.1.3.7.0]

• [1.5.1.1.3.2.0]

• [1.5.1.1.2.1.0]

• [1.5.1.1.1.88.0]

• [1.5.1.1.1.52.0]

• [1.5.1.1.1.1.0]

• [1.5.1.1.0.2101.0]

• [1.5.1.1.0.2093.0]

• [1.5.1.1.0.2033.0]

• [1.5.1.1.0.1900.0]

• [1.5.1.1.0.1596.0]

• [1.5.1.1.0.1498.0]

• [1.5.1.1.0.1401.0]

• [1.5.1.1.0.1325.0]

• [1.5.1.1.0.1349.0]

• [1.5.1.1.0.1325.0]

• [1.5.1.1.0.1260.0]

This document lists the release notes for MXNet-Neuron framework.
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Apache MXNet Neuron release [1.8.0.2.4.40.0]

Date: 12/21/2023

Summary

Minor updates.

Apache MXNet Neuron release [1.8.0.2.4.25.0]

Date: 10/15/2023

Summary

Minor updates.

Apache MXNet Neuron release [1.8.0.2.4.10.0]

Date: 7/19/2023

Summary

Minor bug fixes and enhancements for MXNet 1.8 Neuron.

Apache MXNet Neuron release [1.8.0.2.4.9.0]

Date: 6/14/2023

Summary

Minor bug fixes and enhancements for MXNet 1.8 Neuron.

Apache MXNet Neuron release [1.8.0.2.4.1.0]

Date: 5/1/2023
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New in this release

• Updated Neuron Runtime library to version 2.12

• Added missing LICENSE.txt

Known Issues and Limitations

• Bert-base in 16 NeuronCores pipeline mode has 50% lower performance when running 16 inferences in parallel
with Runtime version 2.12.

[1.5.1.1.10.39.0]

Date: 5/1/2023

Summary

Minor bug fixes and enhancements for MXNet 1.5 Neuron.

This is the last released version. Please use neuron-cc version 1.15.0 only for this mxnet-neuron version. Also, this
version is limited to python 3.9 or below only.

python -m pip install mxnet_neuron==1.5.1.* neuron-cc==1.15.0

Apache MXNet Neuron release [1.8.0.2.2.127.0]

Date: 3/28/2023

Summary

Minor bug fixes and enhancements for MXNet 1.8 Neuron.

[1.5.1.1.10.37.0]

Date: 3/28/2023

Summary

Minor bug fixes and enhancements for MXNet 1.5 Neuron.
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Apache MXNet Neuron release [1.8.0.2.2.43.0]

Date: 11/23/2022

Summary

Minor bug fixes and enhancements for MXNet 1.8 Neuron.

[1.5.1.1.10.11.0]

Date: 11/23/2022

Summary

Minor bug fixes and enhancements for MXNet 1.5 Neuron.

[1.5.1.1.10.0.0]

Date: 04/28/2022

Summary

Minor bug fixes and enhancements for MXNet 1.5 Neuron.

Apache MXNet Neuron release [1.8.0.2.2.2.0]

Date: 03/25/2022

New in this release

• Added support for unloading models from a NeuronDevice by deleting the model instance in user application.
Users can now call del in Python on an executor and to unload the model from a NeuronDevice (provided
the deleted executor is the last executor pointing to the given model). This requires the latest aws-mx-1.
8 package from https://aws-mx-pypi.s3.us-west-2.amazonaws.com/1.8.0/aws_mx-1.8.0.2-py2.
py3-none-manylinux2014_x86_64.whl.

Bug fixes

• Fixed a memory leak caused by stale unloaded models in NeuronDevice memory. For this fix to take ef-
fect please install aws-mx package from https://aws-mx-pypi.s3.us-west-2.amazonaws.com/1.8.0/aws_mx-1.8.
0.2-py2.py3-none-manylinux2014_x86_64.whl along with the latest mx-neuron package.
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[1.5.1.1.9.0.0]

Date: 03/25/2022

Summary

Minor bug fixes and enhancements for MXNet 1.5 Neuron.

Apache MXNet Neuron release [1.8.0.2.1.5.0]

Date: 01/20/2022

New in this release

• Added support of mx_neuron.__version__ to get the build version of MXNet Neuron plugin

Bug fixes

• Fixed assertion errors when inference was completed with NaNs. The expected behavior is to complete inference
successfully and warn the user that ``NaN``s were seen during the current inference.

• Fixed compile issue when individual output nodes have multiple output nodes. Because the output index was
being dropped, fewer number of output feature maps were being considered and that caused failures during
inference.

Apache MXNet Neuron release [1.8.0.2.0.276.0]

Date: 11/05/2021

• Updated Neuron Runtime (which is integrated within this package) to libnrt 2.2.18.0 to fix a container issue
that was preventing the use of containers when /dev/neuron0 was not present. See details here neuron-runtime-
release-notes.

Apache MXNet Neuron release [1.8.0.2.0.271.0]

Date 10/27/2021

New in this release

• MXNet Neuron 1.8 now support Neuron Runtime 2.x (libnrt.so shared library) only.

Important:
– You must update to the latest Neuron Driver (aws-neuron-dkms version 2.1 or newer) for

proper functionality of the new runtime library.

– Read Introducing Neuron Runtime 2.x (libnrt.so) application note that describes why are we
making this change and how this change will affect the Neuron SDK in detail.
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– Read Migrate your application to Neuron Runtime 2.x (libnrt.so) for detailed information of
how to migrate your application.

• Introducing Flexible Execution Groups (FlexEG) feature. See Flexible Execution Group (FlexEG) in Neuron-
MXNet application note.

Resolved Issues

• Fixed a bug that prevented compilation of gluon models with multiple cpu and neuron nodes.

• Added more debug logic to help with profiling of model load timing.

[1.5.1.1.7.0.0]

Date 10/27/2021

New in this release

• MXNet 1.5 enters maintenance mode. Please visit maintenance_mxnet_1_5 for more information.

Resolved Issues

• Minor bug fixes.

[1.5.1.1.6.5.0]

Date 08/12/2021

Summary

Minor bug fixes and enhancements for MXNet 1.5 Neuron.

[1.8.0.1.3.4.0]

Date 08/12/2021

Summary

Minor bug fixes and enhancements for MXNet 1.8 Neuron.

9.1. MXNet Neuron (maintenance) 1657



AWS Neuron

[1.5.1.1.6.1.0]

Date 07/02/2021

Summary

Minor bug fixes and enhancements for MXNet 1.5 Neuron.

[1.8.0.1.3.0.0]

Date 07/02/2021

Summary

Support for Autoloop, Cpredict API and minor bug fixes and enhancements for MXNet 1.8 Neuron.

Major New Features

• Added support for Autoloop feature for MXNet 1.8 Neuron.

Resolved Issues

• Added support for CPredict API.

[1.8.0.1.2.1.0]

Date 5/28/2021

Summary

Minor bug fixes and enhancements for MXNet 1.8 Neuron

Resolved Issues

• Added support for Neuron profiler
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[1.8.0.1.1.2.0]

Date 4/30/2021

Summary

Initial release of Apache MXNet 1.8 for Neuron

Major New Features

• Gluon API and Neuron support for NLP BERT models

• Neuron is now a plugin

• Please note new API changes to support plugin mode: Neuron Apache MXNet Compilation Python API

[1.5.1.1.4.x.x]

Date 5/28/2021

Summary

• Minor enhancements.

[1.5.1.1.4.4.0]

Date 4/30/2021

Summary

• Resolve an issue with Neuron profiling.

Resolved Issues

• Issue: when Neuron profiling is enabled in MXNet-Neuron 1.5.1 (using NEURON_PROFILE=<dir>), and Ten-
sorBoard is used to read in the profiled data, user would see an error messsage “panic: runtime error: index out
of range”. This issue is resolved in this release.
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[1.5.1.1.3.8.0]

Date 3/4/2021

Summary

Minor enhancements.

[1.5.1.1.3.7.0]

Date 2/24/2021

Summary

Fix for CVE-2021-3177.

[1.5.1.1.3.2.0]

Date 1/30/2021

Summary

Various minor improvements

[1.5.1.1.2.1.0]

Date 12/23/2020

Summary

Various minor improvements

[1.5.1.1.1.88.0]

Date 11/17/2020
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Summary

This release includes the bug fix for MXNet Model Server not being able to clean up Neuron RTD states after model
is unloaded (deleted) from model server.

Resolved Issues

• Issue: MXNet Model Server is not able to clean up Neuron RTD states after model is unloaded (deleted) from
model server.

– Workaround for earlier versions: run “/opt/aws/neuron/bin/neuron-cli reset“ to

clear Neuron RTD states after all models are unloaded and server is shut down.

[1.5.1.1.1.52.0]

Date 09/22/2020

Summary

Various minor improvements.

Major New Features

Resolved Issues

• Issue: When first importing MXNet into python process and subprocess call is invoked, user may get an OS-
Error exception “OSError: [Errno 14] Bad address” during subprocess call (see https://github.com/apache/
incubator-mxnet/issues/13875 for more details). This issue is fixed with a mitigation patch from MXNet for
Open-MP fork race conditions.

– Workaround for earlier versions: Export KMP_INIT_AT_FORK=false before running python process.

[1.5.1.1.1.1.0]

Date 08/08/2020

Summary

Various minor improvements.
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Major New Features

Resolved Issues

[1.5.1.1.0.2101.0]

Date 08/05/2020

Summary

Various minor improvements.

Major New Features

Resolved Issues

[1.5.1.1.0.2093.0]

Date 07/16/2020

Summary

This release contains a few bug fixes and user experience improvements.

Major New Features

Resolved Issues

• User can specify NEURONCORE_GROUP_SIZES without brackets (for example, “1,1,1,1”), as can be done in
TensorFlow-Neuron and PyTorch-Neuron.

• Fixed a memory leak when inferring neuron subgraph properties

• Fixed a bug dealing with multi-input subgraphs

[1.5.1.1.0.2033.0]

Date 6/11/2020
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Summary

• Added support for profiling during inference

Major New Features

• Profiling can now be enabled by specifying the profiling work directory using NEURON_PROFILE environment
variable during inference. For an example of using profiling, see tensorboard-neuron. (Note that graph view of
MXNet graph is not available via TensorBoard).

Resolved Issues

Known Issues and Limitations

Other Notes

[1.5.1.1.0.1900.0]

Date 5/11/2020

Summary

Improved support for shared-memory communication with Neuron-Runtime.

Major New Features

• Added support for the BERT-Base model (base: L-12 H-768 A-12), max sequence length 64 and batch size of 8.

• Improved security for usage of shared-memory for data transfer between framework and Neuron-Runtime

• Improved allocation and cleanup of shared-memory resource

• Improved container support by automatic falling back to GRPC data transfer if shared-memory cannot be allo-
cated by Neuron-Runtime

Resolved Issues

• User is unable to allocate Neuron-Runtime shared-memory resource when using MXNet-Neuron in a container
to communicate with Neuron-Runtime in another container. This is resolved by automatic falling back to GRPC
data transfer if shared-memory cannot be allocated by Neuron-Runtime.

• Fixed issue where some large models could not be loaded on inferentia.
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Known Issues and Limitations

Other Notes

[1.5.1.1.0.1596.0]

Date 3/26/2020

Summary

No major changes or fixes

Major New Features

Resolved Issues

Known Issues and Limitations

Other Notes

[1.5.1.1.0.1498.0]

Date 2/27/2020

Summary

No major changes or fixes.

Major New Features

Resolved Issues

The issue(s) below are resolved:

• Latest pip version 20.0.1 breaks installation of MXNet-Neuron pip wheel which has py2.py3 in the wheel name.

Known Issues and Limitations

• User is unable to allocate Neuron-Runtime shared-memory resource when using MXNet-Neuron in a container
to communicate with Neuron-Runtime in another container. To work-around, please set environment variable
NEURON_RTD_USE_SHM to 0.
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Other Notes

[1.5.1.1.0.1401.0]

Date 1/27/2020

Summary

No major changes or fixes.

Major New Features

Resolved Issues

• The following issue is resolved when the latest multi-model-server with version >= 1.1.0 is used with MXNet-
Neuron. You would still need to use “/opt/aws/neuron/bin/neuron-cli reset” to clear all Neuron RTD
states after multi-model-server is exited:

– Issue: MXNet Model Server is not able to clean up Neuron RTD states after model is unloaded (deleted)
from model server and previous workaround “/opt/aws/neuron/bin/neuron-cli reset” is unable
to clear all Neuron RTD states.

Known Issues and Limitations

• Latest pip version 20.0.1 breaks installation of MXNet-Neuron pip wheel which has py2.py3 in the wheel name.
This breaks all existing released versions. The error looks like:

Looking in indexes: https://pypi.org/simple, https://pip.repos.neuron.amazonaws.com
ERROR: Could not find a version that satisfies the requirement mxnet-neuron (from␣
→˓versions: none)
ERROR: No matching distribution found for mxnet-neuron

• Work around: install the older version of pip using “pip install pip==19.3.1”.

Other Notes

[1.5.1.1.0.1325.0]

Date 12/1/2019
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Summary

Major New Features

Resolved Issues

• Issue: Compiler flags cannot be passed to compiler during compile call. The fix: compiler flags can be passed
to compiler during compile call using “flags” option followed by a list of flags.

• Issue: Advanced CPU fallback option is a way to attempt to improve the number of operators on Inferentia. The
default is currently set to on, which may cause failures. The fix: This option is now off by default.

Known Issues and Limitations

• Issue: MXNet Model Server is not able to clean up Neuron RTD states after model is unloaded (deleted) from
model server and previous workaround “/opt/aws/neuron/bin/neuron-cli reset” is unable to clear all
Neuron RTD states.

– Workaround: run “sudo systemctl restart neuron-rtd“ to clear Neuron RTD states after all mod-
els are unloaded and server is shut down.

Other Notes

[1.5.1.1.0.1349.0]

Date 12/20/2019

Summary

No major changes or fixes. Released with other Neuron packages.

[1.5.1.1.0.1325.0]

Date 12/1/2019

Summary

Major New Features

Resolved Issues

• Issue: Compiler flags cannot be passed to compiler during compile call. The fix: compiler flags can be passed
to compiler during compile call using “flags” option followed by a list of flags.

• Issue: Advanced CPU fallback option is a way to attempt to improve the number of operators on Inferentia. The
default is currently set to on, which may cause failures. The fix: This option is now off by default.
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Known Issues and Limitations

• Issue: MXNet Model Server is not able to clean up Neuron RTD states after model is unloaded (deleted) from
model server and previous workaround “/opt/aws/neuron/bin/neuron-cli reset” is unable to clear all
Neuron RTD states.

– Workaround: run “sudo systemctl restart neuron-rtd“ to clear Neuron RTD states after all mod-
els are unloaded and server is shut down.

Other Notes

[1.5.1.1.0.1260.0]

Date: 11/25/2019

Summary

This version is available only in released DLAMI v26.0 and is based on MXNet version 1.5.1. Please dlami-rn-known-
issues to latest version.

Major new features

Resolved issues

Known issues and limitations

• Issue: Compiler flags cannot be passed to compiler during compile call.

• Issue: Advanced CPU fallback option is a way to attempt to improve the number of operators on Inferentia. The
default is currently set to on, which may cause failures.

– Workaround: explicitly turn it off by setting compile option op_by_op_compiler_retry to 0.

• Issue: Temporary files are put in current directory when debug is enabled.

– Workaround: create a separate work directory and run the process from within the work directory

• Issue: MXNet Model Server is not able to clean up Neuron RTD states after model is unloaded (deleted) from
model server.

– Workaround: run “/opt/aws/neuron/bin/neuron-cli reset“ to clear Neuron RTD states after all
models are unloaded and server is shut down.

• Issue: MXNet 1.5.1 may return inconsistent node names for some operators when they are the primary outputs
of a Neuron subgraph. This causes failures during inference.

– Workaround : Use the excl_node_names compilation option to change the partitioning of the graph
during compile so that these nodes are not the primary output of a neuron subgraph. See Neuron Apache
MXNet Compilation Python API

compile_args = { 'excl_node_names': ["node_name_to_exclude"] }
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Models Supported

The following models have successfully run on neuron-inferentia systems

1. Resnet50 V1/V2

2. Inception-V2/V3/V4

3. Parallel-WaveNet

4. Tacotron 2

5. WaveRNN

Other Notes

• Python versions supported:

– 3.5, 3.6, 3.7

• Linux distribution supported:

– Ubuntu 18, Amazon Linux 2

This document is relevant for: Inf1

• Troubleshooting Guide for Neuron Apache MXNet

• What’s New

• Neuron Apache MXNet Supported operators

This document is relevant for: Inf1

Setup (mxnet-neuron)

Tutorials

Computer Vision Tutorials

• ResNet-50 tutorial [html] [notebook]

• Model Serving tutorial [html]

• Getting started with Gluon tutorial [html] [notebook]

Natural Language Processing (NLP) Tutorials

• MXNet 1.8: Using data parallel mode tutorial [html] [notebook]
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Utilizing Neuron Capabilities Tutorials

• NeuronCore Groups tutorial [html] [notebook]

Note: To use Jupyter Notebook see:

• setup-jupyter-notebook-steps-troubleshooting

• running-jupyter-notebook-as-script

API Reference Guide

• Neuron Apache MXNet Compilation Python API

Developer Guide

• Flexible Execution Group (FlexEG) in Neuron-MXNet

Misc

• Troubleshooting Guide for Neuron Apache MXNet

• What’s New

• Neuron Apache MXNet Supported operators

This document is relevant for: Inf1

MxNet Neuron(mxnet-neuron) for Inference on Inf1 This document is relevant for: Inf1
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CHAPTER

TEN

ABOUT NEURON

This document is relevant for: Inf1, Inf2, Trn1, Trn2

10.1 Release Details

10.1.1 Latest Release

• What’s New

• Release Artifacts

10.1.2 Previous Releases

• prev-rn

• pre-release-content

• prev-n1-rn

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

10.2 Roadmap

The AWS Neuron feature roadmap provides visibility onto what we are working on in terms of functional and perfor-
mance in the near future. We hope this will help you better plan how to use Neuron with your products. We’d love to
get our customers feedback as well, to help us ensure we are working on the most important requests.

Neuron Roadmap items are classified into one of the following status:

Roadmap Status Description
No Status Items that are in the roadmap backlog
Todo Items that are planned for future releases
In Progress Items that are planned for the next release
Done Items that have been completed in previous releases
Not to be Implemented Items that are not planned for future releases

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2
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10.3 Support

This document is relevant for: Inf1, Inf2, Trn1, Trn2

10.3.1 Neuron Software Maintenance policy

Table of Contents

• Overview

• Neuron Software Definitions

– Neuron SDK

– Neuron components

∗ Neuron extension components

∗ Neuron standalone components

– Neuron Model Classes

– Neuron features

– Neuron APIs

– Dependency software components

– Neuron Deep Learning AMIs and Deep Learning Containers
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– Neuron APIs

– Neuron Features

– Neuron Supported Model Classes

Overview

This document outlines software maintenance policy for AWS Neuron Software Development Kit (SDK), Neuron
Components, both extension and standalone components, supported model classes, features, APIs, DLAMIs and DLCs,
and dependency software. AWS Neuron is the SDK for Amazon EC2 Inferentia and Amazon EC2 Trainium based
instances purpose-built for deep learning. Neuron integrates with popular Machine Learning (ML) frameworks like
PyTorch, JAX, and TensorFlow and includes a compiler, runtime, driver, profiling tools, and libraries to support high
performance training of generative AI models on Trainium and Inferentia powered instances.

This document addresses Neuron Software life-cycle and the Neuron SDK release versioning.

Neuron Software Definitions

Neuron Software refers to the complete set of software elements provided by AWS Neuron, including:

Neuron SDK

The core software development kit that enables users to build, train, and deploy machine learning models on Inferentia
and Trainium based instances. The Neuron SDK encompasses the entire set of components, features, APIs, and other
elements that are bundled together and made available in a particular version of the Neuron SDK release.

Neuron components

Neuron components refer to any packages or libraries within the Neuron SDK that offer specific functionality. These
components are typically accessible through PIP, RPM, or Debian packages for easy installation and usage. There are
two main categories of Neuron components: Neuron extension components and Neuron standalone components.

Neuron extension components

Neuron extension components are components that integrate Neuron support into open source machine learning frame-
works, libraries or tools enhancing their functionality and extending their capabilities as necessary. When referring to
Neuron extension components, we are also referring to the parts of the open source machine learning framework or
library that are supported by Neuron. The software life-cycle of the open source machine learning frameworks, li-
braries or tools that are extended by Neuron is managed and maintained by their respective communities or the vendors
responsible for those specific components. Examples for Neuron extension components are:

• Third party ML Library: Examples include Neuron Nemo Megatron.

• Third party ML Framework: Examples include PyTorch NeuronX and TensorFlow Neuron.
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Neuron standalone components

Neuron standalone components are self-contained components within the Neuron SDK. Examples of such components
are Neuron Compiler, Neuron Tools and Neuron Runtime.

Neuron Model Classes

A Neuron supported model class is tightly coupled with a specific Neuron extension component (e.g. PyTorch Neu-
ronX) or Neuron library (e.g. NeuronX Distributed) and the workload type (e.g. Training or Inference). For example
a model can be supported at Beta level in PyTorch NeuronX for training and Stable level in PyTorch NeuronX for
inference.

Neuron features

A Neuron feature refers to any functionality or attribute that is part of the Neuron SDK, whether it belongs to the entire
Neuron SDK or to one of its specific components.

For example, a Neuron feature is Neuron Persistent Cache in the Transformers Neuronx library

Neuron APIs

A Neuron API refers to any API, CLI, environment variables, or flag that belong to to the entire Neuron SDK or to one
the Neuron components. A Neuron API allows developers to interact with and leverage the capabilities of the Neuron
SDK and its components.

Examples include Neuron Trace API and Neuron Compiler flags

Dependency software components

External software components or frameworks that the Neuron SDK and its components rely on for proper functioning
and compatibility, such as language runtimes or operating systems.

The software life-cycle of the dependency software components, is managed and maintained by their respective com-
munities or the vendors responsible for those specific dependency software components. The following terms are
examples of underlying dependency software components:

• Operating System (OS): Examples include Ubuntu 22 and Amazon Linux 2023

• Language Runtime: Examples include Python 3.10

Neuron Deep Learning AMIs and Deep Learning Containers

Neuron Deep Learning AMIs (DLAMIs) and Neuron Deep Learning Containers (DLCs) are pre-configured Amazon
Machine Images and Docket container that come with the Neuron SDK and necessary dependencies pre-installed,
providing a ready-to-use environment for machine learning development.
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Neuron Software Life-cycle

The typical life-cycle for Neuron software consists of several phases, though not all phases are applicable to every type
of Neuron software. The phases are as follows:

• Developer Preview or Beta (these terms are used interchangeably in Neuron collaterals)

• Release Candidate (RC)
• General Availability (GA) or Stable (these terms are used interchangeably in Neuron collaterals)

• Maintenance
• End-of-Support (EOS)

The following table outlines the details for each phase for Neuron software:

Description Comments
De-
vel-
oper
Pre-
view
(Beta)

In this phase, Neuron Software is not supported, should not be used in production environ-
ments, and is meant for early access and feedback purposes only. It is possible for future
releases to introduce breaking changes. See Neuron Software Classification for more in-
formation

Re-
lease
Can-
di-
date
(RC)

Once AWS identifies a release to be a stable product, it may be marked as a Release Candi-
date (RC). This phase is usually short and during it AWS will provide for Neuron Software
on an as-needed basis.

This phase
applies only to
Neuron SDK
and Neuron
components

Gen-
eral
Avail-
abil-
ity
(Sta-
ble)

During this phase, AWS releases regular for Neuron Software on an as-needed basis. See
Neuron Software Classification for more information

Main-
te-
nance

During the maintenance phase, AWS will provide maintenance updates for Neuron Soft-
ware on an as-needed basis. Any new PIP, RPM, and Debian packages for the Neuron
Software, as well as updated versions of the Neuron DLAMIs and Neuron DLCs, will be
released only when deemed necessary by the AWS Neuron team. Users can expect updates
to be less frequent compared to regular as the focus will be on addressing critical issues
and ensuring the stability of the software.
Maintenance Announcement: AWS will make a public announcement at least one month
before the Neuron Software enters Maintenance phase.

This phase
does not apply
to Depen-
dency Software
Compo-
nents, Neuron
DLCs, Neuron
DLAMIs, Neu-
ron Features
and APIs

End
of
Sup-
port
(EOS)

When Neuron Software reaches the end of its support lifecycle, it will no longer receive
regular updates and maintenance updates (including security updates). While AWS will
continue to provide access to all previously released PIP, RPM, and Debian packages for
the Neuron Software, as well as earlier versions of the Neuron DLAMIs and Neuron DLCs,
it’s important to note that these older versions will not receive any updates or support. Cus-
tomers can still use these resources at their own discretion, but it is highly recommended
to upgrade to the latest available versions
End of Support Announcement: AWS will make a public announcement at least one month
before a Neuron Software enters End of Support.
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Neuron Software Regular Updates

Regular updates for Neuron Software address the following areas: new features, feature improvements, performance
enhancements, bug resolution, security vulnerability fixes, upgrades to Neuron dependency software components and
upgrades to Neuron extension components. To handle these regular updates, AWS will release a new version of the
Neuron SDK, incrementing the minor version (the second digit in the version number) for a minor release or incre-
menting the major version (the first digit in the version number) for a major release when significant changes that break
compatibility are introduced. It’s important to note that any bug-fixes or security issues in regular updates are not ap-
plied retroactively to previous versions of the Neuron SDK. To benefit from these updates, users must adopt the latest
release.

For more information see:

• Neuron DLAMIs and DLCs Updates

• Neuron Extension Components Updates

• Neuron Software Versioning

Neuron SDK Installation and Update instructions To install and update to the latest Neuron packages, customers
need to pin the major version of the Neuron package. For example, to install latest Neuron tools package, call
sudo apt-get install aws-neuronx-tools=2.* and to install latest PyTorch Neuron package for Trn1, call pip
install torch-neuronx==2.1.0.1.*. This is done to future-proof instructions for new, backwards-incompatible
major version releases.

Neuron Software Maintenance Updates

Maintenance updates for Neuron Software address three key areas: resolving bugs, fixing security vulnerabilities, and
upgrading dependency software components. At AWS discretion, additional critical features or performance enhance-
ment may also be included. To handle these maintenance updates, AWS will release a new version of the Neuron
SDK, incrementing the patch number (the last digit in the version number) to indicate a patch release. Major or minor
releases may also contain maintenance updates. It’s important to note that these maintenance updates are not applied
retroactively to previous versions of the Neuron SDK. To take advantage of these updates, users must adopt the latest
patch release.

For more information see:

• Neuron DLAMIs and DLCs Updates

• Neuron Extension Components Updates

• Neuron Software Versioning

Neuron DLAMIs and DLCs Updates

AWS will address regular updates, life-cycle changes, maintenance updates, and security issues related to any third-
party software included in the Neuron DLAMI or DLCs by releasing new versions of the Neuron DLAMI or DLCs.
However, updates won’t be applied retroactively to older versions of the Neuron DLAMI or DLCs. Instead, users
will need to use the new versions to get the latest updates. Generally, Neuron DLAMIs and Deep Learning Containers
(DLCs) will support one latest LTS Linux Distribution version (Ubuntu, Amazon Linux, and Rocky9), with exceptions.
Neuron Base DLAMIs (which come pre-installed with Neuron driver, EFA, and Neuron tools) will support the two latest
versions of LTS Linux Distributions.

For more information see:

• Neuron Extension Components Updates

• Neuron Software Versioning
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Neuron Extension Components Updates

When a new version of an open source ML framework (e.g. PyTorch) is supported by a Neuron extension component
(e.g., PyTorch NeuronX), the Neuron extension component for the latest supported ML framework version will become
the default for installation. If users wish to use a Neuron extension component for an earlier supported ML framework
version, they will need to explicitly specify the desired version during installation. After upgrading a Neuron extension
component to support a newer version of an ML framework, AWS will continue to provide regular updates for the
Neuron extension component that supports the earlier ML framework version for a minimum of 6 months. After the 6
months period, the Neuron extension component for the earlier supported ML framework version may transition into
a maintenance mode. In the maintenance mode, updates for the older Neuron extension component versions will be
provided on an as-needed basis, focusing on critical bug fixes and security patches. For more information see: Neuron
extension component versioning

Communication methods

Neuron software classification and lifecycle announcements are communicated as follows:

• Neuron SDK documentation under Announcements

To see the list of available Neuron SDK versions and supported dependency software components versions:

• Neuron SDK documentation under Release Content

• Neuron SDK documentation under What’s New

Neuron Software Versioning

Neuron SDK Documentation Versioning

Neuron SDK documentation is versioned and maps to the corresponding Neuron SDK version. Users can switch to
earlier versions of the Neuron SDK documentation by selecting the version from the dropdown in bottom left portion
of the side bar.

Neuron SDK Versioning

The AWS SDK release versions are in the form of [A.B.C] where (A) represents the major version, (B) represents
the minor version, and (C) represents the patch version.

Neuron extension components Versioning

Neuron extension components versioning (like PyTorch NeuronX) is in the form [X.Y.Z].[A.B.C], where [X.Y.Z]
represents the third party component’s major (X), minor (Y), and patch (Z) versions and [A.B.C] represents the Neuron
extension components (A), minor (B), and patch (C) versions.
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Neuron Standalone Component Versioning

Neuron Component versioning (except of Neuron extension components like PyTorch NeuronX) is in the form [A.B.
C.D], where A represents the major version, B represents the minor version, and C.D represents the patch version.

Neuron Software Release Types

Major release

Increasing the major version indicates that the Neuron software underwent significant and substantial changes in an
incompatible manner. Applications need to be updated in order for them to work with the newest SDK version. It is
important to update major versions carefully and in accordance with the upgrade guidelines provided by AWS. After
increasing the major version, the Neuron software may not maintain compatibility with previous supported versions of
Neuron Runtime, Neuron Compiler, and NEFF.

Minor release

Increasing the minor version indicates that the Neuron software added functionality in a backwards compatible manner.

Patch release

Increasing the patch version indicates that the Neuron software added backward compatible bug or security fixes. A
bug fix is defined as an internal change that fixes incorrect behavior.

Pre-releases

• Developer Preview (Beta): During this phase, the Neuron software is not supported, should not be used in
production environments, and is meant for early access and feedback purposes only. It is possible for future
releases to introduce breaking changes. In the case of a Developer Preview (Beta) release, the minor version will
include a lower case b along with a (Beta) tag.

• Release Candidate (RC): Once Neuron identifies a release to be a stable product, it may mark it as a Release
Candidate. Release Candidates are ready for GA release unless significant bugs emerge, and will receive full
AWS Neuron support. In the case of a RC release, the minor version will include a lower case rc along with a
(RC) tag.

Neuron Software Classification

This section explains the Neuron software classification for APIs, libraries, packages, features, and Neuron supported
model classes mentioned in the Neuron documentation.
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Neuron SDK and Neuron components

Testing Features Perfor-
mance

Developer Preview
(Beta)

Basic Minimal Viable Product (MVP) *

Release Candidate (RC) Basic Minimal Viable Product (MVP)* Tested
GA (Stable) Standard Product Test-

ing
Incremental additions or changes in new re-
leases

Tested

* A minimum viable product (MVP) for a Neuron Component contains just enough features to be usable by early
customers who can then provide feedback for future development. MVP can be different per use case and depends on
the specific package/library of interest. Please note that in many cases, an MVP can also represent an advanced level
of features.

Neuron APIs

API Contract API Backward Compat-
ibility

Alpha Unstable and undocumented No
Developer Preview
(Beta)

Major changes may happen No

GA (Stable) Incremental changes in new releases (without breaking the
API contract)

Yes *

* In certain cases, when necessary, AWS may introduce API changes that may break compatibility, with notice provided
ahead of time.

Neuron Features

Testing Functionality Perfor-
mance

Alpha No formal test-
ing done

Partial funcitonality with limited set of core capabilities, far
from Minium Viable Product (MVP) *

Not tested or
evaluated

Developer Pre-
view (Beta)

Basic Minimum Viable Product (MVP) *

GA (Stable) Standard Prod-
uct Testing

Incremental additions or changes in new releases Tested

* A minimum viable product (MVP) for a Neuron Feature contains just enough functionality to be usable by early
customers who can then provide feedback for future development. MVP can be different per use case and depends
on the specific feature of interest. Please note that in many cases, an MVP can also represent an advanced level of
functionality.
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Neuron Supported Model Classes

Accuracy / Convergence Throughput / Latency
Developer Preview (Beta) Validated Tested
GA (Stable) Validated Tested

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

10.3.2 Security Disclosures

If you think you’ve found a potential security issue, please do not post it in the Issues. Instead, please follow the
instructions here (https://aws.amazon.com/security/vulnerability-reporting/) or email AWS security directly (mailto:
aws-security@amazon.com).

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2

10.3.3 Contact Us

For support please checkout the Github issues or Neuron AWS forums for an answer, if none of those resources have
an answer to your question please open a ticket.

If you have an urgent need for a feature you can also contact us directly at aws-neuron-support@amazon.com.

This document is relevant for: Inf1, Inf2, Trn1, Trn2

This document is relevant for: Inf1, Inf2, Trn1, Trn2
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Symbols
__init__() (nki.isa.nc_version method), 1293

A
abs (C++ function), 1514
abs() (in module nki.language), 1205
abs_out (C++ function), 1514
accessor (C++ function), 1517
activation() (in module nki.isa), 1248
activation_reduce() (in module nki.isa), 1250
add (C++ function), 1516
add() (in module nki.language), 1197
add_out (C++ function), 1515
affine_range() (in module nki.language), 1232
affine_select() (in module nki.isa), 1269
all() (in module nki.language), 1204
all_reduce() (in module nki.language), 1231
alloc() (in module nki.compiler.psum), 1297
alloc() (in module nki.compiler.sbuf ), 1294
arange() (in module nki.language), 1228
arctan() (in module nki.language), 1211
assert_shape() (nki.tensor method), 1184
astype() (nki.tensor method), 1184
atomic_rmw() (in module nki.language), 1190
auto_alloc() (in module nki.compiler.psum), 1300
auto_alloc() (in module nki.compiler.sbuf ), 1297

B
baremetal() (in module nki), 1181
benchmark() (in module nki), 1178
BF16, 1635
bfloat16 (in module nki.language), 1241
bitwise_and (C++ function), 1516, 1517
bitwise_and() (in module nki.language), 1219
bitwise_and_out (C++ function), 1516
bitwise_not (C++ function), 1517
bitwise_not_out (C++ function), 1517
bitwise_or (C++ function), 1517
bitwise_or() (in module nki.language), 1220
bitwise_or_out (C++ function), 1517
bitwise_xor() (in module nki.language), 1220
bn_aggr() (in module nki.isa), 1277

bn_stats() (in module nki.isa), 1275
broadcast_to() (in module nki.language), 1191
broadcast_to() (nki.tensor method), 1184
built-in function

torch.neuron.DataParallel(), 215
torch.neuron.DataParallel.disable_dynamic_batching(),

90, 216
torch_neuron.trace(), 210
torch_neuronx.analyze(), 87
torch_neuronx.bucket_model_trace(), 77
torch_neuronx.DataParallel(), 90
torch_neuronx.dynamic_batch(), 78
torch_neuronx.experimental.multicore_context(),

86
torch_neuronx.experimental.neuron_cores_context(),

85
torch_neuronx.experimental.profiler.profile(),

347
torch_neuronx.experimental.profiler.profile.start(),

348
torch_neuronx.experimental.set_multicore(),

85
torch_neuronx.experimental.set_neuron_cores(),

84
torch_neuronx.move_trace_to_device(), 75
torch_neuronx.PartitionerConfig(), 79
torch_neuronx.replace_weights(), 81
torch_neuronx.trace(), 71

C
CCE, 1634
ceil (C++ function), 1514
ceil() (in module nki.language), 1207
ceil_out (C++ function), 1514
cFP8, 1635
clamp (C++ function), 1515
clamp_out (C++ function), 1515
close (C++ function), 1521
Collective Communication Engine, 1633
copy() (in module nki.language), 1190
cos (C++ function), 1515
cos() (in module nki.language), 1209
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cos_out (C++ function), 1515
CustomOps, 1635

D
device_print() (in module nki.language), 1239
dge_mode (class in nki.isa), 1292
div (C++ function), 1516
div_out (C++ function), 1516
divide() (in module nki.language), 1199
dma_copy() (in module nki.isa), 1279
DP, 1635
DPr, 1635
dropout() (in module nki.isa), 1268
dropout() (in module nki.language), 1217
ds() (in module nki.language), 1227
dtype (nki.tensor property), 1184

E
empty (C++ function), 1514
empty_like() (in module nki.language), 1193
enable_stack_allocator() (in module nki.compiler),

1300
engine (class in nki.isa), 1291
equal() (in module nki.language), 1222
erf() (in module nki.language), 1214
erf_dx() (in module nki.language), 1215
exp (C++ function), 1515
exp() (in module nki.language), 1208
exp_out (C++ function), 1515
expand_dims() (in module nki.language), 1229
expand_dims() (nki.tensor method), 1184
eye (C++ function), 1514

F
fill_ (C++ function), 1518
FLOAT32_TO_FLOAT16 (torch_neuron.Optimization at-

tribute), 211
float8_e4m3 (in module nki.language), 1241
float8_e5m2 (in module nki.language), 1241
floor (C++ function), 1514
floor() (in module nki.language), 1206
floor_out (C++ function), 1514
fmod() (in module nki.language), 1208
force_auto_alloc() (in module nki.compiler), 1301
FP16, 1635
FP32, 1635
fp32 (class in nki.language), 1242
full (C++ function), 1514
full() (in module nki.language), 1194

G
gather_flattened() (in module nki.language), 1230
gelu() (in module nki.language), 1213

gelu_apprx_tanh() (in module nki.language), 1213
gelu_dx() (in module nki.language), 1213
get_accessor_coherence_policy (C++ function),

1517
get_cpu_count (C++ function), 1525
get_cpu_id (C++ function), 1524
get_dst_tensor (C++ function), 1524
get_nc_version() (in module nki.isa), 1293
GPSIMD Engine, 1633
GpSimdE, 1634
greater() (in module nki.language), 1223
greater_equal() (in module nki.language), 1224

H
HBM, 1634
hbm (in module nki.language), 1235
High Bandwidth Memory, 1633

I
Inf1, 1632
Inf2, 1632
Inferentia, 1632
invert() (in module nki.language), 1221
iota() (in module nki.isa), 1266
itemsize (nki.tensor property), 1185

J
jit() (in module nki), 1178

L
left_shift() (in module nki.language), 1221
less() (in module nki.language), 1224
less_equal() (in module nki.language), 1225
load() (in module nki.language), 1186
load_transpose2d() (in module nki.language), 1189
local_gather() (in module nki.isa), 1277
log (C++ function), 1515
log() (in module nki.language), 1209
log10 (C++ function), 1515
log10_out (C++ function), 1515
log2 (C++ function), 1515
log2_out (C++ function), 1515
log_out (C++ function), 1515
logical_and() (in module nki.language), 1225
logical_not() (in module nki.language), 1227
logical_or() (in module nki.language), 1226
logical_xor() (in module nki.language), 1226
loop_reduce() (in module nki.language), 1239

M
matmul() (in module nki.language), 1218
max() (in module nki.language), 1201
max8() (in module nki.isa), 1283
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maximum() (in module nki.language), 1200
mean() (in module nki.language), 1202
memset() (in module nki.isa), 1274
mgrid (in module nki.language), 1228
min() (in module nki.language), 1202
minimum() (in module nki.language), 1201
mish() (in module nki.language), 1215
mod() (in module nki.language), 1207
mod_alloc() (in module nki.compiler.psum), 1298
mod_alloc() (in module nki.compiler.sbuf ), 1295
module

placement, 221
mul (C++ function), 1516
mul_out (C++ function), 1516
multiply() (in module nki.language), 1199

N
NC, 1634
nc (in module nki.language), 1238
nc_find_index8() (in module nki.isa), 1284
nc_match_replace8() (in module nki.isa), 1285
nc_matmul() (in module nki.isa), 1244
nc_stream_shuffle() (in module nki.isa), 1289
nc_transpose() (in module nki.isa), 1247
nc_version (class in nki.isa), 1293
ND, 1634
ndarray() (in module nki.language), 1192
ndim (nki.tensor property), 1185
negative() (in module nki.language), 1205
Neuron Device, 1632
Neuron Kernel Interface, 1634
neuron-cc

neuron-cc command line option, 1140, 1143
neuron-cc command line option

neuron-cc, 1140, 1143
neuron-ls

neuron-ls command line option, 1014
neuron-ls command line option

neuron-ls, 1014
neuron-monitor

neuron-monitor command line option, 996
neuron-monitor command line option

neuron-monitor, 996
neuron-profile

neuron-profile command line option, 1061
neuron-profile command line option

neuron-profile, 1061
NeuronCore, 1633, 1634
NeuronCore-v1, 1633
NeuronCore-v2, 1633
NeuronCore-v3, 1633
NeuronDevice, 1634
NeuronLink, 1633
NeuronLink-v1, 1633

NeuronLink-v2, 1633
NeuronLink-v3, 1633
neuronx-cc

neuronx-cc command line option, 1124, 1126
neuronx-cc command line option

neuronx-cc, 1124, 1126
NKI, 1635
not_equal() (in module nki.language), 1223
nrt_add_tensor_to_tensor_set (C function), 939
nrt_allocate_tensor_set (C function), 939
nrt_close (C function), 933
nrt_destroy_tensor_set (C function), 939
nrt_execute (C function), 940
nrt_execute_repeat (C function), 940
nrt_free_model_tensor_info (C function), 936
nrt_get_model_instance_count (C function), 936
nrt_get_model_nc_count (C function), 935
nrt_get_model_tensor_info (C function), 935
nrt_get_tensor_from_tensor_set (C function), 939
nrt_get_total_nc_count (C function), 941
nrt_get_version (C function), 941
nrt_get_visible_nc_count (C function), 941
nrt_init (C function), 932
nrt_load (C function), 934
nrt_load_collectives (C function), 934
nrt_profile_start (C function), 940
nrt_profile_stop (C function), 940
nrt_tensor_allocate (C function), 937
nrt_tensor_allocate_empty (C function), 938
nrt_tensor_allocate_slice (C function), 938
nrt_tensor_attach_buffer (C function), 938
nrt_tensor_free (C function), 937
nrt_tensor_get_size (C function), 938
nrt_tensor_get_va (C function), 939
nrt_tensor_read (C function), 937
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module, 221
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reduce_cmd (class in nki.isa), 1292
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reshape() (nki.tensor method), 1185
right_shift() (in module nki.language), 1222
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built-in function, 87
torch_neuronx.bucket_model_trace()
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torch_neuronx.BucketModelConfig (built-in class),
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torch_neuronx.DataParallel()
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torch_neuronx.dynamic_batch()
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trunc() (in module nki.language), 1206
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var() (in module nki.language), 1203
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VectorE, 1634
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where() (in module nki.language), 1229
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